Science.gov

Sample records for oleic palmitic stearic

  1. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    PubMed Central

    Choi, S. H.; Park, S. K.; Johnson, B. J.; Chung, K. Y.; Choi, C. W.; Kim, K. H.; Kim, W. Y.; Smith, B.

    2015-01-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco’s Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta (CPT1β) gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism. PMID:25656188

  2. 21 CFR 178.3450 - Esters of stearic and palmitic acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... SANITIZERS Certain Adjuvants and Production Aids § 178.3450 Esters of stearic and palmitic acids. The...

  3. Registration of a sunflower genetic stock (RS3) with reduced palmitic and stearic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sunflower (Helianthus annuus L.) genetic stock, RS3 (PI 642702), having reduced levels of palmitic and stearic acids, was developed and released by the USDA-ARS and the North Dakota Agricultural Experiment Station, Fargo, ND. This genetic stock provides an additional source of lower saturated fatt...

  4. 21 CFR 178.3450 - Esters of stearic and palmitic acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-packaging materials when used in accordance with the following prescribed conditions: (a) They are used or... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  5. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture.

    PubMed

    Mohamed, Ibrahim O

    2015-01-01

    The main goal of the present research is to restructure olive oil triacylglycerol (TAG) using enzymatic acidolysis reaction to produce structured lipids that is close to cocoa butter in terms of TAG structure and melting characteristics. Lipase-catalyzed acidolysis of refined olive oil with a mixture of palmitic-stearic acids at different substrate ratios was performed in an agitated batch reactor maintained at constant temperature and agitation speed. The reaction attained steady-state conversion in about 5 h with an overall conversion of 92.6 % for the olive oil major triacylglycerol 1-palmitoy-2,3-dioleoyl glycerol (POO). The five major TAGs of the structured lipids produced with substrate mass ratio of 1:3 (olive oil/palmitic-stearic fatty acid mixture) were close to that of the cocoa butter with melting temperature between 32.6 and 37.7 °C. The proposed kinetics model used fits the experimental data very well. PMID:25342261

  6. Investigations of in vitro bioaccessibility from interesterified stearic and oleic acid-rich blends.

    PubMed

    Thilakarathna, S H; Rogers, M; Lan, Y; Huynh, S; Marangoni, A G; Robinson, L E; Wright, A J

    2016-04-20

    Interesterification was previously found to impact stearic acid absorption in a randomized cross-over study, when human volunteers consumed a 70 : 30 wt% high-oleic sunflower and canola stearin blend (NIE) compared to the same blend which had undergone either chemical (CIE) or enzymatic (EIE) interesterification. In this research, in vitro lipid digestion, bioaccessibility, and changes in undigested lipid composition and melting behavior of these same test fats were investigated using the dynamic, multi-compartmental TIM-1 digestion model and compared with the previous human study. Overall, TIM-1 bioaccessibility was higher with interesterification (p < 0.05). Oleic acid bioaccessibility was higher than stearic acid bioaccessibility for NIE, and vice versa for the interesterified blends (p < 0.05). Stearic acid was more concentrated in the undigested triacylglycerols (TAG) from NIE, corresponding to a relatively higher melting temperature of the undigested lipids. The results confirm the impact of TAG composition, fatty acid position and/or physical properties on lipid digestion. TIM-1 bioaccessibility was linearly correlated (R(2) = 0.8640) with postprandial serum TAG concentration in the human study. Therefore, the in vitro digestion model offered predictive insights related to the impacts of lipid interesterificaton on absorption. PMID:26961726

  7. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    PubMed

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry. PMID:27477075

  8. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    PubMed

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed. PMID:24364665

  9. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery.

    PubMed

    Woo, J O; Misran, M; Lee, P F; Tan, L P

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  10. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  11. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids.

    PubMed

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes

    2015-01-01

    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed. PMID:25795389

  12. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  13. Impact of stearic acid and oleic acid on hemostatic factors in the context of controlled diets consumed by healthy men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence suggests that stearic acid (STE) differentially affects lipoprotein risk factors compared with other saturated fatty acids (SFA). When compared to cholesterol-raising SFA, STE lowers LDL-cholesterol (LDL-C) and has a neutral effect on HDL-C, thus lowering the ratio of total cholesterol to H...

  14. Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids

    SciTech Connect

    Emken, E.A.; Rohwedder, W.K.; Adlof, R.O.; Rakoff, H.; Gulley, R.M.

    1987-07-01

    Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16:0), octadecanoic acid (18:0), cis-9-octadecenoic acid (9c-18:1), cis-9,cis-12-octadecadienoic acid (9c, 12c-18:2) and cis-12,trans-15-octadecadienoic acid (12c,15t-18:2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t-18:2 was metabolically more similar to saturated and 9c-18:1 fatty acids than to 9c,12c-18:2; (iv) relative incorporation of 9c,12c-18:2 into phospholipids did not increase proportionally with an increase of 9c,12c-18:2 in the mixture of deuterated fats fed; (v) absorption of 16:0, 18:0, 9c-18:1, 9c,12c-18:2 and 12c,15t-18:2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c-18:2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c-18:2 is limited.

  15. Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

    PubMed Central

    Ahn, Joung Hoon; Kim, Min Hye; Kwon, Hyung Joo; Choi, Soo Young

    2013-01-01

    Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial β-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apoptotic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM. PMID:23440052

  16. Dietary palmitic and oleic acids exert similar effects on serum cholesterol and lipoprotein profiles in normocholesterolemic men and women.

    PubMed

    Ng, T K; Hayes, K C; DeWitt, G F; Jegathesan, M; Satgunasingam, N; Ong, A S; Tan, D

    1992-08-01

    To compare the effects of dietary palmitic acid (16:0) vs oleic acid (18:1) on serum lipids, lipoproteins, and plasma eicosanoids, 33 normocholesterolemic subjects (20 males, 13 females; ages 22-41 years) were challenged with a coconut oil-rich diet for 4 weeks. Subsequently they were assigned to either a palm olein-rich or olive oil-rich diet followed by a dietary crossover during two consecutive 6-week periods. Each test oil served as the sole cooking oil and contributed 23% of dietary energy or two-thirds of the total daily fat intake. Dietary myristic acid (14:0) and lauric acid (12:0) from coconut oil significantly raised all the serum lipid and lipoprotein parameters measured. Subsequent one-to-one exchange of 7% energy between 16:0 (palm olein diet) and 18:1 (olive oil diet) resulted in identical serum total cholesterol (192, 193 mg/dl), low-density lipoprotein cholesterol (LDL-C) (130, 131 mg/dl), high-density lipoprotein cholesterol (HDL-C) (41, 42 mg/dl), and triglyceride (TG) (108, 106 mg/dl) concentrations. Effects attributed to gender included higher HDL in females and higher TG in males associated with the tendency for higher LDL and LDL/HDL ratios in men. However, both sexes were equally responsive to changes in dietary fat saturation. The results indicate that in healthy, normocholesterolemic humans, dietary 16:0 can be exchanged for 18:1 within the range of these fatty acids normally present in typical diets without affecting the serum lipoprotein cholesterol concentration or distribution. In addition, replacement of 12:0 + 14:0 by 16:0 + 18:1, but especially 16:0 or some component of palm olein, appeared to have a beneficial impact on an important index of thrombogenesis, i.e., the thromboxane/prostacyclin ratio in plasma. PMID:1506599

  17. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.

    PubMed

    Aardema, Hilde; Vos, Peter L A M; Lolicato, Francesca; Roelen, Bernard A J; Knijn, Hiemke M; Vaandrager, Arie B; Helms, J Bernd; Gadella, Bart M

    2011-07-01

    Mobilization of fatty acids from adipose tissue during metabolic stress will increase the amount of free fatty acids in blood and follicular fluid and, thus, may affect oocyte quality. In this in vitro study, the three predominant fatty acids in follicular fluid (saturated palmitic and stearic acid and unsaturated oleic acid) were presented to maturing oocytes to test whether fatty acids can affect lipid storage of the oocyte and developmental competence postfertilization. Palmitic and stearic acid had a dose-dependent inhibitory effect on the amount of fat stored in lipid droplets and a concomitant detrimental effect on oocyte developmental competence. Oleic acid, in contrast, had the opposite effect, causing an increase of lipid storage in lipid droplets and an improvement of oocyte developmental competence. Remarkably, the adverse effects of palmitic and stearic acid could be counteracted by oleic acid. These results suggest that the ratio and amount of saturated and unsaturated fatty acid is relevant for lipid storage in the maturing oocyte and that this relates to the developmental competence of maturing oocytes. PMID:21311036

  18. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  19. Effect of Delta 9–Stearoyl-ACP-Desaturase-C mutants in a high oleic background on soybean seed oil composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil typically contains 2-4% stearic acid. Oil with at least 20% stearic acid is desirable because of its baking properties and health profile. This study identifies two new sources of high stearic acid and evaluates the interaction of high stearic and oleic acid al...

  20. Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana.

    PubMed

    Teh, Ooi-Kock; Ramli, Umi Salamah

    2011-06-01

    As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized β-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops. PMID:21113689

  1. Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate.

    PubMed

    de Paiva, Eduardo José Mendes; Corazza, Marcos Lúcio; Sierakowski, Maria Rita; Wärnå, Johan; Murzin, Dmitry Yu; Wypych, Fernando; Salmi, Tapio

    2015-10-01

    In this work, esterification of fatty acids (oleic, linoleic and stearic acid) with a commercial zinc carboxylate (a layered compound formed by simultaneous intercalation of stearate and palmitate anions) was performed. Kinetic modeling using a quasi-homogeneous approach successfully fitted experimental data at different molar ratio of fatty acids/alcohols (1-butanol and 1-hexanol) and temperature. An apparent first-order reaction related to all reactants was found and activation energy of 66 kJ/mol was reported. The catalyst showed to be unique, as it can be easily recovered like a heterogeneous catalysts behaving like ionic liquids. In addition, this catalyst demonstrated a peculiar behavior, because higher reactivity was observed with the increase in the alcohols chain length compared to the authors' previous work using ethanol. PMID:26143001

  2. Dietary Stearic Acid Leads to a Reduction of Visceral Adipose Tissue in Athymic Nude Mice

    PubMed Central

    Siegal, Gene P.; Desmond, Renee; Hardy, Robert W.

    2014-01-01

    Stearic acid (C18:0) is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil), or oleic acid (corn oil) enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1) compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death) and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2) and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes. PMID:25222131

  3. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice.

    PubMed

    Shen, Ming-Che; Zhao, Xiangmin; Siegal, Gene P; Desmond, Renee; Hardy, Robert W

    2014-01-01

    Stearic acid (C18:0) is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil), or oleic acid (corn oil) enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1) compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death) and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2) and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes. PMID:25222131

  4. Effect of dietary triacylglycerol structure on lipoprotein metabolism: a comparison of the effects of dioleoylpalmitoylglycerol in which palmitate is esterified to the 2- or 1(3)-position of the glycerol.

    PubMed

    Pufal, D A; Quinlan, P T; Salter, A M

    1995-08-24

    The effect on lipoprotein metabolism of diets enriched in different isomers of dioleoylpalmitoylglycerol was studied. One diet contained fat in which palmitate was esterified to the two outer positions of the glycerol (OOP) and the other in which it was esterified to the middle carbon (OPO). The lipid composition of chylomicrons was similar in rats fed either fat blend. However, triacylglycerol (TAG) in chylomicrons from OPO fed animals was relatively enriched in palmitic acid, at the expense of stearic, oleic and linoleic acids. Silver phase HPLC and 2-positional analysis clearly demonstrated that the identity of the fatty acid in the 2-position was similar in both dietary and chylomicron TAG. No significant differences could be seen in the in vitro hydrolysis of chylomicron TAG from animals fed the two fats labelled with [14C]palmitate. As expected, following hydrolysis, palmitate was released as free fatty acid from chylomicrons isolated from OOP-fed animals but within 2-monoacylglycerol from those fed OPO. The enrichment of chylomicrons with palmitate in animals fed O[14C]PO resulted in increased delivery of [14C]palmitate to the liver. In a further series of experiments Golden Syrian hamsters were fed diets containing the fat blends and either 0.005% or 0.12% (w/w) cholesterol, for 28 days. No differences in fasting plasma lipoprotein concentrations were seen in response to the dietary fats. We conclude that, while these isometric triacylglycerols had transient effects on chylomicron metabolism, no significant longer term effect on plasma concentrations of endogenous lipoproteins could be found. PMID:7654779

  5. Biochemistry of high stearic sunflower, a new source of saturated fats.

    PubMed

    Salas, Joaquín J; Martínez-Force, Enrique; Harwood, John L; Venegas-Calerón, Mónica; Aznar-Moreno, Jose Antonio; Moreno-Pérez, Antonio J; Ruíz-López, Noemí; Serrano-Vega, María J; Graham, Ian A; Mullen, Robert T; Garcés, Rafael

    2014-07-01

    Fats based on stearic acid could be a healthier alternative to existing oils especially hydrogenated fractions of oils or palm, but only a few non-tropical species produce oils with these characteristics. In this regard, newly developed high stearic oil seed crops could be a future source of fats and hard stocks rich in stearic and oleic fatty acids. These oil crops have been obtained either by breeding and mutagenesis or by suppression of desaturases using RNA interference. The present review depicts the molecular and biochemical bases for the accumulation of stearic acid in sunflower. Moreover, aspects limiting the accumulation of stearate in the seeds of this species are reviewed. This included data obtained from the characterization of genes and enzymes related to fatty acid biosynthesis and triacylglycerol assembly. Future improvements and uses of these oils are also discussed. PMID:24858414

  6. 21 CFR 184.1090 - Stearic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Stearic acid. 184.1090 Section 184.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1090 Stearic acid. (a) Stearic acid (C18H36O2, CAS Reg. No. 57-11-4) is a white to yellowish...

  7. Oleic acid biosynthesis in cyanobacteria

    SciTech Connect

    VanDusen, W.J.; Jaworski, J.G.

    1986-05-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with /sup 14/CO/sub 2/. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating /sup 14/CO/sub 2/ into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria.

  8. Anaerobic degradation of linoleic oleic acids

    SciTech Connect

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  9. 21 CFR 184.1090 - Stearic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Stearic acid. 184.1090 Section 184.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1090 Stearic acid. (a) Stearic acid (C18H36O2, CAS Reg. No. 57-11-4) is...

  10. 21 CFR 184.1090 - Stearic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stearic acid. 184.1090 Section 184.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1090 Stearic acid. (a) Stearic acid (C18H36O2, CAS Reg. No. 57-11-4) is...

  11. 21 CFR 184.1090 - Stearic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Stearic acid. 184.1090 Section 184.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1090 Stearic acid. (a) Stearic acid (C18H36O2, CAS Reg. No. 57-11-4) is...

  12. 21 CFR 184.1090 - Stearic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Stearic acid. 184.1090 Section 184.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1090 Stearic acid. (a) Stearic acid (C18H36O2, CAS Reg. No. 57-11-4) is...

  13. Differential intestinal absorption of two fatty acid isomers: Elaidic and oleic acids

    SciTech Connect

    Bernard, A.; Echinard, B.; Carlier, H. )

    1987-12-01

    The absorption of {sup 14}C-labeled oleic acid and {sup 14}C-labeled elaidic acid was studied in bile- and pancreatic juice-diverted adult rats. In some cases these acids were compared with {sup 14}C-labeled palmitic acid absorption. Sodium taurocholate-emulsified test infusates containing an equimolar mixture of monopalmitin and two fatty acids (oleic and elaidic or palmitic), one of which was {sup 14}C labeled, were infused through a duodenal canula. The chyle was collected from the mesenteric lymphatic vessel by plastic tubing. Among the three fatty acids studied, oleic acid exhibited the highest lymphatic recovery rate. Elaidic and palmitic acids appeared more slowly and in lesser amounts. Simultaneously, the highest amount of chylomicrons was observed when the lipid emulsion contained oleic acid alone; the lowest was observed when elaidic acid was the only unsaturated fatty acid. Experimental data have also shown that compared with elaidic acid, oleic acid is preferentially incorporated into the lymph triglycerides. The authors conclude from the data presented that the enterocytic enzymes involved in the absorption of lipids show a high degree of specificity related to the fatty acid isomery, since the absorption of elaidic acid differs markedly from its isomer oleic acid.

  14. Enrichment of amaranth oil with ethyl palmitate at the sn-2 position by chemical and enzymatic synthesis.

    PubMed

    Pina-Rodriguez, Ashanty M; Akoh, Casimir C

    2009-06-10

    Amaranth oil is rich in linoleic, oleic, and palmitic acids. Structured lipids (SLs) with specific functional and nutritional characteristics can be prepared through chemical or enzymatic interesterification. The aim of this study was to increase the palmitic acid content at the sn-2 position in amaranth oil triacylglycerols (TAG) for possible use in infant formula. Chemical and enzymatic interesterification techniques were assessed before selecting the latter for further optimization modeling. Enzymatic interesterification of ethyl palmitate and amaranth oil significantly increased the total content of palmitic acid, reduced linoleic acid content, and increased the amount of palmitic acid at the sn-2 position of the SL product. Even though amaranth oil content of palmitic acid (18.3%) was originally similar to that in breast milk (18.3-25.9%), the structural changes induced through enzymatic modification resulted in a SL closely resembling breast milk fat and hence its possible application as a fat substitute for infant nutrition. A second-order polynomial model was developed to predict the amount of total palmitic acid incorporated when reaction time and substrate level were manipulated, and to optimize the combination of parameters to achieve specific palmitic acid contents in amaranth oil. The resulting model is useful to develop an SL from amaranth oil enriched with palmitic acid specifically at the sn-2 position for possible application in infant formulas. PMID:19413361

  15. Mutations in SACPD-C Result in a Range of Elevated Stearic Acid Concentration in Soybean Seed

    PubMed Central

    Carrero-Colón, Militza; Abshire, Nathan; Sweeney, Daniel; Gaskin, Erik; Hudson, Karen

    2014-01-01

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a chemically mutagenized population. Six mutants ranged in stearate content from 6–14% stearic acid, which is 1.5 to 3 times the levels contained in wild-type seed of the Williams 82 cultivar. Candidate gene sequencing revealed that all of these lines carried amino acid substitutions in the gene encoding the delta-9-stearoyl-acyl-carrier protein desaturase enzyme (SACPD-C) required for the conversion of stearic acid to oleic acid. Five of these missense mutations were in highly conserved residues clustered around the predicted di-iron center of the SACPD-C enzyme. Co-segregation analysis demonstrated a positive association of the elevated stearate trait with the SACPD-C mutation for three populations. These missense mutations may provide additional alleles that may be used in the development of new soybean cultivars with increased levels of stearic acid. PMID:24846334

  16. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  17. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white to yellow powder....

  18. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  19. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  20. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  1. 21 CFR 182.3149 - Ascorbyl palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbyl palmitate. 182.3149 Section 182.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Ascorbyl palmitate. (a) Product. Ascorbyl palmitate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.3149 - Ascorbyl palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbyl palmitate. 582.3149 Section 582.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3149 Ascorbyl palmitate. (a) Product. Ascorbyl palmitate. (b) Conditions of use. This substance...

  3. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  4. Stearic acid content of abdominal adipose tissues in obese women

    PubMed Central

    Caron-Jobin, M; Mauvoisin, D; Michaud, A; Veilleux, A; Noël, S; Fortier, M P; Julien, P; Tchernof, A; Mounier, C

    2012-01-01

    Objective: Subcutaneous (SC) adipose tissue stearic acid (18:0) content and stearoyl-CoA desaturase-1 (SCD1)-mediated production of oleic acid (18:1) have been suggested to be altered in obesity. The objective of our study was to examine abdominal adipose tissue fatty acid content and SCD1 mRNA/protein level in women. Subjects and methods: Fatty acid content was determined by capillary gas chromatography in SC and omental (OM) fat tissues from two subgroups of 10 women with either small or large OM adipocytes. Samples from 10 additional women were used to measure SCD1 mRNA and protein expression, total extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK1/2 protein as well as insulin receptor (IR) expression levels. Results: OM fat 18:0 content was significantly lower in women with large OM adipocytes compared with women who had similar adiposity, but small OM adipocytes (2.37±0.45 vs 2.75±0.30 mg per 100 g adipose tissue, respectively, P⩽0.05). OM fat 18:0 content was negatively related to the visceral adipose tissue area (r=−0.44, P=0.05) and serum triglyceride levels (r=−0.56, P<0.05), while SC fat 18:0 content was negatively correlated with total body fat mass (BFM) (r=−0.48, P<0.05) and fasting insulin concentration (r=−0.73, P<0.005). SC adipose tissue desaturation index (18:1/18:0), SCD1 expression and protein levels were positively correlated with BFM. Moreover, obese women were characterized by a reduced OM/SC ratio of SCD1 mRNA and protein levels. A similar pattern was observed for ERK1/2 and IR expression. Conclusion: The presence of large adipocytes and increased adipose mass in a given fat compartment is related to reduced 18:0 content and increased desaturation index in women, independently of dietary fat intake. The depot-specific difference in ERK1/2 expression and activation, as well as in SCD1 and IR expression in obese women is consistent with the hypothesis that they may predominantly develop SC fat, which

  5. Palmitic Acid and Health: Introduction.

    PubMed

    Agostoni, Carlo; Moreno, Luis; Shamir, Raanan

    2016-09-01

    Interest in the dietary role and metabolic effect of saturated fatty acids has been recently renewed on the basis of epidemiologic observations and economical approach to health and well-being. Saturated fats may favorably increase blood HDL-Cholesterol levels without significant changes of the total cholesterol/HDL-Cholesterol ratio. Also, the negative effect of saturated fat on cardiovascular diseases risk has recently been challenged. Palmitic acid, among all, may have special structural and functional roles in utero and in infancy, and indeed is it is being delivered in a unique form in human milk. Future research should include objective cost-benefit analyses when disentangling the role of saturated fats in dietary recommendations. PMID:25764181

  6. Screening emissions of high oleic vegetable oils

    SciTech Connect

    1996-12-31

    This article describes tests of a high oleic safflower oil for use as a fuel in diesel engines. Test included looking at the following: costs with reformulated diesel fuels or other benefits; reduction of particulate emissions by at least 14 percent; reduction of nitrogen oxide emissions; use without causing engine deposits and other problems. Results are given on emissions of high oleic vegetable oils, and commercial opportunities are discussed briefly.

  7. Measurements of Oleic Acid among Individual kernels Harvested from Test Plots of Purified Runner and Spanish High Oleic Seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or they could be immature and not fully expressing th...

  8. Measurements of Oleic Acid among Individual Kernels Harvested from Test Plots of Purified Runner and Spanish High Oleic Seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or they could be immature and not fully expressing th...

  9. Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex*

    PubMed Central

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E.; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K.; Puigserver, Pere

    2013-01-01

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation. PMID:23329830

  10. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli.

    PubMed

    Sung, Changmin; Jung, Eunok; Choi, Kwon-Young; Bae, Jin-Hyung; Kim, Minsuk; Kim, Joonwon; Kim, Eun-Jung; Kim, Pyoung Il; Kim, Byung-Gee

    2015-08-01

    Hydroxylated fatty acids (HFAs) are used as important precursors for bulk and fine chemicals in the chemical industry. Here, to overproduce long-chain (C16-C18) fatty acids and hydroxy fatty acid, their biosynthetic pathways including thioesterase (Lreu_0335) from Lactobacillus reuteri DSM20016, β-hydroxyacyl-ACP dehydratase (fabZ) from Escherichia coli, and a P450 system (i.e., CYP153A from Marinobacter aquaeolei VT8 and camA/camB from Pseudomonas putida ATCC17453) were overexpressed. Acyl-CoA synthase (fadD) involved in fatty acid degradation by β-oxidation was also deleted in E. coli BW25113. The engineered E. coli FFA4 strain without the P450 system could produce 503.0 mg/l of palmitic (C16) and 508.4 mg/l of stearic (C18) acids, of which the amounts are ca. 1.6- and 2.3-fold higher than those of the wild type. On the other hand, the E. coli HFA4 strain including the P450 system for ω-hydroxylation could produce 211.7 mg/l of ω-hydroxy palmitic acid, which was 42.1 ± 0.1 % of the generated palmitic acid, indicating that the hydroxylation reaction was the rate-determining step for the HFA production. For the maximum production of ω-hydroxy palmitic acid, NADH, i.e., an essential cofactor for P450 reaction, was overproduced by the integration of NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii into E. coli chromosome and the deletion of alcohol dehydrogenase (ADH). Finally, the NADH-level-optimized E. coli strain produced 610 mg/l of ω-hydroxy palmitic acid (ω-HPA), which was almost a threefold increase in its yield compared to the same strain without NADH overproduction. PMID:25957153

  11. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  12. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    PubMed

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice. PMID:27142741

  13. Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.

    PubMed

    Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad

    2016-01-20

    Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear. PMID:26572436

  14. Comparative Study of Stearic Acid/Iron-Oxide Binary and Stearic Acid/Iron-Oxide/Titanium-Oxide Ternary for Use as Energy Storage Material

    NASA Astrophysics Data System (ADS)

    Andiarto, Rizky; Khalish Nuryadin, Muhammad; Saleh, Rosari

    2016-04-01

    In this work, a series of stearic acid/Fe3O4, and stearic acid/Fe3O4/TiO2 nanocomposites for thermal energy storage (TES) system were synthesized through a two-step process. Fe3O4 nanoparticles and Fe3O4/TiO2 nanocomposites were first prepared using sol-gel methods and then both samples were mixed into stearic acid by dispersion technique at three different weight % ratio to stearic acid: 5%, 10% and 15% to obtain stearic acid/Fe3O4, and stearic acid/Fe3O4/TiO2 nanocomposites. Morphologies and structural properties of the samples were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDX), while thermal properties of the sample were determined by differential scanning calorimetry (DSC) and fhermogravimetric analysis (TGA). The XRD patterns demonstrate, that stearic acid/Fe3O4 contained characteristic peaks of Fe3O4 and stearic acid structures, while peaks corresponded to anatase TiO2 structures appear in stearic acid/ Fe3O4/TiO2 nanocomposites. From the DSC measurements, it is found that the maximum latent heat was found at samples with weight ratio of 5%. Moreover, the enhancement up to 20% of latent heat in solidifying as well as melting processes was observed. TGA measurements show high degradation temperature in the range of 246 - 251°C. The TGA results also shows that the residual mass of the sample matches the composition of Fe3O4 and Fe3O4/TiO2 which is added to the stearic acid.

  15. Utilization of Stearic acid Extracted from Olive Pomace for Production of Triazoles, Thiadiazoles and Thiadiazines Derivatives of Potential Biological Activities.

    PubMed

    Soliman, Hanaa Mohamad; Basuny, Amany M; Arafat, Shaker M

    2015-01-01

    Olive Pomace was firstly dried, then pomace olive oil was extracted, and the obtained oil was hydrolyzed to produce glycerol and mixture of fatty acids. Fatty acids mixture was separated, this mixture was then cooled, where the all saturated fatty acids were solidified, and then they were filtered off. These saturated fatty acids were identified by GC mass after esterification, and were identified as stearic, palmitic and myristic acids. Stearic acid was extracted using supercritical CO2 extractor. The stearic acid was confirmed by means of GC mass after its esterification, and it was used as starting material for preparation of a variety of heterocyclic compounds, which were then tested for their antimicrobial activities. Thus the long-chain fatty acid hydrazide (2) was prepared from the corresponding long-chain fatty ester with hydrazine hydrate. Reacting 2 with phenyl isothiocyanate afforded the corresponding thiosemicarbazide 4. The later 4 underwent intramolecular cyclization in basic medium, and gave the s-triazole derivative 5, which was methylated and afforded 3-heptadecanyl-5-(methylthio)-4-phenyl-4H-1,3,4-triazole (7), which was then treated with hydrazine hydrate and afforded the corresponding 1-(5-heptadecanyl-4-phenyl-4H-1,2,4-triazol-3-yl) hydrazine (8).On the other hand, thiosemicarbazide 4 underwent intramolecular cyclization in acid medium and afforded the corresponding thiadiazole derivative 6.Treatment of thiosemicarbazide 4 with ethyl chloro(arylhydrazono) acetate derivatives 9a-b, furnished a single product 13 (Scheme 6). Similarly, when the thiosemicarbazide 4 was treated with the phenylcarbamoylarylhydrazonyl chloride 10a-c, it afforded (3-Aryl-N-5-(phenylcarbamoyl)-1,3,4-thiadiazol-2(3H)-ylidene)octadecanehydrazide 15a-c (Scheme 7). Also the reaction of thiosemicarbazide 4 with 2-oxo-N-arylpropanehydrazonoyl chlorides 11a-c and N-phenylbenzohydrazonoyl chloride 11d gave the corresponding thiadiazole derivatives 16a-d as shown in Scheme 8. A

  16. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Chloramphenicol palmitate oral suspension. 520... Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate.... Treatment of bacterial pulmonary infections, infections of the urinary tract, enteritis, and...

  17. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloramphenicol palmitate oral suspension. 520... Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate.... Treatment of bacterial pulmonary infections, infections of the urinary tract, enteritis, and...

  18. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloramphenicol palmitate oral suspension. 520... Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate.... Treatment of bacterial pulmonary infections, infections of the urinary tract, enteritis, and...

  19. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloramphenicol palmitate oral suspension. 520... Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate.... Treatment of bacterial pulmonary infections, infections of the urinary tract, enteritis, and...

  20. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol palmitate oral suspension. 520... Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate.... Treatment of bacterial pulmonary infections, infections of the urinary tract, enteritis, and...

  1. 21 CFR 582.5936 - Vitamin A palmitate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  2. 21 CFR 582.5936 - Vitamin A palmitate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  3. 21 CFR 582.5936 - Vitamin A palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  4. 21 CFR 582.5936 - Vitamin A palmitate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  5. 21 CFR 582.5936 - Vitamin A palmitate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  6. Increasing the Oleic Acid in Soybean Oil with Plant Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the oleic acid content along with decrease in linolenic acid can improve the oxidative stability of soybean oil. Genetic changes in soybean using standard plant breeding practices has resulted in a publicly released a mid-oleic breeding line, N98-4445A, with oil that averages 57% oleic ac...

  7. Preparation of five 3-MCPD fatty acid esters and the effects of their chemical structures on acute oral toxicity in Swiss mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid esters of 3-monochloro-1, 2-propanediol (3-MCPDEs), including 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters, were synthetized and examined for their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and...

  8. Development of the Oleic Acid/Linoleic Acid Ratio in High-Oleic Valencia Market Type Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major fatty acids in peanuts are oleic acid (O), a monounsaturated omega-9, and linoleic acid (L), a polyunsaturated omega-6. Peanuts containing these two fatty acids in a ratio (O/L) above 9 are known as high oleic (HO). Normal oleic (NO) peanuts are those with an O/L ratio less than 9. HO pean...

  9. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    PubMed Central

    Zhang, Ling; Yang, Xiang-dong; Zhang, Yuan-yu; Yang, Jing; Qi, Guang-xun; Guo, Dong-quan; Xing, Guo-jie; Yao, Yao; Xu, Wen-jing; Li, Hai-yun; Li, Qi-yun; Dong, Ying-shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. PMID:25197629

  10. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  11. Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity

    PubMed Central

    Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques

    2015-01-01

    Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. PMID:26711260

  12. Kinetics of mercury extraction using oleic acid

    SciTech Connect

    Larson, K.A.; Wiencek, J.M. )

    1993-11-01

    In the absence of halide ion, Hg[sup 2+] is the predominant species in water and can be effectively extracted using oleic acid. The organic phase complex that is formed is HgR[sub 2] [center dot] 2(RH). The presence of polar modifiers in the organic phase facilitates the formation of a complex dimer, [HgR[sub 2] [center dot] 2(RH)][sub 2]. Kinetics of the extraction reaction have been studied as a function of pH, Hg[sup 2+] concentration, oleic acid concentration, and mixing rate in a stirred cell reactor. Extraction kinetics are first order in mercury concentration and zero order with respect to oleic acid concentration and pH. This is consistent with film theory predictions for an instantaneous reaction that is mass transfer controlled. A diffusion/reaction model for mercury extraction in a batch stirred tank reactor has been developed that incorporates this information, and includes mass transfer of mercuric ion from the bulk solution to the droplet surface, equilibrium between aqueous mercury and organic mercury complex at the droplet interface, and diffusion and dimer formation of the complex within the organic phase droplet. Without the use of adjustable parameters, this model successfully predicts mercury extraction rate and equilibrium.

  13. Shear rigidity of spread stearic acid monolayers on water

    SciTech Connect

    Abraham, B.M.; Ketterson, J.B.; Miyano, K.; Kueny, A.

    1981-01-01

    The effect of Al/sup 3 +/, Fe/sup 3 +/, Ca/sup 2 +/, and Mg/sup 2 +/ ions and of pH on the two-dimensional shear modulus of stearic acid spread on a water substrate was determined. A large shear modulus was displayed by the films when the subphase contained Al/sup 3 +/ and Fe/sup 3 +/ ions at the self buffered pH. With Fe/sup 3 +/ dissolved in the subphase, the film displayed a viscous relaxation when strained but no residual stress was observed. No effect was observed with the Ca/sup 2 +/ or Mg/sup 2 +/. Reducing the pH value in the subphase with the trivalent ions caused the shear modulus to disappear. The observations are interpreted in terms of hydrogen bonding.

  14. Adsorption of oleic acid at sillimanite/water interface.

    PubMed

    Kumar, T V Vijaya; Prabhakar, S; Raju, G Bhaskar

    2002-03-15

    The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system. PMID:16290466

  15. Transfer of oleic acid between albumin and phospholipid vesicles

    SciTech Connect

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by TC NMR spectroscopy and 90% isotopically substituted (1- TC)oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with greater than or equal to80% of the oleic acid associated with albumin at pH 7.4; association was greater than or equal to90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The TC NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  16. Small-angle X-ray scattering analysis of stearic acid modified lipase.

    PubMed

    Maruyama, T; Nakajima, M; Ichikawa, S; Sano, Y; Nabetani, H; Furusaki, S; Seki, M

    2001-04-01

    Stearic acid modified lipase (from Rhizopus japonicus) exhibited remarkable interesterification activity in n-hexane, but crude native lipase did not. The structure of the fatty acid modified lipase had not been analyzed until now. We analyzed the modified lipase by small-angle X-ray scattering (SAXS) measurements in order to clarify the structure. SAXS measurements showed that the modified lipase consisted of a lipid lamellar structure and implied that the lipase was incorporated into the lamellar structure of stearic acid. The long spacings in the lamellar structures of the modified lipase and stearic acid were measured. PMID:11388447

  17. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil

    PubMed Central

    Terés, S.; Barceló-Coblijn, G.; Benet, M.; Álvarez, R.; Bressani, R.; Halver, J. E.; Escribá, P. V.

    2008-01-01

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as α-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (≈70–80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (HII phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA. PMID:18772370

  18. Molecular mechanism by which palmitate inhibits PKR autophosphorylation†

    PubMed Central

    Cho, Hyunju; Mukherjee, Shayantani; Palasuberniam, Pratheeba; Pillow, Lisa; Bilgin, Betul; Nezich, Catherine; Walton, S. Patrick; Feig, Michael; Chan, Christina

    2011-01-01

    PKR (double-stranded RNA-activated protein kinase) is an important component of the innate immunity, antiviral and apoptotic pathways. Recently, our group found that palmitate, a saturated fatty acid, is involved in apoptosis by reducing the autophosphorylation of PKR at the Thr451 residue, however, the molecular mechanism by which palmitate reduces PKR autophosphorylation is not known. Thus, we investigated how palmitate affects the phosphorylation of the PKR protein at the molecular and biophysical levels. Biochemical and computational studies show that palmitate binds to PKR, near the ATP-binding site, thereby inhibiting its autophosphorylation at Thr451 and Thr446. Mutation studies suggests that Lys296 and Asp432 in the ATP binding site on the PKR protein are important for palmitate binding. We further confirmed that palmitate also interacts with other kinases, due to the conserved ATP-binding site. A better understanding of how palmitate interacts with the PKR protein, as well as other kinases, could shed light onto possible mechanisms by which palmitate mediates kinase signaling pathways, that could have implications on the efficacy of current drug therapies that target kinases. PMID:21192654

  19. Maturity Effects on Contamination of High-Oleic Peanut Lots with Normal-Oleic Seeds of a Large Seeded Virginia Type Peanut Variety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To address increasing problems with mixing of high oleic peanut seed lots with normal oleic seed, the development of the lipid fraction of a range of immature to mature seed in two virginia type peanut cultivars was examined. that large seeded, high-oleic vA very large seeded high-oleic cultivar (...

  20. Maturity Effects on Contamination of High-Oleic Peanut Lots with Normal-Oleic Seeds of a Large Seeded Virginia Type Peanut Variety.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to segregate high- and normal-oleic peanut seeds has lead to investigations into potential sources of mixing. Previous work in our lab examined the development of in two lines of virginia type seeds, Bailey (normal-oleic) and Spain (high-oleic) for changes in the oleic to linoleic ratios (...

  1. High oleic enhancement of palm olein via enzymatic interesterification.

    PubMed

    Lin, Siew Wai; Huey, Saw Mei

    2009-01-01

    Acidolysis to incorporate oleic acid into refined, bleached and deodorized (RBD) palm olein (IV 56) using various lipases (enzymes) as catalysts to increase the oleic content of the oil was investigated. Immobilised lipases (lipase PLG, Lipozyme TL IM, Lipozyme RM IM and Novozym 435) and non-immobilised lipase (lipase PL) were used in this study to compare the effectiveness of the selected lipases in catalyzing the reaction to produce a high oleic oil. The results showed that the TAG of OLO/OOL content was increased at least 4 fold and OOO content was increased at least 3 fold when a 5% enzyme load was used. Lipase PL showed the greatest increase in tri-unsaturated triacylglycerols (TAGs) content. A pilot scale experiment conducted using TL IM enzyme, followed by recovery of the oil and fractionation allows the production of oils with varying oleic contents. A high oleic content of 56% was achievable. PMID:19844069

  2. Surface properties of superfine alumina trihydrate after surface modification with stearic acid

    NASA Astrophysics Data System (ADS)

    Liu, Gui-hua; Zhou, Bo-hao; Li, Yun-feng; Qi, Tian-gui; Li, Xiao-bin

    2015-05-01

    The surface properties of superfine alumina trihydrate (ATH) after surface modification were studied by measuring the contact angle, active ratio, oil adsorption, total organic carbon, adsorption ratio, and Fourier transform infrared (FTIR) spectrum. The contact angle increased initially and then slowly decreased with an increase of the amount of stearic acid. However, the surface free energy decreased initially and then increased. Surface modification with stearic acid or sodium stearate can benefit from elevating temperature. The base surface tension component and the free energy of Lewis acid-base both declined sharply following the surface modification. Excess stearic acid was physically adsorbed in the form of multilayer adsorption, and an interaction between oxygen on the ATH surface and hydroxyl in stearic acid was subsequently determined. Our results further indicated that the contact angle and adsorption ratio can be used as control indicators for surface modification compared with active ratio, oil adsorption and total organic carbon.

  3. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Yanfen; Li, Benxia; Xu, Chuyang

    2012-01-01

    Flower-like hierarchical ZnO microspheres were successfully synthesized by a simple, template-free, and low-temperature aqueous solution route. The morphology and microstructure of the ZnO microspheres were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bionic films with hydrophobicity were fabricated by the hierarchical ZnO microspheres modified by stearic acid. It was found that the hydrophobicity of the thin films was very sensitive to the added amount of stearic acid. The thin films modified with 8% stearic acid took on strong superhydrophobicity with a water contact angle (CA) almost to be 178° and weak adhersion. The remarkable superhydrophobicity could be attributed to the synergistic effect of micro/nano hierarchical structure of ZnO and low surface energy of stearic acid.

  4. Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid].

    PubMed

    Mu, Liwen; Shi, Yijun; Ji, Tuo; Chen, Long; Yuan, Ruixia; Wang, Huaiyuan; Zhu, Jiahua

    2016-02-01

    Ionic liquid lubricants or lubricant additives have been studied intensively over past decades. However, ionic grease serving as lubricant has rarely been investigated so far. In this work, novel protic [triethanolamine][oleic acid] and aprotic [choline][oleic acid] ionic greases are successfully synthesized. These ionic greases can be directly used as lubricants without adding thickeners or other additives. Their distinct thermal and rheological properties are investigated and are well-correlated to their tribological properties. It is revealed that aprotic ionic grease shows superior temperature- and pressure-tolerant lubrication properties over those of protic ionic grease. The lubrication mechanism is studied, and it reveals that strong physical adsorption of ionic grease onto friction surface plays a dominating role for promoted lubrication instead of tribo-chemical film formation. PMID:26815603

  5. Toxicity of oleic acid anilide in rats.

    PubMed

    Khan, M F; Kaphalia, B S; Palafox, A; Jerrells, T R; Ansari, G A

    1991-11-01

    In the present investigation, we have studied the toxic potential of oleic acid anilide (OAA) and heated oleic acid anilide (HOAA) in relation to the toxic oil syndrome (TOS). Male Sprague-Dawley rats were given 250 mg/kg of OAA or HOAA in mineral oil by gavage, on alternate days for 2 weeks (total 7 doses). The control rats received an equal volume of mineral oil only. The animals were sacrificed at days 1, 7, and 28 following the last dose. Ratio of organ-to-body weight showed increases in spleen and kidney of HOAA and OAA treated rats, respectively, at day 1 while this ratio for liver in HOAA treated group showed a decrease at day 1. Among blood parameters, white blood cells increased in HOAA treated group at day 1 and in both OAA and HOAA groups at day 28. Mean corpuscular hemoglobin (MCH) and mean cell volume (MCV) also showed increases in the HOAA treated rats at days 7 and 28. Serum lactate dehydrogenase (LDH) decreased in both OAA and HOAA treated rats at day 1, while at day 7 the decrease was confined only to the HOAA group. Serum glutamic oxalacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities also decreased at most of the time points. Liver mitochondrial ATPase activity decreased in the HOAA group at day 7 and in the OAA group at day 28. Among serum immunoglobulins, IgA levels increased throughout the study but the changes were more pronounced in HOAA treated rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1759851

  6. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants. PMID:25528221

  7. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  8. The ratio of oleic-to-stearic acid in the prostate predicts biochemical failure after radical prostatectomy for localized prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study examined lifestyle-related factors that may influence the prognosis of clinically localized prostate cancer, we evaluated the relative impact of obesity and prostatic fatty acid concentrations at diagnosis on risk of biochemical failure following radical prostatectomy. Height and weight w...

  9. Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages

    PubMed Central

    Ishiyama, Junichi; Taguchi, Ryoko; Akasaka, Yunike; Shibata, Saiko; Ito, Minoru; Nagasawa, Michiaki; Murakami, Koji

    2011-01-01

    Palmitic acid (PA) upregulates oxidized LDL receptor-1 (LOX-1), a scavenger receptor responsible for uptake of oxidized LDL (oxLDL), and enhances oxLDL uptake in macrophages. However, the precise underlying mechanism remains to be elucidated. PA is known to induce endoplasmic reticulum (ER) stress in various cell types. Therefore, we investigated whether ER stress is involved in PA-induced LOX-1 upregulation. PA induced ER stress, as determined by phosphorylation of PERK, eIF2α, and JNK, as well as induction of CHOP in macrophage-like THP-1 cells. Inhibitors [4-phenylbutyric acid (PBA), sodium tauroursodeoxycholate (TUDCA), and salubrinal] and small interfering RNA (siRNA) for the ER stress response decreased PA-induced LOX-1 upregulation. Thapsigargin, an ER stress inducer, upregulated LOX-1, which was decreased by PBA and TUDCA. We next examined whether unsaturated FAs could counteract the effect of PA. Both oleic acid (OA) and linoleic acid (LA) suppressed PA-induced LOX-1. Activation of the ER stress response observed in the PA-treated cells was markedly attenuated when the cells were cotreated with OA or LA. In addition, OA and LA suppressed thapsigargin-induced LOX-1 upregulation with reduced activation of ER stress markers. Our results indicate that activation of ER stress is involved in PA-induced LOX-1 upregulation in macrophages, and that OA and LA inhibit LOX-1 induction through suppression of ER stress. PMID:21078775

  10. Palmitic Acid in Early Human Development.

    PubMed

    Innis, Sheila M

    2016-09-01

    Palmitic acid (16:0) is a saturated fatty acid present in the diet and synthesized endogenously. Although often considered to have adverse effects on chronic disease in adults, 16:0 is an essential component of membrane, secretory, and transport lipids, with crucial roles in protein palmitoylation and signal molecules. At birth, the term infant is 13-15% body fat, with 45-50% 16:0, much of which is derived from endogenous synthesis in the fetus. After birth, the infant accumulates adipose tissue at high rates, reaching 25% body weight as fat by 4-5 months age. Over this time, human milk provides 10% dietary energy as 16:0, but in unusual triglycerides with 16:0 on the glycerol center carbon. This paper reviews the synthesis and oxidation of 16:0 and possible reasons why the infant is endowed with large amounts of fat and 16:0. The marked deviations in tissues with displacement of 16:0 that can occur in infants fed vegetable oil formulas is introduced. Assuming fetal fatty acid synthesis and the unusual delivery of 16:0 in human milk evolved to afford survival advantage to the neonate, it is timely to question if 16:0 is an essential component of tissue lipids whereby both deficiency and excess are detrimental. PMID:25764297

  11. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans123

    PubMed Central

    Kien, C Lawrence; Bunn, Janice Y; Stevens, Robert; Bain, James; Ikayeva, Olga; Crain, Karen; Koves, Timothy R; Muoio, Deborah M

    2014-01-01

    Background: Epidemiologic evidence has suggested that diets with a high ratio of palmitic acid (PA) to oleic acid (OA) increase risk of cardiovascular disease (CVD). Objective: To gain additional insights into the relative effect of dietary fatty acids and their metabolism on CVD risk, we sought to identify a metabolomic signature that tracks with diet-induced changes in blood lipid concentrations and whole-body fat oxidation. Design: We applied comprehensive metabolomic profiling tools to biological specimens collected from 18 healthy adults enrolled in a crossover trial that compared a 3-wk high–palmitic acid (HPA) with a low–palmitic acid and high–oleic acid (HOA) diet. Results: A principal components analysis of the data set including 329 variables measured in 15 subjects in the fasted state identified one factor, the principal components analysis factor in the fasted state (PCF1-Fasted), which was heavily weighted by the PA:OA ratio of serum and muscle lipids, that was affected by diet (P < 0.0001; HPA greater than HOA). One other factor, the additional principal components analysis factor in the fasted state (PCF2-Fasted), reflected a wide range of acylcarnitines and was affected by diet in women only (P = 0.0198; HPA greater than HOA). HOA lowered the ratio of serum low-density lipoprotein to high-density lipoprotein (LDL:HDL) in men and women, and adjustment for the PCF1-Fasted abolished the effect. In women only, adjustment for the PCF2-Fasted eliminated the HOA-diet effect on serum total- and LDL-cholesterol concentrations. The respiratory exchange ratio in the fasted state was lower with the HPA diet (P = 0.04), and the diet effect was eliminated after adjustment for the PCF1-Fasted. The messenger RNA expression of the cholesterol regulatory gene insulin-induced gene-1 was higher with the HOA diet (P = 0.008). Conclusions: These results suggest that replacing dietary PA with OA reduces the blood LDL concentration and whole-body fat oxidation by

  12. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  13. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.

    PubMed

    Saeed, Noha M; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M; Algandaby, Mardi M; Al-Abbasi, Fahad A; Abdel-Naim, Ashraf B

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. PMID:22842335

  14. Influence of stearic acid on the structure and rheological behavior of injection-molded ZTA suspensions

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Cheng, Yao; Wang, Cao

    2013-01-01

    The zirconia-toughened-alumina (ZTA) composite powder was exposed to a prior ball milling treatment with a small amount of stearic acid (SA) before the traditional blending process. The effect of different amounts of stearic acid on surface properties of the powder, the particle size distribution of the powder, and the rheological properties of the suspension were systematically studied within the design of experiments. Fourier transformation infrared spectroscopy (FTIR) analysis was used to prove the chemical interaction between the stearic acid and the ZTA powder. The effects of SA content on the particle sizes and their distribution were carefully examined. Rheological properties such as viscosity, yield stress, and power law exponent of the suspensions were determined within a temperature range of 140-170 °C. The optimal content of SA to improve the properties of the suspensions was found to be 3 wt.%.

  15. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2016-05-01

    The fatty acid composition of monocytes changes substantially during differentiation into macrophages, increasing the proportion of saturated fatty acids. These changes prompted us to investigate whether fatty acid accumulation in the extracellular milieu could affect the differentiation of bystander mononuclear phagocytes. An esterified fatty acid derivative, stearate, was the only fatty acid that significantly increased in macrophage supernatants, and there were higher levels when cells differentiated in the presence of Mycobacterium tuberculosis H37Rv or purified protein derivative (PPD). Exogenous stearic acid enhanced the expression of HLA-DR and CD64; there was also accumulation of IL-12, TNF-α, IL-6, MIP-1 α and β and a reduction in MCP-1 and the bacterial load. These results suggested that during differentiation, a derivative of stearic acid, which promotes the process as well as the effector mechanisms of phagocytes against the mycobacterium, accumulates in the cell supernatants. PMID:26932544

  16. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  17. Palmitate differentially regulates the polarization of differentiating and differentiated macrophages.

    PubMed

    Xiu, Fangming; Diao, Li; Qi, Peter; Catapano, Michael; Jeschke, Marc G

    2016-01-01

    The tissue accumulation of M1 macrophages in patients with metabolic diseases such as obesity and type 2 diabetes mellitus has been well-documented. Interestingly, it is an accumulation of M2 macrophages that is observed in the adipose, liver and lung tissues, as well as in the circulation, of patients who have had major traumas such as a burn injury or sepsis; however, the trigger for the M2 polarization observed in these patients has not yet been identified. In the current study, we explored the effects of chronic palmitate and high glucose treatment on macrophage differentiation and function in murine bone-marrow-derived macrophages. We found that chronic treatment with palmitate decreased phagocytosis and HLA-DR expression in addition to inhibiting the production of pro-inflammatory cytokines. Chronic palmitate treatment of bone marrows also led to M2 polarization, which correlated with the activation of the peroxisome proliferator-activated receptor-γ signalling pathway. Furthermore, we found that chronic palmitate treatment increased the expression of multiple endoplasmic reticulum (ER) stress markers, including binding immunoglobulin protein. Preconditioning with the universal ER stress inhibitor 4-phenylbutyrate attenuated ER stress signalling and neutralized the effect of palmitate, inducing a pro-inflammatory phenotype. We confirmed these results in differentiating human macrophages, showing an anti-inflammatory response to chronic palmitate exposure. Though alone it did not promote M2 polarization, hyperglycaemia exacerbated the effects of palmitate. These findings suggest that the dominant accumulation of M2 in adipose tissue and liver in patients with critical illness may be a result of hyperlipidaemia and hyperglycaemia, both components of the hypermetabolism observed in critically ill patients. PMID:26453839

  18. Mutations in a novel 9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2-4 % of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process...

  19. Levels of retinyl palmitate and retinol in the skin of SKH-1 mice topically treated with retinyl palmitate and concomitant exposure to simulated solar light for thirteen weeks.

    PubMed

    Yan, J; Xia, Q; Wamer, W G; Boudreau, M D; Warbritton, A; Howard, P C; Fu, P P

    2007-11-01

    Retinyl esters account for more than 70% of the endogenous vitamin A found in human skin, and retinyl palmitate is one of the retinyl esters in this pool. Human skin is also exposed to retinyl palmitate exogenously through the topical application of cosmetic and skin care products that contain retinyl palmitate. To date, there is limited information on the penetration and distribution of retinyl palmitate and vitamin A within in the skin. In this study, the accumulation of retinyl palmitate and generation of retinol in the skin of male and female SKH-1 mice that received repeated topical applications of creams containing 0.0%, 0.1%, 0.5%, 1.0%, 5.0%, 10%, or 13% of retinyl palmitate 5 days a week for a period of 13 weeks were studied. Because products containing retinyl palmitate are frequently applied to sun-exposed skin, and because it is well established that exposure to sunlight and UV light can alter cutaneous levels of retinoids, mice in this study were additionally exposed 5 days a week to simulated solar light. The results showed that retinyl palmitate diffused into the skin and was partially hydrolyzed to retinol. The levels of retinyl palmitate in the skin of mice that were administered retinyl palmitate cream were higher than control values, and levels of both retinyl palmitate and retinol increased with the application of higher concentrations of retinyl palmitate in the cream. Our results indicate that topically applied retinyl palmitate may alter the normal physiological levels of retinyl palmitate and retinol in the skin of SKH-1 mice and may have a significant impact on vitamin A homeostasis in the skin. PMID:18717516

  20. Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties.

    PubMed

    Sagiri, S S; Singh, Vinay K; Pal, K; Banerjee, I; Basak, Piyali

    2015-03-01

    Stearic acid and its derivatives have been used as gelators in food and pharmaceutical gel formulations. However, the mechanism pertaining to the stearic acid based gelation has not been deciphered yet. Keeping that in mind, we investigated the role of stearic acid on physic-chemical properties of oleogel. For this purpose, two different oil (sesame oil and soy bean oil) formulations/oleogels were prepared. In depth analysis of gel kinetics, gel microstructure, molecular interactions, thermal and mechanical behaviors of the oleogels were done. The properties of the oleogels were dependent on the type of the vegetable oil used and the concentration of the stearic acid. Avrami analysis of DSC thermograms indicated that heterogeneous nucleation was coupled with the one-dimensional growth of gelator fibers as the key phenomenon in the formation of oleogels. Viscoelastic and pseudoplastic nature of the oleogels was analyzed in-depth by fitting the stress relaxation data in modified Peleg's model and rheological studies, respectively. Textural studies have revealed that the coexistence of hydrogen bond dissipation and formation of new bonds is possible under stress conditions in the physical oleogels. PMID:25579972

  1. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  2. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  3. Possible Involvement of Palmitate in Pathogenesis of Periodontitis.

    PubMed

    Shikama, Yosuke; Kudo, Yasusei; Ishimaru, Naozumi; Funaki, Makoto

    2015-12-01

    Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis. PMID:25921577

  4. Uptake of palmitate by hepatocyte suspensions: facilitation by albumin?

    PubMed

    Pond, S M; Davis, C K; Bogoyevitch, M A; Gordon, R A; Weisiger, R A; Bass, L

    1992-05-01

    Albumin-dependent uptake of unbound [3H]palmitic acid by hepatocytes isolated from female rat livers was studied and the experimental results compared with the predictions of a noncompartmental diffusion-reaction theory for the cellular uptake of protein-bound ligands. The outright theoretical predictions involve values for the parameters of the system, some newly measured (hepatocyte radii and the rate constant for the dissociation of palmitate-albumin complex) and some taken from the literature (diffusion coefficients and the equilibrium association constant for the palmitate-albumin complex). The measured unbound clearance of [3H]palmitic acid, defined as the initial uptake velocity divided by the unbound [3H]palmitic acid concentration in the medium, was enhanced 6.6-fold as the concentration of human serum albumin was increased from approximately 5 to 480 microM. This enhancement factor was predicted by the theory, according to which the enhancement reflects codiffusion of bound ligand across the unstirred layer adjacent to the cell membrane and, therefore, an increased delivery of unbound ligand to the cell surface. In contrast, the absolute magnitude of the unbound clearance was consistent with the theory only for the lowest published value for the equilibrium association constant, 15 microM-1. For higher published values (62 and 94 microM-1), the magnitude of the unbound clearance observed experimentally was severalfold higher than that predicted by the theory. If in fact the association constant exceeds 30 microM-1, the data would imply that an albumin-dependent facilitation mechanism exists which enhances the availability of palmitate to the cell over and above the enhancement predicted by the diffusion-reaction theory. PMID:1590397

  5. Oleic acid-embedded nanoliposome as a selective tumoricidal agent.

    PubMed

    Jung, Sujin; Lee, Sangah; Lee, Hyejin; Yoon, Jaejin; Lee, E K

    2016-10-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cell), a molecular complex of human α-lactalbumin and oleic acid, is known to have selective cytotoxic activity against certain types of tumors. This cytotoxicity is known to stem from water-insoluble oleic acid. In this study, we manufactured an alternative complex using liposome as an oleic acid delivery vesicle. We named this nanolipoplex LIMLET (LIposome Made LEthal to Tumor cell). The LIMLET vesicle contained approximately 90,200 oleic acid molecules inserted into its lipophilic phospholipid bilayer and had a nominal mean diameter of 127nm. Using a WST-1 assay, its cytotoxicity against two cancer cell lines, MDA-MB-231 (human breast cancer) and A549 (human lung cancer), were tested. The results were compared with that of a normal cell line, Vero (from monkey kidney). We found that (1) LIMLET showed distinctive cytotoxicity against A549 and MDA-MB-231 cells, whereas bare liposomes (containing no oleic acid) had no toxicity, even at high concentrations, and (2) LIMLET demonstrated selective, concentration-dependent toxicity against the cancer cells: the LD50 values of MDA-MB-231 and A549 cells were 1.3 and 2.2nM LIMLET, respectively, whereas the LD50 of Vero was 5.7nM. The strength of the tumoricidal effect appeared to stem from the number of oleic acid molecules present. Our result suggests that LIMLET, like HAMLET, is an interesting nanolipoplex that can potentially be developed into tumor treatments. PMID:27424089

  6. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  7. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  8. Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates (palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increa...

  9. Comparative lipid production on hydrolyzates of pretreated lignocellulosic biomass using Oleaginous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipid, predominantly as triacylglycerides. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic and linoleic acids. This capability provides the opp...

  10. Property control of sophorolipids: influence of fatty acid substrate and blending

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sophorolipids (SLs) were synthesized by fed-batch fermentation of Candida bombicola on glucose and either palmitic acid (SL-p), stearic acid (SL-s), oleic acid (SL-o) or linoleic acid (SL-l) and the structural distribution accurately determined by atmospheric pressure chemical ionization-mass spectr...

  11. Glyphosate and boron application effects on seed composition and seed boron in glyphosate-resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed is a major source of protein and oil in the world. Seed quality is determined by the content of protein and oil. Soybean seed contains five major fatty acids, saturated fatty acids (stearic and palmitic), and unsaturated fatty acids (oleic, linoleic, and linolenic). Both linoleic and li...

  12. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  13. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  14. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  15. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

    PubMed Central

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G.; Browse, John

    2015-01-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world’s most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  16. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.

    PubMed

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G; Browse, John

    2015-10-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  17. Arachidonic and oleic acid exert distinct effects on the DNA methylome.

    PubMed

    Silva-Martínez, Guillermo A; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F Javier; Moran, Sebastian; Nielsen, Finn C; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud

    2016-05-01

    Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1-200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456

  18. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    PubMed

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity. PMID:26297199

  19. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  20. Effect of amylopectin on the rheological properties of aqueous dispersions of starch-sodium palmitate complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of normal and high-amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes. Partial conversion of complexed sodium palmitate to palmitic acid by addition of acetic acid led to the formation of gels. Bl...

  1. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  2. Effects of oleic acid on pulmonary capillary leak and thromboxanes

    SciTech Connect

    Olanoff, L.S.; Reines, H.D.; Spicer, K.M.; Halushka, P.V.

    1984-06-01

    The role of arachidonic acid metabolites in oleic acid-induced lung injury in anesthetized dogs was investigated. Oleic acid was administered as a bolus injection into the pulmonary artery after either indomethacin (10 mg/kg iv) or vehicle. Measurements of hemodynamic parameters, mean systemic (MAP), pulmonary capillary wedge, and pulmonary artery pressures (PAP), cardiac output, arterial blood gases, extravascular lung waters (EVLW) by thermaldye double indicator dilution techniques and plasma immunoreactive thromboxane B2 (iTxB2), by radioimmunoassay were obtained at zero time (baseline) and 20 min following each oleic acid injection. A new noninvasive technique was employed to measure pulmonary capillary protein leak by the scintigraphic analysis of intravenously administered technetium-/sup 99/m radiolabeled human serum albumin (99mTc -HSA) in the cardiac and lung regions. Oleic acid injection caused a significant dose related fall in MAP, arterial pO/sup 2/, and cardiac output, and increases in EVLW and plasma iTxB2 in the vehicle pretreated animals, while mean PAP remained unchanged. In contrast, in the indomethacin pretreated dogs, MAP, EVLW, cardiac output, and plasma iTxB2 levels did not change from baseline values and there was an increase in mean PAP. Pulmonary vascular resistance was significantly elevated in both groups.

  3. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure123

    PubMed Central

    Bunn, Janice Y; Ugrasbul, Figen

    2005-01-01

    Background Oleic acid (OA) is oxidized more rapidly than is palmitic acid (PA). Objective We hypothesized that changing the dietary intakes of PA and OA would affect fatty acid oxidation and energy expenditure. Design A double-masked trial was conducted in 43 healthy young adults, who, after a 28-d, baseline, solid-food diet (41% of energy as fat, 8.4% as PA, and 13.1% as OA), were randomly assigned to one of two 28-d formula diets: high PA (40% of energy as fat, 16.8% as PA, and 16.4% as OA; n = 21) or high OA (40% of energy as fat, 1.7% as PA, and 31.4% as OA; n = 22). Differences in the change from baseline were evaluated by analysis of covariance. Results In the fed state, the respiratory quotient was lower (P = 0.01) with the high OA (0.86 ± 0.01) than with the high-PA (0.89 ± 0.01) diet, and the rate of fat oxidation was higher (P = 0.03) with the high-OA (0.0008 ± 0.0001) than with the high-PA (0.0005 ± 0.0001 mg · kg fat-free mass−1 · min−1) diet. Resting energy expenditure in the fed and fasting states was not significantly different between groups. Change in daily energy expenditure in the high-OA group (9 ± 60 kcal/d) was significantly different from that in the high-PA group (−214 ±69 kcal/d; P = 0.02 or 0.04 when expressed per fat-free mass). Conclusions Increases in dietary PA decrease fat oxidation and daily energy expenditure, whereas decreases in PA and increases in OA had the opposite effect. Increases in dietary PA may increase the risk of obesity and insulin resistance. PMID:16087974

  4. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  5. Gene expression profiles of soybeans with mid-oleic acid seed phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of the mid-oleic acid soybean mutant M23 accumulate higher levels of oleic acid (50-60% oleate) by virtue of a deletion of GmFAD2-1A, an isoform of the microsomal omega-6 oleate desaturase gene. In other less well characterized natural soybean varieties that are phenotypically mid-oleic, litt...

  6. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  7. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  8. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  9. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  10. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Wan, Yong; Li, Yang; Yang, Shuyan; Yao, Wenqing

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic-inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  11. Melamine/Stearic Acid Composite Nanowires and Vesicles with an Intercalated Nanostructure Prepared through NCCM Method

    NASA Astrophysics Data System (ADS)

    Guo, Juan; Chen, Dao-yong

    2012-12-01

    A solvent-non-solvent method invented in our laboratory for preparing non-covalently connected micelles (NCCM) was used to intercalate melamine (MA) molecules into stearic acid (SA) bilayers to form the composite nanoparticles with an intercalated nanostructure in which a melamine bilayer is sandwiched between two stearic acid bilayers, NCCM method helps to sufficiently mix the two components in nanospace and meanwhile inhibits the strong tendency of self-crystallization of MA, leading to the intercalation. Although the nanoparticles have a regular inner structure, the primary MA/SA nanoparticles have an irregular morphology. Regular nanoparticles were obtained through annealing the suspension of the primary nanoparticles. Through annealing at different temperatures, the MA/SA composite nanowires and vesicles with an intercalated structure were prepared respectively. It is proposed that the morphological change results from the change in the intercalated structure.

  12. Stearic acid spin labels in lipid bilayers: insight through atomistic simulations.

    PubMed

    Stimson, Lorna; Dong, Lei; Karttunen, Mikko; Wisniewska, Anna; Dutka, Małgorzata; Róg, Tomasz

    2007-11-01

    Spin-labeled stearic acid species are commonly used for electron paramagnetic resonance (EPR) studies of cell membranes to investigate phase transitions, fluidity, and other physical properties. In this paper, we use large-scale molecular dynamics simulations to investigate the position and behavior of nitroxide spin labels attached to stearic acid molecules in dipalmitoylphosphatidylcholine (DPPC) bilayers. The results of these studies are potentially very important for the interpretation of EPR spectra, which rely on assumptions about the position of the label in the membrane. Additionally, we investigate the effect of chirality and ionization of the carboxyl group of the label. For a non-ionized species, we observe that spin-label molecules are even able to make flip-flop transitions between the leaflets of the bilayer. Such transitions have been previously observed only in very rare cases in molecular simulations. PMID:17929861

  13. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.

    PubMed

    Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng

    2016-05-01

    Poly-l-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10wt.% β-TCP, but it decreased as the addition amount increased from 10wt.% to 20wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. PMID:26952440

  14. Atomistic simulations of oleic imidazolines bound to ferric clusters

    SciTech Connect

    Ramachandran, S.; Tsai, B.L.; Blanco, M.; Goddard, W.A. III; Chen, H.; Tang, Y.

    1997-01-02

    The oleic imidazoline (OI) class of molecules is used extensively for corrosion inhibitor oil field pipeline applications. However, there is no model for understanding how they work. As a first step in elucidating this mechanism we carried out quantum mechanical calculations on clusters involving Fe{sup 3+}, H{sub 2}O, OH, and OI. These calculations are used to determine the MS force field for molecular dynamics simulations. 17 refs., 5 figs., 6 tabs.

  15. Regional pulmonary distribution of iodine-125-labeled oleic acid. Its relationship to the pattern of oleic acid edema and pulmonary blood flow

    SciTech Connect

    Tarver, R.D.; Tsai, J.; Hedlund, L.W.; Sullivan, D.C.; Lischko, M.M.; Harris, C.C.; Effmann, E.L.; Putman, C.E.

    1986-02-01

    Oleic acid infusion in dogs produces a patchy, predominantly peripheral lesion on CT scans. This study correlates the pattern of oleic acid injury with the distribution of infused oleic acid and pulmonary blood flow. Radiolabeled oleic acid (I-125, 0.05 ml/kg) and radiolabeled 15-micron microspheres (Co-57) were infused into the right atria of 11 dogs. Oleic acid was given after the microspheres in six dogs and before microspheres in five dogs. Ten minutes after infusion, the lungs were removed. Four transverse slices (0.5 cm thick) of the lower lobes were taken from each dog and cubed. Samples were grouped into three regions of the transverse slice: outer, middle, and inner concentric rings. In both groups, I-125 (oleic acid) activity was greater in the outer than the middle and inner concentric layers (P less than 0.001). When Cobalt-57 microspheres were given before oleic acid, Cobalt-57 activity was marginally lower in the outer layer compared with the middle and inner layers. However, when oleic acid was given first, microsphere activity in the outer layer was significantly lower (P less than 0.001) than the middle layer. Thus, oleic acid was preferentially distributed to the peripheral regions of the lung, similar to the regions of injury on CT. This distribution did not correspond to the pattern of pulmonary blood flow as indicated by the microspheres. Immediately after oleic acid infusion, pulmonary blood flow to the periphery was reduced, reflecting a response to the predominantly peripheral injury by oleic acid.

  16. Oxidation of oleic acid at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, Laura F.; Bazerbashi, Mohamad F.; Beekman, Christopher P.; Hadad, Christopher M.; Allen, Heather C.

    2007-03-01

    Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both freshwater and saltwater sources. Oleic acid monolayers at the air/water interface and at the air/sodium chloride solution interface were investigated using surface-specific, broad-bandwidth, sum frequency generation spectroscopy. Complementary techniques of infrared reflection adsorption spectroscopy and surface pressure measurements taken during monolayer oxidation confirmed the sum frequency results. Using this nonlinear optical technique coupled with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 M sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous subphase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  17. Dietary Triacylglycerols with Palmitic Acid in the sn-2 Position Modulate Levels of N-Acylethanolamides in Rat Tissues

    PubMed Central

    Lisai, Sara; Sirigu, Annarita; Piras, Antonio; Collu, Maria; Batetta, Barbara; Gambelli, Luisa; Banni, Sebastiano

    2015-01-01

    Background Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid—derived bioactive lipids, such as endocannabinoids and their congeners. Study Design Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain. Results Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency. Conclusions Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution. PMID:25775474

  18. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  19. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.

    PubMed

    Liu, Yanjun; Guo, Yongli; Sun, Zhaomin; Jie, Xu; Li, Zhaojie; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2015-01-01

    Docosahexaenoic acid supplementation has been shown well-established health benefits that justify their use as functional ingredients in healthy foods and nutraceutical products. Structured triacylglycerols rich in 1,3-docosahexenoyl-2-palmitoyl-sn-glycerol were produced from algal oil (Schizochytrium sp) which was prepared by a two-step process. Novozym 435 lipase was used to produce tripalmitin. Tripalmitin was then used to produce the final structured triacylglycerol (STAG) through interesterification reactions using Lipozyme RM IM. The optimum conditions for the enzymatic reaction were a mole ratio of tripalmitin/fatty acid ethyl esters 1:9, 60°C, 10% enzyme load (wt % of substrates), 10 h; the enzymatic product contained 51.6% palmitic acid (PA), 30.13% docosahexaenoic acid (DHA, C22:6 n-3) and 5.33% docosapentanoic acid (DPA, C22:5 n-3), 12.15% oleic acid (OLA). This STAG can be used as a functional ingredient in dietary supplementation to provide the benefits of DHA. PMID:26521813

  20. Characterization of stearidonic acid soybean oil enriched with palmitic acid produced by solvent-free enzymatic interesterification.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-09-14

    Stearidonic acid soybean oil (SDASO) is a plant source of n-3 polyunsaturated fatty acids (n-3 PUFAs). Solvent-free enzymatic interesterification was used to produce structured lipids (SLs) in a 1 L stir-batch reactor with a 1:2 substrate mole ratio of SDASO to tripalmitin, at 65 °C for 18 h. Two SLs were synthesized using immobilized lipases, Novozym 435 and Lipozyme TL IM. Free fatty acids (FFAs) were removed by short-path distillation. SLs were characterized by analyzing FFA and FA (total and positional) contents, iodine and saponification values, melting and crystallization profiles, tocopherols, and oxidative stability. The SLs contained 8.15 and 8.38% total stearidonic acid and 60.84 and 60.63% palmitic acid at the sn-2 position for Novozym 435 SL and Lipozyme TL IM SL, respectively. The SLs were less oxidatively stable than SDASO due to a decrease in tocopherol content after purification of the SLs. The saponification values of the SLs were slightly higher than that of the SDASO. The melting profiles of the SLs were similar, but crystallization profiles differed. The triacylglycerol (TAG) molecular species of the SLs were similar to each other, with tripalmitin being the major TAG. SDASO's major TAG species comprised stearidonic and oleic acids or stearidonic, α-linolenic, and γ-linolenic acids. PMID:21830790

  1. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate.

    PubMed

    Bernal, Claudia; Illanes, Andres; Wilson, Lorena

    2015-04-15

    Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%). PMID:25797166

  2. Retinol and Retinyl Palmitate in Foetal Lung Mice: Sexual Dimorphism

    PubMed Central

    Carvalho, Olga; Gonçalves, Carlos

    2013-01-01

    In this work, we evaluate the lung retinoids content to study the possible difference between male and female mice during prenatal development and to comprehend if the vitamin A metabolism is similar in both genders. The study occurred between developmental days E15 and E19, and the retinol and retinyl palmitate lung contents were determined by HPLC analysis. We established two main groups: the control, consisting of foetuses obtained from pregnant females without any manipulation, and vitamin A, composed of foetuses from pregnant females submitted to vitamin A administration on developmental day E14. Each of these groups was subdivided by gender, establishing the four final groups. In the lung of control group, retinol was undetected in both genders and retinyl palmitate levels exhibited a sexual dimorphism. In the vitamin A group, we detected retinol and retinyl palmitate in both genders, and we observed a more evident sexual dimorphism for both retinoids. Our study also indicates that, from developmental day E15 to E19, there is an increase in the retinoids content in foetal lung and a gender difference in the retinoids metabolism. In conclusion, there is a sexual dimorphism in the lung retinoids content and in its metabolism during mice development. PMID:23365730

  3. Preparation of co-spray dried cushioning agent containing stearic acid for protecting pellet coatings when compressed.

    PubMed

    Li, Xiao; Xu, De Sheng; Li, Min; Liu, Li; Heng, Paul

    2016-05-01

    This study investigated the applicability of stearic acid as a co-adjuvant in cushioning agent formulated to prevent coat damage when compressing coated pellets. The co-processed and physical blended fillers were prepared by spray drying and physically blending, respectively, with filler ingredients consisting of stearic acid, microcrystalline cellulose, fully gelatinized starch, and corn starch. Pellets containing drug were produced by coating onto non-pariels a drug layer of metformin followed by a sustained-release layer. Drug release from tablets composed of co-processed or physical blended fillers (0, 1, 5, and 10% stearic acid levels) and coated drug containing pellets were analyzed using similarity factor F2. Under the same force and the stearic acid level, co-processed fillers produced pellet containing tablets which showed higher F2 or t50 values and tensile strengths as well as lower yield pressures as compared with tablets containing physical blended fillers. It was shown that the destructive degree of pellet coating was significantly reduced after being co-processed by homogenization and the incorporation of stearic acid in the cushioning agents, as shown by the improved F2 and t50 values. In addition, disintegrate times of tablets containing co-processed agents decreased despite the hydrophobic stearic acid. In conclusion, the inclusion of stearic acid in co-processed cushioning agents was effective at protecting compacted coated pellets from compression-induced damage without compromising disintegratability. The findings could serve as a step towards resolving the technical challenges of balancing the drug release profiles, tablet tensile strength, and disintegration time of compacting coated pellets into multi-particulate-sustained release tablets. PMID:26289006

  4. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  5. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress.

    PubMed

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca(2+) increase due to depletion of luminal ER Ca(2+). Palmitate-induced ER Ca(2+) depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca(2+) pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca(2+) depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca(2+) loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca(2+) depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA

  6. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress

    PubMed Central

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to

  7. Enhanced phagocytosis of group A streptococci M type 6 by oleic acid

    SciTech Connect

    Speert, D.P.; Quie, P.G.; Wannamaker, L.W.

    1981-04-01

    M protein, located on the surface fimbriae of group A streptococci, is antiphagocytic by unknown means. It is known that oleic acid kills group A streptococci and distorts the fimbriae. The effect of oleic acid on phagocytosis of group A streptococci was examined. Phagocytosis of a strain possessing M protein (M+) and its M- variant was assessed by uptake of radiolabeled bacteria and by chemiluminescence. The M- but not the M+ streptococci were well phagocytized and induced chemiluminescence. Oleic acid-killed and heat-killed streptococci (both M+ and M-) were readily phagocytized and induced sustained chemiluminescence. M+ streptococci killed by ultraviolet irradiation were inefficiently phagocytized and did not induce chemiluminescence. Oleic acid-killed M+ streptococci absorbed type-specific antibody. An extract of M protein reduced the bactericidal capacity of oleic acid. It is proposed that oleic acid may bind to and alter the M protein of group A streptococci and thereby enhance phagocytosis.

  8. Palmitate induces insulin resistance without significant intracellular triglyceride accumulation in HepG2 cells.

    PubMed

    Lee, Jin-young; Cho, Hyang-Ki; Kwon, Young Hye

    2010-07-01

    Previous studies showed that increased release of free fatty acids from adipocytes leads to insulin resistance and triglyceride (TG) accumulation in the liver, which may progress into hepatic steatohepatitis. We and other investigators have previously reported that palmitate induces endoplasmic reticulum stress-mediated toxicity in several tissues. This work investigated whether palmitate could induce insulin resistance and steatosis in HepG2 cells. We treated cells with either saturated fatty acid (palmitate) or unsaturated fatty acid (oleate), and observed that palmitate significantly activated c-jun N-terminal kinase and inactivated protein kinase B. Both 4-phenylbutyric acid and glycerol significantly activated protein kinase B, confirming the involvement of endoplasmic reticulum stress in palmitate-mediated insulin resistance. Oleate, but not palmitate, significantly induced intracellular TG deposition and activated sterol regulatory element binding protein-1. Instead, diacylglycerol level and protein kinase C epsilon activity were significantly increased by palmitate, suggesting the possible role of diacylglycerol in palmitate-mediated lipotoxicity. Therefore, the present study clearly showed that palmitate impairs insulin resistance, but does not induce significant TG accumulation in HepG2 cells. PMID:20006364

  9. Palmitate Inhibits SIRT1-Dependent BMAL1/CLOCK Interaction and Disrupts Circadian Gene Oscillations in Hepatocytes

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Arthurs, Blake; Li, Pei; Durudogan, Leigh; Gupta, Neil; Yin, Lei

    2015-01-01

    Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes. PMID:26075729

  10. [THE EXCESS OF PALMITIC FATTY ACID IN FOOD AS MAIN CAUSE OF LIPOIDOSIS OF INSULIN-DEPENDENT CELLS: SKELETAL MYOCYTES, CARDIO-MYOCYTES, PERIPORTAL HEPATOCYTES, KUPFFER MACROPHAGES AND B-CELLS OF PANCREAS].

    PubMed

    Titov, V N

    2016-02-01

    In phylogenesis, becoming of biologicalfunctions and biological reactions proceeds with the purpose ofpermanent increasing of "kinetic perfection ". The main role belongs to factors ofphysical, chemical and biological kinetics, their evaluation using systemic approach technique under permanent effect of natural selection. The late-in-phylogenesis insulin, proceeded with, in development of biological function of locomotion, specialization of insulin-dependent cells: skeletal myocytes, syncytium of cardiomyocytes, subcutaneous adipocytes, periportal hepatocytes, Kupffer's macrophages and β-cells of islets of pancreas. The insulin initiated formation of new, late in phylogenesis, large pool of fatty cells-subcutaneous adipocytes that increased kinetic parameters of biological function of locomotion. In realization of biological function of locomotion only adipocytes absorb exogenous mono unsaturated and saturated fatty acids in the form of triglycerides in composition of oleic and palmitic lipoproteins of very low density using apoE/B-100 endocytosis. The rest of insulin-dependent cells absorb fatty acids in the form of unesterified fatty acids from associates with albumin and under effect of CD36 of translocase offatty acids. The insulin in all insulin-depended cells inhibits biological reaction of lipolysis enhancing contributing into development of lipoidosis. The insulin expresses transfer offatty acids in the form of unsaturated fatty acids from adipocytes into matrix of mitochondria. The insulin supplies insulin-dependent cells with substrates for acquiring energy subject to that in pool of unsaturated fatty acids in adipocytes prevails hydrophobic palmitic unsaturated fatiy acid that slowly passes into matrix through external membrane ofmitochondria; oxidases of mitochondria so slowly implement its β-oxidation that content of exogenous palmitic unsaturatedfatty acid can't be higher than phylogenetic, physiological level - 15% of all amount offatty acids

  11. Paliperidone palmitate use in pregnancy in a woman with schizophrenia.

    PubMed

    Özdemir, Aslı Karadağ; Pak, Şima Ceren; Canan, Fatih; Geçici, Ömer; Kuloğlu, Murat; Gücer, Mustafa Kadri

    2015-10-01

    Long-acting antipsychotic use in schizophrenia has become an advantage for treatment compliance and convenient administration of the drugs. There is no data on paliperidone palmitate (PP) use in pregnancy, which is the longest-acting (i.e., 1 month) atypical antipsychotic. In this case report, we aim to present a patient diagnosed with schizophrenia who had been using PP before and during her pregnancy until week 28 of gestation and gave birth to a male baby that weighed 3000 g at 39 weeks. As far as we know, this is the first case report on PP use during pregnancy. PMID:25599999

  12. Successful therapy of macrophage activation syndrome with dexamethasone palmitate.

    PubMed

    Nakagishi, Yasuo; Shimizu, Masaki; Kasai, Kazuko; Miyoshi, Mari; Yachie, Akihiro

    2016-07-01

    Macrophage activation syndrome (MAS) is a severe and potential life-threatening complication of childhood systemic inflammatory disorders. Corticosteroids are commonly used as the first-line therapy for MAS. We report four patients with MAS who were successfully treated with dexamethasone palmitate (DexP), a liposome-incorporated dexamethasone, much more efficient than free corticosteroids. DexP effectively inhibited inflammation in MAS patients in whom the response to pulse methylprednisolone was not sufficient to manage their diseases. DexP was also effective as the first-line therapy for MAS. Based on these findings, DexP is an effective therapy in treating MAS patients. PMID:24754272

  13. Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid.

    PubMed

    Ricci, Maria; Segura, Juan José; Erickson, Blake W; Fantner, Georg; Stellacci, Francesco; Voïtchovsky, Kislon

    2015-07-14

    The interaction of organic molecules with the surface of calcite plays a central role in many geochemical, petrochemical, and industrial processes and in biomineralization. Adsorbed organics, typically fatty acids, can interfere with the evolution of calcite when immersed in aqueous solutions. Here we use atomic force microscopy in liquid to explore in real-time the evolution of the (1014) surface of calcite covered with various densities of stearic acid and exposed to different saline solutions. Our results show that the stearic acid molecules tend to act as "pinning points" on the calcite's surface and slow down the crystal's restructuring kinetics. Depending on the amount of material adsorbed, the organic molecules can form monolayers or bilayer islands that become embedded into the growing crystal. The growth process can also displaces the organic molecules and actively concentrate them into stacked multilayers. Our results provide molecular-level insights into the interplay between the adsorbed fatty acid molecules and the evolving calcite crystal, highlighting mechanisms that could have important implications for several biochemical and geochemical processes and for the oil industry. PMID:26087312

  14. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model.

    PubMed

    Schuett, Burkhardt S; Millar, Thomas J

    2013-10-01

    (O-acyl) ω-hydroxy fatty acids (OAHFAs) are a recently found group of polar lipids in meibum. Since these lipids can potentially serve as a surfactant in the tear film lipid layer, the surface properties of a molecule of this lipid class was investigated and compared with a structurally related wax ester and a fatty acid. (O-oleyl) ω-hydroxy palmitic acid was synthesized and used as the model OAHFA. It was spread either alone or mixed with human meibum on an artificial tear buffer in a Langmuir trough, and pressure-area isocycle profiles were recorded at different temperatures and compared with those of palmityl oleate and oleic acid. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles. The pressure area curves indicated that pure films of the model OAHFA are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid and show a distinct biphasic pressure-area isocycle profile. The OAHFAs appeared to remain on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. All these properties can be explained by OAHFAs binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. By contrast, the pressure area profiles of palmityl oleate films indicate that they form multi-layers and oleic acid presumably forms micelles and desorbs into the subphase. When mixed with meibum, similar features as for pure films were observed. In addition, meibum-OAHFA films appeared very homogeneous; a feature not seen with other mixtures. In conclusion these data support the notion that the tested OAHFA is a very potent surfactant which is important in spreading and stabilising meibomian lipid films. PMID:23792170

  15. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    NASA Astrophysics Data System (ADS)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong

    2013-08-01

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2-4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  16. Aminosilane/oleic acid vesicles as model membranes of protocells.

    PubMed

    Douliez, Jean-Paul; Zhendre, Vanessa; Grélard, Axelle; Dufourc, Erick J

    2014-12-16

    Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 μm), stable elongated vesicles (>50 μm length; 1-3 μm diameter), and chains of vesicles (pearl necklaces, >50 μm length; 1-3 μm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells. PMID:25420203

  17. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  18. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  19. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  20. Oxidation of oleic acid monolayers at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, L. F.; Bazerbashi, M. F.; Beekman, C. P.; Hadad, C. M.; Allen, H. C.

    2006-12-01

    Field studies of marine and continental aerosols find that fatty acid films form on aqueous tropospheric aerosols. Oxidation of the acyl chains is thought to be key to aerosol growth. Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both fresh and salt water sources. Using vibrational sum frequency generation spectroscopy and reflection absorption infrared spectroscopy, we present a molecular-level investigation of fatty acid monolayers at the air-water and air- sodium chloride solution interface and explore reactions with atmospheric oxidants by these model systems. Using sum frequency generation spectroscopy coupled with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 molar sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous sub-phase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  1. Oxidation of oleic acid monolayers at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, Laura

    2008-03-01

    Field studies of marine and continental aerosols find that fatty acid films form on aqueous tropospheric aerosols. Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both fresh and salt water sources. Using vibrational sum frequency generation spectroscopy and reflection absorption infrared spectroscopy, we present a molecular-level investigation of fatty acid monolayers at the air-water and air-sodium chloride solution interface and explore reactions with atmospheric oxidants by these model systems. Coupling sum frequency generation spectroscopy with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 molar sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous sub-phase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  2. Acylcarnitine accumulation does not correlate with reperfusion recovery in palmitate-perfused rat hearts.

    PubMed

    Madden, M C; Wołkowicz, P E; Pohost, G M; McMillin, J B; Pike, M M

    1995-06-01

    Carnitine palmitoyltransferase-I (CPT-I) inhibitors improve postischemic myocardial function either by decreasing muscle long-chain acylcarnitines (LCAC) during ischemia or by increasing oxidation of alternate substrates such as glucose during reperfusion. These possibilities were evaluated using oxfenicine, a CPT-I inhibitor, and alternate substrates that bypass carnitine-dependent metabolism. Isolated rat hearts subjected to 20 min of ischemia followed by 40 min of reperfusion with 1.8 mM palmitate as exogenous substrate recovered little function during reperfusion. Hearts made ischemic and reperfused with palmitate and 2.4 mM hexanoate as exogenous substrates had significantly improved reperfusion function compared to palmitate-perfused hearts. Addition of 2 mM oxfenicine to palmitate-hexanoate-perfused hearts gave an additional small improvement in reperfusion function. At the end of ischemia, the LCAC content of hearts perfused with palmitate or hexanoate and palmitate was identical. Palmitate-, hexanoate, and oxfenicine-perfused hearts had significantly decreased LCAC content at the end of ischemia compared with hexanoate-palmitate-perfused hearts. Therefore, depressed reperfusion function in long-chain fatty acid-perfused hearts can be ameliorated by alternate substrates, including medium-chain fatty acids. LCAC accumulation during ischemia apparently plays only a minor role in the postischemic dysfunction of long-chain fatty acid-perfused hearts. PMID:7611501

  3. Preparation of Vegetable Oil Emulsions from Amylose-Sodium Palmitate Inclusion Complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of high amylose starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to generate amylose sodium palmitate helical inclusion complexes. This preparative method allows sufficient quantities of these complexes to be prepared to examine their propertie...

  4. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  5. Molecular analysis of soybean lines with low palmitic acid content in the seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid is the major saturated fatty acid found in soybean oil, accounting for approximately 11% of the seed oil content. Reducing the palmitic acid levels of the oil is desirable because of the negative health effects specifically associated with this fatty acid. One of the genetic loci known...

  6. New mutation in Delta-9-Stearoyl-Acyl Carrier Protein desaturase gene associated with enhanced stearic acid levels in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr] oil from conventional cultivars typically contains ~3% stearic acid of the total seed oil. Increased stearic acid concentration in the seed oil of soybeans is desirable from both food and industrial use stand-points. To date a small number of mutants have been develop...

  7. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse.

    PubMed

    Lam, L K; Sparnins, V L; Wattenberg, L W

    1982-04-01

    Glutathione (GSH) S-transferase is a major detoxification enzyme system that catalyzes the binding of a variety of electrophiles, including reactive forms of chemical carcinogens, to GSH. Green coffee beans fed in the diet induced increased GSH S-transferase activity in the mucosa of the small intestine and in the liver of mice. A potent compound that induces increased GSH S-transferase activity was isolated from green coffee beans and identified as kahweol palmitate. The corresponding free alcohol, kahweol, and its synthetic monoacetate are also potent inducers of the activity of GSH S-transferase. A similar diterpene ester, cafestol palmitate, isolated from green coffee beans was active but less so than was kahweol palmitate. Likewise, the corresponding alcohol, cafestol, and its monoacetate showed moderate potency as inducers of increased GSH S-transferase activity. Kahweol palmitate and cafestol palmitate were extracted from green coffee beans into petroleum ether. The petroleum ether extract was fractionated by preparative normal-phase and reverse-phase liquid chromatographies successively. Final purification with silver nitrate-impregnated thin-layer chromatography yielded the pure palmitates of cafestol and kahweol. The structures were determined by examination of the spectroscopic data of the esters and their parent alcohols and by derivative comparison. PMID:7059995

  8. Synthesis and low temperature characterization of iso-oleic ester derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new iso-oleic ester derivatives (i.e., isopropyl esters (IOA-iPrE), n-butyl esters (IOA-n-BuE), and 2-ethylhexyl esters (IOA-2-EHE)) were synthesized from iso-oleic acid (IOA) using a standard esterification method. These esterified alcohols were chosen because of their bulky and branched-cha...

  9. Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify novel sources of genetic variation for the high oleic acid seed trait, soybean lines containing a higher fraction than normal of oleic acid were identified through a forward-genetic screen of a chemically mutagenized population. Mutant lines contained 30%- 40% of the oil fraction as olei...

  10. Effect of oleic acid on the allergenic properties of peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is the major fatty acid in peanuts and cashews. There is limited information about its effect on peanut and cashew allergens during heating. The objective was to determine if heat treatment with oleic acid changes the allergenic properties of these nut proteins. Peanut and cashew protein...

  11. Real-Time PCR Genotyping using Taqman Probes to Detect High Oleic Acid Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid, a monounsaturated, omega-9 fatty acid is an important agronomic trait in peanut cultivars because it provides increased shelf life, improved flavor, enhanced fatty acid composition, and a beneficial effect on human health. Currently, most high oleic peanuts confer limited resistance to ...

  12. Synthesis and physical properties of new coco-oleic estolide branched esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oils derived from vegetable oils tend to not meet the standards for industrial lubricants because of unacceptable low temperature properties, pour point (PP), and/or cloud point (CP). However, a catalytic amount of perchloric acid with oleic and coconut (coco) fatty acids produced a coco-oleic estol...

  13. Refractive Index and Density Measurements of Peanut Oil for Determining Oleic and Linoleic Acid Contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut seed are approximately 50% oil of which > 80% is either oleic or linoleic acid. The oleic/linoleic acid (O/L) ratio largely influences oxidative stability and hence peanut shelf life. Traditional peanut seed have O/L ratios near 1.5-2.0; however, many new cultivars are “high oleic” with O/L...

  14. The complex tale of the high oleic acid trait in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition of oil extracted from peanut (Arachis hypogaea L.) seed is an important quality trait. In particular, a high ratio of oleic (C18:1) relative to linoleic (C18:2) fatty acid (O/L = 10) results in a longer shelf life. Previous reports suggest that the high oleic (~80%) trait wa...

  15. Determining the oleic/linoleic acid content of a single seed: A comparison of available methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut varieties with high oleic/linoleic acid ratios have become preferred by the peanut industry due to their increased shelf life and improved health benefits. Many peanut breeding programs are trying to incorporate the high oleic trait into new and improved varieties and are in need of diagnost...

  16. Evidence that oleic acid exists in a separate phase within stratum corneum lipids

    SciTech Connect

    Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. )

    1991-03-01

    Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (Tm) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their Tm. At temperatures lower than Tm, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid Tm in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion.

  17. Density and Refractive Index Measurements of Peanut Oil to Determine Oleic and Linoleic Acid Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut seed are approximately 50% oil of which > 80% is either oleic or linoleic acid. The oleic/linoleic acid (O/L) ratio largely influences oxidative stability and hence peanut shelf life. Traditional peanut seed have O/L ratios near 2.5; however, many new cultivars are “high oleic” with O/L rat...

  18. SN2-Palmitate Reduces Fatty Acid Excretion in Chinese Formula-fed Infants

    PubMed Central

    Bar-Yoseph, Fabiana; Lifshitz, Yael; Cohen, Tzafra; Malard, Patrice; Xu, Chungdi

    2016-01-01

    ABSTRACT Objectives: Palmitic acid (PA) comprises 17% to 25% of human milk fatty acids, of which 70% to 75% are esterified to the SN2 position of the triglyceride (SN2-palmitate). In vegetable oils, which are commonly used in infant formulas, palmitate is primarily esterified to other positions, resulting in reduced calcium and fat absorption and hard stools. The aim of this study was to elucidate the effects of SN2-palmitate on nutrient excretion. Methods: In total, 171 Chinese infants were included (within 14 days of birth) in this multicenter study. Formula-fed infants were randomly assigned to receive either SN2-palmitate formula (INFAT, n = 57) or control formula (n = 57). The formulas (Biostime, China) differed only in their SN2 PA proportions. Stool was collected at 6 postnatal weeks. Results: The stool dry weight and fat content of the SN2-palmitate group were lower compared with the control group (dry weight 4.25 g vs 7.28 g, P < 0.05; fat 0.8 g vs 1.2 g, P < 0.05). The lipid component was also significantly lower for the SN2-palmitate group (0.79 g vs 1.19 g, P < 0.05). PA, representing ∼50% of the saponified fatty acids, was significantly lower in the SN2-palmitate group compared with the control group (0.3 g vs 0.7 g, P < 0.01). Breast-fed infants had a significantly lower stool dry weight, fat content, and saponified fat excretion compared with formula-fed infants (P < 0.01). Conclusions: Similar to breast milk, the SN2-palmitate infant formula primarily reduced calcium-saponified fat excretion. The results of this study further emphasize the nutritional importance of SN2-palmitate structured fat for infants. PMID:26334255

  19. Scale selection in columnar jointing: Insights from experiments on cooling stearic acid and numerical simulations

    NASA Astrophysics Data System (ADS)

    Christensen, Amalie; Raufaste, Christophe; Misztal, Marek; Celestini, Franck; Guidi, Maria; Ellegaard, Clive; Mathiesen, Joachim

    2016-03-01

    Many natural fracture systems are characterized by a single length scale, which is the distance between neighboring fractures. Examples are mud cracks and columnar jointing. In columnar jointing the origin of this scale has been a long-standing issue. Here we present a comprehensive study of columnar jointing based on experiments on cooling stearic acids, numerical simulations using both discrete and finite element methods and basic analytical calculations. We show that the diameter of columnar joints is a nontrivial function of the material properties and the cooling conditions of the system. We determine the shape of this function analytically and show that it is in agreement with the experiments and the numerical simulations.

  20. Milk production responses to dietary stearic acid vary by production level in dairy cattle.

    PubMed

    Piantoni, P; Lock, A L; Allen, M S

    2015-03-01

    Effects of stearic acid supplementation on feed intake and metabolic and production responses of dairy cows with a wide range of milk production (32.2 to 64.4 kg/d) were evaluated in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (142±55 d in milk) were assigned randomly within level of milk yield to treatment sequence. Treatments were diets supplemented (2% of diet dry matter) with stearic acid (SA; 98% C18:0) or control (soyhulls). The diets were based on corn silage and alfalfa and contained 24.5% forage neutral detergent fiber, 25.1% starch, and 17.3% crude protein. Treatment periods were 21 d with the final 4 d used for data and sample collection. Compared with the control, SA increased dry matter intake (DMI; 26.1 vs. 25.2 kg/d) and milk yield (40.2 vs. 38.5 kg/d). Stearic acid had no effect on the concentration of milk components but increased yields of fat (1.42 vs. 1.35 kg/d), protein (1.19 vs. 1.14 kg/d), and lactose (1.96 vs. 1.87 kg/d). The SA treatment increased 3.5% fat-corrected milk (3.5% FCM; 40.5 vs. 38.6 kg/d) but did not affect feed efficiency (3.5% FCM/DMI, 1.55 vs. 1.53), body weight, or body condition score compared with the control. Linear interactions between treatment and level of milk yield during the covariate period were detected for DMI and yields of milk, fat, protein, lactose, and 3.5% FCM; responses to SA were positively related to milk yield of cows. The SA treatment increased crude protein digestibility (67.4 vs. 65.5%), tended to increase neutral detergent fiber digestibility (43.6 vs. 42.3%), decreased fatty acid (FA) digestibility (56.6 vs. 76.1%), and did not affect organic matter digestibility. Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was only 13.3% for total FA and 8.2% for C18:0 plus cis-9 C18:1. Low estimated digestibility of the SA supplement was at least partly responsible for the low FA yield response

  1. Synthesis kinetics of CdSe quantum dots in trioctylphosphine oxide and in stearic acid

    NASA Astrophysics Data System (ADS)

    Dickerson, B. D.; Irving, D. M.; Herz, E.; Claus, R. O.; Spillman, W. B.; Meissner, K. E.

    2005-04-01

    A diffusion-barrier model described the early evolution of size-dependent photoluminescence emission from CdSe quantum dots formed by organometallic synthesis. Emission peak widths, emission redshift rates, and nanocrystal growth rates all decreased to a minimum at a reaction completion time. Growth after the completion time by Ostwald ripening was marked by a doubling of the activation energy. The temperature dependence of both reaction completion rates and photoluminescence redshift rates followed Arrhenius behavior governed by activation energies that increased with solvent molecular weight, in this limited case. In stearic acid and in trioctylphosphine oxide, the typical activation energies were 0.6±0.1 and 0.92±0.26eV/molecule, respectively.

  2. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of Lipozyme RM IM from Rhizomucor Miehei and Candid...

  3. Effect of processing methods on the mechanical properties of natural rubber filled with stearic acid modified soy protein particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...

  4. Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a c...

  5. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating.

    PubMed

    Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing

    2015-03-15

    A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. PMID:25542116

  6. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candi...

  7. Comparison of plasma lipids and vitamin E in young and middle-aged subjects on potato crisps fried in palmolein and highly oleic sunflower oil.

    PubMed

    Choudhury, N; Truswell, A S; McNeil, Y

    1997-01-01

    We previously found no difference in healthy young adults' plasma cholesterols between palmolein and olive oil as the major dietary lipid, although the former is high in palmitic acid (16:0) but the latter in oleic acid (18:1 cis). In the experiment reported here we compared the effects of palmolein against another monounsaturated oil, highly oleic sunflower oil (HOSO), on plasma cholesterol in both young and middle-aged healthy adults. The test oils were provided as frying oil of potato crisps (150 g/day in men; 100 g/day in women) against low-fat background diets in free-living motivated volunteers. The design was a randomised double-blind 4-week/3-week crossover trial. Compliance was monitored with continuous dietary diaries and by measuring (fasting) plasma lipid fatty-acid pattern. Plasma lipids and vitamin-E compounds were measured at the start and twice at the end of each test period. In combined young plus older subjects (n = 42) mean plasma total and low-density-lipoprotein cholesterol (LDL-c) values were both 7% (significantly) lower on HOSO than on palmolein, but because high-density-lipoprotein cholesterol (HDL-c) was also 5% lower, the LDL-c/HDL-c ratio was only 3% lower on HOSO than on palmolein. The difference between the present results with HOSO and previous results with olive oil both compared against palmolein suggest that olive oil is associated with higher plasma cholesterols than other monounsaturated oils. In both the young and older subgroup, LDL-c was lower on HOSO but because HDL-c moved down too in the young subgroup, the LDL-c/HDL-c ratio was lower on HOSO only in the older subjects. Palmolein has an unusual pattern of E vitamins, with a high content of tocotrienols, notably the gamma-isomer. Unlike alpha-tocopherol however, there was no sign of these tocotrienols in subjects' plasmas. PMID:9286464

  8. Antibacterial electrospun poly(ɛ-caprolactone)/ascorbyl palmitate nanofibrous materials.

    PubMed

    Paneva, Dilyana; Manolova, Nevena; Argirova, Mariana; Rashkov, Iliya

    2011-09-15

    The one-step incorporation of ascorbyl palmitate (AP), a widely used derivative of vitamin C, into nanofibrous mats of poly(ɛ-caprolactone) (PCL) by electrospinning was demonstrated. The incorporation of AP was attested by IR spectroscopy; the AP content was determined by thermogravimetric analysis (TGA); and the surface composition of the mats: by X-ray photoelectron spectroscopy (XPS). The possibility for deposition of silver nanoparticles onto PCL/AP mats using the ability of AP to reduce silver ions was demonstrated. The silver content was determined by TGA, and the silver nanoparticles were observed by transmission electron microscopy (TEM). The nanoparticles were composed of elemental silver, as verified by XPS analyses. The UV-vis spectrophotometric analyses, study on quenching of the free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and microbiological tests against the pathogenic microorganism Staphylococcus aureus showed that AP preserved its stability and its antioxidant and antibacterial activity when incorporated in the nanofibrous mats. PMID:21726615

  9. Electrochemical assay of the antioxidant ascorbyl palmitate in mixed medium.

    PubMed

    Teneva, Olga; Dimcheva, Nina

    2016-07-15

    Electrooxidation of ascorbyl palmitate (AP) over gold screen-printed electrode (AuSPE) and gold nanoparticles modified graphite (AuNPs/gr) was examined in mixed water-alcohol medium. Voltammetric and amperometric studies showed that: (i) AP oxidation on the AuSPE proceeds at higher potential than on AuNPs/gr; (ii) the current density on AuNPs/gr was 2.4 times higher than on AuSPE; (iii) the linear dynamic range for AuNPs/gr doubled that for AuSPE. At the optimal for AuNPs/gr operating potential (250 mV) the following operational parameters were determined: sensitivity 1.627 ± 0.138 μA mM(-1) mm(-2); linearity up to 500 μM; LOD=5.8 μM. Quantification of the AP content in a real sample - stabilised flaxseed oil, was performed. PMID:26948586

  10. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss. PMID:26758875

  11. Palmitic acid in the sn-2 position of dietary triacylglycerols does not affect insulin secretion or glucose homeostasis in healthy men and women

    PubMed Central

    Filippou, A; Teng, K-T; Berry, S E; Sanders, T A B

    2014-01-01

    Background/objectives: Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. Subjects/Methods: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20–50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose. Results: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0–2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05). Conclusion: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis. PMID:25052227

  12. Liquid to Semisolid Rheological Transition of Normal and High-Oleic Peanut Oils Upon Cooling to Refrigeration Temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rheological transitions of peanut oils cooled from 20 to 3ºC at 0.5ºC/min were monitored via small strain oscillatory measurements at 0.1 Hz and 1 Pa. Oils were from 9 different cultivars of peanut, and 3 oils were classified as high-oleic (approximately 80% oleic acid). High-oleic oils maintained...

  13. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  14. Paliperidone palmitate injection for the acute and maintenance treatment of schizophrenia in adults

    PubMed Central

    Kim, Shiyun; Solari, Hugo; Weiden, Peter J; Bishop, Jeffrey R

    2012-01-01

    Purpose To review the use of paliperidone palmitate in treatment of patients with schizophrenia. Methods Published clinical trial data for the development and utilization of paliperidone palmitate for the treatment of schizophrenia were assessed in this review. Four short-term, randomized, double-blind, placebo-controlled trials investigated the efficacy of paliperidone palmitate in acute exacerbation of schizophrenia. Paliperidone palmitate was also studied as a maintenance treatment to prevent or delay relapse in stable schizophrenia. In addition, paliperidone palmitate was compared to risperidone long-acting injection for noninferiority in three studies. Results Paliperidone palmitate has been shown to be effective in reducing symptoms as measured by the Positive and Negative Syndrome Scale total scores in the four acute treatment studies. In the maintenance treatment studies, paliperidone palmitate was found to be more effective than placebo in preventing or delaying the time to first relapse in stable schizophrenia patients. In addition, paliperidone palmitate was shown to be noninferior to risperidone long-acting injection in two studies. It was shown to be reasonably well tolerated in all clinical trials. Acute treatment phase should be initiated with a dose of 234 mg on day one and 156 mg on day eight, followed by a recommended monthly maintenance dose of 39–234 mg based on efficacy and tolerability results from the clinical studies. Conclusion Providing an optimal long-term treatment can be challenging. Paliperidone palmitate can be used as an acute treatment even in outpatient setting, and it has shown to be well tolerated by patients. Also, it does not require overlapping oral antipsychotic supplementation while being initiated, and is dosed once per month. PMID:22879739

  15. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid

    SciTech Connect

    Hoopes, Matthew I.; Noro, Massimo G.; Longo, Marjorie L.; Faller, Roland

    2011-03-31

    The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.

  16. Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

    NASA Astrophysics Data System (ADS)

    Bu, Yong-jie; Liu, Run-qing; Sun, Wei; Hu, Yue-hua

    2015-05-01

    Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10°C) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.

  17. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal

  18. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  19. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  20. Synthesis of zirconium carbide nanosized powders by pursed wire discharge in oleic acid

    NASA Astrophysics Data System (ADS)

    Sugashima, Kenta; Suzuki, Kazuma; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2016-01-01

    In this study, we propose novel PWD methods in inert gas mixed organic vapor and organic liquid which work as harmless carbon sources. Metal zirconium wire evaporation by PWD in organic vapor or liquid media was investigated. It was confirmed that in the PWD process using oleic acid liquid, single phase zirconium carbide nanopowders were synthesized by a reaction between Zr vapor and oleic acid. A new method for synthesis of carbide nanopowders was developed using the PWD in organic liquid. Therefore, the present result suggested that PWD method in oleic acid liquids is effective for the synthesis of carbide nanopowders.

  1. Mitochondria targeting of non-peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling

    PubMed Central

    Tyurina, Yulia Y.; Tungekar, Muhammad A.; Jung, Mi-Yeon; Tyurin, Vladimir A.; Greenberger, Joel S.; Stoyanovsky, Detcho A.; Kagan, Valerian E.

    2012-01-01

    Peroxidation of cardiolipin in mitochondria is essential for the execution of apoptosis. We suggested that integration of oleic acid into cardiolipin generates non-oxidizable cardiolipin species hence protects cells against apoptosis. We synthesized mitochondria-targeted triphenylphosphonium oleic acid ester. Using lipidomics analysis we found that pretreatment of mouse embryonic cells with triphenylphosphonium oleic acid ester resulted in decreased contents of polyunsaturated cardiolipins and elevation of its species containing oleic acid residues. This caused suppression of apoptosis induced by actinomycin D. Triacsin C, an inhibitor of acyl-CoA synthase, blocked integration of oleic acid into cardiolipin and restored cell sensitivity to apoptosis. PMID:22210054

  2. A Novel Cationic Microbubble Coated with Stearic Acid-Modified Polyethylenimine to Enhance DNA Loading and Gene Delivery by Ultrasound

    PubMed Central

    Jin, Qiaofeng; Wang, Zhiyong; Yan, Fei; Deng, Zhiting; Ni, Fei; Wu, Junru; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2013-01-01

    A novel cationic microbubble (MB) for improvement of the DNA loading capacity and the ultrasound-mediated gene delivery efficiency has been developed; it has been prepared with commercial lipids and a stearic acid modified polyethylenimine 600 (Stearic-PEI600) polymer synthesized via acylation reaction of branched PEI600 and stearic acid mediated by N, N'-carbonyldiimidazole (CDI). The MBs’ concentration, size distribution, stability and zeta potential (ζ-potential) were measured and the DNA loading capacity was examined as a function of the amount of Stearic-PEI600. The gene transfection efficiency and cytotoxicity were also examined using breast cancer MCF-7 cells via the reporter plasmid pCMV-Luc, encoding the firefly luciferase gene. The results showed that the Stearic-PEI600 polymer caused a significant increase in magnitude of ζ-potential of MBs. The addition of DNA into cationic MBs can shift ζ-potentials from positive to negative values. The DNA loading capacity of the MBs grew linearly from (5±0.2) ×10−3 pg/µm2 to (20±1.8) ×10−3 pg/µm2 when Stearic-PEI600 was increased from 5 mol% to 30 mol%. Transfection of MCF-7 cells using 5% PEI600 MBs plus ultrasound exposure yielded 5.76±2.58×103 p/s/cm2/sr average radiance intensity, was 8.97- and 7.53-fold higher than those treated with plain MBs plus ultrasound (6.41±5.82) ×102 p/s/cm2/sr, (P<0.01) and PEI600 MBs without ultrasound (7.65±6.18) ×102 p/s/cm2/sr, (P<0.01), respectively. However, the PEI600 MBs showed slightly higher cytotoxicity than plain MBs. The cells treated with PEI600-MBs and plain MBs plus ultrasound showed 59.5±6.1% and 71.4±7.1% cell viability, respectively. In conclusion, our study demonstrated that the novel cationic MBs were able to increase DNA loading capacity and gene transfection efficiency and could be potentially applied in targeted gene delivery and therapy. PMID:24086748

  3. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system

    PubMed Central

    Xie, Yi-Ting; Du, Yong-Zhong; Yuan, Hong; Hu, Fu-Qiang

    2012-01-01

    Purpose Therapy for central nervous system disease is mainly restricted by the blood–brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied. Methods Stearic acid–grafted chitosan (CS-SA) was synthesized by hydrophobic modification of chitosan with stearic acid. The physicochemical characteristics of CS-SA micelles were investigated. bEnd.3 cells were chosen as model cells to evaluate the internalization ability and cytotoxicity of CS-SA micelles in vitro. Doxorubicin (DOX), as a model drug, was physically encapsulated in CS-SA micelles. The in vivo brain-targeting ability of CS-SA micelles was qualitatively and quantitatively studied by in vivo imaging and high-performance liquid chromatography analysis, respectively. The therapeutic effect of DOX-loaded micelles in vitro was performed on glioma C6 cells. Results The critical micelle concentration of CS-SA micelles with 26.9% ± 1.08% amino substitute degree was 65 μg/mL. The diameter and surface potential of synthesized CS-SA micelles in aqueous solution was 22 ± 0.98 nm and 36.4 ± 0.71 mV, respectively. CS-SA micelles presented excellent cellular uptake ability on bEnd.3 cells, the IC50 of which was 237.6 ± 6.61 μg/mL. DOX-loaded micelles exhibited slow drug-release behavior, with a cumulative release up to 72% within 48 hours in vitro. The cytotoxicity of DOX-loaded CS-SA micelles against C6 was 2.664 ± 0.036 μg/mL, compared with 0.181 ± 0.066 μg/mL of DOX · HCl. In vivo imaging results indicated that CS-SA was able to transport rapidly across the blood–brain barrier and into the brain. A maximum DOX distribution in brain of 1.01%/g was observed 15 minutes after administration and maintained above 0.45%/g within 1 hour. Meanwhile, free DOX · HCl was not detected in brain. In other major tissues, DOX-loaded micelles were mainly distributed into lung, liver, and

  4. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  5. FATTY ACID CHAIN-ELONGATION IN PERFUSED RAT HEART: SYNTHESIS OF STEAROYLCARNITINE FROM PERFUSED PALMITATE

    PubMed Central

    Kerner, Janos; Minkler, Paul E.; Lesnefsky, Edward J.; Hoppel, Charles L.

    2009-01-01

    Rat hearts perfused for up to 60 min in the working mode with palmitate, but not with glucose, resulted in substantial formation of palmitoylcarnitine and stearoylcarnitine. To test whether lipolysis of endogenous lipids was responsible for the increased stearoylcarnitine content or whether some of the perfused palmitate underwent chain elongation, hearts were perfused with hexadecanoic-16,16,16-d3 acid (M+3). The pentafluorophenacyl ester of deuterium labeled stearoylcarnitine had an M+3 (639.4 m/z) compared to the unlabeled M+0 (636.3 m/z) consistent with a direct chain elongation of the perfused palmitate. Furthermore, the near equal isotope enrichment of palmitoyl- (90.2 ± 5.8 %) and stearoylcarnitine (78.0 ± 7.1 %) suggest that both palmitoyl- and stearoyl-CoA have ready access to mitochondrial carnitine palmitoyltransferase and that most of the stearoylcarnitine is derived from the perfused palmitate. PMID:17761175

  6. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health.

    PubMed

    Mancini, Annamaria; Imperlini, Esther; Nigro, Ersilia; Montagnese, Concetta; Daniele, Aurora; Orrù, Stefania; Buono, Pasqualina

    2015-01-01

    A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed. PMID:26393565

  7. Free Fatty Acid Palmitate Impairs the Vitality and Function of Cultured Human Bladder Smooth Muscle Cells

    PubMed Central

    Oberbach, Andreas; Schlichting, Nadine; Heinrich, Marco; Till, Holger; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2012-01-01

    Background Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6) in cultured human bladder smooth muscle cells (hBSMC). Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. Methodology/Principal Findings HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i) palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii) direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii) in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv) further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v) increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. Conclusions/Significance Saturated free fatty acids (e.g., palmitate) cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby, certain

  8. Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: preparation, characterisation and in vitro evaluation.

    PubMed

    Zariwala, M Gulrez; Farnaud, Sebastien; Merchant, Zahra; Somavarapu, Satyanarayana; Renshaw, Derek

    2014-03-01

    The objective of this study was to encapsulate iron in nanocarriers formulated with ascorbyl palmitate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol (DSPE-PEG) for oral delivery. Blank and iron (Fe) loaded nanocarriers were prepared by a modified thin film method using ascorbyl palmitate and DSPE-PEG. Surface charge of the nanocarriers was modified by the inclusion of chitosan (CHI) during the formulation process. Blank and iron loaded ascorbyl palmitate/DSPE nanocarriers were visualised by transmission electron microscopy (TEM) and physiochemical characterisations of the nanocarriers carried out to determine the mean particle size and zeta potential. Inclusion of chitosan imparted a net positive charge on the nanocarrier surface and also led to an increase in mean particle size. Iron entrapment in ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers was 67% and 76% respectively, suggesting a beneficial effect of chitosan on nanocarrier Fe entrapment. Iron absorption was estimated by measuring Caco-2 cell ferritin formation using ferrous sulphate as a reference standard. Iron absorption from ascorbyl palmitate-Fe (592.17±21.12 ng/mg cell protein) and ascorbyl palmitate-CHI-Fe (800.12±47.6 ng/mg, cell protein) nanocarriers was 1.35-fold and 1.5-fold higher than that from free ferrous sulphate, respectively (505.74±23.73 ng/mg cell protein) (n=6, p<0.05). This study demonstrates for the first time preparation and characterisation of iron loaded ascorbyl palmitate/DSPE PEG nanocarriers, and that engineering of the nanocarriers with chitosan leads to a significant augmentation of iron absorption. PMID:24333557

  9. Manic Symptoms during a Switch from Paliperidone ER to Paliperidone Palmitate in a Patient with Schizophrenia

    PubMed Central

    Demirci, Kadir; Keleş, Süleyman; Demirdaş, Arif; Korucu, Cafer Çağrı

    2015-01-01

    Some antipsychotic drugs have treatment efficacy for mania and bipolar disorder. However, these drugs may rarely cause manic symptoms in some schizophrenic patients. We hereby report a 22-year-old female patient with schizophrenia who experienced a manic episode during a switch from paliperidone ER to paliperidone palmitate. This case is an important reminder that an abrupt switch from oral paliperidone to paliperidone palmitate may predispose certain patients to hypomanic or manic symptoms. PMID:26539300

  10. Fuel properties of heptadecene isomers prepared via tandem isomerization-decarboxylation of oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heptadecene isomers were prepared via tandem isomerization-decarboxylation of oleic acid using catalytic triruthenium dodecacarbonyl [Ru3(CO)12]. Chromatographic and spectroscopic characterization of the isolated heptadecene mixture indicated that it consisted of 96% internal isomers and 4% aromatic...

  11. Paliperidone Palmitate-induced Urinary Incontinence: A Case Report.

    PubMed

    Karslıoǧlu, Ersin Hatice; Özalp, Elvan; Çayköylü, Ali

    2016-02-29

    Urinary incontinence, although rarely reported, is one of the most important adverse effects of antipsychotic medication. It can be an embarrassing, distressing, and potentially treatment-limiting. Several antipsychotics, including both typical and atypical varieties, are known to induce urinary incontinence. Many antipsychotic drugs target the neural pathways controlling continence by binding to receptors of some neurotransmitters such as serotonin, dopamine, acetylcholine, and adrenaline. Pharmacological management of incontinence should be considered if there is a risk of cessation of the antipsychotic therapy or any decline in patients' compliance. Amitriptyline, desmopressin, ephedrine, and anticholinergics such as oxybutynin and trihexyphenidyl are the most frequently used agents to treat incontinence. We think that the frequency of incontinence is higher than reported in the literature, and that follow-up routines should include a form of standardized screening for all possible adverse effects, including incontinence, of any given antipsychotic. In this article, we report a case of urinary incontinence as an adverse effect of paliperidone palmitate use during maintenance therapy in a patient with schizophrenia. PMID:26792046

  12. Paliperidone Palmitate-induced Urinary Incontinence: A Case Report

    PubMed Central

    Karslıoǧlu, Ersin Hatice; Özalp, Elvan; Çayköylü, Ali

    2016-01-01

    Urinary incontinence, although rarely reported, is one of the most important adverse effects of antipsychotic medication. It can be an embarrassing, distressing, and potentially treatment-limiting. Several antipsychotics, including both typical and atypical varieties, are known to induce urinary incontinence. Many antipsychotic drugs target the neural pathways controlling continence by binding to receptors of some neurotransmitters such as serotonin, dopamine, acetylcholine, and adrenaline. Pharmacological management of incontinence should be considered if there is a risk of cessation of the antipsychotic therapy or any decline in patients’ compliance. Amitriptyline, desmopressin, ephedrine, and anticholinergics such as oxybutynin and trihexyphenidyl are the most frequently used agents to treat incontinence. We think that the frequency of incontinence is higher than reported in the literature, and that follow-up routines should include a form of standardized screening for all possible adverse effects, including incontinence, of any given antipsychotic. In this article, we report a case of urinary incontinence as an adverse effect of paliperidone palmitate use during maintenance therapy in a patient with schizophrenia. PMID:26792046

  13. Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO 2 microcrystals

    NASA Astrophysics Data System (ADS)

    Qian, Jianhua; Yin, Xiangyu; Wang, Ning; Liu, Lin; Xing, Jinjuan

    2012-01-01

    Hierarchical TiO2 microcrystals were synthesized through a facile solvothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements were used to characterize the structure of the as-prepared samples. The results indicated that the synthesized hierarchical titania (TiO2) microspheres were composed of numerous anatase phase TiO2 particles. The as-prepared samples were chemically modified with stearic acid to improve their dispersion in oil. Fourier transmission infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) were carried out to evaluate the characteristics of the modified TiO2 microcrystals. The tribological properties of the modified TiO2 microcrystals as additives of liquid paraffin were studied by a four-ball tester, and the results showed that they could significantly improve anti-wear performance, friction-reduction property and load-carrying capacity of liquid paraffin. These advantages make the modified TiO2 microcrystals promising for green lubricating oil additives.

  14. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix.

    PubMed

    Mlalila, Nichrous; Swai, Hulda; Kalombo, Lonji; Hilonga, Askwar

    2014-01-01

    The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT) loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. PMID:25489238

  15. Optimizing the preparation procedure of self-assembled monolayer of stearic acid for protection of cupronickel alloy.

    PubMed

    Marušić, Katarina; Hajdari, Zana; Ćurković, Helena Otmačić

    2014-01-01

    The aim of this work is to examine the possibility of CuNi protection in chloride media by self-assembled monolayers (SAMs) of stearic acid (SA). In order to obtain a compact, well ordered monolayer, that will provide long term protection, different SAM preparation procedures are studied. The influence of CuNi pretreatment, SA solution temperature and temperature of the drying period followed after the SA treatment on the protective properties of stearic acid self-assembled layer are examined by electrochemical methods and surface analysis techniques. The obtained results show that for complete self-assembled film formation it is necessary to have a drying period after exposing the sample to the stearic acid solution. Heating of the SA solution and drying period at higher temperatures result in layers with better stability in chloride media. The most compact surface layer, that provides long lasting and efficient protection to the underlying alloy, is obtained when prior to SA solution exposure an oxide layer on CuNi surface was formed at elevated temperatures. PMID:25125116

  16. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix

    PubMed Central

    Mlalila, Nichrous; Swai, Hulda; Kalombo, Lonji; Hilonga, Askwar

    2014-01-01

    The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT) loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. PMID:25489238

  17. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes

    PubMed Central

    Miao, Hongming; Chen, Liang; Hao, Lijun; Zhang, Xuan; Chen, Yujuan; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis. PMID:26271607

  18. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  19. Binding and solubility of oleic acid to laboratory materials: A possible artifact

    SciTech Connect

    Mailman, D.; Rose, C. )

    1990-01-01

    The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon{trademark}, Teflon{trademark}, and polyethylene, and Pyrex{trademark}, and borosilicate glass, and steel was measured. {sup 3}H-oleic acid and {sup 14}C-cholic acid were used in the presence of different concentration of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts of oleic acid were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers or albumin-stimulated fatty acid uptake by hepatocytes may need to be reexamined.

  20. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2...

  1. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2...

  2. Estimation of transcapillary transport of palmitate by the multiple indicator dilution technique

    SciTech Connect

    Little, S.E.; van der Vusse, G.J.; Bassingthwaighte, J.B.

    1986-03-01

    From the outflow concentration-time curves for /sup 14/C-palmitate, intravascular (/sup 131/I-albumin) and extracellular (/sup 3/H-sucrose) tracers, palmitate extraction was estimated in rabbit hearts Langendorff-perfused at a constant flow with nonrecirculated palmitate-albumin Kreb's Ringer buffer. Contamination of /sup 131/I-albumin with free /sup 13/$/sup 1/I/sup -/ (typically 1%) or aggregated albumin (typically 0.1 to 0.5%) greatly alters the shapes of the tails of the curves after 2 albumin transit times, vitiating accurate estimation of cellular permeability or reactions. Buffers were prepared by adding K/sup +/-palmitate (made using K/sub 2/CO/sub 3/) to albumin solutions. The final concentrations (after dialysing twice and filtering through a 1.2 ..mu.. filter) of K/sup +/, HCO/sub 3/, and CO/sub 3/ were 5.0 mM, 23.5 mM and 0.5 mM respectively, pH was between 7.35 and 7.40 for several hours. The bolus of tracers was prepared by mixing /sup 131/I-albumin (dialysed to remove I/sup -/, and filtered through a 0.2 ..mu..M filter to remove aggregates), K/sup +/ (U-/sup 14/C)palmitate (high specific activity) and /sup 3/H-sucrose. Before injection the radioactive bolus is preequilibrated with the perfusate at bolus:perfusate ratio of 1:10. Glacial acetic acid is added to the outflow samples to remove the /sup 14/CO/sub 2/ which, if present in the sample, would be interpreted as increased palmitate back diffusion. The peak extractions of palmitate were about 40% at perfusate palmitate concentrations of 0.02 to 1.0 mM, 0.4 mM albumin, at a flow of 5 mlg/sup -1/ 2)/sup 1/, showing capillary permeability-surface area product to be roughly constant. This suggests either than transcapillary palmitate transport is passive or that a transporter interacts with the albumin-palmitate complex.

  3. Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy.

    PubMed

    Mottola, Milagro; Wilke, Natalia; Benedini, Luciano; Oliveira, Rafael Gustavo; Fanani, Maria Laura

    2013-11-01

    Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug. PMID:23806650

  4. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  5. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology.

    PubMed

    Teeranachaideekul, Veerawat; Junyaprasert, Varaporn B; Souto, Eliana B; Müller, Rainer H

    2008-04-16

    Ascorbyl palmitate (AP) is an antioxidant used in both cosmetics and food industry. Owing to its poor solubility and instability caused by oxidation having been observed in several colloidal systems, the aim of this study was to investigate the feasibility of applying the nanosuspension technology by high-pressure homogenization (HPH) (DissoCubes) technology) to enhance the chemical stability of AP, followed by lyophilization. Sodium dodecyl sulfate (SDS) and Tween 80 were chosen as emulsifying agents to stabilize the developed AP nanosuspensions. After 3 months of storage at three different temperatures (4 degrees C, 25 degrees C and 40 degrees C), the photon correlation spectroscopy (PCS) analysis of AP nanosuspensions revealed that the mean particle size of those stabilized with SDS significantly increased compared to those stabilized with Tween 80. The results observed from both atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed AP nanocrystals of cubic-like shape. The percentage of AP remaining in nanosuspensions stabilized with Tween 80 was higher than 90% after 3 months storage at 4 degrees C, 25 degrees C and 40 degrees C. To increase the chemical stability of AP nanosuspensions, a drug powder was prepared by lyophilization. The effect of the presence of cryoprotectant trehalose on the physical stability was evaluated at different concentrations. After redispersing the lyophilized product, the mean size of AP nanosuspensions without trehalose was significantly higher compared with the system with trehalose. After 3 months of storage at 25 degrees C the mean size of lyophilized AP nanosuspensions remained constant. X-ray diffraction revealed the crystalline character of AP nanocrystals after HPH and lyophilization. PMID:18242898

  6. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. PMID:25091560

  7. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  8. A novel stearic acid-modified hirudin peptidomimetic with improved pharmacokinetic properties and anticoagulant activity

    PubMed Central

    Liu, Zhuguo; Yu, Zheng; Huang, Yuanyuan; Zhang, Yan; Han, Guozhu; Li, Xian; Dong, Mingxin; Yu, Shuo; Wang, Yu; Hu, Jie; Guo, Huiqin; Cheng, Yuanguo; Lv, Li; Dai, Qiuyun

    2015-01-01

    A novel hirudin isoform 3 mimetic peptide, named peptide S2, has been prepared by introduction of a stearic acid modification. Peptide S2 exhibited superior inhibitory activity to hirulog-1 (Bivariludin) and showed significantly higher anticoagulant potency in vivo. Peptide S2 elevated the thrombin time, prothrombin time and activated partial thromboplastin time of rat and human plasma more efficiently than hirulog-1 and the unmodified form of peptide S2 (peptide 1). Furthermore, peptide S2 inhibited arterial thrombosis and inferior vena cava in rat model 8 h after administration, and was 10-fold more potent than hirulog-1 300 min after administration of 0.1 μmol/kg peptide. The enhanced antithrombotic activity could be attributed to its long half-life (T1/2 = 212.2 ± 58.4 min), which was 13.1 and 14.7-fold longer than those of hirulog-1 (T1/2 = 15.1 ± 1.3 min) and peptide 1 (T1/2 = 13.5 ± 2.6 min), respectively. Further enzymatic degradation and binding assay with human serum albumin (HSA) demonstrated that the longer duration time should be originated from the slowing of trypsin or thrombin–mediated degradation, as well as its binding to HSA. The improved pharmacokinetic properties observed for peptide S2 has made it a promising therapeutic agent for the treatment of thrombi-related diseases. PMID:26400022

  9. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  10. Ligand-directed stearic acid grafted chitosan micelles to increase therapeutic efficacy in hepatic cancer.

    PubMed

    Yang, Yuan; Yuan, Sheng-Xian; Zhao, Ling-Hao; Wang, Chao; Ni, Jun-Sheng; Wang, Zhen-Guang; Lin, Chuan; Wu, Meng-Chao; Zhou, Wei-Ping

    2015-02-01

    Targeted delivery system would be an interesting platform to enhance the therapeutic effect and to reduce the side effects of anticancer drugs. In this study, we have developed lactobionic acid (LA)-modified chitosan-stearic acid (CS-SA) (CSS-LA) to deliver doxorubicin (DOX) to hepatic cancer cells. The average particle size of CSS-LA/DOX was ∼100 nm with a high entrapment efficiency of >95%. Drug release studies showed that DOX release from pH-sensitive micelles is significantly faster at pH 5.0 than at pH 7.4. The LA conjugated micelles showed enhanced cellular uptake in HepG2 and BEL-7402 liver cancer cells than free drug and unconjugated micelles. Consistently, CSS-LA/DOX showed enhanced cell cytotoxicity in these two cell lines. Annexin-V/FITC and PI based apoptosis assay showed that the number of living cells greatly reduced in this group with marked presence of necrotic and apoptotic cells. LA-conjugated carrier induced typical chromatic condensation of cells; membrane blebbing and apoptotic bodies began to appear. In vivo, CSS-LA/DOX showed an excellent tumor regression profile with no toxic side effects. The active targeting moiety, long circulation profile, and EPR effect contributed to its superior anticancer effect in HepG2 based tumor. Our results showed that polymeric micelles conjugated with LA increased the therapeutic availability of DOX in the liver cancer cell based solid tumor without any toxic side effects. The active targeting ligand conjugated nanoparticulate system could be a promising therapeutic strategy in the treatment of hepatic cancers. PMID:25495890

  11. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    PubMed

    Clementi, Emily A; Wilhelm, Kristina R; Schleucher, Jürgen; Morozova-Roche, Ludmilla A; Hakansson, Anders P

    2013-01-01

    HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize and/or present the

  12. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  13. Bordetella parapertussis PagP Mediates the Addition of Two Palmitates to the Lipopolysaccharide Lipid A

    PubMed Central

    Hittle, L. E.; Jones, J. W.; Hajjar, A. M.

    2014-01-01

    Bordetella bronchiseptica PagP (PagPBB) is a lipid A palmitoyl transferase that is required for resistance to antibody-dependent complement-mediated killing in a murine model of infection. B. parapertussis contains a putative pagP homolog (encoding B. parapertussis PagP [PagPBPa]), but its role in the biosynthesis of lipid A, the membrane anchor of lipopolysaccharide (LPS), has not been investigated. Mass spectrometry analysis revealed that wild-type B. parapertussis lipid A consists of a heterogeneous mixture of lipid A structures, with penta- and hexa-acylated structures containing one and two palmitates, respectively. Through mutational analysis, we demonstrate that PagPBPa is required for the modification of lipid A with palmitate. While PagPBB transfers a single palmitate to the lipid A C-3′ position, PagPBPa transfers palmitates to the lipid A C-2 and C-3′ positions. The addition of two palmitate acyl chains is unique to B. parapertussis. Mutation of pagPBPa resulted in a mutant strain with increased sensitivity to antimicrobial peptide killing and decreased endotoxicity, as evidenced by reduced proinflammatory responses via Toll-like receptor 4 (TLR4) to the hypoacylated LPS. Therefore, PagP-mediated modification of lipid A regulates outer membrane function and may be a means to modify interactions between the bacterium and its human host during infection. PMID:25422302

  14. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production.

    PubMed

    Tran, Thi Thu Trang; Postal, Bárbara Graziela; Demignot, Sylvie; Ribeiro, Agnès; Osinski, Céline; Pais de Barros, Jean-Paul; Blachnio-Zabielska, Agnieszka; Leturque, Armelle; Rousset, Monique; Ferré, Pascal; Hajduch, Eric; Carrière, Véronique

    2016-07-29

    The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid-rich palm oil. Moreover, when mouse intestine and human Caco-2/TC7 enterocytes were treated with the saturated fatty acid, palmitic acid, the insulin-signaling pathway was impaired. We show that palmitic acid or palm oil increases ceramide production in intestinal cells and that treatment with a ceramide analogue partially reproduces the effects of palmitic acid on insulin signaling. In Caco-2/TC7 enterocytes, ceramide effects on insulin-dependent AKT phosphorylation are mediated by protein kinase C but not by protein phosphatase 2A. Finally, inhibiting de novo ceramide synthesis improves the response of palmitic acid-treated Caco-2/TC7 enterocytes to insulin. These results demonstrate that a palmitic acid-ceramide pathway accounts for impaired intestinal insulin sensitivity, which occurs within several hours following initial lipid exposure. PMID:27255710

  15. Vitamin A is rapidly degraded in retinyl palmitate-fortified soybean oil stored under household conditions.

    PubMed

    Pignitter, Marc; Dumhart, Bettina; Gartner, Stephanie; Jirsa, Franz; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-07-30

    Oil fortification with retinyl palmitate is intended to lower the prevalence of vitamin A deficiency in populations at risk. Although the stability of vitamin A in vegetable oil has been shown to depend on environmental factors, very little information is known about the stability of vitamin A in preoxidized vegetable oils. The present study investigated the stability of retinyl palmitate in mildly oxidized (peroxide value < 2 mequiv O2/kg) and highly oxidized (peroxide value > 10 mequiv O2/kg) soybean oil stored under domestic and retail conditions. Soybean oil was filled in transparent bottles, which were exposed to cold fluorescent light at 22 or 32 °C for 56 days. Periodic oil sampling increased the headspace, thereby mimicking consumer handling. Loss of retinyl palmitate in soybean oil by a maximum of 84.8 ± 5.76% was accompanied by a decrease of vitamin E by 53.3 ± 0.87% and by an increase of the peroxide value from 1.20 ± 0.004 to 24.3 ± 0.02 mequiv O2/kg. Fortification of highly oxidized oil with 31.6 IU/g retinyl palmitate led to a doubling of the average decrease of retinol per day compared to fortification of mildly oxidized oil. In conclusion, oil fortification programs need to consider the oxidative status of the oil used for retinyl palmitate fortification. PMID:25003735

  16. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    NASA Astrophysics Data System (ADS)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  17. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  18. Differential Regulation of ABCA1 and Macrophage Cholesterol Efflux By Elaidic and Oleic Acids

    PubMed Central

    Shao, Fei; Ford, David A.

    2013-01-01

    Trans fatty acid consumption is associated with an increased risk of coronary heart disease. This increased risk has been attributed to decreased levels of HDL cholesterol and increased levels of LDL cholesterol. However, the mechanism by which trans fatty acid modulates cholesterol transit remains poorly defined. ATP-binding cassette transporter A1 (ABCA1)-mediated macrophage cholesterol efflux is the rate-limiting step initiating apolipoprotein A-I lipidation. In this study, elaidic acid, the most abundant trans fatty acid in partially hydrogenated vegetable oil, was shown to stabilize macrophage ABCA1 protein levels in comparison to that of its cis fatty acid isomer, oleic acid. The mechanism responsible for the disparate effects of oleic and elaidic acid on ABCA1 levels was through accelerated ABCA1 protein degradation in cells treated with oleic acid. In contrast, no apparent differences were observed in ABCA1 mRNA levels, and only minor changes were observed in Liver X receptor/Retinoic X receptor promoter activity in cells treated with elaidic and oleic acid. Efflux of both tracers and cholesterol mass revealed that elaidic acid slightly increased ABCA1-mediated cholesterol efflux, while oleic acid led to decreased ABCA1-mediated efflux. In conclusion, these studies sho that cis and trans structural differences in eighteen carbon n-9 monoenoic fatty acids variably impact cholesterol efflux through disparate effects on ABCA1 protein degradation. PMID:23800855

  19. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature.

    PubMed

    Limaye, Mukta V; Singh, Shashi B; Date, Sadgopal K; Kothari, Deepti; Reddy, V Raghavendra; Gupta, Ajay; Sathe, Vasant; Choudhary, Ram Jane; Kulkarni, Sulabha K

    2009-07-01

    High coercivity (9.47 kOe) has been obtained for oleic acid capped chemically synthesized CoFe(2)O(4) nanoparticles of crystallite size approximately 20 nm. X-ray diffraction analysis confirms the formation of spinel phase in these nanoparticles. Thermal annealing at various temperatures increases the particle size and ultimately shows bulk like properties at particle size approximately 56 nm. The nature of bonding of oleic acid with CoFe(2)O(4) nanoparticles and amount of oleic acid in the sample is determined by Fourier transform infrared spectroscopy and thermogrvimetric analysis, respectively. The Raman analysis suggests that the samples are under strain due to capping molecules. Cation distribution in the sample is studied using Mossbauer spectroscopy. Oleic acid concentration dependent studies show that the amount of capping molecules plays an important role in achieving such a high coercivity. On the basis of above observations, it has been proposed that very high coercivity (9.47 kOe) is the result of the magnetic anisotropy, strain, and disorder of the surface spins developed by covalently bonded oleic acid to the surface of CoFe(2)O(4) nanoparticles. PMID:19522478

  20. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  1. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a β-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the β-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the β-amylase treatment can improve the formation and solubility of the starch-oleic acid complex. PMID:25877005

  2. Structure of the magnetite-oleic acid-decalin magnetic fluid from small-angle neutron scattering data

    NASA Astrophysics Data System (ADS)

    Nagornyi, A. V.; Petrenko, V. I.; Bulavin, L. A.; Avdeev, M. V.; Almásy, L.; Rosta, L.; Aksenov, V. L.

    2014-01-01

    Structural parameters of the magnetite-oleic acid-decalin magnetic fluid at various excesses of oleic acid (up to 25 vol %) have been determined using small-angle neutron scattering. Based on the comparison of the behavior of oleic acid in the magnetic fluid and in the pure solvent (decalin), it has been concluded that the interaction between the molecules of free (unadsorbed) surfactant changes in the presence of magnetic nanoparticles. However, the system remains stable and does not form aggregates of magnetic particles or free oleic acid. These results are compared with the previously presented data for similar benzene-based magnetic fluids.

  3. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid.

    PubMed

    Brühlmann, Fredi; Fourage, Laurent; Ullmann, Christophe; Haefliger, Olivier P; Jeckelmann, Nicolas; Dubois, Cédric; Wahler, Denis

    2014-08-20

    Directed evolution via iterative cycles of random and targeted mutagenesis was applied to the P450 domain of the subterminal fatty acid hydroxylase CYP102A1 of Bacillus megaterium to shift its regioselectivity towards the terminal position of palmitic acid. A powerful and versatile high throughput assay based on LC-MS allowed the simultaneous detection of primary and secondary oxidation products, which was instrumental for identifying variants with a strong preference for the terminal oxidation of palmitic acid. The best variants identified acquired up to 11 amino acid alterations. Substitutions at F87, I263, and A328, relatively close to the bound substrate based on available crystallographic information contributed significantly to the altered regioselectivity. However, non-obvious residues much more distant from the bound substrate showed surprising strong contributions to the increased selectivity for the terminal position of palmitic acid. PMID:24833423

  4. Metabolic labeling of Ras with tritiated palmitate to monitor palmitoylation and depalmitoylation

    PubMed Central

    Tsai, Frederick D.; Wynne, Joseph P.; Ahearn, Ian M.; Philips, Mark R.

    2014-01-01

    Summary Metabolic labeling with tritiated palmitate is a direct method for monitoring post-translational modification of Ras proteins with this fatty acid. Advances in intensifying screens have allowed for the easy visualization of tritium without the need for extended exposure times. While more energetic radioisotopes are easier to visualize, the lack of commercial source and need for shielding make them more difficult to work with. Since radiolabeled palmitate is directly incorporated into Ras, its loss can be monitored by traditional pulse-chase experiments that cannot be accomplished with the method of acyl exchange chemistry. As such, tritiated palmitate remains a readily accessible and direct method for monitoring the palmitoylation status of Ras proteins under a multitude of conditions. PMID:24470017

  5. Structural, electronic, thermodynamical and charge transfer properties of Chloramphenicol Palmitate using vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Sharma, Anamika; Tandon, Poonam; Baraldi, Cecilia; Gamberini, Maria Christina

    2013-01-01

    The global problem of advancing bacterial resistance to newer drugs has led to renewed interest in the use of Chloramphenicol Palmitate (C27H42Cl2N2O6) [Palmitic acid alpha ester with D-threo-(-),2-dichloro-N-(beta-hydroxy-alpha-(hydroxymethyl)-p-nitrophenethyl)acetamide also known as Detereopal]. The characterization of the three polymorphic forms of Chloramphenicol Palmitate (CPP) was done spectroscopically by employing FT-IR and FT-Raman techniques. The equilibrium geometry, various bonding features, and harmonic wavenumbers have been investigated for most stable form A with the help of DFT calculations and a good correlation was found between experimental data and theoretical values. Electronic properties have been analyzed employing TD-DFT for both gaseous and solvent phase. The theoretical calculation of thermodynamical properties along with NBO analysis has also been performed to have a deep insight into the molecule for further applications.

  6. Assessment of Myocardial Triglyceride Oxidation with PET and 11C-Palmitate

    PubMed Central

    Kisrieva-Ware, Zulfia; Coggan, Andrew R.; Sharp, Terry L.; Dence, Carmen S.; Gropler, Robert J.; Herrero, Pilar

    2010-01-01

    Background The goal of this study was to test whether myocardial triglyceride (TG) turnover including oxidation of TG-derived fatty acids could be assessed with PET and 11C-palmitate. Methods and Results 26 dogs were studied fasted (FAST), during Intralipid infusion (IL), during a hyperinsulinemic-euglycemic clamp without (HIEG) or with Intralipid infusion (HIEG+IL). 11C-palmitate was injected, and 45 min were allowed for labeling of myocardial TG pool. 3-D PET data were then acquired for 60 min, with first 15 min at baseline followed by 45 min during cardiac work stimulated with constant infusion of either phenylephrine (FAST, n=6; IL, n=6; HIEG+IL, n=6) or dobutamine (FAST, n=4; HIEG, n=4). Myocardial 11C washout during adrenergic stimulation (AS) was fitted to a mono-exponential function (Km(PET)). To determine the source of this 11C clearance, Km(PET) was compared to direct coronary sinus-arterial measurements of total 11C activity, 11C-palmitate, and 11CO2. Before AS, PET curves in all groups were flat indicating absence of net clearance of 11C activity from heart. In both FAST groups, AS resulted in negligible net 11C activity and 11CO2 production higher than net 11C-palmitate uptake. AS with phenylephrine resulted in net myocardial uptake of total 11C activity and 11C-palmitate in IL and HIEG+IL, and 11CO2 production lower than 11C-palmitate uptake. In contrast, AS with dobutamine in HIEG resulted in net clearance of all 11C metabolites (total 11C activity, 11C-palmitate and 11CO2) with 11CO2 contributing 66% to endogenous FA oxidation. AS resulted in significant Km(PET) in all groups, except HIEG+IL. However, positive correlation between Km(PET) and 11CO2 was observed only in HIEG (R2=0.83, P=0.09). Conclusions This is the first study to demonstrate that using PET and pre-labeling of intracardiac TG pool with 11C-palmitate, noninvasive assessment of myocardial TG use is feasible under metabolic conditions that favor endogenous TG use such as increased

  7. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  8. Correlations between palmitate content and agronomic traits in soybean populations segregating for the fap1, fapnc, and fan alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid (16:0) is the predominant saturated fatty acid in soybean oil, which typically contains 110 to 120 g kg-1 palmitic acid. To reduce the health risks of coronary diseases and breast, colon, and prostate cancers associated with the consumption of this fatty acid, breeders have developed ...

  9. LiCoO 2 sub-microns particles obtained from micro-precipitation in molten stearic acid

    NASA Astrophysics Data System (ADS)

    Lala, S. M.; Montoro, L. A.; Rosolen, J. M.

    The present work reports a novel emulsion method for preparation of lithium cobalt oxide based on the micro-precipitation of lithium and cobalt salts in molten stearic acid. The precursors consist of micro-aggregated powders of CoOOH and CH 3(CH 2) 16COOLi whose formation depends on the concentration of stearic acid used in the synthesis. The micro-aggregated of CoOOH and CH 3(CH 2) 16COOLi when calcined at 800 °C yielded well-crystalline sub-microns particles of LiCoO 2 ( R-3 m) with a very uniform shape (quasi-hexagonal pellets), a very narrow grain size distribution ( d10=0.31, d50=3.14, d90=6.30 μm) and high specific surface area (7.4 m 2 g -1). The long life reversible specific capacity of the mp-LiCoO 2 composite electrode subsequently made was 110 mAh g -1 for initial deinsertion 165 mAh g -1.

  10. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    PubMed

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects. PMID:27265834

  11. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid soybeans were produced by combining a mutant FAD2-1A and a mutant FAD2-1B gene. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6%. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high ...

  12. High-oleic Virginia peanuts in the Southwestern US: A summary of data supporting the release of 'VENUS'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'VENUS' is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Jupiter. 'VENUS' is the first high-oleic Virginia peanut developed for and proposed for release in t...

  13. The rising star of high-oleic Virginia peanuts: A summary of data supporting the release of 'VENUS'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'VENUS' is a large-seeded high-oleic Virginia-type peanut that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Jupiter. 'VENUS' is the first high-oleic Virginia peanut developed for and proposed for release in the Southwestern US. 'VENUS' (experimental designati...

  14. Determining the oleic/linoleic acid ratio in a single peanut seed: a comparison of two methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut varieties with high oleic/linoleic acid ratios have become preferred by the peanut industry due to their increased shelf life and improved health benefits. Many peanut breeding programs are trying to incorporate the high oleic trait into new and improved varieties and are in need of diagnost...

  15. Non-destructive determination of high oleic acid content in single soybean seeds by near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean with increased oleic acid is desirable to improve oxidative stability and functionality of soybean seed oil. Recently, soybean genotypes with high oleic acid (= 70%) were developed by conventional breeding and molecular genetic selection of mutant fatty acid desaturase alleles. Determination...

  16. Comparing three methods used to determine the oleic/linoleic acid ratio in a single peanut seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut varieties with high oleic/linoleic acid ratios have become preferred by the peanut industry due to their increased shelf life and improved health benefits. Many peanut breeding programs are trying to incorporate the high oleic trait into new and improved varieties and are in need of diagnost...

  17. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway

    PubMed Central

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-01-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9–39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through

  18. A MUTATION IN A 3-KETO-ACYL-ACP SYNTHASE II GENE IS ASSOCIATED WITH ELEVATED PALMITIC ACID LEVELS IN SOYBEAN SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid is the major saturated fatty acid component of soybean [Glycine max, (L.) Merr.] oil, typically accounting for ~11 % of total seed oil content. Several genetic loci have been shown to control the seed palmitate content of soybean. One such locus, fap2, mediates an elevated seed palmit...

  19. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes.

    PubMed

    Fanta, George F; Kenar, James A; Felker, Frederick C; Byars, Jeffrey A

    2013-01-30

    Starch-stabilized silver nanoparticles (AgNP) were prepared from amylose-sodium palmitate helical inclusion complexes by first converting sodium palmitate within the amylose helix to silver palmitate by an ion-exchange reaction with silver nitrate, and then reducing the complexed silver palmitate salt with NaBH(4). This process yielded stable aqueous solutions that could be dried and then re-dispersed in water for end-use applications. Reaction products were characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), UV-VIS spectroscopy, X-ray diffraction, TEM, SEM and light microscopy. Addition of acid to reduce the pH of aqueous starch-AgNP solutions produced an increase in viscosity, and nearly quantitative precipitation of starch-AgNP was observed at low pH. Smaller AgNP and higher conversions of silver nitrate to water-soluble starch-AgNP were obtained in this process, as compared with a process carried out under similar conditions using a commercial soluble starch as a stabilizer. PMID:23218293

  20. Induction of micronuclei by palmitic acid and its unique radiolytic product 2-dodecylcyclobutanone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid (PA), one of the most abundant fatty acids in the human diet, can cause oxidative stress, DNA strand breakage, cellular necrosis and apoptosis in human and rodent cells in vitro. Radiolysis of PA leads to the formation of 2-dodecylcyclobutanone (2-DCB), a unique radiolytic product for...

  1. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  2. Vitamin A Palmitate-β-cyclodextrin inclusion complexes: characterization, protection and emulsification properties.

    PubMed

    Vilanova, Neus; Solans, Conxita

    2015-05-15

    The interest in the production of foods enriched with vitamins, in order to prevent diseases related with their deficiency, has recently increased. However, the low stability and the low water solubility of certain vitamins make difficult their incorporation in foodstuff, especially in water-based formulations. This limitation is typically overcome by using encapsulating systems such as cyclodextrins. In this paper the formation of water-soluble inclusion complexes of Vitamin A Palmitate with β-cyclodextrins, without the use of organic solvents, is described. The objective was to increase the water solubility of Vitamin A Palmitate and its stability against different external factors to eventually enrich aqueous-based products. The stability of Vitamin A Palmitate in the complexes towards temperature, oxygen and UV light was investigated. All results showed a notably increase of Vitamin A Palmitate water solubility and stability in front of those variables when encapsulated. The surface activity of the complex suggests its possible use as stabilizer in emulsion formulations. PMID:25577116

  3. Rheological Properties of Aqueous Dispersions of Amylose-Sodium Palmitate Complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wide range of materials with applications as thickeners and as dispersants for lipids can be formed from aqueous dispersions of amylose helical inclusion complexes with sodium palmitate. This work examines the range of rheological properties that can be obtained by preparing materials under a var...

  4. 78 FR 73200 - Draft Guidance for Industry on Bioequivalence Recommendations for Paliperidone Palmitate Extended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... the Federal Register of June 11, 2010 (75 FR 33311), FDA announced the availability of a guidance for... for Paliperidone Palmitate.'' The guidance provides specific recommendations on the design of...). The draft guidance, when finalized, will represent the Agency's current thinking on the design of...

  5. Acylation of keratinocyte transglutaminase by palmitic and myristic acids in the membrane anchorage region

    SciTech Connect

    Chakravarty, R.; Rice, R.H.

    1989-01-05

    The membrane-bound form of keratinocyte transglutaminase was found to be labeled by addition of (/sup 3/H) acetic, (/sup 3/H)myristic, or (/sup 3/H)palmitic acids to the culture medium of human epidermal cells. Acid methanolysis and high performance liquid chromatography analysis of palmitate-labeled transglutaminase yielded only methyl palmitate. In contrast, analysis of the myristate-labeled protein yielded approximately 40% methyl myristate and 60% methyl palmitate. Incorporation of neither label was significantly affected by cycloheximide inhibition of protein synthesis. The importance of the fatty acid moiety for membrane anchorage was demonstrated in three ways. First, the enzyme was solubilized from the particulate fraction of cell extracts by treatment with neutral 1 M hydroxylamine, which was sufficient to release the fatty acid label. Second, solubilization of active enzyme from the particulate fraction upon mild trypsin treatment resulted in a reduction in size by approximately 10 kDa and removal of the fatty acid radiolabels. Third, the small fraction of soluble transglutaminase in cell extracts was found almost completely to lack fatty acid labeling. Keratinocyte transglutaminase translated from poly(A+) RNA in a reticulocyte cell-free system was indistinguishable in size from the native enzyme, suggesting anchorage requires only minor post-translational processing. Thus, the data are highly compatible with membrane anchorage by means of fatty acid acylation within 10 kDa of the NH/sub 2/ or COOH terminus.

  6. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients.

    PubMed

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Abdolahi, Mina; Abedi, Elahe; Bitarafan, Sama; Koohdani, Fariba; Siassi, Feridoun; Sahraian, Mohammad Ali; Chahardoli, Reza; Zareei, Mahnaz; Salehi, Eisa; Geranmehr, Maziyar; Saboor-Yaraghi, Ali Akbar

    2016-07-01

    Vitamin A derivatives such as retinoic acid may improve the impaired balance of CD4+ T cells in autoimmune and inflammatory diseases. This study is a double-blind randomized trial to evaluate the effect of vitamin A (as form of retinyl palmitate) supplementation on multiple sclerosis (MS) patients. Thirty-nine patients were enrolled and randomly assigned to two groups. Both groups were followed for 6 months. The experimental group received 25,000 IU of retinyl palmitate daily, while the control group received a placebo. Before and after the study, the expression of interferon gamma (IFN-γ) and T-bet genes was evaluated in peripheral blood mononuclear cells of patients by RT-PCR. The results showed that after 6 months of supplementation, expression of IFN-γ and T-bet was significantly decreased. These data suggest that retinyl palmitate supplementation can modulate the impaired balance of Th1 and Th2 cells and vitamin A products that may be involved in the therapeutic mechanism of vitamin A in MS patients. This study provides information regarding the decreased gene expression of IFN-γ and T-bet in MS by retinyl palmitate supplementation. PMID:27122150

  7. Properties of Aqueous Dispersions of Amylose-Sodium Palmitate Complexes Prepared by Jet Cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of high amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes for investigation of their bulk properties. The rheological properties of the cooled dispersions depended on the starch concentration and ...

  8. Regional cerebral palmitate incorporation following transient bilateral carotid occlusion in awake gerbils

    SciTech Connect

    Tone, O.; Miller, J.C.; Bell, J.M.; Rapoport, S.I.

    1987-11-01

    (/sup 14/C)Palmitate was injected intravenously in awake gerbils at various times after 5 minutes of bilateral carotid artery occlusion or a sham operation. Regional rates of incorporation of plasma palmitate into the hippocampus and other regions of the anterior circulation were determined relative to the mean rate of incorporation into regions of the posterior circulation using quantitative autoradiography and a ratio method of analysis. One day after bilateral carotid occlusion, relative palmitate incorporation was elevated significantly by 16% in the CA4 pyramidal cell layer and by 20% in the dentate gyrus of the hippocampus compared with sham-operated gerbils. At 3 days, significant elevations of this magnitude were found in the CA3 and CA4 cell layers, whereas relative incorporation was reduced by 26% in the CA1 pyramidal cell layer. At 7 days, the only significant difference from control was a 15% elevated incorporation in the CA3 pyramidal cell layer. Histologic examination indicated substantial cell death in the CA1 pyramidal layer at 3 days, with extensive glial reaction and phagocytic invasion at 7 days. Our results suggest that the turnover of palmitate-containing lipids is reduced in the CA1 layer of the gerbil hippocampus but that lipid synthesis is stimulated in hippocampal regions (CA3, CA4, dentate gyrus) affected by but recovering from transient bilateral carotid occlusion.

  9. The class I histone deacetylase inhibitor MS-275 prevents pancreatic beta cell death induced by palmitate.

    PubMed

    Plaisance, Valérie; Rolland, Laure; Gmyr, Valéry; Annicotte, Jean-Sébastien; Kerr-Conte, Julie; Pattou, François; Abderrahmani, Amar

    2014-01-01

    Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes. PMID:25610877

  10. The Class I Histone Deacetylase Inhibitor MS-275 Prevents Pancreatic Beta Cell Death Induced by Palmitate

    PubMed Central

    Plaisance, Valérie; Rolland, Laure; Gmyr, Valéry; Annicotte, Jean-Sébastien; Kerr-Conte, Julie; Pattou, François; Abderrahmani, Amar

    2014-01-01

    Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes. PMID:25610877

  11. Glycolysis inhibition by palmitate in renal cells cultured in a two-chamber system.

    PubMed

    Bolon, C; Gauthier, C; Simonnet, H

    1997-11-01

    A major shortcoming of renal proximal tubular cells (RPTC) in culture is the gradual modification of their energy metabolism from the oxidative type to the glycolytic type. To test the possible reduction of glycolysis by naturally occurring long-chain fatty acids, RPTC were cultured in a two-chamber system, with albumin-bound palmitate (0.4 mM) added to the basolateral chamber after confluency. Twenty-four hours of contact with palmitate decreased glycolysis by 38% provided that carnitine was present; lactate production was decreased by 38%, and the decrease in glycolysis resulted from a similar decrease of basolateral and apical net uptake of glucose. In contrast to the previously described effect of the nonphysiological oxidative substrate heptanoate, palmitate promoted a long-term decrease in lactate production and sustained excellent cellular growth. After 4 days of contact, decreased glycolysis was maintained even in the absence of carnitine and resulted from a decrease of basolateral uptake only, suggestive of long-term regulation different from the earlier effects. Thus, although cultured RPTC lost their oxidative phenotype, they exhibited a type of regulation (Randle effect) that is found in the oxidative-type but not in the glycolytic-type tissues, therefore unmasking a regulative capacity barely detectable in fresh RPTC. Low PO2 (50 mmHg in the apical chamber) could be a major cause of elevated glycolysis and could hinder the effects of palmitate. PMID:9374661

  12. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as a-lactalbumin and ß-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or c...

  13. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2014-11-13

    Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed. PMID:25319959

  14. Synthesis and physical properties of new coco-oleic dimer and trimer plus estolide branched esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides are a class of esters based on vegetable oils that are formed when the carboxylic acid functionality of one fatty acid reacts at the site of unsaturation of another fatty acid to form an ester linkage. The objective of this preliminary study was to separate coco-oleic estolide into two com...

  15. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    PubMed Central

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  16. Fuel properties of heptadecene isomers prepared via tandem isomerization-decarboxylation of oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heptadecene isomers were prepared via tandem isomerization-decarboxylation of oleic acid using catalytic triruthenium dodecacarbonyl [Ru3(CO)12]. Chromatographic and spectroscopic characterization of the isolated heptadecene mixture indicated that it consisted of 96% internal trans isomers and 4% ar...

  17. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    PubMed

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  18. Diesters from Oleic Acid: Synthesis, Low Temperature Properties, and Oxidation Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several diesters were prepared from commercially available oleic acid and common organic acids. The key step in the three step synthesis of oleochemical diesters entails a ring opening esterification of alkyl 9,10-epoxyoctadecanoates (alkyl: propyl, iso-propyl, octyl, 2-ethylhexyl) using propionic a...

  19. High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a primary source of vegetable oil, accounting for 53% of the total vegetable oil consumption in the USA in 2013. Soybean oil with high oleic acid and low linolenic acid content is desired, because it not only improves the oxidative stability of the oil, but also reduces the amount of unde...

  20. Film-forming properties of blends of high-oleic sunflower oil with polyalkyl glycol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The viscosity, density, and elastohydrodynamic film thicknesses of oil-soluble polyalkyl glycols (PAG), high oleic sunflower oil (HOSuO), and their 50/50 (wt.) blends were investigated. The viscosity and density of the blends were found to be predictable from the corresponding neat oil properties us...

  1. Use of capillary electrophoresis to determine oleic and linoleic acid content of peanut seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common consumer complaint regarding peanut products is one involving short shelf life and rapid rancidity. Peanut cultivars with elevated oleic acid content (and decreased linoleic content) have been shown to have an increased shelf life and thus have become largely preferred by peanut processors...

  2. Analysis and properties of the decarboxylation products of oleic acid by catalytic triruthenium dodecacarbonyl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, ruthenium-catalyzed isomerization-decarboxylation of fatty acids to give alkene mixtures was reported. When the substrate was oleic acid, the reaction yielded a mixture consisting of heptadecene isomers. In this work, we report the compositional analysis of the mixture obtained by triruthe...

  3. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  4. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  5. Ice core profiles of saturated fatty acids (C12:0-C30:0) and oleic acid (C18:1) from southern Alaska since 1734 AD: A link to climate change in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Seki, Osamu; Matoba, Sumio; Shiraiwa, Takayuki

    2015-01-01

    An ice core drilled at Aurora Peak in southeast Alaska was analyzed for homologous series of straight chain fatty acids (C12:0-C30:0) including unsaturated fatty acid (oleic acid) using gas chromatography (GC/FID) and GC/mass spectrometry (GC/MS). Molecular distributions of fatty acids are characterized by even carbon number predominance with a peak at palmitic acid (C16:0, av. 20.3 ± SD. 29.8 ng/g-ice) followed by oleic acid (C18:1, 19.6 ± 38.6 ng/g-ice) and myristic acid (C14:0, 15.3 ± 21.9 ng/g-ice). The historical trends of short-chain fatty acids, together with correlation analysis with inorganic ions and organic tracers suggest that short-chain fatty acids (except for C12:0 and C15:0) were mainly derived from sea surface micro layers through bubble bursting mechanism and transported over the glacier through the atmosphere. This atmospheric transport process is suggested to be linked with Kamchatka ice core δD record from Northeast Asia and Greenland Temperature Anomaly (GTA). In contrast, long-chain fatty acids (C20:0-C30:0) are originated from terrestrial higher plants, soil organic matter and dusts, which are also linked with GTA. Hence, this study suggests that Alaskan fatty acids are strongly influenced by Pacific Decadal Oscillation/North Pacific Gyre Oscillation and/or extra tropical North Pacific surface climate and Arctic oscillation. We also found that decadal scale variability of C18:1/C18:0 ratios in the Aurora Peak ice core correlate with the Kamchatka ice core δD, which reflects climate oscillations in the North Pacific. This study suggests that photochemical aging of organic aerosols could be controlled by climate periodicity.

  6. Opposite cross-talk by oleate and palmitate on insulin signaling in hepatocytes through macrophage activation.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Guijas, Carlos; Balsinde, Jesús; Valverde, Ángela M

    2015-05-01

    Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4. PMID:25792746

  7. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  8. Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery

    PubMed Central

    Yuan, Hong; Bao, Xin; Du, Yong-Zhong; You, Jian; Hu, Fu-Qiang

    2012-01-01

    Purpose: Both polymer micelles and mesoporous silica nanoparticles have been widely researched as vectors for small molecular insoluble drugs. To combine the advantages of copolymers and silica, studies on the preparation of copolymer-silica composites and cellular evaluation were carried out. Methods: First, a stearic acid-g-chitosan (CS-SA) copolymer was synthesized through a coupling reaction, and then silicone oxide (SiO2)-deposited doxorubicin (DOX)-loaded stearic acid-g-chitosan (CS-SA/SiO2/DOX) nanoparticles were prepared through the sol-gel reaction. Physical and chemical properties such as particle size, zeta potential, and morphologies were examined, and small-angle X-ray scattering (SAXS) analysis was employed to identify the mesoporous structures of the generated nanoparticles. Cellular uptake and cytotoxicity studies were also conducted. Results: CS-SA/SiO2/DOX nanoparticles with different amounts of SiO2 deposited were obtained, and SAXS studies showed that mesoporous structures existed in the CS-SA/SiO2/DOX nanoparticles. The mesoporous size of middle-ratio and high-ratio deposited CS-SA/SiO2/DOX nanoparticles were 4–5 nm and 8–10 nm, respectively. Based on transmission electron microscopy images of CS-SA/SiO2/DOX nanoparticles, dark rings around the nanoparticles could be observed in contrast with CS-SA/DOX micelles. Furthermore, CS-SA/SiO2/DOX nanoparticles exhibited faster release behavior in vitro than CS-SA/DOX micelles; cellular uptake research in A549 indicated that the CS-SA/SiO2/DOX nanoparticles were taken up by A549 cells more rapidly, and that CS-SA/SiO2/DOX nanoparticles entered the cell more easily when the amount of SiO2 was higher. IC50 values of CS-SA/DOX micelles, CS-SA/SiO2/DOX-4, CS-SA/SiO2/DOX-8, and CS-SA/SiO2/DOX-16 nanoparticles against A549 cells measured using the MTT assay were 1.69, 0.93, 0.32, and 0.12 μg/mL, respectively. Conclusion: SiO2-deposited stearic acid-g-chitosan organic–inorganic composites show promise

  9. A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content.

    PubMed

    Thrush, A Brianne; Harasim, Ewa; Chabowski, Adrian; Gulli, Roberto; Stefanyk, Leslie; Dyck, David J

    2011-05-01

    Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P < 0.01) and significantly increased ceramide, DAG, and TAG accumulation in the SED group (P < 0.05). A single prior bout of exercise prevented the detrimental effects of palmitate on insulin signaling and caused a partial redistribution of FA toward TAG (P < 0.05). However, the net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content. PMID:21325642

  10. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems

    PubMed Central

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-01-01

    Background Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. Methods The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Results Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Conclusion

  11. Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots.

    PubMed

    Ghosh, Sirshendu; Das, Kajari; Chakrabarti, Kaushik; De, S K

    2013-03-14

    Oleic acid capped monodisperse SnO(2) quantum dots (QDs) of size 2.7 nm were synthesized by thermal decomposition and oxidation of Sn(II)(oleate) complex in high boiling nonpolar solvent octadecene using oleic acid as a capping agent and N-methylmorpholine N-oxide as an oxidizing agent. FTIR, DSC and TGA were employed to understand the growth of the oleic acid capped SnO(2) QDs through the decomposition of metal fatty acid complex. The surface defect-related luminescence properties of the QDs were demonstrated using steady-state and time-resolved spectroscopy. The oleic acid capping on the QD surface modifies the electronic structure of SnO(2) and generates blue emission. Moreover the surface capping on the QDs diminishes the photocatalytic activity of bare SnO(2) QDs due to absence of surface oxygen and adsorbed hydroxyl group on the surface of the capped QDs. The capping by the long chain ligand oleic acid makes the SnO(2) QDs less conducting. Ligand exchange of the long chain oleic acid (2.5 nm) by the short chain n-butylamine (0.6 nm) increases the current density of SnO(2) around 43 times due to the reduction of the interparticle distance. Ferromagnetic behaviour of oleic acid capped QDs may be ascribed to the defects in the host due to the alteration of the electronic structure owing to the capping. PMID:23258710

  12. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and

  13. Photodegradation of Stearic Acid Adsorbed on Superhydrophilic TiO2 Surface: In Situ FT-IR and LDI Study.

    PubMed

    Smirnova, Natalia; Fesenko, Tatiana; Zhukovsky, Maxim; Goworek, Jacek; Eremenko, Anna

    2015-12-01

    TiO2 films prepared by template-assisted sol-gel method were characterized by X-ray diffraction spectroscopy, scanning and atomic force electron microscopy, and Fourier transform infrared (FT-IR) spectroscopy. Based on the hexane adsorption-desorption analysis, the films have a surface area of 390-540 m(2)/g with pore size distribution narrowly centered around 10 nm. Optimal component ratio and condition of heat treatment of mesoporous titania films have been found. Photocatalytic activity of the coatings was determined by the destruction of stearic acid layers, monitored using FT-IR spectroscopy and laser desorption-ionization (LDI) mass spectrometry. Under UV illumination, all the used films reach hydrophilicity with water contact angle of 0°. As the result, hydrophobic fat acid molecules undergo self-association and active desorption from the hydrophilic surface during mass-spectrometric experiment. PMID:26714862

  14. Photodegradation of Stearic Acid Adsorbed on Superhydrophilic TiO2 Surface: In Situ FT-IR and LDI Study

    NASA Astrophysics Data System (ADS)

    Smirnova, Natalia; Fesenko, Tatiana; Zhukovsky, Maxim; Goworek, Jacek; Eremenko, Anna

    2015-12-01

    TiO2 films prepared by template-assisted sol-gel method were characterized by X-ray diffraction spectroscopy, scanning and atomic force electron microscopy, and Fourier transform infrared (FT-IR) spectroscopy. Based on the hexane adsorption-desorption analysis, the films have a surface area of 390-540 m2/g with pore size distribution narrowly centered around 10 nm. Optimal component ratio and condition of heat treatment of mesoporous titania films have been found. Photocatalytic activity of the coatings was determined by the destruction of stearic acid layers, monitored using FT-IR spectroscopy and laser desorption-ionization (LDI) mass spectrometry. Under UV illumination, all the used films reach hydrophilicity with water contact angle of 0°. As the result, hydrophobic fat acid molecules undergo self-association and active desorption from the hydrophilic surface during mass-spectrometric experiment.

  15. Identify and validate a quantitative trait locus underlying stearic acid on chromosome 14 in a soybean landrace using recombinant inbred lines and resident heterozygous lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (ST) is one of the saturated fatty acids (FAs) in soybean oil and great efforts have been made to elevate ST content through plant breeding. Improving ST content will be helpful to reduce the health risk of coronary heart diseases and breast, colon and prostate cancer. In this study, re...

  16. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules

    PubMed Central

    2014-01-01

    Background Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). Results We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. Conclusions Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation. PMID:24886084

  17. Downregulation of Bcl-2 Expression by miR-34a Mediates Palmitate-Induced Min6 Cells Apoptosis

    PubMed Central

    Lin, Xiaojie; Huang, Zhimin; Liu, Juan; Li, Hai; Wei, Guohong; Cao, Xiaopei; Li, Yanbing

    2014-01-01

    Recent studies have demonstrated that the expression of miR-34a is significantly upregulated and associated with cell apoptosis in pancreatic β-cell treated with palmitate. Nevertheless, the underlying detailed mechanism is largely unknown. Here, we showed that miR-34a was significantly induced in Min6 pancreatic β-cell upon palmitate treatment. Elevated miR-34a promoted Min6 cell apoptosis. Intriguingly, ectopic expression of miR-34a lowered the expression of Bcl-2, an antiapoptotic protein. Luciferase reporter assay indicated the direct interaction of miR-34a with the Bcl-2 3′-UTR. Moreover, downregulated expression of Bcl-2 induced by palmitate could be restored by inhibition of miR-34a. We conclude that direct suppression of Bcl-2 by miR-34a accounts for palmitate-induced increased apoptosis rate in pancreatic β-cell. PMID:24829923

  18. Synthesis and use of deuterated palmitic acids to decipher the cryptoregiochemistry of a Delta13 desaturation.

    PubMed

    Abad, José-Luis; Serra, Montserrat; Camps, Francisco; Fabriàs, Gemma

    2007-02-01

    The synthesis of two hexadeuterated palmitic acids differing in the position of the diagnostic labels, and their use to decipher the cryptoregiochemistry of a Delta13 desaturation are described. A dithiane and a triple bond functionalities were used to introduce the diagnostic (C13 or C14) and tagging (C8 and C9) labels, respectively, in the palmitic acid skeleton. Using these probes, the cryptoregiochemistry of the Delta13 desaturation involved in the biosynthesis of Thaumetopoea pityocampa sex pheromone was studied by means of kinetic isotope effect determinations. Transformation of both (Z)-11-hexadecenoic and 11-hexadecynoic acids into (Z, Z)-11,13-hexadecadienoic and (Z)-13-hexadecen-11-ynoic acids, respectively, is initiated by abstraction of the hydrogen atom at the C13 position, followed by the fast elimination of the C14 hydrogen to give the double bond. PMID:17253792

  19. Microwave plasma induced grafting of oleic acid on cotton fabric surfaces

    NASA Astrophysics Data System (ADS)

    Cabrales, Luis; Abidi, Noureddine

    2012-03-01

    Cotton fabric surface was successfully functionalized with microwave plasma (2.45 GHz, 500 W) to impart water repellency. The hydrophobic agent used was oleic acid (CH3(CH2)7CHdbnd CH(CH2)7COOH), a fatty acid derived from various plant seed oils. Non-polymerizing gas (Argon) was used to create the plasma. The exposure of the cellulose to Ar-plasma generated radicals, which were subsequently used to initiate co-polymerization reactions with oleic acid. The FTIR spectra showed the presence of additional vibrations located at 2918, 2849, and 1707 cm-1 in the functionalized samples. Dynamic contact angle measurements were performed to assess the hydrophobic properties of the functionalized cotton fabric. The grafted cotton fabric showed excellent water repellency. In addition, the use of plant-derived monomers and biopolymers provides a different approach to use renewable resources to create functionalized biopolymeric substrates.

  20. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. PMID:27474635

  1. A two-stage enzymatic process for synthesis of extremely pure high oleic glycerol monooleate.

    PubMed

    Zhu, Qisi; Li, Tie; Wang, Yonghua; Yang, Bo; Ma, Yongjun

    2011-02-01

    This paper presents a research interest concentrating on aims to establish a feasible industrial process for enzymatic production of highly pure glycerol monooleate (GMO). The synthesis of high oleic glycerol monooleate by enzymatic glycerolysis of high oleic sunflower oil, using Novozyme 435 as the biocatalyst, in a binary solvent mixture of tert-butanol and tert-pentanol (80/20, v/v), at a lab scale has been studied. A yield of 75.31% monoacylglycerol has been achieved at the first stage. A yield of 93.3% GMO was finally reached after further purification at the second stage. To evaluate the possibility of the process for industrialization, production of GMO was performed at a pilot-plant scale under the correspondingly adjusted conditions. A yield of 68.17% and 93.4% of GMO was obtained, respectively, at the end of the three stages. PMID:22112823

  2. Influence of high pressure on the relative permittivity of oleic acid

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Siegoczyński, R. M.

    2011-03-01

    Oleic acid (OA) is a monounsaturated omega-9 fatty acid which undergoes a first-order phase transition when it is influenced by high pressures. The transition results in a change of molecular structure, which was investigated by means of X-ray techniques [J. Przedmojski and R.M. Siegoczyński, X-ray diffraction investigation of oleic acid under high pressure, Phase Transit. 75 (2002), pp. 373-377]. Despite a significant change in the structure, the permittivity of the acid remains barely influenced during and after the phase transition. A rise in relative permittivity has been observed due to the increasing number of molecules per volume unit within a compression cycle. However, no significant fall in the permittivity has been observed as a result of the transition which occurs in the case of edible oils. This may be caused by a strongly dimerised structure and dipole-dipole interaction in the liquid at ambient pressure.

  3. Observations of a high-pressure phase creation in oleic acid

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Kulisiewicz, L.; Delgado, A.

    2010-03-01

    Oleic acid is one of the unsaturated fatty acids which frequently appears in food products such as edible fats and oils. A molecule of oleic acid possesses a double carbon bond, C=C, which is responsible for a transition to a new phase when pressure is applied. This work presents the results of optical observations of such a transition. The observations were made in two cases, the first being static p-T conditions under 60 MPa at 20°C and the other the dynamic application of the pressure up to 350 MPa. The obtained visualization reveals differences in the creation of the phase and in its further appearance. Some crystal forms may be recognized. These results tend to be of interest for food engineers due to increasing interest in high-pressure food preservation among nutritionists and medical scientists concerned with fatty acids.

  4. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    SciTech Connect

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-11-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit.

  5. Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang

    2015-11-01

    A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.

  6. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance.

    PubMed

    Talukder, M A Hassan; Preda, Marilena; Ryzhova, Larisa; Prudovsky, Igor; Pinz, Ilka M

    2016-03-01

    Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart. PMID:27033451

  7. Apolipoprotein E polymorphism influences postprandial retinyl palmitate but not triglyceride concentrations

    SciTech Connect

    Boerwinkle, E. ); Brown, S.; Patsch, W. ); Sharrett, A.R. ); Heiss, G. )

    1994-02-01

    To quantify the effect of the apolipoprotein (apo) E polymorphism on the magnitude of postprandial lipemia, the authors have defined its role in determining the response to a single high-fat meal in a large sample of (N = 474) individuals taking part in the biethnic Atherosclerosis Risk in Communities Study. The profile of postprandial response in plasma was monitored over 8 h by triglyceride, triglyceride-rich lipoprotein (TGRL)-triglyceride, apo B-48/apo B-100 ratio, and retinyl palmitate concentrations, and the apo E polymorphism was determined by DNA amplification and digestion. The frequency of the apo E alleles and their effects on fasting lipid levels in this sample with vitamin A was significantly different among apo E genotypes, with delayed clearance in individuals with an [var epsilon]2 allele, compared with [var epsilon]3/3 and [var epsilon]3/4 individuals. In the sample of 397 Caucasians, average retinyl palmitate response was 1,489 [mu]g/dl in [var epsilon]2/3 individuals, compared with 1,037 [mu]g/dl in [var epsilon]3/3 individuals and 1,108 [mu]g/dl in [var epsilon]3/4 individuals. The apo E polymorphism accounted for 7.1% of the interindividual variation in postprandial retinyl palmitate response, a contribution proportionally greater than its well-known effect on fasting LDL-cholesterol. However, despite this effect on postprandial retinyl palmitate, the profile of postprandial triglyceride response was not significantly different among apo E genotypes. The profile of postprandial response was consistent between the sample of Caucasians and a smaller sample of black subjects. While these data indicate that the removal of remnant particles from circulation is delayed in subjects with the [var epsilon]2/3 genotype, there is no reported evidence that the [var epsilon]2 allele predisposes to coronary artery disease (CAD). 82 refs., 6 figs., 4 tabs.

  8. Acute L-CPT1 Overexpression Recapitulates Reduced Palmitate Oxidation of Cardiac Hypertrophy

    PubMed Central

    Lewandowski, E. Douglas; Fischer, Susan K.; Fasano, Matthew; Banke, Natasha H.; Walker, Lori A.; Huqi, Alda; Wang, Xuerong; Lopaschuk, Gary D.; O’Donnell, J. Michael

    2012-01-01

    Rationale Muscle carnitine palmitoyltransferase I (M-CPT1) is predominant in heart, but the liver isoform (L-CPT1) is elevated in hearts with low long chain fatty acid (LCFA) oxidation, such as fetal and hypertrophied hearts. Objective This work examined the effect of acute L-CPT1 expression has on the regulation of palmitate oxidation and energy metabolism in intact functioning rat hearts for comparison to findings in hypertrophied hearts. Methods and Results L-CPT1 was expressed in vivo in rat hearts by coronary perfusion of Adv.cmv.L-CPT1 (L-CPT1, n=15) versus PBS infusion (PBS, n=7) or empty virus (EMPTY, n=5). L-CPT1 was elevated 5-fold at 72 hours after Adv.cmv.L-CPT1 infusion (P<0.05), but M-CPT1 was unaffected. Despite similar tricarboxylic acid cycle rates, palmitate oxidation rates were reduced with L-CPT1 (1.12±0.29 micromole/min/g dw, mean ± SE) vs PBS (1.6±0.34). Acetyl CoA production from palmitate was reduced with L-CPT1 (69%±0.02, P<0.05; PBS= 79%±0.01, Empty=81%±0.02), similar to what occurs in hypertrophied hearts and with no difference in malonyl CoA content. Glucose oxidation was elevated with L-CPT1 (by 60%). Surprisingly, L-CPT1 hearts contained elevated atrial natriuretic peptide, indicating induction of hypertrophic signaling. Conclusions The results link L-CPT1 expression to reduced palmitate oxidation in a non-diseased, adult heart, recapitulating the phenotype of reduced LCFA oxidation in cardiac hypertrophy. The implications are that L-CPT1 expression induces metabolic remodeling hypertrophic signaling, and that regulatory factors beyond malonyl-CoA in the heart regulate LCFA oxidation via L-CPT1. PMID:22982985

  9. Design and evaluation of Lumefantrine – Oleic acid self nanoemulsifying ionic complex for enhanced dissolution

    PubMed Central

    2013-01-01

    Background Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs) of lumefantrine (LF) to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media. Methods Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer. Results LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA). Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm), shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%), no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release. Conclusion Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs. PMID:23531442

  10. Effect of temperature on the extraction of Cu(II) by oleic acid

    SciTech Connect

    Fatibello-Filho, O.; Trofino, J.C.; Neves, E.F.A.

    1986-01-01

    The effects of the temperature on the extraction of Cu(II) with oleic acid has been studied in the temperature range 283-323K. The temperature dependence of the conditional constant of extraction is given in the form: lnK/sub ext/ = -2.46 + 4352.21 (- 1/T) with ..delta..H/sup 0//sub ext/ equal to 36.2KJ/mol.K (endothermic process).

  11. Pharmacological properties of beta-amyrin palmitate, a novel centrally acting compound, isolated from Lobelia inflata leaves.

    PubMed

    Subarnas, A; Tadano, T; Oshima, Y; Kisara, K; Ohizumi, Y

    1993-06-01

    Effects of beta-amyrin palmitate isolated from the leaves of Lobelia inflata were studied on the central nervous system of mice and were compared with those of antidepressant drugs, mianserin and imipramine. In the forced swimming test, beta-amyrin palmitate, like mianserin and imipramine, reduced the duration of immobility of mice significantly in a dose-dependent manner (5, 10 and 20 mg kg-1). beta-Amyrin palmitate (5, 10 and 20 mg kg-1) or mianserin (5, 10 and 20 mg kg-1) elicited a dose-related reduction in locomotor activity of mice and antagonized locomotor stimulation induced by methamphetamine. In contrast, imipramine (5, 10 and 20 mg kg-1) increased locomotor activity and potentiated methamphetamine-induced hyperactivity. beta-Amyrin palmitate showed no effect on reserpine-induced hypothermia, whilst mianserin (10 mg kg-1) and imipramine (10 and 20 mg kg-1) antagonized the reserpine-induced effect. Unlike imipramine, beta-amyrin palmitate and mianserin did not affect haloperidol-induced catalepsy, tetrabenazine-induced ptosis and apomorphine-induced stereotypy. beta-Amyrin palmitate and imipramine had no effects on the head-twitch response induced by 5-hydroxytryptophan, whereas mianserin (5, 10 and 20 mg kg-1) decreased it in a dose-dependent manner. A potentiating effect of beta-amyrin palmitate (5, 10 and 20 mg kg-1) on narcosis induced by sodium pentobarbitone was stronger than that of imipramine (10, 20 and 40 mg kg-1) but weaker than that of mianserin (2.5, 5 and 10 mg kg-1). These results suggest that beta-amyrin palmitate has similar properties in some respects to mianserin and might possess a sedative action.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8103103

  12. High Beta-Palmitate Fat Controls the Intestinal Inflammatory Response and Limits Intestinal Damage in Mucin Muc2 Deficient Mice

    PubMed Central

    Lu, Peng; Bar-Yoseph, Fabiana; Levi, Liora; Lifshitz, Yael; Witte-Bouma, Janneke; de Bruijn, Adrianus C. J. M.; Korteland-van Male, Anita M.; van Goudoever, Johannes B.; Renes, Ingrid B.

    2013-01-01

    Background Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha’-palmitate), the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate), the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha’-palmitate fat (HAPF) diet and high beta-palmitate fat (HBPF) diet on colitis development in Muc2 deficient (Muc2−/−) mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. Methods Muc2−/− mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. Results Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2−/− mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg) cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1), genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. Conclusions This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2−/− mice by inducing an immunosuppressive Treg cell response. PMID:23776564

  13. A versatile new sustained-action neuroleptic: pipotiazine palmitate in psychiatric practice.

    PubMed

    Johnston, R E; Niesink, F

    1979-01-01

    The long-term clinical effects of pipotiazine palmitate were tested in 206 men and women who were either not responding well to their previous neuroleptic therapy or who were negligent about pursuing protracted oral drug therapy. Of the 206 patients, 130 were suffering from some form of chronic schizophrenia; the remainder presented with depression, psychoneurotic or behavioural disorders. Pipotiazine palmitate, a long-acting depot neuroleptic, was given as a monthly intramuscular injection for up to 23 months. The average starting dose was 50 mg/injection and the average final dose was 65 mg/injection. These doses were somewhat lower than those usually reported in the literature, however all but a few patients received oral neuroleptics or antidepressants concomitantly. Psychiatric testing using the Brief Psychiatric Rating Scale revealed that significant improvement was achieved over time in all diagnostic groups represented. Individual as well as cumulative scores improved steadily for 6 momths at which time symptomatology was minimal in most patients. Pipotiazine palmitate was well tolerated, and only seven (3.4%) of the 206 patients had to interrupt therapy because of unwanted effects. The most frequent side-effects were extrapyramidal symptoms, particularly tremor and rigidity, yet these effects led to the discontinuation of therapy in only five patients. PMID:37133

  14. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts.

    PubMed

    Grabiec, K; Majewska, A; Wicik, Z; Milewska, M; Błaszczyk, M; Grzelkowska-Kowalczyk, K

    2016-06-01

    High-fat diet, exposure to saturated fatty acids, or the presence of adipocytes in myoblast microenvironment affects skeletal muscle growth and function. The aim of the present study was to investigate the effect of palmitate supplementation on transcriptomic profile of mouse C2C12 myoblasts. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through qPCR. A total of 4047 genes were identified as differentially expressed, including 3492 downregulated and 555 upregulated genes, during a 48-h exposure to palmitate (0.1 mmol/l). Functional classification showed the involvement of these genes in several processes which regulate cell growth. In conclusion, the addition of palmitate modifies the expression of genes associated with (1) myoblast responsiveness to hormones and growth factors, (2) cytokine and growth factor expression, and (3) regulation of cell-cell and cell-matrix communication. Such alterations can affect myoblast growth and differentiation; however, further studies in this field are required. PMID:27114085

  15. Luminescence properties of LaF{sub 3}:Ce nanoparticles encapsulated by oleic acid

    SciTech Connect

    Kim, Jaewoo; Lee, Jun-Hyung; An, Hyejin; Lee, Jungkuk; Park, Seong-Hee; Seo, Young-Soo; Miller, William H.

    2014-09-15

    Highlights: • In-situ hydrophobization of water dispersible LaF{sub 3}:Ce nanoparticles was achieved. • Oleic acid surface modification of the nanoparticles was verified by IR spectra. • Quantum yields of LaF{sub 3}:Ce and OA-LaF{sub 3}:Ce nanoparticles were evaluated. • Quantum yields of LaF{sub 3}:Ce are strongly dependent on OA surface modification. - Abstract: Cerium ions doped lanthanum fluoride (LaF{sub 3}:Ce) nanopowder as well as LaF{sub 3}:Ce nanopowder whose surfaces was modified by oleic acid (OA) were synthesized by using an in-situ hydrothermal process under the various doping concentrations. Based on the XRD spectra and TEM images, it was confirmed that the crystalline structured hexagonal LaF{sub 3}:Ce nanopowder was synthesized. Oleic acid was efficient for conversion of the water dispersible LaF{sub 3}:Ce nanoparticles to hydrophobic ones. Surface modification was verified by FTIR absorption spectrum as well as TEM images, showing no agglomeration between 5 and 10 nm scaled particles. Photoluminescence based on 5d ⟶ 4f electronic transition of cerium ions excited at λ{sub ex} ∼256 nm for both neat and OA encapsulated LaF{sub 3}:Ce nanoparticles decreases as the cerium concentration increases, while the quantum yields of OA encapsulated nanoparticles were much lower than the neat particles due to low photon transmittance of OA at the range longer than ∼350 nm.

  16. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors.

    PubMed

    Liu, Xiahui; Ma, Dongmei; Tang, Hao; Tan, Liang; Xie, Qingji; Zhang, Youyu; Ma, Ming; Yao, Shouzhuo

    2014-06-11

    Functionalized graphene has good potential in biomedical applications. To address a better and multiplex design of graphene-based gene vectors, the graphene-oleate-polyamidoamine (PAMAM) dendrimer hybrids were synthesized by the oleic acid adsorption and covalent linkage of PAMAM dendrimers. The micromorphology, electrical charge property, and amount of free amine groups of the graphene-oleate-PAMAM hybrids were characterized, and the peripheral functional groups were identified. The PAMAM dendrimers could be tethered onto graphene surface in high density. The graphene-oleate-PAMAM hybrids exhibit relatively good dispersity and stability in aqueous solutions. To evaluate the potential application of the hybrids in gene delivery vectors, cytotoxicity to HeLa and MG-63 cells and gene (plasmid DNA of enhanced green fluorescent protein) transfection capacity of the hybrids were investigated in detail. The graphene-oleate-PAMAM hybrids show mammalian cell type- and dose-dependent in vitro cytotoxicity. Under the optimal condition, the hybrids possess good biocompatibility and gene transfection capacity. The surface modification of graphene with oleic acid and PAMAM improves the gene transfection efficiency 13 times in contrast to the ultrasonicated graphene. Moreover, the hybrids show better transfection efficiency than the graphene oxide-PAMAM without the oleic acid modification. PMID:24836601

  17. Results of fibre and toner flotation depending on oleic acid dosage.

    PubMed

    Trumic, Maja S; Trumic, Milan Z; Vujic, Bogdana; Andric, Ljubisa; Bogdanovic, Grozdanka

    2016-09-01

    The literature was reviewed with respect to deinking flotation methods with toner samples, specifically emphasizing the speciation of copy machine and laser printing, which produce an increasing quantity of paper that is difficult to recycle. Speciation here refers to the physical-chemical characteristics of the toner, which change because of the polymerization (fusion) and oxidation process, due to exposure to heat, light and oxygen (air) during the printing process. To simulate the deinking flotation, after the ideal disintegration process, samples of toner were prepared in order to provide free toner particles. Synthetic toner has iron content and the same physical-chemical features as free disintegrated printed toner particles.We report the toner (I) and fibre (Y) recovery and the brightness (B) of laboratory filter pads formed of deinked product as deinking efficiencies. The application of oleic acid as the collector in the flotation stage gives a better flotation recovery in alkaline than in acidic conditions. The highest brightness (BF = 93.66%) and flotation recoveries (I = 90, Y = 92.82%) were achieved during testing at an oleic acid concentration of 3.38·10(-6) mol l(-1), which is the lowest dose used. This makes the use of oleic acid economical and environmentally friendly. PMID:27354017

  18. The flux control coefficient of carnitine palmitoyltransferase I on palmitate beta-oxidation in rat hepatocyte cultures.

    PubMed Central

    Spurway, T D; Sherratt, H A; Pogson, C I; Agius, L

    1997-01-01

    Two important factors that determine the flux of hepatic beta-oxidation of long-chain fatty acids are the availability of fatty acid and the activity of carnitine palmitoyltransferase I (CPT I). Using Metabolic Control Analysis, the flux control coefficient of CPT I in rat hepatocyte monolayers was determined by titration with 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (Etomoxir), which is converted to Etomoxir-CoA, an irreversible inhibitor of CPT I. We measured CPT I activity and flux through beta-oxidation at 0.2 mM and 1.0 mM palmitate to simulate substrate concentrations in fed and fasted states. Rates of beta-oxidation were 4.5-fold higher at 1. 0 mM palmitate compared with 0.2 mM palmitate. Flux control coefficients of CPT I, estimated by two independent methods, were similar: 0.67 and 0.79 for 0.2 mM palmitate, and 0.68 and 0.77 for 1 mM palmitate. It is concluded that the regulatory potential of CPT I is similar at low and high physiological concentrations of palmitate. PMID:9173869

  19. Multiple binding modes for palmitate to barley lipid transfer protein facilitated by the presence of proline 12

    PubMed Central

    Smith, Lorna J; Gunsteren, Wilfred F Van; Allison, Jane R

    2013-01-01

    Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar protein–ligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental protein–ligand atom–atom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of protein–ligand interactions in complexes where NMR data provide insufficient restraints. PMID:23139016

  20. Associations between hepatic metabolism of propionate and palmitate in liver slices from transition dairy cows.

    PubMed

    McCarthy, M M; Piepenbrink, M S; Overton, T R

    2015-10-01

    Multiparous Holstein cows (n=95) were used to evaluate changes in hepatic propionate and palmitate metabolism and liver composition over time during the transition period, along with the relationships of these variables with cumulative increases in nonesterified fatty acids and β-hydroxybutyrate during the periparturient period. Data from 3 previous experiments were used to address the study objectives, accounting for a total of 95 multiparous Holstein cows. Liver slices from biopsies on d -21, 1, and 21 relative to parturition were used to determine conversion of [1-(14)C]palmitate to CO2 and esterified products (EP) and the conversion of [1-(14)C]propionate to CO2 and glucose. Hepatic glycogen content was highest on d -21 and was 26.9 and 36.5% of prepartum values on d 1 and 21, respectively. Liver triglyceride content was lowest at d -21 and was 271 and 446% of prepartum values on d 1 and 21, respectively. We detected no difference in the capacity for the liver to oxidize [1-(14)C]palmitate to CO2 between d -21 and d 1; however, on d 21, oxidation was 84% of prepartum values. The capacity of the liver to convert [1-(14)C]palmitate to EP was 148 and 139% of prepartum values on d 1 and 21, respectively. The capacity of liver to convert [1-(14)C]propionate to CO2 was 127 and 83% of prepartum values on d 1 and 21, and the capacity of liver to convert [1-(14)C]propionate to glucose was 126 and 85% of prepartum values on d 1 and 21, respectively. Correlation relationships suggest that overall, cows with elevated prepartum liver triglyceride content had elevated triglycerides throughout the transition period along with increased [1-(14)C]palmitate oxidation and conversion to EP and a decreased propensity to convert [1-(14)C]propionate to glucose. Cows with increased [1-(14)C]propionate oxidation had increased conversion of [1-(14)C]propionate to glucose throughout the transition period. Overall, conditions that lead to impairments in fatty acid metabolism during the

  1. Fatty Acid Chain Elongation in Palmitate-perfused Working Rat Heart

    PubMed Central

    Kerner, Janos; Minkler, Paul E.; Lesnefsky, Edward J.; Hoppel, Charles L.

    2014-01-01

    Rat hearts were perfused with [1,2,3,4-13C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% 13C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for β-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative 13C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of 13C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from β-oxidation of [1,2,3,4-13C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the 13C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No 13C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid β-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of 14C from [2-14C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane. PMID:24558043

  2. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    PubMed

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-01

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification. PMID:25659717

  3. Palmitic acid in chicken granulosa cell death-lipotoxic mechanisms mediate reproductive inefficacy of broiler breeder hens.

    PubMed

    Xie, Y-L; Pan, Y-E; Chang, C-J; Tang, P-C; Huang, Y-F; Walzem, R L; Chen, S-E

    2012-12-01

    In vivo and in vitro approaches were used to elucidate mechanisms of palmitate-induced cytotoxicity of follicle granulosa cells in fuel-overloaded broiler hens. In contrast to their energy-restricted counterparts, broiler breeder hens fed ad libitum for 2 wk had dyslipidemia, atresia within hierarchical ovarian follicles, and a 34% reduction in egg production (P < 0.05). Based on vital staining of freshly isolated granulosa cells with annexin V/propidium iodide, there were increases in apoptosis consistent with suppressed Akt activation (P < 0.05). Supplementing primary granulosa cell cultures with 0.5 mM palmitate for 48 or 96 h increased apoptosis (P < 0.05). Palmitate-induced cell death was accompanied by increased acyl-CoA oxidase, carnitine palmitoyl transferase-1, serine palmitoyl transferase, and sphingomyelinase transcripts and increased concentrations of proinflammatory interleukin-1β (P < 0.05). Triacsin-C inhibition of fatty acyl-CoA synthesis blunted interleukin-1β production and rescued granulosa cultures from palmitate-induced cell death. That there was partial to complete prevention of cell death with addition of the free radical scavenger pyrrolidine dithiocarbamate, the sphingomyelinase inhibitor imipramine, or the de novo ceramide synthesis inhibitor fumonisin B1, supported the notion that palmitate-induced granulosa cell cytotoxicity operated through a palmitate-derived metabolite. Palmitoyl-CoA may be channeled into β-oxidation and/or into bioactive metabolites that increase free radical generation, an inflammatory response, and ceramide production. In conclusion, palmitate-derived metabolites activated apoptotic machinery in avian granulosa cells, which caused ovarian follicular atresia and reduced egg production in fuel-overloaded broiler breeder hens. PMID:23058789

  4. Silymarin prevents palmitate-induced lipotoxicity in HepG2 cells: involvement of maintenance of Akt kinase activation.

    PubMed

    Song, Zhenyuan; Song, Ming; Lee, David Y W; Liu, Yanze; Deaciuc, Ion V; McClain, Craig J

    2007-10-01

    Whereas adipocytes have a unique capacity to store excess free fatty acids in the form of triglyceride in lipid droplets, non-adipose tissues, such as liver, have a limited capacity for storage of lipids. Saturated long-chain fatty acids, such as palmitate, are the major contributors to lipotoxicity. Silymarin is a mixture of flavonolignans, extracted from the milk thistle (Silibum marianum). Its hepatoprotective properties have been studied both in vitro and in vivo; however, its effect on palmitate-induced lipotoxicity has not been investigated. The objective of this study was to investigate (i) whether silymarin could protect HepG2 cells from palmitate-induced cell death in an in vitro model, and (ii) possible mechanisms involved in this hepatoprotective role of silymarin. HepG2 cells were treated with palmitate in the absence or presence of silymarin and supernatants or cell lysates were collected at varying time-points. Cell death was assayed by measuring DNA fragmentation, caspase-3 activity and lactate dehydrogenase release. Lipid peroxidation was assessed by measuring malondialdehyde and 4-hydroxyalkenals. Akt kinase activity was also measured. Incubation with palmitate caused significant death in HepG2 cells. Palmitate incubation did not cause significant changes in reactive oxygen species production or intracellular glutathione content, but markedly inhibited Akt kinase activity. Pre-treatment of HepG2 cells with silymarin prevented palmitate-induced inhibition of Akt kinase activity and attenuated cell death. Our results suggest that silymarin may be an effective agent in protecting hepatocytes from saturated fatty acids-induced cell death. These data also provide a further rationale for exploration of the use of silymarin in the treatment of non-alcoholic steatohepatitis. PMID:17845508

  5. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  6. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion. PMID:26408932

  7. Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film.

    PubMed

    Khanoonkon, Nattaporn; Yoksan, Rangrong; Ogale, Amod A

    2016-02-10

    The present work aims to investigate the effect of stearic acid-grafted starch (ST-SA) on the rheological, thermal, optical, dynamic mechanical thermal, and tensile properties of linear low density polyethylene/thermoplastic starch (LLDPE/TPS) blends, as well as on their water vapor and oxygen barrier properties. Blends consisting of LLDPE and TPS in a weight ratio of 60:40 and ST-SA at different concentrations, i.e. 1, 3 and 5%, were prepared using a twin-screw extruder. The obtained resins were subsequently converted into films via blown film extrusion. Incorporation of ST-SA resulted in a decreased degree of shear thinning, reduced ambient temperature elasticity, and improved tensile strength, secant modulus, extensibility, and UV absorption, as well as diminished water vapor and oxygen permeabilities of the LLDPE/TPS blend. These effects are attributed to the enhanced interfacial adhesion between LLDPE and TPS phases through the compatibilizing effect induced by ST-SA, and the good dispersion of the TPS phase in the LLDPE matrix. The results confirmed that ST-SA could potentially be used as a compatibilizer for the LLDPE/TPS blend system. PMID:26686117

  8. Preparation and evaluation of novel directly-compressed fast-disintegrating furosemide tablets with sucrose stearic acid ester.

    PubMed

    Koseki, Takuma; Onishi, Hiraku; Takahashi, Yuri; Uchida, Minoru; Machida, Yoshiharu

    2009-06-01

    Fast-disintegrating tablets of furosemide (FS) were prepared by the novel direct compression method. FS, microcrystalline cellulose (MC), croscarmellose sodium (CC), xylitol (XL) and sucrose stearic acid esters (SSEs) with an hydrophilic-lipophilic balance (HLB) of 16, 15 and 11, named S1670, S1570 and S1170, were used. An FS/SSE/MC mixed powder was obtained by solvent evaporation of a suspension of MC in ethanol solution containing FS and SSE, and the resultant mixed powder was mixed with CC and XL, and directly compressed. The tablets with hardness of more than 40 N and disintegration time of less than 20 s were obtained at the addition of SSE at 0--0.5% (w/w). A tablet with S1670 at 0.1% (w/w), named TA2, dissolved faster than a commercial FS tablet, Lasix. TA2 tended to show higher plasma concentration than Lasix after intragastric administration to rats. It was demonstrated that the present direct compression using homogeneous FS/S1670/MC powder mixture could give an excellent fast-disintegrating tablet of FS. PMID:19483329

  9. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    PubMed

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. PMID:26853315

  10. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films.

    PubMed

    Zhong, Tian; Huang, Ran; Sui, Siyao; Lian, Zixuan; Sun, Xiuxiu; Wan, Ajun; Li, Huili

    2015-10-20

    The effects of ultrasound treatment (UT) on the properties of methylcellulose (MC)/stearic acid (SA) blending films were studied. Film-forming emulsions were prepared with different UT conditions and characterized with respect to viscosity. The lipid aggregation and distribution in the blending dispersions were studied by the micrographs of Transmission Electron Microscopy (TEM). The micrographs of both surface and cross-section of the films were observed by scanning electron microscope (SEM) and the tensile strength (TS), elongation at break (E), water vapor permeability (WVP) and contact angles of the resulting films were determined as well. The intensification of the UT condition led to a decrease of viscosity of the MC-SA blending emulsions, a more homogeneous lipid distribution and a denser internal microstructure of the resulting films. UT exposure affected the mechanical, moisture barrier and surface hydrophobic properties. The optimal values of both TS and E was obtained from the sample treated for 10min and 180W power, while the sample treated for 10min and 270W presented the lowest value of WVP. However, an excessive exposure of UT led to a decrease of the mechanical and moisture barrier performance. By observing and analyzing the SEM graphs and the contact angles of the film surfaces, it was found that UT within the appropriate bounds had a notably positive effect on improving the surface hydrophobic property of the MC-SA blending films. PMID:26256202

  11. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  12. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    NASA Astrophysics Data System (ADS)

    Wang, S.; Li, Y. L.; Zhao, H. L.; Liang, H.; Liu, B.; Pan, S.

    2012-11-01

    Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  13. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing.

    PubMed

    Qiu, Chaoying; Zhao, Mouming; Sun, Weizheng; Zhou, Feibai; Cui, Chun

    2013-03-01

    Lipid composition, fatty acid profile and lipid oxidative stability were evaluated during Cantonese sausage processing. Free fatty acids increased with concomitant decrease of phospholipids. Total content of free fatty acids at 72 h in muscle and adipose tissue was 7.341 mg/g and 3.067 mg/g, respectively. Total amount of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA, and PUFA) in neutral lipid exhibited a little change during processing, while the proportion of PUFA significantly decreased in the PL fraction. The main triacylglycerols were POO+SLO+OOO, PSO (P = palmitic acid, O = oleic acid, L = linoleic acid, S = stearic acid), and a preferential hydrolysis of palmitic, oleic and linoleic acid was observed. Phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the main components of phospholipids and PE exhibited the most significant degradation during processing. Thiobarbituric acid values (TBARS) increased while peroxide values and hexanal contents varied during processing. PMID:23273460

  14. Solubilized delivery of paliperidone palmitate by D-alpha-tocopheryl polyethylene glycol 1000 succinate micelles for improved short-term psychotic management.

    PubMed

    Muthu, Madaswamy S; Sahu, Ashish K; Sonali; Abdulla, Allabakshi; Kaklotar, Dhansukh; Rajesh, Chellappa V; Singh, Sanjay; Pandey, Bajarangprasad L

    2016-01-01

    The objective of this work was to formulate paliperidone palmitate-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for improved antipsychotic effect during short-term management of psychotic disorders. Vitamin E TPGS micelles containing paliperidone palmitate were prepared by the solvent casting method and control paliperidone palmitate formulations were prepared by simple sonication method. The prepared micelles and control paliperidone palmitate formulations were evaluated for different parameters. Particle sizes of prepared micelles, control paliperidone palmitate formulations were determined at 25 °C by dynamic light scattering technique and external surface morphology was determined by transmission electron microscopy analysis. The encapsulation efficiency was determined by spectrophotometery. In-vitro release studies of micelles and control formulations were carried out by dialysis bag diffusion method. The particle sizes of the paliperidone palmitate-loaded TPGS micelles were 26.5 nm. About 92% of drug encapsulation efficiency was achieved with micelles. The drug release from paliperidone palmitate-loaded TPGS micelles was sustained for more than 24 h with 40% of drug release. The TPGS product, i.e. paliperidone palmitate-loaded micelles, resulted in nano-sized delivery, solubility enhancement and permeability of the micelles which provided an improved and prolonged anti-psychotic effect in comparison to control paliperidone palmitate formulation. PMID:24853962

  15. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.

    PubMed

    Colla, Eliane; do Amaral Sobral, Paulo J; Menegalli, Florencia Cecília

    2006-09-01

    Films forming solutions composed of Amaranth (Amaranthus cruentus) flour (4.0 g/100 mL), stearic acid (5-15 g/100 g of flour), and glycerol (25-35 g/100 g of flour) were prepared by an emulsification process, with varying stirring speed values (6640-13360 rpm). The influence of these parameters (stearic acid and glycerol concentrations and stirring speed) on the water vapor barrier and mechanical properties of films was evaluated using the response surface methodology (RSM). Other characterizations, including microstructure, water solubility, and oxygen permeability, were performed in optimized films. According to statistical analysis results, the optimized conditions corresponded to 10 g of stearic acid/100 g of flour, 26 g of glycerol/100 g of flour, and a stirring speed of 12 000 rpm. The films produced under these conditions exhibited superior mechanical properties (2.5 N puncture force, 2.6 MPa tensile strength, and 148% elongation at break) in comparison to those of other protein and polysaccharide composite films, low solubility (15.2%), and optimal barrier properties (WVP of 8.9 x 10(- 11) g m(- 1) s(- 1) Pa(- 1) and oxygen permeability of 2.36 x 10(- 13) cm3 m(-1) s(-1) Pa(-1)). PMID:16939322

  16. Physicochemical properties of oleic acid-based partially fluorinated gemini surfactants.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Aburai, Kenichi; Takamatsu, Yuichiro; Endo, Takeshi; Kitiyanan, Boonyarach; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2014-01-01

    We have developed oleic acid-based partially fluorinated gemini surfactants with carboxylic acid headgroups. The fluorocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via a -CH(2)CH(2)OCO- unit, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via -OCOCH(2)CH(2)- units. The aqueous solution properties of these surfactants were studied at pH 9 in the presence of 10 mmol dm–3 NaCl by means of static surface tension, pyrene fluorescence, and dynamic light scattering measurements. The resulting surface tension data demonstrate that the partially fluorinated gemini surfactants exhibit excellent surface activity in their dilute aqueous solutions. In addition, the surfactants are suggested to form micellar aggregates 2–4 nm in diameter. We also studied the aqueous temperature-concentration phase diagrams of the partially fluorinated gemini surfactants (disodium salts) on the basis of visual observations (through a crossed polarizer), polarized optical microscopy, and small angle X-ray scattering measurements. Several phase states including micellar solution phase, hexagonal phase, bicontinuous cubic phase, and lamellar phase were observed along with the coexistence of these phases in certain regions. Assemblies with lesser positive curvature tend to be formed with increasing surfactant concentration, increasing temperature, and increasing fluorocarbon chain length. A comparison of the phase diagrams of the partially fluorinated and hydrogenated surfactant systems suggests that close molecular packing is inhibited within the assemblies of the partially fluorinated surfactants because of the limited miscibility between the fluorocarbon and hydrocarbon units. To the best of our knowledge, this is the first systematic report focusing on the temperature-concentration phase diagrams of (partially) fluorinated gemini surfactants over a wide range of compositions and temperatures. PMID:24712085

  17. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen

    PubMed Central

    Shah, Punit; Desai, Pinaki; Singh, Mandip

    2011-01-01

    The objective of present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) (`Nanoease' technology) using an established procedure in the laboratory (KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA). Fluorescent dyes (DiO and DID) containing surface modified (DiO-NPS-OA and DID-NPS-OA) and unmodified NPS (DiO-NPS and DID-NPS) were visualized in lateral rat skin sections using confocal microscopy and Raman confocal spectroscopy after skin permeation. In vitro skin permeation was performed in dermatomed human skin and HPLC was used to analyze the drug levels in different skin layers. Further, allergic contact dermatitis (ACD) model was used to evaluate the response of KP-NPS, SP-NPS, SP+KP-NPS, KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA treatment in C57BL/6 mice. The fluorescence from OA modified NPS was observed upto depth of 240 μm and was significantly higher as compared to non-modified NPS. The amount of SP and KP retained in skin layers from OA modified NPS increased by several folds compare to unmodified NPS and control solution. In addition, the combination index value calculated from ACD response for solution suggested additive effect and moderate synergism for NPS-OA. Our results strongly suggest that surface modification of bilayered nanoparticles with oleic acid improved drug delivery to the deeper skin layers. PMID:22134117

  18. [Protective effect of rupatadine against oleic acid-induced acute lung injury in rabbits].

    PubMed

    Zhang, Lin-Li; Lu, Jing; Yu, Shu-Qin; He, Jian-Lin; Zhou, Min; Xu, Guang-Lin

    2007-03-01

    Acute lung injury (ALI) makes up a spectrum of disease that is commonly defined as "acute non-cardiogenic edematous lung injury". It may contribute to morbidity and mortality in the critically ill patient in the intensive care unit. ALI was induced by oleic acid in rabbits. During the experiment, blood samples were taken from cervical artery and subjected to blood-gas analysis at different time points after oleic acid injection. Shortly after the rabbits were killed at 3 hour after iv OA injection, bronchoalveolar lavage fluid (BALF) was colleted, and the concentrations of protein, platelet-activating factor (PAF), intercellular adhesion molecule-1 (ICAM-1), interleukin 8 (IL-8) in BALF were then measured by ELISA. The ratio of wet to dry weight (W/D) of left lung was calculated to assess alveolar edema. Lung tissue was fixed in formaldehyde and stained with HE, and examined under a light microscope. The OA-induced elevation of arterial blood oxygen pressure was inhibited, as well as PAF, ICAM-1, IL-8 in BALF in rupatadine group. Furthermore, rupatadine also decreased the concentration of protein in BALF and inhibited the increase of the W/D weight ratio significantly. Light microscopic findings showed that the damage in rupatadine groups was far less severe than that in OA model group. Pretreatment with rupatadine has a beneficial effect on acute lung injury induced by oleic acid in rabbits. The ultimate reduction of inflammatory factors was involved, at least in part, in the mechanism of action of rupatadine effects. PMID:17520822

  19. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells

    PubMed Central

    Cacicedo, José M.; Ruderman, Neil B.; Ido, Yasuo

    2014-01-01

    Dysregulated autophagy and decreased AMP-activated protein kinase (AMPK) activity are each associated with atherogenesis. Atherogenesis is preceded by high circulating concentrations of glucose and fatty acids, yet the mechanism by which these nutrients regulate autophagy in human aortic endothelial cells (HAECs) is not known. Furthermore, whereas AMPK is recognized as an activator of autophagy in cells with few nutrients, its effects on autophagy in nutrient-rich HAECs has not been investigated. We maintained and passaged primary HAECs in media containing 25 mM glucose and incubated them subsequently with 0.4 mM palmitate. These conditions impaired basal autophagy and rendered HAECs more susceptible to apoptosis and adhesion of monocytes, outcomes attenuated by the autophagy activator rapamycin. Glucose and palmitate diminished AMPK activity and phosphorylation of the uncoordinated-51-like kinase 1 (ULK1) at Ser555, an autophagy-activating site targeted by AMPK. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR)-mediated activation of AMPK phosphorylated acetyl-CoA carboxylase, but treatment with AICAR or other AMPK activators (A769662, phenformin) did not restore ULK1 phosphorylation or autophagosome formation. To determine whether palmitate-induced ceramide accumulation contributed to this finding, we overexpressed a ceramide-metabolizing enzyme, acid ceramidase. The increase in acid ceramidase expression ameliorated the effects of excess nutrients on ULK1 phosphorylation, without altering the effects of the AMPK activators. Thus, unlike low nutrient conditions, AMPK becomes uncoupled from autophagy in HAECs in a nutrient-rich environment, such as that found in patients with increased cardiovascular risk. These findings suggest that combinations of AMPK-independent and AMPK-dependent therapies may be more effective alternatives than either therapy alone for treating nutrient-induced cellular dysfunction. PMID:25354528

  20. Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate.

    PubMed

    Gaspar, Lorena R; Tharmann, Julian; Maia Campos, Patricia M B G; Liebsch, Manfred

    2013-02-01

    The aim of this study was to evaluate the in vitro skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate, assessed by two in vitro techniques: 3T3 Neutral Red Uptake Phototoxicity Test and Human 3-D Skin Model In Vitro Phototoxicity Test. For this, four different formulations containing vitamin A palmitate and different UV-filters combinations, two of them considered photostable and two of them considered photounstable, were prepared. Solutions of each UV-filter and vitamin under study and solutions of four different combinations under study were also prepared. The phototoxicity was assessed in vitro by the 3T3 NRU phototoxicity test (3T3-NRU-PT) and subsequently in a phototoxicity test on reconstructed human skin model (H3D-PT). Avobenzone presented a pronounced phototoxicity and vitamin A presented a tendency to a weak phototoxic potential. A synergistic effect of vitamin A palmitate on the phototoxicity of combinations containing avobenzone was observed. H3D-PT results did not confirm the positive 3T3-NRU-PT results. However, despite the four formulations studied did not present any acute phototoxicity potential, the combination 2 containing octyl methoxycinnamate (OMC), avobenzone (AVB) and 4-methylbenzilidene camphor (MBC) presented an indication of phototoxicity that should be better investigated in terms of the frequency of photoallergic or chronic phototoxicity in humans, once these tests are scientifically validated only to detect phototoxic potential with the aim of preventing phototoxic reactions in the general population, and positive results cannot predict the exact incidence of phototoxic reactions in humans. PMID:22906567

  1. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    SciTech Connect

    Chen Jing; Song, J. L.; Deng, W. Q.; Sun, X. W.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-13

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO{sub 2}/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm{sup 2} light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  2. Molecular Dynamics Simulation of Palmitate Ester Self-Assembly with Diclofenac

    PubMed Central

    Karjiban, Roghayeh Abedi; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Salleh, Abu Bakar

    2012-01-01

    Palm oil-based esters (POEs) are unsaturated and non-ionic esters with a great potential to act as chemical penetration enhancers and drug carriers for transdermal drug nano-delivery. A ratio of palmitate ester and nonionic Tween80 with and without diclofenac acid was chosen from an experimentally determined phase diagram. Molecular dynamics simulations were performed for selected compositions over a period of 15 ns. Both micelles showed a prolate-like shape, while adding the drug produced a more compact micellar structure. Our results proposed that the drug could behave as a co-surfactant in our simulated model. PMID:22949816

  3. Molecular dynamics simulation of palmitate ester self-assembly with diclofenac.

    PubMed

    Karjiban, Roghayeh Abedi; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Salleh, Abu Bakar

    2012-01-01

    Palm oil-based esters (POEs) are unsaturated and non-ionic esters with a great potential to act as chemical penetration enhancers and drug carriers for transdermal drug nano-delivery. A ratio of palmitate ester and nonionic Tween80 with and without diclofenac acid was chosen from an experimentally determined phase diagram. Molecular dynamics simulations were performed for selected compositions over a period of 15 ns. Both micelles showed a prolate-like shape, while adding the drug produced a more compact micellar structure. Our results proposed that the drug could behave as a co-surfactant in our simulated model. PMID:22949816

  4. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    PubMed

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP. PMID:23247266

  5. Increase of Oleic Acid Content in Phosphatidylcholine through Lipase-catalyzed Interesterification: Optimization by Response Surface Methodology.

    PubMed

    Yang, Guolong; Yang, Lihui

    2015-01-01

    In order to obtain phosphatidylcholine (PC) with higher amount of oleic acid, the interesterification between soybean PC and Camellia oleifera oil (COO) rich in oleic acid catalyzed by lipase was studied in hexane. For this aim three commercially available immobilized lipases (Novozym 435, Lipozyme TLIM and Lipozyme RMIM) were assayed and Novozym 435 was finally selected for further optimization. The effects of the factors, such as PC concentration, substrate ratio, water amount, lipase dosage and temperature, on the oleic acid content in PC and PC recovery during the interesterification were investigated. The conditions of the interesterification were optimized using response surface methodology. The optimum conditions were as follows: lipase dosage 13 % (based on the mass of PC and COO), reaction temperature 55°C, water amount 5% (based on the mass of PC), reaction time 8 h, PC concentration 0.3g/mL (PC/hexane), PC-to-COO ratio 1:3 (acyl groups in PC/acyl groups in COO, mol/mol). Under these conditions, oleic acid content and PC recovery were 40.8 ± 0.5% and 69.0 ± 2.8%, respectively. Analysis of variance (ANOVA) showed that the regression models were adequate for predicting the interesterifiction. The orders of reaction variables affecting on oleic acid content and PC recovery were water amount > reaction time > lipase dosage > reaction temperature, and water amount > reaction temperature > lipase dosage > reaction time, respectively. PMID:25891113

  6. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation. PMID:27118706

  7. In vitro response of Staphylococcus aureus from cystic fibrosis patients to combinations of linoleic and oleic acids added to nutrient medium.

    PubMed Central

    Campbell, I M; Crozier, D N; Pawagi, A B; Buivids, I A

    1983-01-01

    The effect of supplementing nutrient substrate with various combinations of concentrations of oleic and linoleic acids on the growth of 11 strains of Staphylococcus aureus was assessed. Whereas increasing the concentration of linoleic acid by itself greatly diminished the growth of all 11 strains, concomitant increases in oleic acid greatly diminished the inhibitory effect of linoleic acid. With oleic acid in the nutrient substrate, most of the strains were induced to produce slime which surrounded the cells. Since the slime incorporated oleic but not linoleic acid, such slime production isolated the cells from direct contact with the growth inhibitor, linoleic acid. Images PMID:6619290

  8. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  9. Oleic acid-induced lung injury in rabbits: effect of fibrinogen depletion with Arvin

    SciTech Connect

    Allard, M.F.; Doerschuk, C.M.; Brumwell, M.L.; Belzberg, A.; Hogg, J.C.

    1988-03-01

    The role of fibrinogen in the evolution of the increased permeability after oleic acid-induced lung injury was studied in New Zealand White rabbits. Animals depleted of fibrinogen by treatment with Malayan pit viper venom were compared with untreated rabbits immediately and at 1 and 24 h after injury. The increased permeability to albumin and elevated extravascular lung water (EVLW) associated with lung injury returned to control values by 24 h in untreated animals. Fibrinogen-depleted animals had a higher mortality (10/25 vs. 2/17, P less than 0.02) and showed a greater immediate increase in permeability to albumin that returned to control values at 1 and 24 h after injury, as well as trends toward elevated blood-free dry lung weight and larger increases in EVLW that persisted for 24 h. These findings indicate that fibrinogen-related proteins play an important role in controlling the microvascular injury that is produced by oleic acid. However, when these proteins are depleted, other mechanisms partially control the leak at later stages of the repair process.

  10. Segmental pulmonary vascular resistances during oleic acid lung injury in rabbits.

    PubMed

    Maarek, J M; Grimbert, F

    1994-10-01

    We studied in isolated rabbit lungs the effects of oleic acid (OA) injury on the segmental distribution of vascular resistance. Vascular occlusion pressures were measured in control and OA-injured preparations over 90 min. Capillary filtration coefficient KF,C increased from 0.61 (+/- 0.10) to 0.91 (+/- 0.14) g.min-1.mmHg-1.(100 g)-1 in OA-injured lungs whereas it remained constant in control lungs. Total pulmonary vascular resistance changed little in both control and OA-injured lungs. OA injury resulted in a 15% increase of the double occlusion capillary pressure. In addition, the contribution of the microvascular to the total vascular resistance rose from 8% to 22%. The increase in microvascular resistance was significant 15 min after OA on the arteriolar side and became significant 30 min later on the venular side. Oleic acid injury does not change the total pulmonary vascular resistance but alters the distribution of segmental resistances in the isolated rabbit lung, thereby contributing to the accumulation of lung water in this model of low pressure permeability edema. PMID:7817049

  11. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    SciTech Connect

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  12. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    NASA Astrophysics Data System (ADS)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-01

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).

  13. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shete, P. B.; Patil, R. M.; Tiwale, B. M.; Pawar, S. H.

    2015-03-01

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core-shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs.

  14. Oleate salt formation and mesomorphic behavior in the propranolol/oleic acid binary system.

    PubMed

    Crowley, K J; Forbes, R T; York, P; Nyqvist, H; Camber, O

    1999-06-01

    Thermal analysis of propranolol/oleic acid mixtures prepared by solvent evaporation enabled construction of the binary system phase diagram. This allowed both physical and chemical interactions to be identified, including complex formation at the equimolar composition. An incongruent melting complex with a characteristic reaction point was identified in excess oleic acid compositions, a common property of fatty acid/fatty acid salt binary systems. The equimolar complex was confirmed to be propranolol oleate using infrared spectroscopy. Wide-angle X-ray powder diffractometry demonstrated that propranolol oleate possessed long-range positional order ( approximately 25 A d spacing) accompanied by a degree of disorder over shorter d spacings. Such a pattern suggested mesophase formation, explaining the unctuous nature of propranolol oleate at room temperature. Accurate measurement of the long-range d spacing was achieved using small-angle X-ray scattering, permitting differentiation of the three different phases identified (phase I: 25.4 A, phase II: 24.6 A, phase III: 25.4-25.5 A). The implications of drug fatty acid salt formation and also mesomorphism in pharmaceutical systems are discussed. PMID:10350493

  15. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system.

    PubMed

    Kalhapure, Rahul S; Akamanchi, Krishnacharya G

    2012-04-01

    There is increasing demand for lipids owing to their use in formulating lipid based drug delivery systems of poorly soluble drugs. The present work discusses the synthesis, characterization of oleic acid based heterolipid and its use as oil in the development of self-microemulsifying drug delivery system (SMEDDS) for parenteral delivery. Synthesis was carried out by Michael addition of tert-butyl acrylate to 3-amino-1-propanol to obtain di-tert-butyl aminopropanol derivative. Reaction of this di-tert-butyl aminopropanol derivative with oleoyl chloride using p-dimethylaminopyridine as a coupling agent gave the desired heterolipid. It was characterized by (1)H NMR, (13)C NMR and MS to confirm the structure. It did not exhibit any measurable cytotoxicity, even up to 80μg/ml concentration. Application in parenteral drug delivery was explored using furosemide (FUR), a BCS class IV drug, as a model. FUR showed three times greater solubility in the heterolipid as compared to oleic acid. SMEDDSs were developed using heterolipid as oily phase, Solutol HS 15(®) as surfactant and ethanol as a co-surfactant. Developed SMEDDS could form spontaneous microemulsion on addition to various aqueous phases with mean globule size <70nm without any phase separation or drug precipitation even after 24h, and exhibited negligible hemolytic potential. PMID:22266534

  16. The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Siegoczyński, R. M.; Rostocki, A. J.; Kos, A.; Kościesza, R.; Wieja, K.

    2008-07-01

    An aim of our work is the understanding of processes happening during phase transformations under the pressure in triglycerides and unsaturated fatty acids. Particles of investigated liquids possess the double bond between carbon atoms, which causes the bended shape of the particle and makes its free rotation impossible. This property causes low temperatures of melting point and high temperatures of boiling and also investigated by us phase transformations. For study of the dynamics of phase transformation in these liquids we measured light transmission and light scattering at 90 degrees angle, temperature, permittivity and internal pressure versus time. We applied pressure using computer controlled pump with a stepping motor, which makes increase of the pressure steady. The phase transformation in oleic acid lasts several seconds, in triolein it lasts several minutes. We think that the elongated time of phase transformation is caused by a hooked shape of particles of triolein and the dynamics of that process is determined by the tangling of particles. We checked the influence of smaller particles of oleic acid on the phase transformation by investigating the mixture of these liquids.

  17. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    PubMed

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans. PMID:25347552

  18. Effect of proteins with different isoelectric points on the gene transfection efficiency mediated by stearic acid grafted chitosan oligosaccharide micelles.

    PubMed

    Yan, Jingjing; Du, Yong-Zhong; Chen, Feng-Ying; You, Jian; Yuan, Hong; Hu, Fu-Qiang

    2013-07-01

    A stearic acid-grafted chitosan oligosaccharide (CS-SA) micelle has been demonstrated as an effective gene carrier in vitro and in vivo. Although being advantageous for DNA package, protection, and excellent cellular internalization, a CS-SA based delivery system may lead to difficulties in the dissociation of polymer/DNA complexes in intracells. In this research, bovine serum albumin (BSA) with a different isoelectric point value (4.7, 6.0 and 9.3) was synthesized and incorporated into a CS-SA based gene delivery system. CS-SA/DNA binary complexes and CS-SA/BSA/DNA ternary complexes were then prepared and characterized. The binding ability of the CS-SA vector with DNA was not affected by the incorporation of BSA. However, referring to the transfection activity, the BSA of different isoelectric point value (pI) had a distinct influence on the CS-SA/BSA/DNA complexes. CS-SA/BSA(4.7)/DNA and CS-SA/BSA(6.0)/DNA complexes had better transfection efficiency than binary complexes, especially CS-SA/BSA(4.7)/DNA complexes which showed the highest transfection efficiency. On the contrary, CS-SA/BSA(9.3)/DNA complexes had undesirable performances. Interestingly, the incorporation of BSA(4.7) in CS-SA/DNA complexes significantly enhanced the dissociation of polymer/DNA complexes and improved the release of DNA intracellular without influencing their cellular uptake. The aforementioned results indicated that the acid group in protein played an important role in enhancing the transfection efficiency of CS/BSA/DNA complexes, and the study provided guidelines in the design of an efficient vector for DNA transfection. PMID:23679858

  19. Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia.

    PubMed

    Wheeler, T J; Fell, R D; Hauck, M A

    1994-12-30

    Our previous studies on the acute regulation of glucose transport in perfused rat hearts were extended to explore further the mechanism of regulation by anoxia; to test the effects of palmitate, a transport inhibitor; and to compare the translocation of two glucose transporter isoforms (GLUT1 and GLUT4). Following heart perfusions under various conditions, glucose transporters in intracellular membranes were quantitated by reconstitution of transport activity and by Western blotting. Rotenone stimulated glucose uptake and decreased the intracellular contents of glucose transporters. This indicates that it activates glucose transport via net outward translocation, similarly to anoxia. However, two uncouplers of oxidative phosphorylation produced little or no effect. Increased workload (which stimulates glucose transport) reduced the intracellular contents of transporters, while palmitate increased the contents, indicating that these factors cause net translocation from or to the intracellular pool, respectively. Relative changes in GLUT1 were similar to those in GLUT4 for most factors tested. A plot of changes in total intracellular transporter content vs. changes in glucose uptake was roughly linear, with a slope of -0.18. This indicates that translocation accounts for most of the changes in glucose transport, and the basal pool of intracellular transporters is five times as large as the plasma membrane pool. PMID:7841183

  20. Nr2e1 Deficiency Augments Palmitate-Induced Oxidative Stress in Beta Cells

    PubMed Central

    Shi, Xiaoli; Deng, Haohua; Dai, Zhe; Xu, Yancheng; Xiong, Xiaokan; Ma, Pei; Cheng, Jing

    2016-01-01

    Nuclear receptor subfamily 2 group E member 1 (Nr2e1) has been regarded as an essential regulator of the growth of neural stem cells. However, its function elsewhere is unknown. In the present study, we generated Nr2e1 knockdown MIN6 cells and studied whether Nr2e1 knockdown affected basal beta cell functions such as proliferation, cell death, and insulin secretion. We showed that knockdown of Nr2e1 in MIN6 cells resulted in increased sensitivity to lipotoxicity, decreased proliferation, a partial G0/G1 cell-cycle arrest, and higher rates of apoptosis. Moreover, Nr2e1 deficiency exaggerates palmitate-induced impairment in insulin secretion. At the molecular level, Nr2e1 deficiency augments palmitate-induced oxidative stress. Nr2e1 deficiency also resulted in decreases in antioxidant enzymes and expression level of Nrf2. Together, this study indicated a potential protective effect of Nr2e1 on beta cells, which may serve as a target for the development of novel therapies for diabetes. PMID:26649147

  1. Solid state characterization of chloramphenicol palmitate. Raman spectroscopy applied to pharmaceutical polymorphs

    NASA Astrophysics Data System (ADS)

    Gamberini, M. C.; Baraldi, C.; Tinti, A.; Rustichelli, C.; Ferioli, V.; Gamberini, G.

    2006-03-01

    A pharmaceutical active compound, chloramphenicol palmitate, appears in three polymorphic forms, that can be observed at room temperature. The stable form A (biologically inactive modification), the meta-stable form B (active modification) and unstable form C were found to have distinct Raman spectra, with bands attributable to the different polymorphs. The use of hot-stage Raman microscopy (the direct coupling of Raman microscopy and hot-stage) is demonstrated for the drug substance chloramphenicol palmitate form C. All modifications of form C were produced and identified by hot-stage Raman microscopy. A close correlation of thermal and spectroscopic information was achieved by this combination of techniques. As reported in several pharmacopoeias, the content of form A should be less than 10%; therefore, a mixture of 10% (w/w) A in B was prepared, and the presence of the characteristic bands of form A after subtraction of the pure B was revealed. Moreover, mixtures between 2 and 12% (w/w) A in B were investigated and the intensity ratio (as peak area) I 413-435/I 1035-1158 as a function of A percentage has been demonstrated to show a linear trend. Other methods for the characterization of polymorphs were used: Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD).

  2. Elimination of glycidyl palmitate in diolein by treatment with activated bleaching earth.

    PubMed

    Shimizu, Masao; Moriwaki, Junya; Shiiba, Daisuke; Nohara, Hidenori; Kudo, Naoto; Katsuragi, Yoshihisa

    2012-01-01

    In this study, activated bleaching earth (ABE) was used to eliminate glycidyl esters from both triacyl- and diacylglycerol oils. To investigate the mechanism, glycerol dioleate containing glycidyl palmitate (GP) was treated with ABE and the fate of the GP was monitored by analyzing the feed, treated, and ABE-absorbed oils using a gas-liquid chromatograph equipped with a flame-ionized detector. GP was completely removed from both the treated and absorbed oils. This indicates that this treatment is useful for GE removal from diacylglycerol oil, although it was not achieved by absorption of GE on ABE but rather by modification of GP. The results of composition analysis demonstrate that GP is transformed to glycerol monopalmitate, glycerol palmitate oleate, and glycerol dipalmitate at a recovery rate of 99.1 ± 1.3 %. An increase in glycerol monooleate and trace amounts of free glycerol and fatty acids were also observed after treatment. The transformation is proposed to involve a ring-opening reaction of GP with water contained in the ABE and in the bulk oil followed by an interesterification reaction among the resultant monopalmitate and the glycerol dioleate of the bulk oil. All the generated compounds were simple acylglycerols and glycerol. Therefore, ABE treatment could be useful for GE removal during the manufacture of edible oils. PMID:22188803

  3. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin.

    PubMed

    Suh, Dong-Churl; Kim, Yeongseok; Kim, Hyeongmin; Ro, Jieun; Cho, Seong-Wan; Yun, Gyiae; Choi, Sung-Up; Lee, Jaehwi

    2014-01-01

    The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator. PMID:24596625

  4. Effectiveness of long-acting paliperidone palmitate in borderline personality disorder.

    PubMed

    Palomares, Nerea; Montes, Ana; Díaz-Marsá, Marina; Carrasco, José L

    2015-11-01

    The aim of the present study is to test the efficacy of palmitate paliperidone long-acting injection for patients with borderline personality disorder (BPD). A total of 16 patients with BPD were treated with intramuscular paliperidone palmitate (IMPP) over 12 weeks. Effectiveness measures included the CGI-BPD, HARS, MADRS, BIS-11, and STAXI-2. Functional improvement was assessed using the Global Assessment of Functioning scale. A list of adverse events was provided to clinicians and patients. Treatment with IMPP was associated with a significant average reduction of 1.6 (95% confidence interval: 1192-2008; P>0.01) in CGI-BPD scores and an average increase of psychosocial functioning as scored by the Global Assessment of Functioning scale of 13.3 (95% confidence interval: 8.35-18.31; P>0.01) was obtained. The treatment decreased impulsive-disruptive behaviors and improved general functioning. An acceptable tolerance was observed. The average weight gain was clinically irrelevant despite being statistically significant. No other relevant adverse side effects were reported, with the exception of galactorrhea, which required suspension of treatment in three patients. IMPP seems to be a well-tolerated alternative to other second-generation antipsychotics in the treatment of BPD. More controlled studies replicating these results should be proposed in the future. PMID:26230268

  5. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin

    PubMed Central

    Suh, Dong-Churl; Kim, Yeongseok; Kim, Hyeongmin; Ro, Jieun; Cho, Seong-Wan; Yun, Gyiae; Choi, Sung-Up; Lee, Jaehwi

    2014-01-01

    The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator. PMID:24596625

  6. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology

    PubMed Central

    2013-01-01

    Background Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid’s oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One–factor-at-a-time experiments and response surface methodology (RSM). Results The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from “one–factor-at-a-time” experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. Conclusion The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives. PMID:23835418

  7. Palmitate Diet-induced Loss of Cardiac Caveolin-3: A Novel Mechanism for Lipid-induced Contractile Dysfunction

    PubMed Central

    Knowles, Catherine J.; Cebova, Martina; Pinz, Ilka M.

    2013-01-01

    Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release. PMID:23585895

  8. In vitro palmitate treatment of myotubes from postmenopausal women leads to ceramide accumulation, inflammation and affected insulin signaling.

    PubMed

    Abildgaard, Julie; Henstridge, Darren C; Pedersen, Anette T; Langley, Katherine G; Scheele, Camilla; Pedersen, Bente Klarlund; Lindegaard, Birgitte

    2014-01-01

    Menopause is associated with an increased incidence of insulin resistance and metabolic diseases. In a chronic palmitate treatment model, we investigated the role of skeletal muscle fatty acid exposure in relation to the metabolic deterioration observed with menopause. Human skeletal muscle satellite cells were isolated from premenopausal (n = 6) and postmenopausal (n = 5) women. In an in vitro model, the myotubes were treated with palmitate (300 µM) for one-, two- or three days during differentiation. Effects on lipid accumulation, inflammation and insulin signaling were studied. Palmitate treatment led to a 108% (CI 95%: 50%; 267%) increase in intramyocellular ceramide in the myotubes from the postmenopausal women (post-myotubes) compared with a 26% (CI 95%: -57%; 96%) increase in myotubes from the premenopausal women (pre-myotubes), (p<0.05). Furthermore, post-myotubes had a 22% (CI 95%: 4%; 34%) increase in pJNK (p = 0.04) and a 114% (CI 95%: 50%; 177%) increase in Hsp70 protein expression (p = 0.03) after three days of palmitate treatment, compared with pre-myotubes, in which no increase in either pJNK (-12% (CI 95: -26%; 2%)) or Hsp70 (7% (CI 95: -78%; 91%)) was detected. Furthermore, post-myotubes showed a blunted insulin stimulated phosphorylation of AS160 in response to chronic palmitate treatment compared with pre-myotubes (p = 0.02). The increased intramyocellular ceramide content in the post-myotubes was associated with a significantly higher mRNA expression of Serine Palmitoyltransferase1 (SPT1) after one day of palmitate treatment (p = 0.03) in post-myotubes compared with pre-myotubes. Our findings indicate that post-myotubes are more prone to develop lipid accumulation and defective insulin signaling following chronic saturated fatty acid exposure as compared to pre-myotubes. PMID:25000528

  9. High Beta-palmitate formula and bone strength in term infants: a randomized, double-blind, controlled trial.

    PubMed

    Litmanovitz, Ita; Davidson, Keren; Eliakim, Alon; Regev, Rivka H; Dolfin, Tzipora; Arnon, Shmuel; Bar-Yoseph, Fabiana; Goren, Amit; Lifshitz, Yael; Nemet, Dan

    2013-01-01

    We aimed to compare the effect of 12-week feeding of commercially available infant formulas with different percentages of palmitic acid at sn-2 (beta-palmitate) on anthropometric measures and bone strength of term infants. It was hypothesized that feeding infants with high beta-palmitate (HBP) formula will enhance their bone speed of sound (SOS). Eighty-three infants appropriate for gestational age participated in the study; of these, 58 were formula-fed and 25 breast-fed infants, serving as a reference group. The formula-fed infants were randomly assigned to receive HBP formula (43 % of the palmitic acid is esterified to the middle position of the glycerol backbone, study group; n = 30) or regular formula with low-beta palmitate (LBP, 14 % of the palmitic acid is esterified to the middle position of the glycerol backbone, n = 28). Sixty-six infants completed the 12-week study. Anthropometric and quantitative ultrasound measurements of bone SOS for assessment of bone strength were performed at randomization and at 6 and 12 weeks postnatal age. At randomization, gestational age, birth weight, and bone SOS were comparable between the three groups. At 12 weeks postnatal age, the mean bone SOS of the HBP group was significantly higher than that of the LBP group (2,896 ± 133 vs. 2,825 ± 79 m/s respectively, P = 0.049) and comparable with that of the breast-fed group (2,875 ± 85 m/s). We concluded that infants consuming HBP formula had changes in bone SOS that were comparable to those of infants consuming breast milk and favorable compared to infants consuming LBP formula. PMID:23179103

  10. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  11. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  12. Mapping the low palmitate fap1 mutation and validation of its effects on soybean oil and agronomic traits in three soybean populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil with reduced palmitic acid content is desirable to reduce the risks of coronary diseases and; breast, colon, and prostate cancer incidence associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mut...

  13. Synthesis and tissue biodistribution of [{omega}-{sup 11}C]palmitic acid. A novel PET imagining agent for cardiac fatty acid metabolism

    SciTech Connect

    Buckman, B.O.; VanBrocklin, H.F.; Katzenellenbogen, J.A.; Dence, C.S.; Bergmann, S.R.; Welch, M.J.

    1994-12-31

    In order to diagnose patients with medium-chain acyl-CoA dehydrogenase deficiency with a noninvasive diagnostic technique such as positron emission tomography, they have developed a synthesis of [{omega}-{sup 11}C]palmitic acid. The radiochemical synthesis was achieved by coupling an alkylfuran Grignard reagent (7) with [{sup 11}C]methyl iodide, followed by rapid oxidative cleavage of the furan ring to the carboxylate using ruthenium tetraoxide. Tissue biodistribution studies in rags comparing [{omega}-{sup 11}C]palmitic acid and [1-{sup 11}C]palmitic acid show that the %ID/g and %ID/organ in the heart tissue after administration of [{omega}-{sup 11}C]palmitic acid is approximately 50% greater than after administration of [1-{sup 11}C]palmitic acid, due to the diminished metabolism of the [{omega}-{sup 11}C]palmitic acid. These studies show as well, low uptake in nontarget tissues (blood, lung, kidney, and muscle). PET images of a dog heart obtained after administration of [{omega}-{sup 11}C]- and [1-{sup 11}C]palmitic acid show virtually identical uptake and distribution in the myocardium. The differing cardiac washout of labeled palmitates measured by dynamic PET studies may allow diagnosis of disorders in cardiac fatty acid metabolism.

  14. Phase equilibria in four-component system consisting of water, a nonionic surfactant mixture, and oleic acid

    SciTech Connect

    Matveenko, V.N.; Drovetskii, B.Yu.; Kirasanov, E.A.

    1994-05-01

    The phase diagram of the system consisting of water, Tween 20, Span 80, and oleic acid has been obtained; the coexisting phases have been identified; and the character of the equilibrium of microemulsion, liquid crystal, and molecular solution has been described. In the water-Tween 20-oleic acid system, the ratio of the water volume to the surfactant volume is identical in all of the coexisting phases; this proves the existence of a corresponding field variable in a system with a nonionic surfactant.

  15. [Protective effect of curcumin on oleic-induced acute lung injury in rats].

    PubMed

    Zhu, Rui-fang; Zhou, Min; He, Jian-lin; Ding, Fu-yun; Yu, Shu-qin; Xu, Guang-lin

    2008-09-01

    To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects. PMID:19066061

  16. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    PubMed

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications. PMID:27300134

  17. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin.

    PubMed

    Kwon, Bumsup; Querfurth, Henry W

    2015-11-01

    Excessive saturated free fatty acids (SFFAs; e.g. palmitate) in blood are a pathogenic factor in diabetes, obesity, cardiovascular disease and liver failure. In contrast, monounsaturated free fatty acids (e.g. oleate) prevent the toxic effect of SFFAs in various types of cells. The mechanism is poorly understood and involvement of the mTOR complex is untested. In the present study, we demonstrate that oleate preconditioning, as well as coincubation, completely prevented palmitate-induced markers of inflammatory signaling, insulin resistance and cytotoxicity in C2C12 myotubes. We then examined the effect of palmitate and/or oleate on the mammalian target of rapamycin (mTOR) signal path and whether their link is mediated by AMP-activated protein kinase (AMPK). Palmitate decreased the phosphorylation of raptor and 4E-BP1 while increasing the phosphorylation of p70S6K. Palmitate also inhibited phosphorylation of AMPK, but did not change the phosphorylated levels of mTOR or rictor. Oleate completely prevented the palmitate-induced dysregulation of mTOR components and restored pAMPK whereas alone it produced no signaling changes. To understand this more, we show activation of AMPK by metformin also prevented palmitate-induced changes in the phosphorylations of raptor and p70S6K, confirming that the mTORC1/p70S6K signaling pathway is responsive to AMPK activity. By contrast, inhibition of AMPK phosphorylation by Compound C worsened palmitate-induced changes and correspondingly blocked the protective effect of oleate. Finally, metformin modestly attenuated palmitate-induced insulin resistance and cytotoxicity, as did oleate. Our findings indicate that palmitate activates mTORC1/p70S6K signaling by AMPK inhibition and phosphorylation of raptor. Oleate reverses these effects through a metformin-like facilitation of AMPK. PMID:26344902

  18. Environmental stability of oleic acid concentration in seed oil for soybean lines with FAD2-1A and FAD2-1B mutant genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevating oleic acid (18:1) in seed oil content improves oxidative stability and is desirable for expanding edible and industrial uses of soybean [Glycine max (L.) Merr.]. Soybean lines with up to 800 g kg-1 oleic acid (18:1) concentration were developed by combining a recessive mutant allele at th...

  19. Small-angle X-ray scattering of BAMLET at pH 12: a complex of α-lactalbumin and oleic acid.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Knott, Robert B; Church, W Bret

    2014-07-01

    BAMLET (Bovine Alpha-lactalbumin Made LEthal to Tumors) is a member of the family of the HAMLET-like complexes, a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to cancer cells. Small angle X-ray scattering (SAXS) was performed on the complex at pH 12, examining the high pH structure as a function of oleic acid added. The SAXS data for BAMLET species prepared with a range of oleic acid concentrations indicate extended, irregular, partially unfolded protein conformations that vary with the oleic acid concentration. Increases in oleic acid concentration correlate with increasing radius of gyration without an increase in maximum particle dimension, indicating decreasing protein density. The models for the highest oleic acid content BAMLET indicate an unusual coiled elongated structure that contrasts with apo-α-lactalbumin at pH 12, which is an elongated globular molecule, suggesting that oleic acid inhibits the folding or collapse of the protein component of BAMLET to the globular form. Circular dichroism of BAMLET and apo-α-lactalbumin was performed and the results suggest that α-lactalbumin and BAMLET unfold in a continuum of increasing degree of unfolded states. Taken together, these results support a model in which BAMLET retains oleic acid by non-specific association in the core of partially unfolded protein, and represent a new type of lipoprotein structure. PMID:24408789

  20. Cell Permeability: a Factor in the Biotin-Oleate Relationship in Lactobacillus arabinosus II. Effect of Oleic Acid and Other Surfactants on Free Biotin Uptake

    PubMed Central

    Waller, James R.; Lichstein, Herman C.

    1967-01-01

    Bound biotin-saturated cells were incubated in the presence of biotin and glucose (37 C, pH 7.5) with or without oleic acid, Tween 20, 40, 60, and 80, Aerosol OT, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide, Triton X-100, Non-Ion-Ox, and Haemo-Sol. With low concentrations (up to 5 μg/ml) and short reaction times (up to 10 min), oleic acid stimulated free biotin accumulation. Increased concentrations (10 to 50 μg/ml) or reaction times (10 to 30 min) caused progressive reductions in uptake or increased release of previously accumulated vitamin. Combination of Tween 40 (1 mg/ml) with oleic acid (up to 50 μg/ml) detoxified oleic acid and stimulated free biotin uptake. Oleic acid (5 μg/ml or more) reduced cell viability, an effect which was overcome by Tween 40. All other surfactants tested stimulated free biotin accumulation at sublethal concentrations. Aerosol OT and SDS exhibited the same degree of stimulatory activity as detoxified oleic acid; however, at concentrations higher than 200 μm, a rapid decrease in vitamin accumulation was observed which paralleled that caused by increased oleic acid concentrations. The results suggest that oleic acid and other surfactants affect the permeability of cells of Lactobacillus plantarum (formerly called L. arabinosus) in a similar manner. PMID:6020402

  1. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  2. The effect of supplementing layer diets with shark cartilage or chitosan on egg components and yolk lipids.

    PubMed

    Nogueira, C M; Zapata, J F F; Fuentes, M F F; Freitas, E R; Craveiro, A A; Aguiar, C M

    2003-05-01

    1. An experiment was designed to evaluate the effects of the addition of shark cartilage (SC) or chitosan (CH) to layer diets on egg component weights, yolk lipids and hen plasma lipids. 2. Hy-Line laying hens (80) were used during a 56 d feeding trial. Treatments were: basal diet (BD), BD + 20 g/kg SC, BD + 30 g/kg SC, BD + 20 g/kg CH and BD + 30 g/kg CH. Eggs were analysed on d 14, 28, 42 and 56. 3. Egg weight and egg component weights were not affected by these treatments throughout the experimental period. 4. After 14d of experimental feeding, cholesterol levels were higher in eggs from birds given BD + 20 g/kg CH and BD + 30 g/kg CH than in those from birds given BD. 5. Furthermore, eggs from hens given BD + 20 g/kg SC or BD + 20 g/kg CH were higher in palmitic and stearic acids and lower in oleic acid than those from birds fed on BD. After 56 d feeding, however, palmitic and stearic acid contents in eggs from hens given any of the supplemented diets were lower than in those from hens given BD, and oleic acid in eggs from hens given BD + 20 g/kg SC, BD + 30 g/kg SC and BD + 30 g/kg CH was higher than in those from birds fed on BD. 6. Plasma cholesterol and triacylglycerol levels were not significantly affected by dietary treatment. 7. Shark cartilage or chitosan at up to 30 g/kg in layer diets did not affect egg component weights (yolk, white and shell) and total lipid contents. During the period from 42 to 56d of experimental feeding, diets containing up to 30 g/kg chitosan reduced egg yolk contents of cholesterol, palmitic and stearic acids and increased the content of oleic acid. PMID:12828207

  3. [Changes in the relative levels of fatty acids in blood and myocardium in the Prague breed of rats with hereditary hypercholesteremia after administration of slow calcium channel blockers].

    PubMed

    Edelsteinová, S; Bukovská, A; Svec, P; Vozár, I; Kuzelová, M

    1992-07-01

    The present paper describes the effect of six-week oral administration of verapamil and diltiazem (1 mg.kg-1 of weight two times daily in 12 hour intervals) on the content of fatty acids of the serum and myocardium of PHHC rats. A cholesterol diet changes the content of fatty acids of the serum and myocardium of PHHC rats in comparison with control rats without the cholesterol diet. A significant decrease in the content of palmitic acid, a decrease in the content of stearic acid, linoleic acid and arachidonic acid and a significant increase in the content of oleic acid were observed in the serum. Long-term administration of the slow calcium channel blockers produces another decrease in the content of the bound form of arachidonic acid. Changes in the representation of other fatty acids are not marked. Long-term administration of a cholesterol diet produces an increase in the content of palmitic acid and stearic acid and a decrease in the content of oleic acid, linoleic acid and arachidonic acid in the myocardium. Administration of verapamil results in a modification of the above-mentioned changes in all parameters excepting the content of arachidonic acid, the content of which was decreased in an even more marked manner. Administration of diltiazem produced an accumulation of both saturated and mono-unsaturated fatty acids (palmitic, stearic and oleic acids) and produced a significant decrease in the content of linoleic acid and mainly the bound form of arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1451191

  4. Influence of stearic acid coating of the NaCl surface on the reactivity with NO2 under humidity.

    PubMed

    Sobanska, S; Barbillat, J; Moreau, M; Nuns, N; De Waele, I; Petitprez, D; Tobon, Y; Brémard, C

    2015-04-28

    In the atmosphere, sea salt aerosols, containing mainly NaCl, can accumulate fatty acids and undergo heterogeneous chemistry with atmospheric nitrogen oxides. The effect of stearic acid (SA) coating on the reactivity of the NaCl(100) surface with NO2 under humidity was studied by atomic force microscopy (AFM), Raman mapping and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to highlight processes occurring on NaCl surfaces. The vapor-deposition of SA on the NaCl surface generates heterogeneous coating with discontinuous monolayer islands. The SA molecules with all-trans conformation stick to the NaCl surface through -CO2H groups and are organized in parallel between them and nearly perpendicularly to the surface. The SA coating does not prevent the NaNO3 particle formation when the sample is exposed to NO2 under low humidity conditions. The initial abilities of the NaCl surface coated with SA to pick up NO2 from the gas phase are correlated with the fraction of bare NaCl area evidencing the spatially heterogeneous reactivity of the surface. The role of H2O in the NO2 uptake and the catalytic conversion of NaCl to NaNO3 is shown. Under humidity (RH = 50%), the H2O uptake by NaNO3 particles on the coated-NaCl surface is significantly more important than that adsorbed under analogous conditions without the presence of NaNO3 particles. This unusual water absorption initiates transitions (i) from solid NaNO3 particles to NaNO3 aqueous solution and (ii) from the SA monolayer with well-ordered all trans alkyl chains to the SA gel with completely disordered conformation. This mixed SA/NaNO3 layer on the particle surface may have significant consequences on the hygroscopic properties and reactivity of the sea salt aerosols in the atmosphere. PMID:25824115

  5. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets.

    PubMed

    Barlow, Jonathan; Jensen, Verena Hirschberg; Jastroch, Martin; Affourtit, Charles

    2016-02-15

    It has been well established that excessive levels of glucose and palmitate lower glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells. This β-cell 'glucolipotoxicity' is possibly mediated by mitochondrial dysfunction, but involvement of bioenergetic failure in the pathological mechanism is the subject of ongoing debate. We show in the present study that increased palmitate levels impair GSIS before altering mitochondrial function. We demonstrate that GSIS defects arise from increased insulin release under basal conditions in addition to decreased insulin secretion under glucose-stimulatory conditions. Real-time respiratory analysis of intact mouse pancreatic islets reveals that mitochondrial ATP synthesis is not involved in the mechanism by which basal insulin is elevated. Equally, mitochondrial lipid oxidation and production of reactive oxygen species (ROS) do not contribute to increased basal insulin secretion. Palmitate does not affect KCl-induced insulin release at a basal or stimulatory glucose level, but elevated basal insulin release is attenuated by palmitoleate and associates with increased intracellular calcium. These findings deepen our understanding of β-cell glucolipotoxicity and reveal that palmitate-induced GSIS impairment is disconnected from mitochondrial dysfunction, a notion that is important when targeting β-cells for the treatment of diabetes and when assessing islet function in human transplants. PMID:26621874

  6. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization.

    PubMed

    Lin, David Tse Shen; Conibear, Elizabeth

    2015-01-01

    Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signaling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 - are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist. Using a dual pulse-chase strategy comparing palmitate and protein half-lives, we found knockdown or inhibition of APT1 and APT2 blocked depalmitoylation of Huntingtin, but did not affect palmitate turnover on postsynaptic density protein 95 (PSD95) or N-Ras. We used activity profiling to identify novel serine hydrolase targets of the APT1/2 inhibitor Palmostatin B, and discovered that a family of uncharacterized ABHD17 proteins can accelerate palmitate turnover on PSD95 and N-Ras. ABHD17 catalytic activity is required for N-Ras depalmitoylation and re-localization to internal cellular membranes. Our findings indicate that the family of depalmitoylation enzymes may be substantially broader than previously believed. PMID:26701913

  7. Comparison of microwave processing and excess steam jet cooking for spherulite production of from starch:palmitic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was previously shown that toroid and spherical/lobed spherulites were formed upon slow cooling of aqueous dispersions of corn starch and palmitic acid after passing through an excess steam jet cooker. Spherulite yield was 86% based on amylose. In order to determine whether excess steam jet cookin...

  8. Determination of Fatty Acid Metabolism with Dynamic 11C-Palmitate Positron Emission Tomography of Mouse Heart In Vivo

    PubMed Central

    Li, Yinlin; Huang, Tao; Zhang, Xinyue; Zhong, Min; Walker, Natalie N.; He, Jiang; Berr, Stuart S.; Keller, Susanna R.; Kundu, Bijoy K.

    2015-01-01

    The goal of this study was to establish a quantitative method for measuring FA metabolism with partial volume (PV) and spill-over (SP) corrections using dynamic 11C-palmitate PET images of mouse heart in vivo. Methods Twenty-minute dynamic 11C-palmitate PET scans of four 18–20 week old male C57BL/6 mice under isoflurane anesthesia were performed using a Focus 120 PET scanner. A model corrected blood input function (MCIF), by which the input function with SP and PV corrections and the metabolic rate constants (k1−k5) are simultaneously estimated from the dynamic 11C-palmitate PET images of mouse hearts in a 4-compartment tracer kinetic model, was used to determine rates of myocardial FA oxidation (MFAO), myocardial FA esterification (MFAE), myocardial FA utilization (MFAU) and myocardial FA uptake (MFAUp). Results The MFAO thus measured in C57BL/6 mice was 375.03±43.83 nmoles/min/g. This compares well with the MFAO measured in perfused working C57BL/6 mouse hearts ex vivo of about 350 nmoles/g/min and 400 nmoles/min/g. Conclusions FA metabolism was measured for the first time in mouse heart in vivo using dynamic 11C-palmitate PET in a 4-compartment tracer kinetic model. MFAO obtained with this model were validated by results previously obtained with mouse hearts ex vivo. PMID:26462138

  9. Influence of pH and temperature on the rheological properties of aqueous dispersions of starch-sodium palmitate complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of high-amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes. The rheology of dispersions of these complexes was examined. Acetic acid was added to reduce the pH, converting complexed sodium palmita...

  10. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer

    NASA Astrophysics Data System (ADS)

    Morales, M. A.; Jain, Tapan Kumar; Labhasetwar, V.; Leslie-Pelecky, D. L.

    2005-05-01

    We have prepared and studied iron-oxide nanoparticles coated with oleic acid (OA) and Pluronic® polymer. The mean diameter of the iron-oxide nanoparticles was 9.3(±)0.8nm. Saturation magnetization values measured at 10K varied from 66.1(±0.7)emu/gto98.7(±0.5)emu/g. At 300K the loops showed negligible coercive field. The peaks in zero-field-cooled susceptibility decreased from 280to168K with increasing OA concentration up to 10.6wt%, and remained nearly constant for higher concentrations. This suggests that incomplete coverage of the OA allows small, interacting agglomerates to form.

  11. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    PubMed

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  12. Oxidative stability of high-oleic sunflower oil in a porous starch carrier.

    PubMed

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena

    2015-01-01

    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation. PMID:25053066

  13. Enhancement of ketorolac tromethamine permeability through rat skin using penetration enhancers: An ex-vivo study

    PubMed Central

    Kumar, Pawan; Singh, Shailendra Kumar; Mishra, Dina Nath; Girotra, Priti

    2015-01-01

    Introduction: Ketorolac tromethamine (KT), a nonsteroidal anti-inflammatory drug, when given orally causes gastrointestinal disturbances. Its transdermal drug delivery may reduce such side effects associated with them. The present investigation was aimed at evaluating the efficiency of various penetration enhancers for improved permeation of KT through the skin. Materials and Methods: A concentration of 1 mg/mL of the drug solution with enhancers was used to evaluate diffusion through the rat skin using a Franz diffusion cell assembly. 20 different penetration enhancers were selected for this study. Results: Saturated fatty acids like stearic and palmitic acid were found to increase the permeation rate of the drug to a great extent whereas unsaturated fatty acid viz. oleic acid exhibited maximum permeation. Increase in permeability efficiency of various penetration enhancers was observed in the following order: Oleic acid > stearic acid > palmitic acid > isopropyl myristate > tween 80 > span 80 > span 40 > span 20 > l-limonene > l-menthol > fenchone > α-pinene > urea > dimethyl sulfoxide (DMSO) > triton X-100 > tween 20 > dimethyl formamide > acetone > control > citric acid > ascorbic acid. Ascorbic acid and citric acid had no effect on permeation rate. Conclusion: The results revealed that the permeation of KT through the skin can maximally be enhanced using oleic acid-an unsaturated fatty acid. PMID:26258055

  14. Effect of palmitate on carbohydrate utilization and Na/K-ATPase activity in aortic vascular smooth muscle from diabetic rats.

    PubMed

    Smith, J M; Solar, S M; Paulson, D J; Hill, N M; Broderick, T L

    1999-04-01

    Several investigators have reported that carbohydrate metabolism is suppressed in blood vessels from diabetic (Db) rats. However, it is not known if metabolites from the reciprocal increase in oxidation of long-chain fatty acids that accompanies insulin-deficiency exacerbates the suppression of this pathway in the Db blood vessels. Such inhibition may have particularly deleterious consequences in vascular smooth muscle since aerobic glycolysis is believed to preferentially fuel the sarcolemmal Na/K ATPase in this tissue. Therefore, this study evaluated the effect of physiological (0.4 mM) and elevated (1.2 mM) concentrations of the long-chain fatty acid palmitate on both carbohydrate utilization and Na/K-ATPase activity in aorta from insulin-deficient Db rat. Thoracic aorta were removed from 10 week Db (streptozotocin 60 mg/Kg , i.v.) or control (C) rats and intima-media aortic preparations were incubated in the absence or presence of palmitate. Glycolysis (microM/g dry wt/h) and glucose oxidation (microM/g dry wt/h) were quantified using 3H-glucose and 14C-glucose, respectively. Na/K-ATPase activity was estimated by the measurement of 86rubidium uptake in the absence and presence of 2 mM ouabain. In the absence of exogenous palmitate, glycolysis (p < 0.05), glucose oxidation (p < 0.01) and the estimated ATP production from exogenous glucose were decreased in aorta from Db rat. However, despite this diminished rate of glycolysis, Na/K ATPase activity was similar in Db and C aorta. Palmitate (0.4 mM) inhibited Na/K ATPase activity and glucose oxidation to a similar extent in both Db and C but had no effect on glycolysis in either group. Elevation of palmitate to 1.2 mM had no additional inhibitory effect on glucose oxidation, Na/K ATPase activity or glycolysis in either the Db or C aorta. The metabolism of exogenous palmitate restored the ATP production in Db to control values. These data demonstrate that, despite the diminished glycolysis and glucose oxidation

  15. Constant-pH MD Simulations of an Oleic Acid Bilayer.

    PubMed

    Vila-Viçosa, Diogo; Teixeira, Vitor H; Baptista, António M; Machuqueiro, Miguel

    2015-05-12

    Oleic acid is a simple molecule with an aliphatic chain and a carboxylic group whose ionization and, consequently, intermolecular interactions are strongly dependent on the solution pH. The titration curve of these molecules was already obtained using different experimental methods, which have shown the lipid bilayer assemblies to be stable between pH 7.0 and 9.0. In this work, we take advantage of our recent implementations of periodic boundary conditions in Poisson-Boltzmann calculations and ionic strength treatment in simulations of charged lipid bilayers, and we studied the ionization dependent behavior of an oleic acid bilayer using a new extension of the stochastic titration constant-pH MD method. With this new approach, we obtained titration curves that are in good agreement with the experimental data. Also, we were able to estimate the slope of the titration curve from charge fluctuations, which is an important test of thermodynamic consistency for the sampling in a constant-pH MD method. The simulations were performed for ionizations up to 50%, because an experimentally observed macroscopic transition to micelles occurs above this value. As previously seen for a binary mixture of a zwitterionic and an anionic lipid, we were able to reproduce experimental results with simulation boxes usually far from neutrality. This observation further supports the idea that a charged membrane strongly influences the ion distribution in its vicinity and that neutrality is achieved significantly far from the bilayer surface. The good results obtained with this extension of the stochastic titration constant-pH MD method strongly supports its usefulness to sample the coupling between configuration and protonation in these types of biophysical systems. This method stands now as a powerful tool to study more realistic lipid bilayers where pH can influence both the lipids and the solutes interacting with them. PMID:26574431

  16. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad.

    PubMed

    Rahuman, A Abdul; Venkatesan, P; Gopalakrishnan, Geetha

    2008-11-01

    In mosquito control programs, botanical origin may have the potential to be used successfully as larvicides. The larvicidal activity of crude acetone, hexane, ethyl acetate, methanol, and petroleum ether extracts of the leaf of Centella asiatica Linn., Datura metal Linn., Mukia scabrella Arn., Toddalia asiatica (Linn.) Lam, extracts of whole plant of Citrullus colocynthis (Linn.) Schrad, and Sphaeranthus indicus Linn. were assayed for their toxicity against the early fourth instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in whole plant petroleum ether extract of C. colocynthis. In the present study, bioassay-guided fractionation of petroleum ether extract led to the separation and identification of fatty acids; oleic acid and linoleic acid were isolated and identified as mosquito larvicidal compounds. Oleic and Linoleic acids were quite potent against fourth instar larvae of Aedes aegypti L. (LC50 8.80, 18.20 and LC90 35.39, 96.33 ppm), Anopheles stephensi Liston (LC50 9.79, 11.49 and LC90 37.42, 47.35 ppm), and Culex quinquefasciatus Say (LC50 7.66, 27.24 and LC90 30.71, 70.38 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance, 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported isolated compounds from C. colocynthis. PMID:18688644

  17. Cytotoxicity of bovine α-lactalbumin: oleic acid complexes correlates with the disruption of lipid membranes.

    PubMed

    Wen, Hanzhen; Glomm, Wilhelm R; Halskau, Oyvind

    2013-11-01

    HAMLET/BAMLET (Human/Bovine α-Lactalbumin Made Lethal to Tumors) is a tumoricidal substance composed of partially unfolded human/bovine α-lactalbumin (HLA/BLA) and several oleic acid (OA) molecules. The HAMLET mechanism of interaction involves an insufficiently understood effect on the membrane or its embedded components. We examined the effect of BLAOA (bovine α-lactalbumin complexed with oleic acid, a HAMLET-like substance) and its individual components on cells and artificial lipid membranes using viability staining and metabolic dyes, fluorescence spectroscopy, leakage integrity assays and microscopy. Our results show a dose-dependency of OA used to prepare BLAOA on its ability to induce tumor cell death, and a correlation between leakage and cell death. BLAOA incorporates into the membrane, tightens the lipid packing and lowers their solvent accessibility. Fluorescence imaging reveals that giant unilamellar vesicles (GUVs) develop blebs and eventually collapse upon exposure to BLAOA, indicating that the lipid packing reorganization can translate into observable morphological effects. These effects are observed to be local in GUVs, and a tightly packed and solvent-shielded lipid environment is associated with leakage and GUV disruption. Furthermore, the effects of BLAOA on membrane are pH dependent, with an optimum of activity on artificial membranes near neutral pHs. While BLA alone is effective at membrane disruption at acidic pHs, OA is ineffective in a pH range of 4.5 to 9.1. Taken together, this supports a model where the lipid, fatty acid and protein components enhance each other's ability to affect the overall integrity of the membrane. PMID:23916586

  18. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites.

    PubMed

    Valapa, Ravi Babu; G, Pugazhenthi; Katiyar, Vimal

    2016-08-01

    This work discusses the influence of novel biofiller, "sucrose palmitate" (SP) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) nanocomposites. The influence of temperature and pH of the solution on the hydrolytic degradation behavior of PLA and PLA-SP nanocomposites was investigated. The variation in the crystallinity of PLA and PLA composites subjected to the hydrolytic degradation process is verified by XRD and DSC analysis. The morphological changes that occurred during the degradation process are observed by scanning electron microscopy (SEM). Thermo-gravimetric analysis confirms the loss of thermal stability of the neat PLA as well as composites after hydrolytic degradation process. Transparency measurements support the enhancement in opacity of both the PLA and PLA-SP nanocomposites with progress in hydrolytic degradation period. PMID:27095433

  19. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism.

    PubMed

    Kunisawa, Jun; Hashimoto, Eri; Inoue, Asuka; Nagasawa, Risa; Suzuki, Yuji; Ishikawa, Izumi; Shikata, Shiori; Arita, Makoto; Aoki, Junken; Kiyono, Hiroshi

    2014-08-15

    Enhancement of intestinal IgA responses is a primary strategy in the development of oral vaccine. Dietary fatty acids are known to regulate host immune responses. In this study, we show that dietary palmitic acid (PA) and its metabolites enhance intestinal IgA responses. Intestinal IgA production was increased in mice maintained on a PA-enriched diet. These mice also showed increased intestinal IgA responses against orally immunized Ag, without any effect on serum Ab responses. We found that PA directly stimulates plasma cells to produce Ab. In addition, mice receiving a PA-enriched diet had increased numbers of IgA-producing plasma cells in the large intestine; this effect was abolished when serine palmitoyltransferase was inhibited. These findings suggest that dietary PA regulates intestinal IgA responses and has the potential to be a diet-derived mucosal adjuvant. PMID:25031459

  20. The effect of cellulose molar mass on the properties of palmitate esters.

    PubMed

    Willberg-Keyriläinen, Pia; Talja, Riku; Asikainen, Sari; Harlin, Ali; Ropponen, Jarmo

    2016-10-20

    Nowadays one of the growing trends is to replace oil-based products with cellulose-based materials. Currently most cellulose esters require a huge excess of chemicals and have therefore, not been broadly used in the industry. Here, we show that decreasing the molar mass of cellulose by ozone hydrolysis provides cellulose functionalization with less chemical consumption. To reveal the differences in reactivity and chemical consumption, we showed esterification of both native cellulose and ozone treated hydrolyzed cellulose. Based on the results, the molar mass of the starting cellulose has a significant effect on the end product's degree of substitution and properties. Furthermore, molar mass controlled palmitate esters form mechanically strong, flexible and optically transparent films with excellent water barrier properties. We anticipate that molar mass controlled cellulose will provide a starting point for the greater use of cellulose based materials, in various application, such as films and composites. PMID:27474646

  1. [Clinical evaluation of pipothiazine and its palmitic ester in the therapy of schizophrenia].

    PubMed

    Costa, J G; Silva, E; Dreyfus, J F

    1981-04-01

    20 schizophrenic patients presenting with an acute episode were treated first, whilst hospitalized, by a single oral dose of pipotiazine, then, when their symptomatology had been controlled, thus allowing their discharge, by a monthly injection of pipotiazine palmitate for 6 months. The patients were assessed with a CGI and the BPRS. The tablets provided control of the symptoms of most patients as early as the second week of treatment, the improvement bearing particularly on thought disorder, concept disorganization, excitation, anxiety, depression, tension and somatic symptoms. This led to an improvement in activities and sociability. Injections not only provided the prevention of relapses but even an improvement over the already obtained results which allowed these patients to insert themselves in the community. Adverse effects were infrequent and easily controlled. There were no abnormal modifications of the vital signs and laboratory tests. Pipotiazine appears as an extremely useful drug for countries in which the psychiatric treatment network is still being constructed. PMID:6118086

  2. Paliperidone Palmitate Associated with Necrotizing Deep Tissue Infection and Sepsis Requiring Surgical Intervention

    PubMed Central

    Leung, Jonathan G.; Kooda, Kirstin J.; Frazee, Erin N.; Nelson, Sarah; Moore, Katherine M.

    2015-01-01

    Long-acting injectable antipsychotics provide the delivery of medication over an extended period of time requiring administration typically only every 2 to 4 weeks. The side effect profile of a long-acting injectable antipsychotic is predictable and similar to the oral formulation. However, injection site reactions may occur with this novel delivery system. The risk of an injection site reaction may be greater with the repeated administration of a lipophilic decanoate formulation and include pain, development of indurations, and fibrosis. Severe complications from injection site reactions have rarely been described in the literature with newer agents. We report the first case of a patient prescribed paliperidone palmitate every 3 weeks that developed severe sepsis requiring vasopressors and intubation due to delayed relayed recognition of a necrotizing infection at an injection site. Clinicians should be alerted to screen for injection site reactions when there is an unknown source infection in a patient receiving a long-acting injectable antipsychotic. PMID:26843999

  3. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate variations

    NASA Astrophysics Data System (ADS)

    Huang, Yongsong; Shuman, Bryan; Wang, Yi; Webb, Thompson, III

    2002-12-01

    The rich paleoclimate information preserved in lacustrine sedimentary organic matter can be difficult to extract because of the mixed terrestrial and aquatic inputs. Herein we demonstrate that compound-specific hydrogen isotope analysis of palmitic acid, (PA), a ubiquitous compound in lacustrine sediments, captures the δD signals of lake water. Samples collected across a diverse range of 33 North American lakes show a strong correlation between water and δDPA values. At Crooked Pond, Massachusetts, the δDPA changes in a 14 k.y. sediment record parallel temperature trends inferred from fossil pollen. Downcore changes reveal differences between climatic trends in New England and in Greenland that are consistent with important regional differences in climate controls.

  4. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  5. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action.

    PubMed

    Hoque, Mehboob; Dave, Sandeep; Gupta, Pawan; Saleemuddin, Mohammed

    2013-01-01

    A chance discovery of the tumoricidal action of a human milk fraction led to the characterization of the active component as oleic acid complex of the α-lactalbumin, which was given the acronym HAMLET. We report in this study that the oleic acid complex of bovine α-lactalbumin (BAMLET) is hemolytic to human erythrocytes as well as to those derived from some other mammals. Indirect immunofluorescence analysis suggested binding of BAMLET to erythrocytes prior to induction of hemolysis. Free OA was hemolytic albeit at higher concentrations, while sodium oleate caused hemolysis at far lower concentrations. Amiloride and BaCl2 offered protection against BAMLET-induced hemolysis suggesting the involvement of a cation leak channel in the process. BAMLET coupled to CNBr-activated Sepharose was not only hemolytic but also tumoricidal to Jurkat and MCF-7 cells in culture. The Sepharose-linked preparation was however not toxic to non-cancerous peritoneal macrophages and primary adipocytes. The tumoricidal action was studied using the MTT-assay while apoptosis induction measured by the annexin V-propidium iodide assay. Repeated incubation of the immobilized BAMLET with erythrocytes depleted oleic acid and decreased the hemolytic activity of the complex. Incubation of MCF-7 and Jurkat cells with OA, soluble or immobilized BAMLET resulted in increase in the uptake of Lyso Tracker Red and Nile red by the cells. The data presented support the contention that oleic acid plays the key role, both in BAMLET-induced hemolysis and tumoricidal action. PMID:24039698

  6. Heritability of Oleic Acid Seed Content in Soybean Oil and its Genetic Correlation with Fatty Acid and Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid seed content is an important determinant of the nutritional value and the oxidative stability of soybean oil. Breeding for higher oleate content mandates the estimation of the heritability and the genetic correlations between oleate and fatty acid traits and between oleate and agronomic t...

  7. Next generation transcriptome sequencing of the high oleic peanut Cultivar OLin and Identification of SNPs between cultivars.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total RNA was extracted from leaf, root and immature pod (yellow stage of development) tissue of greenhouse grown plants of the high oleic Texas AgriLife cultivar OLin and analyzed by next generation DNA sequencing. Illumina (Solexa) sequencing of the complete transcriptome of OLin provided 28.8 mi...

  8. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  9. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  10. Mid-oleic/ultra low linolenic acid soybean oil - a healthful new alternative to hydrogenated oils for frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests wer...

  11. EFFECT OF DIETARY CLA ON METABOLISM OF ISOTOPE-LABELED OLEIC, LINOLEIC AND CONJUGATED LINOLEIC ACID ISOMERS IN WOMEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal studies suggest that conjugated linoleic acid (CLA) has potential health benefits, but no definitive metabolic data are available to support the possibility that it has physiological activity in humans. The purpose of this study was to determine the effect of dietary CLA on oleic, linoleic, ...

  12. The clinical availability of oleic acid as an enhancer in optical clearing of skin tissue in vitro

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Wang, Ruikang K.

    2005-03-01

    Currently, tissue optical clearing technique has shown a great potential in enhancing the capabilities of non-invasive light-based diagnostic and imaging techniques due to the increased light penetration into tissue. In order to facilitate the clinical availability of tissue optical clearing technique by the use of hyperosmotic agents, this study introduces oleic acid, a mono-unsaturated fatty acid which is generally believed to be safe, as enhancer and investigates the synergistic effect of oleic acid and propylene glycol (PG) on optical clearing of skin tissue in vitro. Experimental results from near infrared spectroscopy, mass loss measurement and transdermal skin resistance (TSR) assessment showed that, compared with dimethyl sulfoxide (DMSO) as enhancer, oleic acid obtained the similar clearing effect. However, due to its potential toxicity, DMSO has been controversial in clinical application. Therefore, in terms of optical application and clinic safety, the results presented revealed that oleic acid could be an optimum choice as enhancer for optical clearing of skin tissue.

  13. Physical and Chemical Characterizations of Normal and High-Oleic Oils from Nine Commercial Cultivars of Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Density and viscosity data as a function of temperature (5 to 100°C) were collected for oils (normal and high-oleic) from 9 cultivars of peanut. Density decreased linearly (R squared, greater than or equal to 0.99) with increasing temperature for all oils, whereas viscosity (dynamic or kinematic) d...

  14. FRYING STABILITY OF PURIFIED MID-OLEIC SUNFLOWER OIL TRIACYLGLYCEROLS WITH ADDED PURE TOCOPHEROLS AND TOCOPHEROL MIXTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the effects of the addition of pure tocopherols to triacylglycerols, alpha, gamma, and delta tocopherols were added singly and in various combinations to stripped mid-oleic sunflower oil (SMOSUN). Tortilla chips were fried in the treated oils and then aged at ambient temperature to det...

  15. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  16. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid, a monounsaturated, omega-9 fatty acid found in peanut (Arachis hypogaea L.) oil is an important seed quality trait because it provides increased shelf life, improved flavor, enhanced fatty acid composition, and has a beneficial effect on human health. Hence, a concentrated effort has be...

  17. A multi-component approach to screening F1 hybrid peanut seed for disease resistance and oleic acid content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of cultivated peanut, an important agronomic crop throughout the United States and the world, is consistently threatened by various diseases and pests. Furthermore, the peanut industry in the Southwestern U.S. currently demands varieties with high oleic acid content. In order to acc...

  18. Paliperidone Palmitate Once-Monthly Injectable Treatment for Acute Exacerbations of Schizoaffective Disorder.

    PubMed

    Fu, Dong-Jing; Turkoz, Ibrahim; Simonson, R Bruce; Walling, David; Schooler, Nina; Lindenmayer, Jean-Pierre; Canuso, Carla; Alphs, Larry

    2016-08-01

    The optimal treatment for schizoaffective disorder (SCA) is not well established. In this initial 6-month open-label treatment period of a large, multiphase, relapse-prevention study, the efficacy and safety of paliperidone palmitate once-monthly (PP1M) injectable were evaluated in subjects with symptomatic SCA. Subjects with acute exacerbation of SCA (ie, with psychotic and either depressive and/or manic symptoms) were enrolled and treated with PP1M either as monotherapy or in combination with antidepressants or mood stabilizers (combination therapy group). After flexible-dose treatment with PP1M for 13 weeks, stabilized subjects continued into a 12-week fixed-dose PP1M treatment period. A total of 667 subjects were enrolled; 320 received monotherapy and 347 received PP1M as combination therapy; 334 subjects completed the entire 25-week treatment. Statistically significant and clinically meaningful improvements from baseline were observed for all efficacy measures in psychosis (per Positive and Negative Syndrome Scale), mood symptoms (per Young Mania Rating Scale and Hamilton Depression Rating Scale-21 items), and functioning (per Personal and Social Performance Scale) from week 1 to all time points during the 25-week treatment period (P < 0.001). Similar improvements in efficacy measures were observed between subjects receiving monotherapy or combination therapy. Efficacy benefits persisted throughout the 25-week period. The most common adverse events were akathisia (11.1%), injection-site pain (10.6%), and insomnia (10.0%). Paliperidone palmitate once-monthly administered as monotherapy or in combination with mood stabilizers or antidepressants in patients with an acute exacerbation of SCA provided rapid, broad, and persistent reduction in psychotic, depressive, and manic symptoms, as well as improved functioning. PMID:27322760

  19. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    SciTech Connect

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A. )

    1990-07-01

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with (3H)palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA (ethylene glycol-bis-(beta-aminoethyl ether))-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton.

  20. Paliperidone Palmitate Once-Monthly Injectable Treatment for Acute Exacerbations of Schizoaffective Disorder

    PubMed Central

    Fu, Dong-Jing; Turkoz, Ibrahim; Simonson, R. Bruce; Walling, David; Schooler, Nina; Lindenmayer, Jean-Pierre; Canuso, Carla; Alphs, Larry

    2016-01-01

    Abstract The optimal treatment for schizoaffective disorder (SCA) is not well established. In this initial 6-month open-label treatment period of a large, multiphase, relapse-prevention study, the efficacy and safety of paliperidone palmitate once-monthly (PP1M) injectable were evaluated in subjects with symptomatic SCA. Subjects with acute exacerbation of SCA (ie, with psychotic and either depressive and/or manic symptoms) were enrolled and treated with PP1M either as monotherapy or in combination with antidepressants or mood stabilizers (combination therapy group). After flexible-dose treatment with PP1M for 13 weeks, stabilized subjects continued into a 12-week fixed-dose PP1M treatment period. A total of 667 subjects were enrolled; 320 received monotherapy and 347 received PP1M as combination therapy; 334 subjects completed the entire 25-week treatment. Statistically significant and clinically meaningful improvements from baseline were observed for all efficacy measures in psychosis (per Positive and Negative Syndrome Scale), mood symptoms (per Young Mania Rating Scale and Hamilton Depression Rating Scale—21 items), and functioning (per Personal and Social Performance Scale) from week 1 to all time points during the 25-week treatment period (P < 0.001). Similar improvements in efficacy measures were observed between subjects receiving monotherapy or combination therapy. Efficacy benefits persisted throughout the 25-week period. The most common adverse events were akathisia (11.1%), injection-site pain (10.6%), and insomnia (10.0%). Paliperidone palmitate once-monthly administered as monotherapy or in combination with mood stabilizers or antidepressants in patients with an acute exacerbation of SCA provided rapid, broad, and persistent reduction in psychotic, depressive, and manic symptoms, as well as improved functioning. PMID:27322760

  1. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells.

    PubMed

    Wehinger, Sergio; Ortiz, Rina; Díaz, María Inés; Aguirre, Adam; Valenzuela, Manuel; Llanos, Paola; Mc Master, Christopher; Leyton, Lisette; Quest, Andrew F G

    2015-05-01

    A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation. PMID:25572853

  2. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.

    PubMed

    Maduko, C O; Akoh, C C; Park, Y W

    2007-05-01

    Infant milk fat analogs resembling human milk fat were synthesized by an enzymatic interesterification between tripalmitin, coconut oil, safflower oil, and soybean oil in hexane. A commercially immobilized 1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as a biocatalyst. The effects of substrate molar ratio, reaction time, and incubation temperature on the incorporation of palmitic acid at the sn-2 position of the triacylglycerols were investigated. A central composite design with 5 levels and 3 factors consisting of substrate ratio, reaction temperature, and incubation time was used to model and optimize the reaction conditions using response surface methodology. A quadratic model using multiple regressions was then obtained for the incorporation of palmitic acid at the sn-2 positions of glycerols as the response. The coefficient of determination (R2) value for the model was 0.845. The incorporation of palmitic acid appeared to increase with the decrease in substrate molar ratio and increase in reaction temperature, and optimum incubation time occurred at 18 h. The optimal conditions generated from the model for the targeted 40% palmitic acid incorporation at the sn-2 position were 3 mol/mol, 14.4 h, and 55 degrees C; and 2.8 mol/mol, 19.6 h, and 55 degrees C for substrate ratio (moles of total fatty acid/moles of tripalmitin), time, and temperature, respectively. Infant milk fat containing fatty acid composition and sn-2 fatty acid profile similar to human milk fat was successfully produced. The fat analogs produced under optimal conditions had total and sn-2 positional palmitic acid levels comparable to that of human milk fat. PMID:17430912

  3. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate. PMID:27154056

  4. Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids.

    PubMed

    Avdeev, M V; Bica, D; Vékás, L; Aksenov, V L; Feoktystov, A V; Marinica, O; Rosta, L; Garamus, V M; Willumeit, R

    2009-06-01

    The structure of ferrofluids (magnetite in decahydronaphtalene) stabilized with saturated mono-carboxylic acids of different chain lengths (lauric, myristic, palmitic and stearic acids) is studied by means of magnetization analysis and small-angle neutron scattering. It is shown that in case of saturated acid surfactants, magnetite nanoparticles are dispersed in the carrier approximately with the same size distribution whose mean value and width are significantly less as compared to the classical stabilization with non-saturated oleic acid. The found thickness of the surfactant shell around magnetite is analyzed with respect to stabilizing properties of mono-carboxylic acids. PMID:19376524

  5. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  6. Phytochemical and biological studies on some Egyptian seaweeds.

    PubMed

    Elsayed, Khaled N M; Radwan, Mohamed M; Hassan, Sherif H M; Abdelhameed, Mohamed S; Ibraheem, Ibraheem B; Ross, Samir A

    2012-09-01

    Extracts of four species of seaweeds, Ulva lactuca L. (green), Liagora farinosa Lamouroux (red), Padina pavonia L. and Turbinaria ornata Turn (brown), were screened for their antimicrobial, and antimalarial activities, and binding affinity for human opioid receptors. Phytochemical analysis led to the isolation and identification of 10 constituents: fucosterol, stearic acid, palmitic acid, palmitoleic acid, oleic acid, myristic acid, p-hydroxybenzoic acid, beta-sitosterol, glycerol-1-olyl-3-palmotyl-2-galactoside, and glycerol-1,3-diolyl, The last two compounds displayed strong binding affinity to delta opioid receptors. PMID:23074910

  7. Ant repellent effect of the sternal gland secretion ofPolistes dominulus (Christ) andP. sulcifer (Zimmermann). (Hymenoptera: Vespidae).

    PubMed

    Dani, F R; Cannoni, S; Turillazzi, S; David Morgan, E

    1996-01-01

    The long-chain carboxylic acids identified in the sternal gland secretion ofPolistes dominulus andP. sulcifer females were tested individually on three species of ants,Crematogaster scutellaris, Formica cunicularia, andLasius sp., in order to verify if they have a repellent effect. The unsaturated acids (palmitoleic, linoleic, and oleic) act as repellents of all three ant species, while the saturated acids (lauric, myristic, palmitic, and stearic) have no effect. The mixture reproducing the secretion of the sternal glands ofP. dominulus maintained its repellency for at least four days. PMID:24226981

  8. Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance.

    PubMed

    Tsikas, Dimitrios; Zoerner, Alexander A; Jordan, Jens

    2011-11-01

    Compared to the arachidonic acid (C20:4) cascade, the oleic acid (C18:1) family comprises a handful known metabolites. The pathophysiology of oleic acid and its oxidized and nitrated metabolites, i.e., cis-9,10-epoxyoctadecanoic acid (cis-EpOA) and the two vinylic nitro-oleic acids cis-9-nitro-oleic acid (9-NO(2)-OA) and cis-10-nitro-oleic acid (10-NO(2)-OA), is only little investigated and little understood. cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA have been detected in plasma of healthy and ill human subjects by means of gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques in their acid and esterified forms. cis-EpOA is formed from oleic acid by the catalytic action of various cytochrome P450 isozymes. In end-stage liver disease, cis-EpOA plasma concentration is lower than in healthy subjects suggesting liver as the main organ responsible for cis-EpOA synthesis. The origin of 9-NO(2)-OA and 10-NO(2)-OA and of other nitrated oleic acid metabolites is unknown. In vitro models, nitro-oleic acid species can be formed non-enzymatically from oleic acid and nitrogen dioxide. Thus, endogenous nitro-oleic acids could serve as biomarkers of fatty acid nitration by reactive nitrogen species. Synthetic 9-NO(2)-OA and 10-NO(2)-OA at concentrations of three orders of magnitude higher than their endogenous counterparts have interesting pharmacological features and are currently intensely investigated. The present article reviews and discusses currently available analytical methods for the quantitative determination of cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA in biological samples, notably in human plasma, and the potential biological significance of these oleic acid metabolites. Special emphasis is given to GC-MS/MS and LC-MS/MS methods utilizing the stable-isotope dilution technique. The sensitivity and specificity of the MS/MS approach make electron-capture negative ion chemical ionization (ECNICI) GC

  9. Study of the surface modification with oleic acid of nanosized HfO2 synthesized by the polymerized complex derived sol-gel method

    NASA Astrophysics Data System (ADS)

    Ramos-González, R.; García-Cerda, L. A.; Quevedo-López, M. A.

    2012-06-01

    The synthesis of nanosized hafnium oxide by the polymerized complex derived sol-gel method is reported. The structural and morphological characterization of the HfO2 was carried out by X-ray diffraction and scanning electron microscopy. The surface of hafnium oxide nanoparticles was modified by capping with oleic acid. The nanoparticle surface area was measured by the gas adsorption technique in order to determine the minimal amount of oleic acid needed to obtain a uniform coverage of the hafnium oxide. The existence of organic layer can be confirmed by Fourier transform spectroscopy, solid state nuclear magnetic resonance spectroscopy, thermal gravimetric analysis and transmission electron microscopy. The FTIR and solid state NMR results reveal that oleic acid is chemisorbed as a carboxylate onto the HfO2 nanoparticle surface and confirm the formation of a monomolecular layer of oleic acid surrounding the HfO2. The cover density of oleic acid on the HfO2 increases with the amount of oleic acid used to modify the nanoparticles and the surface properties of HfO2 nanoparticles modified with oleic acid change from hydrophilic to hydrophobic.

  10. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    SciTech Connect

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  11. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    SciTech Connect

    Rogue, Alexandra; Anthérieu, Sébastien; Vluggens, Aurore; Umbdenstock, Thierry; Claude, Nancy; Moureyre-Spire, Catherine de la; Weaver, Richard J.; Guillouzo, André

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  12. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  13. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    PubMed

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3. PMID:27374579

  14. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue.

    PubMed

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner Henke, Kateřina; Škop, Vojtěch; Malínská, Hana; Trnovská, Jaroslava; Kazdová, Ludmila; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-06-01

    Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat. PMID:27113533

  15. Intramuscular long-acting paliperidone palmitate in acute patients with schizophrenia unsuccessfully treated with oral antipsychotics.

    PubMed

    Hargarter, Ludger; Cherubin, Pierre; Bergmans, Paul; Keim, Sofia; Rancans, Elmars; Bez, Yasin; Parellada, Eduard; Carpiniello, Bernardo; Vidailhet, Pierre; Schreiner, Andreas

    2015-04-01

    In this prospective multicentre, open-label, 6-month study (Paliperidone Palmitate Flexible Dosing in Schizophrenia [PALMFlexS]), tolerability, safety and treatment response with paliperidone palmitate (PP) were explored in patients with acute symptoms of schizophrenia following switching from previously unsuccessful treatment with oral antipsychotics. This pragmatic study was conducted in a large, more representative sample of the general schizophrenia population compared to randomized controlled pivotal trials, to specifically mimic real-world clinical situations. After initiation on Day 1 and Day 8, patients received PP once monthly at flexible doses (50-150mgeq.) intramuscularly. The primary efficacy outcome was defined as the percentage of patients achieving ≥30% improvement in PANSS total score from baseline (BL) to last-observation-carried-forward (LOCF) endpoint (EP). Safety and tolerability assessments included Extrapyramidal Symptom Rating Scale (ESRS) total score and treatment-emergent adverse events (TEAEs). Overall, 212 patients received PP at least once after switching from oral antipsychotics, primarily due to lack of efficacy (45.8%). Significant improvements from BL in mean (SD) PANSS total score were observed from Day 8 onwards (BL to LOCF EP: -31.0 [29.0]; p<0.0001). At endpoint, two-thirds (66.7%) and 43.5% of patients achieved a ≥30% and ≥50% improvement in mean PANSS total score, respectively. PP was associated with significant improvements across secondary measures of symptom severity, subjective well-being, medication satisfaction, illness-related disorders of activity and participation, and patient functioning (p<0.0001; BL to LOCF EP). PP was generally well tolerated, with significant reductions in ESRS total score (p<0.0001) and mainly mild-to-moderate TEAEs. TEAEs reported in ≥5% of patients were injection-site pain (13.7%), insomnia (10.8%), psychotic disorder (10.4%), headache and anxiety (both 6.1%). The PALMFlexS study

  16. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate

    PubMed Central

    Garland, P. B.; Shepherd, D.; Yates, D. W.

    1965-01-01

    1. Fluorimetric assays are described for CoASH, acetyl-CoA and long-chain fatty acyl-CoA, and are sensitive to at least 50μμmoles of each. 2. Application of these assays to rat-liver mitochondria oxidizing palmitate in the absence and presence of carnitine indicated two pools of intramitochondrial CoA. One pool could be acylated by palmitate and ATP, and the other pool acylated by palmitate with ATP and carnitine, or by palmitoylcarnitine alone. 3. The intramitochondrial content of acetyl-CoA is increased by the oxidation of palmitate both in the absence and presence of l-malate. 4. The conversion of palmitoyl-CoA into acetyl-CoA by β-oxidation takes place without detectable accumulation of acyl-CoA intermediates. PMID:16749169

  17. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    NASA Astrophysics Data System (ADS)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  18. Preparation of robust polyamide microcapsules by interfacial polycondensation of p-phenylenediamine and sebacoyl chloride and plasticization with oleic acid.

    PubMed

    Rosa, Natacha; Martins, Gabriela V; Bastos, Margarida M S M; Gois, Joana R; Coelho, Jorge F J; Marques, Juliana; Tavares, Carlos J; Magalhães, Fernão D

    2015-01-01

    Microcapsules produced by interfacial polycondensation of p-phenylenediamine (PPD) and sebacoyl chloride (SC) were studied. The products were characterized in terms of morphology, mean diameter and effectiveness of dodecane encapsulation. The use of Tween 20 as dispersion stabilizer, in comparison with polyvinyl alcohol (PVA), reduced considerably the mean diameter of the microcapsules and originated smoother wall surfaces. When compared to ethylenediamine (EDA), microcapsules produced with PPD monomer were more rigid and brittle, prone to fracture during processing and ineffective retention of the core liquid. The use of diethylenetriamine (DETA) cross-linker in combination with PPD did not decrease capsule fragility. On the other hand, addition of a small fraction of oleic acid to the organic phase remarkably improved wall toughness and lead to successful encapsulation of the core-oil. Oleic acid is believed to act as a plasticizer. Its incorporation in the polymeric wall was demonstrated by FTIR and (1)H-NMR. PMID:26052719

  19. Permeability of water and oleic acid in composite films of phase separated polypropylene and cellulose stearate blends.

    PubMed

    Krasnou, Illia; Gårdebjer, Sofie; Tarasova, Elvira; Larsson, Anette; Westman, Gunnar; Krumme, Andres

    2016-11-01

    Cellulose esters with long carbon side chains (e.g. stearate) were produced via a homogenous reaction in ionic liquids. The degree of substitution was calculated to approximately 2. The melt rheology was studied for the pure cellulose esters but also combinations of the esters and polypropylene to study the processability of a blended composite material. It was shown that the compatibility between the two components was weak, which resulted in a phase-separated composite material. The morphology and permeability of water and oleic acid of the composite films were studied and it was shown that the water permeability decreased upon addition of the cellulose ester to the polymer. The permeability of oleic acid was however unchanged, which is most probable a result of high solubility in the cellulose ester rich domains of the composites. Also, the following hypothesis is stated: cellulose stearate influence the polypropylene crystallization process by decreasing the size of spherulites. PMID:27516292

  20. Uptake of Cs and Sr radionuclides within oleic acid coated nanomagnetite-hematite composite

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, J.; Sengupta, Pranesh; Sen, D.; Mazumdar, S.; Tyagi, A. K.

    2015-12-01

    Nano-sized magnetic composite sorbent material like nanomagnetite - nanohematite has been synthesized for uptake of cesium and strontium ions from low level environmental effluents in effective decontamination from waste water. Synthesis of material was based on co-precipitation route and in situ coating of oleic acid on magnetite-hematite nanocomposite. Magnetic properties were studied for both the uncoated as prepared and coated nanocomposite materials. The magnetization curves showed no hysteresis or remnant magnetization. Both the materials exhibited super-paramagnetism. Saturation magnetization of the coated nanocomposite was found to be 30 emu/g whereas for as prepared nanocomposite it was 64 emu/g. Detailed characterizations of the materials was carried out by X ray diffraction and Transmission electron microscopic techniques and the grain sizes were found to vary between 10 and 15 nm range. Sorption experiments on cesium and strontium were carried out by batch mode equilibrium study. The uptake studies were performed by Atomic Absorption Spectroscopy for cesium ions and inductively coupled Plasma - Atomic Emission Spectroscopy for strontium ions. Size distributions of the particle were measure through Small Angle X ray Scattering (SAXS) experiment. Shifting in weak repulsive potential facilitates enhanced sorption for more period of time in stable condition in comparison of uncoated nanocomposite which forms larger aggregates.

  1. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  2. CD36 is involved in oleic acid detection by the murine olfactory system

    PubMed Central

    Oberland, Sonja; Ackels, Tobias; Gaab, Stefanie; Pelz, Thomas; Spehr, Jennifer; Spehr, Marc; Neuhaus, Eva M.

    2015-01-01

    Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system. PMID:26441537

  3. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens.

    PubMed

    Chung, Si-Yin; Mattison, Christopher P; Reed, Shawndrika; Wasserman, Richard L; Desormeaux, Wendy A

    2015-08-01

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as α-lactalbumin and β-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or cashew allergen (Ana o 2) was treated with or without 5mM sodium oleate at 70°C for 60 min (T1) or under the same conditions with an additional overnight incubation at 37°C (T2). After treatment, the samples were dialyzed and analyzed by SDS-PAGE and for OA content. IgE binding was evaluated by ELISA and western blot, using a pooled serum or plasma from individuals with peanut or cashew allergies. Results showed that OA at a concentration of 5mM reduced IgE binding to the allergens. Peanut sample T2 exhibited a lower IgE binding and a higher OA content (protein-bound) than T1. Cashew allergen T2 also showed a reduction in IgE binding. We conclude that OA reduces the allergenic properties of peanut extract and cashew allergen by binding to the allergens. Our findings indicate that OA in the form of sodium oleate may be potentially useful as a coating to reduce the allergenic properties of peanut and cashew allergens. PMID:25766831

  4. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer

    PubMed Central

    2011-01-01

    This article reports a recent study on the application of a two-phase closed thermosyphon (TPCT) in a thermosyphon for economizer (TPEC). The TPEC had three sections of equal size; the evaporator, the adiabatic section, and the condenser, of 250 mm × 250 mm × 250 mm (W × L × H). The TPCT was a steel tube of 12.7-mm ID. The filling ratios chosen to study were 30, 50, and 80% with respect to the evaporator length. The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min. Five working fluids investigated were: water, water-based silver nanofluid with silver concentration 0.5 w/v%, and the nanofluid (NF) mixed with 0.5, 1, and 1.5 w/v% of oleic acid (OA). The operating temperatures were 60, 70, and 80°C. Experimental data showed that the TPEC gave the highest heat flux of about 25 kW/m2 and the highest effectiveness of about 0.3 at a filling ratio of 50%, with the nanofluid containing 1 w/v% of OA. It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study. Moreover, the presence of OA had clearly contributed to raise the effectiveness of the nanofluid. PMID:21711856

  5. 6LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Carturan, S.; Maggioni, G.; Marchi, T.; Gramegna, F.; Cinausero, M.; Quaranta, A.; Palma, M. Dalla

    2016-07-01

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding 6LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped 6LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of 6Li. Thin samples with increasing 6Li concentration and thicker ones with fixed 6Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of 6LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.

  6. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.

    PubMed

    Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul

    2010-01-01

    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively. PMID:20124754

  7. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    PubMed

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment. PMID:27137808

  8. Participation of oleic acid in the formation of the aortic aneurysm in Marfan syndrome patients.

    PubMed

    Soto, María Elena; Iturriaga Hernández, Alejandra Valeria; Guarner Lans, Verónica; Zuñiga-Muñoz, Alejandra; Aranda Fraustro, Alberto; Velázquez Espejel, Rodrigo; Pérez-Torres, Israel

    2016-03-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation and endothelial dysfunction that lead to early acute dissection and rupture of the aorta and sudden death. Alteration in fatty acid (FA) metabolism can stimulate nitric oxide (NO) overproduction which increases the activity of the inducible form of NO synthase (iNOS) that is involved in endothelial dysfunction. We evaluated the participation of FA in the formation of thoracic aneurysms in MFS and its relation to the iNOS. Oleic acid (OA), iNOS, citrulline, nitrates and nitrites, TGF-β1, TNF-α, monounsaturated FA and NO synthase activity were significantly increased (p<0.05) in tissue from the aortas of MFS. Saturated FA, eNOS and HDL were significantly decreased (p<0.05). Arachidonic acid, delta-9 desaturase tended to increase and histological examination showed an increase in cystic necrosis, elastic fibers and collagen in MFS. The increase in OA contributes to the altered pathway of iNOS, which favors endothelial dysfunction and formation of the aortic aneurysms in MFS. PMID:27163200

  9. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro

    PubMed Central

    Tang, Shaoxun; Guan, Leluo; He, Zhixiong; Guan, Yongjuan; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe; Kang, Jinhe; Wang, Min

    2016-01-01

    A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro. PMID:27299526

  10. Cluster headache: incorporation of (1-14C)oleic acid into phosphatidylserine in polymorphonuclear cells.

    PubMed

    Fragoso, Y D; Stovner, L J; Bjerve, K S; Sjaastad, O

    1989-09-01

    As recently demonstrated by our group, polymorphonuclear cells (PMNs) from cluster headache patients have an increased ability to incorporate arachidonic acid (AA) and L-serine into phosphatidylserine (PS). To evaluate whether there is an increased incorporation into PS also from fatty acids not involved in eicosanoid metabolism, PMNs from controls (n = 14) and cluster headache patients (n = 12) were incubated with (1-14C)oleic acid. After 1 h 2.7% +/- 1.1 (mean value +/- SD) of the glycerophospholipid radioactivity was found in PS in controls, whereas 4.2% +/- 1.2 was found in cluster headache patients (p less than 0.005). For phosphatidylcholine (PC) the corresponding figures were 74.2 +/- 5.4 in controls and 66.7 +/- 7.6 in cluster headache patients (p less than 0.01). The results suggest that the de novo biosynthesis of PS is increased and the biosynthesis of PC is decreased in cluster headache. The results may have an effect on the role of PS as an obligate protein kinase C activator. PMID:2507162

  11. Oleic Acid-Induced Atomic Alignment of ZnS Polyhedral Nanocrystals.

    PubMed

    van der Stam, Ward; Rabouw, Freddy T; Vonk, Sander J W; Geuchies, Jaco J; Ligthart, Hans; Petukhov, Andrei V; de Mello Donega, Celso

    2016-04-13

    Ordered two-dimensional (2D) superstructures of colloidal nanocrystals (NCs) can be tailored by the size, shape, composition, and surface chemistry of the NC building blocks, which can give directionality to the resulting superstructure geometry. The exact formation mechanism of 2D NC superstructures is however not yet fully understood. Here, we show that oleic acid (OA) ligands induce atomic alignment of wurtzite ZnS bifrustum-shaped NCs. We find that in the presence of OA ligands the {002} facets of the ZnS bifrustums preferentially adhere to the liquid-air interface. Furthermore, OA ligands induce inter-NC interactions that also orient the NCs in the plane of the liquid-air interface, resulting in atomically aligned 2D superstructures. We follow the self-assembly process in real-time with in situ grazing incidence small-angle X-ray scattering and find that the NCs form a hexagonal superstructure at early stages after which they come closer over time, resulting in a close-packed NC superstructure. Our results demonstrate the profound influence that surface ligands have on the directionality of 2D NC superstructures and highlight the importance of detailed in situ studies in order to understand the self-assembly of NCs into 2D superstructures. PMID:26930124

  12. Behaviour of oleic acid-depleted bovine alpha-lactalbumin made LEthal to tumor cells (BAMLET).

    PubMed

    Hoque, Mehboob; Gupta, Jyoti; Rabbani, Gulam; Khan, Rizwan Hasan; Saleemuddin, M

    2016-05-24

    Oleic acid (OA) complexes of human alpha-lactalbumin (α-LA) and several other proteins are effective in the killing of a variety of tumor cells. While debate on whether the key component of the complexes is the OA or protein continues, studies probing the mechanism of action of the complexes at the tumor cell surface or in the cell interior assume the action of a molecule in the form of an undissociated complex. Recent evidence however suggests that OA complexes of protein are stripped of bound OA on interaction with artificial or natural membranes before entering the cell. Properties of BAMLET stripped of its OA by exposure to erythrocytes (ET-BAMLET) were investigated in the study. ET-BAMLET resembled α-LA in its inability to induce hemolysis of erythrocytes and behaviour in a gel filtration column. Spectroscopy techniques-fluorescence, far- and near UV CD as well as calorimetry and proteolysis however suggest the molecule to be different both from native α-LA and the apo form. Remarkably, unlike native α-LA and apo-α-LA, ET-BAMLET binds OA and turns hemolytic by simple mixing with the fatty acid around neutral pH. Since BAMLET/HAMLET incubated cells take up large amounts of OA, the study suggests the possibility of ET-BAMLET combining with OA and reforming the complex inside the cells. PMID:27109252

  13. Oleic Acid Coated Gelatin Nanoparticles Impregnated Gel for Sustained Delivery of Zaltoprofen: Formulation and Textural Characterization

    PubMed Central

    Pawar, Savita; Pande, Vishal

    2015-01-01

    Purpose: In the present study, we have formulated zaltoprofen loaded, surface decorated, biodegradable gelatin nanogel and evaluated its texture characterization. Methods: The method used to prepare gelatin nanoparticles (GNP) was ‘two step desolvation’ and its surface decoration was performed with oleic acid (OA). The GNP was optimized by DOE software. Nanogels were evaluated for particle size entrapment efficiency, texture properties, SEM, in-vitro, ex-vivo drug release studies, in-vitro characterization, stability and in vivo evaluation of nanogel for anti-inflammatory activity was carried out by carrageenan induced rat paw edema method as an anti-inflammatory experimental model. Results: The formulated GNP with particle size and entrapment efficiency of optimized batch was found to be 247.1 nm and 76.21% respectively. The SEM of GNP shows smooth and spherical shape. In-vitro and Ex-vivo drug release shows that there was 69.47% and 78.59% drug released within 48 hrs. It follows Ritger peppas model, which indicates sustained drug release. The good texture properties of nanogel were observed from texture analysis graphs.In vivo studies of our formulation give significant results compared to the marketed nanogel. Stability data revealed stability of nanogel formulation up to 3 months. Conclusion: The present approach can provide us promising results of the sustained analgesic activity and the stability of drug within the GNP. PMID:26819927

  14. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid

    PubMed Central

    Prokopovich, Polina; Köbrick, Mathias; Brousseau, Emmanuel; Perni, Stefano

    2015-01-01

    Bone cement is widely used in surgical treatments for the fixation for orthopaedic devices. Subsequently, 2–3% of patients undergoing these procedures develop infections that are both a major health risk for patients and a cost for the health service providers; this is also aggravated by the fact that antibiotics are losing efficacy because of the rising resistance of microorganisms to these substances. In this study, oleic acid capped silver nanoparticles (NP) were encapsulated into Poly(methyl methacrylate) (PMMA)-based bone cement samples at various ratios. Antimicrobial activity against Methicillin Resistant Staphylococcus aureus, S. aureus, Staphylococcus epidermidis, Acinetobacter baumannii was exhibited at NP concentrations as low as 0.05% (w/w). Furthermore, the mechanical properties and cytotoxicity of the bone cement containing these NP were assessed to guarantee that such material is safe to be used in orthopaedic surgical practice. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 273–281, 2015. PMID:24819471

  15. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer.

    PubMed

    Parametthanuwat, Thanya; Rittidech, Sampan; Pattiya, Adisak; Ding, Yulong; Witharana, Sanjeeva

    2011-01-01

    This article reports a recent study on the application of a two-phase closed thermosyphon (TPCT) in a thermosyphon for economizer (TPEC). The TPEC had three sections of equal size; the evaporator, the adiabatic section, and the condenser, of 250 mm × 250 mm × 250 mm (W × L × H). The TPCT was a steel tube of 12.7-mm ID. The filling ratios chosen to study were 30, 50, and 80% with respect to the evaporator length. The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min. Five working fluids investigated were: water, water-based silver nanofluid with silver concentration 0.5 w/v%, and the nanofluid (NF) mixed with 0.5, 1, and 1.5 w/v% of oleic acid (OA). The operating temperatures were 60, 70, and 80°C. Experimental data showed that the TPEC gave the highest heat flux of about 25 kW/m2 and the highest effectiveness of about 0.3 at a filling ratio of 50%, with the nanofluid containing 1 w/v% of OA. It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study. Moreover, the presence of OA had clearly contributed to raise the effectiveness of the nanofluid. PMID:21711856

  16. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    PubMed Central

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  17. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  18. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  19. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    SciTech Connect

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  20. A randomized, placebo-controlled study to assess the efficacy and safety of 3 doses of paliperidone palmitate in adults with acutely exacerbated schizophrenia.

    PubMed

    Pandina, Gahan J; Lindenmayer, Jean-Pierre; Lull, Julia; Lim, Pilar; Gopal, Srihari; Herben, Virginie; Kusumakar, Vivek; Yuen, Eric; Palumbo, Joseph

    2010-06-01

    This study assessed the efficacy and the safety of a dosing regimen that was revised from earlier studies for the investigational injectable atypical antipsychotic paliperidone palmitate (approved in the USA, August 2009) for adult patients with acutely exacerbated schizophrenia. The patients (N = 652) were randomly assigned (1:1:1:1) to paliperidone palmitate at 25, 100, or 150 mg eq. or placebo in this 13-week double-blind study. The patients received an injection of paliperidone palmitate at 150 mg eq. or placebo in the deltoid muscle on day 1 and the assigned fixed dose or placebo in the deltoid or gluteal [corrected] on day 8 and then once monthly (days 36 and 64). No oral supplementation was used. Target plasma levels were achieved by day 8 in all paliperidone palmitate groups. The mean change in Positive and Negative Syndrome Scale total score from baseline to end point improved significantly (P < or = 0.034) in all the paliperidone palmitate dose-groups versus placebo. Paliperidone palmitate treatment with this revised dosing regimen led to the achievement of rapid and consistent therapeutically effective plasma levels that were maintained by once-monthly dosing in either the deltoid or gluteal muscle. Common treatment-emergent adverse events (> or =2% of patients in any of the treatment groups) that occurred more frequently in the total paliperidone palmitate group versus the placebo group (with > or =1% difference) were injection-site pain (7.6% vs 3.7%), dizziness (2.5% vs 1.2%), sedation (2.3% vs 0.6%), pain in the extremity (1.6% vs 0.0%), and myalgia (1.0% vs 0.0%). The paliperidone palmitate treatment was efficacious and generally tolerated across the dose range (25, 100, or 150 mg eq.) in adult patients with acutely exacerbated schizophrenia. PMID:20473057

  1. Bezafibrate prevents palmitate-induced apoptosis in osteoblastic MC3T3-E1 cells through the NF-κB signaling pathway.

    PubMed

    Zhong, Xing; Xiu, Lingling; Wei, Guohong; Pan, Tianrong; Liu, Yuanyuan; Su, Lei; Li, Yanbing; Xiao, Haipeng

    2011-10-01

    Osteoporosis is a bone condition defined by low bone mass and increase of fracture risk due to imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Low bone mass is likely to be due to the alteration of the osteoclast and osteoblast lifespan through regulated apoptosis. Saturated fatty acid (SFA) intake is negatively associated with bone mineral density (BMD). Furthermore, SFA induces apoptosis in osteoblastic cell lines. Bezafibrate could increase bone mass in intact male rats principally through increasing periosteal bone formation. At present, it is unknown whether bezafibrate attenuates palmitate-induced apoptosis in MC3T3-E1 cells. In the present study, we found that palmitate stimulated the degradation of IκBα and NF-κB translocation, as well as up-regulation of NF-κB-mediated Fas expression in obsteoblastic MC3T3-E1 cells. Furthermore, the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) could restore palmitate-induced caspase-3 decrease and inhibit palmitate-induced cleaved caspase-3 increase. We observed that bezafibrate, a dual ligand for the peroxisome proliferator-activated receptors α (PPARα) and PPARδ, significantly attenuated the palmitate-induced cytotoxicity as determined by the MTT assay and inhibited the palmitate-induced apoptosis as determined by a flow cytometry assay using Annexin V-FITC/PI and assessment of the activity of caspase-3. Pre-treatment of bezafibrate prevented palmitate-induced NF-κB activation. Therefore, these findings indicate that bezafibrate inbibits palmitate-induced apoptosis via the NF-κB signaling pathway. Our results point to bezafibrate as a new strategy to attenuate bone loss associated with high fat diet beyond its lipid-lowering actions. PMID:21687928

  2. Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active–de-active enzyme transition

    PubMed Central

    2004-01-01

    Palmitate rapidly and reversibly inhibits the uncoupled NADH oxidase activity catalysed by activated complex I in inside-out bovine heart submitochondrial particles (IC50 extrapolated to zero enzyme concentration is equal to 9 μM at 25 °C, pH 8.0). The NADH:hexa-ammineruthenium reductase activity of complex I is insensitive to palmitate. Partial (∼50%) inhibition of the NADH:external quinone reductase activity is seen at saturating palmitate concentration and the residual activity is fully sensitive to piericidin. The uncoupled succinate oxidase activity is considerably less sensitive to palmitate. Only a slight stimulation of tightly coupled respiration with NADH as the substrate is seen at optimal palmitate concentrations, whereas complete relief of the respiratory control is observed with succinate as the substrate. Palmitate prevents the turnover-induced activation of the de-activated complex I (IC50 extrapolated to zero enzyme concentration is equal to 3 μM at 25 °C, pH 8.0). The mode of action of palmitate on the NADH oxidase is qualitatively temperature-dependent. Rapid and reversible inhibition of the complex I catalytic activity and its de-active to active state transition are seen at 25 °C, whereas the time-dependent irreversible inactivation of the NADH oxidase proceeds at 37 °C. Palmitate drastically increases the rate of spontaneous de-activation of complex I in the absence of NADH. Taken together, these results suggest that free fatty acids act as specific complex I-directed inhibitors; at a physiologically relevant temperature (37 °C), their inhibitory effects on mitochondrial NADH oxidation is due to perturbation of the pseudo-reversible active–de-active complex I transition. PMID:15571492

  3. Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells

    PubMed Central

    Botchlett, Rachel; Li, Honggui; Guo, Xin; Qi, Ting; Zhao, JiaJia; Zheng, Juan; Woo, Shih-Lung; Pei, Ya; Liu, Mengyang; Hu, Xiang; Chen, Guang; Guo, Ting; Yang, Sijun; Li, Qifu; Xiao, Xiaoqiu; Huo, Yuqing; Wu, Chaodong

    2016-01-01

    The gene PFKFB3 encodes for inducible 6-phosphofructo-2-kinase, a glycolysis-regulatory enzyme that protects against diet-induced intestine inflammation. However, it is unclear how nutrient overload regulates PFKFB3 expression and inflammatory responses in intestinal epithelial cells (IECs). In the present study, primary IECs were isolated from small intestine of C57BL/6J mice fed a low-fat diet (LFD) or high-fat diet (HFD) for 12 weeks. Additionally, CMT-93 cells, a cell line for IECs, were cultured in low glucose (LG, 5.5 mmol/L) or high glucose (HG, 27.5 mmol/L) medium and treated with palmitate (50 μmol/L) or bovine serum albumin (BSA) for 24 hr. These cells were analyzed for PFKFB3 and inflammatory markers. Compared with LFD, HFD feeding decreased IEC PFKFB3 expression and increased IEC proinflammatory responses. In CMT-93 cells, HG significantly increased PFKFB3 expression and proinflammatory responses compared with LG. Interestingly, palmitate decreased PFKFB3 expression and increased proinflammatory responses compared with BSA, regardless of glucose concentrations. Furthermore, HG significantly increased PFKFB3 promoter transcription activity compared with LG. Upon PFKFB3 overexpression, proinflammatory responses in CMT-93 cells were decreased. Taken together, these results indicate that in IECs glucose stimulates PFKFB3 expression and palmitate contributes to increased proinflammatory responses. Therefore, PFKFB3 regulates IEC inflammatory status in response to macronutrients. PMID:27387960

  4. Conformational change in the C form of palmitic acid investigated by Raman spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    de Sousa, F. F.; Nogueira, C. E. S.; Freire, P. T. C.; Moreira, S. G. C.; Teixeira, A. M. R.; de Menezes, A. S.; Mendes Filho, J.; Saraiva, G. D.

    2016-05-01

    Fatty acids are substances found in most living beings in nature. Here we report the effect of the low temperature in the vibrational and structural properties of the C form of palmitic acid, a fatty acid with 16 carbon atoms. The Raman spectra were obtained in the temperature interval from 300 to 18 K in the spectral range between 30 and 3100 cm- 1. The assignment of the duly observed bands was done based on the density functional theory. On cooling, the main changes observed in the lattice mode region of the Raman spectra were interpreted as a conformational modification undergone by the palmitic acid molecules in the unit cell. The X-ray diffraction measurements were obtained from 290 to 80 K showing a slight modification in the lattice parameters at about 210 K. Differential scanning calorimetry (DSC) measurements were recorded between 150 and 300 K and no enthalpic anomaly in the DSC thermogram was observed. These techniques provided strong evidence of the conformational change in the molecules of palmitic acid at low temperatures.

  5. A comparison of retinyl palmitate and red palm oil β-carotene as strategies to address Vitamin A deficiency.

    PubMed

    Souganidis, Ellie; Laillou, Arnaud; Leyvraz, Magali; Moench-Pfanner, Regina

    2013-08-01

    Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO), for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content. PMID:23955382

  6. Susceptibility of Podocytes to Palmitic Acid Is Regulated by Stearoyl-CoA Desaturases 1 and 2

    PubMed Central

    Sieber, Jonas; Weins, Astrid; Kampe, Kapil; Gruber, Stefan; Lindenmeyer, Maja T.; Cohen, Clemens D.; Orellana, Jana M.; Mundel, Peter; Jehle, Andreas W.

    2014-01-01

    Type 2 diabetes mellitus is characterized by dyslipidemia with elevated free fatty acids (FFAs). Loss of podocytes is a hallmark of diabetic nephropathy, and podocytes are highly susceptible to saturated FFAs but not to protective, monounsaturated FFAs. We report that patients with diabetic nephropathy develop alterations in glomerular gene expression of enzymes involved in fatty acid metabolism, including induction of stearoyl-CoA desaturase (SCD)-1, which converts saturated to monounsaturated FFAs. By IHC of human renal biopsy specimens, glomerular SCD-1 induction was observed in podocytes of patients with diabetic nephropathy. Functionally, the liver X receptor agonists TO901317 and GW3965, two known inducers of SCD, increased Scd-1 and Scd-2 expression in cultured podocytes and reduced palmitic acid–induced cell death. Similarly, overexpression of Scd-1 attenuated palmitic acid–induced cell death. The protective effect of TO901317 was associated with a reduction of endoplasmic reticulum stress. It was lost after gene silencing of Scd-1/-2, thereby confirming that the protective effect of TO901317 is mediated by Scd-1/-2. TO901317 also shifted palmitic acid–derived FFAs into biologically inactive triglycerides. In summary, SCD-1 up-regulation in diabetic nephropathy may be part of a protective mechanism against saturated FFA-derived toxic metabolites that drive endoplasmic reticulum stress and podocyte death. PMID:23867797

  7. Satisfaction of immediate or delayed switch to paliperidone palmitate in patients unsatisfied with current oral atypical antipsychotics.

    PubMed

    Kwon, Jun Soo; Kim, Sung Nyun; Han, Jaewook; Lee, Sang Ick; Chang, Jae Seung; Choi, Jung-Seok; Lee, Heon-Jeong; Cho, Seong Jin; Jun, Tae-Youn; Lee, Seung-Hwan; Han, Changsu; Lee, Kyoung-Uk; Lee, Kyung Kyu; Lee, EunJung

    2015-11-01

    Patient satisfaction with treatment is an important clinical index associated with the efficacy and adherence of treatment in schizophrenia. Although switching from oral antipsychotics to the long-acting injectable formulation may improve convenience, patient satisfaction has not been studied extensively. We carried out a 21-week, multicenter, randomized, open-label comparative study. A total of 154 patients with schizophrenia unsatisfied with current oral atypical antipsychotics were assigned randomly to either immediate or delayed switching to paliperidone palmitate, the long-acting injectable formulation of paliperidone. The Medication Satisfaction Questionnaire (MSQ) and the Treatment Satisfaction Questionnaire for Medication (TSQM) were used to evaluate patient satisfaction with treatment, whereas the Positive and Negative Syndrome Scale (PANSS) and the Personal and Social Performance (PSP) scale were used to evaluate efficacy. From baseline to the final assessment, the MSQ score increased significantly in both groups, and the increase was greatest after the first administration of paliperidone palmitate in the immediate switch group. The scores of TSQM effectiveness, convenience, and global satisfaction as well as the PSP total score increased significantly, whereas the PANSS total score decreased significantly in both groups. The immediate switch group showed a significant improvement in the TSQM convenience score compared with the delayed switch group on oral antipsychotics during the comparison period. Most adverse events were minor and tolerable. In short, switching from oral atypical antipsychotics to paliperidone palmitate because of poor satisfaction significantly improved patient satisfaction, with comparable efficacy and tolerability. PMID:26196188

  8. Satisfaction of immediate or delayed switch to paliperidone palmitate in patients unsatisfied with current oral atypical antipsychotics

    PubMed Central

    Kim, Sung Nyun; Han, Jaewook; Lee, Sang Ick; Chang, Jae Seung; Choi, Jung-Seok; Lee, Heon-Jeong; Cho, Seong Jin; Jun, Tae-Youn; Lee, Seung-Hwan; Han, Changsu; Lee, Kyoung-Uk; Lee, Kyung Kyu; Lee, EunJung

    2015-01-01

    Patient satisfaction with treatment is an important clinical index associated with the efficacy and adherence of treatment in schizophrenia. Although switching from oral antipsychotics to the long-acting injectable formulation may improve convenience, patient satisfaction has not been studied extensively. We carried out a 21-week, multicenter, randomized, open-label comparative study. A total of 154 patients with schizophrenia unsatisfied with current oral atypical antipsychotics were assigned randomly to either immediate or delayed switching to paliperidone palmitate, the long-acting injectable formulation of paliperidone. The Medication Satisfaction Questionnaire (MSQ) and the Treatment Satisfaction Questionnaire for Medication (TSQM) were used to evaluate patient satisfaction with treatment, whereas the Positive and Negative Syndrome Scale (PANSS) and the Personal and Social Performance (PSP) scale were used to evaluate efficacy. From baseline to the final assessment, the MSQ score increased significantly in both groups, and the increase was greatest after the first administration of paliperidone palmitate in the immediate switch group. The scores of TSQM effectiveness, convenience, and global satisfaction as well as the PSP total score increased significantly, whereas the PANSS total score decreased significantly in both groups. The immediate switch group showed a significant improvement in the TSQM convenience score compared with the delayed switch group on oral antipsychotics during the comparison period. Most adverse events were minor and tolerable. In short, switching from oral atypical antipsychotics to paliperidone palmitate because of poor satisfaction significantly improved patient satisfaction, with comparable efficacy and tolerability. PMID:26196188

  9. A Comparison of Retinyl Palmitate and Red Palm Oil β-Carotene as Strategies to Address Vitamin A Deficiency

    PubMed Central

    Souganidis, Ellie; Laillou, Arnaud; Leyvraz, Magali; Moench-Pfanner, Regina

    2013-01-01

    Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO), for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content. PMID:23955382

  10. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells

    PubMed Central

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong

    2016-01-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  11. Liposteroid (dexamethasone palmitate) therapy for West syndrome: a comparative study with ACTH therapy.

    PubMed

    Yamamoto, H; Asoh, M; Murakami, H; Kamiyama, N; Ohta, C

    1998-05-01

    Dexamethasone palmitate (liposteroid) was used for the treatment of West syndrome and compared with adrenocorticotropic hormone (ACTH) therapy. A single intravenous injection of liposteroid (0.25 mg/kg) was administered seven times in 3 months (total dosage = 1.75 mg/kg) to five symptomatic patients with West syndrome, aged 4-11 months. ACTH (0.025 mg/kg/day) was administered intramuscularly for 6 weeks according to the conventional therapy in Japan (total dosage = 0.625 mg/kg) to five symptomatic patients with West syndrome, aged 6-10 months. Nodding spasm and hypsarrhythmia on EEG disappeared in all patients in the liposteroid therapy group within four doses; however, partial seizures and focal spikes on EEG reappeared in three patients 2 months after the end of liposteroid therapy. In the ACTH therapy group, nodding spasm and hypsarrhythmia on EEG similarly disappeared during treatment in all patients, but nodding spasm reappeared 2 months after therapy in two patients and partial seizures reappeared in one patient 3 months after therapy. No notable adverse reactions occurred in the liposteroid group, but transient dysfunction of the thyroid and anterior pituitary gland and increased levels of serum cortisol were experienced in the ACTH group. These results suggest that glucocorticoid incorporated in a lipid emulsion is useful for the treatment of West syndrome. PMID:9650682

  12. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways.

    PubMed

    Liu, Man; Huang, Guoren; Wang, Thomas T Y; Sun, Xiangjun; Yu, Liangli Lucy

    2016-05-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  13. Anti-Oxidative Activity of Pectin and Its Stabilizing Effect on Retinyl Palmitate

    PubMed Central

    Ro, Jieun; Kim, Yeongseok; Kim, Hyeongmin; Jang, Soung Baek; Lee, Hyun Joo; Chakma, Suharto

    2013-01-01

    The purpose of this study was to examine the anti-oxidative activity of pectin and other polysaccharides in order to develop a cosmeceutical base having anti-oxidative effects towards retinyl palmitate (RP). The anti-oxidative stabilizing effects of pectin and other polysaccharides on RP were evaluated by DPPH assay and then the stabilizing effect of pectin on RP was examined as a function of time. Among the polysaccharides we examined, pectin exhibited a considerably higher anti-oxidative activity, with an approximately 5-fold greater DPPH radical scavenging effect compared to other polysaccharides. The DPPH radical scavenging effect of pectin increased gradually with increasing concentrations of pectin. At two different RP concentrations, 0.01 and 0.1% in ethanol, addition of pectin improved the stability of RP in a concentration dependent manner. The stabilizing effect of pectin on RP was more effective for the lower concentration of RP (0.01%, v/v). Further, degradation of RP was reduced following the addition of pectin as measured over 8 hours. From the results obtained, it can be suggested that pectin may be a promising ingredient for cosmeceutical bases designed to stabilize RP or other pharmacological agents subject to degradation by oxidation. PMID:23776395

  14. Effect of ascorbyl palmitate on oxidative stability of chemically interesterified cottonseed and olive oils.

    PubMed

    Javidipour, Issa; Tüfenk, Remzi; Baştürk, Ayhan

    2015-02-01

    The effects of 400 ppm ascorbyl palmitate (AP) on fatty acids composition, tocopherol, peroxide value (PV) and malonaldehyde (MAD) contents of refined cottonseed oil (CO) and virgin olive oil (OO) during chemical interesterification (CI), and storage at 60 °C for 28 days were investigated. CI significantly decreased (p < 0.05) the tocopherol contents of CO and OO. PVs and MAD contents of oil samples considerably increased up to 20 min of CI, followed by a reduction at 30 min. The unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratios of the samples showed slight but significant (p < 0.05) reduction during accelerated oxidation process. Oils with added 400 ppm AP had higher tocopherol, and lower PVs and MAD contents than their counterparts without AP during CI, and storage at 60 °C. AP increased the oxidative stability of interesterified and non-interesterified CO and OO. PMID:25694696

  15. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate.

    PubMed

    Gosenca, Mirjam; Bešter-Rogač, Marija; Gašperlin, Mirjana

    2013-09-27

    Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at a Tween 80/lecithin mass ratio of 1/1, and the region of lamellar liquid crystals was identified. Second, selected unloaded and AP-loaded lamellar liquid crystal systems were physicochemically characterized with polarizing optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology techniques. The interlayer spacing and rheological parameters differ regarding quantitative composition, whereas the microstructure of the lamellar phase was affected by the AP incorporation, resulting either in additional micellar structures (at 25 and 32 °C) or being completely destroyed at higher temperature (37°C). After this, the study was oriented towards in vitro cytotoxicity evaluation of lamellar liquid crystal systems on a keratinocyte cell line. The results suggest that the lamellar liquid crystals that were developed could be used as a physiologically acceptable dermal delivery system. PMID:23643736

  16. Study of the influence of ascorbyl palmitate and amiodarone in the stability of unilamellar liposomes.

    PubMed

    Benedini, Luciano; Antollini, Silvia; Fanani, Maria Laura; Palma, Santiago; Messina, Paula; Schulz, Pablo

    2014-01-01

    Amiodarone (AMI) is a low water-solubility drug, which is very useful in the treatment of severe cardiac disease. Its adverse effects are associated with toxicity in different tissues. Several antioxidants have been shown to reduce, and prevent AMI toxicity. The aim of this work was to develop and characterize Dimyristoylphosphatidylcholine (DMPC) liposomal carriers doped with ascorbyl palmitate (Asc16) as antioxidant, in order to either minimize or avoid the adverse effects produced by AMI. The employment of liposomes would avoid the use of cosolvents in AMI formulations, and Asc16 could minimize the adverse effects of AMI. To evaluate the partition and integration of AMI and Asc16 in lipid membranes, penetration studies into DMPC monolayers were carried out. The disturbance of the liposomes membranes was studied by generalized polarization (GP). The stability of liposomes was evaluated experimentally and by means of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The size particle and zeta potential (ζ) values of the liposomes were used for application in calculations for attractive and repulsive forces in DLVO theory. In experimental conditions all of these vesicles showed stability at time 0, but only DMPC + Asc16 10% + AMI 10% liposomes kept their size stable and ζ during 28 days. These results are encouraging and suggest that such systems could be suitable for AMI delivery formulations. PMID:24650150

  17. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-10-13

    In the present study, we introduce a simple method to prepare inclusion complexes by "inserting" guest molecules into preformed "empty" V-type amylose helices. Ascorbyl palmitate (AscP) was used as a model guest material to investigate the effect of solvent environment, complexation temperature, annealing and guest concentration on inclusion complex formation. High complexation temperature was not necessary for encapsulating guest molecules in amylose helices, avoiding thermal degradation of guest compounds. This method would also avoid the wasting of guest materials because uncomplexed guest can be reused. It was found in the study that intermediate ethanol and acetone concentrations (generally 40-60%, v/v) at room temperature were appropriate for the complexation between V-amylose and AscP. Annealing, i.e. heat treatment in ethanol solutions at elevated temperatures (45-70 °C), was able to significantly increase the crystallinity of V-amylose and V-starch to as high as 65% and facilitate greater complexation evidenced from higher enthalpies, probably due to more regularly arranged helical cavities in larger crystalline phase. The complexation between V-amylose and AscP was also found to be enhanced with AscP concentration, while the dissociation temperature experienced a slight decrease. PMID:25037350

  18. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin.

    PubMed

    Janesirisakule, Sirinapa; Sinthusake, Tarit; Wanichwecharungruang, Supason

    2013-08-01

    The concept of a nanocarrier with a self-antioxidative property to deliver and stabilize a labile drug while at the same time providing a free radical scavenging activity is demonstrated. Curcumin was grafted onto a poly(vinyl alcohol) [PV(OH)] chain, and the nanocarriers fabricated from the obtained curcumin-grafted PV(OH) polymer [CUR-PV(OH)] showed a good free radical scavenging activity. Ascorbyl palmitate (AP) could be effectively loaded into the CUR-PV(OH) at 29% by weight. The CUR-PV(OH)-encapsulated AP was 77% more stable than the free (unencapsulated) AP, and 47% more stable than AP encapsulated in the control nanocarrier with no antioxidative property [cinnamoyl-grafted PV(OH); CIN-PV(OH)]. Although coencapsulation of curcumin and AP into CIN-PV(OH) showed some improvement on the AP stability, AP was more stable when encapsulated in CUR-PV(OH). Compared with the free AP, encapsulated AP within the CUR-PV(OH) nanocarriers showed not only a better penetration into pig skin dermis via hair follicle pathway followed by the release and diffusion of the AP, but also a greater AP stability after skin application. Although a proof of principle is shown for CUR-PV(OH) and AP, it is likely that other carriers of the same principal could be designed and applied to different oxidation-sensitive drugs. PMID:23775704

  19. The effect of palmitate and lactate on mechanical performance and metabolism of cat and rat myocardium.

    PubMed Central

    Drake-Holland, A J; Elzinga, G; Noble, M I; ter Keurs, H E; Wempe, F N

    1983-01-01

    Fourteen isolated ejecting hearts were perfused with a suspension of red cells in Tyrode solution. In five hearts comparison was made between glucose alone as substrate and glucose plus free fatty acid (palmitate). In five hearts the effect of additional lactate was studied. In the remaining hearts no substrate changes were made (controls). There were only transient changes in cardiac output of the hearts (at fixed mean aortic pressure) when the perfusion media were switched from one to another. There were no consistent steady-state changes in myocardial oxygen consumption, mean external power, efficiency, cardiac output or coronary blood flow associated with any of the changes in substrate consumption. Thus we were unable to confirm an increase in oxygen consumption and decrease in efficiency associated with either free fatty acid or lactate as substrates. Isolated rat trabeculae were deprived of exogenous substrate; their mechanical performance remained constant for approximately 10 min. Subsequent deterioration was restored by any of the three exogenous substrates. We conclude that there is no oxygen wasting effect of these substrates as has previously been postulated, nor any deleterious effect of changing exogenous or endogenous carbohydrate or lipid substrate. Images Fig. 2 PMID:6887017

  20. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    PubMed Central

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA. PMID:27057269

  1. A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast {omega}9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast {omega}9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.

  2. Once-monthly paliperidone palmitate in recently diagnosed and chronic non-acute patients with schizophrenia

    PubMed Central

    Hargarter, L; Bergmans, P; Cherubin, P; Keim, S; Conca, A; Serrano-Blanco, A; Bitter, I; Bilanakis, N; Schreiner, A

    2016-01-01

    ABSTRACT Objective: To explore the treatment response, tolerability and safety of once-monthly paliperidone palmitate (PP1M) in non-acute patients switched from oral antipsychotics, stratified by time since diagnosis as recently diagnosed (≤3 years) or chronic patients (>3 years). Research design and methods: Post hoc analysis of a prospective, interventional, single-arm, multicentre, open-label, 6-month study performed in 233 recently diagnosed and 360 chronic patients. Main outcome measures: The proportion achieving treatment response (defined as ≥20% improvement in Positive and Negative Syndrome Scale [PANSS] total score from baseline to endpoint) and maintained efficacy (defined as non-inferiority in the change in PANSS total score at endpoint [Schuirmann’s test]). Results: 71.4% of recently diagnosed and 59.2% of chronic patients showed a ≥20% decrease in PANSS total score (p = 0.0028 between groups). Changes in PANSS Marder factors, PANSS subscales, and the proportion of patients with a Personal and Social Performance scale (PSP) total score of 71–100 were significantly greater in recently diagnosed compared with chronic patients. PP1M was well tolerated, presenting no unexpected safety findings. Conclusion: These data show that recently diagnosed patients treated with PP1M had a significantly higher treatment response and improved functioning, as assessed by the PSP total score, than chronic patients. PMID:27042990

  3. Metabolism of palmitic acid in the subcellular fractions of mouse brain.

    PubMed

    Sun, G Y; Horrocks, L A

    1973-03-01

    After an intracerebral injection of [(14)C]palmitic acid to C57BL/10J mice, the radioactivity in the brains decreased rapidly with time. The incorporated radioactivity was primarily in the 16:0 acyl groups of the diacyl phosphoglycerides at 1 and 3 days after injection. At longer times, increasing proportions of the radioactivity were found in cerebrosides, alkenyl groups, and other acyl groups. The specific radioactivities of the phosphoglycerides were highest in the microsomal fraction at 1 day after injection. The exchange of the diacyl glycerophosphorylcholines and diacyl glycerophosphorylethanolamines between the microsomes and the myelin required 8-14 days. When calculated on the basis of the radioactivity in the 16:0 acyl groups, the half-lives for both of these phosphoglycerides were 6-8 days in all subcellular fractions during the period from 14 to 30 days after injection. The radioactivity in the total lipids from the purified myelin fraction did not decline until more than 14 days after injection because of the reutilization of labeled 16:0 acyl groups for lipid biosynthesis. Recycling of the acyl groups explains the long half-lives reported for myelin phosphoglycerides after injection of [(14)C]acetic acid. Lipids with a relatively high specific radioactivity were lost from the myelin fraction during the purification procedure. The most likely source of these lipids is the most recently formed myelin that is not consolidated into the myelin sheath. PMID:4698268

  4. Encapsulation of Vitamin A palmitate for animal supplementation: Formulation, manufacturing and stability implications.

    PubMed

    Albertini, Beatrice; Di Sabatino, Marcello; Calogerà, Giacomo; Passerini, Nadia; Rodriguez, Lorenzo

    2010-01-01

    Two manufacturing methods and numerous formulative approaches have been evaluated to obtain a stable oral pharmaceutical form of Vitamin A palmitate (VAP), a substance very sensitive to light, temperature, humidity and metal ions. The best results were obtained by formulating VAP, stabilized with butylated hydroxytoluene (BHT), in double layer microcapsules constituted by a core of chitosan, Tween 20, CaCl(2) and EDTA surrounded by a first chitosan-alginate membrane and an outer membrane of calcium-alginate. This formulation design enabled the production of beads with high drug loading (42% w/w) and high encapsulation efficiency (94%). The stability of VAP-loaded microcapsules was assessed according to EMEA guidelines. This formulation design showed the best performance in terms of VAP recovery (t(50%) > 360 days) after 1 year of storage at room conditions. This is a very important result considering the poor shelf-life (45 days) of pure VAP stabilized with BHT stored at the same conditions. PMID:19538031

  5. Formation and stability of the dispersed particles composed of retinyl palmitate and phosphatidylcholine.

    PubMed

    Asai, Y; Watanabe, S

    2000-01-01

    The purpose of this study was to develop an intravenous formulation composed of retinyl palmitate (RP) for the treatment of cancer. RP was dispersed with soybean phosphatidylcholine (PC) using sonication and the dispersal mechanism was evaluated by characterizing the dispersed particles using dynamic light-scattering, fluorescence spectroscopy, and surface monolayer techniques. The dispersions in the RP mole fraction range of 0.1-0.8 were stable at room temperature for 3 days. A limited amount of RP was incorporated into PC bilayer membranes (approximately 3 mol%). The excess RP separated from the PC bilayers was stabilized as emulsion particles by the PC surface monolayer. When the PC content was less than the solubility in RP, the PC monolayer did not completely cover the hydrophobic RP particle surfaces and separation into oil/water occurred. The miscibility between RP and PC and the lipid composition were critically important for the stability of the dispersed particles (coexistence of emulsion particles [surface monolayer of PC + core of RP] with vesicular particles [bilayer]) of the lipid mixtures. PMID:10669916

  6. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-10-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region ( λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  7. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  8. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.

    PubMed

    Chang, Jaewon; Woo, Heesoo; Ko, Myoung-Soo; Lee, Jaesang; Lee, Seockheon; Yun, Seong-Taek; Lee, Seunghak

    2015-08-15

    A new material was developed and evaluated for the targeted removal of trichlorophenol (TCP) from among potential interferents which are known to degrade removal activity. To achieve TCP-targeted activity, an alginate bead containing nanoscale palladium/zero-valent iron (Pd/nZVI) was coated with a highly hydrophobic oleic acid layer. The new material (Pd/nZVI-A-O) preferentially sorbed TCP from a mixture of chlorinated phenols into the oleic acid cover layer and subsequently dechlorinated it to phenol. The removal efficacy of TCP by Pd/nZVI-A-O was not affected by co-existing organic substances such as Suwannee River humic acid (SRHA), whereas the material without the oleic acid layer (Pd/nZVI-A) became less effective with increasing SRHA concentration. The inorganic substances nitrate and phosphate significantly reduced the reactivity of Pd/nZVI-A, however, Pd/nZVI-A-O showed similar TCP removal efficacies regardless of the initial inorganic ion concentrations. The influence of bicarbonate on the TCP removal efficacies of both Pd/nZVI-A and Pd/nZVI-A-O was not significant. The findings from this study suggest that Pd/nZVI-A-O, with its targeted, constant reactivity for TCP, would be effective for treating this contaminant in surface water or groundwater containing various competitive substrates. PMID:25819991

  9. Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions.

    PubMed

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Penkov, Nikita V; Samartsev, Victor N; Lemasters, John J; Mironova, Galina D

    2015-10-01

    The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 μM) and the anionic surfactant sodium dodecylsulfate (10-50 μM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening. PMID:26014488

  10. Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions

    PubMed Central

    Belosludtsev, Konstantin N.; Belosludtseva, Natalia V.; Agafonov, Alexey V.; Penkov, Nikita V.; Samartsev, Victor N.; Lemasters, John J.; Mironova, Galina D.

    2016-01-01

    The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 μM) and the anionic surfactant sodium dodecylsulfate (10–50 μM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening. PMID:26014488

  11. Studies on morphology of Langmuir-Blodgett films of stearic acid deposited with different orientation of substrates with respect to compression

    NASA Astrophysics Data System (ADS)

    Choudhary, Keerti; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    The Langmuir monolayer at an air-water interface shows remarkably different surface pressure - area isotherm, when measured with the surface normal of a Wilhemly plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir-Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid was studied using an atomic force microscope (AFM). The morphology of the LB films was found to be different due to difference in the stress in different directions.

  12. Development of novel fast-disintegrating tablets by direct compression using sucrose stearic acid ester as a disintegration-accelerating agent.

    PubMed

    Koseki, Takuma; Onishi, Hiraku; Takahashi, Yuri; Uchida, Minoru; Machida, Yoshiharu

    2008-10-01

    It was attempted to produce novel furosemide (FS) fast-disintegrating tablets by direct compression. The combination of FS, microcrystalline cellulose, croscarmellose sodium and xylitol was used as the basic formulation, and sucrose stearic acid ester (SSE) was chosen as an additional additive. The tablets with SSE were prepared by the simple addition of SSE, using a lyophilized mixture of FS and SSE or using a FS/SSE mixture obtained by evaporation of their ethanol solution. Only the tablets, produced using the FS/SSE mixture obtained by organic solvent (ethanol) evaporation, showed hardness of more than 30 N and a disintegration time of less than 20 s, which were the properties suitable for fast-disintegrating tablets. These properties were considered to result from well-mixed and fine-powdered SSE and FS. PMID:18827375

  13. Role of Stearic Acid in the Strain-Induced Crystallization of Crosslinked Natural Rubber and Synthetic Cis-1,4-Polyisoprene

    SciTech Connect

    Kohjiya,S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B.

    2007-01-01

    Strain-induced crystallization of crosslinked natural rubber (NR) and its synthetic analogue, cis-1,4-polyisoprene (IR), both mixed with various amounts of stearic acid (SA), were investigated by time-resolved X-ray diffraction using a powerful synchrotron radiation source and simultaneous mechanical (tensile) measurement. No acceleration or retardation was observed on NR in spite of the increase of SA amount. Even the SA-free IR crystallized upon stretching, and the overall crystallization behavior of IR shifted to the larger strain ratio with increasing SA content. No difference due to the SA was detected in the deformation of crystal lattice by stress for both NR and IR. These results suggested that the extended network chains are effective for the initiation of crystallization upon stretching, while the role of SA is trivial. These behaviors are much different from their crystallization at low temperature by standing, where SA acts as a nucleating agent.

  14. Sensitization of vascular smooth muscle cell to TNF-{alpha}-mediated death in the presence of palmitate

    SciTech Connect

    Rho, Mun-Chual; Ah Lee, Kyeong; Mi Kim, Sun; Sik Lee, Chang; Jeong Jang, Min; Kook Kim, Young; Sun Lee, Hyun; Hyun Choi, Yung; Yong Rhim, Byung; Kim, Koanhoi . E-mail: koanhoi@pusan.ac.kr

    2007-05-01

    Saturated free fatty acids (FFAs), including palmitate, can activate the intrinsic death pathway in cells. However, the relationship between FFAs and receptor-mediated death pathway is still unknown. In this study, we have investigated whether FFAs are able to trigger receptor-mediated death. In addition, to clarify the mechanisms responsible for the activation, we examined the biochemical changes in dying vascular smooth muscle cell (VSMC) and the effects of various molecules to the receptor-mediated VSMC death. Tumor necrosis factor (TNF)-{alpha}-mediated VSMC death occurred in the presence of sub-cytotoxic concentration of palmitate as determined by assessing viability and DNA degradation, while the cytokine did not influence VSMC viability in the presence of oleate. The VSMC death was inhibited by the gene transfer of a dominant-negative Fas-associated death domain-containing protein and the baculovirus p35, but not by the bcl-xL or the c-Jun N-terminal kinase (JNK) binding domain of JNK-interacting protein-1, in tests utilizing recombinant adenoviruses. The VSMC death was also inhibited by a neutralizing anti-TNF receptor 1 antibody, the caspase inhibitor z-VAD, and the cathepsin B inhibitor CA074, a finding indicative of the role of both caspases and cathepsin B in this process. Consistent with this finding, caspase-3 activation and an increase in cytosolic cathepsin B activity were detected in the dying VSMC. Palmitate inhibited an increase of TNF-{alpha}-mediated nuclear factor kappa B (NF-{kappa}B) activity, the survival pathway activated by the cytokine, by hindering the translocation of the NF-{kappa}B subunit of p65 from the cytosol into the nucleus. The gene transfer of inhibitor of NF-{kappa}B predisposed VSMC to palmitate-induced cell death. To the best of our knowledge, this study is the first report to demonstrate the activation of TNF-{alpha}-mediated cell death in the presence of palmitate. The current study proposes that FFAs would take part in

  15. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.

    PubMed

    Li, Xueyuan; Mei, Desheng; Liu, Qing; Fan, Jing; Singh, Surinder; Green, Allan; Zhou, Xue-Rong; Zhu, Li-Hua

    2016-01-01

    High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production. PMID:25998013

  16. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    PubMed

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium. PMID:26293974

  17. Fatty acid composition of oil synthesized by Aspergillus nidulans.

    PubMed

    Sharma, N D; Mathur, J M; Saxena, B S; Sen, K

    1981-01-01

    The filamentous fungus Aspergillus nidulans Eidam strain 300 was found to be capable of synthesizing 24.9% oil or remarkably low free fatty acidity, in a chemically defined medium with 34% glucose as sole carbon source. although the total content of oil synthesized was less, utilization of the carbon source is better as shown by the high (8.4) fat coefficient. The major component fatty acids of the oil were palmitic, stearic, oleic and linoleic and are influenced by the source of carbon. Palmitoleic acid is present in traces, confirming thereby the general observation that high oil formers produce oil of low hexadecenoic acid content. The relatively high stearic acid content of the oil distinguishes it from those of other microorganisms and resembles the oil produced by certain tropical plants, such as Madhuca latifolia. PMID:7026394

  18. Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: growth control by headgroup size.

    PubMed

    Shrestha, Lok Kumar; Dulle, Martin; Glatter, Otto; Aramaki, Kenji

    2010-05-18

    The structure of polyglycerol oleic acid ester nonionic surfactant micelles in n-decane has been investigated at room temperature by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and densiometry techniques. The scattering data were evaluated by indirect Fourier transformation (IFT) or generalized indirect Fourier transformation (GIFT) methods depending on the volume fractions of the surfactants and also by model fit. A simple route to the growth control of reverse micelles by headgroup size of the surfactant was investigated. Additionally, the dependence of reverse micellar structure (shape and size) on temperature, composition, and added water was also investigated. The indirect Fourier transformation gives the real space pair-distance distribution function, p(r): a facile way for the quantitative estimation of structure parameters of the aggregates. It was found that the size of the reverse micelles increases with increasing the headgroup size of the surfactant. Globular type of micelles with maximum diameter ca. 6 nm observed in the monoglycerol oleic acid ester/decane system at 25 degrees C transferred into elongated prolate type micelles with maximum diameter ca. 19.5 nm in the hexaglycerol oleic acid ester/decane system. In a particular surfactant and oil system, increasing temperature decreased the micellar size. The size of the micelle was decreased by approximately 25% upon increasing temperature from 25 to 75 degrees C in the 5 wt % diglycerol oleic acid ester/decane system. Concentration could not modulate the structure of micelles despite a wide variation in the surfactant concentration (5-25 wt %). Nevertheless, increasing surfactant concentration reduces the intermicellar distance, and a strong repulsive interaction peak was observed in the scattering curves at higher surfactant concentrations. Besides, the results obtained from the dynamic light scattering have shown the signature of diffusion hindrance relative to hard sphere

  19. Effects of fatty acids on motility retention by Treponema pallidum in vitro.

    PubMed Central

    Matthews, H M; Jenkin, H M; Crilly, K; Sandok, P L

    1978-01-01

    Treponema pallidum (Nichols virulent strain) was incubated under 75% N2 + 20% H2 + 5% CO2 in prereduced serum-free modified Eagle-Richter medium supplemented with different concentrations of various long-chain fatty acids complexed with fatty acid-free bovine serum albumin. Motility retention was greater in medium with oleic acid containing 15 rather than 2 mg of albumin per ml. Palmitic, stearic, oleic, or linoleic acid alone caused rapid loss of motility at concentrations as low as 5 microgram/ml. Elaidic acid (92 microgram/ml) alone had no effect on motility. Various combinations of saturated plus unsaturated fatty acids did not inhibit motility retention or were less inhibitory than either of the individual fatty acid components. The combination of palmitic plus oleic acids was least toxic. Rapid loss of motility occurred with pairs of unsaturated or saturated fatty acids, or with Tween 40, 60, or 80, alone or combined. Autoxidation of oleic acid resulted in decreased toxicity for T. pallidum but increased toxicity for baby hamster kidney cells. PMID:346485

  20. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells

    PubMed Central

    Sathanoori, Ramasri; Swärd, Karl; Olde, Björn; Erlinge, David

    2015-01-01

    Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase