Science.gov

Sample records for oleifera bioactive compounds

  1. In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam.

    PubMed

    Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-01-01

    Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro. PMID:24490175

  2. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

    PubMed Central

    Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-01-01

    Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro. PMID:24490175

  3. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of Moringa oleifera leaves.

    PubMed

    Karthivashan, Govindarajan; Tangestani Fard, Masoumeh; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-09-01

    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations. PMID:24024688

  4. Antileishmanial compounds from Moringa oleifera Lam.

    PubMed

    Kaur, Amandeep; Kaur, Preet Kamal; Singh, Sushma; Singh, Inder Pal

    2014-01-01

    The antileishmanial activity of extracts and phytoconstituents of Moringa oleifera Lam. was investigated in vitro against promastigotes of Leishmania donavani. The 70% ethanolic extract of roots and the methanolic extract of leaves showed moderate inhibitory activity with IC50 values of 83.0 microg/ml and 47.5 microg/ml, respectively. Antileishmanial activity of the methanolic extract of leaves increased upon fractionation, as its ethyl acetate fraction was found to be more active with an IC50 value of 27.5 microg/ml. The most active antileishmanial compound niazinin, a thiocarbamate glycoside isolated from this fraction, showed an IC50 value of 5.25 microM. Results presented in this study indicate that extracts from M. oleifera may be developed as an adjuvant therapy for the treatment of leishmaniasis. PMID:24873031

  5. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  6. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  7. Analyzing cranberry bioactive compounds.

    PubMed

    Côté, J; Caillet, S; Doyon, G; Sylvain, J-F; Lacroix, M

    2010-10-01

    There is a growing public interest for the North American cranberry (Vaccinium macrocarpon) as a functional food because of the potential health benefits linked to phytochemical compounds present in the fruit--the anthocyanin pigments, responsible for its brilliant red color, and other secondary plant metabolites (flavonols, flavan-3-ols, proanthocyanidins, and phenolic acid derivatives). Isolation of these phenolic compounds and flavonoids from a sample matrix is a prerequisite to any comprehensive analysis scheme. By far the most widely employed analytical technique for the characterization of these compounds has been high-performance liquid chromatography(HPLC) coupled with ultraviolet-visible(UV/Vis) and mass spectrometer(MS) detection. This review covers the cranberry major bioactive compounds, the extraction and purification methods, and the analytical conditions for HPLC used to characterize them. Extraction, chromatographic separation and detection strategies, analyte determinations, and applications in HPLC are discussed and the information regarding methods of specific cranberry analyte analyses has been summarized in tabular form to provide a means of rapid access to information pertinent to the reader. PMID:20924868

  8. Optimization of process conditions for removal of cadmium using bioactive constituents of Moringa oleifera seeds.

    PubMed

    Jamal, P; Muyibi, S A; Syarif, W M

    2008-07-01

    Pollutants, especially heavy metals like cadmium, Chromium, lead and mercury, play a significant role in causing various water-borne diseases to humans. This study evaluates the sorption properties of bioactive constituents of Moringa oleifera seeds for decontamination of cadmium at laboratory scale. The performance of the bioactive constituent extracted by salt extraction method was enhanced by process optimization with various concentration of bioactive dosages, agitation speed, contact time, pH and heavy metal concentrations. Statistical optimization was carried out for evaluating the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum removal of cadmium was 72% by using 0.2 g/l of bioactive dosage. PMID:19025007

  9. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam.

    PubMed

    Vongsak, Boonyadist; Sithisarn, Pongtip; Gritsanapan, Wandee

    2014-08-01

    Moringa oleifera Lam. has been used as a traditional medicine for the treatment of numerous diseases. A simultaneous high-performance liquid chromatography (HPLC) analysis was developed and validated for the determination of the contents of crypto-chlorogenic acid, isoquercetin and astragalin, the primary antioxidative compounds, in M. oleifera leaves. HPLC analysis was successfully conducted by using a Hypersil BDS C18 column, eluted with a gradient of methanol-1% acetic acid with a flow rate of 1 mL/min, and detected at 334 nm. Parameters for the validation included linearity, precision, accuracy and limits of detection and quantitation. The developed HPLC method was precise, with relative standard deviation < 2%. The recovery values of crypto-chlorogenic acid, isoquercetin and astragalin in M. oleifera leaf extracts were 98.50, 98.47 and 98.59%, respectively. The average contents of these compounds in the dried ethanolic extracts of the leaves of M. oleifera collected from different regions of Thailand were 0.081, 0.120 and 0.153% (w/w), respectively. The developed HPLC method was appropriate and practical for the simultaneous analysis of crypto-chlorogenic acid, isoquercetin and astragalin in the leaf extract of M. oleifera. This work is valuable as guidance for the standardization of the leaf extracts and pharmaceutical products of M. oleifera. PMID:23828911

  10. Bioactivity guided fractionation of Moringa oleifera Lam. flower targeting Leishmania donovani.

    PubMed

    Singh, Manoj Kumar; Paul, Joydeep; De, Tripti; Chakraborti, Tapati

    2015-11-01

    Leishmaniases is a group of diseases caused by the protozoan parasite belonging to the genus Leishmania. At least 20 species of Leishmania are known to infect humans transmitted by female sandflies, Phlebotomus spp. Leishmania donovani causes visceral leishmaniasis, considered most lethal among the common three forms of leishmaniasis. Lack of appropriate vaccines, emergence of drug resistance and side effects of currently used drugs stress the need for better alternative drugs, particularly from natural sources. Here, we conducted in vitro and in vivo experiments to study the efficacy of different parts of Moringa oleifera Lam. against Leishmania donovani promastigotes. The flower extract of M. oliefera (MoF) was found to be the most potent antileishmanial agent when compared to other parts of the plant like leaf, root, bark and stem. It imparted significant reduction in parasite number in infected macrophages. The bioactivity guided fractionation of MoF showed ethyl acetate fraction (MoE) as the most active and gave significant parasite reduction in the infected macrophages. Further, growth kinetics studies revealed loss of L. donovani promastigotes viability in the presence of MoE in both time and dose dependent manner. In vivo experiment in Balb/c mouse model of leishmaniasis supported the in vitro findings with a remarkable reduction of the parasite burden in both liver and spleen. PMID:26669018

  11. Five new bioactive compounds from Chenopodium ambrosioides.

    PubMed

    Song, Kun; Zhang, Jian; Zhang, Peng; Wang, Hong-Qing; Liu, Chao; Li, Bao-Ming; Kang, Jie; Chen, Ruo-Yun

    2015-05-01

    Five new bioactive compounds, chenopodiumamines A-D (1-4) and chenopodiumoside A (5), were isolated from the ethanol extract of Chenopodium ambrosioides. The structures of these compounds were elucidated by various spectroscopic means (UV, IR, HR-ESI-MS, 1D and 2D NMR). Compounds 1-3 had moderate antioxidant and anti-inflammatory activities. PMID:26001043

  12. DEVELOPMENT OF USDA'S DATABASES FOR BIOACTIVE COMPOUNDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Nutrient Data Laboratory (NDL), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA) is responsible for developing and maintaining composition databases for foods and supplements. Recent hypotheses concerning the possible roles of new bioactive dietary compounds in managing...

  13. Bioactive compounds from Carissa spinarum.

    PubMed

    Wangteeraprasert, Ruchira; Lipipun, Vimolmas; Gunaratnam, Mekala; Neidle, Stephen; Gibbons, Simon; Likhitwitayawuid, Kittisak

    2012-10-01

    In our continuing efforts to find new antiherpetic agents from plants, an extract prepared from the stems of Carissa spinarum L. was found to possess appreciable activity against herpes simplex viruses (HSV I and II). A chemical study of this plant was then initiated, and this led to the isolation of 12 compounds, including a coumarin, two cardiac glycosides and nine lignans. These isolated compounds were evaluated for several biological activities, including antiherpetic, cytotoxic, antioxidant and antibacterial effects. The cardiac glycoside evomonoside was found to be the only antiherpetic principle, showing moderate activity against herpes simplex virus types I and II in the inactivation method. The lignans (-)-carinol, (-)-carissanol and (-)-nortrachelogenin exhibited cytotoxicity against breast (MCF7) and lung (A549) cancer cells. Moderate anti-DPPH free radical activity was observed for all the lignans. None of the isolates showed antibacterial activity. PMID:22308099

  14. Bioactive compounds from northern plants.

    PubMed

    Hohtola, Anja

    2010-01-01

    Northern conditions are characterised by long days with much light and low temperatures during the growing season. It has been chimed that herbs and berries grown in the north are stronger tasting compared to those of southern origin. The compounds imparting aroma and color to berries and herbs are secondary metabolites which in plants mostly act as chemical means of defense. Recently, the production of secondary metabolites using plant cells has been the subject of expanding research. Light intensity, photoperiod and temperature have been reported to influence the biosynthesis of many secondary metabolites. Native wild aromatic and medicinal plant species of different families are being studied to meet the needs of raw material for the expanding industry of e.g., health-promoting food products known as nutraceutics. There are already a large number of known secondary compounds produced by plants, but the recent advances in modern extraction and analysis should enable many more as yet unknown compounds to be found, characterised and utilised. Rose root (Rhodiola rosea) is a perennial herbaceous plant which inhabits mountain regions throughout Europe, Asia and east coastal regions of North America. The extract made from the rhizomes acts as a stimulant like the Ginseng root. Roseroot has been categorized as an adaptogen and is reported to have many pharmacological properties. The biologically active components of the extract are salitroside tyrosol and cinnamic acid glycosides (rosavin, rosarin, rosin). Round-leaved sundew (Drosera rotundifolia L.) has circumboreal distribution. It inhabits nutrient-poor, moist and sunny areas such as peat bogs and wetlands. Sundew leaves are collected from the wild-type for various medicinal preparations and can be utilized in treating e.g., as an important "cough-medicine" for different respiratory diseases. The antimicrobial activity of extracts of aerial parts against various bacteria has been investigated. Drosera produces

  15. Bioactive Compounds from Vitex leptobotrys#

    PubMed Central

    Pan, Wenhui; Liu, Kanglun; Guan, Yifu; Tan, Ghee Teng; Hung, Nguyen Van; Cuong, Nguyen Manh; Soejarto, D. Doel; Pezzuto, John M.; Fong, Harry H.S.; Zhang, Hongjie

    2014-01-01

    A new lignan, vitexkarinol (1), as well as a known lignan, neopaulownin (2), a known chalcone, 3-(4-hydroxyphenyl)-1-(2,4,6-trimethoxyphenyl)-2-propen-1-one (3), two known dehydroflavones, tsugafolin (4) and alpinetin (5), two known dipeptides, aurantiamide and aurantiamide acetate, a known sesquiterpene, vemopolyanthofuran, and five known carotenoid metabolites, vomifoliol, dihydrovomifoliol, dehydrovomifoliol, loliolide and isololiolide, were isolated from the leaves and twigs of Vitex leptobotrys through bioassay-guided fractionation. The chalcone (3) was found to inhibit HIV-1 replication by 77% at 15.9 µM, and the two dehydroflavones (4 and 5) showed weak anti-HIV activity with IC50 values of 118 and 130 µM, respectively, while being devoid of cytotoxicity at 150 µM. A chlorophyll-enriched fraction of V. leptobotrys, containing pheophorbide a, was found to inhibit the replication of HIV-1 by 80% at a concentration of 10 µg/mL. Compounds 1 and 3 were further selected to be evaluated against 21 viral targets available at NIAID (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD). PMID:24404757

  16. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. PMID:24160194

  17. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model

    PubMed Central

    Muhammad, Abubakar Amali; Arulselvan, Palanisamy; Cheah, Pike See; Abas, Farida; Fakurazi, Sharida

    2016-01-01

    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%–24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera

  18. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model.

    PubMed

    Muhammad, Abubakar Amali; Arulselvan, Palanisamy; Cheah, Pike See; Abas, Farida; Fakurazi, Sharida

    2016-01-01

    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%-24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera

  19. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    PubMed

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-01-01

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827

  20. Bioactive Compounds Found in Brazilian Cerrado Fruits

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-01-01

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827

  1. Radiation Parameters of Some Potential Bioactive Compounds.

    PubMed

    Gedik, Zeynep; Tugrak, Mehtap; Dastan, Aysenur; Gul, Halise Inci; Yilmaz, Demet

    2015-06-01

    In this study, we aimed to determine the radiation parameters of some potential bioactive compounds. 1-Aryl-3-dibenzylamino-propane-1-on hydrochloride type Mannich bases were synthesized via classical conventional heating method. Aryl part was changed as phenyl (C6H5), 4-methylphenyl (4-CH3C6H4), 4-fluorophenyl ( 4-FC6H4), 4-nitrophenyl (4-NO2C6H4), 4-chlorophenyl (4-ClC6H4), 4-bromophenyl (4-BrC6H4), and 2-thienyl (C4H3S-2-yl). Mass attenuation coefficient (μm), effective atomic number (Z(eff)) and effective electron density (N(el)) of compounds were determined experimentally and theoretically for at 8.040, 8.910, 13.40, 14.96, 17.48, 19.61, 22.16, 24.94, 32.19, 36.38, 44.48, 50.38 and 59.54 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. Radiation parameters of these compounds which can be anti-cancer drug candidate were given in the tables. The results show that phenyl ring behave like thiophene ring in terms of radiation absorption. It is thought that the results of study may drive allow the development of drug candidate new compounds in medical oncology. PMID:26601355

  2. New Bioactive Compounds from Korean Native Mushrooms

    PubMed Central

    Kim, Seong-Eun; Hwang, Byung Soon; Song, Ja-Gyeong; Lee, Seung Woong; Lee, In-Kyoung

    2013-01-01

    Mushrooms are ubiquitous in nature and have high nutritional attributes. They have demonstrated diverse biological effects and therefore have been used in treatments of various diseases, including cancer, diabetes, bacterial and viral infections, and ulcer. In particular, polysaccharides, including β-glucan, are considered as the major constituents responsible for the biological activity of mushrooms. Although an overwhelming number of reports have been published on the importance of polysaccharides as immunomodulating agents, not all of the healing properties found in these mushrooms could be fully accounted for. Recently, many research groups have begun investigations on biologically active small-molecular weight compounds in wild mushrooms. In this mini-review, both structural diversity and biological activities of novel bioactive substances from Korean native mushrooms are described. PMID:24493936

  3. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  4. A compilation of Bioactive Compounds from Ayurveda

    PubMed Central

    Samy, Ramar Perumal; Pushparaj, Peter Natesan; Gopalakrishnakone, Ponnampalam

    2008-01-01

    This review deals with the key bioactive compounds and the role of medicinal plants in Ayurvedic systems of medicine in India and their earlier investigation. There has been an increase in demand for the Phytopharmaceutical products of Ayurvĕda in Western countries, because of the fact that the allopathic drugs have more side effects. Many pharmaceutical companies are now concentrating on manufacturing of Ayurvĕdic Phytopharmaceutical products. Ayurvĕda is the Indian traditional system of medicine, which also deals about pharmaceutical science. Different type of plant parts used for the Ayurvedic formulation; overall out line of those herbal scenario and its future prospects for the scientific evaluation of medicinal plants used by traditional healers are also discussed. In India most of them, where Ayurvedic treatment is frequently used, for their ailments and provides instructions to local people how to prepare medicine from the herbs. As much as possible importance is also given for the taxonomic literature. PMID:19238245

  5. Chemically engineered extracts: source of bioactive compounds.

    PubMed

    Ramallo, I Ayelen; Salazar, Mario O; Mendez, Luciana; Furlan, Ricardo L E

    2011-04-19

    Biological research and drug discovery critically depend on access to libraries of small molecules that have an affinity for biomacromolecules. By virtue of their sustained success as sources of lead compounds, natural products are recognized as "privileged" starting points in structural space for library development. Compared with synthetic compounds, natural products have distinguishing structural properties; indeed, researchers have begun to quantify and catalog the differences between the two classes of molecules. Measurable differences in the number of chiral centers, the degree of saturation, the presence of aromatic rings, and the number of the various heteroatoms are among the chief distinctions between natural and synthetic compounds. Natural products also include a significant proportion of recurring molecular scaffolds that are not present in currently marketed drugs: the bioactivity of these natural substructures has been refined over the long process of evolution. In this Account, we present our research aimed at preparing libraries of semisynthetic compounds, or chemically engineered extracts (CEEs), through chemical diversification of natural products mixtures. The approach relies on the power of numbers, that is, in the chemical alteration of a sizable fraction of the starting complex mixture. Major changes in composition can be achieved through the chemical transformation of reactive molecular fragments that are found in most natural products. If such fragments are common enough, their transformation represents an entry point for chemically altering a high proportion of the components of crude natural extracts. We have searched for common reactive fragments in the Dictionary of Natural Products (CRC Press) and identified several functional groups that are expected to be present in a large fraction of the components of an average natural crude extract. To date, we have used reactions that incorporate (i) nitrogen atoms through carbonyl groups, (ii

  6. Competing role of bioactive constituents in Moringa oleifera extract and conventional nutrition feed on the performance of Cobb 500 broilers.

    PubMed

    Karthivashan, Govindarajan; Arulselvan, Palanisamy; Alimon, Abd Razak; Safinar Ismail, Intan; Fakurazi, Sharida

    2015-01-01

    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement. PMID:25793214

  7. Competing Role of Bioactive Constituents in Moringa oleifera Extract and Conventional Nutrition Feed on the Performance of Cobb 500 Broilers

    PubMed Central

    Karthivashan, Govindarajan; Arulselvan, Palanisamy; Alimon, Abd. Razak; Safinar Ismail, Intan; Fakurazi, Sharida

    2015-01-01

    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement. PMID:25793214

  8. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    PubMed

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  9. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  10. Bioactive Compounds from Marine Bacteria and Fungi

    PubMed Central

    Debbab, Abdessamad; Aly, Amal H.; Lin, Wen H.; Proksch, Peter

    2010-01-01

    Summary Marine bacteria and fungi are of considerable importance as new promising sources of a huge number of biologically active products. Some of these marine species live in a stressful habitat, under cold, lightless and high pressure conditions. Surprisingly, a large number of species with high diversity survive under such conditions and produce fascinating and structurally complex natural products. Up till now, only a small number of microorganisms have been investigated for bioactive metabolites, yet a huge number of active substances with some of them featuring unique structural skeletons have been isolated. This review covers new biologically active natural products published recently (2007–09) and highlights the chemical potential of marine microorganisms, with focus on bioactive products as well as on their mechanisms of action. PMID:21255352

  11. Phenolic compounds and bioactivities of pigmented rice.

    PubMed

    Deng, Gui-Fang; Xu, Xiang-Rong; Zhang, Yuan; Li, Dan; Gan, Ren-You; Li, Hua-Bin

    2013-01-01

    The pigmented rice has been consumed in China, Japan, and Korea for a long time. It has been used for strengthening kidney function, treating anemia, promoting blood circulation, removing blood stasis, treating diabetes, and ameliorating sight in traditional Chinese medicine. The extracts from pigmented rice are used as natural food colorants in bread, ice cream, and liquor as well as functional food. The pigmented rice is mainly black, red, and dark purple rice, and contains a variety of flavones, tannin, phenolics, sterols, tocols, γ-oryzanols, amino acids, and essential oils. Anthocyanins are thought as major functional components of pigmented rice. Several anthocyanins have been isolated and identified from the pigmented rice, including cyanidin 3-glucoside, cyanidin 3-galactoside, cyanidin 3-rutinoside, cyanidin 3,5-diglucoside, malvidin 3-galactoside, peonidin 3-glucoside, and pelargonidin 3,5-diglucoside. This review provides up-to-date coverage of pigmented rice in regard to bioactive constituents, extraction and analytical methods, and bioactivities. Special attention is paid to the bioactivities including antioxidant and free radical scavenging, antitumor, antiatherosclerosis, hypoglycemic, and antiallergic activities. PMID:23216001

  12. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    PubMed Central

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries. PMID:22942704

  13. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications

    PubMed Central

    Oh, Yoon Sin

    2016-01-01

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315

  14. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications.

    PubMed

    Oh, Yoon Sin

    2016-01-01

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315

  15. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation.

    PubMed

    Ramabulana, T; Mavunda, R D; Steenkamp, P A; Piater, L A; Dubery, I A; Madala, N E

    2016-03-01

    Oxidative stress is a physiological state associated with almost all biotic and abiotic stresses in plants. This phenomenon occurs due to imbalances which result from the overproduction of reactive oxygen species (ROS). Plants, however, have developed sophisticated mechanisms to mitigate the effect of ROS. In this regard, plant polyphenolic metabolites such as flavonoids are known to possess high antioxidant activities. In the current study, changes in the levels of phenolic compounds from Moringa oleifera after gamma radiation treatment were investigated with reverse phase liquid chromatography and mass spectrometric techniques in combination with multivariate data models such as principal component analysis and orthogonal projection to latent structures discriminant analysis. Our results revealed several polyphenolic compounds such as hydroxycinnamoyl derivatives and flavonoid molecules to be down-regulated post-radiation treatment. Interestingly, other flavonoid molecules were found to be up-regulated post-radiation treatment, thereby suggesting a possible compensatory phenomenon. The existence and involvement of structurally similar metabolites (such as regio-isomers of chlorogenic acids) in M. oleifera towards mitigating photo-oxidative damages are in support of the proposed evolutionary existence of a large pool of polyphenolics which contribute to the state of readiness, aptly described as a "better safe than sorry" phenomenon. Our study thus reaffirms the involvement of phenolic compounds as a first line of constitutive/preformed protection against oxidative stress. Furthermore, the obtained data supports M. oleifera as a source of versatile and pharmacologically relevant metabolites that may be exploited for ameliorating the oxidative damages imposed by several metabolic disorders in humans. PMID:26854613

  16. Changes in intakes of selected foods rich in bioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several foods have received considerable attention in recent years because of their possible protective effect on cardiovascular diseases and cancer. These foods are rich in bioactive compounds and include blueberries, strawberries, broccoli, soymilk, and tea. Dietary intake data for males and femal...

  17. Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties

    PubMed Central

    Janardhan, Avilala; Kumar, Arthala Praveen; Viswanath, Buddolla; Saigopal, D. V. R.; Narasimha, Golla

    2014-01-01

    An actinomycete was isolated from mangrove soil collected from Nellore region of Andhra Pradesh, India, and screened for its ability to produce bioactive compounds. The cultural, morphological, and biochemical characters and 16S rRNA sequencing suggest that the isolated strain is Nocardiopsis alba. The bioactive compounds produced by this strain were purified by column chromatography. The in vitro antioxidant capacity of the isolated compounds (fractions) was estimated and fraction F2 showed very near values to the standard ascorbic acid. The potential fraction obtained by column chromatography was subjected to HPLC for further purification, then this purified fraction F2 was examined by FTIR, NMR, and mass spectroscopy to elucidate its chemical structure. By spectral data, the structure of the isolated compound was predicted as “(Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy)anthracene-9,10-dione.” PMID:24790761

  18. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  19. Immense essence of excellence: marine microbial bioactive compounds.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  20. Nocardiopsis species: a potential source of bioactive compounds.

    PubMed

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. PMID:26369300

  1. Bioactive compounds from Iostephane heterophylla (Asteraceae).

    PubMed

    Aguilar, M I; Delgado, G; Hernández, M L; Villarreal, M L

    2001-01-01

    The novel bisabolene sesquiterpenes 3-6, were isolated from Iostephane heterophylla, using bioguided fractionation. The new compounds were determined to be (12R/12S)-12,13-epoxy-xanthorrhizols (3,4) and (12R/12S)-12,13-dihydro-12,13-dihydroxy-xanthorrizols (5,6) and their structures were characterized by analysis of spectroscopic data and by chemical correlation from xanthorrhizol (2). The stereochemistry at C-12 of 5 was deduced using the modified Mosher experiment. Some of the isolated compounds elicited activity against gram positive and gram negative bacteria, levadura and dermatophytes. PMID:11561451

  2. Bioactive compounds for pest and weed control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The control of insect pests and invasive weeds has become more species-selective because of activity-guided isolation, structure elucidation, and total synthesis of naturally produced substances with important biological activities. Examples of isolated compounds include insect pheromones, antifeed...

  3. DOGS: Reaction-Driven de novo Design of Bioactive Compounds

    PubMed Central

    Hartenfeller, Markus; Zettl, Heiko; Walter, Miriam; Rupp, Matthias; Reisen, Felix; Proschak, Ewgenij; Weggen, Sascha; Stark, Holger; Schneider, Gisbert

    2012-01-01

    We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties. PMID:22359493

  4. Study on bioactive compounds from Streptomyces sp. ANU 6277.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2008-01-01

    An attempt was made to study the bioactive compounds from a terrestrial Streptomyces sp. ANU 6277 isolated from laterite soil. Four active fractions were recovered from the solvent extracts obtained from the culture broth of five day-old strain. Three bioactive compounds were purified and identified as 3-phenylpropionic acid, anthracene-9,10-quinone and 8-hydroxyquinoline. The components of the partially purified fourth active fraction were analyzed by gas chromatography-mass spectrometry and identified as benzyl alcohol, phenylethyl alcohol and 2H-1, 4-benzoxazin-3 (4H)-one. Four active fractions were screened for antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi including phytopathogenic, toxigenic and dermatophytic genera. Among these metabolites, 8-hydroxyquinoline exhibited strong antibacterial and antifungal activity as compared to 3-phenylpropionic acid and anthracene-9,10-quinone. PMID:18610654

  5. Echinoderms: their culture and bioactive compounds.

    PubMed

    Kelly, M S

    2005-01-01

    biologically active compounds with biomedical applications. Sea cucumber has been valued in Chinese medicine for hundreds of years as a cure for a wide variety of ailments. Some more recently isolated compounds, mainly from sea cucumbers and starfish, and including those with antitumour, antiviral, anticoagulant and antimicrobial activity are summarised below. When wild stocks decline, the demand created in the market place raises to the price of the product and, consequently, culturing is more likely to become viable economically. As this review shows, there have been dramatic advances in the culture methods of sea urchins and sea cucumbers in the last 10-15 years, to the extent that one can conclude that currently the major obstacles to successful cultivation are indeed economic rather than biological. Hence the future of the echinoculture industry is closely linked to that of the fisheries, whose fate will ultimately determine the market forces that will shape this growing industry. PMID:17152697

  6. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    PubMed Central

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  7. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    NASA Astrophysics Data System (ADS)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  8. Bioactive compounds and antioxidant potential fruit of Ximenia americana L.

    PubMed

    Almeida, Maria Lucilania Bezerra; Freitas, Wallace Edelky de Souza; de Morais, Patrícia Lígia Dantas; Sarmento, José Dárcio Abrantes; Alves, Ricardo Elesbão

    2016-02-01

    The caatinga ecoregion in northeast Brazil presents a wide variety in plant species. However, the potential of these species as a source of energy, carbohydrates, vitamins, minerals and bioactive properties beneficial to health is still unknown. Among these species we can find the wild plum (Ximenia americana). Due to its various phytotherapeutic properties and absence of studies on the chemical composition of the fruit this article aimed to evaluate the bioactive compounds and antioxidant potential of the X. americana in different stages of maturation. The fruits of X. americana showed considerable amounts of bioactive compounds, as well as antioxidant activity and antioxidant enzymes. The fruits at green maturity stage showed higher content of yellow flavonoids (22.07 mg/100g), anthocyanins (1.92 mg/100 g), polyphenols (3051.62 mg/100 g), starch (4.22%), antioxidant activity (489.40 g fruit/g DPPH and 198.77 μmol Trolox/g) and activity of antioxidant enzymes; the antioxidant activity allocated to the fruit was shown to be related to the contents of extractable polyphenols, yellow flavonoids, total anthocyanins and antioxidant enzymes. PMID:26304450

  9. Variation of bioactive compounds content of 14 oriental strawberry cultivars.

    PubMed

    Kim, Sung Kyeom; Kim, Dong Sub; Kim, Dae Young; Chun, Changhoo

    2015-10-01

    Variation in bioactive compounds content was assessed in antioxidant rich June-bearing strawberry cultivars. Ascorbic acid, anthocyanin, and ellagic acid content were analyzed in ripe fruits of 14 cultivars. The bioactive content in strawberry fruit was found to vary significantly among cultivars and from year to year. The highest ascorbic acid content was found in 'Sugyeong'. The 'Red Pearl' and 'Sachinoka' had three to fourfold higher amounts of pelargonidin 3-glucoside than other cultivars. For cyanidin 3-glucoide and pelargonidin 3-rutinoside, two other characterized anthocyanins, 'Dahong' and 'Keumhyang' had the highest contents among all the tested cultivars. The ellagic acid content of 'Dahong' was generally all within the upper ranges. These results can be used for the validation of fruit antioxidant capacity and in addition, provide useful information for breeding programs looking to enhance the antioxidant capacity in strawberry fruit. PMID:25872444

  10. Bioactive compounds of sea cucumbers and their therapeutic effects

    NASA Astrophysics Data System (ADS)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2015-11-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  11. Bioactive compounds of sea cucumbers and their therapeutic effects

    NASA Astrophysics Data System (ADS)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  12. Bioactive aromatic compounds from leaves and stems of Vanilla fragrans.

    PubMed

    Sun, R; Sacalis, J N; Chin, C K; Still, C C

    2001-11-01

    Alcoholic extracts of leaves and stems of Vanilla fragrans were fractionated with ethyl acetate and aqueous butanol. All three fractions of ethyl acetate, butanol, and water were screened for toxic bioactivity against mosquito larvae. The results of these experiments showed that the fractions from the ethyl acetate and butanol phases were both active in the bioassay. Bioactivity of the ethyl acetate fraction was found to be much greater than that from the butanol fraction in mosquito larvae toxicity. The water phase appeared to contain no substances that impaired mosquito larval growth. Repeated column chromatography of the ethyl acetate fraction on silica gel led to the isolation of 4-ethoxymethylphenol (1), 4-butoxymethylphenol (2), vanillin (3), 4-hydroxy-2-methoxycinnamaldehyde (4), and 3,4-dihydroxyphenylacetic acid (5). Compounds 4 and 5 were isolated from Vanilla species for the first time and 2 has not been reported to have been found in a natural form. 4-Ethoxymethylphenol (1) was the predominant compound, but 4-butoxymethylphenol (2) showed the strongest toxicity to mosquito larvae. The structures of the compounds were determined on the basis of their mass spectra and (1)H or (13)C NMR data. PMID:11714297

  13. Metabolites identification of bioactive licorice compounds in rats.

    PubMed

    Wang, Qi; Qian, Yi; Wang, Qing; Yang, Yan-Fang; Ji, Shuai; Song, Wei; Qiao, Xue; Guo, De-An; Liang, Hong; Ye, Min

    2015-11-10

    Licorice (Glycyrrhiza uralensis Fisch.) is one of the most popular herbal medicines worldwide. This study aims to identify the metabolites of seven representative bioactive licorice compounds in rats. These compounds include 22β-acetoxyl glycyrrhizin (1), licoflavonol (2), licoricidin (3), licoisoflavanone (4), isoglycycoumarin (5), semilicoisoflavone B (6), and 3-methoxy-9-hydroxy-pterocarpan (7). After oral administration of 250mg/kg of 1 or 40mg/kg of 2-7 to rats, a total of 16, 43 and 31 metabolites were detected in the plasma, urine and fecal samples, respectively. The metabolites were characterized by HPLC/DAD/ESI-MS(n) and LC/IT-TOF-MS analyses. Particularly, two metabolites of 1 were unambiguously identified by comparing with reference standards, and 22β-acetoxyl glycyrrhizin-6″-methyl ester (1-M2) is a new compound. Compound 1 could be readily hydrolyzed to eliminate the glucuronic acid residue. The phenolic compounds (4-7) mainly undertook phase II metabolism (glucuronidation or sulfation). Most phenolic compounds with an isoprenyl group (chain or cyclized, 2-5) could also undertake hydroxylation reaction. This is the first study on in vivo metabolism of these licorice compounds. PMID:26311472

  14. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera. PMID:25230187

  15. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    PubMed

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. PMID:25442573

  16. Bioactive compounds and quality parameters of natural cloudy lemon juices.

    PubMed

    Uçan, Filiz; Ağçam, Erdal; Akyildiz, Asiye

    2016-03-01

    In this study, bioactive compounds (phenolic and carotenoid) and some quality parameters (color, browning index and hydroxymethylfurfural (HMF)) of natural cloudy lemon juice, pasteurized (90 °C/15 s) and storage stability of concentrated lemon juice (-25 °C/180 days) were carried out. Fifteen phenolic compounds were determined in the lemon juice and the most abounded phenolic compounds were hesperidin, eriocitrin, chlorogenic acid and neoeriocitrin. In generally, phenolic compound concentrations of lemon juice samples increased after the pasteurization treatment. Four carotenoid compounds (β-carotene, β-cryptoxanthin, lutein and zeaxanthin) were detected in natural cloudy lemon juice. Lutein and β-cryptoxanthin were the most abounded carotenoid compounds in the lemon juice. Color values of the lemon juices were not affected by processing and storage periods. HMF and browning index of the lemon juices increased with concentration and storage. According to the results, storing at -25 °C was considered as sufficient for acceptable quality limits of natural cloudy lemon juice. PMID:27570271

  17. Bioactive Dehydrotyrosyl and Dehydrodopyl Compounds of Marine Origin

    PubMed Central

    Sugumaran, Manickam; Robinson, William E.

    2010-01-01

    The amino acid, tyrosine, and its hydroxylated product, 3,4-dihydroxyphenylalanine (dopa), plays an important role in the biogenesis of a number of potentially important bioactive molecules in marine organisms. Interestingly, several of these tyrosyl and dopa-containing compounds possess dehydro groups in their side chains. Examples span the range from simple dehydrotyrosine and dehydrodopamines to complex metabolic products, including peptides and polycyclic alkaloids. Based on structural information, these compounds can be subdivided into five categories: (a) Simple dehydrotyrosine and dehydrotyramine containing molecules; (b) simple dehydrodopa derivatives; (c) peptidyl dehydrotyrosine and dehydrodopa derivatives; (d) multiple dehydrodopa containing compounds; and (e) polycyclic condensed dehydrodopa derivatives. These molecules possess a wide range of biological activities that include (but are not limited to) antitumor activity, antibiotic activity, cytotoxicity, antioxidant activity, multidrug resistance reversal, cell division inhibition, immunomodulatory activity, HIV-integrase inhibition, anti-viral, and anti-feeding (or feeding deterrent) activity. This review summarizes the structure, distribution, possible biosynthetic origin, and biological activity, of the five categories of dehydrotyrosine and dehydrodopa containing compounds. PMID:21339956

  18. Encapsulating fatty acid esters of bioactive compounds in starch

    NASA Astrophysics Data System (ADS)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  19. Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti.

    PubMed

    Leone, Alessandro; Fiorillo, Giovanni; Criscuoli, Franca; Ravasenghi, Stefano; Santagostini, Laura; Fico, Gelsomina; Spadafranca, Angela; Battezzati, Alberto; Schiraldi, Alberto; Pozzi, Federica; di Lello, Sara; Filippini, Sandro; Bertoli, Simona

    2015-01-01

    Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature. In this article we performed a nutritional characterization and a phenolic profiling of M. oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. In addition, we investigated the presence of salicylic and ferulic acids, two phenolic acids with pharmacological activity, whose presence in M. oleifera leaves has been scarcely investigated so far. Several differences were observed among the samples. Nevertheless, the leaves were rich in protein, minerals, and β-carotene. Quercetin and kaempferol glycosides were the main phenolic compounds identified in the methanolic extracts. Finally, salicylic and ferulic acids were found in a concentration range of 0.14-0.33 and 6.61-9.69 mg/100 g, respectively. In conclusion, we observed some differences in terms of nutrients and phenolic compounds in M. oleifera leaves grown in different countries. Nevertheless, these leaves are a good and economical source of nutrients for tropical and sub-tropical countries. Furthermore, M. oleifera leaves are a source of flavonoids and phenolic acids, among which salicylic and ferulic acids, and therefore they could be used as nutraceutical and functional ingredients. PMID:26274956

  20. Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti

    PubMed Central

    Leone, Alessandro; Fiorillo, Giovanni; Criscuoli, Franca; Ravasenghi, Stefano; Santagostini, Laura; Fico, Gelsomina; Spadafranca, Angela; Battezzati, Alberto; Schiraldi, Alberto; Pozzi, Federica; di Lello, Sara; Filippini, Sandro; Bertoli, Simona

    2015-01-01

    Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature. In this article we performed a nutritional characterization and a phenolic profiling of M. oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. In addition, we investigated the presence of salicylic and ferulic acids, two phenolic acids with pharmacological activity, whose presence in M. oleifera leaves has been scarcely investigated so far. Several differences were observed among the samples. Nevertheless, the leaves were rich in protein, minerals, and β-carotene. Quercetin and kaempferol glycosides were the main phenolic compounds identified in the methanolic extracts. Finally, salicylic and ferulic acids were found in a concentration range of 0.14–0.33 and 6.61–9.69 mg/100 g, respectively. In conclusion, we observed some differences in terms of nutrients and phenolic compounds in M. oleifera leaves grown in different countries. Nevertheless, these leaves are a good and economical source of nutrients for tropical and sub-tropical countries. Furthermore, M. oleifera leaves are a source of flavonoids and phenolic acids, among which salicylic and ferulic acids, and therefore they could be used as nutraceutical and functional ingredients. PMID:26274956

  1. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds

    PubMed Central

    dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-01-01

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1), and anthocyanins in bacaba (80.76 mg·100g−1). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g−1), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g−1 DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits. PMID:26783846

  2. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds.

    PubMed

    Dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-01-01

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g(-1)), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g(-1)), and anthocyanins in bacaba (80.76 mg·100g(-1)). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g(-1)), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g(-1) DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits. PMID:26783846

  3. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds

    PubMed Central

    Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2014-01-01

    In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044

  4. Rosmarinus officinalis leaves as a natural source of bioactive compounds.

    PubMed

    Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2014-01-01

    In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC-ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044

  5. GC/GCMS analysis of the petroleum ether and dichloromethane extracts of Moringa oleifera roots

    PubMed Central

    Faizi, Shaheen; Sumbul, Saima; Versiani, Muhammed Ali; Saleem, Rubeena; Sana, Aisha; Siddiqui, Hira

    2014-01-01

    Objective To explore the phytochemical constituents from petroleum ether and dichloromethane extracts of Moringa oleifera (M. oleifera) roots using GC/GC-MS. Methods A total of 5.11 kg fresh and undried crushed root of M. oleifera were cut into small pieces and extracted with petroleum ether and dichloromethane (20 L each) at room temperature for 2 d. The concentrated extracts were subjected to their GC-MS analysis. Results The GC-MS analysis of the petroleum ether and dichloromethane extracts of M. oleifera roots, which showed promising biological activities, has resulted in the identification 102 compounds. These constituents belong to 15 classes of compounds including hydrocarbons, fatty acids, esters, alcohols, isothiocyanate, thiocyanate, pyrazine, aromatics, alkamides, cyanides, steroids, halocompounds, urea and N-hydroxyimine derivatives, unsaturated alkenamides, alkyne and indole. GC/GC-MS studies on petroleum ether extract of the roots revealed that it contained 39 compounds, belonging to nine classes. Cyclooctasulfur S8 has been isolated as a pure compound from the extract. The major compounds identified from petroleum ether extract were trans-13-docosene (37.9%), nonacosane (32.6%), cycloartenol (28.6%) nonadecanoic acid (13.9%) and cyclooctasulfur S8 (13.9%). Dichloromethane extract of the roots was composed of 63 compounds of which nasimizinol (58.8%) along with oleic acid (46.5%), N-benzyl-N-(7-cyanato heptanamide (38.3%), N-benzyl-N-(1-chlorononyl) amide (30.3%), bis [3-benzyl prop-2-ene]-1-one (19.5%) and N, N-dibenzyl-2-ene pent 1, 5-diamide (11.6%) were the main constituents. Conclusions This study helps to predict the formula and structure of active molecules which can be used as drugs. This result also enhances the traditional usage of M. oleifera which possesses a number of bioactive compounds. PMID:25183335

  6. Potential Bioactive Compounds from Seaweed for Diabetes Management

    PubMed Central

    Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi

    2015-01-01

    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents. PMID:26308010

  7. Potential Bioactive Compounds from Seaweed for Diabetes Management.

    PubMed

    Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi

    2015-08-01

    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents. PMID:26308010

  8. Jellyfish Bioactive Compounds: Methods for Wet-Lab Work

    PubMed Central

    Frazão, Bárbara; Antunes, Agostinho

    2016-01-01

    The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis—separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish. PMID:27077869

  9. Jellyfish Bioactive Compounds: Methods for Wet-Lab Work.

    PubMed

    Frazão, Bárbara; Antunes, Agostinho

    2016-04-01

    The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish. PMID:27077869

  10. Bioactive Compounds of Aristotelia chilensis Stuntz and their Pharmacological Effects.

    PubMed

    Romanucci, Valeria; D'Alonzo, Daniele; Guaragna, Annalisa; Di Marino, Cinzia; Davinelli, Sergio; Scapagnini, Giovanni; Di Fabio, Giovanni; Zarrelli, Armando

    2016-01-01

    Aristotelia chilensis ([Molina], Stuntz) a member of the family Eleocarpaceae, is a plant native to Chile that is distributed in tropical and temperate Asia, Australia, the Pacific Area, and South America. The juice of its berries has important medicinal properties, as an astringent, tonic, and antidiarrhoeal. Its many qualities make the maqui berry the undisputed sovereign of the family of so-called "superfruits", as well as a valuable tool to combat cellular inflammation of bones and joints. Recently, it is discovered that the leaves of the maqui berry have important antibacterial and antitumour activities. This review provides a comprehensive overview of the traditional use, phytochemistry, and biological activity of A. chilensis using information collected from scientific journals, books, and electronic searches. Anthocyanins, other flavonoids, alkaloids, cinnamic acid derivatives, benzoic acid derivatives, other bioactive molecules, and mineral elements are summarized. A broad range of activities of plant extracts and fractions are presented, including antioxidant activity, inhibition of visible light-induced damage of photoreceptor cells, inhibition of α-glucosidase, inhibition of pancreatic lipase, anti-diabetic effects, anti-inflammatory effects, analgesic effects, anti-diabetes, effective prevention of atherosclerosis, promotion of hair growth, anti-photo ageing of the skin, and inhibition of lipid peroxidation. Although some ethnobotanical uses have been supported in in vitro experiments, further studies of the individual compounds or chemical classes of compounds responsible for the pharmacological effects and the mechanisms of action are necessary. In addition, the toxicity and the side effects from the use of A. chilensis, as well as clinical trials, require attention. PMID:26778456

  11. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.

    PubMed

    Schröder, H C; Brümmer, F; Fattorusso, E; Aiello, A; Menna, M; de Rosa, S; Batel, R; Müller, W E G

    2003-01-01

    Sponges [phylum Porifera] are a rich source for the isolation of biologically active and pharmacologically valuable compounds with a high potential to become effective drugs for therapeutic use. However, until now, only one compound has been introduced into clinics because of the limited amounts of starting material available for extraction. To overcome this serious problem in line with the rules for a sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor. The main efforts to follow the latter strategy have been undertaken with the marine sponge Suberites domuncula. This species produces compounds that affect neuronal cells, such as quinolinic acid, a well-known neurotoxin, and phospholipids. A sponge cell culture was established after finding that single sponge cells require cell-cell contact in order to retain their telomerase activity, one prerequisite for continuous cell proliferation. The sponge cell culture system, the primmorphs, comprises proliferating cells that have the potency to differentiate. While improving the medium it was found that, besides growth factors, certain ions (e.g. silicate and iron) are essential. In the presence of silicate several genes required for the formation of the extracellular matrix are expressed (silicatein, collagen and myotrophin). Fe3+ is essential for the synthesis of the spicules, and causes an increased expression of the ferritin-, septin- and scavenger receptor genes. Furthermore, high water current is required for growth and canal formation in the primmorphs. The primmorph system has already been successfully used for the production of pharmacologically useful, bioactive compounds, such as avarol or (2'-5')oligoadenylates. Future strategies to improve the sponge cell culture are discussed; these

  12. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines.

    PubMed

    Muangnoi, Channarong; Chingsuwanrote, Pimjai; Praengamthanachoti, Phawachaya; Svasti, Saovaros; Tuntipopipat, Siriporn

    2012-04-01

    Pro-inflammatory mediators produced during inflammatory response have been demonstrated to initiate and aggravate pathological development of several chronic diseases. Plant bioactive constituents have been reported to exert anti-inflammatory activities. Various parts of Moringa oleifera have long been used as habitual diets and traditional remedy along the tropical region. Anti-inflammatory activity of boiled M. oleifera pod extract was assessed by measuring pro-inflammatory mediator expression in the lipopolysaccharide-induced murine RAW264.7 macrophage cells. Prior treatment with 31-250 μg/mL M. oleifera extract for 1 h inhibited elevation of mRNA and protein level of interleukine-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenease-2, induced by lipopolysaccharide for 24 h in a dose-dependent manner. The suppressive effect was mediated partly by inhibiting phosphorylation of inhibitor kappa B protein and mitogen-activated protein kinases. These results indicate that the anti-inflammatory activity from bioactive compounds present in the M. oleifera pod constituents may contribute to ameliorate the pathogenesis of inflammatory-associated chronic diseases. PMID:21537903

  13. Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves

    NASA Astrophysics Data System (ADS)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša

    2016-01-01

    The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.

  14. Emerging Strategies and Integrated Systems Microbiology Technologies for Biodiscovery of Marine Bioactive Compounds

    PubMed Central

    Rocha-Martin, Javier; Harrington, Catriona; Dobson, Alan D.W.; O’Gara, Fergal

    2014-01-01

    Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds. PMID:24918453

  15. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  16. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology.

    PubMed

    Rodríguez-Pérez, Celia; Gilbert-López, Bienvenida; Mendiola, Jose Antonio; Quirantes-Piné, Rosa; Segura-Carretero, Antonio; Ibáñez, Elena

    2016-07-01

    This work aims at studying the optimization of microwave-assisted extraction (MAE) and pressurized liquid extraction (PLE) by multi-response surface methodology (RSM) to test their efficiency towards the extraction of phenolic compounds from Moringa oleifera (M. oleifera) leaves. The extraction yield, total phenolic content (TPC), total flavonoid content (TF), DPPH scavenging method and trolox equivalent antioxidant capacity (TEAC) assay were considered as response variables while effects of extraction time, percentage of ethanol, and temperature were studied. Extraction time of 20 min, 42% ethanol and 158°C were the MAE optimum conditions for achieving extraction yield of 26 ± 2%, EC50 15 ± 2 μg/mL, 16 ± 1 Eq Trolox/100 g dry leaf, 5.2 ± 0.5 mg Eq quercetin/g dry leaf, and 86 ± 4 mg GAE/g dry leaf. Regarding PLE, the optimum conditions that allowed extraction yield of 56 ± 2%, EC50 21 ± 3 μg/mL, 12 ± 2 mmol Eq Trolox/100 g dry leaf, 6.5 ± 0.2 mg Eq quercetin/g dry leaf, and 59 ± 6 mg GAE/g dry leaf were 128°C, 35% of ethanol, and 20 min. PLE enabled the extraction of phenolic compounds with a higher number of hydroxyl-type substituents such as kaempferol diglycoside and its acetyl derivatives and those that are sensitive to high temperatures (glucosinolates or amino acids) while MAE allowed better recoveries of kaempferol, quercetin, and their glucosides derivatives. PMID:27122439

  17. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars.

    PubMed

    Kou, Xiaohong; Chen, Qiong; Li, Xianhua; Li, Mianfang; Kan, Cong; Chen, Boru; Zhang, Ying; Xue, Zhaohui

    2015-04-15

    Fifteen jujube cultivars late in their maturation were analysed in the red stage for bioactive compounds; including total phenolics (bound/free), total flavonoids, total polysaccharides, ascorbic acid, total triterpenes, proanthocyanidins and cyclic adenosine monophosphate (cAMP). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydracyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS(+)) scavenging methods and the ferric reducing antioxidant power (FRAP) assay. The Order Performance by Similarity to Ideal Solution method (TOPSIS) was employed to evaluate the nutrition of different jujube cultivars based on their bioactive compounds. The results indicated that the contents of bioactive compounds and antioxidant capacities vary between different jujube cultivars. Correlation analysis revealed that ascorbic acid, polyphenols and proanthocyanidins were the 3 main components responsible for the antioxidant activity of jujubes. TOPSIS analysis indicated that Zyzyphus jujube cv. Nanjingyazao ranks the highest of the 15 jujube fruits with regards to nutritional value. PMID:25466122

  18. Screening and target identification of bioactive compounds that modulate cell migration and autophagy.

    PubMed

    Tashiro, Etsu; Imoto, Masaya

    2016-08-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. It is well known that protrusive structures, namely filopodia and lamellipodia, can be observed at the leading edge of migrating cells. The formation of these structures is necessary for cell migration; however, the molecular mechanisms behind the formation of these structures remain largely unclear. Therefore, bioactive compounds that modulate protrusive structures are extremely powerful tools for studying the mechanisms behind the formation of these structures and subsequent cell migration. Therefore, we have screened for bioactive compounds that inhibit the formation of filopodia, lamellipodia, or cell migration from natural products, and attempted to identify the target molecules of our isolated compounds. Additionally, autophagy is a bulk, non-specific protein degradation system that is involved in the pathogenesis of cancer and neurodegenerative disorders. Recent extensive studies have revealed the molecular mechanisms of autophagy, however, they also remain largely unclear. Thus, we also have screened for bioactive compounds that modulate autophagy, and identified the target molecules. In the present article, we introduce the phenotypic screening system and target identification of four bioactive compounds. PMID:27094149

  19. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    PubMed

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. PMID:22877739

  20. Use of Moringa oleifera Flower Pod Extract as Natural Preservative and Development of SCAR Marker for Its DNA Based Identification

    PubMed Central

    Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin

    2016-01-01

    The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry. PMID:27471732

  1. Use of Moringa oleifera Flower Pod Extract as Natural Preservative and Development of SCAR Marker for Its DNA Based Identification.

    PubMed

    Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin

    2016-01-01

    The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry. PMID:27471732

  2. Bioactivity-guided Isolation of antiosteoporotic compounds from Ligustrum lucidum.

    PubMed

    Chen, Qianfeng; Yang, Lijuan; Zhang, Guolin; Wang, Fei

    2013-07-01

    The fruits of Ligustrum lucidum (FLL) has long been used for the treatment of osteoporosis in China, but the antiosteoporotic compounds in FLL are still poorly understood. In this study, the alkaline phosphatase (ALP) activity-guided isolation of osteogenic components from FLL was carried out by using osteoblast-like UMR-106 cells. Eight compounds, namely tyrosol (1), tyrosyl acetate (2), hydroxytyrosol (3), salidroside (4), oleoside dimethyl ester (5), oleoside-7-ethyl-11-methyl ester (6), nuzhenide (7), and G13 (8), were isolated and identified. Further study showed that compounds 3, 4, 7, and 8 increased ALP activity in UMR-106 cells. Compounds 5, 6, and 7 promoted the proliferation of UMR-106 cells. The aqueous extract of FLL-activated ERα/β-mediated gene transcription, whereas the isolated compounds were inactive. All eight isolated compounds also exhibited antioxidative activity, with compounds 1, 2, and 3 being the most potent. These results indicate that the antiosteoporotic effect of FLL is derived from different compounds together with different mechanisms such as ER-dependent or independent pathways and antioxidative effects. Salidroside (4) and nuzhenide (7) warrant further investigation as new pharmaceutical tools for the prevention and treatment of osteoporosis. PMID:22893624

  3. Pericocins A-D, New Bioactive Compounds from Periconia sp.

    PubMed

    Wu, Yue-Hua; Xiao, Gao-Keng; Chen, Guo-Dong; Wang, Chuan-Xi; Hu, Dan; Lian, Yun-Yang; Lin, Feng; Guo, Liang-Dong; Yao, Xin-Sheng; Gao, Hao

    2015-12-01

    One new dihydroisocoumarin, pericocin A (1), one new chromone, pericocin B (2), and two new α-pyrone derivatives, pericocins C-D (3-4), together with two known compounds, 3-(2-oxo-2H-pyran-6-yl)propanoic acid (5) and (E)-3-(2-oxo-2H-pyran-6-yl)acrylic acid (6), were isolated from the culture of the endolichenic fungus Periconia sp.. Their structures were elucidated by spectroscopic methods. All these compounds are derived from the polyketone biosynthetic pathway. Compound 1 was obtained as a mixture of enantiomers. The antimicrobial activity of compounds 1-5 was tested against Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans. Compounds 1-5 showed moderate antimicrobial activity against A. niger and weak activity against C. albicans. PMID:26882681

  4. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

    PubMed Central

    Rangel-Huerta, Oscar D.; Pastor-Villaescusa, Belen; Aguilera, Concepcion M.; Gil, Angel

    2015-01-01

    The prevalence of cardiovascular diseases (CVD) is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC) can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs) with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment. PMID:26132993

  5. Encapsulation of bioactive compound from extracted jasmine flower using β-Cyclodextrin via electrospray

    NASA Astrophysics Data System (ADS)

    Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.

    2016-06-01

    The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.

  6. Biodiversity in production of antibiotics and other bioactive compounds.

    PubMed

    Mahajan, Girish; Balachandran, Lakshmi

    2015-01-01

    Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which are isolated from common terrestrial ecological units. However, this situation can be partly overcome by exploring rarely exploited ecological niches as the source of microbes, which reduces the chances of isolating compounds similar to existing ones. The use of modern and advanced isolation techniques, modification of the existing fermentation methods, genetic modifications to induce expression of silent genes, analytical tools for the detection and identification of new chemical entities, use of polymers in fermentation to enhance yield of fermented compounds, and so on, have all aided in enhancing the frequency of acquiring novel compounds. These compounds are representative of numerous classes of diverse compounds. Thus, compounds of microbial origin and their analogues undergoing clinical trials continue to demonstrate the importance of compounds from microbial sources in modern drug discovery. PMID:24840777

  7. Natural bioactive compounds from winery by-products as health promoters: a review.

    PubMed

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  8. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    PubMed Central

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  9. Bioactive compounds in dairy products and their relation to neurodegenerative disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...

  10. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  11. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of soybeans and soybean products has increased in the last few years due to the functional properties of bioactive compounds such as lunasin, Bowman Birk Inhibitor (BBI), lectin, saponins, and isoflavones. The objective of this study was to determine the effect of germination of soy...

  12. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  13. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    PubMed

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P < 0.05). The first and the second segments from the tip significantly increased with the increase of catalase (CAT). It was interesting to investigate in vitro how human serum albumin (HSA) interacts with polyphenols extracted from investigated vegetables. Therefore the functional properties of asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity. PMID:24793354

  14. Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest☆

    PubMed Central

    Liu, Yixi; Harinantenaina, Liva; Brodie, Peggy J.; Bowman, Jessica D.; Cassera, Maria B.; Slebodnick, Carla; Callmander, Martin W.; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Applequist, Wendy; Birkinshaw, Chris; Lewis, Gwilym P.; Kingston, David G. I.

    2013-01-01

    Bioassay-directed fractionation of the leaf and root extracts of the antiproliferative Madagascar plant Stuhlmannia moavi afforded 6-acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone (stuhlmoavin, 1) as the most active compound, with an IC50 value of 8.1 µM against the A2780 human ovarian cancer cell line, as well as the known homoisoflavonoid bonducellin (2) and the stilbenoids 3,4,5'-trihydroxy-3'-methoxy-trans-stilbene (3), piceatannol (4), resveratrol (5), rhapontigenin (6), and isorhapontigenin (7). The structure elucidation of all compounds was based on NMR and mass spectroscopic data, and the structure of 1 was confirmed by a single crystal X-ray analysis. Compounds 2–5 showed weak A2780 activities, with IC50 values of 10.6, 54.0, 41.0, and 74.0 µM, respectively. Compounds 1–3 also showed weak antimalarial activity against Plasmodium falciparum with IC50 values of 23, 26, and 27 µM, respectively. PMID:24239390

  15. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention

    PubMed Central

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)–poly(ethylene glycol) (PLGA–PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150–200 nm average diameter NPs were prepared by the double emulsion–solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA–PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer. PMID:25624761

  16. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.

    PubMed

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150-200 nm average diameter NPs were prepared by the double emulsion-solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA-PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer. PMID:25624761

  17. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  18. Evaluation of Mycelial Nutrients, Bioactive Compounds, and Antioxidants of Five Himalayan Entomopathogenic Ascomyceteous Fungi from India.

    PubMed

    Sharma, Sapan Kumar; Gautam, Nandini; Atri, Narender Singh

    2015-01-01

    In this study, using standard methods, mycelial nutrients, bioactive compounds, and antioxidants were analyzed for the first time for five fungal species: Isaria sinclairii (Berk.) Lloyd, I. tenuipes Peck, I. japonica Yasuda, I. farinosa (Holmsk) Fr. and Cordyceps tuberculata (Lebert) Maire. All of these species were low in fat content and rich in protein, fiber, ash, and carbohydrates. Mineral elements (Fe, Mg, Cu, Mn, and Ca) were detected in appreciable amounts. All three types of fatty acids (saturated, monounsaturated, and polyunsaturated) as well as bioactive compounds (ascorbic acid, β-carotene, lycopene, phenolic compounds, and polysaccharides) were detected for each species. The investigated species showed high ferric-reducing antioxidant power as well as 2,2-diphenyl-1-picryl-hydrazyl radical scavenging activity. Although differences were observed in the values of each species, each species showed richness in one or more components. PMID:26559700

  19. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  20. Effects of germination on the nutritive value and bioactive compounds of brown rice breads.

    PubMed

    Cornejo, Fabiola; Caceres, Patricio J; Martínez-Villaluenga, Cristina; Rosell, Cristina M; Frias, Juana

    2015-04-15

    The effect of germination conditions on the nutritional benefits of germinated brown rice flour (GBR) bread has been determined. The proximate composition, phytic acid, in vitro protein digestibility and in vitro enzymatic hydrolysis of starch, glucose and starch content, as well as the most relevant bioactive compounds (GABA, γ-oryzanol and total phenolic compounds) and antioxidant activity of breads prepared with GBR at different germination conditions was determined. When comparing different germination times (0 h, 12 h, 24 h and 48 h), germination for 48 h provides GBR bread with nutritionally superior quality on the basis of its higher content of protein, lipids and bioactive compounds (GABA and polyphenols), increased antioxidant activity and reduced phytic acid content and glycaemic index, although a slight decrease in in vitro protein digestibility was detected. Overall, germination seems to be a natural and sustainable way to improving the nutritional quality of gluten-free rice breads. PMID:25466026

  1. Bioactive Compounds from a Gorgonian Coral Echinomuricea sp. (Plexauridae)

    PubMed Central

    Chung, Hsu-Ming; Hong, Pei-Han; Su, Jui-Hsin; Hwang, Tsong-Long; Lu, Mei-Chin; Fang, Lee-Shing; Wu, Yang-Chang; Li, Jan-Jung; Chen, Jih-Jung; Wang, Wei-Hsien; Sung, Ping-Jyun

    2012-01-01

    A new labdane-type diterpenoid, echinolabdane A (1), and a new sterol, 6-epi-yonarasterol B (2), were isolated from a gorgonian coral identified as Echinomuricea sp. The structures of metabolites 1 and 2 were elucidated by spectroscopic methods. Echinolabdane A (1) possesses a novel tetracyclic skeleton with an oxepane ring jointed to an α,β-unsaturated-γ-lactone ring by a hemiketal moiety, and this compound is the first labdane-type diterpenoid to be obtained from marine organisms belonging to the phylum Cnidaria. 6-epi-Yonarasterol B (2) is the first steroid derivative to be isolated from gorgonian coral belonging to the genus Echinomuricea, and this compound displayed significant inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils. PMID:22822364

  2. A High-Throughput Yeast Halo Assay for Bioactive Compounds.

    PubMed

    Bray, Walter; Lokey, R Scott

    2016-01-01

    When a disk of filter paper is impregnated with a cytotoxic or cytostatic drug and added to solid medium seeded with yeast, a visible clear zone forms around the disk whose size depends on the concentration and potency of the drug. This is the traditional "halo" assay and provides a convenient, if low-throughput, read-out of biological activity that has been the mainstay of antifungal and antibiotic testing for decades. Here, we describe a protocol for a high-throughput version of the halo assay, which uses an array of 384 pins to deliver ∼200 nL of stock solutions from compound plates onto single-well plates seeded with yeast. Using a plate reader in the absorbance mode, the resulting halos can be quantified and the data archived in the form of flat files that can be connected to compound databases with standard software. This assay has the convenience associated with the visual readout of the traditional halo assay but uses far less material and can be automated to screen thousands of compounds per day. PMID:27587777

  3. Syntheses of marchantins C, O and P as promising highly bioactive compounds.

    PubMed

    Speicher, Andreas; Holz, Judith; Hoffmann, Alexandra

    2011-03-01

    Recently, remarkable microtubule inhibitor and anti-tumor activities of the bis(bibenzyl) marchantin C--isolated from liverworts like Marchantia polymorpha since 1983--were found. In this paper we describe the efficient total synthesis of this subtype of bis(bibenzylic) compounds with two biarylether connections. Two selectively methylated derivatives known as natural compounds marchantin O and P were synthesized for the first time by modification of the arene subunits and can now be considered as promising highly bioactive compounds. PMID:21485281

  4. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria.

    PubMed

    Csapi, Bence; Hajdú, Zsuzsanna; Zupkó, István; Berényi, Agnes; Forgo, Peter; Szabó, Pál; Hohmann, Judit

    2010-11-01

    The antiproliferative effects of n-hexane, chloroform and aqueous methanol extracts prepared from the whole plant of Centaurea arenaria M.B. ex Willd. were investigated against cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF7) and skin epidermoid carcinoma (A431) cells, using the MTT assay. The chloroform extract displayed high tumour cell proliferation inhibitory activity (higher than 85% at 10 μg/mL concentration), and was therefore subjected to a bioassay-guided multistep separation procedure. Flavonoids (eupatilin, eupatorin, 3'-methyleupatorin, apigenin and isokaempferid), lignans (arctigenin, arctiin and matairesinol), the sesquiterpene cnicin, serotonin conjugates (moschamine and cis-moschamine), β-amyrin and β-sitosterin-β-D-glycopyranoside, identified by means of UV, MS and NMR spectroscopy, were obtained for the first time from this species. The isolated compounds were also evaluated for their tumour cell growth inhibitory activities on HeLa, MCF7 and A431 cells, and different types of secondary metabolites were found to be responsible for the antitumour effects of the extracts; in addition to moderately active compounds (isokaempferid and moschamine), especially apigenin, eupatorin, arctigenin, arctiin, matairesinol and cnicin exert marked antitumour effects against these cell lines. PMID:21031625

  5. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    PubMed

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms. PMID:27211648

  6. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    PubMed

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation. PMID:27398435

  7. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food. PMID:25025594

  8. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784

  9. Zebrafish dives into food research: effectiveness assessment of bioactive compounds.

    PubMed

    Caro, M; Iturria, I; Martinez-Santos, M; Pardo, M A; Rainieri, S; Tueros, I; Navarro, V

    2016-06-15

    Zebrafish have been traditionally used in ecotoxicology and developmental biology. However, due to the advances in available methodologies and the similitude with mammals, it has been increasingly used in other fields. One of the most recent fields using zebrafish is food research, being the focus of this review. Most relevant and recent publications including food component toxicity and key metabolic effects together with effectiveness on some zebrafish disease models have been reviewed. This model is a good intermediate tool between in vitro and rodent models, because it provides information from a complete organism in a fast and cost-effective manner. Definitely, in the near future, we will see this model being used by the ingredient suppliers and scientists in order to show the potential impact on health of several compounds. PMID:27109696

  10. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview

    PubMed Central

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-01-01

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended. PMID:26057747

  11. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview.

    PubMed

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-01-01

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended. PMID:26057747

  12. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues.

    PubMed

    Cruz, Rebeca; Gomes, Teresa; Ferreira, Anabela; Mendes, Eulália; Baptista, Paula; Cunha, Sara; Pereira, José Alberto; Ramalhosa, Elsa; Casal, Susana

    2014-02-15

    The antioxidant activity and individual bioactive compounds of lettuce, cultivated with 2.5-30% (v/v) of fresh or composted espresso spent coffee grounds, were assessed. A progressive enhancement of lettuce's antioxidant capacity, evaluated by radical scavenging effect and reducing power, was exhibited with the increment of fresh spent coffee amounts, while this pattern was not so clear with composted treatments. Total reducing capacity also improved, particularly for low spent coffee concentrations. Additionally, very significant positive correlations were observed for all carotenoids in plants from fresh spent coffee treatments, particularly for violaxanthin, evaluated by HPLC. Furthermore, chlorophyll a was a good discriminating factor between control group and all spent coffee treated samples, while vitamin E was not significantly affected. Espresso spent coffee grounds are a recognised and valuable source of bioactive compounds, proving herein, for the first time, to potentiate the antioxidant pool and quality of the vegetables produced. PMID:24128454

  13. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application.

    PubMed

    Antonopoulou, Io; Varriale, Simona; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul; Faraco, Vincenza

    2016-08-01

    Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry. PMID:27276911

  14. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    PubMed Central

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  15. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    PubMed Central

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  16. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii.

    PubMed

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  17. Biodiversity as a source of bioactive compounds against snakebites.

    PubMed

    Guimaraes, Cesar L S; Moreira-Dill, Leandro S; Fernandes, Renata S; Costa, Tassia R; Hage-Melim, Lorane I S; Marcussi, Silvana; Carvalho, Bruna M A; da Silva, Saulo L; Zuliani, Juliana P; Fernandes, Carla F C; Calderon, Leonardo A; Soares, Andreimar M; Stabeli, Rodrigo G

    2014-01-01

    Snakebites are a frequently neglected public health issue in tropical and subtropical countries. According to the World Health Organization, 5 million people are bitten annually including up to 2.5 million envenomations. Treatment with antivenom serum remains the only specific therapy for snakebite envenomation. However, it is heterologous and therefore liable to cause adverse reactions, such as early anaphylactic, pyrogenic and delayed reactions. In order to develop alternatives to the current therapy, researchers have been looking for natural products and plant extracts with antimyotoxic, anti-hemorrhagic and anti-inflammatory properties. Especially due to the role the physiopathological processes triggered by snake toxins, play in paralysis, bleeding disorders, kidney failure and tissue damage. Considering the fact that studies involving snake toxins and specific inhibitors, particularly on a molecular level, are the main key to understand neutralization mechanisms and to propose models or prototypes for an alternative therapy, this article presents efforts made by the scientific community in order to produce validated data regarding 87 compounds and plant extracts obtained from 79 species. These plants, which belong to 63 genera and 40 families, have been used by traditional medicine as alternatives or complements to the current serum therapy. PMID:24164199

  18. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn.

    PubMed

    Nguyen Vo, T Hoang; Tran, Ngan; Nguyen, Dat; Le, Ly

    2016-01-01

    Herbal medicines have become strongly preferred treatment to reduce the negative impacts of diabetes mellitus (DM) and its severe complications due to lesser side effects and low cost. Recently, strong anti-hyperglycemic effect of Euphorbia thymifolia Linn. (E. thymifolia) on mice models has reported but the action mechanism of its bioactive compounds has remained unknown. This study aimed to evaluate molecular interactions existing between various bioactive compounds in E. thymifolia and targeted proteins related to Type 2 DM. This process involved the molecular docking of 3D structures of those substances into 4 targeted proteins: 11-β hydroxysteroid dehydrogenase type 1, glutamine: fructose-6-phosphate amidotransferase, protein-tyrosine phosphatase 1B and mono-ADP-ribosyltransferase sirtuin-6. In the next step, LigandScout was applied to evaluate the bonds formed between 20 ligands and the binding sites of each targeted proteins. The results identified seven bioactive compounds with high binding affinity (<-8.0 kcal/mol) to all 4 targeted proteins including β-amyrine, taraxerol, 1-O-galloyl-β-d-glucose, corilagin, cosmosiin, quercetin-3-galactoside and quercitrin. The pharmacophore features were also explained in 2D figures which indicated hydrophobic interactions, hydrogen bond acceptors and hydrogen bond donors forming between carbonyl oxygen molecules of those ligands and active site residues of 4 targeted protein.Graphical abstract Euphorbia thymifolia Linn. is a small prostrate herbaceous annual weed that can positively impact on reducing hyperglycemic effect. In order to clearly understand about molecular level of the its bioactive compounds, in silico approach is performed. PMID:27588252

  19. Production of Nanofibers Containing the Bioactive Compound C-Phycocyanin.

    PubMed

    Figueira, Felipe da Silva; Gettens, Juliana Garcia; Costa, Jorge Alberto Vieira; de Morais, Michele Greque; Moraes, Caroline Costa; Kalil, Susana Juliano

    2016-01-01

    C-phycocyanin (C-PC) is a water-soluble phycobiliprotein present in light-harvesting antenna system of cyanobacteria. The nanostructures have not been widely evaluated, precluding improvements in stability and application of the C-PC. Electrospun nanofibers have an extremely high specific surface area due to their small diameter, they can be produced from a wide variety of polymers, and they are successfully evaluated to increase the efficacy of antitumor drugs. The incorporation of C-PC into nanofibers would allow investigations of potential uses in alternative cancer treatments and tissue engineering scaffolds. In this paper, C-phycocyanin were incorporated into the polymer polyethylene oxide (PEO) in various concentrations for nanofiber production via an electrospinning process. Nanofibers structures were analyzed using digital optical microscopy and scanning electron microscopy (SEM). Thermogravimetric analysis was performed on the pure starting compounds and the produced nanofibers. At a concentration of 2% (w/w) of PEO, nanofibers were not produced, and concentrations of 4% (w/w) of PEO failed to produce nanofibers of good quality. Solutions with 6% (w/w) PEO, 6% (w/w) PEO plus 1% (w/w) NaCI, and 8% (w/w) PEO promote the formation of bluish, homogeneous and bead-free nanofibers with average diameters varying between 542.1 and 759.9 nm, as evaluated by optical microscopy. SEM analysis showed that nanofibers produced from polymer solutions containing 6% (w/w) PEO, 1% (w/w) NaCl and 3% (w/w) C-PC have an average diameter of 295 nm. Thermogravimetric analysis detected an increase in thermal resistance with the incorporation of C-phycocyanin into nanofibers. PMID:27398551

  20. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper.

    PubMed

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L.) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  1. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    PubMed

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality. PMID:25328215

  2. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    PubMed Central

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  3. A Lack of Bioactive Predictability for Marker Compounds Commonly Used for Herbal Medicine Standardization

    PubMed Central

    Ruiz, Guillermo G.; Nelson, Erik O.; Kozin, Adam F.; Turner, Tiffany C.; Waters, Robert F.; Langland, Jeffrey O.

    2016-01-01

    The use of botanical medicine by practitioners and the general public has dramatically increased in recent years. Most of these botanical therapeutics are obtained through commercial manufacturers or nutraceutical companies. The current standard of practice that manufacturers typically use to standardize botanicals is done based on the level of a well-known, abundant marker compound present in the botanical. This study evaluated the putative correlation between the level of a marker compound and the biological activity of eight common botanicals. Overall, the standardization of a botanical based on a marker compound was found not to be a reliable method when compared to in vitro bioactivity. A marker compound is often not the biologically active component of a plant and therefore the level of such a marker compound does not necessarily correlate with biological activity or therapeutic efficacy. PMID:27458926

  4. A Lack of Bioactive Predictability for Marker Compounds Commonly Used for Herbal Medicine Standardization.

    PubMed

    Ruiz, Guillermo G; Nelson, Erik O; Kozin, Adam F; Turner, Tiffany C; Waters, Robert F; Langland, Jeffrey O

    2016-01-01

    The use of botanical medicine by practitioners and the general public has dramatically increased in recent years. Most of these botanical therapeutics are obtained through commercial manufacturers or nutraceutical companies. The current standard of practice that manufacturers typically use to standardize botanicals is done based on the level of a well-known, abundant marker compound present in the botanical. This study evaluated the putative correlation between the level of a marker compound and the biological activity of eight common botanicals. Overall, the standardization of a botanical based on a marker compound was found not to be a reliable method when compared to in vitro bioactivity. A marker compound is often not the biologically active component of a plant and therefore the level of such a marker compound does not necessarily correlate with biological activity or therapeutic efficacy. PMID:27458926

  5. Production of lipospheres as carriers for bioactive compounds.

    PubMed

    Cortesi, Rita; Esposjto, Elisabetta; Luca, Giovanni; Nastruzzi, Claudio

    2002-06-01

    Aim of the present paper was to investigate the influence of preparation parameters on the production of lipospheres (LS) for drug delivery. LS composed of triglycerides and monoglycerides were alternatively produced by melt dispersion technique, solvent evaporation or w/o/w double emulsion method. The influence of preparation parameters, such as (a) type and amount of lipids, (b) presence and concentration of surfactants, (c) stirring speed and (d) type of stirrer was studied. In the case of LS prepared by melt dispersion, the use of a lipid composition of cetyl alcohol/cholesterol (2:1, w/w), a 5% (w/w) gelatin solution (50 bloom grades) and 1000 rpm stirring speed resulted in the production of spherical particles, with high percentage of recovery (82%, w/w) a mean diameter of 80 microm and a narrow size distribution. In the case of LS prepared by solvent evaporation, the best results in terms of LS morphology, recovery and size distribution were obtained by the use of a lipid composition of tristearin/monostearate (66:34, w/w), a 1% (w/w) PVA solution, a 750 rpm stirring speed and a 55 mm three-blade turbine rotor. The solvent evaporation method resulted in the production of LS characterised by a smaller size (20 microm mean diameter) but poor mechanical properties with respect to particles with the same composition obtained by the melt dispersion technique (170 microm mean diameter). The use of a combination of lipids and a methacrylic polymer (Eudragit RS 100) overcame this problem, resulting in the production of spherical particles, with a narrower size distribution and good mechanical properties. Two lipophilic drugs, such as retinyl acetate and progesterone, and one hydrophilic drug, sodium cromoglycate (SCG), were encapsulated in LS as model compounds. Lypophilic drugs displayed satisfactory encapsulation efficiencies (over 70% w/w), while SCG was very scarcely encapsulated (about 2% w/w). To solve this drawback, the use of a w/o/w double emulsion strategy

  6. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...

  7. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  8. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  9. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages

    PubMed Central

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-01-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  10. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared. PMID:24437577

  11. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds

    PubMed Central

    Geethangili, Madamanchi; Tzeng, Yew-Min

    2011-01-01

    Antrodia camphorata is a unique mushroom of Taiwan, which has been used as a traditional medicine for protection of diverse health-related conditions. In an effort to translate this Eastern medicine into Western-accepted therapy, a great deal of work has been carried out on A. camphorata. This review discusses the biological activities of the crude extracts and the main bioactive compounds of A. camphorata. The list of bioactivities of crude extracts is huge, ranging from anti-cancer to vasorelaxation and others. Over 78 compounds consisting of terpenoids, benzenoids, lignans, benzoquinone derivatives, succinic and maleic derivatives, in addition to polysaccharides have been identified. Many of these compounds were evaluated for biological activity. Many activities of crude extracts and pure compounds of A. camphorata against some major diseases of our time, and thus, a current review is of great importance. It is concluded that A. camphorata can be considered as an efficient alternative phytotherapeutic agent or a synergizer in the treatment of cancer and other immune-related diseases. However, clinical trails of human on A. camphorata extracts are limited and those of pure compounds are absent. The next step is to produce some medicines from A. camphorata, however, the production may be hampered by problems related to mass production. PMID:19687189

  12. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    PubMed

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. PMID:25466049

  13. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages.

    PubMed

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-09-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  14. Antioxidant Bioactive Compounds Changes in Fruit of Quince Genotypes Over Cold Storage.

    PubMed

    Moradi, Samira; Koushesh Saba, Mahmoud; Mozafari, Ali Akbar; Abdollahi, Hamid

    2016-07-01

    Quince fruit has many benefits to human health and is excellent source of bioactive compounds. The fruit of 15 quince genotypes stored at 2 °C for 5 mo to study fruit quality changes during cold storage. Fruit were sampled monthly and stored at 20 °C for 24 h. Fruit ascorbic acid (AA), total phenol (TP), and total flavonoid (TF) concentrations, total antioxidant activity (TAA), flesh browning (FB) incidence, polyphenol oxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD) activities were measured during storage. A high variation in bioactive compounds was observed across genotypes. The range of 26.8 to 44.4 mg/100 g FW for AA, 86.7% to 98.2% for TAA, 157.7 to 380.7 mg GAE 100(-1) g FW for TP, and 5.3 to 10.7 mg/100 g FW for TF were observed across genotypes at harvest time. The overall AA, TAA, TP, TF, and SOD decreased while PPO and POX increased during storage. FB was first observed after 4 mo and increased thereafter while the FB index was different across genotypes. Higher bioactive content may prevent or reduce FB index so that a negative correlation was found between FB and AA, TAA, TP, TF, and SOD. PMID:27273124

  15. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds.

    PubMed

    Pinheiro, Ana C; Bourbon, Ana I; Cerqueira, Miguel A; Maricato, Élia; Nunes, Cláudia; Coimbra, Manuel A; Vicente, António A

    2015-01-22

    Hollow multilayer nanocapsules were successfully prepared through layer-by-layer assembly of two bioactive polysaccharides, chitosan and fucoidan. The stepwise adsorption of 10 chitosan/fucoidan layers and the consequent formation of a multilayer film on polystyrene nanoparticles (used as templates) were followed through ζ-potential measurement and the removal of the polystyrene core was confirmed by FTIR analysis. The chitosan/fucoidan nanocapsules morphology and size were evaluated by SEM and TEM, which showed that after the core removal, the nanocapsules maintained their spherical shape and a decrease of size occurred. A cationic bioactive compound, poly-L-lysine (PLL), was chosen to evaluate the loading and release behaviour of the nanocapsules. The chitosan/fucoidan nanocapsules showed a good capacity for the encapsulation and loading of PLL, which shows to be influenced by the initial PLL concentration and the method of encapsulation used. The results of fitting the linear superimposition model to the experimental data of PLL release suggest an anomalous behaviour, with one main polymer relaxation. The PLL release was found to be pH-dependent: at pH 2 relaxation is the governing phenomenon and at pH 7 Fick's diffusion is the main mechanism of PLL release. Chitosan/fucoidan nanocapsules is a promising delivery system for water soluble bioactive compounds, such as PLL, showing a great potential of application in food and pharmaceutical industries. PMID:25439860

  16. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target

    PubMed Central

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-01-01

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products’ derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications. PMID:27527213

  17. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.

    PubMed

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-07-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  18. Analysis of multiple compound-protein interactions reveals novel bioactive molecules.

    PubMed

    Yabuuchi, Hiroaki; Niijima, Satoshi; Takematsu, Hiromu; Ida, Tomomi; Hirokawa, Takatsugu; Hara, Takafumi; Ogawa, Teppei; Minowa, Yohsuke; Tsujimoto, Gozoh; Okuno, Yasushi

    2011-03-01

    The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound-protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes. PMID:21364574

  19. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    PubMed Central

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-01-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  20. Infusion and decoction of wild German chamomile: bioactivity and characterization of organic acids and phenolic compounds.

    PubMed

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2013-01-15

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognised potential in drug discovery. Herein, the methanol extract of Matricaria recutita L. (German chamomile) and its decoction and infusion (the most consumed preparations of this herb) were submitted to an analysis of phytochemicals and bioactivity evaluation. The antioxidant activity was determined by free radicals scavenging activity, reducing power and inhibition of lipid peroxidation; the antitumour potential was tested in human tumour cell lines (breast, lung, colon, cervical and hepatocellular carcinomas), and the hepatotoxicity was evaluated using a porcine liver primary cell culture (non-tumour cells). All the samples revealed antioxidant properties. The decoction exhibited no antitumour activity (GI(50)>400 μg/mL) which could indicate that this bioactivity might be related to compounds (including phenolic compounds) that were not extracted or that were affected by the decoction procedure. Both plant methanol extract and infusion showed inhibitory activity to the growth of HCT-15 (GI(50) 250.24 and 298.23 μg/mL, respectively) and HeLa (GI(50) 259.36 and 277.67 μg/mL, respectively) cell lines, without hepatotoxicity (GI(50)>400 μg/mL). Infusion and decoction gave higher contents of organic acids (24.42 and 23.35 g/100g dw). Otherwise, the plant methanol extract contained the highest amounts of both phenolic acids (3.99 g/100g dw) and flavonoids (2.59 g/100g dw). The major compound found in all the preparations was luteolin O-acylhexoside. Overall, German chamomile contains important phytochemicals with bioactive properties (mainly antitumour potential selective to colon and cervical carcinoma cell lines) to be explored in the pharmaceutical, food and cosmetics industries. PMID:23122148

  1. Nutrients and bioactive compounds content of Baillonella toxisperma, Trichoscypha abut and Pentaclethra macrophylla from Cameroon.

    PubMed

    Fungo, Robert; Muyonga, John; Kaaya, Archileo; Okia, Clement; Tieguhong, Juius C; Baidu-Forson, Jojo J

    2015-07-01

    Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut are important foods for communities living around forests in Cameroon. Information on the nutritional value and bioactive content of these foods is required to establish their contribution to the nutrition and health of the communities. Samples of the three foods were obtained from four villages in east and three villages in south Cameroon. The foods were analyzed for proximate composition, minerals and bioactive content using standard chemical analysis methods. T. abut was found to be an excellent source of bioactive compounds; flavonoids (306 mg/100 g), polyphenols (947 mg/100 g), proanthocyanins (61.2 mg/100 g), vitamin C (80.05 mg/100 g), and total oxalates (0.6 mg/100 g). P. macrophylla was found to be a rich source of total fat (38.71%), protein (15.82%) and total fiber (17.10%) and some bioactive compounds; vitamin E (19.4 mg/100 g) and proanthocyanins (65.0 mg/100 g). B. toxisperma, was found to have high content of carbohydrates (89.6%), potassium (27.5 mg/100 g) and calcium (37.5 mg/100 g). Flavonoids, polyphenols, vitamins C and E are the main bioactive compounds in these forest foods. The daily consumption of some of these fruits may coffer protection against some ailments and oxidative stress. Approximately 200 g of either B. toxisperma or P. macrophylla, can supply 100% iron and zinc RDAs for children aged 1-3 years, while 300 g of the two forest foods can supply about 85% iron and zinc RDAs for non-pregnant non-lactating women. The three foods provide 100% daily vitamins C and E requirements for both adults and children. The results of this study show that Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut can considerably contribute towards the human nutrient requirements. These forest foods also contain substantial levels of health promoting phytochemicals notably flavonoids, polyphenols, vitamins C and E. These foods therefore have

  2. Nutrients and bioactive compounds content of Baillonella toxisperma, Trichoscypha abut and Pentaclethra macrophylla from Cameroon

    PubMed Central

    Fungo, Robert; Muyonga, John; Kaaya, Archileo; Okia, Clement; Tieguhong, Juius C; Baidu-Forson, Jojo J

    2015-01-01

    Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut are important foods for communities living around forests in Cameroon. Information on the nutritional value and bioactive content of these foods is required to establish their contribution to the nutrition and health of the communities. Samples of the three foods were obtained from four villages in east and three villages in south Cameroon. The foods were analyzed for proximate composition, minerals and bioactive content using standard chemical analysis methods. T. abut was found to be an excellent source of bioactive compounds; flavonoids (306 mg/100 g), polyphenols (947 mg/100 g), proanthocyanins (61.2 mg/100 g), vitamin C (80.05 mg/100 g), and total oxalates (0.6 mg/100 g). P. macrophylla was found to be a rich source of total fat (38.71%), protein (15.82%) and total fiber (17.10%) and some bioactive compounds; vitamin E (19.4 mg/100 g) and proanthocyanins (65.0 mg/100 g). B. toxisperma, was found to have high content of carbohydrates (89.6%), potassium (27.5 mg/100 g) and calcium (37.5 mg/100 g). Flavonoids, polyphenols, vitamins C and E are the main bioactive compounds in these forest foods. The daily consumption of some of these fruits may coffer protection against some ailments and oxidative stress. Approximately 200 g of either B. toxisperma or P. macrophylla, can supply 100% iron and zinc RDAs for children aged 1–3 years, while 300 g of the two forest foods can supply about 85% iron and zinc RDAs for non-pregnant non-lactating women. The three foods provide 100% daily vitamins C and E requirements for both adults and children. The results of this study show that Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut can considerably contribute towards the human nutrient requirements. These forest foods also contain substantial levels of health promoting phytochemicals notably flavonoids, polyphenols, vitamins C and E. These foods therefore have

  3. Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication.

    PubMed

    Abugri, D A; Tiimob, B J; Apalangya, V A; Pritchett, G; McElhenney, W H

    2013-05-01

    Sorghum bicolor L. Moench (Naga Red) red leaves is an ingredient used in rice and beans that is known as "waakye" in the Hausa language in some African countries. Little is known about its benefits aside from its colourant properties. We studied its bioactive, nutritive compounds and the effectiveness of four organic solvents (methanol, ethanol, acetone and diethyl ether) in isolation of these compounds to gain information regarding its health benefits to consumers. Of the compounds evaluated, the leaves consisted primarily of carotenoids, flavonoids and phenolic acids with small amounts of chlorophyll (a and b), lycopene and β-carotene. The fatty acid profiles of the leaves revealed palmitic, stearic, oleic and linoleic acid as predominant with each having greater than 5% of the total fatty acid identified. The nutritional implication of these findings is that the consumption of diets prepared with the leaves provides natural antioxidant and essential fatty acids that could fight cardiovascular related diseases. PMID:23265545

  4. The Use of Endophytes to Obtain Bioactive Compounds and Their Application in Biotransformation Process

    PubMed Central

    Pimentel, Mariana Recco; Molina, Gustavo; Dionísio, Ana Paula; Maróstica Junior, Mário Roberto; Pastore, Gláucia Maria

    2011-01-01

    Endophytes are microorganisms that reside asymptomatically in the tissues of higher plants and are a promising source of novel organic natural metabolites exhibiting a variety of biological activities. The laboratory of Bioaromas (Unicamp, Brazil) develops research in biotransformation processes and functional evaluation of natural products. With the intent to provide subsidies for studies on endophytic microbes related to areas cited before, this paper focuses particularly on the role of endophytes on the production of anticancer, antimicrobial, and antioxidant compounds and includes examples that illustrate their potential for human use. It also describes biotransformation as an auspicious method to obtain novel bioactive compounds from microbes. Biotransformation allows the production of regio- and stereoselective compounds under mild conditions that can be labeled as “natural,” as discussed in this paper. PMID:21350663

  5. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  6. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues.

    PubMed

    Babbar, Neha; Oberoi, Harinder Singh; Sandhu, Simranjeet Kaur

    2015-01-01

    The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives. PMID:24915390

  7. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi.

    PubMed

    De León-Zapata, Miguel A; Pastrana-Castro, Lorenzo; Rua-Rodríguez, María Luisa; Alvarez-Pérez, Olga Berenice; Rodríguez-Herrera, Raul; Aguilar, Cristóbal N

    2016-05-01

    The aim of this study was to recover and evaluate in vitro the antifungal activity of bioactive compounds of tarbush Flourensia cernua against fruit postharvest fungi and their antioxidant capacity. A yield of 15% of bioactive compounds of tarbush was obtained by infusion method and heating using water as solvent. A concentration of 4000 mg/L showed a higher antioxidant activity against the ABTS radical (3.21 μMol/g) in comparison with the DPPH radical (7.62 μMol/g); however the DPPH radical showed a better correlation with the content of tannins. The BCT showed values of IC50 between 1519 and 3310 mg/L against Rhizopus stolonifer, Botrytis cinerea, Fusarium oxysporum and Colletotrichum gloeosporioides. Antifungal activity is attributable mainly to gallic acid and flavonoids identified by infrared and HPLC analysis. In this study, the BCT have shown to be a possible natural alternative of antioxidant and antifungal compounds for use against postharvest fruit fungi. PMID:26769505

  8. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  9. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds.

    PubMed

    Kurtböke, D Ipek; French, John R J; Hayes, R Andrew; Quinn, Ronald J

    2015-01-01

    Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia. PMID:24817085

  10. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    PubMed

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. PMID:24054258

  11. The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats.

    PubMed

    Bertkova, I; Hijova, E; Chmelarova, A; Mojzisova, G; Petrasova, D; Strojny, L; Bomba, A; Zitnan, R

    2010-01-01

    Diet interventions and natural bioactive supplements have now been extensively studied to reduce risks of colon cancer, which is one of the major public health problem throughout the world. The objective of our investigation was to study the effects of probiotic, prebiotic, nutritional plant extract, and plant oil on selected biochemical and immunological parameters in rats with colon cancer induced by N,N dimethylhydrazine (DMH). Male and female Wistar albino rats were were fed by a high-fat (HF) diet (10% fat in the diet) and were divided into 9 groups: Control group; PRO group - HF diet supplemented with probiotic Lactobacillus plantarum to provide 3 x 109 c.f.u. of strain/1 ml of medium; PRE group - HF diet supplemented with inulin enriched with oligofructose (2% of HF diet); HES group - HF diet supplemented with plant extract of Aesculus hippocastanum L. (1% of HF diet); OIL group - HF diet comprised Linioleum virginale (2% of HF diet); and combination of probiotic microorganisms and bioactive compounds in the groups - PRO-PRE, PRO-HES, PRO-OIL, PRE-OIL. Carcinogenesis was initiated with subcutaneous injection of DMH (20 mg/kg) two times at week interval and dietary treatments were continued for the six weeks. Application of probiotic microorganisms and bioactive compounds in all treated groups significantly decreased the activities of bacterial enzymes (p<0.001), the fecal bile acids concentration (p<0.01; p<0.001) and significantly increased serum TNFalpha level (p<0.001) in comparison to the control rats. The number of coliforms was reduced in PRO, PRO-PRE, PRO-OIL and PRE-OIL groups and significantly higher count of lactobacilli (p<0.05) was observed in PRO-PRE, PRO-OIL and PRE-OIL groups in compare with the controls. In conclusion, the results of this study indicate that probiotic microorganisms and bioactive compounds could exert a preventive effect on colon carcinogenesis induced by DMH. PMID:20568896

  12. Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry.

    PubMed

    Chang, Qing; Peng, Yue'e; Dan, Conghui; Shuai, Qin; Hu, Shenghong

    2015-03-25

    A method for the rapid in situ identification of bioactive compounds in fresh plants has been developed using in vivo nanospray coupled to high-resolution mass spectrometry (HR-MS). Using a homemade in vivo nanospray ion source, the plant liquid was drawn out from a target region and ionized in situ. The ionized bioactive compounds were then identified using Q-Orbitrap HR-MS. The accurate mass measurements of these bioactive compounds were performed by full-scan or selected ion monitoring (SIM), and tandem mass spectrometry (MS/MS) was used in the structural elucidation. Without sample pretreatment, 12 bioactive compounds in 7 different plant species were identified, namely, isoalliin in onion; butylphthalide in celery; N-methylpelletierine, pelletierine, and pseudopelletierine in pomegranate; chlorogenic acid in crabapple; solamargine, solasonine, and solasodine in nightshade; aloin and aloe-emodin in aloe; and menthone in mint. This work demonstrates that in vivo nanospray HR-MS is a good method for rapid in situ identification of bioactive compounds in plants. PMID:25749134

  13. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  14. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  15. Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques.

    PubMed

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-01-01

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536

  16. Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques

    PubMed Central

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A.; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-01-01

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536

  17. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.

    PubMed

    Encarnação, Telma; Pais, Alberto A C C; Campos, Maria G; Burrows, Hugh D

    2015-01-01

    Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals. PMID:26288917

  18. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico.

    PubMed

    Moo-Huchin, Víctor M; Estrada-Mota, Iván; Estrada-León, Raciel; Cuevas-Glory, Luis; Ortiz-Vázquez, Elizabeth; Vargas y Vargas, María de Lourdes; Betancur-Ancona, David; Sauri-Duch, Enrique

    2014-01-01

    The aim to the study was to determine the physicochemical composition, bioactive compounds and antioxidant activity of fruits from Yucatan, Mexico such as star apple, cashew, mombin, mamey sapote, white sapote, sugar apple, sapodilla, dragon fruit, nance, ilama, custard apple, mamoncillo and black sapote. The physicochemical characteristics were different between fruits and were good sources of bioactive compounds. The edible part with the highest values of antioxidant activity were mamoncillo, star apple, mombin, cashew, white sapote, ilama, custard apple, sugar apple, and nance. Total soluble phenols content showed a correlation with antioxidant activity by ABTS (R=0.52, P⩽0.05) and DPPH (R=0.43, P⩽0.05). A high correlation was obtained between the two assays (ABTS and DPPH) used to measure antioxidant activity in the tropical fruit species under study (R=0.82, P⩽0.05). The results show promising perspectives for the exploitation and use of tropical fruits studied with significant levels of nutrients and antioxidant activity. PMID:24444968

  19. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes.

    PubMed

    Raiola, Assunta; Del Giudice, Rita; Monti, Daria Maria; Tenore, Gian Carlo; Barone, Amalia; Rigano, Maria Manuela

    2015-01-01

    Tomato, as a fresh or processed product, has a high nutritional value due to its content of bioactive components such as phenolic compounds. Few studies describe the effect of processing on antioxidant content and the cancer cell growth inhibition activity. In this study we determined the phenolic and ascorbic acid content of three yellow tomato varieties, before and after thermal processing. Moreover, we determined the antioxidative power and tested the effects of tomato extracts on three human cancer cell lines. We found that the amount of phenolic acids (chlorogenic acid and caffeic acid) decreased in all the samples after processing, whereas the flavonoid content increased after the heat treatment in two samples. A cytotoxic effect of tomato extracts was observed only after processing. This result well correlates with the flavonoid content after processing and clearly indicates that processed yellow tomatoes have a high content of bioactive compounds endowed with cytotoxicity towards cancer cells, thus opening the way to obtain tomato-based functional foods. PMID:26712729

  20. Antihistamine Effect of a Pure Bioactive Compound Isolated from Slug (Diplosolenodes occidentalis) Material

    PubMed Central

    Jacob, AS; Simon, OR; Wheatle, D; Ruddock, P; McCook, K

    2014-01-01

    ABSTRACT Objective: Folklore claims of the therapeutic effect of garden slug (Diplosolenodes occidentalis) extract used to relieve bronchoconstriction in asthmatic individuals were never validated scientifically. The aim of this study was to isolate the pure bioactive compound from slug extract causing this effect. Methods: The crude ground material was prepared in ethanol and after filtration, separation by flash column chromatography method was done. The structure was elucidated by data from hydrogen and carbon nuclear magnetic resonance (NMR) profiles. The bioactive compound was assessed for dose dependent response effects on guinea pig tracheal smooth muscle pre-contracted with histamine. Receptor specificity studies were done by using HTMT dimaleate (H1 agonist). The type of antagonism was also identified. Results: The pure component isolated from garden slug material was identified by spectral studies as glyceryl trilinolenate. It caused dose-dependent relaxation in guinea pig tracheal smooth muscle strips pre-contracted with histamine, it acted via H1 type receptors and showed non-competitive antagonism. Conclusion: Glyceryl trilinolenate produced dose-dependent relaxation in tracheal smooth muscle strips in the presence of the agonist histamine. Glyceryl trilinolenate displayed non-competitive antagonism at H1 receptors in the trachea. This agent was able to alleviate bronchoconstriction in individuals presenting with atopic asthma in rural agricultural areas in Jamaica (verbal communications). It is possible that glyceryl trilinolenate can be used therapeutically to produce tracheal smooth muscle relaxation in individuals presenting with atopic asthma. PMID:25781274

  1. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    PubMed

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time. PMID:19375261

  2. Quantitative determination and pattern recognition analyses of bioactive marker compounds from Dipsaci Radix by HPLC.

    PubMed

    Zhao, Bing Tian; Jeong, Su Yang; Moon, Dong Cheul; Son, Kun Ho; Son, Jong Keun; Woo, Mi Hee

    2013-11-01

    In this study, quantitative and pattern recognition analyses were developed using HPLC/UV for the quality evaluation of Dipsaci Radix. For quantitative analysis, five major bioactive compounds were assessed. The separation conditions employed for HPLC/UV were optimized using ODS C18 column (250 × 4.6 mm, 5 μm) with a gradient of acetonitrile and water as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 212 nm. These methods were fully validated with respect to linearity, accuracy, precision, recovery, and robustness. The HPLC/UV method was applied successfully to the quantification of five major compounds in the extract of Dipsaci Radix. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of 17 Dipsaci Radix and four Phlomidis Radix samples. The results indicate that the established HPLC/UV method is suitable for quantitative analysis. PMID:23877237

  3. Separation and identification of bioactive compounds in Anabasis articulata (Forsk) Moq. roots.

    PubMed

    Ghembaza, Nacéra; Belyagoubi-Benhammou, Nabila; Atik Bekkara, Fawzia

    2016-01-01

    In the present paper, for the first time, we are interested to separate and identify some bioactive fractions isolated from the roots of a Saharan plant Anabasis articulata, which is widely used in traditional medicine against cancer. The crude methanolic extract of the roots was fractionated on column chromatography, and eluted with dichloromethane/methanol each time with increasing polarity of methanol; 17 fractions were separated. One of these fractions named F12 showed more antioxidant activity to scavenge DPPH free radical with percentage inhibition of 95.29%. F12 was separated by thin-layer chromatography (TLC) to give 12 compounds. A second preparative TLC of compound 2, which has antioxidative activity of 74.92%, provided the three phenolic acids M1, M2 and M3, analysed by high-performance liquid chromatography and UV-visible spectrophotometry. PMID:26263238

  4. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide. PMID:26151222

  5. Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds.

    PubMed

    Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo

    2016-06-01

    Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. PMID:27054772

  6. Volatile organic compounds of six French Dryopteris species: natural odorous and bioactive resources.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessière, Jean-Marie; Fruchier, Alain; Buatois, Bruno; Fons, Françoise

    2014-01-01

    Aerial parts of six Dryopteris species collected in France were investigated for volatile organic compounds (VOC) for the first time. Fifty-three biosynthesized VOC from the shikimic, lipidic and terpenic pathways were identified using gas chromatography/mass spectrometry. Many bioactive polyketide compounds as filicinic derivatives (from 8.5 to 23.5%) and phloroglucinol derivatives (from 8.2 to 53.8%) with various pharmacological activities were detected in high amount from five analysed Dryopteris species, in particular D. oreades and D. borreri, i.e., propionylfilicinic acid (> 10% in D. affinis and D. ardechensis) and 2,6-dihydroxy-4-methoxy-3-methylbutyrophenone (aspidinol) (19.1% and 14.6% in D. oreades and D. borreri, respectively). Several terpenic derivatives with a low odor threshold were identified, i.e., carota-5,8-diene (from 2.5 to 18.4%: floral, woody or fresh bark note), (E)-nerolidol (> 10% for D. borreri and D. cambrensis; floral or woody odor), alpha-selinene (> 7% for D. ardechensis; woody-spicy odor), and aristolene (12.8% in D. affinis; flower, sweet odor). The main isoprenoid derivatives were 4-hydroxy-5,6-epoxyionol, 3-oxo-alpha-ionol and 4-oxo-7,8-dihydro-beta-ionone (essentially in D. remota), whereas the main aromatic compound was 4-hydroxy-3-methoxyacetophenone (20.6% and 12.6% in D. cambrensis and D. borreri, respectively) and the main lipid derivative was 1-octen-3-ol with a mushroom-like odor (from 0.4 to 8.3%). Dryopteris species resources are of great interest as a reservoir of odorous and bioactive compounds. PMID:24660483

  7. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

    PubMed

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199

  8. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    PubMed Central

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199

  9. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  10. Quantitative assessment of the expanding complementarity between public and commercial databases of bioactive compounds

    PubMed Central

    2009-01-01

    Background Since 2004 public cheminformatic databases and their collective functionality for exploring relationships between compounds, protein sequences, literature and assay data have advanced dramatically. In parallel, commercial sources that extract and curate such relationships from journals and patents have also been expanding. This work updates a previous comparative study of databases chosen because of their bioactive content, availability of downloads and facility to select informative subsets. Results Where they could be calculated, extracted compounds-per-journal article were in the range of 12 to 19 but compound-per-protein counts increased with document numbers. Chemical structure filtration to facilitate standardised comparisons typically reduced source counts by between 5% and 30%. The pair-wise overlaps between 23 databases and subsets were determined, as well as changes between 2006 and 2008. While all compound sets have increased, PubChem has doubled to 14.2 million. The 2008 comparison matrix shows not only overlap but also unique content across all sources. Many of the detailed differences could be attributed to individual strategies for data selection and extraction. While there was a big increase in patent-derived structures entering PubChem since 2006, GVKBIO contains over 0.8 million unique structures from this source. Venn diagrams showed extensive overlap between compounds extracted by independent expert curation from journals by GVKBIO, WOMBAT (both commercial) and BindingDB (public) but each included unique content. In contrast, the approved drug collections from GVKBIO, MDDR (commercial) and DrugBank (public) showed surprisingly low overlap. Aggregating all commercial sources established that while 1 million compounds overlapped with PubChem 1.2 million did not. Conclusion On the basis of chemical structure content per se public sources have covered an increasing proportion of commercial databases over the last two years. However

  11. Nutrients and bioactive compounds in popular and indigenous durian (Durio zibethinus murr.).

    PubMed

    Charoenkiatkul, Somsri; Thiyajai, Parunya; Judprasong, Kunchit

    2016-02-15

    This study identified nutrients, fatty acids, bioactive compounds and antioxidant activities of two popular varieties (Mon-thong, Cha-ni) and two indigenous varieties (Kra-dum and Kob-ta-kam) of durian. Each of variety was collected from 3 gardens in Nonthaburi province, Thailand. At optimal ripeness, the edible part was separated, homogenised or freeze dried, as fresh or dry samples for further analysis using standard methods. All durian varieties contained a considerable amount of dietary fibre (7.5-9.1g/100g dry matter, DM) and high amounts of carbohydrate and sugar (62.9-70.7g and 47.9-56.4g/100g DM respectively). Cha-ni, Kra-dum and Kob-ta-kam varieties had monounsaturated (MUFA) (6.1-7.8g/100g DM)>saturated (SFA) (4.2-5.7g/100g DM)>polyunsaturated fatty acid (PUFA) (0.8-1.5g/100g DM), whereas the Mon-thong variety had SFA>MUFA>PUFA (5.1, 4.0, 1.1g/100g DM, respectively). The Kob-ta-kam variety showed greater potential for health benefits in terms of carotenoids and β-carotene (2248μg and 1202μg/100g DM respectively). Phenolic compounds and antioxidant capacity were not significantly different among each variety, though the Cha-ni variety had the lowest. This study provides data on nutrients, bioactive compounds and antioxidant activities of indigenous and popular durian varieties that could be used for consumer education as well as for incorporation into the food composition databases. PMID:26433306

  12. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds.

    PubMed

    Sinha, S; Chand, S; Tripathi, P

    2014-01-01

    Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanase and food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria. PMID:25272731

  13. Effect of polyphenols on the intestinal and placental transport of some bioactive compounds.

    PubMed

    Martel, Fátima; Monteiro, Rosário; Calhau, Conceição

    2010-06-01

    Polyphenols are a group of widely distributed phytochemicals present in most foods of vegetable origin. A growing number of biological effects have been attributed to these molecules in the past few years and only recently has their interference with the transport capacity of epithelial barriers received attention. This review will present data obtained concerning the effect of polyphenols upon the transport of some compounds (organic cations, glucose and the vitamins thiamin and folic acid) at the intestinal and placental barriers. Important conclusions can be drawn: (i) different classes of polyphenols affect transport of these bioactive compounds at the intestinal epithelia and the placenta; (ii) different compounds belonging to the same phenolic family often possess opposite effects upon transport of a given molecule; (iii) the acute and chronic/short-term and long-term exposures to polyphenols do not produce parallel results and, therefore, care should be taken when extrapolating results; (iv) the effect of polyphenolics in combination may be very different from the expected ones taking into account the effect of each of these compounds alone, and so care should be taken when speculating on the effect of a drink based on the effect of one component only; (v) care should be taken in drawing conclusions for alcoholic beverages from results obtained with ethanol alone. Although most of the data reviewed in the present paper refer to in vitro experiments with cell-culture systems, these studies raise a concern about possible changes in the bioavailability of substrates upon concomitant ingestion of polyphenols. PMID:20392307

  14. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?

    PubMed Central

    Benkendorff, Kirsten; Rudd, David; Devi Nongmaithem, Bijayalakshmi; Liu, Lei; Young, Fiona; Edwards, Vicki; Avila, Cathy; Abbott, Catherine A.

    2015-01-01

    Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae. PMID:26295242

  15. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    PubMed Central

    Michalska, Anna; Łysiak, Grzegorz

    2015-01-01

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops. PMID:26266408

  16. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products.

    PubMed

    Michalska, Anna; Łysiak, Grzegorz

    2015-01-01

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops. PMID:26266408

  17. Status of bioactive compounds in foods, with focus on fruits and vegetables.

    PubMed

    Shashirekha, M N; Mallikarjuna, S E; Rajarathnam, S

    2015-01-01

    Components of cereals, legumes, pulses, proteins, sea food, milk, carbohydrates and lipids are being evaluated for their influence on human health, as biofunctional compounds. However, references dealing with fruits and vegetables exceed any other food group and accordingly their focus. Fruits and vegetables abound in a spectacular range of such health influencing compounds and thus, study of their bioactivity, in lieu of their consumption in fresh or processed form. Anti-cancerous phenolics from Phyllanthus, radioprotective Litchi phenolics/flavonoids, hypoglycemic Sygium, quercitin and hydroxyl cinnamates of Sweet cherries, xanthones of Mangosteen, ellagitannins of Pomegranate, ursolic acid of Sea buckthorn, muscle relaxative watermelon, anti-cholesterolemic soluble fibre and sterols, cardioprotective saponins, ACE-inhibitory potato hydrolysates, anti-pancreatic cancerous ascorbic acid, carotenoids including pro-vitamin A are few examples unraveled. Thus, the imminent scope to obviate their structural chemistry, influence on storage and processing conditions, factors favoring their bio-accessibility/bio-availability in the food formulations, influencing human health. It is the meticulous combination of these compounds in daily consumption that determines their usefulness to human body. What is of paramount importance is the actual health benefits accrued from consumption of such functional- compound based fresh/processed fruits,vegetables or other foods. PMID:24915335

  18. Bioactive compounds from marine mussels and their effects on human health.

    PubMed

    Grienke, Ulrike; Silke, Joe; Tasdemir, Deniz

    2014-01-01

    The consumption of marine mussels as popular seafood has increased steadily over the past decades. Awareness of mussel derived molecules, that promote health, has contributed to extensive research efforts in that field. This review highlights the bioactive potential of mussel components from species of the genus Mytilus (e.g. M. edulis) and Perna (e.g. P. canaliculus). In particular, the bioactivity related to three major chemical classes of mussel primary metabolites, i.e. proteins, lipids, and carbohydrates, is evaluated. Within the group of proteins the focus is mainly on mussel peptides e.g. those obtained by bio-transformation processes, such as fermentation. In addition, mussel lipids, comprising polyunsaturated fatty acids (PUFAs), are discussed as compounds that are well known for prevention and treatment of rheumatoid arthritis (RA). Within the third group of carbohydrates, mussel polysaccharides are investigated. Furthermore, the importance of monitoring the mussel as food material in respect to contaminations with natural toxins produced by microalgae is discussed. PMID:24001811

  19. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    PubMed

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable. PMID:26604402

  20. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes.

    PubMed

    Hallmann, Ewelina; Lipowski, Janusz; Marszałek, Krystian; Rembiałkowska, Ewa

    2013-06-01

    A specific objective of this paper was to evaluate seasonal changes in bioactive compounds level (carotenoids and polyphenols) in juice prepared from organic and non-organic tomatoes in Poland. In the examined tomato juice, the content of dry matter, vitamin C, carotenoids as well as polyphenols (by HPLC method) has been measured. The presented results indicate the impact of the growing system and the year of production on the composition of tomato juice. The organic tomato juice contained significantly more beta-carotene, chlorogenic acid, rutin as well as more total phenolic acids, gallic acid, p-coumaric acid, total flavonoids, quercetin-3-O-glucoside and quercetin in comparison with the non-organic. The tomato juice from 2008 contained significantly more carotenoids and some flavonoids compared to the one produced in 2009, which contained significantly more dry matter, vitamin C, as well as quercetin and it derivatives. PMID:23609833

  1. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin

    PubMed Central

    Nicoletti, Rosario; Trincone, Antonio

    2016-01-01

    In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs. PMID:26901206

  2. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation

    PubMed Central

    Vardanega, Renata; Santos, Diego T.; Meireles, M. Angela A.

    2014-01-01

    Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification. PMID:25125880

  3. Fermentation enhances the content of bioactive compounds in kidney bean extracts.

    PubMed

    Limón, Rocio I; Peñas, Elena; Torino, M Inés; Martínez-Villaluenga, Cristina; Dueñas, Montserrat; Frias, Juana

    2015-04-01

    The influence of solid (SSF) or liquid state fermentation (LSF) for 48 and 96 h on the production of water soluble extracts from kidney beans was investigated. SSF was carried out by Bacillus subtilis, whilst LSF was performed either by natural fermentation (NF) or by Lactobacillus plantarum strain (LPF). SSF extracts showed high soluble phenolic compound content (31-36 mg/g) and antioxidant activity (508-541 μg trolox equivalents/g), whilst LSF extracts exhibited potential antihypertensive activity due to their large γ-aminobutyric acid (GABA) content (6.8-10.6 mg/g) and angiotensin converting enzyme inhibitory (ACEI) activity (>90%). Therefore, fermentation can be considered as a valuable process to obtain bioactive ingredients from kidney beans, which could encourage their utilisation in the formulation of added-value functional foods. PMID:25442563

  4. Cocoa Bioactive Compounds: Significance and Potential for the Maintenance of Skin Health

    PubMed Central

    Scapagnini, Giovanni; Davinelli, Sergio; Di Renzo, Laura; De Lorenzo, Antonino; Olarte, Hector Hugo; Micali, Giuseppe; Cicero, Arrigo F.; Gonzalez, Salvador

    2014-01-01

    Cocoa has a rich history in human use. Skin is prone to the development of several diseases, and the mechanisms in the pathogenesis of aged skin are still poorly understood. However, a growing body of evidence from clinical and bench research has begun to provide scientific validation for the use of cocoa-derived phytochemicals as an effective approach for skin protection. Although the specific molecular and cellular mechanisms of the beneficial actions of cocoa phytochemicals remain to be elucidated, this review will provide an overview of the current literature emphasizing potential cytoprotective pathways modulated by cocoa and its polyphenolic components. Moreover, we will summarize in vivo studies showing that bioactive compounds of cocoa may have a positive impact on skin health. PMID:25116848

  5. Phenolics of Moringa oleifera leaves.

    PubMed

    Manguro, Lawrence Onyango Arot; Lemmen, Peter

    2007-01-01

    Five flavonol glycosides characterised as kaempferide 3-O-(2'',3''-diacetylglucoside), kaempferide 3-O-(2''-O-galloylrhamnoside), kaempferide 3-O-(2''-O-galloylrutinoside)-7-O-alpha-rhamnoside, kaempferol 3-O-[beta-glucosyl-(1 --> 2)]-[alpha-rhamnosyl-(1 --> 6)]-beta-glucoside-7-O-alpha-rhamnoside and kaempferol 3-O-[alpha-rhamnosyl-(1 --> 2)]-[alpha-rhamnosyl-(1 --> 4)]-beta-glucoside-7-O-alpha-rhamnoside together with benzoic acid 4-O-beta-glucoside, benzoic acid 4-O-alpha-rhamnosyl-(1 --> 2)-beta-glucoside and benzaldehyde 4-O-beta-glucoside have been isolated from methanolic extract of Moringa oleifera leaves. Also obtained from the same extract were known compounds, kaempferol 3-O-alpha-rhamnoside, kaempferol, syringic acid, gallic acid, rutin and quercetin 3-O-beta-glucoside. Their structures were determined using spectroscopic methods as well as comparison with data from known compounds. PMID:17365690

  6. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide.

    PubMed

    Dias, A M A; Braga, M E M; Seabra, I J; Ferreira, P; Gil, M H; de Sousa, H C

    2011-04-15

    Film- and foam-like structures of N-carboxybutylchitosan (CBC) and of agarose (AGA) were prepared and characterized in order to evaluate their potential application as topical membrane-type wound dressing materials, mostly regarding their sustained release capacities and fluid handling properties. Polymeric biomaterials were loaded with two natural-origin bioactive compounds (quercetin and thymol, which present anti-inflammatory and anaesthetic properties, respectively), separately or as a mixture of these two substances, and using a supercritical solvent impregnation (SSI) method. Impregnation experiments were carried out with supercritical carbon dioxide (scCO₂) at 10 and 20 MPa, and at 303 and 323 K. Ethanol (10%, v/v) was employed as a co-solvent whenever quercetin was used. Release kinetic studies were performed for all prepared systems and the obtained results showed that higher amounts of quercetin and/or thymol were loaded when higher pressures and temperatures were employed. Results showed that the separated and the simultaneous SSI loading of these two bioactive substances into CBC and AGA is a feasible and advantageous process and that the relative loaded amounts of these substances can be "tuned" simply by changing the operational pressure-temperature conditions. Quercetin presented more sustained release profiles which can be justified by its higher molecular volume and by its lower water solubility as well as by the specific favourable interactions that can be established between quercetin and CBC. Obtained results showed that the employed SSI process also promoted the size reduction of loaded quercetin particles which can significantly improve the solubility of this compound in aqueous solutions. In addition, prepared systems presented adequate water sorption and water vapor sorption capacities as well as water vapor transmission rates that were in the typical and desired ranges for commercial wound dressings. PMID:21316432

  7. Assessment of by-products from fresh-cut products for reuse as bioactive compounds.

    PubMed

    Tarazona-Díaz, M P; Aguayo, E

    2013-10-01

    The fresh-cut industry is constantly growing and generating wastes. The major challenge for this industry consists in an environmentally sustainable production through re-utilization of by-products, for instance, in extraction of bioactive compounds. In this paper, the nutritional and functional compounds of apple, potato, cucumber, melon and watermelon by-products were investigated. The amount of by-product produced was of 10.10 to 30.80% of initial fresh weight depending on the product. By-products were characterized by low protein (<20 g/kg fresh weight) and fatty acid content (<5 g/kg fresh weight) and high levels of minerals. Carbohydrates content ranged from 43.7 to 235 g/kg fresh weight, while total dietary fibre was between 20 and 150 g/kg fresh weight The content of antioxidants (53.6 to 3453.2 mg/kg fresh weight) and total polyphenols (124.5 to 4250.2 mg/kg fresh weight) depended strongly on the type of by-product. In most cases, the nutritional and bioactive content was higher in the peel than in whole product. Apple peel was rich in carbohydrates, total dietary fibre, antioxidants and total polyphenols. Potato peel was high in iron. Melon was rich in magnesium. Watermelon peel was characterized by the level of potassium, and cucumber peel was rich in manganese, zinc, phosphorous, calcium and sodium. All these data demonstrate than natural by-product from fresh-cut industry could potentially be utilized as ingredients to design new functional foods with a future market. PMID:23733809

  8. Simultaneous extraction and biotransformation process to obtain high bioactivity phenolic compounds from Brazilian citrus residues.

    PubMed

    Madeira, Jose Valdo; Macedo, Gabriela Alves

    2015-01-01

    Recent studies have pointed to a reduction in the incidence of some cancers, diabetes, and neuro-degenerative diseases as a result of human health benefits from flavanones. Currently, flavanones are obtained by chemical synthesis or extraction from plants, and these processes are only produced in the glycosylated form. An interesting environmentally friendly alternative that deserves attention regarding phenolic compound production is the simultaneous extraction and biotransformation of these molecules. Orange juice consumption has become a worldwide dietary habit and Brazil is the largest producer of orange juice in the world. Approximately half of the citrus fruit is discarded after the juice is processed, thus generating large amounts of residues (peel and pectinolytic material). Hence, finding an environmentally clean technique to extract natural products and bioactive compounds from different plant materials has presented a challenging task over the last decades. The aim of this study was to obtain phenolics from Brazilian citrus residues with high bioactivity, using simultaneous extraction (cellulase and pectinase) and biotransformation (tannase) by enzymatic process. The highest hesperetin, naringenin and ellagic acid production in the experiment were 120, 80, and 11,250 µg g(-1), respectively, at 5.0 U mL(-1) of cellulase and 7.0 U mL(-1) of tannase at 40°C and 200 rpm. Also, the development of this process generated an increase of 77% in the total antioxidant capacity. These results suggest that the bioprocess obtained innovative results where the simultaneous enzymatic and biotransformatic extracted flavanones from agro-industrial residues was achieved without the use of organic solvents. The methodology can therefore be considered a green technology. PMID:26081498

  9. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    PubMed Central

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  10. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health

    PubMed Central

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Mazzoni, Luca; Forbes-Hernández, Tamara Yuliett; Giampieri, Francesca; Afrin, Sadia; Gasparrini, Massimiliano; Soria, Carmen; Martínez-Ferri, Elsa; Battino, Maurizio; Mezzetti, Bruno

    2016-01-01

    Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH) of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC). Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health. PMID:27409612

  11. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    PubMed Central

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  12. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs.

    PubMed

    Lemos, M Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  13. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  14. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health.

    PubMed

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Mazzoni, Luca; Forbes-Hernández, Tamara Yuliett; Giampieri, Francesca; Afrin, Sadia; Gasparrini, Massimiliano; Soria, Carmen; Martínez-Ferri, Elsa; Battino, Maurizio; Mezzetti, Bruno

    2016-01-01

    Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH) of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC). Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health. PMID:27409612

  15. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds

    PubMed Central

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-01-01

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph−Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  16. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    PubMed

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-01-01

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  17. Influence of extraction solvents on antioxidant activity and the content of bioactive compounds in non-pungent peppers.

    PubMed

    Bae, Haejin; Jayaprakasha, G K; Crosby, Kevin; Jifon, John L; Patil, Bhimanagouda S

    2012-06-01

    Bioactive compounds in foods have been shown to maintain human health. However, the relative amounts of bioactive compounds and the variation in the amounts are still poorly understood. In this study, the efficacy of different extraction solvents (hexane, ethyl acetate, acetone, methanol, and a methanol:water mixture), as well as the levels of certain bioactive compounds in non-pungent pepper cultivars (TMH, TMJ, PA137, and B58) were investigated using high-performance liquid chromatography (HPLC). Antioxidant activities were determined using 2,2,-diphenyl-1-picrylhydrazyl (DPPH), reducing power, and deoxyribose degradation. Hexane extracts had the highest level of carotenoids (47.2-628.8 μg/g), and methanol extracts contained maximum flavonoids (24.9-152.2 μg/g) in four different cultivars. Higher DPPH scavenging activity was found in the hexane extracts from TMH, TMJ, PA137, and B58 (IC₅₀ value: 0.67, 0.74, 0.55, and 0.48 μg/ml, respectively), whereas the reducing power was high in ethyl acetate and acetone extracts. Inhibition of deoxyribose degradation was highest in methanolic extracts from TMH, TMJ, PA137, and B58 (51.2, 49.5, 52.6, and 47.4 %, respectively). These data demonstrate that solvent chemical properties such as polarity can differentially impact the efficiency with which different bioactive compounds are recovered from foods, and this could lead to differences in estimated biological activity such as antioxidant capacity. PMID:22569831

  18. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves.

    PubMed

    Teixeira, Estelamar Maria Borges; Carvalho, Maria Regina Barbieri; Neves, Valdir Augusto; Silva, Maraíza Apareci; Arantes-Pereira, Lucas

    2014-03-15

    Moringa oleifera Lam. is a leguminous plant, originally from Asia, which is cultivated in Brazil because of its low production cost. Although some people have used this plant as food, there is little information about its chemical and nutritional characteristics. The objective of this study was to characterise the leaves of M. oleifera in terms of their chemical composition, protein fractions obtained by solubility in different systems and also to assess their nutritional quality and presence of bioactive substances. The whole leaf flour contained 28.7% crude protein, 7.1% fat, 10.9% ashes, 44.4% carbohydrate and 3.0mg 100g(-1) calcium and 103.1mg 100g(-1) iron. The protein profile revealed levels of 3.1% albumin, 0.3% globulins, 2.2% prolamin, 3.5% glutelin and 70.1% insoluble proteins. The hydrolysis of the protein from leaf flour employing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (ME) resulted in 39.5% and 29.5%, respectively. The total protein showed low in vitro digestibility (31.8%). The antinutritional substances tested were tannins (20.7 mg g(-1)), trypsin inhibitor (1.45TIU mg g(-1)), nitrate (17 mg g(-1)) and oxalic acid (10.5 mg g(-1)), besides the absence of cyanogenic compounds. β-Carotene and lutein stood out as major carotenoids, with concentrations of 161.0 and 47.0 μg g(-1) leaf, respectively. Although M. oleifera leaves contain considerable amount of crude protein, this is mostly insoluble and has low in vitro digestibility, even after heat treatment and chemical attack. In vivo studies are needed to better assess the use of this leaf as a protein source in human feed. PMID:24206684

  19. Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria

    PubMed Central

    Lim, Vivian; Naim, Ahmad Nazri Mohamed; Bifani, Pablo; Boshoff, Helena I. M.; Sambandamurthy, Vasan K.; Dick, Thomas; Hibberd, Martin L.; Schreiber, Mark; Rao, Srinivasa P. S.

    2013-01-01

    Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR) of the novel compounds synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of action (MoA) as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs. PMID:23935951

  20. Antioxidant and anti-inflammatory assays confirm bioactive compounds in Ajwa date fruit.

    PubMed

    Zhang, Chuan-Rui; Aldosari, Saleh A; Vidyasagar, Polana S P V; Nair, Karun M; Nair, Muraleedharan G

    2013-06-19

    Ajwa, a variety of date palm Phoenix dactylifera L., produces the most expensive date fruits. Percentages of seed, moisture, fructose, glucose, soluble protein, and fiber in Ajwa dates were 13.24, 6.21, 39.06, 26.35, 1.33, and 11.01, respectively. The ethyl acetate, methanolic, and water extracts of Ajwa dates, active at 250 μg/mL in the MTT assay, inhibited lipid peroxidation (LPO) by 88, 70, and 91% at 250 μg/mL and cyclooxygenase enzymes COX-1 by 30, 31, and 32% and COX-2 by 59, 48, and 45% at 100 μg/mL, respectively. Bioactivity-guided purifications afforded compounds 1-7, in addition to phthalates and fatty acids. Compounds 1-3 showed activity at 100 μg/mL in the MTT assay; inhibited COX-1 enzyme by 59, 48, amd 50% and COX-2 enzyme by 60, 40, amd 39% at 50 μg/mL; and inhibited LPO by 95, 58, amd 66% at 100 μg/mL, respectively. The soluble protein fraction was also very active in both antioxidant and anti-inflammatory assays. PMID:23713661

  1. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L.

    PubMed

    Petropoulos, Spyridon A; Levizou, Efi; Ntatsi, Georgia; Fernandes, Ângela; Petrotos, Konstantinos; Akoumianakis, Konstantinos; Barros, Lillian; Ferreira, Isabel C F R

    2017-01-01

    Soil salinization is an increasing problem for many areas throughout the world that renders prohibitive vegetables and crop production in general. In the present study, Cichorium spinosum L. plants were grown under saline conditions in order to evaluate chemical composition and bioactive compounds content of their leaves. Salinity increase resulted in significant changes of macro and micro-nutrients content (nutritional value, sugars, fatty acids, minerals, ascorbic acid and tocopherols), whereas the concentration of phenolic compounds was not significantly affected. Chicoric and 5-O-caffeoylquinic acid were the most abundant phenolic acids. In contrast, antioxidant activity and mineral composition were beneficially affected by mid-to-high and high salinity levels. In conclusion, C. spinosum can be cultivated under saline conditions without compromising the quality of the final product, especially in semi-arid areas where irrigation water is scarce and/or of low quality due to high content of NaCl (coastal areas or areas where underground water is saline). PMID:27507457

  2. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    PubMed

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; p<0.001) whereas in red cabbage it was significantly reduced (34.6%; p<0.001). In the kale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. PMID:26593594

  3. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives.

    PubMed

    Santangelo, Carmela; Zicari, Alessandra; Mandosi, Elisabetta; Scazzocchio, Beatrice; Mari, Emanuela; Morano, Susanna; Masella, Roberta

    2016-04-14

    Gestational diabetes mellitus (GDM) is a serious problem growing worldwide that needs to be addressed with urgency in consideration of the resulting severe complications for both mother and fetus. Growing evidence indicates that a healthy diet rich in fruit, vegetables, nuts, extra-virgin olive oil and fish has beneficial effects in both the prevention and management of several human diseases and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis. Several studies, mostly based on in vitro and animal models, indicate that dietary polyphenols, mainly flavonoids, positively modulate the insulin signalling pathway by attenuating hyperglycaemia and insulin resistance, reducing inflammatory adipokines, and modifying microRNA (miRNA) profiles. Very few data about the influence of dietary exposure on GDM outcomes are available, although this approach deserves careful consideration. Further investigation, which includes exploring the 'omics' world, is needed to better understand the complex interaction between dietary compounds and GDM. PMID:26879600

  4. Bioactive compounds in banana and their associated health benefits - A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2016-09-01

    Banana is a very popular fruit in the world market and is consumed as staple food in many countries. It is grown worldwide and constitutes the fifth most important agricultural food crop in terms of world trade. It has been classified into the dessert or sweet bananas and the cooking bananas or plantains. It is either eaten raw or processed, and also as a functional ingredient in various food products. Banana contains several bioactive compounds, such as phenolics, carotenoids, biogenic amines and phytosterols, which are highly desirable in the diet as they exert many positive effects on human health and well-being. Many of these compounds have antioxidant activities and are effective in protecting the body against various oxidative stresses. In the past, bananas were effectively used in the treatment of various diseases, including reducing the risk of many chronic degenerative disorders. In the present review, historical background, cultivar classification, beneficial phytochemicals, antioxidant activity and health benefits of bananas are discussed. PMID:27041291

  5. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria. PMID:25082352

  6. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures.

    PubMed

    Herrmann, Andreas

    2014-03-21

    Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems. PMID:24296754

  7. Microbial transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste.

    PubMed

    Roh, Changhyun

    2014-01-01

    Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds. PMID:25513748

  8. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis.

    PubMed

    Yang, Quanjun; Wu, Bin; Shi, Yujing; Du, Xiaowei; Fan, Mingsong; Sun, Zhaolin; Cui, Xiaolan; Huang, Chenggang

    2012-01-01

    Bioassay-guided fractionation of extracts from Fructus Gardeniae led to analysis of its bioactive natural products. After infection by influenza virus strain A/FM/1/47-MA in vivo, antiviral activity of the extracts were investigated. The target fraction was orally administered to rats and blood was collected. High-performance liquid chromatography coupled with photo diode array detector and electrospray ion trap multiple-stage tandem mass spectrometry was applied to screen the compounds absorbed into the blood. A structural characterization based on the retention time, ultraviolet spectra, parent ions and fragmentation ions was performed. Thirteen compounds were confirmed or tentatively identified. This provides an accurate profile of the composition of bioactive compounds responsible for the anti-influenza properties. PMID:22297738

  9. The agar diffusion scratch assay - A novel method to assess the bioactive and cytotoxic potential of new materials and compounds

    PubMed Central

    Pusnik, Mascha; Imeri, Minire; Deppierraz, Grégoire; Bruinink, Arie; Zinn, Manfred

    2016-01-01

    A profound in vitro evaluation not only of the cytotoxic but also of bioactive potential of a given compound or material is crucial for predicting potential effects in the in vivo situation. However, most of the current methods have weaknesses in either the quantitative or qualitative assessment of cytotoxicity and/or bioactivity of the test compound. Here we describe a novel assay combining the ISO 10993-5 agar diffusion test and the scratch also termed wound healing assay. In contrast to these original tests this assay is able to detect and distinguish between cytotoxic, cell migration modifying and cytotoxic plus cell migration modifying compounds, and this at higher sensitivity and in a quantitative way. PMID:26861591

  10. Selective enrichment in bioactive compound from Kniphofia uvaria by super/subcritical fluid extraction and centrifugal partition chromatography.

    PubMed

    Duval, Johanna; Destandau, Emilie; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric

    2016-05-20

    Nowadays, a large portion of synthetic products (active cosmetic and therapeutic ingredients) have their origin in natural products. Kniphofia uvaria is a plant from Africa which has proved in the past by in-vivo tests an antioxidant activity due to compounds present in roots. Recently, we have observed anthraquinones in K. uvaria seeds extracts. These derivatives are natural colorants which could have interesting bioactive potential. The aim of this study was to obtain an extract enriched in anthraquinones from K. uvaria seeds which mainly contains glycerides. First, the separation of the seed compounds was studied by using supercritical fluid chromatography (SFC) in the goal to provide a rapid quantification method of these bioactive compounds. A screening of numerous polar stationary phases was achieved for selecting the most suited phase to the separation of the four anthraquinones founded in the seeds. A gradient elution was optimized for improving the separation of the bioactive compounds from the numerous other families of major compounds of the extracts (fatty acids, di- and triglycerides). Besides, a non-selective and green Supercritical Fluid Extraction (SFE) with pure CO2 was applied to seeds followed by a Centrifugal Partition Chromatography (CPC). The CPC system was optimized by using the Arizona phase system, to enrich the extract in anthraquinones. Two systems were selected to isolate the bioactive compounds from the oily extract with varied purity target. The effect of the injection mode for these very viscous samples was also studied. Finally, in order to directly apply a selective process of extraction to the seeds, the super/subcritical fluid extraction was optimized to increase the anthraquinone yield in the final extract, by studying varied modifier compositions and nature, as well as different temperatures and backpressures. Conditions suited to favour an enrichment factor bases on the ratio of anthraquinone and trilycerides extracted are

  11. Rapid screening and quantitative determination of bioactive compounds from fruit extracts of Myristica species and their in vitro antiproliferative activity.

    PubMed

    Pandey, Renu; Mahar, Rohit; Hasanain, Mohammad; Shukla, Sanjeev K; Sarkar, Jayanta; Rameshkumar, K B; Kumar, Brijesh

    2016-11-15

    Efficient and sensitive LC-MS/MS methods have been developed for the rapid screening and determination of bioactive compounds in different fruit parts of four Myristica species, viz., Myristica beddomeii, Myristica fragrans, Myristica fatua and Myristica malabarica. Twenty-one compounds were identified and characterized on the basis of their accurate mass and MS/MS fragmentation pattern using HPLC-QTOF-MS/MS and NMR analysis. Quantitative determination of five major bioactive compounds was performed using multiple-reaction monitoring mode with continuous polarity switching by UHPLC-QqQLIT-MS/MS. Moreover, in vitro antiproliferative activity of these Myristica species was evaluated against five human cancer cell lines A549, DLD-1, DU145, FaDu and MCF-7 using SRB assay. Seventeen phytoconstituents were identified and reported for the first time from M. beddomeii and sixteen from M. fatua. Quantification result showed highest total content of five major bioactive compounds in mace of M. fragrans. Evaluation of in vitro antiproliferative activity revealed potent activity in all investigated species except M. fragrans. PMID:27283658

  12. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color

    PubMed Central

    Czerko, Zbigniew; Zarzyńska, Krystyna; Borowska-Komenda, Monika

    2016-01-01

    We investigated the effect of cultivation system (conventional or organic), cooking method, and flesh color on the contents of ascorbic acid (AA) and total phenolics (TPs), and on total antioxidant activity (Trolox equivalents, TE) in Solanum tuberosum (potato) tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave) increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer) than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers. PMID:27139188

  13. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color.

    PubMed

    Grudzińska, Magdalena; Czerko, Zbigniew; Zarzyńska, Krystyna; Borowska-Komenda, Monika

    2016-01-01

    We investigated the effect of cultivation system (conventional or organic), cooking method, and flesh color on the contents of ascorbic acid (AA) and total phenolics (TPs), and on total antioxidant activity (Trolox equivalents, TE) in Solanum tuberosum (potato) tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave) increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer) than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers. PMID:27139188

  14. Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.

    PubMed

    Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi

    2009-12-01

    The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis. PMID:20163661

  15. Bioactive compounds in blood oranges (Citrus sinensis (L.) Osbeck): Level and intake.

    PubMed

    Fallico, Biagio; Ballistreri, Gabriele; Arena, Elena; Brighina, Selina; Rapisarda, Paolo

    2017-01-15

    Both the composition and the intake of antioxidants (anthocyanins, ascorbic acid and hydroxycinnamic acids) were reported for all blood oranges including the single cultivars (Moro, Tarocco and Sanguinello) and industrially produced juices. The mean values of the studied bioactive compounds in the edible part oranges were: 9.6mg/100g of orange edible part for the anthocyanins; 8.1, 0.7, 1.3, 3.8, 2.5mg/100g for total hydroxycinnamic acids, caffeic, sinapic, ferulic and coumaric acids, respectively and 59.1mg/100g for ascorbic acid. The consumption of blood oranges contributes to a daily intake of: 9.4mg/d (up to 55mg/d) of anthocyanins and 58.5mg/d (up to 340mg/d) of vitamin C, respectively. Data suggest that the 50% of consumers, males and females, receive more than the 70% and 90% of EAR value of vitamin C, respectively. The 25% of males and the 40% of females has an intake higher than the EAR. PMID:27542451

  16. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin

    PubMed Central

    Jacobi, Jennifer L.; Yang, Bo; Li, Xu; Menze, Anna K.; Laurentz, Sara M.; Janle, Elsa M.; Ferruzzi, Mario G.; McCabe, George P.; Chapple, Clint; Kirchmaier, Ann L.

    2016-01-01

    The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo. PMID:26882112

  17. Green alga Ulva pertusa--a new source of bioactive compounds with antialgal activity.

    PubMed

    Ying-ying, Sun; Hui, Wang; Gan-lin, Guo; Yin-fang, Pu; Bin-lun, Yan; Chang-hai, Wang

    2015-07-01

    We tested the effects of solvent fractions (FA, FB, FC, and FD), which partitioned by liquid-liquid extraction from the methanol extract of Ulva pertusa, on the growth of red tide microalgae (Karenia mikimitoi, Skeletonema costatum, Alexandrium tamarense, Heterosigma akashiwo, Prorocentrum donghaiense), and FA, FB, and FC exhibited significantly antialgal activity. The chemical constituent analysis showed the existence of bioactive compounds such as phenols and alkaloids. Further, four solvent fractions were applied to silica gel column and repeated preparative TLC to produce 13 samples and their purity qualified as thin-layer chromatographic grade. Among these purified samples, FA111, FB411, FC411, FD111, and FD211 exhibited stronger antialgal activity. Furthermore, their functional groups were analyzed by colorimetric methods and UV spectra data. FD111 and FD211 were temptatively identified as alkaloids; the others were initially identified as phenolic acids. This is a preliminary study and the structure identification of these purified samples requires further investigation. While concentration of these purified samples in this algae was very small, they showed excellent effects against red tide microalgae. PMID:25724801

  18. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    PubMed Central

    Barbosa-Pereira, Letricia; Pocheville, Ainara; Angulo, Inmaculada; Paseiro-Losada, Perfecto; Cruz, Jose M.

    2013-01-01

    The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE) and supercritical fluid extraction (SFE)—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v) of methanol displayed the highest antioxidant activity (0.20 g L−1), similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1) was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6%) as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries. PMID:23762844

  19. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    PubMed Central

    Hardoim, Cristiane C. P.; Costa, Rodrigo

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed. PMID:25272328

  20. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  1. Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder.

    PubMed

    Ruiz-Gutiérrez, Martha G; Amaya-Guerra, Carlos A; Quintero-Ramos, Armando; Pérez-Carrillo, Esther; Ruiz-Anchondo, Teresita de J; Báez-González, Juan G; Meléndez-Pizarro, Carmen O

    2015-01-01

    Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w) were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C) and screw speeds (225, 275, 325 rpm) using a twin-screw extruder. Mean residence time (trm), color (L*, a*, b*), antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k) and activation energies (Ea) were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the -0.0188 to -0.0206/s and for betaxanthins ranged of -0.0122 to -0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products. PMID:25993418

  2. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin.

    PubMed

    Jacobi, Jennifer L; Yang, Bo; Li, Xu; Menze, Anna K; Laurentz, Sara M; Janle, Elsa M; Ferruzzi, Mario G; McCabe, George P; Chapple, Clint; Kirchmaier, Ann L

    2016-01-01

    The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo. PMID:26882112

  3. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Bargas, Matheus A; Meireles, M Angela A

    2016-11-01

    This paper presents novel outcomes about the effect of degree of inulin polymerization (DP) on the technological properties of annatto seed oil powder obtained by freeze-drying. Inulins with two DP's were evaluated: GR-inulin (DP≥10) and HP-inulin (DP≥23). Micrographs obtained by confocal microscopy were analyzed to confirm the encapsulation of bioactive compounds using both inulins, especially the encapsulation of the natural fluorescent substance δ-tocotrienol. Microparticles formed with both inulins presented the same capacity for geranylgeraniol retention (77%). Glass transitions of microparticles formed with GR-inulin and HP-inulin succeeded at 144°C and 169°C, respectively. Regarding water adsorption isotherms, microparticles formed with HP-inulin and GR-inulin presented behaviors of Types II (sigmoidal) and III (non-sigmoidal), respectively. Reduction of water adsorption capacity in the matrix at high relative moistures (>70%) was presented when HP-inulin was used. At low relative moistures (<30%), the opposite behavior was observed. PMID:27516329

  4. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    PubMed Central

    Kalimuthu, Senthilkumar; Se-Kwon, Kim

    2013-01-01

    Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow. PMID:23348928

  5. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq)

    PubMed Central

    Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail

    2014-01-01

    Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin—Cioacalteu’s reagent. Results: The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. Conclusion: It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. PMID:26401347

  6. Intake of selected bioactive compounds from plant food supplements containing fennel (Foeniculum vulgare) among Finnish consumers.

    PubMed

    Uusitalo, Liisa; Salmenhaara, Maija; Isoniemi, Merja; Garcia-Alvarez, Alicia; Serra-Majem, Lluís; Ribas-Barba, Lourdes; Finglas, Paul; Plumb, Jenny; Tuominen, Pirkko; Savela, Kirsti

    2016-03-01

    The purpose of this study was to estimate the intake of selected bioactive compounds from fennel-containing plant food supplements (PFS) among Finnish consumers. The estimated average intake of estragole was 0.20mg/d, of trans-anethole 1.15mg/d, of rosmarinic acid 0.09mg/d, of p-coumaric acid 0.0068mg/d, of kaempferol 0.0034mg/d, of luteolin 0.0525μg/d, of quercetin 0.0246mg/d, of matairesinol 0.0066μg/d and of lignans 0.0412μg/d. The intakes of kaempferol, quercetin, luteolin, matairesinol and lignans from PFS were low in comparison with their dietary supply. The intake of estragole was usually moderate, but a heavy consumption of PFS may lead to a high intake of estragole. The intake of trans-anethole did not exceed the acceptable daily intake, but PFS should be taken into account when assessing the total exposure. To our knowledge, this study provided the first intake estimates of trans-anethole, p-coumaric acid and rosmarinic acid in human populations. PMID:26471600

  7. Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development

    PubMed Central

    López de Felipe, Félix; de las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The microorganisms in the human gastrointestinal tract have a profound influence on the transformation of food into metabolites which can impact human health. Gallic acid (GA) and pyrogallol (PG) are bioactive compounds displaying diverse biological properties, including carcinogenic inhibiting activities. However, its concentration in fruits and vegetables is generally low. These metabolites can be also generated as final products of tannin metabolism by microbes endowed with tannase, which opens up the possibility of their anti-cancer potential being increased. Patients with colorectal cancer (CRC) display an imbalanced gut microbiota respect to healthy population. The recent use of next generation sequencing technologies has greatly improved knowledge of the identity of bacterial species that colonize non-tumorous and tumorous tissues of CRC patients. This information provides a unique opportunity to shed light on the role played by gut microorganisms in the different stages of this disease. We here review the recently published gut microbiome associated to CRC patients and highlight tannase as an underlying gene function of bacterial species that selectively colonize tumorous tissues, but not adjacent non-malignant tissues. Given the anti-carcinogenic roles of GA and PG produced by gut tannin-degrading bacteria, we provide an overview of the possible consequences of this intriguing coincidence for CRC development. PMID:25538697

  8. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.).

    PubMed

    Tomšik, Alena; Pavlić, Branimir; Vladić, Jelena; Ramić, Milica; Brindza, Ján; Vidović, Senka

    2016-03-01

    Ultrasound-assisted extraction was used for extraction of bioactive compounds and for production of Allium ursinum liquid extract. The experiments were carried out according to tree level, four variables, face-centered cubic experimental design (FDC) combined with response surface methodology (RSM). Temperature (from 40 to 80 °C), ethanol concentration (from 30% to 70%), extraction time (from 40 to 80 min) and ultrasonic power (from 19.2 to 38.4 W/L) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols (TP), flavonoids (TF) and antioxidant activity of obtained extracts. Experimental results were fitted to the second order polynomial model where multiple regression and analysis of variance were used to determine the fitness of the model and optimal condition for investigated responses. The predicted values of the TP (1.60 g GAE/100 g DW), TF (0.35 g CE/100 g DW), antioxidant activity, IC50 (0.71 mg/ml) and EY (38.1%) were determined at the optimal conditions for ultrasound assisted extraction: 80 °C temperature, 70% ethanol, 79.8 min and 20.06 W/L ultrasonic power. The predicted results matched well with the experimental results obtained using optimal extraction conditions which validated the RSM model with a good correlation. PMID:26563916

  9. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...

  10. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    PubMed

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures. PMID:24917651

  11. Screening of microorganisms from deep-sea mud for Antarctic krill (Euphausia superba) fermentation and evaluation of the bioactive compounds.

    PubMed

    Sun, Jianan; Kan, Feifei; Liu, Pei; He, Shuai; Mou, Haijin; Xue, Changhu; Mao, Xiangzhao

    2015-02-01

    Twelve kinds of strains were isolated from deep-sea mud which can use Antarctic krill powder as the sole carbon/nitrogen source. These strains were identified by 16s rDNA sequence analysis and grouped into eight different genera, including Bacillus, Shewanella, Psychrobacter, Klebsiella, Macrococcus, Aeromonas, Acinetobacter, and Saccharomyces. After fermentation of Antarctic krill powder using these strains, bioactive compounds including total phenolics, free amino acids, and enzyme activities were investigated. Meanwhile, antioxidant activities of the fermentation liquors were also detected. Results showed that bioactive compounds could be effectively produced through fermentation process by these strains, of which three strains (Bacillus subtilis OKF04, Macrococcus caseolyticus OKF09, and Aeromonas veronii OKF10) could produce more than 650 mg/L total phenolics or 2000 mg/L total free amino acids. In terms of enzyme activities, almost all of the strains showed protease activity and amylase activity, but only Bacillus cereus OKF01 and Bacillus megaterium OKF05 performed lipase activity and chitinase activity, respectively. All of the fermentation liquors showed antioxidant activity, within which Bacillus megaterium OKF05, Macrococcus caseolyticus OKF09, and Aeromonas veronii OKF10 displayed it more prominently. These results demonstrate that the Antarctic krill powder could be effectively converted by microorganisms isolated from deep-sea mud for production of bioactive compounds mixture. PMID:25416479

  12. Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits.

    PubMed

    Meighani, Hossein; Ghasemnezhad, Mahmood; Bakhshi, Davood

    2015-07-01

    The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality. PMID:26139918

  13. Comparison of Bioactive Compounds and Quality Traits of Breast Meat from Korean Native Ducks and Commercial Ducks.

    PubMed

    Lee, Hyun Jung; Jayasena, Dinesh D; Kim, Sun Hyo; Kim, Hyun Joo; Heo, Kang Nyung; Song, Ji Eun; Jo, Cheorun

    2015-01-01

    The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat. PMID:26761808

  14. Biochemometrics for Natural Products Research: Comparison of Data Analysis Approaches and Application to Identification of Bioactive Compounds.

    PubMed

    Kellogg, Joshua J; Todd, Daniel A; Egan, Joseph M; Raja, Huzefa A; Oberlies, Nicholas H; Kvalheim, Olav M; Cech, Nadja B

    2016-02-26

    A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis. PMID:26841051

  15. Effects of Hypobaric Treatments on the Quality, Bioactive Compounds, and Antioxidant Activity of Tomato.

    PubMed

    Kou, Xiaohong; Wu, Ji Yun; Wang, Yong; Chen, Qiong; Xue, Zhaohui; Bai, Yang; Zhou, Fengjuan

    2016-07-01

    Hypobaric treatment is becoming a potential technology to protect fruits from postharvest decay. The objective of this study was to investigate the effects of hypobaric treatments on storage quality, bioactive compounds, and antioxidant activity of tomato fruit. In this study, green tomatoes (cv. "Fen guan") were treated with hypobaric pressures (0.04 and 0.07 MPa) at ambient temperature (20 ℃) for 28 d. The results showed that under hypobaric storage, the respiration rates significantly declined and the respiratory peaks postponed 12 and 8 d by 0.04 and 0.07 MPa treatments, respectively, compared to control. Total soluble solid, titratable acidity, ascorbic acid, and lycopene were retained by hypobaric treatment. Moreover, ascorbic acid contents treated with 0.04 and 0.07 MPa were, respectively, 37% and 26% higher than control at day 24 and the contents of total polyphenols were, respectively, 1.28 and 1.11 times higher than control. Production and accumulation of toxic substances were significantly restrained. The ethanol content decreased, respectively, by 53% and 84% than control. At later storage period, the superoxide dismutase activity in treated fruits was about 0.58 U/(g·FW·min), whereas only 0.29 U/(g·FW·min) in control. Hypobaric treatment not only maintained a high activity of superoxide dismutase and peroxidase (POD), but also improved antioxidant capacity. All the results indicated that hypobaric treatment was a potential helpful method to protect the quality and nutrition of tomato and prolong ripening of tomato. Furthermore, the effect of 0.04 MPa hypobaric treatment was found better than 0.07 MPa. PMID:27257791

  16. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    PubMed

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications. PMID:26079091

  17. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    PubMed

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. PMID:26590878

  18. Solanum diploconos fruits: profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit.

    PubMed

    Ribeiro, Alessandra Braga; Chisté, Renan Campos; Lima, José L F C; Fernandes, Eduarda

    2016-05-18

    Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-β-carotene was the major carotenoid (17-38 μg g(-1), dry basis), but all-trans-lutein and 9-cis-β-carotene were also identified. The peel and pulp presented <2 μg per mL of tocopherols, and ascorbic acid was not detected. The whole fruit extract exhibited scavenging capacity against all tested ROS and RNS (IC50 = 14-461 μg mL(-1)) with high antioxidant efficiency against HOCl. Thus, Solanum diploconos fruits may be seen as a promising source of bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS. PMID:27142444

  19. Penicillium verruculosum SG: a source of polyketide and bioactive compounds with varying cytotoxic activities against normal and cancer lines.

    PubMed

    Shah, Salma Gul; Shier, W Thomas; Jamaluddin; Tahir, Nawaz; Hameed, Abdul; Ahmad, Safia; Ali, Naeem

    2014-04-01

    A newly isolated fungus Penicillium verruculosum SG was evaluated for the production and characterization of bioactive colored secondary metabolites using solid-state fermentation along with their cytotoxic activities against normal and cancer cell lines. Logical fragmentation pattern following column chromatography, thin layer chromatography and liquid chromatography and mass spectrometry of crude culture filtrate of fungus revealed the presence of different polyketide pigments and other bioactive compounds. Cytotoxicity of the selected colored fractions of fungal filtrate containing different compounds revealed IC50 (μg/ml) values ranging from 5 to 100. It was significantly higher in case of orevactaene (5 + 0.44) and monascorubrine followed by pyripyropene (8 + 0.63) against cancer cell line KA3IT. Overall, these compounds considerably showed less toxicity toward normal cell lines NIH3T3, HSCT6, HEK293 and MDCK. XRD of a yellow crystalline compound (224.21 m/z) confirmed its 3-dimensional structure as phenazine 1 carboxylic acid (C13H8N2O2) (broad spectrum antibiotic), and it is first time reported in fungi. PMID:24563022

  20. An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development

    PubMed Central

    Soejarto, D.D.; Gyllenhaal, C.; Kadushin, M.R.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Xaiveu, M.; Zhang, H.-J.; Franzblau, S.G.; Tan, Ghee T.; Pezzuto, J.M.; Riley, M.C.; Elkington, B.G.; Waller, D.P.

    2012-01-01

    Context An ethnobotany-based approach in the selection of raw plant materials to study was implemented. Objective To acquire raw plant materials using ethnobotanical field interviews as starting point to discover new bioactive compounds from medicinal plants of the Lao People’s Democratic Republic. Methods Using semi-structured field interviews with healers in the Lao PDR, plant samples were collected, extracted, and bio-assayed to detect bioactivity against cancer, HIV/AIDS, TB, malaria. Plant species demonstrating activity were recollected and the extracts subjected to a bioassay-guided isolation protocol to isolate and identify the active compounds. Results Field interviews with 118 healers in 15 of 17 provinces of Lao PDR yielded 753 collections (573 species) with 955 plant samples. Of these 955, 50 extracts demonstrated activity in the anticancer, 10 in the anti-HIV, 30 in the anti-TB, and 52 in the antimalarial assay. Recollection of actives followed by bioassay-guided isolation processes yielded a series of new and known in vitro-active anticancer and antimalarial compounds from 5 species. Discussion Laos has a rich biodiversity, harboring an estimated 8000–11,000 species of plants. In a country highly dependent on traditional medicine for its primary health care, this rich plant diversity serves as a major source of their medication. Conclusions Ethnobotanical survey has demonstrated the richness of plant-based traditional medicine of Lao PDR, taxonomically and therapeutically. Biological assays of extracts of half of the 955 samples followed by in-depth studies of a number of actives have yielded a series of new bioactive compounds against the diseases of cancer and malaria. PMID:22136442

  1. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    NASA Astrophysics Data System (ADS)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  2. Multiparametric Phenotypic Screening System for Profiling Bioactive Compounds Using Human Fetal Hippocampal Neural Stem/Progenitor Cells.

    PubMed

    Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi

    2015-10-01

    Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. PMID:26245650

  3. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    PubMed Central

    Jafarain, Abbas; Asghari, Gholamreza; Ghassami, Erfaneh

    2014-01-01

    Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30) extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Results: Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. Conclusion: As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera. PMID:25337524

  4. Bioactive Compounds of Cold-pressed Thyme (Thymus vulgaris) Oil with Antioxidant and Antimicrobial Properties.

    PubMed

    Assiri, Adel M A; Elbanna, Khaled; Abulreesh, Hussein H; Ramadan, Mohamed Fawzy

    2016-01-01

    Herbs rich in bioactive phytochemicals were recognized to have biological activities and possess many health-promoting effects. In this work, cold-pressed thyme (Thymus vulgaris L.) oil (TO) was studied for its lipid classes, fatty acid profile, tocols and phenolics contents. Antioxidant activity and radical scavenging potential of TO against free radicals (DPPH(・) and galvinoxyl) was determined. Antimicrobial activity (AA) of TO against food borne bacteria, food spoilage fungi and dermatophyte fungi were also evaluated. Neutral lipids accounted for the main lipid fraction in TO, followed by glycolipids and phospholipids. The major fatty acids in TO were linoleic, oleic, stearic, and palmitic. γ-Tocopherol (60.2% of total tocols) followed by α-tocotrienol (26.9%) and α-tocopherol (9.01% of total tocols) were the main tocols. TO contained high amounts of phenolic compounds (7.3 mg/g as GAE). TO had strong antiradical action wherein 65% of DPPH(・) radicals and 55% of galvinoxyl radical were quenched after 60 min of incubation. Rancimat assay showed that induction time (IT) for TO: sunflower oil blend (1:9, w/w) was 6.5 h, while TO: sunflower oil blend (2:8, w/w) recorded higher IT (9 h). TO inhibited the growth of all tested microorganisms. TO exhibited various degrees of AA against different food borne bacteria, food spoilage fungi and dermatophyte fungi, wherein the highest AA was recorded against dermatophyte fungi and yeasts including T. mentagrophytes (62 mm), T. rubrum (40 mm), and C. albicans (20 mm) followed by food spoilage fungi including A. flavus (32 mm) with minimal lethal concentrations (MLC) ranging between 80 to 320 μg/mL. Furthermore, TO exhibited broad-spectra activity against food borne bacteria including S. aureus (30 mm), E. coli (25 mm) and L. Monocytogenes (20 mm) with MLC ranging between 160 to 320 μg/mL. The results suggest that TO could be used economically as a valuable natural product with novel functional properties in food

  5. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.)

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah; Devarajan, Thiyagu

    2014-01-01

    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25 μm of Fe(II)/g) followed by those from Selangor (60.237% and 598.37 μm of Fe(II)/g) and Johor (50.76% and 563.42 μm of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents. PMID:24693327

  6. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume. PMID:24404842

  7. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.

    PubMed

    Jiang, Bin; Kasapis, Stefan

    2011-11-01

    An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena. PMID:21936521

  8. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    PubMed

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-01

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  9. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    PubMed Central

    Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-01-01

    Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  10. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    PubMed

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. PMID:25442602