Science.gov

Sample records for olfactory stimulus 1-octanol

  1. Olfactory Predictive Codes and Stimulus Templates in Piriform Cortex

    PubMed Central

    Zelano, Christina; Mohanty, Aprajita; Gottfried, Jay A.

    2011-01-01

    Summary Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, pre-stimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to post-stimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or “search images” in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception. PMID:21982378

  2. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    PubMed Central

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-01-01

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area. PMID:26462581

  3. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    PubMed

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-01-01

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area. PMID:26462581

  4. Robust encoding of stimulus identity and concentration in the accessory olfactory system.

    PubMed

    Arnson, Hannah A; Holy, Timothy E

    2013-08-14

    Sensory systems represent stimulus identity and intensity, but in the neural periphery these two variables are typically intertwined. Moreover, stable detection may be complicated by environmental uncertainty; stimulus properties can differ over time and circumstance in ways that are not necessarily biologically relevant. We explored these issues in the context of the mouse accessory olfactory system, which specializes in detection of chemical social cues and infers myriad aspects of the identity and physiological state of conspecifics from complex mixtures, such as urine. Using mixtures of sulfated steroids, key constituents of urine, we found that spiking responses of individual vomeronasal sensory neurons encode both individual compounds and mixtures in a manner consistent with a simple model of receptor-ligand interactions. Although typical neurons did not accurately encode concentration over a large dynamic range, from population activity it was possible to reliably estimate the log-concentration of pure compounds over several orders of magnitude. For binary mixtures, simple models failed to accurately segment the individual components, largely because of the prevalence of neurons responsive to both components. By accounting for such overlaps during model tuning, we show that, from neuronal firing, one can accurately estimate log-concentration of both components, even when tested across widely varying concentrations. With this foundation, the difference of logarithms, log A - log B = log A/B, provides a natural mechanism to accurately estimate concentration ratios. Thus, we show that a biophysically plausible circuit model can reconstruct concentration ratios from observed neuronal firing, representing a powerful mechanism to separate stimulus identity from absolute concentration. PMID:23946396

  5. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    PubMed Central

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  6. Solubility of pyrene in binary alkane + 1-octanol solvent mixtures

    SciTech Connect

    Zvaigzne, A.I.; Acree, W.E. Jr.

    1995-09-01

    Solid-liquid equilibrium data of organic nonelectrolyte systems are becoming increasingly important in the petroleum industry, particularly in light of present trends toward heavier feedstocks and known carcinogenicity/mutagenicity of many of the larger polycyclic aromatic compounds. Experimental solubilities are reported for pyrene dissolved in seven binary mixtures containing 1-octanol with hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and (1,1-dimethylethyl)cyclohexane at 26 C. Results of these measurements are used to test two mathematical representations based upon the combined nearly ideal binary solvent (NIBS)/Redlich-Kister equation and modified Wilson model. For the system studied, the three-parameter combined NIBS/Redlich-Kister equation was found to provide the better mathematical representation, with deviations between experimental and back-calculated values being on the order of {+-}1.5% or lees. Slightly larger deviations were noted in the case of the two-parameter modified Wilson equation.

  7. Patterned response to odor in single neurones of goldfish olfactory bulb: influence of odor quality and other stimulus parameters.

    PubMed

    Meredith, M; Moulton, D G

    1978-06-01

    Responses of 75 single units in the goldfish olfactory bulb were analyzed in detail for their relationship to the time-course of the change in odor concentration during each odor stimulus. Odor stimuli were controlled for rise time, duration, and peak concentration by an apparatus developed for the purpose. This apparatus enabled aqueous odor stimuli to be interposed into a constant water stream without changes in flow rate. The time-course of the concentration change within the olfactory sac was inferred from conductivity measurements at the incurrent and excurrent nostrils. Temporal patterns of firing rate elicited by stimuli with relatively slow rising and falling phases could be quite complex combinations of excitation and suppression. Different temporal patterns were produced by different substances at a single concentration in most units. Statistical measures of the temporal pattern of response for a small number of cells at a given concentration were more characteristic of the stimulus substance than any of three measures of magnitude of response. The temporal patterns change when the peak concentration, duration, and rise time of the stimuli are varied. The nature of these changes suggests that the different patterns are due primarily to the combined influence of two factors: (a) a stimulus whose concentration varies over time and (b) a relationship between concentration and impulse frequency which varies from unit to unit. Some units produce patterns suggestive of influence by neural events of long time constant. The importance of temporal patterns in odor quality and odor intensity coding is discussed. PMID:209126

  8. Tonic and stimulus-evoked nitric oxide production in the mouse olfactory bulb

    PubMed Central

    Lowe, Graeme; Buerk, Donald G.; Ma, Jie; Gelperin, Alan

    2008-01-01

    Nitric oxide (NO) has been long assumed to play a key role in mammalian olfaction. This was based largely on circumstantial evidence, i.e. prominent staining for nitric oxide synthase (NOS) and cyclic GMP or soluble guanylyl cyclase, an effector enzyme activated by NO, in local interneurons of the olfactory bulb. Here we employ innovative custom-fabricated NO micro-sensors to obtain the first direct, time-resolved measurements of NO signaling in the olfactory bulb. In 400 μm thick mouse olfactory bulb slices, we detected a steady average basal level of 87 nM NO in the extracellular space of mitral or granule cell layers. This NO ‘tone’ was sensitive to NOS substrate manipulation (200 μM L-arginine, 2 mM L-NAME) and Mg2+ modulation of NMDA receptor conductance. Electrical stimulation of olfactory nerve fibers evoked transient (peak at 10 s) increments in NO levels 90 – 100 nM above baseline. In the anesthetized mouse, NO micro-sensors inserted into the granule cell layer detected NO transients averaging 55 nM in amplitude and peaking at 3.4 sec after onset of a 5 sec odorant stimulation. These findings suggest dual roles for NO signaling in the olfactory bulb – tonic inhibitory control of principal neurons, and regulation of circuit dynamics during odor information processing. PMID:18407420

  9. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  10. Similar rate of information transfer on stimulus intensity in accessory and main olfactory bulb output neurons.

    PubMed

    Noguchi, Tomohiro; Sasajima, Hitoshi; Miyazono, Sadaharu; Kashiwayanagi, Makoto

    2014-07-25

    Recently, evidence has accumulated that the vomeronasal system cooperates with the main olfactory system to process volatile cues that regulate the animal's behavior. This is contradictory to the traditional view that the vomeronasal system is quite different from the main olfactory system in the time scale of information processing. Particularly, the firing rate of mitral/tufted cells in the accessory olfactory bulb (MTAOB) is known to be significantly lower than that of mitral cells in the main olfactory bulb (MCMOB). To address this question of whether the low-frequency firing in MTAOB carries less information than the high-frequency firing in MCMOB in the early stages of stimulation, we compared MTAOB and MCMOB for their firing mechanisms and information transfer characteristics. A model computation demonstrated that the inherent channel kinetics of MTAOB was responsible for their firing at a lower frequency than MCMOB. Nevertheless, our analysis suggested that MTAOB were comparable to MCMOB in both the amount and speed of information transfer about depolarizing current intensity immediately after current injection onset (<200ms). Our results support a hypothesis of simultaneous processing of common cues in both systems. PMID:24909616

  11. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics.

    PubMed

    Nagel, Katherine I; Hong, Elizabeth J; Wilson, Rachel I

    2015-01-01

    Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies that they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, but can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient, but grows slowly, and simulations reveal that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding. PMID:25485755

  12. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics

    PubMed Central

    Nagel, Katherine I.; Hong, Elizabeth J.; Wilson, Rachel I.

    2014-01-01

    Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, and yet can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient but grows slowly, and simulations show that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding. PMID:25485755

  13. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  14. Brain activation by an olfactory stimulus paired with juvenile play in female rats.

    PubMed

    Paredes-Ramos, P; McCarthy, M M; Bowers, J M; Miquel, M; Manzo, J; Coria-Avila, G A

    2014-06-22

    We have previously shown that reward experienced during social play at juvenile age can be paired with artificial odors, and later in adulthood facilitate olfactory conditioned partner preferences (PP) in female rats. Herein, we examined the expression of FOS immunoreactivity (FOS-IR) following exposure to the odor paired with juvenile play (CS+). Starting at day P31 females received daily 30-min periods of social play with lemon-scented (paired group) or unscented females (unpaired group). At day P42, they were tested for play-PP with two juvenile males, one bearing the CS+ (lemon) and one bearing a novel odor (almond). Females were ovariectomized, hormone-primed and at day P55 tested for sexual-PP between two adult stud males scented with lemon or almond. In both tests, females from the paired group displayed conditioned PP (play or sexual) toward males bearing the CS+. In the present experiments females were exposed at day P59 to the CS+ during 60 min and their brains processed for FOS-IR. One group of female rats (Play+Sex) underwent play-PP and sexual-PP, whereas a second group of females (Play-only) underwent exclusively play-PP but not sexual-PP. Results showed that in the Play-only experiment exposure to the CS+ induced more FOS-IR in the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, and ventral tegmental area as compared to females from the unpaired group. In the Play+Sex experiment, more FOS-IR was observed in the piriform cortex, dorsal striatum, lateral septum, nucleus accumbens shell, bed nucleus of the stria terminalis and medial amygdala as compared to females from the unpaired group. Taken together, these results indicate mesocorticolimbic brain areas direct the expectation and/or choice of conditioned partners in female rats. In addition, transferring the meaning of play to sex preference requires different brain areas. PMID:24835545

  15. Preparation and characterization of magnetorheological fluids by dispersion of carbonyl iron microparticles in PAO/1-octanol

    NASA Astrophysics Data System (ADS)

    Morillas, Jose R.; Bombard, Antonio J. F.; de Vicente, Juan

    2016-01-01

    This work reports an investigation into the effect of 1-octanol concentration in the formulation of concentrated polyalphaolefin-based magnetorheological fluids. Special emphasis is paid to the understanding of their kinetic stability and redispersibility characteristics in the ‘off-state’ (absence of magnetic field). Techniques employed involve light scattering, electroacoustics and rheometry, using a vane tool, to precisely determine the yield value. The results obtained show a minimum in the rheological material functions for 1-octanol concentrations within the range 0.5-5.0 wt%. This finding is tentatively explained in terms of the potential energy of interaction between the dispersed particles as a result of the formation of 1-octanol micelles in good agreement with Bombard and Dukhin (2014 Langmuir 30 4517-21).

  16. Synthesis of 1-octanol and 1,1-dioctyl ether from biomass-derived platform chemicals.

    PubMed

    Julis, Jennifer; Leitner, Walter

    2012-08-20

    The happy medium: A new catalytic pathway for the synthesis of the linear primary C(8) alcohol products 1-octanol and dioctyl ether from furfural and acetone has been developed using retrosynthetic analysis. This opens a general strategy for the synthesis of medium-chain-length alcohols from carbohydrate feedstock. PMID:22778056

  17. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    PubMed

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  18. Salting-out phenomenon and 1-octanol/water partition coefficient of metalaxyl pesticide.

    PubMed

    Saab, J; Bassil, G; Abou Naccoul, R; Stephan, J; Mokbel, I; Jose, J

    2011-02-01

    In this paper, we present the effect of inorganic cations such as Na+, K+, Ca2+, Mg2+ on the salting-out phenomenon of metalaxyl from pure water to aqueous salt solutions. Moreover the 1-octanol/water partition coefficient in pure water is presented. To accomplish this, aqueous solubility of metalaxyl was determined in pure water, in different salt solution (NaCl, KCl, CaCl2 and MgCl2), and at different concentration level ranging from 0.01 to 1.5 M. The 1-octanol/water partition coefficient was determined using the static shake-flask method. Solubility was determined using dynamic saturation method for pure water in the range of 298.15-325.15 K and at 298.15 K for different salt solutions. The solubility value in pure water for studied interval was found constant (m=3.118×10(-2) mol kg(-1)). Solubility values were used to calculate the standard molar Gibbs free energy of dissolution (ΔsolG°) and transfer (ΔtrG°) at 298.15 K. The values of ΔtrG° from pure to all studied aqueous salt solutions did not exceed 2 kJ mol(-1), the value of ΔsolG° of dissolution is 18.5 ±0.72 kJ mol(-1). The 1-octanol/water partition coefficient in pure water log Ko/w is equal to 1.69. The obtained results confirm the classification of the neutral metalaxyl as a slightly hydrophobic molecule. PMID:21094973

  19. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. PMID:27052695

  20. Thermodynamic and structural description of europium complexation in 1-octanol solution

    SciTech Connect

    Charbonnel, M.C.; Vu, T.H.; Boubals, N.; Couston, L.

    2008-07-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPS) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. Time- Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy allows determination of the first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and microcalorimetry; the stability constant related to the formation of Eu(BTP){sub 3}{sup 3+} is similar by both techniques (log {beta}{sub 3} = 11.3 {+-} 0.5). The difference of solvation of the cation seems to have an influence on the thermodynamic properties related to the complexation with organic ligands. (authors)

  1. Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus.

    PubMed

    Frenkel, L; Dimant, B; Suárez, L D; Portiansky, E L; Delorenzi, A

    2012-01-10

    Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus. PMID:22100787

  2. [FTIR analysis of products derived from wood liquefaction with 1-octanol].

    PubMed

    Zou, Xian-Wu; Yang, Zhi; Qin, Te-Fu

    2009-06-01

    Solvolysis is one of the important processes of biomass liquefaction. To produce superior quality liquid biofuel from biomass under mild conditions, it is essential to exploit novel reactive liquid solvent. Furthermore, the evaluation of liquefaction efficiency is carried out mainly by the means of analysis of the products derived from biomass liquefaction. In the present study, liquefaction of poplar wood powder in acidified 1-octanol was investigated with a stainless steel autoclave. Residue, heavy oil and light oil were separated from the liquefaction products by extraction with acetone and n-hexane successively. FTIR analysis was carried out on these liquefaction compositions to illuminate the liquefaction regularities and mechanisms of cellulose, hemicellulose and lignin of wood. The results showed that liquefaction oils were complex mixture containing hydroxide, carbonyl, methoxyl, aromatic and aether. Liquefactions of cellulose and hemicellulose were easier than that of lignin. Cellulose and hemicellulose were converted to light oil, however, lignin was mainly converted to heavy oil. At 150 degrees C, lignin was depolymerized and degraded into micromolecular aromatic compounds, among which condensation reactions took place when reaction temperature increased. PMID:19810527

  3. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol.

    PubMed

    Kremer, Florian; Blank, Lars M; Jones, Patrik R; Akhtar, M Kalim

    2015-01-01

    Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability. PMID:26301219

  4. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol

    PubMed Central

    Kremer, Florian; Blank, Lars M.; Jones, Patrik R.; Akhtar, M. Kalim

    2015-01-01

    Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability. PMID:26301219

  5. Developmental regulation of the effects of fibroblast growth factor-2 and 1-octanol on neuronogenesis: implications for a hypothesis relating to mitogen-antimitogen opposition

    NASA Technical Reports Server (NTRS)

    Goto, T.; Takahashi, T.; Miyama, S.; Nowakowski, R. S.; Bhide, P. G.; Caviness, V. S. Jr

    2002-01-01

    Neocortical neurons arise from a pseudostratified ventricular epithelium (PVE) that lies within the ventricular zone (VZ) at the margins of the embryonic cerebral ventricles. We examined the effects of fibroblast growth factor-2 (FGF-2) and 1-octanol on cell output behavior of the PVE in explants of the embryonic mouse cerebral wall. FGF-2 is mitogenic and 1-octanol antimitogenic in the PVE. Whereas all postmitotic cells migrate out of the VZ in vivo, in the explants some postmitotic cells remain within the VZ. We refer to these cells as the indeterminate or I fraction, because they neither exit from the VZ nor reenter S phase as part of the proliferative (P) fraction. They are considered to be either in an extremely prolonged G(1) phase, unable to pass the G(1)/S transition, or in the G(0) state. The I fate choice is modulated by both FGF-2 and 1-octanol. FGF-2 decreased the I fraction and increased the P fraction. In contrast, 1-octanol increased the I fraction and nearly eliminated the P fraction. The effects of FGF-2 and 1-octanol were developmentally regulated, in that they were observed in the developmentally advanced lateral region of the cerebral wall but not in the medial region. Copyright 2002 Wiley-Liss, Inc.

  6. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    USGS Publications Warehouse

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  7. Dispersion stability of 1-octanethiol coated Cu nanoparticles in a 1-octanol solvent for the application of nanoink

    NASA Astrophysics Data System (ADS)

    Cho, Danee; Baik, Jong-Hwan; Choi, Da-hyun; Lee, Caroline Sunyong

    2014-08-01

    Conductive ink with Copper nanoparticles (Cu NPs) has various advantages compared with conventional ink, such as good electrical conductivity and low cost. However, it suffers through easily oxidization problem, leading to an unstable electrical conductivity, which decreases over time. Therefore, it is important to prevent (or least minimize) oxidation of the Cu NPs. In this study, Cu NPs with diameter of 50 nm were coated with 1-octanethiol (CH3(CH2)7SH) in a high-vacuum condition (5.33 × 10-4 Pa). The coating conditions were systematically varied to investigate the effect on the coating thicknesses. Coated Cu NPs were dispersed in 1-octanol to form the conductive ink, and the dispersion behavior was studied as a function of the thickness of the 1-octanethiol coating. The thickness of the coating layer was characterized using transmission electron microscopy and X-ray spectroscopy analysis, and was found to be 3 nm, 6 nm, and 10 nm. The dispersion stability of the inks was characterized by Turbiscan dispersion stability and viscosity measurements, and it was found that the copper nanoink formed using Cu NPs with a 6-nm-thick coating exhibited the most stable dispersion properties.

  8. An open-label, single-dose, crossover study of the pharmacokinetics and metabolism of two oral formulations of 1-octanol in patients with essential tremor.

    PubMed

    Nahab, Fatta B; Wittevrongel, Loretta; Ippolito, Dominic; Toro, Camilo; Grimes, George J; Starling, Judith; Potti, Gopal; Haubenberger, Dietrich; Bowen, Daniel; Buchwald, Peter; Dong, Chuanhui; Kalowitz, Daniel; Hallett, Mark

    2011-10-01

    Existing therapeutic options for management of essential tremor are frequently limited by poor efficacy and adverse effects. Likely the most potent tremor suppressant used is ethanol, although its use is prohibitive due to a brief therapeutic window, and the obvious implications of excessive alcohol use. Longer-chain alcohols have been shown to suppress tremor in harmaline animal models, and appear to be safe and well tolerated in 2 prior studies in humans. Here we report on the findings of a phase I/II study of 1-octanol designed to explore pharmacokinetics, efficacy, and safety. The most significant finding was the identification of octanoic acid as the product of rapid 1-octanol metabolism. Furthermore, the temporal profile of efficacy closely matches the plasma concentration of octanoic acid. Therefore, these findings identify a novel class of compound (e.g., carboxylic acids) with tremor suppressive properties in ET. Administration of 1-octanol also appears to be safe based on various measures collected. Essential tremor (ET) is the most common tremor disorder, with tremors occurring during static posturing or movement. These tremors are known to briefly improve in many cases after alcohol (ethanol) consumption. Two previous studies of a longer chain alcohol, 1-octanol, have demonstrated longer duration tremor-suppressive effects without the occurrence of intoxication. The aim of this study was to characterize the pharmacokinetics of 1-octanol and its primary metabolite octanoic acid using two formulations, along with additional safety and efficacy measures. Participants with proven ethanol-responsive ET were recruited into 1 of 2 parts: (part A) a dose escalation study (1-64 mg/kg; n = 4), and (part B) a fixed dose (64 mg/kg; n = 10) balanced, open-label crossover design. Two participants in part B then completed an exploratory part C evaluating 128 mg/kg.Plasma samples were collected at 10 intervals during a 6-hour period postingestion. Efficacy was

  9. Contextual olfactory learning in cockroaches.

    PubMed

    Sato, Chihiro; Matsumoto, Yukihisa; Sakura, Midori; Mizunami, Makoto

    2006-04-01

    We investigated the capability of context-dependent olfactory learning in cockroaches. One group of cockroaches received training to associate peppermint odor (conditioning stimulus) with sucrose solution (appetitive unconditioned stimulus) and vanilla odor with saline solution under illumination and to associate peppermint with aversive unconditioned stimulus and vanilla with appetitive unconditioned stimulus in the dark. Another group received training with the opposite stimulus arrangement. Before training, both groups exhibited preference for vanilla over peppermint. After training, the former group preferred peppermint over vanilla under illumination but preferred vanilla over peppermint in the dark, and the latter group exhibited the opposite odor preference. We conclude that cockroaches are capable of disambiguating the meaning of conditioning stimuli according to visual context. PMID:16543825

  10. Olfactory Classical Conditioning in Neonates

    PubMed Central

    Sullivan, Regina M.; Taborsky-Barba, Suzanne; Mendoza, Raffael; Itano, Alison; Leon, Michael; Cotman, Carl W.; Payne, Terrence F.; Lott, Ira

    2007-01-01

    One-day-old, awake infants underwent an olfactory classical conditioning procedure to assess associative learning within the olfactory system of newborns. Experimental infants received ten 30-second pairings of a novel olfactory conditioned stimulus (a citrus odor of neutral value) and tactile stimulation provided by stroking as the reinforcing unconditioned stimulus (a stimulus with positive properties). Control babies received only the odor, only the stroking, or the stroking followed by the odor presentation. The next day, all infants, in either the awake or sleep state, were given five 30-second presentations of the odor. Results were analyzed from video tapes scored by an observer unaware of the infants’ training condition. The results indicate that only those infants who received the forward pairings of the odor and stroking exhibited conditioned responding (head turning toward the odor) to the citrus odor. The performance of the conditioned response was not affected by the state of the baby during testing, because both awake and sleeping infants exhibited conditioned responses. Furthermore, the expression of the conditioned response was odor specific; a novel floral odor presented during testing did not elicit conditioned responses in the experimental babies. These results suggest that complex associative olfactory learning is seen in newborns within the first 48 hours of life. These baseline findings may serve as normative data against which observation from neonates at risk for neurological sequelae may be compared. PMID:2011429

  11. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC.

    PubMed

    Roda, A; Minutello, A; Angellotti, M A; Fini, A

    1990-08-01

    Two independent methods have been developed and compared to determine the lipophilicity of a representative series of naturally occurring bile acids (BA) in relation to their structure. The BA included cholic acid (CA), chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), deoxycholic acid (DCA), hyodeoxycholic acid (HDCA), ursocholic acid (UCA), hyocholic acid (HCA), as well as their glycine and taurine amidates. Lipophilicity was determined using a 1-octanol/water shake-flask procedure and the experiments were performed at different pH and ionic strengths and at initial BA concentrations below their critical micellar concentrations (CMC) and the water solubility of the protonated form. The experimental data show that both the protonated (HA) and ionized (A-) forms of BA can distribute in 1-octanol, and consequently a partition coefficient for HA (logP' HA) and for A- (logP' A-) must be defined. An equation to predict a weighted apparent distribution coefficient (D) value as a function of pH and pKa has been developed and fits well with the experimental data. Differences between logP for protonated and ionized species for unconjugated BA were in the order of 1 log unit, which increased to 2 for glycine-amidate BA. The partition coefficient of the A- form increased with Na+ concentration and total ionic strength, suggesting an ion-pair mechanism for its partition into 1-octanol. Lipophilicity was also assessed using reverse phase chromatography (C-18-HPLC), and a capacity factor (K') for ionized species was determined. Despite a broad correlation with the logP data, some BA behaved differently. The logP values showed that the order of lipophilicity was DCA greater than CDCA greater than UDCA greater than HDCA greater than HCA greater than CA greater than UCA for both the protonated and ionized unconjugated and glycine-amidate BA, while the K' data showed an inversion for some BA, i.e., DCA greater than CDCA greater than CA greater than HCA greater than UDCA

  12. Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance.

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Jia; Sun, Guohua; Li, Hongmei

    2012-10-15

    Certified reference materials (CRMs) of water content are widely used in the calibration and validation of Karl Fischer coulometry and volumetry. In this study, the water content of the water saturated 1-octanol (WSO) CRM was certified by Karl Fischer coulometry, volumetry and quantitative nuclear magnetic resonance (Q NMR). The water content recovery by coulometry was 99.76% with a diaphragm-less electrode and Coulomat AG anolyte. The relative bias between the coulometry and volumetry results was 0.06%. In Q NMR, the water content of WSO is traceable to the International System (SI) of units through the purity of internal standard. The relative bias of water content in WSO between Q NMR and volumetry was 0.50%. The consistency of results for these three independent methods improves the accuracy of the certification of the RM. The certified water content of the WSO CRM was 4.76% with an expanded uncertainty of 0.09%. PMID:23442697

  13. Identity Matching-to-Sample with Olfactory Stimuli in Rats

    ERIC Educational Resources Information Center

    Pena, Tracy; Pitts, Raymond C.; Galizio, Mark

    2006-01-01

    Identity matching-to-sample has been difficult to demonstrate in rats, but most studies have used visual stimuli. There is evidence that rats can acquire complex forms of olfactory stimulus control, and the present study explored the possibility that identity matching might be facilitated in rats if olfactory stimuli were used. Four rats were…

  14. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database.

    PubMed

    Tetko, Igor V; Bruneau, Pierre

    2004-12-01

    The ALOGPS 2.1 was developed to predict 1-octanol/water partition coefficients, logP, and aqueous solubility of neutral compounds. An exclusive feature of this program is its ability to incorporate new user-provided data by means of self-learning properties of Associative Neural Networks. Using this feature, it calculated a similar performance, RMSE = 0.7 and mean average error 0.5, for 2569 neutral logP, and 8122 pH-dependent logD(7.4), distribution coefficients from the AstraZeneca "in-house" database. The high performance of the program for the logD(7.4) prediction looks surprising, because this property also depends on ionization constants pKa. Therefore, logD(7.4) is considered to be more difficult to predict than its neutral analog. We explain and illustrate this result and, moreover, discuss a possible application of the approach to calculate other pharmacokinetic and biological activities of chemicals important for drug development. PMID:15514985

  15. Olfactory Blocking and Odorant Similarity in the Honeybee

    ERIC Educational Resources Information Center

    Gerber, Bertram; Giurfa, Martin; Guerrieri, Fernando; Lachnit, Harald

    2005-01-01

    Blocking occurs when previous training with a stimulus A reduces (blocks) subsequent learning about a stimulus B, when A and B are trained in compound. The question of whether blocking exists in olfactory conditioning of proboscis extension reflex (PER) in honeybees is under debate. The last published accounts on blocking in honeybees state that…

  16. Stimulus Response

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    Stimulus funds unquestionably have helped many schools keep going through tough times, but for many institutions, the tough times aren't going away anytime soon. That is why, a little more than a year after Congress passed the American Recovery and Reinvestment Act and began allocating billions of dollars in aid across the nation, the so-called…

  17. Neuropeptide Y in the olfactory microvillar cells.

    PubMed

    Montani, Giorgia; Tonelli, Simone; Elsaesser, Rebecca; Paysan, Jacques; Tirindelli, Roberto

    2006-07-01

    This paper examines a possible role of microvillar cells in coordinating cell death and regeneration of olfactory epithelial neurons. The olfactory neuroepithelium of mammals is a highly dynamic organ. Olfactory neurons periodically degenerate by apoptosis and as a consequence of chemical or physical damage. To compensate for this loss of cells, the olfactory epithelium maintains a lifelong ability to regenerate from a pool of resident multipotent stem cells. To assure functional continuity and histological integrity of the olfactory epithelium over a period of many decades, apoptosis and regeneration require to be precisely coordinated. Among the factors that have been implicated in mediating this regulation is the neuropeptide Y (NPY). Knockout mice that lack functional expression of this neurogenic peptide show defects in embryonic development of the olfactory epithelium and in its ability to regenerate in the adult. Here we show that, in postnatal olfactory epithelia, NPY is exclusively expressed by a specific population of microvillar cells. We previously characterized these cells as a novel type of putative chemosensory cells, which are provided with a phosphatidyl-inositol-mediated signal transduction cascade. Our findings allow for the first time to suggest that microvillar cells are involved in connecting apoptosis to neuronal regeneration by stimulus-induced release of NPY. PMID:16800866

  18. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  19. Cross-adaptation to odor stimulation of olfactory receptor cells in the box turtle, Terrapene carolina.

    PubMed

    Tonosaki, K

    1993-01-01

    Electrical recording from small twigs of olfactory nerve and electro-olfactogram (EOG) from olfactory epithelium in a turtle shows that olfactory receptors in the nose are responsive to various odors. I have used the effects of cross-adaptation to odor stimulation on the olfactory receptors to investigate the stimulus-specific components of these responses and to provide information about the responsiveness of cells. The results of the cross-adaptation experiments strongly support the hypothesis that different categories of receptor cells exist in the olfactory epithelium. PMID:8386588

  20. Responses of the rat olfactory epithelium to retronasal air flow.

    PubMed

    Scott, John W; Acevedo, Humberto P; Sherrill, Lisa; Phan, Maggie

    2007-03-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very nonpolar, hydrophobic odorants were used. Although the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the nonpolar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recordings from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally versus retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  1. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  2. Olfactory receptor neuron responses coding for rapid odour sampling

    PubMed Central

    Ghatpande, Ambarish S; Reisert, Johannes

    2011-01-01

    Abstract Vertebrate olfactory receptor neurons (ORNs) are stimulated in a rhythmic manner in vivo, driven by delivery of odorants to the nasal cavity carried by the inhaled air, making olfaction a sense where animals can control the frequency of stimulus delivery. How ORNs encode repeated stimulation at resting, low breathing frequencies and at increased sniffing frequencies is not known, nor is it known if the olfactory transduction cascade is accurate and fast enough to follow high frequency stimulation. We investigated mouse olfactory responses to stimulus frequencies mimicking odorant exposure during low (2 Hz) and high (5 Hz) frequency sniffing. ORNs reliably follow low frequency stimulations with high fidelity by generating bursts of action potentials at each stimulation at intermediate odorant concentrations, but fail to do so at high odorant concentrations. Higher stimulus frequencies across all odorant concentrations reduced the likelihood of action potential generation, increased the latency of response, and decreased the reliability of encoding the onset of stimulation. Thus an increase in stimulus frequency degrades and at high odorant concentrations entirely prevents action potential generation in individual ORNs, causing reduced signalling to the olfactory bulb. These results demonstrate that ORNs do not simply relay timing and concentration of an odorous stimulus, but also process and modulate the stimulus in a frequency-dependent manner which is controlled by the chosen sniffing rate. PMID:21486768

  3. Air-stepping in neonatal rats: A comparison of L-dopa injection and olfactory stimulation.

    PubMed

    Jamon, M; Maloum, I; Riviere, G; Bruguerolle, B

    2002-12-01

    The kinematic parameters of air-stepping induced by 2 methods known to elicit locomotion (olfactory stimulation vs. L-dopa injection) were compared in 3-day-old rats. In the 1st stage, suspended pups were induced to step with an olfactory stimulus of soiled shavings from the nest. In the 2nd stage, they received a subcutaneous injection of L-dopa. Their movements were faster, with a larger amplitude and a phase delay in ipsilateral coupling. Third, the olfactory stimulus was presented in conjunction with L-dopa. The characteristics of locomotion returned to the same level as with the olfactory stimulus alone. These results suggest that olfactory stimulation involves higher nerve centers able to modulate the dopaminergic pathways. They are discussed in relation to the neural structure involved in locomotion. PMID:12492300

  4. Intramodal Olfactory Priming of Positive and Negative Odors in Humans Using Respiration-Triggered Olfactory Stimulation (RETROS).

    PubMed

    Hoffmann-Hensel, Sonja Maria; Freiherr, Jessica

    2016-09-01

    Priming describes the principle of modified stimulus perception that occurs due to a previously presented stimulus. Although we have begun to understand the mechanisms of crossmodal priming, the concept of intramodal olfactory priming remains relatively unexplored. Therefore, we applied positive and negative odors using respiration-triggered olfactory stimulation (RETROS), enabling us to record the skin conductance response (SCR) and breathing data without a crossmodal cueing error and measure reaction times (RTs) for olfactory tasks. RT, SCR, and breathing data revealed that negative odors were perceived significantly more arousing than positive ones. In a second experiment, 2 odors were applied during consecutive respirations. Here, we observed intramodal olfactory priming effects: A negative odor preceded by a positive odor was rated as more pleasant than when the same odor was preceded by a negative odor. Additionally, a longer identification RT was found for the second compared with the first odor. We interpret this as increased "perceptual load" due to incomplete first odor processing while the second odor was presented. Furthermore, intramodal priming can be considered a possible reason for the increase of identification RT. The use of RETROS led to these novel insights into olfactory processing beyond crossmodal interaction by providing a noncued unimodal olfactory test, and therefore, RETROS can be used in the experimental design of future olfactory studies. PMID:27170666

  5. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  6. Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus).

    PubMed

    Restrepo, D; Boyle, A G

    1991-03-01

    Intracellular calcium was measured in single olfactory neurons from the channel catfish (Ictalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (L-alanine, L-arginine, L-norleucine and L-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding of L-alanine and L-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction. PMID:2051471

  7. Integrating temperature with odor processing in the olfactory bulb.

    PubMed

    Kludt, Eugen; Okom, Camille; Brinkmann, Alexander; Schild, Detlev

    2015-05-20

    Temperature perception has long been classified as a somesthetic function solely. However, in recent years several studies brought evidence that temperature perception also takes place in the olfactory system of rodents. Temperature has been described as an effective stimulus for sensory neurons of the Grueneberg ganglion located at the entrance of the nose. Here, we investigate whether a neuronal trace of temperature stimulation can be observed in the glomeruli and mitral cells of the olfactory bulb, using calcium imaging and fast line-scanning microscopy. We show in the Xenopus tadpole system that the γ-glomerulus, which receives input from olfactory neurons, is highly sensitive to temperature drops at the olfactory epithelium. We observed that thermo-induced activity in the γ-glomerulus is conveyed to the mitral cells innervating this specific neuropil. Surprisingly, a substantial number of thermosensitive mitral cells were also chemosensitive. Moreover, we report another unique feature of the γ-glomerulus: it receives ipsilateral and contralateral afferents. The latter fibers pass through the contralateral bulb, cross the anterior commissure, and then run to the ipsilateral olfactory bulb, where they target the γ-glomerulus. Temperature drops at the contralateral olfactory epithelium also induced responses in the γ-glomerulus and in mitral cells. Temperature thus appears to be a relevant physiological input to the Xenopus olfactory system. Each olfactory bulb integrates and codes temperature signals originating from receptor neurons of the ipsilateral and contralateral nasal cavities. Finally, temperature and chemical information is processed in shared cellular networks. PMID:25995474

  8. Adiponectin enhances the responsiveness of the olfactory system.

    PubMed

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  9. Adiponectin Enhances the Responsiveness of the Olfactory System

    PubMed Central

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  10. Olfactory modulation of affective touch processing - A neurophysiological investigation.

    PubMed

    Croy, Ilona; Drechsler, Edda; Hamilton, Paul; Hummel, Thomas; Olausson, Håkan

    2016-07-15

    Touch can be highly emotional, and depending on the environment, it can be perceived as pleasant and comforting or disgusting and dangerous. Here, we studied the impact of context on the processing of tactile stimuli using a functional magnetic resonance imaging (fMRI) paradigm. This was achieved by embedding tactile stimulation in a variable olfactory environment. Twenty people were scanned with BOLD fMRI while receiving the following stimulus blocks: Slow stroking Touch, Civette odor (feces like), Rose odor, Touch+Civette, and Touch+Rose. Ratings of pleasantness and intensity of tactile stimuli and ratings of disgust and intensity of olfactory stimuli were collected. The impact of the olfactory context on the processing of touch was studied using covariance analyses. Coupling between olfactory processing and somatosensory processing areas was assessed with psychophysiological interaction analysis (PPI). A subjectively disgusting olfactory environment significantly reduced the perceived pleasantness of touch. The touch fMRI activation in the secondary somatosensory cortex, operculum 1 (OP1), was positively correlated with the disgust towards the odors. Decreased pleasantness of touch was related to decreased posterior insula activity. PPI analysis revealed a significant interaction between the OP1, posterior insula, and regions processing the disgust of odors (orbitofrontal cortex and amygdala). We conclude that the disgust evaluation of the olfactory environment moderates neural reactivity in somatosensory regions by upregulation of the OP1 and downregulation of the posterior insula. This adaptive regulation of affective touch processing may facilitate adaptive reaction to a potentially harmful stimulus. PMID:27138206

  11. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    ERIC Educational Resources Information Center

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  12. Circadian regulation of insect olfactory learning.

    PubMed

    Decker, Susan; McConnaughey, Shannon; Page, Terry L

    2007-10-01

    Olfactory learning in insects has been used extensively for studies on the neurobiology, genetics, and molecular biology of learning and memory. We show here that the ability of the cockroach Leucophaea maderae to acquire olfactory memories is regulated by the circadian system. We investigated the effect of training and testing at different circadian phases on performance in an odor-discrimination test administered 30 min after training (short-term memory) or 48 h after training (long-term memory). When odor preference was tested by allowing animals to choose between two odors (peppermint and vanilla), untrained cockroaches showed a clear preference for vanilla at all circadian phases, indicating that there was no circadian modulation of initial odor preference or ability to discriminate between odors. After differential conditioning, in which peppermint odor was associated with a positive unconditioned stimulus of sucrose solution and vanilla odor was associated with a negative unconditioned stimulus of saline solution, cockroaches conditioned in the early subjective night showed a strong preference for peppermint and retained the memory for at least 2 days. Animals trained and tested at other circadian phases showed significant deficits in performance for both short- and long-term memory. Performance depended on the circadian time (CT) of training, not the CT of testing, and results indicate that memory acquisition rather than retention or recall is modulated by the circadian system. The data suggest that the circadian system can have profound effects on olfactory learning in insects. PMID:17893338

  13. Olfactory processing: detection of rapid changes.

    PubMed

    Croy, Ilona; Krone, Franziska; Walker, Susannah; Hummel, Thomas

    2015-06-01

    Changes in the olfactory environment have a rather poor chance of being detected. Aim of the present study was to determine, whether the same (cued) or different (uncued) odors can generally be detected at short inter stimulus intervals (ISI) below 2.5 s. Furthermore we investigated, whether inhibition of return, an attentional phenomenon facilitating the detection of new stimuli at longer ISI, is present in the domain of olfaction. Thirteen normosmic people (3 men, 10 women; age range 19-27 years; mean age 23 years) participated. Stimulation was performed using air-dilution olfactometry with 2 odors: phenylethylalcohol and hydrogen disulfide. Reaction time to target stimuli was assessed in cued and uncued conditions at ISIs of 1, 1.5, 2, and 2.5 s. There was a significant main effect of ISI, indicating that odors presented only 1 s apart are missed frequently. Uncued presentation facilitated detection at short ISIs, implying that changes of the olfactory environment are detected better than presentation of the same odor again. Effects in relation to "olfactory inhibition of return," on the other hand, are not supported by our results. This suggests that attention works different for the olfactory system compared with the visual and auditory systems. PMID:25911421

  14. Variation in complex olfactory stimuli and its influence on odour recognition.

    PubMed Central

    Wrigh, Geraldine A.; Smith, Brian H.

    2004-01-01

    Natural olfactory stimuli are often complex and highly variable. The olfactory systems of animals are likely to have evolved to use specific features of olfactory stimuli for identification and discrimination. Here, we train honeybees to learn chemically defined odorant mixtures that systematically vary from trial to trial and then examine how they generalize to each odorant present in the mixture. An odorant that was present at a constant concentration in a mixture becomes more representative of the mixture than other variable odorants. We also show that both variation and intensity of a complex olfactory stimulus affect the rate of generalization by honeybees to subsequent olfactory stimuli. These results have implications for the way that all animals perceive and attend to features of olfactory stimuli. PMID:15058390

  15. Specificity and distribution of receptor cells in the olfactory mucosa of char (Salmo alpinus L.).

    PubMed

    Thommesen, G

    1982-05-01

    Olfactory receptor activity was studied in the char by two methods: (a) recording of the electro-olfactogram (EOG) with two electrodes simultaneously in the olfactory pit and (b) recordings from the olfactory bulb during olfactory stimulation and progressive removal of lamellae in the olfactory rosette. As stimuli were used methionine representing the amino acids and dilute char bile representing the bile salts. By cross-adaptation studies it was demonstrated that receptors sensitive to each of these two stimuli re functionally independent. The results show further that both types of receptors may be found on all lamellae, but differentially distributed within each lamella. Receptors sensitive to methionine are located closer to the raphe than receptors sensitive to bile. The spatial differentiation persists regardless of stimulus concentration. The results are discussed in relation to the projection and growth of primary nerve fibres into the olfactory bulb, and the existence of receptor cells with microvilli and with cilia. PMID:7136804

  16. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  17. Reversing Stimulus Timing in Visual Conditioning Leads to Memories with Opposite Valence in Drosophila

    PubMed Central

    Vogt, Katrin; Yarali, Ayse; Tanimoto, Hiromu

    2015-01-01

    Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities. PMID:26430885

  18. Reversing Stimulus Timing in Visual Conditioning Leads to Memories with Opposite Valence in Drosophila.

    PubMed

    Vogt, Katrin; Yarali, Ayse; Tanimoto, Hiromu

    2015-01-01

    Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities. PMID:26430885

  19. Odor Enrichment Sculpts the Abundance of Olfactory Bulb Mitral Cells

    PubMed Central

    Johnson, Melissa Cavallin; Biju, K.C.; Hoffman, Joshua; Fadool, Debra Ann

    2013-01-01

    Mitral cells are the primary output cell from the olfactory bulb conveying olfactory sensory information to higher cortical areas. Gene-targeted deletion of the Shaker potassium channel Kv1.3 alters voltage-dependence and inactivation kinetics of mitral cell current properties, which contribute to the “Super-smeller” phenotype observed in Kv1.3-null mice. The goal of the current study was to determine if morphology and density are influenced by mitral cell excitability, olfactory environment, and stage of development. Wildtype (WT) and Kv1.3-null (KO) mice were exposed to a single odorant (peppermint or citralva) for 30 days. Under unstimulated conditions, postnatal day 20 KO mice had more mitral cells than their WT counterparts, but no difference in cell size. Odor-enrichment with peppermint, an olfactory and trigeminal stimulus, decreased the number of mitral cells in three month and one year old mice of both genotypes. Mitral cell density was most sensitive to odor-stimulation in three month WT mice. Enrichment at the same age with citralva, a purely olfactory stimulus, decreased cell density regardless of genotype. There were no significant changes in cell body shape in response to citralva exposure, but the cell area was greater in WT mice and selectively greater in the ventral region of the OB in KO mice. This suggests that trigeminal or olfactory stimulation may modify mitral cell area and density while not impacting cell body shape. Mitral cell density can therefore be modulated by the voltage and sensory environment to alter information processing or olfactory perception. PMID:23485739

  20. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  1. Suppression of Odorant Responses by Odorants in Olfactory Receptor Cells

    NASA Astrophysics Data System (ADS)

    Kurahashi, Takashi; Lowe, Graeme; Gold, Geoffrey H.

    1994-07-01

    Odorants activate an inward current in vertebrate olfactory receptor cells. Here it is shown, in receptor cells from the newt, that odorants can also suppress this current, by a mechanism that is distinct from inhibition and adaptation. Suppression provides a simple explanation for two seemingly unrelated phenomena: the anomalously long latency of olfactory transduction and the existence of an "off response" at the end of a prolonged stimulus. Suppression may influence the perception of odorants by masking odorant responses and by sharpening the odorant specificities of single cells.

  2. Posttraumatic olfactory dysfunction.

    PubMed

    Coelho, Daniel H; Costanzo, Richard M

    2016-04-01

    Impairment of smell may occur following injury to any portion of the olfactory tract, from nasal cavity to brain. A thorough understanding of the anatomy and pathophysiology combined with comprehensively obtained history, physical exam, olfactory testing, and neuroimaging may help to identify the mechanism of dysfunction and suggest possible treatments. Although most olfactory deficits are neuronal mediated and therefore currently unable to be corrected, promising technology may provide novel treatment options for those most affected. Until that day, patient counseling with compensatory strategies and reassurance is essential for the maintenance of safety and QoL in this unique and challenging patient population. PMID:26441369

  3. Effects of Odor Stimulation on Antidromic Spikes in Olfactory Sensory Neurons

    PubMed Central

    Scott, John W.; Sherrill, Lisa

    2008-01-01

    Spikes were evoked in rat olfactory sensory neuron (OSN) populations by electrical stimulation of the olfactory bulb nerve layer in pentobarbital anesthetized rats. The latencies and recording positions for these compound spikes showed that they originated in olfactory epithelium. Dual simultaneous recordings indicated conduction velocities in the C-fiber range, around 0.5 m/s. These spikes are concluded to arise from antidromically activated olfactory sensory neurons. Electrical stimulation at 5 Hz was used to track changes in the size and latency of the antidromic compound population spike during the odor response. Strong odorant stimuli suppressed the spike size and prolonged its latency. The latency was prolonged throughout long odor stimuli, indicating continued activation of olfactory receptor neuron axons. The amounts of spike suppression and latency change were strongly correlated with the electroolfactogram (EOG) peak size evoked at the same site across odorants and across stimulus intensities. We conclude that the curve of antidromic spike suppression gives a reasonable representation of spiking activity in olfactory sensory neurons driven by odorants and that the correlation of peak spike suppression with the peak EOG shows the accuracy of the EOG as an estimate of intracellular potential in the population of olfactory sensory neurons. In addition, these results have important implications about traffic in olfactory nerve bundles. We did not observe multiple peaks corresponding to stimulated and unstimulated receptor neurons. This suggests synchronization of spikes in olfactory nerve, perhaps by ephaptic interactions. The long-lasting effect on spike latency shows that action potentials continue in the nerve throughout the duration of an odor stimulus in spite of many reports of depolarization block in olfactory receptor neuron cell bodies. Finally, strong odor stimulation caused almost complete block of antidromic spikes. This indicates that a very

  4. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.

    PubMed

    Scott, John W; Sherrill, Lisa

    2008-12-01

    Spikes were evoked in rat olfactory sensory neuron (OSN) populations by electrical stimulation of the olfactory bulb nerve layer in pentobarbital anesthetized rats. The latencies and recording positions for these compound spikes showed that they originated in olfactory epithelium. Dual simultaneous recordings indicated conduction velocities in the C-fiber range, around 0.5 m/s. These spikes are concluded to arise from antidromically activated olfactory sensory neurons. Electrical stimulation at 5 Hz was used to track changes in the size and latency of the antidromic compound population spike during the odor response. Strong odorant stimuli suppressed the spike size and prolonged its latency. The latency was prolonged throughout long odor stimuli, indicating continued activation of olfactory receptor neuron axons. The amounts of spike suppression and latency change were strongly correlated with the electroolfactogram (EOG) peak size evoked at the same site across odorants and across stimulus intensities. We conclude that the curve of antidromic spike suppression gives a reasonable representation of spiking activity in olfactory sensory neurons driven by odorants and that the correlation of peak spike suppression with the peak EOG shows the accuracy of the EOG as an estimate of intracellular potential in the population of olfactory sensory neurons. In addition, these results have important implications about traffic in olfactory nerve bundles. We did not observe multiple peaks corresponding to stimulated and unstimulated receptor neurons. This suggests synchronization of spikes in olfactory nerve, perhaps by ephaptic interactions. The long-lasting effect on spike latency shows that action potentials continue in the nerve throughout the duration of an odor stimulus in spite of many reports of depolarization block in olfactory receptor neuron cell bodies. Finally, strong odor stimulation caused almost complete block of antidromic spikes. This indicates that a very

  5. The role of the olfactory recess in olfactory airflow.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Perot, J Blair; Dumont, Elizabeth R

    2014-05-15

    The olfactory recess - a blind pocket at the back of the nasal airway - is thought to play an important role in mammalian olfaction by sequestering air outside of the main airstream, thus giving odorants time to re-circulate. Several studies have shown that species with large olfactory recesses tend to have a well-developed sense of smell. However, no study has investigated how the size of the olfactory recess relates to air circulation near the olfactory epithelium. Here we used a computer model of the nasal cavity from a bat (Carollia perspicillata) to test the hypothesis that a larger olfactory recess improves olfactory airflow. We predicted that during inhalation, models with an enlarged olfactory recess would have slower rates of flow through the olfactory region (i.e. the olfactory recess plus airspace around the olfactory epithelium), while during exhalation these models would have little to no flow through the olfactory recess. To test these predictions, we experimentally modified the size of the olfactory recess while holding the rest of the morphology constant. During inhalation, we found that an enlarged olfactory recess resulted in lower rates of flow in the olfactory region. Upon exhalation, air flowed through the olfactory recess at a lower rate in the model with an enlarged olfactory recess. Taken together, these results indicate that an enlarged olfactory recess improves olfactory airflow during both inhalation and exhalation. These findings add to our growing understanding of how the morphology of the nasal cavity may relate to function in this understudied region of the skull. PMID:24577441

  6. In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection.

    PubMed

    von Rekowski, C; Zippel, H P

    1993-08-01

    After amino acid discrimination training (Arg vs. Gln) in 5 groups of 2 fish the olfactory nerves and in 5 groups the lateral olfactory tracts were intracranially and bilaterally dissected. Immediately after this operation both groups of fish were unable to discriminate concentration differences and contaminated stimuli. Two weeks after the operation, following functional regeneration, both groups again were able to discriminate stimulus concentration differences and contaminations as they did before the operation. Therefore functional regeneration of the olfactory nerves (peripheral regeneration) and lateral olfactory subtracts (central regeneration) is highly specific. PMID:8374767

  7. Ionotropic Crustacean Olfactory Receptors

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W.

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  8. Ionotropic crustacean olfactory receptors.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  9. In goldfish the discriminative ability for odours persists after reduction of the olfactory epithelium, and rapidly returns after olfactory nerve axotomy and crossing bulbs.

    PubMed

    Zippel, H P

    2000-09-29

    Goldfish are ideal vertebrates for the study of regeneration within the peripheral and the central olfactory system. The present behavioural investigations studied the effects of bilateral lesions on the animals' ability to qualitatively discriminate two amino acids (10(-6) M) and their performance in two more difficult tasks: (i) rewarded amino acid applied in a lower concentration, and (ii) rewarded stimulus contaminated. A 50 and 85% reduction of the olfactory epithelium resulted in no recordable behavioural deficit. After axotomy of olfactory nerves and lateral olfactory tractotomy, fishes were anosmic for seven to ten days. Following replacement of sensory cells in the epithelium, and after regeneration of olfactory tract fibres a full functional recovery i.e. a highly specific regeneration, was recorded. After three surgical modifications of the olfactory bulbs' position, (i) crossing olfactory tracts and bulbs, (ii) crossing tracts and turning bulbs, and (iii) turning bulbs upside down, a full functional recovery was recorded for amino-acid discrimination in a similar concentration. A permanent, and similar slight deficit was, however, found during application of different concentrations, and of contaminated stimuli when medial lateral halves of the bulb were in 'incorrect' position (i) and (ii), or olfactory bulbs were positioned in the vicinity of the contralateral epithelium (i) and (ii). PMID:11079402

  10. Origin of basal activity in mammalian olfactory receptor neurons

    PubMed Central

    2010-01-01

    Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. PMID:20974772

  11. Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

    PubMed Central

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490

  12. Stimulus Reporting Advances

    ERIC Educational Resources Information Center

    McNeil, Michele

    2009-01-01

    Faced with their first reporting deadlines for economic-stimulus aid to education, school districts are toiling over how every stimulus penny has been spent so far and how many jobs have been saved--numbers that will be scrutinized not just by the public, but by government auditors as well. The American Recovery and Reinvestment Act, passed by…

  13. Morphine-induced suppression of conditioned stimulus intake: Effects of stimulus type and insular cortex lesions

    PubMed Central

    Lin, Jian-You; Roman, Christopher; Reilly, Steve

    2009-01-01

    Intake of an unconditionally preferred taste stimulus (e.g., saccharin) is reduced by contingent administration of a drug of abuse (e.g., morphine). We examined the influence of insular cortex (IC) lesions on morphine-induced suppression of an olfactory cue and two taste stimuli with different levels of perceived innate reward value. Two major findings emerged from this study. First, morphine suppressed intake of an aqueous odor as well as each taste stimulus in neurologically intact rats. Second, IC lesions disrupted morphine-induced suppression of the taste stimuli but not the aqueous odor cue. These results indicate that the perceived innate reward value of the CS is not a factor that governs drug-induced intake suppression. PMID:19631620

  14. Stimulus control: part I.

    PubMed

    Dinsmoor, J A

    1995-01-01

    In his effort to distinguish operant from respondent conditioning, Skinner stressed the lack of an eliciting stimulus and rejected the prevailing stereotype of Pavlovian "stimulus-response" psychology. But control by antecedent stimuli, whether classified as conditional or discriminative, is ubiquitous in the natural setting. With both respondent and operant behavior, symmetrical gradients of generalization along unrelated dimensions may be obtained following differential reinforcement in the presence and the absence of the stimulus. The slopes of these gradients serve as measures of stimulus control, and they can be steepened without applying differential reinforcement to any two points along the test dimension. Increases and decreases in stimulus control occur under the same conditions as those leading to increases and decreases in observing responses, indicating that it is the increasing frequency and duration of observation (and perhaps also of attention) that produces the separation in performances during discrimination learning. PMID:22478204

  15. Performance breakdown in optimal stimulus decoding

    NASA Astrophysics Data System (ADS)

    Kostal, Lubomir; Lansky, Petr; Pilarski, Stevan

    2015-06-01

    Objective. One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. Approach. In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. Main results. We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. Significance. We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.

  16. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  17. Adult Olfactory Bulb Neurogenesis.

    PubMed

    Lledo, Pierre-Marie; Valley, Matt

    2016-01-01

    Most organisms use their olfactory system to detect and analyze chemical cues from the external world to guide essential behaviors. From worms to vertebrates, chemicals are detected by odorant receptors expressed by olfactory sensory neurons, which in vertebrates send an axon to the primary processing center called the olfactory bulb (OB). Within the OB, sensory neurons form excitatory synapses with projection neurons and with inhibitory interneurons. Thus, because of complex synaptic interactions, the output of a given projection neuron is determined not only by the sensory input, but also by the activity of local inhibitory interneurons that are regenerated throughout life in the process of adult neurogenesis. Herein, we discuss how it is optimized and why. PMID:27235474

  18. Assessing olfactory performance in an Old World primate, Macaca nemestrina.

    PubMed

    Hübener, F; Laska, M

    1998-06-15

    The present study demonstrates that an operant conditioning paradigm, originally designed for assessing olfactory performance in a small New World primate, the squirrel monkey, can successfully be adapted for use with a large Old World primate, the pigtail macaque. Using a task designed to simulate olfactory-guided foraging behavior, based on multiple discrimination of simultaneously presented odor stimuli, we could show that Macaca nemestrina is able to learn to discriminate between objects on the basis of odor cues. Moreover, they could readily transfer to new S+ and S- stimuli and could remember the significance of previously learned odor stimuli even after a 3-week break. Furthermore, we could show that this method is suitable for obtaining reliable measures of olfactory sensitivity. The few modifications of the original method employed here did not affect essential features such as the mode of stimulus presentation (odorized paper strips attached to manipulation objects) and the choice criterion (opening or rejecting the odorized manipulation objects), thus for the first time enabling valid interspecific comparisons of olfactory capabilities between a catarrhine and a platyrrhine primate species. Our results indicate that M. nemestrina and Saimiri sciureus are similar with regard to several measures of olfactory performance, such as speed of initial task acquisition and ability to master transfer tasks as well as their sensitivity to a food-related odorant. PMID:9761227

  19. Olfactory dysfunction in Alzheimer's disease.

    PubMed

    Zou, Yong-Ming; Lu, Da; Liu, Li-Ping; Zhang, Hui-Hong; Zhou, Yu-Ying

    2016-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. PMID:27143888

  20. Reflections on stimulus control.

    PubMed

    Sidman, Murray

    2008-01-01

    The topic of stimulus control is too broad and complex to be traceable here. It would probably take a two-semester course to cover just the highlights of that field's evolution. The more restricted topic of equivalence relations has itself become so broad that even an introductory summary requires more time than we have available. An examination of relations between equivalence and the more general topic of stimulus control, however, may reveal characteristics of both the larger and the more limited field that have not been generally discussed. Consideration of these features may in turn foster future developments within each area. I speak, of course, about aspects of stimulus control that my own experiences have made salient to me; others would surely emphasize different characteristics of the field. It is my hope that cooperative interactions among researchers and theorists who approach stimulus control from different directions will become more common than is currently typical. PMID:22478506

  1. Stimulus control: Part I

    PubMed Central

    Dinsmoor, James A.

    1995-01-01

    In his effort to distinguish operant from respondent conditioning, Skinner stressed the lack of an eliciting stimulus and rejected the prevailing stereotype of Pavlovian “stimulus—response” psychology. But control by antecedent stimuli, whether classified as conditional or discriminative, is ubiquitous in the natural setting. With both respondent and operant behavior, symmetrical gradients of generalization along unrelated dimensions may be obtained following differential reinforcement in the presence and the absence of the stimulus. The slopes of these gradients serve as measures of stimulus control, and they can be steepened without applying differential reinforcement to any two points along the test dimension. Increases and decreases in stimulus control occur under the same conditions as those leading to increases and decreases in observing responses, indicating that it is the increasing frequency and duration of observation (and perhaps also of attention) that produces the separation in performances during discrimination learning. PMID:22478204

  2. Inhibition of Olfactory Receptor Neuron Input to Olfactory Bulb Glomeruli Mediated by Suppression of Presynaptic Calcium Influx

    PubMed Central

    Wachowiak, Matt; McGann, John P.; Heyward, Philip M.; Shao, Zuoyi; Puche, Adam C.; Shipley, Michael T.

    2005-01-01

    We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical-imaging techniques that selectively report activity in the ORN pre-synaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapid fluorescence increases that were largely blocked by the N-type calcium channel blocker ω-conotoxin GVIA. Paired shocks revealed a long-lasting suppression of calcium influx with ~40% suppression at 400-ms interstimulus intervals and a recovery time constant of ~450 ms. Blocking activation of postsynaptic olfactory bulb neurons with APV/CNQX reduced this suppression. The GABAB receptor agonist baclofen inhibited calcium influx, whereas GABAB antagonists reduced paired-pulse suppression without affecting the response to the conditioning pulse. We also imaged transmitter release directly using a mouse line that expresses synaptopHluorin selectively in ORNs. We found that the relationship between calcium influx and transmitter release was superlinear and that paired-pulse suppression of transmitter release was reduced, but not eliminated, by APV/CNQX and GABAB antagonists. These results demonstrate that primary olfactory input to the CNS can be presynaptically regulated by GABAergic interneurons and show that one major intracellular pathway for this regulation is via the suppression of calcium influx through N-type calcium channels in the pre-synaptic terminal. This mechanism is unique among primary sensory afferents. PMID:15917320

  3. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  4. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  5. The Stimulus test stand

    SciTech Connect

    Christofek, L.; Rapidis, P.; Reinhard, A.; /Fermilab

    2005-06-01

    The Stimulus Test Stand was originally constructed and assembled for testing the SVX2 ASIC readout and then upgraded for SVX3 ASIC prototyping and testing. We have modified this system for SVX4 ASIC [1] prototype testing. We described the individual components below. Additional details for other hardware for SVX4 testing can be found in reference [2]. We provide a description of the Stimulus Test Stand used for prototype testing of the SVX4 chip.

  6. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size.

    PubMed

    Morrison, Filomene G; Dias, Brian G; Ressler, Kerry J

    2015-10-13

    Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training. PMID:26420875

  7. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size

    PubMed Central

    Morrison, Filomene G.; Dias, Brian G.; Ressler, Kerry J.

    2015-01-01

    Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training. PMID:26420875

  8. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  9. An Evaluation of a Stimulus Preference Assessment of Auditory Stimuli for Adolescents with Developmental Disabilities

    ERIC Educational Resources Information Center

    Horrocks, Erin; Higbee, Thomas S.

    2008-01-01

    Previous researchers have used stimulus preference assessment (SPA) methods to identify salient reinforcers for individuals with developmental disabilities including tangible, leisure, edible and olfactory stimuli. In the present study, SPA procedures were used to identify potential auditory reinforcers and determine the reinforcement value of…

  10. The Mouse Olfactory Peduncle

    PubMed Central

    Brunjes, Peter C; Kay, Rachel B; Arrivillaga, J. P

    2012-01-01

    The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3, 12 and 24 month-old mice indicated that pE has about 16,500 cells in 0.043 mm3and pP about 58,300 cells in 0.307 mm3. Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar though smaller to those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y or cholecystokinin (antigens commonly co-expressed by subspecies of GABAergic neurons), though the relative numbers of each cell type differs between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in the rat. The results provide a caveat for investigators who generalize data between species as both similarities and differences between the laboratory mouse and rat were observed. PMID:21618219

  11. It takes two—coincidence coding within the dual olfactory pathway of the honeybee

    PubMed Central

    Brill, Martin F.; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code). PMID:26283968

  12. Acetylcholine and Olfactory Perceptual Learning

    PubMed Central

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2007-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform cortex. These changes include enhanced representation of the molecular features of familiar odors by mitral cells in the olfactory bulb, and synthetic coding of multiple coincident odorant features into odor objects by cortical neurons. In this paper, data are reviewed that show the critical role of acetylcholine (Ach) in olfactory system function and plasticity, and cholinergic modulation of olfactory perceptual learning at both the behavioral and cortical level. PMID:14747514

  13. Olfactory transduction in ciliated receptor neurons of the Cabinza grunt, Isacia conceptionis (Teleostei: Haemulidae).

    PubMed

    Schmachtenberg, Oliver; Bacigalupo, Juan

    2004-12-01

    The ciliated receptor neurons of fish olfactory organs are thought to transduce amino acids through a cAMP-dependent transduction pathway, but direct physiological evidence for this hypothesis remains scarce and is confined to catfish and trout. We investigated olfactory transduction in a marine fish, the Cabinza grunt Isacia conceptionis (Perciformes, Teleostei). The olfactory epithelium was characterized using light and electron microscopy, and isolated ciliated receptor neurons were recorded with the perforated patch-clamp technique. Cells were stimulated with puffer pipettes containing amino acid odourants, IBMX plus forskolin or 8 bromo-cAMP. All three stimuli triggered transient inward currents at a holding potential of -70 mV and responses with outward-rectifying current-voltage relationships. The characteristics of the transduction currents induced by each stimulus were similar across cells and indistinguishable within the same cell, supporting the hypothesis of a cAMP pathway mediating transduction of amino acids in ciliated olfactory receptor neurons. PMID:15610170

  14. Olfactory perceptual stability and discrimination.

    PubMed

    Barnes, Dylan C; Hofacer, Rylon D; Zaman, Ashiq R; Rennaker, Robert L; Wilson, Donald A

    2008-12-01

    No two roses smell exactly alike, but our brain accurately bundles these variations into a single percept 'rose'. We found that ensembles of rat olfactory bulb neurons decorrelate complex mixtures that vary by as little as a single missing component, whereas olfactory (piriform) cortical neural ensembles perform pattern completion in response to an absent component, essentially filling in the missing information and allowing perceptual stability. This piriform cortical ensemble activity predicts olfactory perception. PMID:18978781

  15. Attention and olfactory consciousness.

    PubMed

    Keller, Andreas

    2011-01-01

    Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness. PMID:22203813

  16. Disgust and fear lower olfactory threshold.

    PubMed

    Chan, Kai Qin; Holland, Rob W; van Loon, Ruud; Arts, Roy; van Knippenberg, Ad

    2016-08-01

    Odors provide information regarding the chemical properties of potential environment hazards. Some of this information may be disgust-related (e.g., organic decay), whereas other information may be fear-related (e.g., smoke). Many studies have focused on how disgust and fear, as prototypical avoidant emotions, facilitate the detection of possible threats, but these studies have typically confined to the visual modality. Here, we examine how disgust and fear influence olfactory detection at a particular level-the level at which a subliminal olfactory stimulus crosses into conscious perception, also known as a detection threshold. Here, using psychophysical methods that allow us to test perceptual capabilities directly, we show that one way that disgust (Experiments 1-3) and fear (Experiment 3) facilitate detection is by lowering the amount of physical input that is needed to trigger a conscious experience of that input. This effect is particularly strong among individuals with high disgust sensitivity (Experiments 2-3). Our research suggests that a fundamental way in which avoidant emotions foster threat detection is through lowering perceptual thresholds. (PsycINFO Database Record PMID:27064291

  17. Recent Trend in Development of Olfactory Displays

    NASA Astrophysics Data System (ADS)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  18. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  19. Gap junctions in olfactory neurons modulate olfactory sensitivity

    PubMed Central

    2010-01-01

    Background One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis. Results I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/β-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/β-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited c-fos mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons. Conclusions My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory

  20. Interests and Stimulus Seeking

    ERIC Educational Resources Information Center

    Kish, George B.; Donnenwerth, Gregory V.

    1969-01-01

    Examines relationships between Sensation-Seeking Scale (SSS) and vocational interests measured by the Kuder and Strong Vocational Interest Blank, among alcoholics and undergraduates. Results support construct validity of the SSS and provide further evidence of modes of expression of stimulus-seeking needs in personality. (Author/CJ)

  1. Reflections on Stimulus Control

    ERIC Educational Resources Information Center

    Sidman, Murray

    2008-01-01

    The topic of stimulus control is too broad and complex to be traceable here. It would probably take a two-semester course to cover just the highlights of that field's evolution. The more restricted topic of equivalence relations has itself become so broad that even an introductory summary requires more time than we have available. An examination…

  2. The sensory basis of olfactory search behavior in banded kokopu ( Galaxias fasciatus).

    PubMed

    Baker, Cindy F; Montgomery, John C; Dennis, Todd E

    2002-08-01

    The sensory basis of olfactory search behavior was investigated in the banded kokopu, Galaxias fasciatus, using a flow tank. In the presence of a 2 cm s(-1) current flow, banded kokopu use both water current and chemical information to locate a food odor source. The superficial neuromasts of the lateral line system mediate the rheotactic component of the odor search. A physical block of one olfactory nostril did not affect the olfactory search strategy employed by banded kokopu in still water or in the presence of a current flow. Thus, there is no evidence that banded kokopu perform a bilateral comparison of the olfactory stimulus during their odor search. Previously, olfaction and gustation have been the only sensory systems shown to directly mediate orientation and movement towards odor sources in fish. The use of hydrodynamic cues by fish in location of an olfactory source has been previously proposed, but without direct experimental identification of the sensory systems employed. This study identifies the contributing roles of both olfactory and hydrodynamic sensory systems to the olfactory search repertoire of fish. PMID:12209343

  3. Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth

    PubMed Central

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-01-01

    The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the ‘sniffer’. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots. PMID:18437217

  4. PERVASIVE OLFACTORY IMPAIRMENT AFTER BILATERAL LIMBIC SYSTEM DESTRUCTION

    PubMed Central

    Tranel, Daniel; Welsh-Bohmer, Kathleen A.

    2012-01-01

    What pattern of brain damage could completely obliterate the sense of olfaction in humans? We had an opportunity to address this intriguing question in patient B., who has extensive bilateral damage to most of the limbic system, including the medial and lateral temporal lobes, orbital frontal cortex, insular cortex, anterior cingulate cortex, and basal forebrain, caused by herpes simplex encephalitis. The patient demonstrated profound impairments in odor identification and recognition. Moreover, he could not discriminate between olfactory stimuli and he had severe impairments in odor detection. Reliable stimulus detection was obtained only for solutions of the organic solvent acetone and highly concentrated solutions of ethanol. In contrast to the more circumscribed olfactory deficits demonstrated in patients with damage confined to either the temporal lobes or orbitofrontal cortex (which tend to involve odor identification but not odor detection), patient B. demonstrates a strikingly severe and complete anosmia. This contrast in olfactory abilities and deficits as a result of different anatomical pathology affords new insights into the neural substrates of olfactory processing in humans. PMID:22220560

  5. The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus

    NASA Astrophysics Data System (ADS)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-07-01

    We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.

  6. GABAergic feedback signaling into the calyces of the mushroom bodies enables olfactory reversal learning in honey bees

    PubMed Central

    Boitard, Constance; Devaud, Jean-Marc; Isabel, Guillaume; Giurfa, Martin

    2015-01-01

    In reversal learning, subjects first learn to respond to a reinforced stimulus A and not to a non-reinforced stimulus B (A+ vs. B−) and then have to learn the opposite when stimulus contingencies are reversed (A− vs. B+). This change in stimulus valence generates a transitory ambiguity at the level of stimulus outcome that needs to be overcome to solve the second discrimination. Honey bees (Apis mellifera) efficiently master reversal learning in the olfactory domain. The mushroom bodies (MBs), higher-order structures of the insect brain, are required to solve this task. Here we aimed at uncovering the neural circuits facilitating reversal learning in honey bees. We trained bees using the olfactory conditioning of the proboscis extension reflex (PER) coupled with localized pharmacological inhibition of Gamma-AminoButyric Acid (GABA)ergic signaling in the MBs. We show that inhibition of ionotropic but not metabotropic GABAergic signaling into the MB calyces impairs reversal learning, but leaves intact the capacity to perform two consecutive elemental olfactory discriminations with ambiguity of stimulus valence. On the contrary, inhibition of ionotropic GABAergic signaling into the MB lobes had no effect on reversal learning. Our results are thus consistent with a specific requirement of the feedback neurons (FNs) providing ionotropic GABAergic signaling from the MB lobes to the calyces for counteracting ambiguity of stimulus valence in reversal learning. PMID:26283938

  7. GABAergic feedback signaling into the calyces of the mushroom bodies enables olfactory reversal learning in honey bees.

    PubMed

    Boitard, Constance; Devaud, Jean-Marc; Isabel, Guillaume; Giurfa, Martin

    2015-01-01

    In reversal learning, subjects first learn to respond to a reinforced stimulus A and not to a non-reinforced stimulus B (A(+) vs. B(-)) and then have to learn the opposite when stimulus contingencies are reversed (A(-) vs. B(+)). This change in stimulus valence generates a transitory ambiguity at the level of stimulus outcome that needs to be overcome to solve the second discrimination. Honey bees (Apis mellifera) efficiently master reversal learning in the olfactory domain. The mushroom bodies (MBs), higher-order structures of the insect brain, are required to solve this task. Here we aimed at uncovering the neural circuits facilitating reversal learning in honey bees. We trained bees using the olfactory conditioning of the proboscis extension reflex (PER) coupled with localized pharmacological inhibition of Gamma-AminoButyric Acid (GABA)ergic signaling in the MBs. We show that inhibition of ionotropic but not metabotropic GABAergic signaling into the MB calyces impairs reversal learning, but leaves intact the capacity to perform two consecutive elemental olfactory discriminations with ambiguity of stimulus valence. On the contrary, inhibition of ionotropic GABAergic signaling into the MB lobes had no effect on reversal learning. Our results are thus consistent with a specific requirement of the feedback neurons (FNs) providing ionotropic GABAergic signaling from the MB lobes to the calyces for counteracting ambiguity of stimulus valence in reversal learning. PMID:26283938

  8. Calcium and olfactory transduction.

    PubMed

    Winegar, B D; Rosick, E R; Schafer, R

    1988-01-01

    1. Inorganic cations, organic calcium antagonists, and calmodulin antagonists were applied to olfactory epithelia of frogs (Rana pipiens) while recording electroolfactogram (EOG) responses. 2. Inorganic cations inhibited EOGs in a rank order, reflecting their calcium channel blocking potency: La3+ greater than Zn2+ greater than Cd2+ greater than Al3+ greater than Ca2+ greater than Sr2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Barium ion significantly enhanced EOGs immediately following application. 3. Diltiazem and verapamil produced dose-dependent EOG inhibition. 4. Calmodulin antagonists inhibited EOGs without correlation to their anti-calmodulin potency. PMID:2904344

  9. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex

    PubMed Central

    Mandairon, Nathalie; Kermen, Florence; Charpentier, Caroline; Sacquet, Joelle; Linster, Christiane; Didier, Anne

    2014-01-01

    Sensory neural activity is highly context dependent and shaped by experience and expectation. In the olfactory bulb (OB), the first cerebral relay of olfactory processing, responses to odorants are shaped by previous experiences including contextual information thanks to strong feedback connections. In the present experiment, mice were conditioned to associate an odorant with a visual context and were then exposed to the visual context alone. We found that the visual context alone elicited exploration of the odor port similar to that elicited by the stimulus when it was initially presented. In the OB, the visual context alone elicited a neural activation pattern, assessed by mapping the expression of the immediate early gene zif268 (egr-1) that was highly similar to that evoked by the conditioned odorant, but not other odorants. This OB activation was processed by olfactory network as it was transmitted to the piriform cortex. Interestingly, a novel context abolished neural and behavioral responses. In addition, the neural representation in response to the context was dependent on top-down inputs, suggesting that context-dependent representation is initiated in cortex. Modeling of the experimental data suggests that odor representations are stored in cortical networks, reactivated by the context and activate bulbar representations. Activation of the OB and the associated behavioral response in the absence of physical stimulus showed that mice are capable of internal representations of sensory stimuli. The similarity of activation patterns induced by imaged and the corresponding physical stimulus, triggered only by the relevant context provides evidence for an odor-specific internal representation. PMID:24808838

  10. Spatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice

    PubMed Central

    Kass, Marley D.; Moberly, Andrew H.; McGann, John P.

    2013-01-01

    Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluorescent exocytosis indicator synaptopHluorin in place of OMP to compare spatiotemporal patterns of odorant-evoked neurotransmitter release from OSNs in adult mice that were heterozygous for OMP or OMP-null. We found that these patterns, which constitute the primary neural representation of each odorant, developed more slowly during the odorant presentation in OMP knockout mice but eventually reached the same magnitude as in heterozygous mice. In the olfactory bulb, each glomerulus receives synaptic input from a subpopulation of OSNs that all express the same odor receptor and thus typically respond to a specific subset of odorants. We observed that in OMP knockout mice, OSNs innervating a given glomerulus typically responded to a broader range of odorants than in OMP heterozygous mice and thus each odorant evoked synaptic input to a larger number of glomeruli. In an olfactory habituation task, OMP knockout mice behaved differently than wild-type mice, exhibiting a delay in their onset to investigate an odor stimulus during its first presentation and less habituation to that stimulus over repeated presentations. These results suggest that the actions of OMP in olfactory transduction carry through to the primary sensory representations of olfactory stimuli in adult mice in vivo. PMID:23630588

  11. The Olfactory Transcriptomes of Mice

    PubMed Central

    Ibarra-Soria, Ximena; Levitin, Maria O.; Saraiva, Luis R.; Logan, Darren W.

    2014-01-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  12. Olfactory maps, circuits and computations.

    PubMed

    Giessel, Andrew J; Datta, Sandeep Robert

    2014-02-01

    Sensory information in the visual, auditory and somatosensory systems is organized topographically, with key sensory features ordered in space across neural sheets. Despite the existence of a spatially stereotyped map of odor identity within the olfactory bulb, it is unclear whether the higher olfactory cortex uses topography to organize information about smells. Here, we review recent work on the anatomy, microcircuitry and neuromodulation of two higher-order olfactory areas: the piriform cortex and the olfactory tubercle. The piriform is an archicortical region with an extensive local associational network that constructs representations of odor identity. The olfactory tubercle is an extension of the ventral striatum that may use reward-based learning rules to encode odor valence. We argue that in contrast to brain circuits for other sensory modalities, both the piriform and the olfactory tubercle largely discard any topography present in the bulb and instead use distributive afferent connectivity, local learning rules and input from neuromodulatory centers to build behaviorally relevant representations of olfactory stimuli. PMID:24492088

  13. The olfactory transcriptomes of mice.

    PubMed

    Ibarra-Soria, Ximena; Levitin, Maria O; Saraiva, Luis R; Logan, Darren W

    2014-09-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  14. Precise Detection of Direct Glomerular Input Duration by the Olfactory Bulb

    PubMed Central

    Li, Anan; Gire, David H.; Bozza, Thomas

    2014-01-01

    Sensory neuron input to the olfactory bulb (OB) was activated precisely for different durations with blue light in mice expressing channelrhodopsin-2 in olfactory sensory neurons. Behaviorally the mice discriminated differences of 10 ms in duration of direct glomerular activation. In addition, a subset of mitral/tufted cells in the OB of awake mice responded tonically therefore conveying information on stimulus duration. Our study provides evidence that duration of the input to glomeruli not synchronized to sniffing is detected. This potent cue may be used to obtain information on puffs in odor plumes. PMID:25429146

  15. Insight of scent: experimental evidence of olfactory capabilities in the wandering albatross (Diomedea exulans).

    PubMed

    Mardon, J; Nesterova, A P; Traugott, J; Saunders, S M; Bonadonna, F

    2010-02-15

    Wandering albatrosses routinely forage over thousands of kilometres of open ocean, but the sensory mechanisms used in the food search itself have not been completely elucidated. Recent telemetry studies show that some spatial behaviours of the species are consistent with the 'multimodal foraging strategy' hypothesis which proposes that birds use a combination of olfactory and visual cues while foraging at sea. The 'multimodal foraging strategy' hypothesis, however, still suffers from a lack of experimental evidence, particularly regarding the olfactory capabilities of wandering albatrosses. As an initial step to test the hypothesis, we carried out behavioural experiments exploring the sensory capabilities of adult wandering albatrosses at a breeding colony. Three two-choice tests were designed to investigate the birds' response to olfactory and visual stimuli, individually or in combination. Perception of the different stimuli was assessed by comparing the amount of exploration directed towards an 'experimental' display or a 'control' display. Our results indicate that birds were able to perceive the three types of stimulus presented: olfactory, visual and combined. Moreover, olfactory and visual cues were found to have additional effects on the exploratory behaviours of males. This simple experimental demonstration of reasonable olfactory capabilities in the wandering albatross supports the 'multimodal foraging strategy' and is consistent with recent hypotheses of the evolutionary history of procellariiforms. PMID:20118306

  16. Perceptual convergence of multi-component mixtures in olfaction implies an olfactory white

    PubMed Central

    Weiss, Tali; Snitz, Kobi; Yablonka, Adi; Khan, Rehan M.; Gafsou, Danyel; Schneidman, Elad; Sobel, Noam

    2012-01-01

    In vision, two mixtures, each containing an independent set of many different wavelengths, may produce a common color percept termed “white.” In audition, two mixtures, each containing an independent set of many different frequencies, may produce a common perceptual hum termed “white noise.” Visual and auditory whites emerge upon two conditions: when the mixture components span stimulus space, and when they are of equal intensity. We hypothesized that if we apply these same conditions to odorant mixtures, “whiteness” may emerge in olfaction as well. We selected 86 molecules that span olfactory stimulus space and individually diluted them to a point of about equal intensity. We then prepared various odorant mixtures, each containing various numbers of molecular components, and asked human participants to rate the perceptual similarity of such mixture pairs. We found that as we increased the number of nonoverlapping, equal-intensity components in odorant mixtures, the mixtures became more similar to each other, despite not having a single component in common. With ∼30 components, most mixtures smelled alike. After participants were acquainted with a novel, arbitrarily named mixture of ∼30 equal-intensity components, they later applied this name more readily to other novel mixtures of ∼30 equal-intensity components spanning stimulus space, but not to mixtures containing fewer components or to mixtures that did not span stimulus space. We conclude that a common olfactory percept, “olfactory white,” is associated with mixtures of ∼30 or more equal-intensity components that span stimulus space, implying that olfactory representations are of features of molecules rather than of molecular identity. PMID:23169632

  17. Salivary conditioning with antennal gustatory unconditioned stimulus in an insect.

    PubMed

    Watanabe, Hidehiro; Sato, Chihiro; Kuramochi, Tomokazu; Nishino, Hiroshi; Mizunami, Makoto

    2008-07-01

    Classical conditioning of olfactory conditioning stimulus (CS) with gustatory unconditioned stimulus (US) in insects has been used as a pertinent model for elucidation of neural mechanisms underlying learning and memory. However, a conditioning system in which stable intracellular recordings from brain neurons are feasibly obtained while monitoring the conditioning effect has remained to be established. Recently, we found classical conditioning of salivation in cockroaches Periplaneta americana, in which an odor was associated with sucrose solution applied to the mouth, and this conditioning could be monitored by activities of salivary neurons. Application of gustatory US to the mouth, however, leads to feeding movement accompanying a movement of the brain that prevents stable recordings from brain neurons. Here we investigated whether a gustatory stimulus presented to an antenna could serve as an effective US for producing salivary conditioning. Presentation of sucrose or sodium chloride solution to an antenna induced salivation and also increased activities of salivary neurons. A single pairing trial of an odor with antennal presentation of sucrose or sodium chloride solution produced conditioning of salivation or of activities of salivary neurons. Five pairing trials led to a conditioning effect that lasted for one day. Water or tactile stimulus presented to an antenna was not effective for producing conditioning. The results demonstrate that gustatory US presented to an antenna is as effective as that presented to the mouth for producing salivary conditioning. This conditioning system provides a useful model for studying the neural basis of learning at the level of singly identifiable neurons. PMID:18467133

  18. Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse.

    PubMed

    Lee, Jin Hwan; Wei, Ling; Deveau, Todd C; Gu, Xiaohuan; Yu, Shan Ping

    2016-07-01

    Glutamate is an excitatory neurotransmitter in the olfactory system and its N-methyl-D-aspartate-(NMDA) receptor subunits [GluN1 (NR1), GluN2A (NR2A), and GluN2B (NR2B)] are expressed at synapses in the olfactory bulb and olfactory epithelium. Thus, glutamatergic neurons and NMDA receptors play key roles in olfaction. GluN3A (NR3A) is a unique inhibitory subunit in the NMDA receptor complex; however, the expression and functional role of GluN3A in the olfactory bulb and epithelium remain unclear. The present study examined the expression patterns of GluN3A in the olfactory bulb and epithelium and explored its functional role in the olfactory system. Immunohistochemical and Western blot analyses revealed that GluN3A is abundantly expressed in different cellular layers of the olfactory bulb and epithelium of the adult wild type (WT) mice. In littermate GluN3A knockout (GluN3A(-/-); KO) mice, the expression of olfactory marker protein normally found in mature olfactory sensory neurons was significantly reduced in the olfactory bulb and epithelium. A butyl alcohol stimulus increased immediate-early gene c-Fos expression in the olfactory system of WT mice, while this response was absent in GluN3A KO mice. The level of phosphorylated Ca(2+)/calmodulin-dependent kinase II was significantly lower in GluN3A KO mice compared to WT mice. In buried food finding test, GluN3A mice took significantly longer time to find food compared to WT mice. Consistently, impaired odor distinguishing ability was seen in GluN3A KO mice. These findings suggest that GluN3A, expressed in the adult olfactory system, plays a significant regulatory role in olfactory development and functional activity. PMID:26334321

  19. Assessment of olfactory function.

    PubMed

    Hummel, Thomas; Welge-Lüessen, Antje

    2006-01-01

    Numerous techniques are available for the investigation of chemosensory functions in humans. They include psychophysical measures of chemosensory function, e.g. odor identification, odor discrimination, odor thresholds, odor memory, and retronasal perception of odors. In order to assess changes related to the patients' quality of life or effects of qualitative olfactory dysfunction, questionnaires are being used. Measures relying to a lesser degree on the subjects' cooperation are e.g. chemosensory event-related potentials, odor-induced changes of the EEG, the electroolfactogram, imaging techniques, or measures of respiration. In a clinical context, however, psychophysical techniques are most frequently used, e.g. tests for odor identification, and odor thresholds. Interpretation of results from these measures is frequently supported by the assessment of chemosensory event-related potentials. Other techniques await further standardization before they will become useful in a clinical context. PMID:16733334

  20. Olfactory receptor signaling.

    PubMed

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  1. Role of a ubiquitously expressed receptor in the vertebrate olfactory system.

    PubMed

    DeMaria, Shannon; Berke, Allison P; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-09-18

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  2. Brief Exposure to Sensory Cues Elicits Stimulus-Nonspecific General Sensitization in an Insect

    PubMed Central

    Colson, Violaine; Party, Virginie; Renou, Michel; Anderson, Peter; Gadenne, Christophe; Marion-Poll, Frédéric; Anton, Sylvia

    2012-01-01

    The effect of repeated exposure to sensory stimuli, with or without reward is well known to induce stimulus-specific modifications of behaviour, described as different forms of learning. In recent studies we showed that a brief single pre-exposure to the female-produced sex pheromone or even a predator sound can increase the behavioural and central nervous responses to this pheromone in males of the noctuid moth Spodoptera littoralis. To investigate if this increase in sensitivity might be restricted to the pheromone system or is a form of general sensitization, we studied here if a brief pre-exposure to stimuli of different modalities can reciprocally change behavioural and physiological responses to olfactory and gustatory stimuli. Olfactory and gustatory pre-exposure and subsequent behavioural tests were carried out to reveal possible intra- and cross-modal effects. Attraction to pheromone, monitored with a locomotion compensator, increased after exposure to olfactory and gustatory stimuli. Behavioural responses to sucrose, investigated using the proboscis extension reflex, increased equally after pre-exposure to olfactory and gustatory cues. Pheromone-specific neurons in the brain and antennal gustatory neurons did, however, not change their sensitivity after sucrose exposure. The observed intra- and reciprocal cross-modal effects of pre-exposure may represent a new form of stimulus-nonspecific general sensitization originating from modifications at higher sensory processing levels. PMID:22457821

  3. Classification of odorants across layers in locust olfactory pathway.

    PubMed

    Sanda, Pavel; Kee, Tiffany; Gupta, Nitin; Stopfer, Mark; Bazhenov, Maxim

    2016-05-01

    Olfactory processing takes place across multiple layers of neurons from the transduction of odorants in the periphery, to odor quality processing, learning, and decision making in higher olfactory structures. In insects, projection neurons (PNs) in the antennal lobe send odor information to the Kenyon cells (KCs) of the mushroom bodies and lateral horn neurons (LHNs). To examine the odor information content in different structures of the insect brain, antennal lobe, mushroom bodies and lateral horn, we designed a model of the olfactory network based on electrophysiological recordings made in vivo in the locust. We found that populations of all types (PNs, LHNs, and KCs) had lower odor classification error rates than individual cells of any given type. This improvement was quantitatively different from that observed using uniform populations of identical neurons compared with spatially structured population of neurons tuned to different odor features. This result, therefore, reflects an emergent network property. Odor classification improved with increasing stimulus duration: for similar odorants, KC and LHN ensembles reached optimal discrimination within the first 300-500 ms of the odor response. Performance improvement with time was much greater for a population of cells than for individual neurons. We conclude that, for PNs, LHNs, and KCs, ensemble responses are always much more informative than single-cell responses, despite the accumulation of noise along with odor information. PMID:26864765

  4. Processing of odor mixtures in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Weislogel, Jan-Marek; Friedrich, Rainer W

    2004-07-21

    Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB. PMID:15269273

  5. Olfactory discrimination in the western lowland gorilla, Gorilla gorilla gorilla.

    PubMed

    Hepper, Peter G; Wells, Deborah L

    2012-04-01

    The olfactory abilities of great apes have been subject to little empirical investigation, save for a few observational reports. This study, using an habituation/dishabituation task, provides experimental evidence for a core olfactory ability, namely, olfactory discrimination, in the gorilla. In Experiment 1, six zoo-housed western lowland gorillas were individually presented with the same odour on four trials, and with a novel odour on the fifth trial. Odours (almond and vanilla) were presented on plastic balls, and behavioural responses of sniffing and chewing/licking the balls were recorded. A second experiment presented the same odour on four trials and no odour on the fifth to examine whether any dishabituation was due to the presence of a new odour or the absence of the familiar odour. Gorillas habituated their behaviour with repeated presentation of the same odour, but dishabituated, i.e. increased sniffing and chewing/licking, when presented with the novel odour. No dishabituation was noted when using water as the stimulus across all trials or when used as the novel odour. Overall, results show that gorillas are able to discriminate between odours. PMID:22261746

  6. Pupillary responses to intranasal trigeminal and olfactory stimulation.

    PubMed

    Schneider, Christine B; Ziemssen, Tjalf; Schuster, Benno; Seo, Han-Seok; Haehner, Antje; Hummel, Thomas

    2009-07-01

    The aim of the present study was to investigate whether pupillary responses to odorous stimuli reflect their intensity or hedonic tone. A total of 21 healthy subjects participated in the study. Using a computer-controlled olfactometer, subjects received intranasal stimuli including odors of rose (PEA; 2 concentrations), lemon and rotten eggs, plus the trigeminal irritant CO2 (also at two concentrations). Changes in the pupil diameter were obtained ipsilaterally to the side of stimulus presentation. Both trigeminal and olfactory stimulation produced an increase in pupillary diameter. Latencies for pupillary reaction were fastest for the higher concentration of CO2 and slowest after the presentation of PEA at the low concentration. Response amplitudes were largest in response to stimulation with CO2 at the high concentration, while they were smallest in response to odorous stimulation with PEA. Response latencies decreased with increasing stimulus intensity. No such correlation was found for hedonic ratings and pupillary reactions. Thus, the change in the pupillary diameter indicates differences between stimulus modalities and stimulus strength, but not pleasantness or unpleasantness of the odors. PMID:19484181

  7. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.

    PubMed

    Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-10-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition. PMID:26301325

  8. Function follows form: ecological constraints on odor codes and olfactory percepts

    PubMed Central

    Gottfried, Jay A

    2009-01-01

    Summary Sensory system function has evolved to meet the biological needs of organisms, but it is less often regarded that sensory system form has by necessity evolved to contend with the stimulus. For an olfactory system extracting meaningful information from natural scents, the ecological milieu presents unique problems. Recent studies provide new insights into the perceptual and neural mechanisms underlying how odorant elements are assembled into odor wholes, how odor percepts are reconstructed from degraded inputs, and how learning and experience sculpt olfactory categorical perception. These data show that spatial ensemble activity patterns in piriform cortex are closely linked to the perceptual meaning and identity of odor objects, substantiating theoretical models that emphasize the importance of distributed templates for the perception, discrimination, and recall of olfactory quality. PMID:19671493

  9. Gonadotropin releasing hormone (GnRH)--a novel olfactory stimulant in fish.

    PubMed

    Andersen, O; Døving, K B

    1991-08-01

    The aim of this study was to elucidate the putative role of the gonadotropin releasing hormone (GnRH or LHRH) as an olfactory stimulant in fish. We report for the first time extreme sensitivity of the olfactory organ in the rainbow trout (Oncorhynchus mykiss) to GnRH. Recordings of the electroolfactogram (EOG) showed an electrophysiological response to 10(-16) M GnRH four times the amplitude of the response to a fresh water control stimulus. By stimulating the olfactory epithelium with several GnRH analogs and fragments of the decapeptide, the biologically active region of GnRH could be partly elucidated. The response profile of GnRH differed from that of the positive control odorant L-alanine, suggesting that separate receptors or receptor cells are involved. We propose that this potent odorant may act as a reproductive pheromone in fish. PMID:1912479

  10. Rapid and continuous activity-dependent plasticity of olfactory sensory input

    PubMed Central

    Cheetham, Claire E. J.; Park, Una; Belluscio, Leonardo

    2016-01-01

    Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone. PMID:26898529

  11. Correlations among stimuli affect stimulus matching and stimulus liking.

    PubMed

    Pimenta, Dióghenes; Tonneau, François

    2016-09-01

    Human subjects were exposed to AB, AC stimulus pairs and then to matching-to-sample tests of stimulus equivalence (B-A, C-A, B-C, C-B) or to a task in which stimulus compounds (BA, CA, BC, CB) were rated for attractiveness. Matching-to-sample tests revealed emergent B-A, C-A, B-C, and C-B choices, replicating previous results in the literature. The mean proportion of correct, emergent choices increased as a function of exposure to the AB, AC pairs. On the rating task, the liking scores of all stimulus compounds also increased as a function of exposure to the AB, AC pairs. After limited exposure to these pairs, however, the liking scores of the BC and CB compounds were negative. These findings are discussed in relation to perceptual and associative perspectives on the behavioral effects of stimulus correlations. PMID:27397574

  12. Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli

    PubMed Central

    Fried, Hans U.; Fuss, Stefan H.; Korsching, Sigrun I.

    2002-01-01

    More chemicals can be smelled than there are olfactory receptors for them, necessitating a combinatorial representation by somewhat broadly tuned receptors. To understand the perception of odor quality and concentration, it is essential to establish the nature of the receptor repertoires that are activated by particular odorants at particular concentrations. We have taken advantage of the one-to-one correspondence of glomeruli and olfactory receptor molecules in the mouse olfactory bulb to analyze the tuning properties of a major receptor population by high resolution calcium imaging of odor responses selectively in the presynaptic compartment of glomeruli. We show that eighty different olfactory receptors projecting to the dorsal olfactory bulb respond to high concentrations of aldehydes with limited specificity. Varying ensembles of about 10 to 20 receptors encode any particular aldehyde at low stimulus concentrations with high specificity. Even normalized odor response patterns are markedly concentration dependent, caused by pronounced differences in affinity within the aldehyde receptor repertoire. PMID:11854464

  13. Inter-animal olfactory cues in operant drug discrimination procedures in rats.

    PubMed

    Extance, K; Goudie, A J

    1981-01-01

    Olfactory cues from prior subjects in operant chambers were shown to be an effective stimulus which rodents could use to direct lever selection in a typical operant drug discrimination (DD) paradigm. Such cues persisted for very long periods of time (16 h), and were deposited after very short (5 min) operant sessions. In extinction tests inter-animal olfactory cues exerted very strong stimulus control over lever selection. Furthermore, such cues were not specific to individual rodent subjects but were generalizable between subjects. Inter-animal cues directing level selection could be abolished by cleaning operant manipulanda with a 10% alcohol solution. Reanalysis of some DD data previously reported by one of the authors (Goudie 1977) indicated that this specific earlier study (and by implication perhaps other studies) might have been confounded by inter-animal cues. In a DD study with nicotine it was found that the drug cue was antagonized by mecamylamine for all subjects except those who had a reliable olfactory cue from prior subjects to direct lever selection (subjects who possessed both an olfactory and a drug cue to direct lever selection responded in a way suggesting that the exteroceptive olfactory cue controlled behaviour rather than the interoceptive drug cue). These findings indicate that inter-animal olfactory cues could be of considerable methodological significance in DD studies. The possible significance of such cues has not previously been reported upon in detail, and in reports of many DD studies there do not appear to be explicit indications that inter-animal cues have been adequately controlled. PMID:6789359

  14. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons

    PubMed Central

    Szyszka, Paul; Gerkin, Richard C.; Galizia, C. Giovanni; Smith, Brian H.

    2014-01-01

    Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction. PMID:25385618

  15. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons.

    PubMed

    Szyszka, Paul; Gerkin, Richard C; Galizia, C Giovanni; Smith, Brian H

    2014-11-25

    Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction. PMID:25385618

  16. Temporal resolution of general odor pulses by olfactory sensory neurons in American cockroaches

    PubMed

    Lemon; Getz

    1997-01-01

    Behavioral and physiological evidence indicates that insect pheromone sensory neurons are able to resolve pulses of pheromone concentration as they occur downwind from a point source, but the abilities of insect sensory neurons that are sensitive to general odors to respond to pulsatile stimuli are unknown. The temporal response characteristics of olfactory sensory neurons of female American cockroaches Periplaneta americana in response to general odors were measured using a series of short odor pulses (20­400 ms). Odor pulses were delivered to olfactory sensilla in a moving airstream controlled by electromagnetic valves. The responses of sensory neurons were recorded using a tungsten electrode placed at the base of the sensillum. The temporal responses of sensory neurons followed the temporal changes in stimulus concentration, which were estimated by replacing the odorant with oil smoke and measuring the concentration of smoke passing through a light beam. Spike frequency varied with odorant concentration with surprisingly fine temporal resolution. Cockroach olfactory sensory neurons were able reliably to follow 25 ms pulses of the pure odorant 1-hexanol and 50 ms pulses of the complex odor blend coconut oil. Lower concentrations of odorants elicited responses with lower peak spike frequencies that still retained the temporal resolution of the stimulus pulses. Thus, responses of olfactory sensory neurons can reflect the fine structures of non-uniform distributions of general odorants in a turbulent odor plume as well as the average odorant concentration. PMID:9319720

  17. Reliable sex and strain discrimination in the mouse vomeronasal organ and accessory olfactory bulb.

    PubMed

    Tolokh, Illya I; Fu, Xiaoyan; Holy, Timothy E

    2013-08-21

    Animals modulate their courtship and territorial behaviors in response to olfactory cues produced by other animals. In rodents, detecting these cues is the primary role of the accessory olfactory system (AOS). We sought to systematically investigate the natural stimulus coding logic and robustness in neurons of the first two stages of accessory olfactory processing, the vomeronasal organ (VNO) and accessory olfactory bulb (AOB). We show that firing rate responses of just a few well-chosen mouse VNO or AOB neurons can be used to reliably encode both sex and strain of other mice from cues contained in urine. Additionally, we show that this population code can generalize to new concentrations of stimuli and appears to represent stimulus identity in terms of diverging paths in coding space. Together, the results indicate that firing rate code on the temporal order of seconds is sufficient for accurate classification of pheromonal patterns at different concentrations and may be used by AOS neural circuitry to discriminate among naturally occurring urine stimuli. PMID:23966710

  18. [Olfactory sensory perception].

    PubMed

    Fuentes, Aler; Fresno, María Javiera; Santander, Hugo; Valenzuela, Saúl; Gutiérrez, Mario Felipe; Miralles, Rodolfo

    2011-03-01

    The five senses have had a fundamental importance for survival and socialization of human beings. From an evolutionary point of view the sense of smell is the oldest. This sense has a strong representation within the genome, allowing the existence of many types of receptors that allow us to capture multiple volatile odor producing molecules, sending electrical signals to higher centers to report the outside world. Several cortical areas are activated in the brain, which are interconnected to form an extensive and complex neural network, linking for example, areas involved with memory and emotions, thus giving this sense of perceptual richness. While the concept of flavor is largely related to the sense of taste, smell provides the necessary integration with the rest of the senses and higher functions. Fully understanding the sense of smell is relevant to health professionals. Knowing the characteristics of the receptors, the transduction processes and convergence of information in the higher centers involved, we can properly detect olfactory disorders in our patients. PMID:21879170

  19. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  20. Olfactory morphology and physiology of elasmobranchs.

    PubMed

    Meredith, Tricia L; Kajiura, Stephen M

    2010-10-15

    Elasmobranch fishes are thought to possess greater olfactory sensitivities than teleost fishes due in part to the large amount of epithelial surface area that comprises their olfactory organs; however, direct evidence correlating the size of the olfactory organ to olfactory sensitivity is lacking. This study examined the olfactory morphology and physiology of five distantly related elasmobranch species. Specifically, we quantified the number of lamellae and lamellar surface area (as if it were a flat sheet, not considering secondary lamellae) that comprise their olfactory organs. We also calculated the olfactory thresholds and relative effectiveness of amino acid odorants for each species. The olfactory organs varied in both the number of lamellae and lamellar surface area, which may be related to their general habitat, but neither correlated with olfactory threshold. Thresholds to amino acid odorants, major olfactory stimuli of all fishes, ranged from 10⁻⁹·⁰ to 10⁻⁶·⁹ mol l⁻¹, which indicates that these elasmobranch species demonstrate comparable thresholds with teleosts. In addition, the relative effectiveness of amino acid stimuli to the olfactory organ of elasmobranchs is similar to that previously described in teleosts with neutral amino acids eliciting significantly greater responses than others. Collectively, these results indicate parallels in olfactory physiology between these two groups of fishes. PMID:20889825

  1. Olfactory dysfunction in patients with multiple sclerosis.

    PubMed

    Li, Li-Min; Yang, Li-Na; Zhang, Lin-Jie; Fu, Ying; Li, Ting; Qi, Yuan; Wang, Jing; Zhang, Da-Qi; Zhang, Ningnannan; Liu, Jingchun; Yang, Li

    2016-06-15

    Association of changes in olfactory-related structures with olfactory function in patients with multiple sclerosis (MS) is not well understood. We used a T&T olfactometer test kit to evaluate olfactory function in 26 patients with MS and 26 age- and sex-matched healthy controls (HC). Then, Brain MRI were performed and olfactory-related structures were analyzed in these subjects. Olfactory detection and recognition threshold were significantly higher in the MS group, interestingly olfactory recognition threshold positively correlated with expanded disability status scale scores in these patients. Olfactory bulb (OB) volume reduced in patients with olfactory dysfunction (ODF). At the same time, reductions in gray matter (GM) volume were observed in the parahippocampal gyrus (PCG), amygdala, piriform cortex, and inferior frontal gyrus in patients with MS compared to HC. Atrophy of the PCG was more obvious in patients with ODF than patients without ODF and the PCG volume correlated with the olfactory recognition threshold, while no difference was found in fractional anisotropy values of tract-based spatial statistics analysis in the two groups. Olfactory function in patients with MS tends to become gradually more impaired with disability aggravation. Decreases in the volume of the OB and olfactory-related GM might provide valuable information about disease status in patients with MS with olfactory impairment. PMID:27206870

  2. Sniffing and Oxytocin: Effects on Olfactory Memories.

    PubMed

    Stoop, Ron

    2016-05-01

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. PMID:27151635

  3. Olfactory instruction for fear: neural system analysis

    PubMed Central

    Canteras, Newton S.; Pavesi, Eloisa; Carobrez, Antonio P.

    2015-01-01

    Different types of predator odors engage elements of the hypothalamic predator-responsive circuit, which has been largely investigated in studies using cat odor exposure. Studies using cat odor have led to detailed mapping of the neural sites involved in innate and contextual fear responses. Here, we reviewed three lines of work examining the dynamics of the neural systems that organize innate and learned fear responses to cat odor. In the first section, we explored the neural systems involved in innate fear responses and in the acquisition and expression of fear conditioning to cat odor, with a particular emphasis on the role of the dorsal premammillary nucleus (PMd) and the dorsolateral periaqueductal gray (PAGdl), which are key sites that influence innate fear and contextual conditioning. In the second section, we reviewed how chemical stimulation of the PMd and PAGdl may serve as a useful unconditioned stimulus in an olfactory fear conditioning paradigm; these experiments provide an interesting perspective for the understanding of learned fear to predator odor. Finally, in the third section, we explored the fact that neutral odors that acquire an aversive valence in a shock-paired conditioning paradigm may mimic predator odor and mobilize elements of the hypothalamic predator-responsive circuit. PMID:26300721

  4. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  5. Monoallelic Expression of Olfactory Receptors

    PubMed Central

    Monahan, Kevin; Lomvardas, Stavros

    2016-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron’s odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  6. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish.

    PubMed

    Esposti, Federico; Johnston, Jamie; Rosa, Juliana M; Leung, Kin-Mei; Lagnado, Leon

    2013-07-10

    Cross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.5 in ganglion cells. The food-related amino acid methionine reduced the gain and increased sensitivity of responses to luminance and contrast transmitted through OFF bipolar cells but not ON. The effects of olfactory stimulus were blocked by inhibiting dopamine uptake and release. Activation of dopamine receptors increased the gain of synaptic transmission in vivo and potentiated synaptic calcium currents in isolated bipolar cells. These results indicate that olfactory stimuli alter the sensitivity of the retina through the dopaminergic regulation of presynaptic calcium channels that control the gain of synaptic transmission through OFF bipolar cells. PMID:23849198

  7. Contextual taste cues modulate olfactory learning in C. elegans by an occasion-setting mechanism.

    PubMed

    Law, Eric; Nuttley, William M; van der Kooy, Derek

    2004-07-27

    Manipulations of context can affect learning and memory performance across species in many associative learning paradigms. Using taste cues to create distinct contexts for olfactory adaptation assays in the nematode Caenorhabditis elegans, we now show that performance in this associative learning paradigm is sensitive to context manipulations, and we investigate the mechanism(s) used for the integration of context cues in learning. One possibility is that the taste and olfactory stimuli are perceived as a combined, blended cue that the animals then associate with the unconditioned stimulus (US) in the same manner as with any other unitary conditioned stimuli (CS). Alternatively, an occasion-setting model suggests that the taste cues only define the appropriate context for olfactory memory retrieval without directly entering into the primary association. Analysis of genetic mutants demonstrated that the olfactory and context cues are sensed by distinct primary sensory neurons and that the animals' ability to use taste cues to modulate olfactory learning is independent from their ability to utilize these same taste cues for adaptation. We interpret these results as evidence for the occasion-setting mechanism in which context cues modulate primary Pavlovian association by functioning in a hierarchical manner to define the appropriate setting for memory recall. PMID:15268863

  8. Response Times to Gustatory-Olfactory Flavor Mixtures: Role of Congruence.

    PubMed

    Shepard, Timothy G; Veldhuizen, Maria G; Marks, Lawrence E

    2015-10-01

    A mixture of perceptually congruent gustatory and olfactory flavorants (sucrose and citral) was previously shown to be detected faster than predicted by a model of probability summation that assumes stochastically independent processing of the individual gustatory and olfactory signals. This outcome suggests substantial integration of the signals. Does substantial integration also characterize responses to mixtures of incongruent flavorants? Here, we report simple response times (RTs) to detect brief pulses of 3 possible flavorants: monosodium glutamate, MSG (gustatory: "umami" quality), citral (olfactory: citrus quality), and a mixture of MSG and citral (gustatory-olfactory). Each stimulus (and, on a fraction of trials, water) was presented orally through a computer-operated, automated flow system, and subjects were instructed to press a button as soon as they detected any of the 3 non-water stimuli. Unlike responses previously found to the congruent mixture of sucrose and citral, responses here to the incongruent mixture of MSG and citral took significantly longer (RTs were greater) and showed lower detection rates than the values predicted by probability summation. This outcome suggests that the integration of gustatory and olfactory flavor signals is less extensive when the component flavors are perceptually incongruent rather than congruent, perhaps because incongruent flavors are less familiar. PMID:26304508

  9. Comparison of olfactory receptor (EOG) and bulbar (EEG) responses to amino acids in the catfish, Ictalurus punctatus.

    PubMed

    Byrd, R P; Caprio, J

    1982-10-01

    The olfactory bulb electroencephalogram (EEG) has been used as a method to imply receptor events12,13. However, experiments to correlate olfactory receptor and bulbar EEG activity in the same species of fish has not been performed. Reported here is the comparison between the simultaneously recorded receptor electroolfactogram (EOG) and the bulbar EEG in the channel catfish, Ictalurus punctatus. With amino acid stimulation of the olfactory mucosa, both the EOG and EEG exhibited an initial phasic response followed by a tonic level maintained throughout the stimulus duration. The relative magnitude of the tonic EEG activity (tonic level/phasic response), however, was significantly less than that for the EOG. Both EOG and integrated EEG responses increased exponentially with logarithmic increase in stimulus concentration from threshold to 10(-3) M. Estimated electrophysiological thresholds for 5 amino acids tested determined by both recording methods did not differ significantly and averaged 10(-9.3) +/- 0.2 M for the EOG and 10(-9.1) +/- 0.2 M for the EEG. There was also a significant correlation between the order of relative effectiveness for 11 amino acids determined by EOG and EEG recordings. These results indicate that in the catfish the olfactory bulb EEG is an indicator of olfactory receptor activity. PMID:7139300

  10. Olfactory dysfunction in Alzheimer’s disease

    PubMed Central

    Zou, Yong-ming; Lu, Da; Liu, Li-ping; Zhang, Hui-hong; Zhou, Yu-ying

    2016-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. PMID:27143888

  11. Olfactory exploration: State of the art.

    PubMed

    Nguyen, D T; Rumeau, C; Gallet, P; Jankowski, R

    2016-04-01

    Olfactory disorders are fairly common in the general population. Exploration, on the other hand, is seldom performed by ENT specialists, even in reference centers. There may be three reasons for this: this particular sensory modality may seem unimportant to patients and/or physicians; available treatments may be underestimated, although admittedly much yet remains to be done; and olfactory exploration is not covered by the national health insurance scheme in France. Advances in research in recent decades have shed light on olfactory system functioning. At the same time, several techniques have been developed to allow maximally objective olfactory assessment, as olfactory disorder is sometimes the first sign of neurodegenerative pathology. Moreover, objective olfactory assessment may be needed in a medico-legal context. The present paper updates the techniques currently available for olfactory exploration. PMID:26384780

  12. Stimulus Fractionation by Interocular Suppression

    PubMed Central

    Zadbood, Asieh; Lee, Sang-Hun; Blake, Randolph

    2011-01-01

    Can human observers distinguish physical removal of a visible stimulus from phenomenal suppression of that stimulus during binocular rivalry? As so often happens, simple questions produce complex answers, and that is the case in the study reported here. Using continuous flash suppression to produce binocular rivalry, we were able to identify stimulus conditions where most – but not all – people utterly fail to distinguish physical from phenomenal stimulus removal, although we can be certain that those two equivalent perceptual states are accompanied by distinct neural events. More interestingly, we find subtle variants of the task where distinguishing the two states is trivially easy, even for people who utterly fail under the original conditions. We found that stimulus features are differentially vulnerable to suppression. Observers are able to be aware of existence/removal of some stimulus attributes (flicker) but not others (orientation), implying that interocular suppression breaks down the unitary awareness of integrated features belonging to a visual object. These findings raise questions about the unitary nature of awareness and, also, place qualifications on the utility of binocular rivalry as a tool for studying the neural concomitants of conscious visual awareness. PMID:22102839

  13. Behavioral Modulation of Stimulus-Evoked Oscillations in Barrel Cortex of Alert Rats

    PubMed Central

    Venkatraman, Subramaniam; Carmena, Jose M.

    2009-01-01

    Stimulus-evoked oscillations have been observed in the visual, auditory, olfactory and somatosensory systems. To further our understanding of these oscillations, it is essential to study their occurrence and behavioral modulation in alert, awake animals. Here we show that microstimulation in barrel cortex of alert rats evokes 15–18 Hz oscillations that are strongly modulated by motor behavior. In freely whisking rats, we found that the power of the microstimulation-evoked oscillation in the local field potential was inversely correlated to the strength of whisking. This relationship was also present in rats performing a stimulus detection task suggesting that the effect was not due to sleep or drowsiness. Further, we present a computational model of the thalamocortical loop which recreates the observed phenomenon and predicts some of its underlying causes. These findings demonstrate that stimulus-evoked oscillations are strongly influenced by motor modulation of afferent somatosensory circuits. PMID:19521539

  14. The olfactory receptor family album

    PubMed Central

    Crasto, Chiquito; Singer, Michael S; Shepherd, Gordon M

    2001-01-01

    Analysis of the human genome draft sequences has revealed a more complete portrait of the olfactory receptor gene repertoire in humans than was available previously. The new information provides a basis for deeper analysis of the functions of the receptors, and promises new insights into the evolutionary history of the family. PMID:11597337

  15. Olfactory adventures of elephantine pheromones.

    PubMed

    Rasmussen, L E; Lazar, J; Greenwood, D R

    2003-02-01

    Understanding the linkage between behaviour of mammals in their natural environment and the molecular basis of their sensory modalities presents challenges to biologists. Our olfactory investigations that involve the largest extant land mammal, the elephant, offer some clues of how these events mesh in sequence. Proboscideans have developed a sophisticatedly organized society and they rank with primates and cetaceans with respect to cognitive abilities. Our studies of discrete, quantifiable pheromone-elicited behaviours demonstrate that Asian elephants utilize their olfactory senses during fundamental, life-strategy decisions, including mate choice, female bonding and male hierarchical sorting. How biologically relevant odorants traverse mucous interfaces to interact with cognate odorant receptors remains a basic question in vertebrate olfaction. We have partially tracked the molecular odour reception trail of behaviourally distinct pheromones, ( Z )-7-dodecenyl acetate and frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), using approaches developed for insect studies and taking advantage of the extensive, highly mucoidal olfactory and vomeronasal systems that permit detailed investigations of pheromone-binding proteins. We have combined studies of quantifiable responses and behaviours with biochemical and biophysical investigations of the properties of protein-ligand complexes, their sequential pathways and associated protein-ligand fluxes. In the delineation of these sequential integrations of behavioural, biochemical and molecular events, we have discovered novel spatial and temporal adaptations in both the main olfactory and vomeronasal systems. PMID:12546671

  16. Angiotensinergic involvement in olfactory function

    SciTech Connect

    Speth, R.C.; Parker, J.L.; Wright, J.W.; Harding, J.W.

    1986-03-05

    The olfactory bulbs (OB) from Sprague-Dawley and Wistar-Kyoto rats were frozen and sectioned in a sagittal plane, 20 ..mu.. thick. Sections incubated with /sup 125/-Sar/sup 1/, Ile/sup 8/-AII indicated a high density of AII receptor binding sites in the external layers of the OB. Since the primary olfactory neurons synapse with the mitral cells in these layers, this suggests that AII may affect olfactory input to the OB. To test this hypothesis, male Sprague-Dawley rats, 9-12 weeks of age, n = 8, were administered 0.2 ml of 0.17 M ZnSO/sub 4/ into each nostril to lesion the primary olfactory neurons and their axon terminals in the OB. Rats treated with ZnSO/sub 4/ showed an impairment in their ability to find a buried food pellet, P = 0.041, Mann-Whitney test. Nine days post-treatment, the rats were sacrificed and AII receptors binding in homogenates of the OB was determined. There was a 23% increase (P < 0.05) in AII receptor density in the ZnSO/sub 4/ treated rat OB; it was correlated with the extent of the olfactory deficit, r/sub s/ = .91, Spearman Rank Order Test, P < .01. However, there was a 24% decrease in OB weight in the ZnSO/sub 4/ group, so the number of AII receptors per OB was unchanged. These data suggest that AII plays a role in olfaction. Localizing AII receptor changes within the OB by quantitative autoradiography will characterize the changes in AII receptor density caused by ZnSO/sub 4/.

  17. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    ERIC Educational Resources Information Center

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  18. Norepinephrine and Learning-Induced Plasticity in Infant Rat Olfactory System

    PubMed Central

    Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael

    2007-01-01

    Postnatal olfactory learning produces both a conditioned behavioral response and a modified olfactory bulb neural response to the learned odor. The present report describes the role of norepinephrine (NE) on both of these learned responses in neonatal rat pups. Pups received olfactory classical conditioning training from postnatal days (PN) 1-18. Training consisted of 18 trials with an intertrial interval of 24 hr. For the experimental group, a trial consisted of a pairing of unconditioned stimulus (UCS, stroking/tactile stimulation) and the conditioned stimulus (CS, odor). Control groups received either only the CS (Odor only) or only the UCS (Stroke only). Within each training condition, pups were injected with either the NE β-receptor agonist isoproterenol (1, 20, or 4 mg/kg), the NE β-receptor antagonist propranolol (10, 20, 40 mg/kg), or saline 30 min prior to training. On day 20, pups received one of the following tests: (1) behavioral conditioned responding, (2) injection with 14C-2-deoxyglucase (2-DG) and exposed to the CS odor, or (3) tested for olfactory bulb mitral/tufted cell single-unit responses to the CS odor. The results indicated that training with either: (1) Odor-Stroke-Saline, (2) Odor-Stroke-lsoproterenol-Propranolol, or (3) Odor only-lsoproterenol (2 mg/kg) was sufficient to produce a learned behavioral odor preference, enhanced uptake of 14C-2-DG in the odor-specific foci within the bulb, and a modified output signal from the bulb as measured by single-cell recordings of mitral/tufted cells. Moreover, propranolol injected prior to Odor-Stroke training blocked the acquisition of both the learned behavior and olfactory bulb responses. PMID:2585063

  19. Olfactory abnormalities in temporal lobe epilepsy.

    PubMed

    Desai, M; Agadi, J B; Karthik, N; Praveenkumar, S; Netto, A B

    2015-10-01

    We studied olfactory function in a cohort of 25 temporal lobe epilepsy (TLE) patients and 25 healthy controls. Our objectives were to measure olfactory acuity in patients with right, left or bilateral TLE and compare them with age and sex matched controls, and to correlate olfactory acuity with duration of seizure, baseline seizure control and the number of drugs used. Olfactory impairment is common in neurological disorders and dysfunction of the temporo-limbic neural substrates involved in olfactory perception is noted in TLE. We measured olfactory acuity in 25 patients with TLE, nine with right, 10 with left and six with bilateral temporal lobe seizure activity, and compared them to the controls. Odor identification was assessed using the University of Pennsylvania Smell Identification Test (UPSIT) which is a 40 item olfactory test used to diagnose olfactory deficits. Our results showed that patients with TLE exhibited significant impairment in UPSIT performance compared to the controls. There was no significant difference in scores between the right and left TLE patients. The severity of olfactory impairment did not correlate with the duration of seizures, baseline seizure control and number of drugs used. We concluded that significant olfactory impairment is seen in both right and left TLE patients, unrelated to the duration and baseline frequency of seizures or drugs used. PMID:26149406

  20. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  1. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    PubMed

    Verbeurgt, Christophe; Wilkin, Françoise; Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  2. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  3. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values. PMID:26963317

  4. [Olfactory dysfunction : Update on diagnosis and treatment].

    PubMed

    Kühn, M; Abolmaali, N; Smitka, M; Podlesek, D; Hummel, T

    2016-07-01

    Olfactory dysfunction is a common disorder, particularly in elderly people. From the etiologic point of view, we distinguish between sinunasal and non-sinunasal causes of dysosmia. As an important early symptom of neurodegenerative disease, dysosmia is particularly relevant in the diagnosis of Parkinson's or Alzheimer's disease. In addition to complete ENT examination and olfactory testing, e.g., with "Sniffin' Sticks", modern imaging procedures, e. g. MRI, are becoming more and more important for diagnostics, prognosis, and treatment decisions. Olfactory testing in children needs to be adapted to their shorter concentration span and limited range of known olfactory stimuli. Depending on the etiology, olfactory training, antiphlogistic measures, and surgical procedures are most promising. In cases of intracranial causes of dysosmia, neurosurgeons should know and respect anatomic structures of the olfactory signal pathway, not least for long-term prognosis. PMID:27364339

  5. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  6. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  7. [Subjective assessment of olfactory function].

    PubMed

    Evren, Cenk; Yiğit, Volkan Bilge; Çınar, Fikret

    2015-01-01

    Of the five senses, the sense of smell is the most complex and unique in structure and organization. As diagnostic and therapeutic modalities are often underdeveloped, the sense of smell has been inadequately studied. Olfactory disorders may result from benign pathologies such as sinusitis as well as several diseases including Parkinson's disease, temporal lobe epilepsy, schizophrenia and Alzheimer disease. In this article, we aim to instruct the otorhinolaryngology specialists and residents regarding the tests which measure odor subjectively. PMID:25934410

  8. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway

    PubMed Central

    2012-01-01

    Background The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system. Methods The olfactory epithelium of C57BL/6 mice was damaged by unilateral Triton X-100 nasal washing, and Staphylococcus aureus was administered ipsilaterally 4 days later. Olfactory mucosa and bulb were harvested 6 h, 24 h and 5 days after inoculation and their cytokine profile compared to control tissues. The fate of S. aureus and the response of bulbar microglia were examined using fluorescence microscopy and transmission electron microscopy. Results In the olfactory mucosa, administered S. aureus was present in supporting cells of the olfactory epithelium, and macrophages and olfactory nerve bundles in the lamina propria. Fluorescein isothiocyanate-conjugated S. aureus was observed within the olfactory mucosa and bulb 6 h after inoculation, but remained restricted to the peripheral layers up to 5 days later. At the 24-h time point, the level of interleukin-6 (IL-6) and tumour necrosis factor-α in the compromised olfactory tissues challenged with bacteria (12,466 ± 956 pg/ml and 552 ± 193 pg/ml, respectively) was significantly higher than that in compromised olfactory tissues alone (6,092 ± 1,403 pg/ml and 80 ± 2 pg/ml, respectively). Immunohistochemistry confirmed that IL-6 was present in several cell types including olfactory ensheathing cells and mitral cells of the olfactory bulb. Concurrently, there was a 4.4-, 4.5- and 2.8-fold increase in the density of i

  9. [Olfactory disorders – history, classification and implications].

    PubMed

    Welge-Lüssen, Antje

    2016-01-01

    Smell disorders are common and can be found in 3 – 5 % of the population under 65 years. With growing age these numbers increase up to 50 % and more. Qualitative disorders which cannot be measured are differentiated from quantitative disorders. Self-assessment of olfactory function is rather poor therefore olfactory testing is mandatory in cases of patients complaining about an olfactory disorder. Olfactory screening smell tests are available for orientation, however, for detailed testing or in cases of a pathological screening test an extensive psychophysical olfactory test battery such as the Sniffin' Sticks Test battery should be used. According to the result of the test battery olfactory function can be qualified as norm, hyp- or anosmic. Additionally, in cases of medicolegal questions, olfactory evoked potentials can be recorded. Smell disorders are classified according to the history, clinical and endoscopic examination of the nose. Imaging techniques such as magnetic resonance imaging (MRI) or computertomography may contribute to classify the disorder. Sinunasal olfactory disorders are considered to be the most common ones. If the etiology remains unclear a neurological examination has to be performed in order to rule out a concomitant neurodegenerative disease. Olfactory disorders in the elderly might have to be considered as a sign of a reduced regeneration capacity in general being depicted in an increase in overall mortality in affected subjects. PMID:27132644

  10. Human olfactory receptor responses to odorants

    PubMed Central

    Mainland, Joel D; Li, Yun R; Zhou, Ting; Liu, Wen Ling L; Matsunami, Hiroaki

    2015-01-01

    Although the human olfactory system is capable of discriminating a vast number of odors, we do not currently understand what chemical features are encoded by olfactory receptors. In large part this is due to a paucity of data in a search space covering the interactions of hundreds of receptors with billions of odorous molecules. Of the approximately 400 intact human odorant receptors, only 10% have a published ligand. Here we used a heterologous luciferase assay to screen 73 odorants against a clone library of 511 human olfactory receptors. This dataset will allow other researchers to interrogate the combinatorial nature of olfactory coding. PMID:25977809

  11. The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response

    PubMed Central

    Stephan, Aaron B.; Tobochnik, Steven; Dibattista, Michele; Wall, Crystal M.; Reisert, Johannes; Zhao, Haiqing

    2011-01-01

    Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. Here, we identify NCKX4, a potassium – dependent Na+/Ca2+ exchanger, to be necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4−/− mouse OSNs display substantially prolonged responses and stronger adaptation. Single – cell electrophysiological analyses demonstrate that the majority of Na+ – dependent Ca2+ exchange in OSNs relevant to sensory transduction is due to NCKX4 and that Nckx4−/− mouse OSNs are deficient in encoding action potentials upon repeated stimulation. Olfactory – specific Nckx4 knockout mice have a reduced ability to locate an odorous source and lower body weights. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception. PMID:22057188

  12. Sleep and olfactory cortical plasticity

    PubMed Central

    Barnes, Dylan C.; Wilson, Donald A.

    2014-01-01

    In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders. PMID:24795585

  13. Flavor Identification and Intensity: Effects of Stimulus Context.

    PubMed

    Hallowell, Emily S; Parikh, Roshan; Veldhuizen, Maria G; Marks, Lawrence E

    2016-03-01

    Two experiments presented oral mixtures containing different proportions of the gustatory flavorant sucrose and an olfactory flavorant, either citral (Experiment 1) or lemon (Experiment 2). In 4 different sessions of each experiment, subjects identified each mixture as "mostly sugar" or "mostly citrus/lemon" or rated the perceived intensities of the sweet and citrus components. Different sessions also presented the mixtures in different contexts, with mixtures containing relatively high concentrations of sucrose or citral/lemon presented more often (skew sucrose or skew citral/lemon). As expected, in both experiments, varying stimulus context affected both identification and perceived intensity: Skewing to sucrose versus citral/lemon decreased the probability of identifying the stimuli as "mostly sugar" and reduced the ratings of sweet intensity relative to citrus intensity. Across both contextual conditions of both experiments, flavor identification associated closely with the ratio of the perceived sweet and citrus intensities. The results accord with a model, extrapolated from signal-detection theory, in which sensory events are represented as multisensory-multidimensional distributions in perceptual space. Changing stimulus context can shift the locations of the distributions relative to response criteria, Decision rules guide judgments based on both sensory events and criteria, these rules not necessarily being identical in tasks of identification and intensity rating. PMID:26830499

  14. Defining the Stimulus - A Memoir

    PubMed Central

    Terrace, Herbert

    2010-01-01

    The eminent psychophysicist, S. S. Stevens, once remarked that, “the basic problem of psychology was the definition of the stimulus” (Stevens, 1951, p. 46). By expanding the traditional definition of the stimulus, the study of animal learning has metamorphosed into animal cognition. The main impetus for that change was the recognition that it is often necessary to postulate a representation between the traditional S and R of learning theory. Representations allow a subject to re-present a stimulus it learned previously that is currently absent. Thus, in delayed-matching-to-sample, one has to assume that a subject responds to a representation of the sample during test if it responds correctly. Other examples, to name but a few, include concept formation, spatial memory, serial memory, learning a numerical rule, imitation and metacognition. Whereas a representation used to be regarded as a mentalistic phenomenon that was unworthy of scientific inquiry, it can now be operationally defined. To accommodate representations, the traditional discriminative stimulus has to be expanded to allow for the role of representations. The resulting composite can account for a significantly larger portion of the variance of performance measures than the exteroceptive stimulus could by itself. PMID:19969047

  15. Acquired Equivalence Changes Stimulus Representations

    ERIC Educational Resources Information Center

    Meeter, M.; Shohamy, D.; Myers, C. E.

    2009-01-01

    Acquired equivalence is a paradigm in which generalization is increased between two superficially dissimilar stimuli (or antecedents) that have previously been associated with similar outcomes (or consequents). Several possible mechanisms have been proposed, including changes in stimulus representations, either in the form of added associations or…

  16. Stimulus Effects on Local Preference: Stimulus-Response Contingencies, Stimulus-Food Pairing, and Stimulus-Food Correlation

    ERIC Educational Resources Information Center

    Davison, Michael; Baum, William M.

    2010-01-01

    Four pigeons were trained in a procedure in which concurrent-schedule food ratios changed unpredictably across seven unsignaled components after 10 food deliveries. Additional green-key stimulus presentations also occurred on the two alternatives, sometimes in the same ratio as the component food ratio, and sometimes in the inverse ratio. In eight…

  17. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis

    PubMed Central

    Perez, Margot; Nowotny, Thomas; d'Ettorre, Patrizia

    2016-01-01

    Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity. PMID:27581883

  18. Highly specific olfactory receptor neurons for types of amino acids in the channel catfish.

    PubMed

    Nikonov, Alexander A; Caprio, John

    2007-10-01

    Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity. PMID:17686913

  19. Response of the hammerhead shark olfactory epithelium to amino acid stimuli.

    PubMed

    Tricas, Timothy C; Kajiura, Stephen M; Summers, Adam P

    2009-10-01

    Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine. The weakest response was obtained for proline followed by aspartic acid and isoleucine. The olfactory epithelium showed adaptation to sequential stimulation, and recovery was related to the inter-stimulus time period. Estimated EOG response thresholds were in the sub-nanomolar range for both alanine (9.2 x 10(-11) M) and cysteine (8.4 x 10(-10) M) and in the micromolar range for proline and serine. These thresholds from 10(-10) to 10(-6) M for the scalloped hammerhead shark are comparable or lower than those reported for other teleost and elasmobranch species. Future work should focus on binary and more complex compounds to test for competition and cross-adaptation for different classes of peripheral receptors, and their responses to molecules found in biologically relevant stimuli. PMID:19711087

  20. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis.

    PubMed

    Perez, Margot; Nowotny, Thomas; d'Ettorre, Patrizia; Giurfa, Martin

    2016-08-31

    Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity. PMID:27581883

  1. Smelling on the fly: sensory cues and strategies for olfactory navigation in Drosophila.

    PubMed

    Gaudry, Quentin; Nagel, Katherine I; Wilson, Rachel I

    2012-04-01

    Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors. PMID:22221864

  2. Odourant dominance in olfactory mixture processing: what makes a strong odourant?

    PubMed Central

    Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin

    2015-01-01

    The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system. PMID:25652840

  3. Temporal patterns and selectivity in the unitary responses of olfactory receptors in the tiger salamander to odor stimulation.

    PubMed

    Baylin, F

    1979-07-01

    Temporal patterns and selectivity in unitary responses of 100 single olfactory receptors in the tiger salamander to odor stimulation were investigated. An olfactometer which permitted control of stimulus concentration, duration, and flow rate was calibrated with a gas chromatograph. Stimulus pulses were monitored by recording the electroolfactogram from the surface of the olfactory epithelium. Both diphasic and triphasic spikes were recorded extracellularly. No discernible differences in types of responses, reproducibility of responses, and cross-unit distribution of spontaneous rates distinguished diphasic from triphasic units. The cross-unit selectivity in responses to the seven olfactory stimulants used and the range of odorant concentrations which effectively evoked these responses suggest variations in types and number of types of receptive sites on each cell. Temporal patterns in the unitary responses were generally less complex than those observed in the olfactory bulb. Phasic stimulations evoked phasic patterns. Tonic stimulations evoked phasic/tonic patterns. Occasionally poststimulus depressions or elevations in firing rates were observed. The nature of these patterns varied somewhat with odorant concentration for a particular unit. PMID:479819

  4. Simulation analysis of effects of adrenaline on spike generation in olfactory receptor cells.

    PubMed

    Kawai, F

    1999-12-01

    Adrenaline is known to affect action potentials induced by the step current injection in an olfactory receptor cell (ORC). It is unclear, however, whether it also modulates action potentials induced by odor stimuli. In the present study, the effects of adrenaline on action potentials in ORCs were investigated quantitatively using a computer simulation. Adrenaline suppressed simulated action potentials induced by step current injection near threshold, and increased spike frequency to strong stimuli by 8-25%. Similar effects were obtained by applying a pseudo-transduction current to a model cell. Surprisingly, adrenaline markedly increased spike frequency to strong stimuli by 30-140%, and increased the slope of the stimulus-response relation compared with that of the step current injection. This suggests that adrenaline enhances odorant contrast in olfactory perception by modulating signal encoding of ORCs. PMID:10587504

  5. Learned olfactory discrimination versus innate taste responses to amino acids in channel catfish (Ictalurus punctatus).

    PubMed

    Valentincic, T; Wegert, S; Caprio, J

    1994-05-01

    Intact channel catfish conditioned to the L-amino acids, proline, arginine, alanine, and lysine, discriminated these stimuli from all other amino acids tested. Behavioral structure-activity tests indicated that L-pipecolate was the only effective agonist of the L-proline conditioned response. For channel catfish in which one of the paired olfactory organs was surgically removed, the number of turns to the conditioned stimulus was 40% fewer than those of intact catfish; however, these semiosmic channel catfish discriminated the conditioned from nonconditioned stimuli, as evidenced by their responding to the conditioned amino acid, with a two- to threefold greater number of turns than to the nonconditioned amino acids. Irrespective of the number of conditioning trials attempted, catfish with both olfactory organs removed were unable to discriminate the conditioned from the nonconditioned stimuli. PMID:8022906

  6. Olfactory bulb units - Activity correlated with inhalation cycles and odor quality.

    NASA Technical Reports Server (NTRS)

    Macrides, F.; Chorover, S. L.

    1972-01-01

    Single olfactory bulb units were studied in two macrosmatic species of rodents under conditions intended to preserve the cyclical stimulation which normally accompanies nasal breathing. Patterns of unit activity related to the inhalation cycle were observed in all animals, often in the absence of specific stimuli, and could not be explained in simple mechanical terms. Distinctive changes in these patterns occurred in response to certain odors, and were generally independent of changes in the overall firing frequency. These findings indicate that a change in the overall firing frequency of unit discharges is neither a necessary nor sufficient measure of responsiveness to odors in the rodent olfactory bulb, and that stimulus-specific temporal distributions of unit firing may be involved in olfacto-endocrine activities.

  7. Co-opting the unfolded protein response to elicit olfactory receptor feedback

    PubMed Central

    Dalton, Ryan P.; Lyons, David B.

    2013-01-01

    Summary Olfactory receptor (OR) expression requires the transcriptional activation of one out of thousands of OR alleles and a feedback signal that preserves this transcriptional choice. The mechanism by which olfactory sensory neurons (OSNs) detect ORs to signal to the nucleus remains elusive. Here, we show that OR proteins generate this feedback by activating the unfolded protein response (UPR). OR expression induces Perk-mediated phosphorylation of the translation initiation factor eif2α causing selective translation of Activating Transcription Factor 5 (ATF5). ATF5 induces the transcription of Adenylyl Cyclase 3 (Adcy3), which relieves the UPR. Our data provide a novel role for the UPR in defining neuronal identity and cell fate commitment and support a two-step model for the feedback signal: first OR protein, as a stress stimulus, alters the translational landscape of the OSN and induces Adcy3 expression; then, Adcy3 relieves that stress, restores global translation and makes OR choice permanent. PMID:24120133

  8. Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches.

    PubMed

    Matsumoto, Chihiro Sato; Matsumoto, Yukihisa; Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto

    2012-01-01

    Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches. PMID:21930226

  9. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.

    PubMed

    Kawai, Fusao

    2002-04-01

    The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation. PMID:11916858

  10. Olfactory Receptor Neuron Dysfunction in Schizophrenia

    PubMed Central

    Turetsky, Bruce I; Hahn, Chang-Gyu; Arnold, Steven E; Moberg, Paul J

    2012-01-01

    Olfactory impairments are a common feature of schizophrenia. Impairments in odor detection and odor identification are present early in the course of illness and among those at risk for the disorder. These behavioral impairments have been linked to both physiological and anatomical abnormalities in the neural substrates subserving olfaction, including relatively peripheral elements of the olfactory system. The location of olfactory receptor neurons in the nasal epithelium allows noninvasive access to these neurons in living subjects. This offers a unique opportunity to directly assess neuronal integrity in vivo in patients. The peripheral olfactory receptor neuron response to odor stimulation was assessed in 21 schizophrenia patients and 18 healthy comparison subjects. The electroolfactogram, representing the electrical depolarization of the olfactory receptor neurons, was recording following stimulation with different doses and durations of hydrogen sulfide, a pure olfactory nerve stimulant. Schizophrenia patients had abnormally large depolarization responses following odor stimulation, independent of clinical symptomatology, antipsychotic medication dosage or smoking history. Although the precise pathophysiological mechanism is unknown, this olfactory receptor neuron abnormality is consistent with several lines of evidence suggesting altered proliferation or maturation of olfactory receptor neuron cell lineages in schizophrenia. It is also consistent with emerging evidence of disruptions of cyclic AMP-mediated intracellular signaling mechanisms, and may be a marker of these disruptions. It unambiguously demonstrates that neurophysiological disturbances in schizophrenia are not limited to cortical and subcortical structures, but rather include even the most peripheral sensory neurons. PMID:18754006

  11. Olfactory receptor neuron dysfunction in schizophrenia.

    PubMed

    Turetsky, Bruce I; Hahn, Chang-Gyu; Arnold, Steven E; Moberg, Paul J

    2009-02-01

    Olfactory impairments are a common feature of schizophrenia. Impairments in odor detection and odor identification are present early in the course of illness and among those at risk for the disorder. These behavioral impairments have been linked to both physiological and anatomical abnormalities in the neural substrates subserving olfaction, including relatively peripheral elements of the olfactory system. The location of olfactory receptor neurons in the nasal epithelium allows noninvasive access to these neurons in living subjects. This offers a unique opportunity to directly assess neuronal integrity in vivo in patients. The peripheral olfactory receptor neuron response to odor stimulation was assessed in 21 schizophrenia patients and 18 healthy comparison subjects. The electroolfactogram, representing the electrical depolarization of the olfactory receptor neurons, was recording following stimulation with different doses and durations of hydrogen sulfide, a pure olfactory nerve stimulant. Schizophrenia patients had abnormally large depolarization responses following odor stimulation, independent of clinical symptomatology, antipsychotic medication dosage or smoking history. Although the precise pathophysiological mechanism is unknown, this olfactory receptor neuron abnormality is consistent with several lines of evidence suggesting altered proliferation or maturation of olfactory receptor neuron cell lineages in schizophrenia. It is also consistent with emerging evidence of disruptions of cyclic AMP-mediated intracellular signaling mechanisms, and may be a marker of these disruptions. It unambiguously demonstrates that neurophysiological disturbances in schizophrenia are not limited to cortical and subcortical structures, but rather include even the most peripheral sensory neurons. PMID:18754006

  12. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  13. Detection of explosives by olfactory sensory neurons.

    PubMed

    Corcelli, Angela; Lobasso, Simona; Lopalco, Patrizia; Dibattista, Michele; Araneda, Ricardo; Peterlin, Zita; Firestein, Stuart

    2010-03-15

    The response of olfactory sensory neurons to TNT and RDX as well as to some volatile organic compounds present in the vapors of antipersonnel landmines has been studied both in the pig and in the rat. GC/MS analyses of different plastic components of six different kinds of landmines were performed in order to identify the components of the "perfume" of mines. Studies on rat olfactory mucosa were carried out with electro-olfactogram and calcium imaging techniques, while changes in the cyclic adenosine monophosphate (cAMP) levels following exposure to odorants and explosives were used as a criterion to evaluate the interaction of TNT and RDX with olfactory receptors in a preparation of isolated pig olfactory cilia. These studies indicate that chemical compounds associated with explosives and explosive devices can activate mammalian olfactory receptors. PMID:19913995

  14. Plasticity-driven individualization of olfactory coding in mushroom body output neurons

    PubMed Central

    Hige, Toshihide; Aso, Yoshinori; Rubin, Gerald M.; Turner, Glenn C.

    2015-01-01

    Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies (MBs) have been an important model system for studying sparse coding in the olfactory system1–3, where this format is important for accurate memory formation4–6. In Drosophila, it has recently been shown that the 2000 Kenyon cells (KCs) of the MB converge onto a population of only 35 MB output neurons (MBONs), that fall into 22 anatomically distinct cell types7,8. Here we provide the first comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit2,9. Instead, at the population level, odor representations are reformatted so that positive and negative correlations arise between representations of different odors. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system. PMID:26416731

  15. Plasticity-driven individualization of olfactory coding in mushroom body output neurons.

    PubMed

    Hige, Toshihide; Aso, Yoshinori; Rubin, Gerald M; Turner, Glenn C

    2015-10-01

    Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system. PMID:26416731

  16. Olfactory Neuroblastoma: A Case Report.

    PubMed

    Olmo, Heather R; Stokes, Steven Marc; Foss, Robert D

    2016-06-01

    A 43-year-old female presented with persistent nasal congestion with intermittent epistaxis without resolution for the preceding 5 years. Clinical examination revealed a large pink rubbery mass, medial to the middle turbinate in the right nasal cavity extending to the choana. Radiographic images demonstrated a heterogeneously enhancing lobular soft tissue mass filling the right nasal cavity, causing lateral bowing of the right medial orbital wall and extending posteriorly to the right anterior ethmoid sinus. The clinical, radiographic, histologic, and immunohistochemical features of olfactory neuroblastoma are discussed. PMID:26316323

  17. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Olfactory test device. 874.1600 Section...

  18. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Olfactory test device. 874.1600 Section...

  19. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  20. Neuromodulation of Olfactory Sensitivity in the Peripheral Olfactory Organs of the American Cockroach, Periplaneta americana

    PubMed Central

    Jung, Je Won; Kim, Jin-Hee; Pfeiffer, Rita; Ahn, Young-Joon; Page, Terry L.; Kwon, Hyung Wook

    2013-01-01

    Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors. PMID:24244739

  1. Observing Behavior and Atypically Restricted Stimulus Control

    ERIC Educational Resources Information Center

    Dube, William V.; Dickson, Chata A.; Balsamo, Lyn M.; O'Donnell, Kristin Lombard; Tomanari, Gerson Y.; Farren, Kevin M.; Wheeler, Emily E.; McIlvane, William J.

    2010-01-01

    Restricted stimulus control refers to discrimination learning with atypical limitations in the range of controlling stimuli or stimulus features. In the study reported here, 4 normally capable individuals and 10 individuals with intellectual disabilities (ID) performed two-sample delayed matching to sample. Sample-stimulus observing was recorded…

  2. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity

    PubMed Central

    Getahun, Merid N.; Wicher, Dieter; Hansson, Bill S.; Olsson, Shannon B.

    2012-01-01

    Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR). It is well known that insects are exposed to a plethora of odor molecules that vary widely in both space and time under turbulent natural conditions. In addition to divergent ligand specificities, these different receptors might also provide an increased range of temporal dynamics and sensitivities for the olfactory system. To test this, we challenged different Drosophila OSNs with both varying stimulus durations (10–2000 ms), and repeated stimulus pulses of key ligands at various frequencies (1–10 Hz). Our results show that OR-expressing OSNs responded faster and with higher sensitivity to short stimulations as compared to IR- and Gr21a-expressing OSNs. In addition, OR-expressing OSNs could respond to repeated stimulations of excitatory ligands up to 5 Hz, while IR-expressing OSNs required ~5x longer stimulations and/or higher concentrations to respond to similar stimulus durations and frequencies. Nevertheless, IR-expressing OSNs did not exhibit adaptation to longer stimulations, unlike OR- and Gr21a-OSNs. Both OR- and IR-expressing OSNs were also unable to resolve repeated pulses of inhibitory ligands as fast as excitatory ligands. These differences were independent of the peri-receptor environment in which the receptors were expressed and suggest that the receptor expressed by a given OSN affects both its sensitivity and its response to transient, intermittent chemical stimuli. OR-expressing OSNs are better at resolving low dose, intermittent stimuli, while IR-expressing OSNs respond more accurately to long-lasting odor pulses. This diversity increases the capacity of the insect olfactory system to respond to the diverse spatiotemporal signals in the natural environment. PMID:23162431

  3. Olfactory learning and memory in the disease vector mosquito Aedes aegypti

    PubMed Central

    Vinauger, Clément; Lutz, Eleanor K.; Riffell, Jeffrey A.

    2014-01-01

    Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS – some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (β-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

  4. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  5. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    SciTech Connect

    Zhou Jun; Chen Peihua; Liu Qingjun; Wang Ping; Yang Wei

    2009-05-23

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  6. Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning.

    PubMed

    Samuelides, Manuel; Doyon, Bernard; Cessac, Bruno; Quoy, Mathias; Dauce, Emmanuel

    1998-04-01

    Freeman's investigations on the olfactory bulb of the rabbit showed that its signal dynamics was chaotic, and that recognition of a learned stimulus is linked to a dimension reduction of the dynamics attractor. In this paper we address the question whether this behavior is specific of this particular architecture, or if it is a general property. We study the dynamics of a non-convergent recurrent model-the random recurrent neural networks. In that model a mean-field theory can be used to analyze the autonomous dynamics. We extend this approach with various observations on significant changes in the dynamical regime when sending static random stimuli. Then we propose a Hebb-like learning rule, viewed as a self-organization dynamical process inducing specific reactivity to one random stimulus. We numerically show the dynamics reduction during learning and recognition processes and analyze it in terms of dynamical repartition of local neural activity. PMID:12662827

  7. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  8. Understanding the Odour Spaces: A Step towards Solving Olfactory Stimulus-Percept Problem.

    PubMed

    Kumar, Ritesh; Kaur, Rishemjit; Auffarth, Benjamin; Bhondekar, Amol P

    2015-01-01

    Odours are highly complex, relying on hundreds of receptors, and people are known to disagree in their linguistic descriptions of smells. It is partly due to these facts that, it is very hard to map the domain of odour molecules or their structure to that of perceptual representations, a problem that has been referred to as the Structure-Odour-Relationship. We collected a number of diverse open domain databases of odour molecules having unorganised perceptual descriptors, and developed a graphical method to find the similarity between perceptual descriptors; which is intuitive and can be used to identify perceptual classes. We then separately projected the physico-chemical and perceptual features of these molecules in a non-linear dimension and clustered the similar molecules. We found a significant overlap between the spatial positioning of the clustered molecules in the physico-chemical and perceptual spaces. We also developed a statistical method of predicting the perceptual qualities of a novel molecule using its physico-chemical properties with high receiver operating characteristics(ROC). PMID:26484763

  9. Understanding the Odour Spaces: A Step towards Solving Olfactory Stimulus-Percept Problem

    PubMed Central

    Kumar, Ritesh; Bhondekar, Amol P.

    2015-01-01

    Odours are highly complex, relying on hundreds of receptors, and people are known to disagree in their linguistic descriptions of smells. It is partly due to these facts that, it is very hard to map the domain of odour molecules or their structure to that of perceptual representations, a problem that has been referred to as the Structure-Odour-Relationship. We collected a number of diverse open domain databases of odour molecules having unorganised perceptual descriptors, and developed a graphical method to find the similarity between perceptual descriptors; which is intuitive and can be used to identify perceptual classes. We then separately projected the physico-chemical and perceptual features of these molecules in a non-linear dimension and clustered the similar molecules. We found a significant overlap between the spatial positioning of the clustered molecules in the physico-chemical and perceptual spaces. We also developed a statistical method of predicting the perceptual qualities of a novel molecule using its physico-chemical properties with high receiver operating characteristics(ROC). PMID:26484763

  10. Human olfactory lateralization requires trigeminal activation.

    PubMed

    Croy, Ilona; Schulz, Max; Blumrich, Anna; Hummel, Cornelia; Gerber, Johannes; Hummel, Thomas

    2014-09-01

    Rats are able to lateralize odors. This ability involves specialized neurons in the orbitofrontal cortex which are able to process the left, right and bilateral presentation of stimuli. However, it is not clear whether this function is preserved in humans. Humans are in general not able to differentiate whether a selective olfactory stimulant has been applied to the left or right nostril; however exceptions have been reported. Following a screening of 152 individuals with an olfactory lateralization test, we identified 19 who could lateralize odors above chance level. 15 of these "lateralizers" underwent olfactory fMRI scanning in a block design and were compared to 15 controls matched for age and sex distribution. As a result, both groups showed comparable activation of olfactory eloquent brain areas. However, subjects with lateralization ability had a significantly enhanced activation of cerebral trigeminal processing areas (somatosensory cortex, intraparietal sulcus). In contrast to controls, lateralizers furthermore exhibited no suppression in the area of the trigeminal principal sensory nucleus. An exploratory study with an olfactory change detection paradigm furthermore showed that lateralizers oriented faster towards changes in the olfactory environment. Taken together, our study suggests that the trigeminal system is activated to a higher degree by the odorous stimuli in the group of "lateralizers". We conclude that humans are not able to lateralize odors based on the olfactory input alone, but vary in the degree to which the trigeminal system is recruited. PMID:24825502

  11. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care. PMID:24584010

  12. Stimulus and Network Dynamics Collide in a Ratiometric Model of the Antennal Lobe Macroglomerular Complex

    PubMed Central

    Chong, Kwok Ying; Capurro, Alberto; Karout, Salah; Pearce, Timothy Charles

    2012-01-01

    Time is considered to be an important encoding dimension in olfaction, as neural populations generate odour-specific spatiotemporal responses to constant stimuli. However, during pheromone mediated anemotactic search insects must discriminate specific ratios of blend components from rapidly time varying input. The dynamics intrinsic to olfactory processing and those of naturalistic stimuli can therefore potentially collide, thereby confounding ratiometric information. In this paper we use a computational model of the macroglomerular complex of the insect antennal lobe to study the impact on ratiometric information of this potential collision between network and stimulus dynamics. We show that the model exhibits two different dynamical regimes depending upon the connectivity pattern between inhibitory interneurons (that we refer to as fixed point attractor and limit cycle attractor), which both generate ratio-specific trajectories in the projection neuron output population that are reminiscent of temporal patterning and periodic hyperpolarisation observed in olfactory antennal lobe neurons. We compare the performance of the two corresponding population codes for reporting ratiometric blend information to higher centres of the insect brain. Our key finding is that whilst the dynamically rich limit cycle attractor spatiotemporal code is faster and more efficient in transmitting blend information under certain conditions it is also more prone to interference between network and stimulus dynamics, thus degrading ratiometric information under naturalistic input conditions. Our results suggest that rich intrinsically generated network dynamics can provide a powerful means of encoding multidimensional stimuli with high accuracy and efficiency, but only when isolated from stimulus dynamics. This interference between temporal dynamics of the stimulus and temporal patterns of neural activity constitutes a real challenge that must be successfully solved by the nervous system

  13. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  14. Neuronal organization of olfactory bulb circuits

    PubMed Central

    Nagayama, Shin; Homma, Ryota; Imamura, Fumiaki

    2014-01-01

    Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit. PMID:25232305

  15. Unraveling Cajal's view of the olfactory system

    PubMed Central

    Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura

    2014-01-01

    The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462

  16. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb

    PubMed Central

    Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N

    2016-01-01

    Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI: http://dx.doi.org/10.7554/eLife.16039.001 PMID:27351103

  17. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb.

    PubMed

    Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N

    2016-01-01

    Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. PMID:27351103

  18. Investigating the roles of odor-evoked oscillations in information processing in the turtle olfactory bulb

    NASA Astrophysics Data System (ADS)

    Kim, Soyoun

    It has been earlier established that presentation of an odorant stimulus to the turtle evokes specific spatio-temporal responses in the olfactory bulb. This response includes three distinct oscillatory patterns (rostral, middle and caudal) that have different spatial (locations and scopes) and temporal (frequencies and delay from the odorant onset) properties. In this thesis we investigate, using modeling and experimental approaches; the mechanisms of formation and the role of the oscillatory patterning in the turtle olfactory bulb. We have built a computational model that incorporates the basic anatomy and neurophysiology of the olfactory bulb to investigate how the observed patterns relate to activity of individual neurons and what roles they could play in olfactory information processing. We show that three basic anatomical/physiological properties of the olfactory network underlie formation of a temporal sequence of simultaneous activations of glomerular modules: fast synaptic inhibition between populations of excitatory and inhibitory cells, slow self-inhibition observed on excitatory cells; and input strength. The model suggests that the role of oscillations is to organize the neural activity in a temporal sequence which groups the activation of glomerular modules based on the input strength similarity. We show that this type of code explains particularly well the experimental findings reported also by other groups, showing that temporal patterning may mediate discrimination of similar odorants. Furthermore, we showed that within our model, feedback from cortical regions of the brain could modulate oscillatory patterning and provide mechanisms to generate experimentally observed period doubling in one of the oscillations. This requires the cortical processing to act as a type of coincidence modulator and provide functional coupling between excitatory modules that is absent in the bulbar network. This hypothesis is partially supported by our experiments that

  19. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  20. Methods to measure olfactory behavior in mice

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-01-01

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244

  1. The Pig Olfactory Brain: A Primer.

    PubMed

    Brunjes, Peter C; Feldman, Sanford; Osterberg, Stephen K

    2016-06-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  2. Comparison of clinical tests of olfactory function.

    PubMed

    Reden, J; Draf, C; Frank, R A; Hummel, T

    2016-04-01

    To assess olfactory function, various measures are used in clinical routine. In this study, the Sniff Magnitude Test (SMT), a test considering the sniff response to an odor, was applied to patients with olfactory dysfunction (n = 49) and to a control group without subjective olfaction disorder (n = 21). For comparison, the validated "Sniffin' Sticks" test battery, a psychophysical olfactory test consisting of tests for phenyl ethyl alcohol odor threshold, odor discrimination, and odor identification was performed. Analyses indicated that the SMT showed significant differences between patients and controls (p = 0.003). Furthermore, results from the SMT and the "Sniffin' Sticks" correlated significantly (p < 0.001). In conclusion, the SMT appears to be a useful addition to the battery of available clinical tests to assess olfactory function. PMID:26050222

  3. Serotonin modulation of moth central olfactory neurons.

    PubMed

    Kloppenburg, Peter; Mercer, Alison R

    2008-01-01

    In the tobacco hornworm, Manduca sexta, 5-hydroxytryptamine (5HT) acting at the level of the antennal lobes contributes significantly to changing the moth's responsiveness to olfactory stimuli. 5HT targets K(+) conductances in the cells, increasing the excitability of central olfactory neurons and their responsiveness to olfactory cues. Effects of 5HT modulation are apparent not only at the single cell level, but also in the activity patterns of populations of neurons that convey olfactory information from antennal lobes to higher centers of the brain. Evidence suggests that 5HT-induced changes in activity within neural circuits of the antennal lobes might also drive structural plasticity, providing the basis for longer-term changes in antennal lobe function. PMID:18067443

  4. The Pig Olfactory Brain: A Primer

    PubMed Central

    Feldman, Sanford; Osterberg, Stephen K.

    2016-01-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  5. Protein kinase C sensitizes olfactory adenylate cyclase.

    PubMed

    Frings, S

    1993-02-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  6. Olfactory bulb encoding during learning under anesthesia

    PubMed Central

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  7. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  8. Long-term recording of olfactory and vomeronasal stimulant-induced waves from the turtle main olfactory bulb and accessory olfactory bulb.

    PubMed

    Kashiwayanagi, M; Taniguchi, M; Shoji, T; Kurihara, K

    1997-08-01

    Recording of stimulant-induced waves (bulbar responses) from the main olfactory bulb is a useful tool for measuring quantitative stable olfactory responses. There is a good relationship between the olfactory bulbar response, olfactory nerve response and electroolfactogram (EOG), suggesting that the bulbar response reflects events in receptor cells. The modern whole-cell recording technique offers direct information on olfactory transduction in single cells, but it requires long experimental periods and many animals. On the other hand, analysis of bulbar responses provides useful information and requires the use of few animals. For example, we found that cAMP-increasing and IP3-increasing odorants were not distinctly received by the turtle olfactory organ by measuring olfactory bulbar responses and analyzed with a multidimensional scaling from about 60 animals. However, to record similar odor responses from isolated turtle olfactory neurons, at least 200 animals would be necessary. Bulbar responses are recorded with electrodes implanted into or located on the main olfactory bulb. When electrodes are located on the olfactory bulb surface, it is possible to record stable responses over a period of 3 days. These methods were applied successfully to the accessory olfactory bulb. In this paper, we describe the protocols used for recording of the stimulant-induced waves from the main and accessory olfactory bulb. PMID:9385067

  9. Poverty of the stimulus revisited.

    PubMed

    Berwick, Robert C; Pietroski, Paul; Yankama, Beracah; Chomsky, Noam

    2011-01-01

    A central goal of modern generative grammar has been to discover invariant properties of human languages that reflect "the innate schematism of mind that is applied to the data of experience" and that "might reasonably be attributed to the organism itself as its contribution to the task of the acquisition of knowledge" (Chomsky, 1971). Candidates for such invariances include the structure dependence of grammatical rules, and in particular, certain constraints on question formation. Various "poverty of stimulus" (POS) arguments suggest that these invariances reflect an innate human endowment, as opposed to common experience: Such experience warrants selection of the grammars acquired only if humans assume, a priori, that selectable grammars respect substantive constraints. Recently, several researchers have tried to rebut these POS arguments. In response, we illustrate why POS arguments remain an important source of support for appeal to a priori structure-dependent constraints on the grammars that humans naturally acquire. PMID:21824178

  10. Olfactory preference conditioning changes the reward value of reinforced and non-reinforced odors

    PubMed Central

    Torquet, Nicolas; Aimé, Pascaline; Messaoudi, Belkacem; Garcia, Samuel; Ey, Elodie; Gervais, Rémi; Julliard, A. Karyn; Ravel, Nadine

    2014-01-01

    Olfaction is determinant for the organization of rodent behavior. In a feeding context, rodents must quickly discriminate whether a nutrient can be ingested or whether it represents a potential danger to them. To understand the learning processes that support food choice, aversive olfactory learning and flavor appetitive learning have been extensively studied. In contrast, little is currently known about olfactory appetitive learning and its mechanisms. We designed a new paradigm to study conditioned olfactory preference in rats. After 8 days of exposure to a pair of odors (one paired with sucrose and the other with water), rats developed a strong and stable preference for the odor associated with the sucrose solution. A series of experiments were conducted to further analyze changes in reward value induced by this paradigm for both stimuli. As expected, the reward value of the reinforced odor changed positively. Interestingly, the reward value of the alternative odor decreased. This devaluation had an impact on further odor comparisons that the animal had to make. This result suggests that appetitive conditioning involving a comparison between two odors not only leads to a change in the reward value of the reinforced odor, but also induces a stable devaluation of the non-reinforced stimulus. PMID:25071486

  11. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  12. The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila.

    PubMed

    Wu, Yanying; Ren, Qingzhong; Li, Hao; Guo, Aike

    2012-01-01

    Reversal learning has been widely used to probe the implementation of cognitive flexibility in the brain. Previous studies in monkeys identified an essential role of the orbitofrontal cortex (OFC) in reversal learning. However, the underlying circuits and molecular mechanisms are poorly understood. Here, we use the T-maze to investigate the neural mechanism of olfactory reversal learning in Drosophila. By adding a reversal training cycle to the classical learning protocol, we show that wild-type flies are able to reverse their choice according to the alteration of conditioned stimulus (CS)-unconditioned stimulus (US) contingency. The reversal protocol induced a specific suppression of the initial memory, an effect distinct from memory decay or extinction. GABA down-regulation in the anterior paired lateral (APL) neurons, which innervate the mushroom bodies (MBs), eliminates this suppression effect and impairs normal reversal. These findings reveal that inhibitory regulation from the GABAergic APL neurons facilitates olfactory reversal learning by suppressing initial memory in Drosophila. PMID:22988290

  13. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component

    PubMed Central

    Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf

    2016-01-01

    In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina. PMID:26919132

  14. Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila.

    PubMed

    Zhang, Shixing; Roman, Gregg

    2013-12-16

    The loss of heterotrimeric G(o) signaling through the expression of pertussis toxin (PTX) within either the α/β or γ lobe mushroom body neurons of Drosophila results in the impaired aversive olfactory associative memory formation. Herein, we focus on the cellular effects of G(o) signaling in the γ lobe mushroom body neurons during memory formation. Expression of PTX in the γ lobes specifically inhibits G(o) activation, leading to poor olfactory learning and an increase in odor-elicited synaptic vesicle release. In the γ lobe neurons, training decreases synaptic vesicle release elicited by the unpaired conditioned stimulus -, while leaving presynaptic activation by the paired conditioned stimulus + unchanged. PTX expression in γ lobe neurons inhibits the generation of this differential synaptic activation by conditioned stimuli after negative reinforcement. Hyperpolarization of the γ lobe neurons or the inhibition of presynaptic activity through the expression of dominant negative dynamin transgenes ameliorated the memory impairment caused by PTX, indicating that the disinhibition of these neurons by PTX was responsible for the poor memory formation. The role for γ lobe inhibition, carried out by G(o) activation, indicates that an inhibitory circuit involving these neurons plays a positive role in memory acquisition. This newly uncovered requirement for inhibition of odor-elicited activity within the γ lobes is consistent with these neurons serving as comparators during learning, perhaps as part of an odor salience modification mechanism. PMID:24291093

  15. Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns.

    PubMed

    Johnson, Brett A; Woo, Cynthia C; Zeng, Yu; Xu, Zhe; Hingco, Edna E; Ong, Joan; Leon, Michael

    2010-05-15

    Although it has been shown repeatedly that minimum response times in sensory systems can be quite short, organisms more often continue to respond to sensory stimuli over considerably longer periods of time. The continuing response to sensory stimulation may be a more realistic assessment of natural sensory responses, so we determined for how long a stimulus would evoke a response in naïve, freely moving animals. Specifically, we determined for how long such rats responded to odorants during continuous passive exposures by monitoring their sniffing with whole-body plethysmography. We found that naïve rats continue to sniff odorants vigorously for up to 3 minutes, much longer than what has been reported for highly trained, highly motivated rats. Patterns of 2-deoxyglucose (2-DG) uptake in the glomerular layer of the rat olfactory bulb also were seen after only 1-5 minutes of odorant exposure, overlapping with the period of increased respiration to odorants. Moreover, these 2-DG uptake patterns closely resembled the patterns that emerge from prolonged odorant exposures, suggesting that activity mapping over prolonged periods can identify areas of activity that are present when rats are still attending and responding to odorant stimuli. Given these findings, it seems important to consider the possibility that prolonged exposure to other sensory stimuli will reveal more realistic neural response patterns. PMID:20232477

  16. Effects of handedness on olfactory event-related potentials in a simple olfactory task.

    PubMed

    Gottschlich, Marie; Hummel, Thomas

    2015-06-01

    The purpose of the present study was to re-investigate the influence of handedness on simple olfactory tasks to further clarify the role of handedness in chemical senses. Similar to language and other sensory systems, effects of handedness should be expected. Young, healthy subjects participated in this study, including 24 left-handers and 24 right-handers, with no indication of any major nasal or health problems. The two groups did not differ in terms of sex and age (14 women and 10 men in each group). They had a mean age of 24.0 years. Olfactory event-related potentials were recorded after left or right olfactory stimulation with the rose-like odor phenyl ethyl alcohol (PEA) or the smell of rotten eggs (hydrogen sulfide, H2S). Results suggested that handedness has no major influence on amplitude or latency of olfactory event-related potentials when it comes to simple olfactory tasks. PMID:26030037

  17. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model

    PubMed Central

    Jung, Yong Gi; Lane, Andrew P.

    2016-01-01

    Objective To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (Etanercept) on an inducible olfactory inflammation (IOI) mouse model Study Design An in vivo study using a transgenic mouse model Setting Research laboratory Subjects and Methods To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis (CRS)-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally-controlled fashion specifically within the olfactory epithelium. In one group of mice (n=4), Etanercept was injected intraperitoneally (100 µg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n=2) underwent induction of TNF-α expression for 8 weeks, with Etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with equal number of control group. Results Compared to non-treated IOI mice, Etanercept -treated IOI mice showed significantly improved EOG responses after 2 weeks (p<0.001). After 8 weeks of induced inflammation, there was massive loss of olfactory epithelium and no EOG response in non-treated IOI mice. However, in Etanercept - treated mice, regeneration of olfactory epithelium was observed. Conclusion Concomitant administration of Etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that Etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. PMID:26932943

  18. Responses of cockroach antennal lobe projection neurons to pulsatile olfactory stimuli.

    PubMed

    Lemon, W C; Getz, W M

    1998-11-30

    Behavioral evidence indicates that insects preferentially orient toward pulses of odorants as they occur downwind from a point source. Our recent results have shown that cockroach olfactory receptor neurons are able to reliably resolve 10-Hz pulses of the general "green' odorant 1-hexanol, but it is unknown to what extent the central olfactory pathway is able to resolve temporal aspects of a general odor stimulus. In the present study, temporal response characteristics were measured in antennal lobe projection neurons of female American cockroaches, Periplaneta americana in response to series of short odor pulses (2.5-20 Hz). Odor pulses were delivered to olfactory sensilla in a moving airstream controlled by electromagnetic valves and quantified by replacing the odorant with oil smoke and measuring the concentration of smoke passing through a light beam. The responses of projection neurons were recorded with an intracellular microelectrode placed in the projection neuron cell body. A variety of time courses of responses were recorded. Response patterns were consistent among identical stimuli within a neuron and varied among neurons. Some neurons increased spike frequency with stimulus onset while others decreased spike frequency. The latency to the change in spike frequency and the duration of the response also varied among neurons. Regardless of the temporal characteristics of the responses, nearly all projection neurons were able to resolve pulses of 1-hexanol presented at 5 Hz and some could resolve 10-Hz pulses. Thus, responses of antennal lobe projection neurons can reflect fine structures of non-uniform distributions of general odorants in a turbulent odor plume. In addition, the variety of temporal response characteristics to identical stimuli suggests that odor quality is coded by a temporal code expressed across a population of projection neurons. PMID:10049232

  19. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    PubMed

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express. PMID:27189720

  20. Investigation of Stimulus-Response Compatibility Using a Startling Acoustic Stimulus

    ERIC Educational Resources Information Center

    Maslovat, Dana; Carlsen, Anthony N.; Franks, Ian M.

    2012-01-01

    We investigated the processes underlying stimulus-response compatibility by using a lateralized auditory stimulus in a simple and choice reaction time (RT) paradigm. Participants were asked to make either a left or right key lift in response to either a control (80dB) or startling (124dB) stimulus presented to either the left ear, right ear, or…

  1. An Evaluation of the Number of Presentations of Target Sounds during Stimulus-Stimulus Pairing Trials

    ERIC Educational Resources Information Center

    Miliotis, Adriane; Sidener, Tina M.; Reeve, Kenneth F.; Carbone, Vincent; Sidener, David W.; Rader, Lisa; Delmolino, Lara

    2012-01-01

    Stimulus-stimulus pairing (SSP) of vocalizations pairs the speech of others with the delivery of highly preferred items. The goal of this procedure is to produce a temporary increase in vocalizations, thus creating a larger variety of sounds that can subsequently be brought under appropriate stimulus control (Esch, Carr, & Grow, 2009). In this…

  2. Non-oscillatory discharges of an F-prostaglandin responsive neuron population in the olfactory bulb-telencephalon transition area in lake whitefish.

    PubMed

    Laberge, F; Hara, T J

    2003-01-01

    Our previous studies on olfactory bulbar responses in salmonid fishes suggest that pheromone signals might be processed by a mechanism distinct from that of other odorants. Using in vivo single-unit and electroencephalographic recordings, we investigated response characteristics of olfactory neurons in lake whitefish, Coregonus clupeaformis, a species characterized by high electrophysiological and behavioral sensitivities to the reproductive pheromone candidates F-prostaglandins. We found a neuron population responsive to F-prostaglandins in the ventromedial brain tissue strip connecting the olfactory bulb to the telencephalon. Of the 64 neurons examined in this area, 33% showed excitatory and 11% inhibitory responses to F-prostaglandins, while 52% were non-responsive to all the stimuli tested. Both phasic and tonic F-prostaglandin neuron response patterns were observed during the 10-s stimulus period; some responses were delayed from the onset of stimulation, and some persisted for a long time following stimulus cessation. This neuron population did not induce synchronized oscillatory waves upon stimulation with F-prostaglandins, despite massive discharges. We demonstrate for the first time that the olfactory bulb-telencephalon area of the brain is a distinct neural structure through which putative reproductive pheromone signals are integrated. Amino acid and F-prostaglandin neuron population discharges have different temporal characteristics, suggesting different processing mechanisms exist for odorant and pheromone signals. The observed sustained neuron discharges may play a role in amplifying pheromone signals required for triggering stereotyped neuroendocrine and/or behavior changes. PMID:12617950

  3. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans

    PubMed Central

    Juang, Bi-Tzen; Ludwig, Anna L.; Benedetti, Kelli L.; Gu, Chen; Collins, Kimberly; Morales, Christopher; Asundi, Aarati; Wittmann, Torsten; L'Etoile, Noelle; Hagerman, Paul J.

    2014-01-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS. PMID:24821701

  4. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  5. Stimulus Intensity and the Perception of Duration

    ERIC Educational Resources Information Center

    Matthews, William J.; Stewart, Neil; Wearden, John H.

    2011-01-01

    This article explores the widely reported finding that the subjective duration of a stimulus is positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory and visual stimuli, the effect of stimulus magnitude on the perception of duration depends upon the background: Against a high intensity background, weak stimuli…

  6. Stimulus Overselectivity: Empirical Basis and Diagnostic Methods

    ERIC Educational Resources Information Center

    Cipani, Ennio

    2012-01-01

    This paper presents the empirical basis for the phenomena known as stimulus overselectivity. Stimulus overselectivity involves responding on the basis of a restricted range of elements or features that are discriminative for reinforcement. The manner in which such a response pattern impedes the skill acquisition in children is identified. A…

  7. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  8. Why Additional Presentations Help Identify a Stimulus

    ERIC Educational Resources Information Center

    Guest, Duncan; Kent, Christopher; Adelman, James S.

    2010-01-01

    Nosofsky (1983) reported that additional stimulus presentations within a trial increase discriminability in absolute identification, suggesting that each presentation creates an independent stimulus representation, but it remains unclear whether exposure duration or the formation of independent representations improves discrimination in such…

  9. Peripheral olfactory signaling in insects

    PubMed Central

    Suh, Eunho; Bohbot, Jonathan; Zwiebel, Laurence J.

    2014-01-01

    Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects. PMID:25584200

  10. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  11. Slow potentials of the turtle olfactory bulb in response to odor stimulation of the nose.

    PubMed

    Beuerman, R W

    1975-10-24

    Odor stimulation of the nose in the box turtle and the gopher tortoise produced a characteristic series of slow potentials in the olfactory bulb which were referred to as the odor evoked response. When recorded with direct coupling, the odor evoked response had 3 components: wave I, a short duration monophasic event; wave II, a long duration variation in the DC potential; and wave III, an oscillatory potential superimposed on wave II. Waves I and II were negative at bulbar surfaces receiving olfactory input and positive deep within the bulb. This series of potentials could be evoked by 3 methods of odor stimulation: (1) large puffs delivered from odorant test bottles, (2) small puffs delivered from a syringe and (3) continuous flow with concentration and nasal flow rate parameters controlled by an olfactometer. When the odor evoked response was recorded at a bulbar locus, these potentials were seen in response to each stimulation and the amplitudes of each wave were reproducible with the same stimulus. The amplitudes of the 3 waves were compared in the gopher tortoise and differed with the 3 odorants tested--high purity geraniol, technical grade geraniol and amyl acetate. Odorant concentration also directly affected the response amplitudes of all 3 wave components. The amplitudes of waves I and III markedly decreased with closely spaced stimulations recovering to near the initial values when the interstimulus interval was increased severalfold. This series of sensory evoked potentials is considered to reflect the processing of odor information from the olfactory receptors by the olfactory bulb. PMID:1175040

  12. Unique Neural Circuitry for Neonatal Olfactory Learning

    PubMed Central

    Moriceau, Stephanie; Sullivan, Regina M.

    2007-01-01

    Imprinting ensures that the infant forms the caregiver attachment necessary for altricial species survival. In our mammalian model of imprinting, neonatal rats rapidly learn the odor-based maternal attachment. This rapid learning requires reward-evoked locus ceruleus (LC) release of copious amounts of norepinephrine (NE) into the olfactory bulb. This imprinting ends at postnatal day 10 (P10) and is associated with a dramatic reduction in reward-evoked LC NE release. Here we assess whether the functional emergence of LC α2 inhibitory autoreceptors and the downregulation of LC α1 excitatory autoreceptors underlie the dramatic reduction in NE release associated with termination of the sensitive period. Postsensitive period pups (P12) were implanted with either LC or olfactory bulb cannulas, classically conditioned with intracranial drug infusions (P14), and tested for an odor preference (P15). During conditioning, a novel odor was paired with either olfactory bulb infusion of a β-receptor agonist (isoproterenol) to assess the target effects of NE or direct LC cholinergic stimulation combined with α2 antagonists and α1 agonists in a mixture to reinstate neonatal levels of LC autoreceptor activity to assess the source of NE. Pups learned an odor preference when the odor was paired with either olfactory bulb isoproterenol infusion or reinstatement of neonatal LC receptor activity. These results suggest that LC autoreceptor functional changes rather than olfactory bulb changes underlie sensitive period termination. PMID:14762136

  13. Stimulus control during conditional discrimination.

    PubMed

    Yarczower, M

    1971-07-01

    Pigeons were used to assess stimulus control during the development of a conditional discrimination. The training consisted of three stages. In Stage 1, key pecks were reinforced in the presence of a white line tilted 40 degrees to the right of vertical on a green background and non-reinforced when the same line appeared on a red background. In Stage 2, key pecks were reinforced when a white vertical line appeared on a red background and were non-reinforced in the presence of a 40 degrees slanted line on a red background. In Stage 3, key pecks were reinforced in the presence of the green background regardless of the line tilt, but were differentially reinforced in the presence of the red background (as in Stage 2). Generalization tests were conducted after each stage of training and consisted of five white lines on backgrounds that were green, red, or dark. The effects of the differential reinforcement contingencies on control by line orientation were restricted to the condition in which the red light appeared and resulted in behavioral control that could be characterized as: if red, pay closer attention to line tilt than if not red. PMID:5142389

  14. The stimulus integration area for horizontal vergence.

    PubMed

    Allison, Robert S; Howard, Ian P; Fang, Xueping

    2004-06-01

    Over what region of space are horizontal disparities integrated to form the stimulus for vergence? The vergence system might be expected to respond to disparities within a small area of interest to bring them into the range of precise stereoscopic processing. However, the literature suggests that disparities are integrated over a fairly large parafoveal area. We report the results of six experiments designed to explore the spatial characteristics of the stimulus for vergence. Binocular eye movements were recorded using magnetic search coils. Each dichoptic display consisted of a central target stimulus that the subject attempted to fuse, and a competing stimulus with conflicting disparity. In some conditions the target was stationary, providing a fixation stimulus. In other conditions, the disparity of the target changed to provide a vergence-tracking stimulus. The target and competing stimulus were combined in a variety of conditions including those in which (1) a transparent textured-disc target was superimposed on a competing textured background, (2) a textured-disc target filled the centre of a competing annular background, and (3) a small target was presented within the centre of a competing annular background of various inner diameters. In some conditions the target and competing stimulus were separated in stereoscopic depth. The results are consistent with a disparity integration area with a diameter of about 5 degrees. Stimuli beyond this integration area can drive vergence in their own right, but they do not appear to be summed or averaged with a central stimulus to form a combined disparity signal. A competing stimulus had less effect on vergence when separated from the target by a disparity pedestal. As a result, we propose that it may be more useful to think in terms of an integration volume for vergence rather than a two-dimensional retinal integration area. PMID:14985895

  15. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed Central

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-01-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. Images Fig. 1 Fig. 2 PMID:8790421

  16. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-09-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. PMID:8790421

  17. [Conjugated variability of spontaneous activity and behavioral response to olfactory stimuli in the taiga tick (Ixodes persulcatus)].

    PubMed

    Romashchenko, A V; Shnaĭder, E P; Petrovskiĭ, D V; Moshkin, M P

    2013-01-01

    According to -the automatic tracing of the movement of ticks in a Petri dish, motivational variability of the spontaneous activity and behavioral response of the taiga tick to olfactory stimuli was analyzed. In the studied sample, two groups of ticks that differ in the movement trajectory in the absence of stimulus were isolated, including ticks that mainly moved on the edge of the dish at maximum accessible height (group 1) and ticks that mainly moved at the bottom and wall of the dish (group 2). It was registered that ticks of group 1 (as opposed to ticks of group 2) demonstrated a pronounced behavioral response to olfactory stimuli (human synthetic pheromones and ammonia) and negative geotaxis. It was established that belonging to these groups depended On the time of day when the testing was performed and did not depend on the physiological age and infectious status. PMID:25510114

  18. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    ERIC Educational Resources Information Center

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  19. Investigation of breathing parameters during odor perception and olfactory imagery.

    PubMed

    Kleemann, A M; Kopietz, R; Albrecht, J; Schöpf, V; Pollatos, O; Schreder, T; May, J; Linn, J; Brückmann, H; Wiesmann, M

    2009-01-01

    Compared with visual and auditory imagery, little is known about olfactory imagery. There is evidence that respiration may be altered by both olfactory perception and olfactory imagery. In order to investigate this relationship, breathing parameters (respiratory minute volume, respiratory amplitude, and breathing rate) in human subjects during olfactory perception and olfactory imagery were investigated. Fifty-six subjects having normal olfactory function were tested. Nasal respiration was measured using a respiratory pressure sensor. Using an experimental block design, we alternately presented odors or asked the subjects to imagine a given smell. Four different pleasant odors were used: banana, rose, coffee, and lemon odor. We detected a significant increase in respiratory minute volume between olfactory perception and the baseline condition as well as between olfactory imagery and baseline condition. Additionally we found significant differences in the respiratory amplitude between imagery and baseline condition and between odor and imagery condition. Differences in the breathing rate between olfactory perception, olfactory imagery, and baseline were not statistically significant. We conclude from our results that olfactory perception and olfactory imagery both have effects on the human respiratory profile and that these effects are based on a common underlying mechanism. PMID:18701432

  20. Individual olfactory perception reveals meaningful nonolfactory genetic information

    PubMed Central

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-01-01

    Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865

  1. Rapid odor perception in rat olfactory bulb by microelectrode array.

    PubMed

    Zhou, Jun; Dong, Qi; Zhuang, Liu-jing; Li, Rong; Wang, Ping

    2012-12-01

    Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array. Saturated vapors of four pure chemicals, anisole, carvone, citral and isoamyl acetate were applied. After aligning spike trains to the initial phase of the inhalation after odor onset, the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns. Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus. Due to the small amount of information received from a single cell, we pooled results from all responsive M/T cells to study the ensemble activity. The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed. The high dimension vectors were condensed into three dimensions for visualization using principal component analysis. The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation. The distances among cluster centers were enlarged compared to those of the resting state. Thus, we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle. PMID:23225857

  2. High olfactory sensitivity for dimethyl sulphide in harbour seals

    PubMed Central

    Kowalewsky, Sylvia; Dambach, Martin; Mauck, Björn; Dehnhardt, Guido

    2005-01-01

    Productive areas are patchily distributed at sea and represent important feeding grounds for many marine organisms. Although pinnipeds are known to travel on direct routes and return regularly to particular feeding sites, the environmental information seals use to perform this navigation is as yet unknown. As atmospheric dimethyl sulphide (DMS) has been demonstrated to be a reliable indicator for profitable foraging areas, we tested seals for their ability to smell DMS at concentrations typical for the marine environment. Using a go/no-go response paradigm we determined the DMS detection threshold in two harbour seals (Phoca vitulina vitulina). DMS stimuli from 8.05×108 to 8 pmol (DMS) m−3(air) were tested against a control stimulus using a custom-made olfactometer. DMS-thresholds determined for both seals (20 and 13 pmol m−3) indicate that seals can detect ambient concentrations associated with high primary productivity, e.g. in the North Atlantic. Thus, seals possess an extraordinarily high olfactory sensitivity for DMS, which could provide a sensory basis for identifying or orienting to profitable foraging grounds. PMID:17148339

  3. Scopolamine Enhances Generalization between Odor Representations in Rat Olfactory Cortex

    PubMed Central

    Wilson, Donald A.

    2001-01-01

    Acetylcholine (ACh) has a critical, modulatory role in plasticity in many sensory systems. In the rat olfactory system, both behavioral and physiological data indicate that ACh may be required for normal odor memory and synaptic plasticity. Based on these data, neural network models have hypothesized that ACh muscarinic receptors reduce interference between learned cortical representations of odors within the piriform cortex. In this study, odor receptive fields of rat anterior piriform cortex (aPCX) single-units for alkane odors were mapped before and after either a systemic injection of the muscarinic receptor antagonist scopolamine (0.5 mg/kg) or aPCX surface application of 500 μM scopolamine (or saline/ACSF controls). Cross-habituation between alkanes differing by two to four carbons was then examined following a 50-sec habituating stimulus. The results demonstrate that neither aPCX spontaneous activity nor odor-evoked activity (receptive field) was affected by scopolamine, but that cross-habituation in aPCX neurons was enhanced significantly by either systemic or cortical scopolamine. These results indicate that scopolamine selectively enhances generalization between odor representations in aPCX in a simple memory task. Given that ACh primarily affects intracortical association fibers in the aPCX, the results support a role for the association system in odor memory and discrimination and indicate an important ACh modulatory control over this basic sensory process. PMID:11584075

  4. Olfactory regulation of mosquito–host interactions

    PubMed Central

    Zwiebel, L.J.; Takken, W.

    2011-01-01

    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven behaviors in so far as it significantly contributes to the ability of these mosquitoes to transmit pathogens that cause diseases such as dengue, yellow fever and most significantly human malaria. Here, we review significant advances in behavioral, physiological and molecular investigations into mosquito host preference, with a particular emphasis on studies that have emerged in the post-genomic era that seek to combine these approaches. PMID:15242705

  5. Adaptive stimulus optimization for sensory systems neuroscience

    PubMed Central

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison. PMID:23761737

  6. Interneurons in the human olfactory system in Alzheimer's disease.

    PubMed

    Saiz-Sanchez, Daniel; Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2016-02-01

    The principal olfactory structures display Alzheimer's disease (AD) related pathology at early stages of the disease. Consequently, olfactory deficits are among the earliest symptoms. Reliable olfactory tests for accurate clinical diagnosis are rarely made. In addition, neuropathological analysis postmortem of olfactory structures is often not made. Therefore, the relationship between the clinical features and the underlying pathology is poorly defined. Traditionally, research into Alzheimer's disease has focused on the degeneration of cortical temporal projection neurons and cholinergic neurons. Recent evidence has demonstrated the neurodegeneration of interneuron populations in AD. This review provides an updated overview of the pathological involvement of interneuron populations in the human olfactory system in Alzheimer's disease. PMID:26616239

  7. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response

    PubMed Central

    Martelli, Carlotta; Carlson, John R.; Emonet, Thierry

    2013-01-01

    Odors elicit spatio-temporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants and odorant receptors expressed in different olfactory receptor neurons (ORNs). But the origin of temporal patterns of activity and their role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly affect ORN response. Using linear-nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics we study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types the ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the neuron’s dynamic range. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions. These differences however can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range ORNs can capture information about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question. PMID:23575828

  8. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    SciTech Connect

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F. )

    1991-04-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa.

  9. Continuous- and Discrete-Time Stimulus Sequences for High Stimulus Rate Paradigm in Evoked Potential Studies

    PubMed Central

    Wang, Tao; Huang, Jiang-hua; Lin, Lin

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm. PMID:23606900

  10. Olfactory Epithelium Grafts in the Cerebral Cortex: An Immunohistochemical Analysis

    PubMed Central

    Holbrook, Eric H.; DiNardo, Laurence J.; Costanzo, Richard M.

    2009-01-01

    Objective To develop an alternative model for studying the regenerative capacity of olfactory neurons. Study Design An immunohistochemical analysis of mouse olfactory epithelium transplanted to the cerebral cortex. Methods Strips of olfactory epithelium removed from donor mice at postnatal day 5 to day 20 were inserted into the parietal cortex of adult mice. Recipient animals were allowed to survive for 25 to 120 days and then perfused with 4% paraformaldehyde 1 hour after bromodeoxyuridine injection. The brains were processed, and frozen sections were obtained. Sections through transplant tissue were analyzed using immunohistochemistry and compared with normal olfactory epithelium. Results Graft survival approached 85% with mature olfactory neurons detected in 35% of the transplants stained for olfactory marker protein. Transplant epithelium resembled normal olfactory epithelium containing mature olfactory neurons and axon bundles. Conclusions Studies of olfactory neuron regeneration have been limited by the inability to produce cultures with long-term viability. Olfactory epithelial grafts to the cerebral cortex provide an alternative approach to the study of olfactory neuron regeneration. PMID:11801979

  11. Olfactory imprinting is triggered by MHC peptide ligands.

    PubMed

    Hinz, Cornelia; Namekawa, Iori; Namekawa, Ri; Behrmann-Godel, Jasminca; Oppelt, Claus; Jaeschke, Aaron; Müller, Anke; Friedrich, Rainer W; Gerlach, Gabriele

    2013-01-01

    Olfactory imprinting on environmental, population- and kin-specific cues is a specific form of life-long memory promoting homing of salmon to their natal rivers and the return of coral reef fish to natal sites. Despite its ecological significance, natural chemicals for olfactory imprinting have not been identified yet. Here, we show that MHC peptides function as chemical signals for olfactory imprinting in zebrafish. We found that MHC peptides consisting of nine amino acids elicit olfactory imprinting and subsequent kin recognition depending on the MHC genotype of the fish. In vivo calcium imaging shows that some olfactory bulb neurons are highly sensitive to MHC peptides with a detection threshold at 1 pM or lower, indicating that MHC peptides are potent olfactory stimuli. Responses to MHC peptides overlapped spatially with responses to kin odour but not food odour, consistent with the hypothesis that MHC peptides are natural signals for olfactory imprinting. PMID:24077566

  12. Cycloheximide: No Ordinary Bitter Stimulus

    PubMed Central

    Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.

    2007-01-01

    Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304

  13. Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats

    PubMed Central

    Thiebaud, Nicolas; Veloso Da Silva, Stéphanie; Jakob, Ingrid; Sicard, Gilles; Chevalier, Joëlle; Ménétrier, Franck; Berdeaux, Olivier; Artur, Yves; Heydel, Jean-Marie; Le Bon, Anne-Marie

    2013-01-01

    A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation. PMID:23555703

  14. Reversible Deafferentation of the Adult Zebrafish Olfactory Bulb Affects Glomerular Distribution and Olfactory-Mediated Behavior

    PubMed Central

    Paskin, Taylor R.; Byrd-Jacobs, Christine A.

    2012-01-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  15. Reversible deafferentation of the adult zebrafish olfactory bulb affects glomerular distribution and olfactory-mediated behavior.

    PubMed

    Paskin, Taylor R; Byrd-Jacobs, Christine A

    2012-12-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  16. Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb

    PubMed Central

    Lakhina, Vanisha; Marcaccio, Christina L.; Shao, Xin; Lush, Mark E.; Jain, Roshan A.; Fujimoto, Esther; Bonkowsky, Joshua L.; Granato, Michael; Raper, Jonathan A.

    2012-01-01

    Olfactory sensory neurons expressing particular olfactory receptors project to specific reproducible locations within the bulb. The axonal guidance cues that organize this precise projection pattern are only beginning to be identified. To aid in their identification and characterization, we generated a transgenic zebrafish line, OR111-7:IRES:Gal4, in which a small subset of olfactory sensory neurons is labeled. Most sensory neurons expressing the OR111-7 transgene project to a specific location within the bulb, the central zone protoglomerulus, while a smaller number project to the LG1 protoglomerulus. Inhibiting netrin/DCC signaling perturbs the ability of OR111-7 expressing axons to enter the olfactory bulb and alters their patterns of termination within the bulb. The netrin receptor DCC is expressed in olfactory sensory neurons around the time that they elaborate their axons, netrin1a is expressed near the medial-most margin of the olfactory bulb, and netrin1b is expressed within the ventral region of the bulb. Loss of netrin/DCC signaling components causes some OR111-7 expressing sensory axons to wander posteriorly after exiting the olfactory pit, away from netrin expressing areas in the bulb. OR111-7 expressing axons that enter the bulb target the central zone less precisely than normal, spreading away from netrin expressing regions. These pathfinding errors can be corrected by the re-expression of DCC within OR111-7 transgene expressing neurons in DCC morphant embryos. These findings implicate netrins as the only known attractants for olfactory sensory neurons, first drawing OR111-7 expressing axons into the bulb and then into the ventromedially positioned central zone protoglomerulus. PMID:22457493

  17. Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila

    PubMed Central

    2011-01-01

    Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R) play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs) is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s) triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb) ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs). These synapses are modulated by GABA, through either GABAergic local interneurons (LNs) and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor) within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a relatively long lasting

  18. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish.

    PubMed

    Caprio, J; Byrd, R P

    1984-09-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  19. Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input.

    PubMed

    Gagliardo, Anna; Pecchia, Tommaso; Savini, Maria; Odetti, Francesca; Ioalè, Paolo; Vallortigara, Giorgio

    2007-03-01

    It has been shown that homing pigeons (Columba livia) rely on olfactory cues to navigate from unfamiliar locations. In fact, the integrity of the olfactory system, from the olfactory mucosa to the piriform cortex, is required for pigeons to navigate over unfamiliar areas. Recently it has been shown that there is a functional asymmetry in the piriform cortex, with the left piriform cortex more involved in the use of the olfactory navigational map than the right piriform cortex. To investigate further the lateralization of the olfactory system in relation to navigational processes in carrier pigeons, we compared their homing performance after either their left or the right nostril was plugged. Contrary to our expectations, we observed an impairment in the initial orientation of the pigeons with their right nostril plugged. However, both groups released with one nostril plugged tended to be poorer than control pigeons in their homing performance. The observed asymmetry in favour of the right nostril might be due to projections from the olfactory bulbs to the contralateral globus pallidum, a structure involved in motor responses. PMID:17425577

  20. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  1. Olfactory Environment Design for Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Welch, C. S.; Holland, F. J.

    2002-01-01

    Smell is usually deemed the least important of the five senses. To contradict this assertion, however, there is no shortage of scientific literature which concludes that olfaction is of very great significance to humans. Odours have been shown to have a variety of effects on humans, and are capable of changing both behaviour and cognitive processing in ways that we are frequently completely unconscious of. Examples of this include alertness, alteration of mood, capacity for ideation and intellectual performance. To date, the design of human spacecraft has concentrated on making their olfactory environments, where possible, `odour neutral' - that is ensuring that all unpleasant and/or offensive odours are removed. Here it suggested that spacecraft (and other extraterrestrial facilities for human inhabitation) might benefit from having their olfactory environments designed to be `odour positive', that is to use odours and olfaction for the positive benefit of their residents. This paper presents a summary of current olfactory research and considers both its positive and negative implications for humans in space. It then discusses `odour positive' design of spacecraft olfactory environments and the possible benefits accruing from this approach before examining its implications for the architecture of spacecraft environmental control systems.

  2. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  3. Resistance to Interference of Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  4. The Olfactory Factor in Nonverbal Communication.

    ERIC Educational Resources Information Center

    Riley, Jobie E.

    This paper on the subject of smell in communication provides a brief survey of the subject, pulling together a wide variety of disparate ideas across many disciplines. The paper is comprised of a general introductory section and separate sections on the olfactory nonverbal communication of animals and human beings. The uses to which animals put…

  5. Adult Neurogenesis and the Olfactory System

    PubMed Central

    Whitman, Mary C.; Greer, Charles A.

    2009-01-01

    Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions. PMID:19615423

  6. Effects of within-stimulus and extra-stimulus prompting on discrimination learning in autistic children.

    PubMed Central

    Schreibman, L

    1975-01-01

    Two different prompting procedures to teach visual and auditory discriminations to autistic children were compared. The first involved presenting an added cue as an extra-stimulus prompt. This required the child to respond to both prompt and training stimulus. The second involved the use of a within-stimulus prompt. This consisted of an exaggeration of the relevant component of the training stimulus and thus did not require that the child respond to multiple cues. The results indicated that (1) children usually failed to learn the discriminations without a prompt, (2) children always failed to learn when the extra-stimulus prompt was employed but usually did learn with the within-stimulus prompt, and (3) these findings were independent of which modality (auditory or visual) was required for the discrimination. PMID:1141084

  7. Single stimulus learning in zebrafish larvae.

    PubMed

    O'Neale, Ashley; Ellis, Joseph; Creton, Robbert; Colwill, Ruth M

    2014-02-01

    Learning about a moving visual stimulus was examined in zebrafish larvae using an automated imaging system and a t1-t2 design. In three experiments, zebrafish larvae were exposed to one of two inputs at t1 (either a gray bouncing disk or an identical but stationary disk) followed by a common test at t2 (the gray bouncing disk). Using 7days post-fertilization (dpf) larvae and 12 stimulus exposures, Experiment 1 established that these different treatments produced differential responding to the moving disk during testing. Larvae familiar with the moving test stimulus were significantly less likely to be still in its presence than larvae that had been exposed to the identical but stationary stimulus. Experiment 2 confirmed this result in 7dpf larvae and extended the finding to 5 and 6dpf larvae. Experiment 3 found differential responding to the moving test stimulus with 4 or 8 stimulus exposures but not with just one exposure in 7dpf larvae. These results provide evidence for learning in very young zebrafish larvae. The merits and challenges of the t1-t2 framework to study learning are discussed. PMID:24012906

  8. Olfactory discrimination of amino acids in brown bullhead catfish.

    PubMed

    Valentincic, T; Metelko, J; Ota, D; Pirc, V; Blejec, A

    2000-02-01

    Olfactory discrimination of amino acids was investigated in brown bullhead catfish (Ameiurus nebulosus). Based on the magnitude of the observed food search activity of catfish conditioned to single amino acids, the tested compounds were classified as being detected by the catfish as equal to, similar to, or different from the conditioned stimulus. L-Proline (L-Pro)-conditioned brown bullhead catfish discriminated all amino acids from L-Pro, but catfish conditioned to L-valine (L-Val) and L-isoleucine (L-Ile) did not discriminate L-Val from L-Ile nor L-Ile from L-Val; however, all other amino acids tested were always discriminated from these two compounds. Catfish conditioned to L-alanine (L-Ala) discriminated basic, acidic and several neutral amino acids with long side-chains (LCNs) from L-Ala; however, they did not always discriminate L-Ala from all neutral amino acids with short side-chains (SCNs). The L-norleucine (L-nLeu)-conditioned fish responded to L-norvaline (L-nVal), L-methionine (L-Met) and L-Ala similarly to L-nLeu, indicating that these amino acids are detected as similar or identical to L-nLeu. L-nLeu was, however, discriminated from L-Ala in L-Ala-conditioned catfish. Interestingly, L-leucine (L-Leu) was discriminated from the conditioned stimuli, L-Ala, L-Ile and L-Val, indicating independent receptors for L-Leu. Although conditioned catfish discriminated other amino acids from L-arginine hydrochloride (L-Arg), in some tests they were unable to discriminate L-Arg from L-lysine hydrochloride (L-Lys). These results imply the existence of independent olfactory receptive pathways for: (i) L-Pro; (ii) basic amino acids (L-Arg and L-Lys); (iii) L-Leu; (iv) other neutral amino acids with branched side-chains (L-Ile and L-Val); (v) neutral amino acids with long linear side-chains (L-nLeu, L-nVal and L-Met); (vi) neutral amino acids with short side-chains; and (vii) amino acids with sulfhydryl groups (L-Cys and L-homoCys). PMID:10667990

  9. Occlusion for stimulus deprivation amblyopia

    PubMed Central

    Antonio-Santos, Aileen; Vedula, Satyanarayana S; Hatt, Sarah R; Powell, Christine

    2014-01-01

    Background Stimulus deprivation amblyopia (SDA) develops due to an obstruction to the passage of light secondary to a condition such as cataract. The obstruction prevents formation of a clear image on the retina. SDA can be resistant to treatment, leading to poor visual prognosis. SDA probably constitutes less than 3% of all amblyopia cases, although precise estimates of prevalence are unknown. In developed countries, most patients present under the age of one year; in less developed parts of the world patients are likely to be older at the time of presentation. The mainstay of treatment is removal of the cataract and then occlusion of the better-seeing eye, but regimens vary, can be difficult to execute, and traditionally are believed to lead to disappointing results. Objectives Our objective was to evaluate the effectiveness of occlusion therapy for SDA in an attempt to establish realistic treatment outcomes. Where data were available, we also planned to examine evidence of any dose response effect and to assess the effect of the duration, severity, and causative factor on the size and direction of the treatment effect. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to October 2013), EMBASE (January 1980 to October 2013), the Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to October 2013), PubMed (January 1946 to October 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 October 2013. Selection criteria We planned

  10. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience. PMID:24797530

  11. Olfactory acuity in theropods: palaeobiological and evolutionary implications

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Kobayashi, Yoshitsugu

    2008-01-01

    This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds. PMID:18957367

  12. Sex hormone binding globulin in the rat olfactory system.

    PubMed

    Ploss, V; Gebhart, V M; Dölz, W; Jirikowski, G F

    2014-05-01

    Ovarian steroids are known to act on the olfactory system. Their mode of action, however, is mostly unclear to date since nuclear receptors are lacking in sensory neurons. Here we used immunocytochemistry and RT-PCR to study expression and distribution of sex hormone binding globulin (SHBG) in the rat olfactory system. Single sensory cells in the olfactory mucosa and their projections in the olfactory bulb showed specific SHBG immunostaining as determined by double immunofluorescence with olfactory marker protein OMP. Larger groups of SHBG stained sensory cells occurred in the vomeronasal organ (VNO). A portion of the olfactory glomeruli in the accessory olfactory bulb showed large networks of SHBG positive nerve fibres. Some of the mitral cells showed SHBG immune fluorescence. RT-PCR revealed SHBG encoding mRNA in the olfactory mucosa, in the VNO and in the olfactory bulbs indicating intrinsic expression of the binding globulin. The VNO and its related projections within the limbic system are known to be sensitive to gonadal steroid hormones. We conclude that SHBG may be of functional importance for rapid effects of olfactory steroids on limbic functions including the control of reproductive behaviours through pheromones. PMID:24681170

  13. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    PubMed

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche. PMID:25376305

  14. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  15. A negative stimulus movement effect in pigeons.

    PubMed

    Daniel, Thomas A; Katz, Jeffrey S

    2016-09-01

    Rhesus monkeys and humans perform more accurately in matching-to-sample tasks when the sample stimulus moves through space (Washburn et al., 1989; Washburn, 1993). This Stimulus Movement Effect (SME) is believed to be due to movement increasing attention toward the sample stimulus, creating an easier discrimination between the sample and choice stimuli. To date, there is no evidence for this phenomenon in a non-mammalian species. In the current study, we investigate the possibility of an SME in an avian species. Across three experiments, pigeons were tested with moving and stationary sample stimuli in a non-matching- to-sample task. The area and velocity by which the sample stimulus traveled was manipulated but no advantage for moving over stationary sample trials was found within or across sessions. Even when a delay condition was implemented, there was no advantage for moving sample trials. Contrary to the results found in humans and monkeys, pigeons performed better when the sample was stationary, a negative SME, and no evidence was found that stimulus movement increases discrimination performance. PMID:27373975

  16. Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium

    PubMed Central

    Bock, Patricia; Rohn, Karl; Beineke, Andreas; Baumgärtner, Wolfgang; Wewetzer, Konstantin

    2009-01-01

    The main olfactory epithelium is a pseudostratified columnar epithelium that displays neurogenesis over the course of a lifetime. New olfactory neurons arise basally and are transferred to the middle third of the epithelium during maturation. It is generally believed that this pattern is present throughout the olfactory area. In the present study, we show that the postnatal canine olfactory epithelium is composed of two distinct types of epithelium, designated A and B, which not only differ in olfactory neuron morphology, marker expression and basal cell proliferation but also display a patchy distribution and preferential localization within the nasal cavity. Type A epithelium, abundant in the caudal part of the olfactory area, contains well-differentiated olfactory neurons positive for olfactory marker protein but low numbers of immature neurons and proliferating basal cells, as visualized by TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope and Ki-67 immunostaining, respectively. In contrast, type B epithelium is mainly found in the rostral part and contains smaller and elongated neurons that display increased levels of TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope immunoreactivity and a higher number of Ki-67-positive basal cells but lower and variable levels of olfactory marker protein. The vomeronasal organ displays a uniform distribution of molecular markers and proliferating basal cells. The observation that olfactory marker protein in type A and B epithelium is preferentially localized to the nucleus and cytoplasm, respectively, implies correlation between subcellular localization and olfactory neuron maturation and may indicate distinct functional roles of olfactory marker protein. Whether the site-specific population dynamics in the postnatal canine olfactory epithelium revealed in the present study are modulated by physiological parameters, such as airflow, has to be clarified in future studies. PMID:19788548

  17. Sample Stimulus Control Shaping and Restricted Stimulus Control in Capuchin Monkeys: A Methodological Note

    ERIC Educational Resources Information Center

    Brino, Ana Leda F., Barros, Romariz S., Galvao, Ol; Garotti, M.; Da Cruz, Ilara R. N.; Santos, Jose R.; Dube, William V.; McIlvane, William J.

    2011-01-01

    This paper reports use of sample stimulus control shaping procedures to teach arbitrary matching-to-sample to 2 capuchin monkeys ("Cebus apella"). The procedures started with identity matching-to-sample. During shaping, stimulus features of the sample were altered gradually, rendering samples and comparisons increasingly physically dissimilar. The…

  18. Analyzing Stimulus-Stimulus Pairing Effects on Preferences for Speech Sounds

    ERIC Educational Resources Information Center

    Petursdottir, Anna Ingeborg; Carp, Charlotte L.; Matthies, Derek W.; Esch, Barbara E.

    2011-01-01

    Several studies have demonstrated effects of stimulus-stimulus pairing (SSP) on children's vocalizations, but numerous treatment failures have also been reported. The present study attempted to isolate procedural variables related to failures of SSP to condition speech sounds as reinforcers. Three boys diagnosed with autism-spectrum disorders…

  19. Emergent Stimulus Relations Depend on Stimulus Correlation and Not on Reinforcement Contingencies

    ERIC Educational Resources Information Center

    Minster, Sara Tepaeru; Elliffe, Douglas; Muthukumaraswamy, Suresh D.

    2011-01-01

    We aimed to investigate whether novel stimulus relations would emerge from stimulus correlations when those relations explicitly conflicted with reinforced relations. In a symbolic matching-to-sample task using kanji characters as stimuli, we arranged class-specific incorrect comparison stimuli in each of three classes. After presenting either Ax…

  20. Feedback from network states generates variability in a probabilistic olfactory circuit

    PubMed Central

    Gordus, Andrew; Pokala, Navin; Levy, Sagi; Flavell, Steven W.; Bargmann, Cornelia I

    2016-01-01

    Summary Variability is a prominent feature of behavior, and an active element of certain behavioral strategies. To understand how neuronal circuits control variability, we examined the propagation of sensory information in a chemotaxis circuit of Caenorhabditis elegans where discrete sensory inputs can drive a probabilistic behavioral response. Olfactory neurons respond to odor stimuli with rapid and reliable changes in activity, but downstream AIB interneurons respond with a probabilistic delay. The interneuron response to odor depends on the collective activity of multiple neurons – AIB, RIM, and AVA -- when the odor stimulus arrives. Certain activity states of the network correlate with reliable responses to odor stimuli. Artificially generating these activity states by modifying neuronal activity increases the reliability of odor responses in interneurons and the reliability of the behavioral response to odor. The integration of sensory information with network state may represent a general mechanism for generating variability in behavior. PMID:25772698

  1. Processing of odor stimuli by neuronal network models of the olfactory bulb

    NASA Astrophysics Data System (ADS)

    Wick, Stuart; Wiechert, Martin; Riecke, Hermann; Friedrich, Rainer

    2007-03-01

    The space of perceptable odors is high-dimensional and its representation in the various brain structures is still poorly understood. We focus on the olfactory bulb, which constitutes the first processing stage for odor stimuli after they have been sensed by receptor neurons. Experimentally it is found that the correlations between the outputs of the bulb are significantly reduced relative to those of the corresponding inputs, thus enhancing the discriminability of similar odors. We have generated a firing-rate-based network model with parameters derived from experimental data that reproduces decorrelation. Here we use this model to investigate the dependence of stimulus representations on odor concentration. We address the possibility of a change in perceived odor identity with changing concentration and the dependence of odor discriminability on odor concentration. We interpret some of our results within a simple mean-field model for the neural activity.

  2. Coding properties of peak and average response rates in American cockroach olfactory sensory cells.

    PubMed

    Getz, W M; Akers, R P

    1997-01-01

    The response of phasic neurons is often measured in terms of average spiking rates over arbitrarily selected time intervals. Averages taken over inappropriate intervals may severely reduce the information content of data, as we show here using response data from female American cockroach peripheral olfactory cells. We demonstrate that a 100-ms period around the peak response contains the best information for discriminating among odors at moderate to high concentrations. Further, the 100-ms post-peak response period contains the best information at low concentrations, as well as in situations where it is important to minimize errors in misidentifying the quality of an odor. Averaging the data over the full 0.5 s stimulus period degrades the odor separation qualities of the data. PMID:8971196

  3. Nested expression domains for odorant receptors in zebrafish olfactory epithelium.

    PubMed

    Weth, F; Nadler, W; Korsching, S

    1996-11-12

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system. PMID:8917589

  4. Olfactory drug effects approached from human-derived data.

    PubMed

    Lötsch, Jörn; Knothe, Claudia; Lippmann, Catharina; Ultsch, Alfred; Hummel, Thomas; Walter, Carmen

    2015-11-01

    The complexity of the sense of smell makes adverse olfactory effects of drugs highly likely, which can impact a patient's quality of life. Here, we present a bioinformatics approach that identifies drugs with potential olfactory effects by connecting drug target expression patterns in human olfactory tissue with drug-related information and the underlying molecular drug targets taken from publically available databases. We identified 71 drugs with listed olfactory effects and 147 different targets. Taking the target-based approach further, we found additional drugs with potential olfactory effects, including 152 different substances interacting with genes expressed in the human olfactory bulb. Our proposed bioinformatics approach provides plausible hypotheses about mechanistic drug effects for drug discovery and repurposing and, thus, would be appropriate for use during drug development. PMID:26160059

  5. Stimulus-responsive metal-organic frameworks.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2014-09-01

    Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future "smart" technology materials. Metal-organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host-guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus-responsive MOFs or so-called smart MOFs. In particular, the various stimuli used and the utility of stimulus-responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus-responsive smart MOFs and their applications are proposed from a personal perspective. PMID:24844581

  6. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  7. Contributions to drug abuse research of Steven R. Goldberg's behavioral analysis of stimulus-stimulus contingencies.

    PubMed

    Katz, Jonathan L

    2016-05-01

    By the mid-1960s, the concept that drugs can function as reinforcing stimuli through response-reinforcer contingencies had created a paradigm shift in drug abuse science. Steve Goldberg's first several publications focused instead on stimulus-stimulus contingencies (respondent conditioning) in examining Abraham Wikler's two-factor hypothesis of relapse involving conditioned withdrawal and reinforcing effects of drugs. Goldberg provided a compelling demonstration that histories of contingencies among stimuli could produce lasting withdrawal reactions in primates formerly dependent on opioids. Other studies conducted by Goldberg extended the analysis of effects of stimulus-stimulus contingencies on behavior maintained by opioid reinforcing effects and showed that withdrawal-inducing antagonist administration can produce conditioned increases in self-administration. Subsequent studies of the effects of stimuli associated with cocaine injection under second-order schedules showed that the maintenance of behavior with drug injections was in most important aspects similar to the maintenance of behavior with more conventional reinforcers when the behavior-disrupting pharmacological effects of the drugs were minimized. Studies on second-order schedules demonstrated a wide array of conditions under which behavior could be maintained by drug injection and further influenced by stimulus-stimulus contingencies. These schedules present opportunities to produce in the laboratory complex situations involving response- and stimulus-stimulus contingencies, which go beyond simplistic pairings of stimuli and more closely approximate those found with human drug abusers. A focus on the response- and stimulus-stimulus contingencies, and resulting quantifiable changes in objective and quantifiable behavioral endpoints exemplified by the studies by Steve Goldberg, remains the most promising way forward for studying problems of drug dependence. PMID:26564234

  8. Topographical representation of odor hedonics in the olfactory bulb.

    PubMed

    Kermen, Florence; Midroit, Maëllie; Kuczewski, Nicola; Forest, Jérémy; Thévenet, Marc; Sacquet, Joëlle; Benetollo, Claire; Richard, Marion; Didier, Anne; Mandairon, Nathalie

    2016-07-01

    Hedonic value is a dominant aspect of olfactory perception. Using optogenetic manipulation in freely behaving mice paired with immediate early gene mapping, we demonstrate that hedonic information is represented along the antero-posterior axis of the ventral olfactory bulb. Using this representation, we show that the degree of attractiveness of odors can be bidirectionally modulated by local manipulation of the olfactory bulb's neural networks in freely behaving mice. PMID:27273767

  9. Odors Discrimination by Olfactory Epithelium Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  10. Mirror sniffing: humans mimic olfactory sampling behavior.

    PubMed

    Arzi, Anat; Shedlesky, Limor; Secundo, Lavi; Sobel, Noam

    2014-05-01

    Ample evidence suggests that social chemosignaling plays a significant role in human behavior. Processing of odors and chemosignals depends on sniffing. Given this, we hypothesized that humans may have evolved an automatic mechanism driving sniffs in response to conspecific sniffing. To test this, we measured sniffing behavior of human subjects watching the movie Perfume, which contains many olfactory sniffing events. Despite the total absence of odor, observers sniffed when characters in the movie sniffed. Moreover, this effect was most pronounced in scenes where subjects heard the sniff but did not see the sniffed-at object. We liken this response to the orienting towards conspecific gaze in vision and argue that its robustness further highlights the significance of olfactory information processing in human behavior. PMID:24457159

  11. Olfactory Orientation and Navigation in Humans

    PubMed Central

    Jacobs, Lucia F.; Arter, Jennifer; Cook, Amy; Sulloway, Frank J.

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  12. Olfactory Orientation and Navigation in Humans.

    PubMed

    Jacobs, Lucia F; Arter, Jennifer; Cook, Amy; Sulloway, Frank J

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  13. Biochemical studies of olfaction: binding specificity of radioactively labeled stimuli to an isolated olfactory preparation from rainbow trout (Salmo gairdneri).

    PubMed

    Cagan, R H; Zeiger, W N

    1978-10-01

    The extent of binding of 10 radioactively labeled odorant amino acids to a sedimentable fraction (fraction P2) derived from the olfactory rosettes of the rainbow trout Salmo gairdneri corresponded closely with their reported relative stimulatory effectiveness measured electrophysiologically. L isomers were bound to a greater extent than their respective D isomers. Binding of L-alanine was strongly and irreversibly inhibited by mercurials but was not affected by sulfhydryl-blocking reagents. Binding was saturable and reversible. Scatchard analyses gave evidence of two types of binding sites for most of the amino acids studied. The Kd values of the higher-affinity binding sites were similar among the amino acids, being in the range of 10(-6) M; differences occurred in the relative numbers of sites, n. These results, coupled with those from competition experiments, lead to the postulate that a multiplicity of types of olfactory binding sites exist in the trout: site TSA, which binds L-threonine, L-serine, and L-alanine; site L, which binds L-lysine; and site AB which binds beta-alanine. Tentative assignments are: site V, which binds L-valine; site H, which binds L-histidine; and site AD, which binds D-alanine. Site AD may be a lower affinity site for L-alanine. Binding of olfactory stimulus molecules appears to be an initial discrimination step in olfaction. PMID:283385

  14. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  15. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning

    PubMed Central

    Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  16. Coupled map model for spatio-temporal processing in the olfactory bulb

    NASA Astrophysics Data System (ADS)

    de Almeida, L.; Idiart, M.; Quillfeldt, J. A.

    2007-02-01

    Odor processing in the animal olfactory system is still an open problem in modern neuroscience. It is a common understanding that the spatial code provided by the activity distribution of the olfactory receptor cells (ORC) due the presence of an odorant is transformed into a spatio-temporal code in the mitral cell (MC) layer in the case of mammals, or the projection neurons (PN) in the case of insects, that is decoded later along the neural path. The putative role of the spatio-temporal coding is to disambiguate the stimulus putting it in a more robust representation that allows odor separation, categorization, and recognition. Oscillations due to lateral inhibition among MC's (or PN's) may play an important part in the code as well as neural adaptation. To shed some light on their possible role in the olfaction processing, we study the properties of a simple network model. Upon the presentation of a random distributed input it respond with a rich spatio-temporal structure where two distinct phases are observed. We discuss their properties and implications in information processing.

  17. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control. PMID:22284012

  18. Odorant recognition using biological responses recorded in olfactory bulb of rats.

    PubMed

    Vizcay, Marcela A; Duarte-Mermoud, Manuel A; Aylwin, María de la Luz

    2015-01-01

    In this study we applied pattern recognition (PR) techniques to extract odorant information from local field potential (LFP) signals recorded in the olfactory bulb (OB) of rats subjected to different odorant stimuli. We claim that LFP signals registered on the OB, the first stage of olfactory processing, are stimulus specific in animals with normal sensory experience, and that these patterns correspond to the neural substrate likely required for perceptual discrimination. Thus, these signals can be used as input to an artificial odorant classification system with great success. In this paper we have designed and compared the performance of several configurations of artificial olfaction systems (AOS) based on the combination of four feature extraction (FE) methods (Principal Component Analysis (PCA), Fisher Transformation (FT), Sammon NonLinear Map (NLM) and Wavelet Transform (WT)), and three PR techniques (Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP) and Support Vector Machine (SVM)), when four different stimuli are presented to rats. The best results were reached when PCA extraction followed by SVM as classifier were used, obtaining a classification accuracy of over 95% for all four stimuli. PMID:25464359

  19. Impacts of upper respiratory tract disease on olfactory behavior of the Mojave desert tortoise.

    PubMed

    Germano, Jennifer; Van Zerr, Vanessa E; Esque, Todd C; Nussear, Ken E; Lamberski, Nadine

    2014-04-01

    Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii is considered a threat to desert tortoise populations that should be addressed as part of the recovery of the species. Clinical signs can be intermittent and include serous or mucoid nasal discharge and respiratory difficulty when nares are occluded. This nasal congestion may result in a loss of the olfactory sense. Turtles are known to use olfaction to identify food items, predators, and conspecifics; therefore, it is likely that URTD affects not only their physical well-being but also their behavior and ability to perform necessary functions in the wild. To determine more specifically the impact nasal discharge might have on free-ranging tortoises (Gopherus agassizii), we compared the responses of tortoises with and without nasal discharge and both positive and negative for M. agassizii antibodies to a visually hidden olfactory food stimulus and an empty control. We found that nasal discharge did reduce sense of smell and hence the ability to locate food. Our study also showed that moderate chronic nasal discharge in the absence of other clinical signs did not affect appetite in desert tortoises. PMID:24506425

  20. Impacts of upper respiratory tract disease on olfactory behavior of the Mojave desert tortoise

    USGS Publications Warehouse

    Germano, Jennifer; Van Zerr, Vanessa E.; Esque, Todd C.; Nussear, Ken E.; Lamberski, Nadine

    2014-01-01

    Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii is considered a threat to desert tortoise populations that should be addressed as part of the recovery of the species. Clinical signs can be intermittent and include serous or mucoid nasal discharge and respiratory difficulty when nares are occluded. This nasal congestion may result in a loss of the olfactory sense. Turtles are known to use olfaction to identify food items, predators, and conspecifics; therefore, it is likely that URTD affects not only their physical well-being but also their behavior and ability to perform necessary functions in the wild. To determine more specifically the impact nasal discharge might have on free-ranging tortoises (Gopherus agassizii), we compared the responses of tortoises with and without nasal discharge and both positive and negative for M. agassizii antibodies to a visually hidden olfactory food stimulus and an empty control. We found that nasal discharge did reduce sense of smell and hence the ability to locate food. Our study also showed that moderate chronic nasal discharge in the absence of other clinical signs did not affect appetite in desert tortoises.

  1. Profound Olfactory Dysfunction in Myasthenia Gravis

    PubMed Central

    Leon-Sarmiento, Fidias E.; Bayona, Edgardo A.; Bayona-Prieto, Jaime; Osman, Allen; Doty, Richard L.

    2012-01-01

    In this study we demonstrate that myasthenia gravis, an autoimmune disease strongly identified with deficient acetylcholine receptor transmission at the post-synaptic neuromuscular junction, is accompanied by a profound loss of olfactory function. Twenty-seven MG patients, 27 matched healthy controls, and 11 patients with polymiositis, a disease with peripheral neuromuscular symptoms analogous to myasthenia gravis with no known central nervous system involvement, were tested. All were administered the University of Pennsylvania Smell Identification Test (UPSIT) and the Picture Identification Test (PIT), a test analogous in content and form to the UPSIT designed to control for non-olfactory cognitive confounds. The UPSIT scores of the myasthenia gravis patients were markedly lower than those of the age- and sex-matched normal controls [respective means (SDs) = 20.15 (6.40) & 35.67 (4.95); p<0.0001], as well as those of the polymiositis patients who scored slightly below the normal range [33.30 (1.42); p<0.0001]. The latter finding, along with direct monitoring of the inhalation of the patients during testing, implies that the MG-related olfactory deficit is unlikely due to difficulties sniffing, per se. All PIT scores were within or near the normal range, although subtle deficits were apparent in both the MG and PM patients, conceivably reflecting influences of mild cognitive impairment. No relationships between performance on the UPSIT and thymectomy, time since diagnosis, type of treatment regimen, or the presence or absence of serum anti-nicotinic or muscarinic antibodies were apparent. Our findings suggest that MG influences olfactory function to the same degree as observed in a number of neurodegenerative diseases in which central nervous system cholinergic dysfunction has been documented. PMID:23082113

  2. Electrophysiological Measurements from a Moth Olfactory System

    PubMed Central

    Syed, Zainulabeuddin; Leal, Walter S.

    2011-01-01

    Insect olfactory systems provide unique opportunities for recording odorant-induced responses in the forms of electroantennograms (EAG) and single sensillum recordings (SSR), which are summed responses from all odorant receptor neurons (ORNs) located on the antenna and from those housed in individual sensilla, respectively. These approaches have been exploited for getting a better understanding of insect chemical communication. The identified stimuli can then be used as either attractants or repellents in management strategies for insect pests. PMID:21490575

  3. Olfactory Stimuli Increase Presence in Virtual Environments

    PubMed Central

    Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian

    2016-01-01

    Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID

  4. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice.

    PubMed

    Barrios, Arthur W; Núñez, Gonzalo; Sánchez Quinteiro, Pablo; Salazar, Ignacio

    2014-01-01

    The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb). These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line. PMID:25071468

  5. Neurally Encoding Time for Olfactory Navigation

    PubMed Central

    Park, In Jun; Hein, Andrew M.; Bobkov, Yuriy V.; Reidenbach, Matthew A.; Ache, Barry W.; Principe, Jose C.

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  6. Functional neuroanatomy of Drosophila olfactory memory formation

    PubMed Central

    Guven-Ozkan, Tugba

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  7. Functional neuroanatomy of Drosophila olfactory memory formation.

    PubMed

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  8. Olfactory conditioning in the zebrafish (Danio rerio).

    PubMed

    Braubach, Oliver R; Wood, Heather-Dawn; Gadbois, Simon; Fine, Alan; Croll, Roger P

    2009-03-01

    The zebrafish olfactory system is an attractive model for studying neural processing of chemosensory information. Here we characterize zebrafish olfactory behaviors and their modification through learning, using an apparatus consisting of a circular flow-through tank that allows controlled administration of odorants. When exposed to the amino acids l-alanine and l-valine, naive zebrafish responded with appetitive swimming behavior, which we measured as the number of >90 degrees turns made during 30s observation periods. Such appetitive responses were not observed when naive zebrafish were exposed to an unnatural odorant, phenylethyl alcohol (PEA). Repeated pairing of amino acids or PEA (conditioned stimuli, CS) with food flakes (unconditioned stimuli; UCS) increased odorant-evoked appetitive swimming behavior in all fish tested. The zebrafish also learned to restrict this behavior to the vicinity of a feeding ring, through which UCS were administered. When both nares were temporarily occluded, conditioned fish failed to respond to odorants, confirming that these behaviors were mediated by olfaction. These results represent the first demonstration of a classically conditioned appetitive response to a behaviorally neutral odorant in fish. Furthermore, they complement recent demonstrations of conditional place preferences in fish. By virtue of its robustness and simplicity, this method will be a useful tool for future research into the biological basis of olfactory learning in zebrafish. PMID:19056431

  9. Olfactory receptor patterning in a higher primate.

    PubMed

    Horowitz, Lisa F; Saraiva, Luis R; Kuang, Donghui; Yoon, Kyoung-hye; Buck, Linda B

    2014-09-10

    The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms. PMID:25209267

  10. Neurally Encoding Time for Olfactory Navigation.

    PubMed

    Park, In Jun; Hein, Andrew M; Bobkov, Yuriy V; Reidenbach, Matthew A; Ache, Barry W; Principe, Jose C

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  11. Olfactory Receptor Patterning in a Higher Primate

    PubMed Central

    Horowitz, Lisa F.; Saraiva, Luis R.; Kuang, Donghui; Yoon, Kyoung-hye

    2014-01-01

    The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms. PMID:25209267

  12. Olfactory deprivation increases dopamine D2 receptor density in the rat olfactory bulb

    SciTech Connect

    Guthrie, K.M.; Pullara, J.M.; Marshall, J.F.; Leon, M. )

    1991-05-01

    Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. The authors describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.

  13. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium.

    PubMed

    Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques

    2014-01-01

    Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca(2+))-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca(2+), and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca(2+) response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control

  14. Mechanisms of Regulation of Olfactory Transduction and Adaptation in the Olfactory Cilium

    PubMed Central

    Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques

    2014-01-01

    Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR

  15. Application of the European Test of Olfactory Capabilities in patients with olfactory impairment.

    PubMed

    Joussain, P; Bessy, M; Faure, F; Bellil, D; Landis, B N; Hugentobler, M; Tuorila, H; Mustonen, S; Vento, S I; Delphin-Combe, F; Krolak-Salmon, P; Rouby, C; Bensafi, M

    2016-02-01

    A central issue in olfaction concerns the characterization of loss of olfactory function: partial (hyposmia) or total (anosmia). This paper reports the application in a clinical setting of the European Test of Olfactory Capabilities (ETOC), combining odor detection and identification. The study included three phases. In phase 1, anosmics, hyposmics and controls were tested with the 16-items version of the ETOC. In phase 2, a short version of the ETOC was developed: patients with and controls without olfactory impairment were tested on a 6-items ETOC. In phase 3, to predict olfactory impairments in new individuals, the 16-items ETOC was administered on samples of young and older adults, and the 6-items version was applied in samples of young, elderly participants and Alzheimer patients. In phase 1, linear discriminant analysis (LDA) of ETOC scores classified patients and controls with 87.5 % accuracy. In phase 2, LDA provided 84 % correct classification. Results of phase 3 revealed: (1) 16-items ETOC: whereas in young adults, 10 % were classified as hyposmic and 90 % as normosmic, in elderly, 1 % were classified as anosmic, 39 % hyposmic and 60 % normosmic; (2) 6-items ETOC: 15 % of the young adults were classified as having olfactory impairment, compared to 28 % in the older group and 83 % in Alzheimer patients. In conclusion, the ETOC enables characterizing the prevalence of olfactory impairment in young subjects and in normal and pathological aging. Whereas the 16-items ETOC is more discriminant, the short ETOC may provide a fast (5-10 min) tool to assess olfaction in clinical settings. PMID:25711735

  16. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.

    PubMed

    Meier, Matt E; Kane, Michael J

    2015-11-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774

  17. Photoperiod Mediated Changes in Olfactory Bulb Neurogenesis and Olfactory Behavior in Male White-Footed Mice (Peromyscus leucopus)

    PubMed Central

    Weil, Zachary M.; Nelson, Randy J.

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus. PMID:22912730

  18. Morphometry of olfactory lamellae and olfactory receptor neurons during the life history of chum salmon (Oncorhynchus keta).

    PubMed

    Kudo, Hideaki; Shinto, Masakazu; Sakurai, Yasunori; Kaeriyama, Masahide

    2009-09-01

    It is generally accepted that anadromous Pacific salmon (genus Oncorhynchus) imprint to odorants in their natal streams during their seaward migration and use olfaction to identify these during their homeward migration. Despite the importance of the olfactory organ during olfactory imprinting, the development of this structure is not well understood in Pacific salmon. Olfactory cues from the environment are relayed to the brain by the olfactory receptor neurons (ORNs) in the olfactory organ. Thus, we analyzed morphometric changes in olfactory lamellae of the peripheral olfactory organ and in the quantity of ORNs during life history from alevin to mature in chum salmon (Oncorhynchus keta). The number of lamellae increased markedly during early development, reached 18 lamellae per unilateral peripheral olfactory organ in young salmon with a 200 mm in body size, and maintained this lamellar complement after young period. The number of ORNs per olfactory organ was about 180,000 and 14.2 million cells in fry and mature salmon, respectively. The relationship between the body size (fork length) and number of ORNs therefore revealed an allometric association. Our results represent the first quantitative analysis of the number of ORNs in Pacific salmon and suggest that the number of ORNs is synchronized with the fork length throughout its life history. PMID:19587025

  19. Stimulus Over-Selectivity in Rats

    ERIC Educational Resources Information Center

    Gibson, Evelyn; Reed, Phil

    2005-01-01

    The present study explored whether a similar phenomenon to stimulus over-selectivity occurred in rats, in the hope of establishing a non-human model for the autism. Rats were serially presented with two-15 seconds, two-element compound stimuli prior to the delivery of food, in an appetitive classical conditioning procedure. Each compound stimulus…

  20. Stimulus Offers Funding Support for Ed. Facilities

    ERIC Educational Resources Information Center

    Ash, Katie

    2009-01-01

    Some two months after enactment of the federal economic-stimulus package, school facilities directors are still trying to piece together how much money will be available under the measure for school construction projects, what it can be used for, and when it can be accessed. Before President Barack Obama signed the $787 billion American Recovery…

  1. Facilities Bonds Prove Hot Item under Stimulus

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    Construction bonding authority--a technical, and often obscure, source of capital funding for school districts--has emerged as a hot ticket for those looking to finance school facilities work under the federal government's economic-stimulus program. School districts left out of the loop for direct funding are lining up for some of at least $24…

  2. States Hurt as Stimulus Loses Steam

    ERIC Educational Resources Information Center

    Cavanagh, Sean; Hollingsworth, Heather

    2011-01-01

    States are finally arriving at the "funding cliff"--the point where about $100 billion in federal economic-stimulus aid for education runs out. The loss seems certain to compound severe budget woes and could mean thousands of school layoffs and the elimination of popular programs and services in districts across the country. The bulk of that…

  3. The Poverty of the Mayan Stimulus

    ERIC Educational Resources Information Center

    Pye, Clifton

    2012-01-01

    Poverty of the stimulus (POS) arguments have instigated considerable debate in the recent linguistics literature. This article uses the comparative method to challenge the logic of POS arguments. Rather than question the premises of POS arguments, the article demonstrates how POS arguments for individual languages lead to a "reductio ad absurdum"…

  4. Electrophysiological Correlates of Stimulus Equivalence Processes

    ERIC Educational Resources Information Center

    Haimson, Barry; Wilkinson, Krista M.; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J.

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g.,…

  5. Stimulus control of cocaine self-administration.

    PubMed Central

    Weiss, Stanley J; Kearns, David N; Cohn, Scott I; Schindler, Charles W; Panlilio, Leigh V

    2003-01-01

    Environmental stimuli that set the occasion wherein drugs are acquired can "trigger" drug-related behavior. Investigating the stimulus control of drug self-administration in laboratory animals should help us better understand this aspect of human drug abuse. Stimulus control of cocaine self-administration was generated here for the first time using multiple and chained schedules with short, frequently-alternating components--like those typically used to study food-maintained responding. The procedures and results are presented along with case histories to illustrate the strategies used to produce this stimulus control. All these multicomponent schedules contained variable-interval (VI) components as well as differential-reinforcement-of-other-behavior (DRO) or extinction components. Schedule parameters and unit dose were adjusted for each rat to produce stable, moderate rates in VI components, with minimal postreinforcement (infusion) pausing, and response cessation in extinction and DRO components. Whole-body drug levels on terminal baselines calculated retrospectively revealed that all rats maintained fairly stable drug levels (mean, 2.3 to 3.4 mg/kg) and molar rates of intake (approximately 6.0 mg/kg/hr). Within this range, no relation between local VI response rates and drug level was found. The stimulus control revealed in cumulative records was indistinguishable from that achieved with food under these schedules, suggesting that common mechanisms may underlie the control of cocaine- and food-maintained behavior. PMID:12696744

  6. States Anxious to Get Details about Stimulus

    ERIC Educational Resources Information Center

    Hoff, David J.

    2009-01-01

    As Congress began debate last week over the size and scope of more than $120 billion in proposed emergency education aid, state leaders were anxiously awaiting the details so they could make specific plans to spend the economic-stimulus money. Governors, state legislators, and state schools chiefs have yet to learn what rules Congress will attach…

  7. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  8. Development of the olfactory system in a wallaby (Macropus eugenii).

    PubMed

    Ashwell, K W S; Marotte, L R; Cheng, Gang

    2008-01-01

    We used carbocyanine dye tracing techniques in conjunction with hematoxylin and eosin staining, immunohistochemistry for GAP-43, and tritiated thymidine autoradiography to examine the development of the olfactory pathways in early pouch young tammar wallabies (Macropus eugenii). The overarching aim was to test the hypothesis that the olfactory system of newborn tammars is sufficiently mature at birth to contribute to the guidance of the pouch young to the nipple. Although GAP-43 immunoreactive fibers emerge from the olfactory epithelium and enter the olfactory bulb at birth, all other components of the olfactory pathway in newborn tammars are very immature at birth, postnatal day (P0). In particular, maturation of the vomeronasal organ and its projections to the accessory olfactory bulb appears to be delayed until P5 and the olfactory bulb is poorly differentiated until P12, with glomerular formation delayed until P25. The lateral olfactory tract is also very immature at birth with pioneer axons having penetrated only the most rostral portion of the piriform lobe. Interestingly, there were some early (P0) projections from the olfactory epithelium to the medial septal region and lamina terminalis (by the terminal nerve) and to olfactory tubercle and basal forebrain. The former of these is presumably serving the transfer of LHRH(+) neurons to the forebrain, as seen in eutherians, but neither of these very early pathways is sufficiently robust or connected to the more caudal neuraxis to play a role in nipple finding. Tritiated thymidine autoradiography confirmed that most piriform cortex pyramidal neurons are generated in the first week of life and are unlikely to be able to contribute to circuitry guiding the climb to the pouch. Our findings lead us to reject the hypothesis that olfactory projections contribute to guidance of the newborn tammar to the pouch and nipple. It appears far more likely that the trigeminal pathways play a significant role in this behavior

  9. Stimulus intensity modulates multisensory temporal processing.

    PubMed

    Krueger Fister, Juliane; Stevenson, Ryan A; Nidiffer, Aaron R; Barnett, Zachary P; Wallace, Mark T

    2016-07-29

    One of the more challenging feats that multisensory systems must perform is to determine which sensory signals originate from the same external event, and thus should be integrated or "bound" into a singular perceptual object or event, and which signals should be segregated. Two important stimulus properties impacting this process are the timing and effectiveness of the paired stimuli. It has been well established that the more temporally aligned two stimuli are, the greater the degree to which they influence one another's processing. In addition, the less effective the individual unisensory stimuli are in eliciting a response, the greater the benefit when they are combined. However, the interaction between stimulus timing and stimulus effectiveness in driving multisensory-mediated behaviors has never been explored - which was the purpose of the current study. Participants were presented with either high- or low-intensity audiovisual stimuli in which stimulus onset asynchronies (SOAs) were parametrically varied, and were asked to report on the perceived synchrony/asynchrony of the paired stimuli. Our results revealed an interaction between the temporal relationship (SOA) and intensity of the stimuli. Specifically, individuals were more tolerant of larger temporal offsets (i.e., more likely to call them synchronous) when the paired stimuli were less effective. This interaction was also seen in response time (RT) distributions. Behavioral gains in RTs were seen with synchronous relative to asynchronous presentations, but this effect was more pronounced with high-intensity stimuli. These data suggest that stimulus effectiveness plays an underappreciated role in the perception of the timing of multisensory events, and reinforces the interdependency of the principles of multisensory integration in determining behavior and shaping perception. PMID:26920937

  10. Asymmetrical Stimulus Generalization following Differential Fear Conditioning

    PubMed Central

    Bang, Sun Jung; Allen, Timothy A.; Jones, Lauren K.; Boguszewski, Pawel; Brown, Thomas H.

    2008-01-01

    Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22 kHz USVs and 50 kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22 kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4 kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50 kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS+) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS−) was explicitly unpaired with the US. There were no significant differences among these cues in CS+-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS+ was a 22 kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS−, discrimination failed due to generalization from the CS+. Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination. PMID:18434217

  11. "Imposed" and "inherent" mucosal activity patterns. Their composite representation of olfactory stimuli

    PubMed Central

    1987-01-01

    Both regional differences in mucosal sensitivity and a gas chromatography-like process along the mucosal sheet have been separately proposed in two sets of earlier studies to produce different odorant-dependent activity patterns across the olfactory mucosa. This investigation evaluated, in one study, whether and to what degree these two mechanisms contribute to the generation of these activity patterns. Summated multiunit discharges were simultaneously recorded from lateral (LN) and medial (MN) sites on the bullfrog's olfactory nerve to sample the mucosal activity occurring near the internal and external nares, respectively. Precisely controlled sniffs of four odorants (benzaldehyde, butanol, geraniol, and octane) were drawn through the frog's olfactory sac in both the forward (H1) and reverse (H2) hale directions. By combining the four resulting measurements, LNH1, LNH2, MNH1, and MNH2, in different mathematical expressions, indexes reflecting the relative effects of the chromatographic process, regional sensitivity, and hale direction could be calculated. Most importantly, the chromatographic process and the regional sensitivity differences both contributed significantly to the mucosal activity patterns. However, their relative roles varied markedly among the four odorants, ranging from complete dominance by either one to substantial contributions from each. In general, the more strongly an odorant was sorbed by the mucosa, the greater was the relative effect of the chromatographic process; the weaker the sorption, the greater the relative effect of regional sensitivity. Similarly, the greater an odorant's sorption, the greater was the effect of hale direction. Other stimulus variables (sniff volume, sniff duration, and the number of molecules within the sniff) had marked effects upon the overall size of the response. For strongly sorbed odorants, the effect of increasing volume was positive; for a weakly sorbed odorant, it was negative. The reverse may be true

  12. Viewing Olfactory Affective Responses Through the Sniff Prism: Effect of Perceptual Dimensions and Age on Olfactomotor Responses to Odors

    PubMed Central

    Ferdenzi, Camille; Fournel, Arnaud; Thévenet, Marc; Coppin, Géraldine; Bensafi, Moustafa

    2015-01-01

    Sniffing, which is the active sampling of olfactory information through the nasal cavity, is part of the olfactory percept. It is influenced by stimulus properties, affects how an odor is perceived, and is sufficient (without an odor being present) to activate the olfactory cortex. However, many aspects of the affective correlates of sniffing behavior remain unclear, in particular the modulation of volume and duration as a function of odor hedonics. The present study used a wide range of odorants with contrasted hedonic valence to test: (1) which psychophysical function best describes the relationship between sniffing characteristics and odor hedonics (e.g., linear, or polynomial); (2) whether sniffing characteristics are sensitive to more subtle variations in pleasantness than simple pleasant-unpleasant contrast; (3) how sensitive sniffing is to other perceptual dimensions of odors such as odor familiarity or edibility; and (4) whether the sniffing/hedonic valence relationship is valid in other populations than young adults, such as the elderly. Four experiments were conducted, using 16–48 odorants each, and recruiting a total of 102 participants, including a group of elderly people. Results of the four experiments were very consistent in showing that sniffing was sensitive to subtle variations in unpleasantness but not to subtle variations in pleasantness, and that, the more unpleasant the odor, the more limited the spontaneous sampling of olfactory information through the nasal cavity (smaller volume, shorter duration). This also applied, although to a lesser extent, to elderly participants. Relationships between sniffing and other perceptual dimensions (familiarity, edibility) were less clear. It was concluded that sniffing behavior might be involved in adaptive responses protecting the subject from possibly harmful substances. PMID:26635683

  13. Electro-olfactogram and multiunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish, Ictalurus punctatus.

    PubMed

    Kang, J S; Caprio, J

    1991-10-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that both electro-olfactogram and integrated neural responses of olfactory receptor cells to complex mixtures consisting of up to 10 different amino acids were predictable with knowledge of (a) the responses to the individual components in the mixture and (b) the relative independence of the respective receptor sites for the component stimuli. All amino acid stimuli used to form the various mixtures were initially adjusted in concentration to provide approximately equal response magnitudes. Olfactory receptor responses to both multimixtures and binary mixtures were recorded. Multimixtures were formed by mixing equal aliquots of 3-10 different amino acids. Binary mixtures were formed by mixing equal aliquots of two equally stimulatory solutions. Solution 1 contained either one to nine different neutral amino acids with long side-chains (LCNs) or one to five different neutral amino acids with short side-chains (SCNs). Solution 2, comprising the binary mixture, consisted of only a single stimulus, either a LCN, SCN, basic, or acidic amino acid. The increasing magnitude of the olfactory receptor responses to mixtures consisting of an increasing number of neutral amino acids indicated that multiple receptor site types with highly overlapping specificities exist to these compounds. For both binary mixtures and multimixtures composed of neutral and basic or neutral and acidic amino acids, the receptor responses were significantly enhanced compared with those mixtures consisting of an equal number of only neutral amino acids. These results demonstrate that receptor sites for the basic and acidic amino acids, respectively, are highly independent of those for the neutral amino acids, and suggest that a mechanism for synergism is the simultaneous activation of relatively independent receptor sites by the components in the mixture

  14. Immunohistochemical demonstration of salmon olfactory glutathione S-transferase class pi (N24) in the olfactory system of lacustrine sockeye salmon during ontogenesis and cell proliferation.

    PubMed

    Yanagi, S; Kudo, H; Doi, Y; Yamauchi, K; Ueda, H

    2004-06-01

    In mammals, glutathione S-transferase (GST) in the olfactory epithelium is involved in assistance of the olfactory reception by the xenobiotic metabolism. We previously reported the protein and gene expressions of salmon olfactory GST class pi (soGST) in the olfactory receptor cells (ORCs) of the salmonid fish. However, the chronological appearances of soGST in ORCs during ontogeny and cell proliferation are still unknown in this species. In this study, we performed immunohistochemistry of soGST using an antibody specific to soGST in the olfactory system (olfactory placode, olfactory pit, olfactory epithelium, olfactory nerve and olfactory bulb) of lacustrine sockeye salmon ( Oncorhynchus nerka) embryos and 5-bromo-2'-deoxyuridine (BrdU) experimental fish. The projection of olfactory nerve bundles from the olfactory pit to the presumptive olfactory bulb was identified at embryonic day 28 after fertilization. The olfactory cilia were first detected on the apical surface of ORCs at day 43. soGST-immunoreactivity was first detected within the olfactory pit cells at day 55. At 58 day, the number of soGST-immunoreactive cells increased markedly in the olfactory epithelia, and soGST-immunoreactive fibers were observed in the olfactory nerves and olfactory bulbs. By in vivo uptake of BrdU in 1-year-old fish, we observed for the first time at day 7 after labeling that the olfactory epithelia showed ORCs in which both soGST-immunoreactivity and BrdU coexisted. These results indicate that soGST is synthesized in the mature ORCs of lacustrine sockeye salmon after cell formation and differentiation. PMID:15156400

  15. Contextual control of stimulus generalization and stimulus equivalence in hierarchical categorization.

    PubMed Central

    Griffee, Karen; Dougher, Michael J

    2002-01-01

    The purpose of this study was to determine whether hierarchical categorization would result from a combination of contextually controlled conditional discrimination training, stimulus generalization, and stimulus equivalence. First, differential selection responses to a specific stimulus feature were brought under contextual control. This contextual control was hierarchical in that stimuli at the top of the hierarchy all evoked one response, whereas those at the bottom each evoked different responses. The evocative functions of these stimuli generalized in predictable ways along a dimension of physical similarity. Then, these functions were indirectly acquired by a set of nonsense syllables that were related via transitivity relations to the originally trained stimuli. These nonsense syllables effectively served as names for the different stimulus classes within each level of the hierarchy. PMID:12507013

  16. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    PubMed

    Shao, Yu-Feng; Zhao, Peng; Dong, Chao-Yu; Li, Jing; Kong, Xiang-Pan; Wang, Hai-Liang; Dai, Li-Rong; Hou, Yi-Ping

    2013-01-01

    Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice. PMID:23614017

  17. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  18. Recovery of Olfactory Function in Postviral Olfactory Dysfunction Patients after Acupuncture Treatment

    PubMed Central

    Dai, Qi; Pang, Zhihui; Yu, Hongmeng

    2016-01-01

    Introduction. The aims of this study were to assess the impact of traditional Chinese acupuncture (TCA) in postviral olfactory dysfunction (PVOD) patients who were refractory to standardized treatment and to compare the results with the impact observed in an observation group. Methods. Fifty patients who presented to the outpatient clinic with PVOD and were refractory to standardized treatment were included: 25 were treated with TCA and 25 patients were simply observed. A subjective olfactory test was performed using the University of Pennsylvania Smell Identification Test (UPSIT). The effects of TCA were compared with the results obtained in the observation group. Results. Improved olfactory function was observed in eleven patients treated with TCA compared with four patients in the observation group. This study revealed significantly improved olfactory function outcomes in patients who underwent acupuncture compared with the observation group. No significant differences in olfaction recovery were found according to age, gender, or duration of disease between the two groups; however, hyposmic patients recovered at a higher rate than anosmic patients. Conclusion. TCA may aid the treatment of PVOD patients who are refractory to drugs or other therapies. PMID:27034689

  19. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    PubMed

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map. PMID:21270307

  20. Kappe neurons, a novel population of olfactory sensory neurons

    PubMed Central

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system. PMID:24509431

  1. Kappe neurons, a novel population of olfactory sensory neurons

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  2. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  3. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  4. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  5. Olfactory Signal Transduction in the Mouse Septal Organ

    PubMed Central

    Ma, Minghong; Grosmaitre, Xavier; Iwema, Carrie L.; Baker, Harriet; Greer, Charles A.; Shepherd, Gordon M.

    2008-01-01

    The septal organ, a distinct chemosensory organ observed in the mammalian nose, is essentially a small island of olfactory neuroepithelium located bilaterally at the ventral base of the nasal septum. Virtually nothing is known about its physiological properties and function. To understand the nature of the sensory neurons in this area, we studied the mechanisms underlying olfactory signal transduction in these neurons. The majority of the sensory neurons in the septal organ express olfactory-specific G-protein and adenylyl cyclase type III, suggesting that the cAMP signaling pathway plays a critical role in the septal organ as in the main olfactory epithelium (MOE). This is further supported by patch-clamp recordings from individual dendritic knobs of the sensory neurons in the septal organ. Odorant responses can be mimicked by an adenylyl cyclase activator and a phosphodiesterase inhibitor, and these responses can be blocked by an adenylyl cyclase inhibitor. There is a small subset of cells in the septal organ expressing a cGMP-stimulated phosphodiesterase (phosphodiesterase 2), a marker for the guanylyl cyclase-D subtype sensory neurons identified in the MOE. The results indicate that the septal organ resembles the MOE in major olfactory signal transduction pathways, odorant response properties, and projection to the main olfactory bulb. Molecular and functional analysis of the septal organ, which constitutes ~1% of the olfactory epithelium, will provide new insights into the organization of the mammalian olfactory system and the unique function this enigmatic organ may serve. PMID:12514230

  6. Ultrastructural study of the primary olfactory pathway in Macaca fascicularis.

    PubMed

    Herrera, Loren P; Casas, Carlos E; Bates, Margaret L; Guest, James D

    2005-08-01

    Olfactory ensheathing glial cells (OEGs) interact with a wide repertoire of cell types and support extension of olfactory axons (OAs) within the olfactory pathway. OEGs are thought to exclude OAs from contact with all other cells between the olfactory epithelium and the glomerulus of the olfactory bulb. These properties have lead to testing to determine whether OEGs support axonal growth following transplantation. The cellular interactions of transplanted OEGs will probably resemble those that occur within the normal pathway where interactions between OEGs and fibroblasts are prominent. No previous primate studies have focused on these interactions, knowledge of which is important if clinical application is envisioned. We describe the detailed intercellular interactions of OAs with supporting cells throughout the olfactory epithelium, the lamina propria, the fila olfactoria, and the olfactory nerve layer by using transmission electron microscopy in adult Macaca fascicularis. Patterns of OEG ensheathment and variations of the endo- and perineurium formed by olfactory nerve fibroblasts are described. OAs mainly interacted with horizontal basal cells, OEGs, and astrocytes. At both transitional ends of the pathway seamless intercellular interactions were observed, and fibroblast processes were absent. Perineurial cells produced surface basal lamina; however, endoneurial, epineurial, and meningeal fibroblasts did not. Perineurial cells contained intermediate filaments and were distinct from other fibroblasts and meningeal cells. OAs had direct contacts with astrocytes near the glia limitans. The properties of OEGs differed depending on whether astrocytic or fibroblastic processes were present. This indicates the importance of the cellular milieu in the structure and function of OEGs in primates. PMID:15973683

  7. Odor memories regulate olfactory receptor expression in the sensory periphery.

    PubMed

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. PMID:24628891

  8. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  9. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb

    PubMed Central

    Lehmann, Alexander; D’Errico, Anna; Vogel, Martin; Spors, Hartwig

    2016-01-01

    Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics. PMID:27047340

  10. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb.

    PubMed

    Lehmann, Alexander; D'Errico, Anna; Vogel, Martin; Spors, Hartwig

    2016-01-01

    Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics. PMID:27047340

  11. Adaptation as a mechanism for gain control in cockroach ON and OFF olfactory receptor neurons.

    PubMed

    Burgstaller, Maria; Tichy, Harald

    2012-02-01

    In many sensory systems adaptation acts as a gain control mechanism that optimizes sensory performance by trading increased sensitivity to low stimulus intensity for decreased sensitivity to high stimulus intensity. Adaptation of insect antennal olfactory receptor neurons (ORNs) has been studied for strong odour concentrations, either pulsed or constant. Here, we report that during slowly oscillating changes in the concentration of the odour of lemon oil, the ON and OFF ORNs on the antenna of the cockroach Periplaneta americana adapt to the actual odour concentration and the rate at which concentration changes. When odour concentration oscillates rapidly with brief periods, adaptation improves gain for instantaneous odour concentration and reduces gain for the rate of concentration change. Conversely, when odour concentration oscillates slowly with long periods, adaptation increases gain for the rate of change at the expense of instantaneous concentration. Without this gain control the ON and OFF ORNs would, at brief oscillation periods, soon reach their saturation level and become insensitive to further concentration increments and decrements. At long oscillation periods, on the other hand, the cue would simply be that the discharge begins to change. Because of the high gain for the rate of change, the cockroach will receive creeping changes in odour concentration, even if they persist in one direction. Gain control permits a high degree of precision at small rates when it counts most, without sacrificing the range of detection and without extending the measuring scale. PMID:22304687

  12. Effects of allocation of attention on habituation to olfactory and visual food stimuli in children.

    PubMed

    Epstein, Leonard H; Saad, Frances G; Giacomelli, April M; Roemmich, James N

    2005-02-15

    Responding to food cues may be disrupted by allocating attention to other tasks. We report two experiments examining the effects of allocation of attention on salivary habituation to olfactory plus visual food cues in 8-12-year-old children. In Experiment 1, 42 children were presented with a series of 8 hamburger food stimulus presentations. During each intertrial interval, participants completed a controlled (hard), or automatic (easy) visual memory task, or no task (control). In Experiment 2, 22 children were presented with 10 presentations of a pizza food stimulus and either listened to an audiobook or no audiobook control. Results of Experiment 1 showed group differences in rate of change in salivation (p=0.014). Children in the controlled task did not habituate to repeated food cues, while children in the automatic (p<0.005) or no task (p<0.001) groups decreased responding over time. In Experiment 2, groups differed in the rate of change in salivation (p=0.004). Children in the no audiobook group habituated (p<0.001), while children in the audiobook group did not habituate. Changes in the rate of habituation when attending to non-food stimuli while eating may be a mechanism for increasing energy intake. PMID:15708783

  13. Olfactory Mucosa Tissue Based Biosensor for Bioelectronic Nose

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Ye, Weiwei; Yu, Hui; Hu, Ning; Cai, Hua; Wang, Ping

    2009-05-01

    Biological olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, we have reported bioelectronic nose based on cultured olfactory cells. In this study, the electrical property of the tissue-semiconductor interface was analyzed by the volume conductor theory and the sheet conductor model. Olfactory mucosa tissue of rat was isolated and fixed on the surface of the light-addressable potentiometric sensor (LAPS), with the natural stations of the neuronal populations and functional receptor unit of the cilia well reserved. By the extracellular potentials of the olfactory receptor cells of the mucosa tissue monitored, both the simulation and the experimental results suggested that this tissue-semiconductor hybrid system was sensitive to odorants stimulation.

  14. Vapor Sensors Using Olfactory Proteins Coupled to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell; Goldsmith, Brett; Mitala, Joe; Discher, Bohdana; Johnson, A. T. Charlie

    2010-03-01

    We have constructed bio-nano devices which combine mammalian olfactory proteins with carbon nanotubes to create a new class of vapor sensors. Olfactory proteins are a specific class of G-protein coupled receptors, and require a cell membrane or similar environment for proper function. Functionalization procedures have been developed to meet the challenges of routinely coupling such membrane proteins to nanotubes, while preserving the function of the protein. We have successfully isolated olfactory proteins and attached them to carbon nanotube transistors, which provide fast, all-electronic readout of analyte binding by the olfactory receptor. Several different olfactory proteins have been tested, each showing a different sensing response. This work opens the way for future coupling of biology to nanoelectronics and improved biomimetic chemical sensing. This work is supported by the DARPA RealNose Project and the Nano/Bio Interface Center

  15. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development

    PubMed Central

    Antal, M. Cristina; Samama, Brigitte; Ghandour, M. Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  16. Olfactory Cilia: Linking Sensory Cilia Function and Human Disease

    PubMed Central

    Jenkins, Paul M.; McEwen, Dyke P.

    2009-01-01

    The olfactory system gives us an awareness of our immediate environment by allowing us to detect airborne stimuli. The components necessary for detection of these odorants are compartmentalized in the cilia of olfactory sensory neurons. Cilia are microtubule-based organelles, which can be found projecting from the surface of almost any mammalian cell, and are critical for proper olfactory function. Mislocalization of ciliary proteins and/or the loss of cilia cause impaired olfactory function, which is now recognized as a clinical manifestation of a broad class of human diseases, termed ciliopathies. Future work investigating the mechanisms of olfactory cilia function will provide us important new information regarding the pathogenesis of human sensory perception diseases. PMID:19406873

  17. Histochemical study of the olfactory mucosae of the horse.

    PubMed

    Lee, Kwang-Hyup; Park, Changnam; Bang, Hyojin; Ahn, Meejung; Moon, Changjong; Kim, Seungjoon; Shin, Taekyun

    2016-05-01

    The olfactory mucosae of the horse were examined by using histology and lectin histochemistry to characterize the carbohydrate sugar residues therein. Histological findings revealed that olfactory epithelium (OE) consisted of both olfactory marker protein (OMP)- and protein gene product (PGP) 9.5-positive receptor cells, supporting cells and basal cells with intervening secretory ducts from Bowman's glands. Mucus histochemistry showed that Bowman's gland acini contain periodic acid-Schiff (PAS) reagent-positive neutral mucins and alcian blue pH 2.5-positive mucosubstances. Lectin histochemistry revealed that a variety of carbohydrate sugar residues, including N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, fucose and complex type N-glycan groups, are present in the various cell types in the olfactory mucosa at varying levels. Collectively, this is the first descriptive study of horse olfactory mucosa to characterize carbohydrate sugar residues in the OE and Bowman's glands. PMID:27040092

  18. Humans can discriminate more than 1 trillion olfactory stimuli.

    PubMed

    Bushdid, C; Magnasco, M O; Vosshall, L B; Keller, A

    2014-03-21

    Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. We determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. On the basis of the results of psychophysical testing, we calculated that humans can discriminate at least 1 trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate. PMID:24653035

  19. Hidden consequences of olfactory dysfunction: a patient report series

    PubMed Central

    2013-01-01

    Background The negative consequences of olfactory dysfunction for the quality of life are not widely appreciated and the condition is therefore often ignored or trivialized. Methods 1,000 patients with olfactory dysfunction participated in an online study by submitting accounts of their subjective experiences of how they have been affected by their condition. In addition, they were given the chance to answer 43 specific questions about the consequences of their olfactory dysfunction. Results Although there are less practical problems associated with impaired or distorted odor perception than with impairments in visual or auditory perception, many affected individuals report experiencing olfactory dysfunction as a debilitating condition. Smell loss-induced social isolation and smell loss-induced anhedonia can severely affect quality of life. Conclusions Olfactory dysfunction is a serious condition for those affected by it and it deserves more attention from doctors who treat affected patients as well as from scientist who research treatment options. PMID:23875929

  20. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development.

    PubMed

    Antal, M Cristina; Samama, Brigitte; Ghandour, M Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  1. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    PubMed Central

    Larriva-Sahd, Jorge

    2012-01-01

    This study describes the microscopic organization of a wedge-shaped area at the intersection of the main (MOB) and accessory olfactory bulbs (AOBs), or olfactory limbus (OL), and an additional component of the anterior olfactory nucleus or alpha AON that lies underneath of the AOB. The OL consists of a modified bulbar cortex bounded anteriorly by the MOB and posteriorly by the AOB. In Nissl-stained specimens the OL differs from the MOB by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the OL is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area (PA), a second or necklace glomerular area, and a wedge-shaped or interstitial area (INA) crowned by the so-called modified glomeruli that appear to belong to the anterior AOB. The strategic location and interactions with the main and AOBs, together with the previously noted functional and connectional evidence, suggest that the OL may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 × 150 μm) paralleling the base of the AOB, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells (P-L) organize into a single bundle that ascends avoiding the AOB to resolve in a trigone bounded by the edge of the OL, the AOB and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67. PMID:22754506

  2. Axon fasciculation in the developing olfactory nerve

    PubMed Central

    2010-01-01

    Olfactory sensory neuron (OSN) axons exit the olfactory epithelium (OE) and extend toward the olfactory bulb (OB) where they coalesce into glomeruli. Each OSN expresses only 1 of approximately 1,200 odor receptors (ORs). OSNs expressing the same OR are distributed in restricted zones of the OE. However, within a zone, the OSNs expressing a specific OR are not contiguous - distribution appears stochastic. Upon reaching the OB the OSN axons expressing the same OR reproducibly coalesce into two to three glomeruli. While ORs appear necessary for appropriate convergence of axons, a variety of adhesion associated molecules and activity-dependent mechanisms are also implicated. Recent data suggest pre-target OSN axon sorting may influence glomerular convergence. Here, using regional and OR-specific markers, we addressed the spatio-temporal properties associated with the onset of homotypic fasciculation in embryonic mice and assessed the degree to which subpopulations of axons remain segregated as they extend toward the nascent OB. We show that immediately upon crossing the basal lamina, axons uniformly turn sharply, usually at an approximately 90° angle toward the OB. Molecularly defined subpopulations of axons show evidence of spatial segregation within the nascent nerve by embryonic day 12, within 48 hours of the first OSN axons crossing the basal lamina, but at least 72 hours before synapse formation in the developing OB. Homotypic fasciculation of OSN axons expressing the same OR appears to be a hierarchical process. While regional segregation occurs in the mesenchyme, the final convergence of OR-specific subpopulations does not occur until the axons reach the inner nerve layer of the OB. PMID:20723208

  3. Nasal toxicity, carcinogenicity, and olfactory uptake of metals.

    PubMed

    Sunderman, F W

    2001-01-01

    Occupational exposures to inhalation of certain metal dusts or aerosols can cause loss of olfactory acuity, atrophy of the nasal mucosa, mucosal ulcers, perforated nasal septum, or sinonasal cancer. Anosmia and hyposmia have been observed in workers exposed to Ni- or Cd-containing dusts in alkaline battery factories, nickel refineries, and cadmium industries. Ulcers of the nasal mucosa and perforated nasal septum have been reported in workers exposed to Cr(VI) in chromate production and chrome plating, or to As(III) in arsenic smelters. Atrophy of the olfactory epithelium has been observed in rodents following inhalation of NiSO4 or alphaNi3S2. Cancers of the nose and nasal sinuses have been reported in workers exposed to Ni compounds in nickel refining, cutlery factories, and alkaline battery manufacture, or to Cr(VI) in chromate production and chrome plating. In animals, several metals (eg, Al, Cd, Co, Hg, Mn, Ni, Zn) have been shown to pass via olfactory receptor neurons from the nasal lumen through the cribriform plate to the olfactory bulb. Some metals (eg, Mn, Ni, Zn) can cross synapses in the olfactory bulb and migrate via secondary olfactory neurons to distant nuclei of the brain. After nasal instillation of a metal-containing solution, transport of the metal via olfactory axons can occur rapidly, within hours or a few days (eg, Mn), or slowly over days or weeks (eg, Ni). The olfactory bulb tends to accumulate certain metals (eg, Al, Bi, Cu, Mn, Zn) with greater avidity than other regions of the brain. The molecular mechanisms responsible for metal translocation in olfactory neurons and deposition in the olfactory bulb are unclear, but complexation by metal-binding molecules such as carnosine (beta-alanyl-L-histidine) may be involved. PMID:11314863

  4. Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study.

    PubMed

    Stanciu, Ingrid; Larsson, Maria; Nordin, Steven; Adolfsson, Rolf; Nilsson, Lars-Göran; Olofsson, Jonas K

    2014-02-01

    We examined whether conversion to dementia can be predicted by self-reported olfactory impairment and/or by an inability to identify odors. Common forms of dementia involve an impaired sense of smell, and poor olfactory performance predicts cognitive decline among the elderly. We followed a sample of 1529 participants, who were within a normal range of overall cognitive function at baseline, over a 10-year period during which 159 were classified as having a dementia disorder. Dementia conversion was predicted from demographic variables, Mini-Mental State Examination score, and olfactory assessments. Self-reported olfactory impairment emerged as an independent predictor of dementia. After adjusting for effects of other predictors, individuals who rated their olfactory sensitivity as "worse than normal" were more likely to convert to dementia than those who reported normal olfactory sensitivity (odds ratio [OR] = 2.17; 95% confidence interval [CI] [1.40, 3.37]). Additionally, low scores on an odor identification test also predicted conversion to dementia (OR per 1 point increase = 0.89; 95% CI [0.81, 0.98]), but these two effects were additive. We suggest that assessing subjective olfactory complaints might supplement other assessments when evaluating the risk of conversion to dementia. Future studies should investigate which combination of olfactory assessments is most useful in predicting dementia conversion. PMID:24451436

  5. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    NASA Astrophysics Data System (ADS)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  6. FUNCTIONAL DEFICITS PRODUCED BY 3-METHYLINDOLE-INDUCED OLFACTORY MUCOSAL DAMAGE REVEALED BY A SIMPLE OLFACTORY LEARNING TASK

    EPA Science Inventory

    Methods for assessing functional consequences of olfactory mucosal damage were examined in rats exposed to 3-methylindole (3-MI). Treatment with 3-MI (400 mg/kg) induced severe degeneration of olfactory sensory epithelium followed by regeneration, fibrous adhesions and osseous re...

  7. Apropos of an Olfactory Reference Syndrome case.

    PubMed

    Cruzado, Lizardo; Cáceres-Taco, Elisa; Calizaya, Jesús R

    2012-01-01

    Olfactory Reference Syndrome (ORS) is one of the varieties of the somatic type of the Delusional Disorder, and it is characterized by the mistaken statement of a patient who declares the issuance of a foul odor coming from his own body and that others may notice. In the upcoming edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) it has been proposed to break off ORS as an independent pathology. From an illustrative case report, we review the relevant literature and discuss this proposal. PMID:22851484

  8. Stimulus Contrast and Retinogeniculate Signal Processing

    PubMed Central

    Rathbun, Daniel L.; Alitto, Henry J.; Warland, David K.; Usrey, W. Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  9. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  10. RF stimulus generator with agile modulation features

    NASA Astrophysics Data System (ADS)

    Boychuk, Bohdan; Larkin, Calvin W., Jr.

    The design and capabilities of a microwave/millimeter-wave stimulus generator with deviations and modulation rates up to 500 MHz are described. The oscillator of the system is a combination of YIG and varactor-tuned oscillators (VTO); the oscillator generates a fixed baseband signal with the required modulation characteristics in S-band and then translates this signal to the desired output frequency while preserving all modulation characteristics. The baseband FM loop, which consists of a switchable loop filter, an external frequency-hopping input, and the hyperabrupt VTO; the methods used to obtain frequency modulation; and the implementation of amplitude, phase, and pulse modulations are examined. Consideration is given to the X-band phase-locked source and the synchronizer and YIG circuitry. The RF stimulus generator is applicable to electronic warfare ATE.

  11. Some stimulus properties of inhalants: preliminary findings.

    PubMed

    Vila, J; Colotla, V A

    1981-01-01

    Water-deprived rats allowed access to 0.1% saccharin during 10 min followed by a 15-min (Exp. 1A) or a 30-min (Exp. 1B) exposure to lacquer thinner (6,360 ppm) failed to show a conditioned aversion to the saccharin solution. However, when the solvent odor was paired with water drinking followed by a 0.6 M LiCl injection (Exp. 2) the rats developed an aversion to water associated to lacquer thinner, drinking less than when water was presented alone. The findings suggest that whereas lacquer thinner does not appear to function as an unconditioned stimulus, it may acquire properties of conditioned stimulus in this paradigm of conditioned aversion. PMID:7335142

  12. Stimulus control in a two-choice discrimination procedure

    NASA Technical Reports Server (NTRS)

    Galloway, W. D.

    1973-01-01

    Experimental investigation upon pigeons of the relation between performance during discriminative training and subsequently obtained stimulus control test results. The results obtained support the proposition that bias generated by training dependencies is a major determiner of stimulus control.

  13. Electrophysiological Correlates of Stimulus Equivalence Processes

    PubMed Central

    Haimson, Barry; Wilkinson, Krista M; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g., wrist, corn). For pairs of both types, event-related cortical potentials were recorded during and immediately after the presentation of the second word. The obtained waveforms differentiated these two types of pairs. For the unrelated pairs, the waveforms were significantly more negative about 400 ms after the second word was presented, thus replicating the “N400” phenomenon of the cognitive neuroscience literature. In addition, there was a strong positive-tending wave form difference post-stimulus presentation (peaked at about 500 ms) that also differentiated the unrelated from related stimulus pairs. In Experiment 2, the procedures were extended to study arbitrary stimulus–stimulus relations established via matching-to-sample training. Participants were experimentally naïve adults. Sample stimuli (Set A) were trigrams, and comparison stimuli (Sets B, C, D, E, and F) were nonrepresentative forms. Behavioral tests evaluated potentially emergent equivalence relations (i.e., BD, DF, CE, etc.). All participants exhibited classes consistent with the arbitrary matching training. They were also exposed also to an event-related potential procedure like that used in Experiment 1. Some received the ERP procedure before equivalence tests and some after. Only those participants who received ERP procedures after equivalence tests exhibited robust N400 differentiation initially. The positivity observed in Experiment 1 was absent for all participants. These results support speculations that equivalence tests may provide contextual support for the formation of equivalence classes including those that emerge gradually during testing

  14. Impact of stimulus uncanniness on speeded response

    PubMed Central

    Takahashi, Kohske; Fukuda, Haruaki; Samejima, Kazuyuki; Watanabe, Katsumi; Ueda, Kazuhiro

    2015-01-01

    In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat. PMID:26052297

  15. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  16. Stimulus-responsive nanopreparations for tumor targeting

    PubMed Central

    Zhu, Lin; Torchilin, Vladimir P.

    2012-01-01

    Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages versus “naked” therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration; carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the fact of the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics. PMID:22869005

  17. Hierarchical stimulus processing by dogs (Canis familiaris).

    PubMed

    Pitteri, Elisa; Mongillo, Paolo; Carnier, Paolo; Marinelli, Lieta

    2014-07-01

    The purpose of this study was to assess the visual processing of global and local levels of hierarchical stimuli in domestic dogs. Fourteen dogs were trained to recognise a compound stimulus in a simultaneous conditioned discrimination procedure and were then tested for their local/global preference in a discrimination test. As a group, dogs showed a non-significant trend for global precedence, although large inter-individual variability was observed. Choices in the test were not affected by either dogs' sex or the type of stimulus used for training. However, the less time a dog took to complete the discrimination training phase, the higher the probability that it chose the global level of test stimulus. Moreover, dogs that showed a clear preference for the global level in the test were significantly less likely to show positional responses during discrimination training. These differences in the speed of acquisition and response patterns may reflect individual differences in the cognitive requirements during discrimination training. The individual variability in global/local precedence suggests that experience in using visual information may be more important than predisposition in determining global/local processing in dogs. PMID:24337824

  18. Stimulus generalization and operant context renewal.

    PubMed

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila

    2015-10-01

    Context renewal is the relapse of an extinguished response due to changing the stimulus context following extinction. Reinforcing operant responding in Context A and extinguishing in Context B results in relapse when either returning to Context A (ABA renewal) or introducing a novel Context C (ABC renewal). ABA renewal typically is greater than ABC renewal. The present study assessed whether renewal might be conceptualized through excitatory and inhibitory generalization gradients inferred from studies of stimulus generalization. We arranged one keylight-color alternation frequency for pigeons to signal reinforcement in Phase 1 and a different alternation frequency to signal extinction in Phase 2. During a subsequent test in extinction, we presented a range of keylight-alternation frequencies and found renewal to be a function of keylight-alternation frequency. Specifically, Phase-3 responding increased as keylight-alternation frequency differed from that arranged during extinction in Phase 2. Moreover, we observed a shift in the function beyond the originally reinforced keylight-alternation frequency arranged in training (i.e., peak shift). We discuss the relevance of these findings for conceptualizing stimulus-control processes governing generalization gradients for understanding the processes underlying context renewal. PMID:26241660

  19. The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells.

    PubMed Central

    Lowe, G; Gold, G H

    1991-01-01

    1. Suction electrode and whole-cell recording were used to record membrane currents from defined regions of solitary olfactory receptor cells from Ambystoma tigrinum. 2. Under whole-cell current clamp, stimulation of cells with odorants activated an inward current in the cilia, an outward current in the soma, and induced a membrane depolarization. Clamping the membrane potential at its resting value of -70 mV increased the inward ciliary current 5- to 10-fold and abolished the outward somatic current. 3. Local odorant stimulation was accomplished by ejecting an odorant solution into a steady flow of Ringer solution. A suction electrode was used to immobilize a cell in the flow and to record the odorant-induced somatic current. The amplitude of the odorant response increased approximately linearly with the length of cilia exposed to the stimulus, but was independent of the length of dendrite exposed to the stimulus, indicating that odorant sensitivity is predominantly localized to the cilia. 4. The latencies of responses recorded under flow did not vary with the region of the cilia which was exposed to the stimulus. Also, the magnitude of the inward ciliary current activated by odorants was equal to that of the whole-cell current recorded under voltage clamp. These observations indicate that the odorant-induced inward current is predominantly localized to the ciliary membrane. 5. Under whole-cell current clamp, local application of a high-K+ solution generated an outward somatic current when applied to the dendrite, but had no effect when applied to the cilia. This indicates that the density of the resting K+ conductance is lower in the ciliary membrane than in the dendritic membrane. 6. The results above are consistent with the hypothesis that all components of the transduction mechanism are uniformly distributed within the cilia, and that the cilia are electrotonically compact, even during an odorant-induced conductance increase. Images Fig. 2 PMID:1798028

  20. Measuring Joint Stimulus Control by Complex Graph/Description Correspondences

    ERIC Educational Resources Information Center

    Fields, Lanny; Spear, Jack

    2012-01-01

    Joint stimulus control occurs when responding is determined by the correspondence of elements of a complex sample and a complex comparison stimulus. In academic settings, joint stimulus control of behavior would be evidenced by the selection of an accurate description of a complex graph in which each element of a graph corresponded to particular…

  1. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  2. Recordings from cultured newt olfactory receptor cells.

    PubMed

    Matsumura, Kyohei; Matsumoto, Masahiro; Kurahashi, Takashi; Takeuchi, Hiroko

    2012-05-01

    Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo. PMID:22559969

  3. Unitary response of mouse olfactory receptor neurons

    PubMed Central

    Ben-Chaim, Yair; Cheng, Melody M.; Yau, King-Wai

    2011-01-01

    The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, Golf, and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gαolf–ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gαolf+/− ORNs was similar to WT in amplitude, although their Gαolf-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain. PMID:21187398

  4. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  5. Olfactory function in psychotic disorders: Insights from neuroimaging studies

    PubMed Central

    Good, Kimberley P; Sullivan, Randii Lynn

    2015-01-01

    Olfactory deficits on measures of identification, familiarity, and memory are consistently noted in patients with psychotic disorders relative to age-matched controls. Olfactory intensity ratings, however, appear to remain intact while the data on hedonics and detection threshold are inconsistent. Despite the behavioral abnormalities noted, no specific regional brain hypoactivity has been identified in psychosis patients, for any of the olfactory domains. However, an intriguing finding emerged from this review in that the amygdala and pirifom cortices were not noted to be abnormal in hedonic processing (nor was the amygdala identified abnormal in any study) in psychotic disorders. This finding is in contrast to the literature in healthy individuals, in that this brain region is strongly implicated in olfactory processing (particularly for unpleasant odorants). Secondary olfactory cortex (orbitofrontal cortices, thalamus, and insula) was abnormally activated in the studies examined, particularly for hedonic processing. Further research, using consistent methodology, is required for better understanding the neurobiology of olfactory deficits. The authors suggest taking age and sex differences into consideration and further contrasting olfactory subgroups (impaired vs intact) to better our understanding of the heterogeneity of psychotic disorders. PMID:26110122

  6. Olfaction and olfactory-mediated behaviour in psychiatric disease models.

    PubMed

    Huckins, Laura M; Logan, Darren W; Sánchez-Andrade, Gabriela

    2013-10-01

    Rats and mice are the most widely used species for modelling psychiatric disease. Assessment of these rodent models typically involves the analysis of aberrant behaviour with behavioural interactions often being manipulated to generate the model. Rodents rely heavily on their excellent sense of smell and almost all their social interactions have a strong olfactory component. Therefore, experimental paradigms that exploit these olfactory-mediated behaviours are among the most robust available and are highly prevalent in psychiatric disease research. These include tests of aggression and maternal instinct, foraging, olfactory memory and habituation and the establishment of social hierarchies. An appreciation of the way that rodents regulate these behaviours in an ethological context can assist experimenters to generate better data from their models and to avoid common pitfalls. We describe some of the more commonly used behavioural paradigms from a rodent olfactory perspective and discuss their application in existing models of psychiatric disease. We introduce the four olfactory subsystems that integrate to mediate the behavioural responses and the types of sensory cue that promote them and discuss their control and practical implementation to improve experimental outcomes. In addition, because smell is critical for normal behaviour in rodents and yet olfactory dysfunction is often associated with neuropsychiatric disease, we introduce some tests for olfactory function that can be applied to rodent models of psychiatric disorders as part of behavioural analysis. PMID:23604803

  7. A lifetime of neurogenesis in the olfactory system.

    PubMed

    Brann, Jessica H; Firestein, Stuart J

    2014-01-01

    Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal. PMID:25018692

  8. Expression of corticosteroid binding globulin in the rat olfactory system.

    PubMed

    Dölz, Wilfried; Eitner, Annett; Caldwell, Jack D; Jirikowski, Gustav F

    2013-05-01

    Glucocorticoids are known to act on the olfactory system although their mode of action is still unclear since nuclear glucocorticoid receptors are mostly absent in the olfactory mucosa. In this study we used immunocytochemistry, in situ hybridization, and RT-PCR to study the expression and distribution of corticosteroid binding globulin (CBG) in the rat olfactory system. Mucosal goblet cells could be immunostained for CBG. Nasal secretion contained measurable amounts of CBG suggesting that CBG is liberated. CBG immunoreactivity was localized in many of the basal cells of the olfactory mucosa, while mature sensory cells contained CBG only in processes as determined by double immunostaining with the olfactory marker protein OMP. This staining was most pronounced in the vomeronasal organ (VNO). The appearance of CBG in the non-sensory and sensory parts of the VNO and in nerve terminals in the accessory bulb indicated axonal transport. Portions of the periglomerular cells, the mitral cells and the tufted cells were also CBG positive. CBG encoding transcripts were confirmed by RT-PCR in homogenates of the olfactory mucosa and VNO. Olfactory CBG may be significant for uptake, accumulation and transport of glucocorticoids, including aerosolic cortisol. PMID:23141917

  9. Using Stimulus-Stimulus Pairing and Direct Reinforcement to Teach Vocal Verbal Behavior to Young Children with Autism

    ERIC Educational Resources Information Center

    Carroll, Regina A.; Klatt, Kevin P.

    2008-01-01

    In this study the effect of a stimulus-stimulus pairing procedure was used as part of a clinical investigation to increase vocalizations for two young children diagnosed with autism. This procedure involved pairing a vocal sound with a preferred stimulus (e.g., toy) to condition automatic reinforcement. In addition, this study assessed the effects…

  10. Respiratory and olfactory turbinal size in canid and arctoid carnivorans.

    PubMed

    Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-12-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  11. Respiratory and olfactory turbinal size in canid and arctoid carnivorans

    PubMed Central

    Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-01-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  12. Cellular Basis for the Olfactory Response to Nicotine

    PubMed Central

    2010-01-01

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (RoseJ. E., et al. (1993) Pharmacol., Biochem. Behav.1 (3), 891−9008469698). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (MombaertsP. (1999) Annu. Rev. Neurosci.1, 487−50910202546), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (GomezG., et al. (2000) J. Neurosci. Res.1 (3), 737−74911104513), and rat olfactory neurons. Rat and human OSNs responded to S(−)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation. PMID:22777075

  13. Cellular basis for the olfactory response to nicotine.

    PubMed

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation. PMID:22777075

  14. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons.

    PubMed

    Keshavarzi, Sepideh; Power, John M; Albers, Eva H H; Sullivan, Robert K S; Sah, Pankaj

    2015-09-23

    The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala. PMID:26400933

  15. Evidence of rapid recovery from perceptual odor adaptation using a new stimulus paradigm.

    PubMed

    Yoder, Wendy M; LaRue, Allison K; Rosen, Jason M; Aggarwal, Somi; Shukla, Ruchi M; Monir, Joe; Smith, David W

    2014-05-01

    By attenuating neural and perceptual responses to sustained stimulation, adaptation enhances the detection of new, transient stimuli. Disadaptation serves a similarly important role as a temporal filter for chemoreceptor cells, producing rapid recovery of sensitivity upon termination of the adapting odorant. Previous research from our laboratory indicated that a rapid form of odor adaptation can be measured using a novel, simultaneous-odorant paradigm. In the present study, we extended the earlier method by measuring recovery from adaptation. Perceptual odor adaptation was measured by estimating psychophysical detection thresholds in a group of college-aged student volunteers (N = 20; 12 females, eight males) for a self-adapting odorant, vanilla extract. To induce adaptation, the time between the onset of the adapting odorant and the onset of the target odorant was systematically varied. By first quantifying adaptation, recovery of sensitivity could therefore be investigated by using different time points following the termination of the adapting odorant. Consistent with our previous work, thresholds estimated in the presence of the simultaneous adapting odorant were significantly increased, reflecting a decrease in sensitivity due to adaptation. Conversely, approximately 100 ms following termination of the adapting stimulus (the briefest delay tested), sensitivity began to rapidly recover. Nevertheless, some residual adaptation was evident at the longest offset delay of 500 ms. These findings suggest that the recovery from adaptation proceeds at least as rapidly as the onset of adaptation, a finding that is consistent with physiological evidence from olfactory receptors. These data also suggest the effectiveness of this new odorant paradigm in characterizing the temporal characteristics underlying these critical olfactory mechanisms. PMID:24500750

  16. Face detection for interactive tabletop viewscreen system using olfactory display

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  17. Value of MRI olfactory bulb evaluation in the assessment of olfactory dysfunction in Bardet-Biedl syndrome.

    PubMed

    Braun, J J; Noblet, V; Kremer, S; Molière, S; Dollfus, H; Marion, V; Goetz, N; Muller, J; Riehm, S

    2016-07-01

    Olfactory bulb (OB) volume evaluation by magnetic resonance imaging (MRI) has been demonstrated to be related to olfactory dysfunction in many different diseases. Olfactory dysfunction is often overlooked in Bardet-Biedl syndrome (BBS) patients and is rarely objectively evaluated by MRI. We present a series of 20 BBS patients with olfactory dysfunction. The OB was evaluated separately and blindly by two radiologists (SR and SM) with 3 Tesla MRI imaging comparatively to 12 normal control subjects by global visual evaluation and by quantitative measurement of OB volume. In the 12 control cases OB visual evaluation was considered as normal in all cases for radiologist (SR) and in 10 cases for radiologist (SM). In the 20 BBS patients, OB visual evaluation was considered as abnormal in 18 cases for SR and in all cases for SM. OB volumetric evaluation for SR and SM in BBS patients was able to provide significant correlation between BBS and olfactory dysfunction. This study indicates that OB volume evaluation by MRI imaging like structural MRI scan for gray matter modifications demonstrates that olfactory dysfunction in BBS patients is a constant and cardinal symptom integrated in a genetical syndrome with peripheral and central olfactory structure alterations. PMID:26586152

  18. Expression of polysialyltransferases (STX and PST) in adult rat olfactory bulb after an olfactory associative discrimination task.

    PubMed

    Mione, J; Manrique, C; Duhoo, Y; Roman, F S; Guiraudie-Capraz, G

    2016-04-01

    Neuronal plasticity and neurogenesis occur in the adult hippocampus and in other brain structures such as the olfactory bulb and often involve the neural cell adhesion molecule NCAM. During an olfactory associative discrimination learning task, NCAM polysialylation triggers neuronal plasticity in the adult hippocampus. The PST enzyme likely modulates this polysialylation, but not STX, a second sialyltransferase. How the two polysialyltransferases are involved in the adult olfactory bulb remains unknown. We addressed this question by investigating the effect of olfactory associative learning on plasticity and neurogenesis. After a hippocampo-dependent olfactory associative task learning, we measured the expression of both PST and STX polysialyltransferases in the olfactory bulbs of adult rats using quantitative PCR. In parallel, immunohistochemistry was used to evaluate both NCAM polysialylation level and newly-born cells, with or without learning. After learning, no changes were observed neither in the expression level of PST and NCAM polysialylation, nor in STX gene expression level and newly-born cells number in the olfactory bulb. PMID:26844880

  19. Stimulus control topography coherence theory: Foundations and extensions

    PubMed Central

    McIlvane, William J.; Dube, William V.

    2003-01-01

    Stimulus control topography refers to qualitative differences among members of a functional stimulus class. Stimulus control topography coherence refers to the degree of concordance between the stimulus properties specified as relevant by the individual arranging a reinforcement contingency (behavior analyst, experimenter, teacher, etc.) and the stimulus properties that come to control the behavior of the organism (experimental subject, student, etc.) that experiences those contingencies. This paper summarizes the rationale for analyses of discrimination learning outcomes in terms of stimulus control topography coherence and briefly reviews some of the foundational studies that led to this perspective. We also suggest directions for future research, including pursuit of conceptual and methodological challenges to a complete stimulus control topography coherence analysis of processes involved in discriminated and generalized operants. ImagesFigure 3Figure 5 PMID:22478402

  20. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons.

    PubMed

    Dibattista, Michele; Reisert, Johannes

    2016-03-01

    Olfactory receptor neurons (ORNs) in the nasal cavity detect and transduce odorants into action potentials to be conveyed to the olfactory bulb. Odorants are delivered to ORNs via the inhaled air at breathing frequencies that can vary from 2 to 10 Hz in the mouse. Thus olfactory transduction should occur at sufficient speed such that it can accommodate repetitive and frequent stimulation. Activation of odorant receptors (ORs) leads to adenylyl cyclase III activation, cAMP increase, and opening of cyclic nucleotide-gated channels. This makes the kinetic regulation of cAMP one of the important determinants for the response time course. We addressed the dynamic regulation of cAMP during the odorant response and examined how basal levels of cAMP are controlled. The latter is particularly relevant as basal cAMP depends on the basal activity of the expressed OR and thus varies across ORNs. We found that olfactory marker protein (OMP), a protein expressed in mature ORNs, controls both basal and odorant-induced cAMP levels in an OR-dependent manner. Lack of OMP increases basal cAMP, thus abolishing differences in basal cAMP levels between ORNs expressing different ORs. Moreover, OMP speeds up signal transduction for ORNs to better synchronize their output with high-frequency stimulation and to perceive brief stimuli. Last, OMP also steepens the dose-response relation to improve concentration coding although at the cost of losing responses to weak stimuli. We conclude that OMP plays a key regulatory role in ORN physiology by controlling multiple facets of the odorant response. PMID:26961953

  1. Stimulus devaluation induced by stopping action.

    PubMed

    Wessel, Jan R; O'Doherty, John P; Berkebile, Michael M; Linderman, David; Aron, Adam R

    2014-12-01

    Impulsive behavior in humans partly relates to inappropriate overvaluation of reward-associated stimuli. Hence, it is desirable to develop methods of behavioral modification that can reduce stimulus value. Here, we tested whether one kind of behavioral modification--the rapid stopping of actions in the face of reward-associated stimuli--could lead to subsequent devaluation of those stimuli. We developed a novel paradigm with three consecutive phases: implicit reward learning, a stop-signal task, and an auction procedure. In the learning phase, we associated abstract shapes with different levels of reward. In the stop-signal phase, we paired half those shapes with occasional stop-signals, requiring the rapid stopping of an initiated motor response, while the other half of shapes was not paired with stop signals. In the auction phase, we assessed the subjective value of each shape via willingness-to-pay. In 2 experiments, we found that participants bid less for shapes that were paired with stop-signals compared to shapes that were not. This suggests that the requirement to try to rapidly stop a response decrements stimulus value. Two follow-on control experiments suggested that the result was specifically due to stopping action rather than aversiveness, effort, conflict, or salience associated with stop signals. This study makes a theoretical link between research on inhibitory control and value. It also provides a novel behavioral paradigm with carefully operationalized learning, treatment, and valuation phases. This framework lends itself to both behavioral modification procedures in clinical disorders and research on the neural underpinnings of stimulus devaluation. PMID:25313953

  2. Stimulus devaluation induced by stopping action

    PubMed Central

    Wessel, Jan R.; O’Doherty, John P.; Berkebile, Michael M.; Linderman, David; Aron, Adam R.

    2014-01-01

    Impulsive behavior in humans partly relates to inappropriate overvaluation of reward-associated stimuli. Hence, it is desirable to develop methods of behavioral modification that can reduce stimulus value. Here, we tested whether one kind of behavioral modification – the rapid stopping of actions in the face of reward-associated stimuli – could lead to subsequent devaluation of those stimuli. We developed a novel paradigm with three consecutive phases: implicit reward learning, a stop-signal task, and an auction procedure. In the learning phase, we associated abstract shapes with different levels of reward. In the stop-signal phase, we paired half those shapes with occasional stop-signals, requiring the rapid stopping of an initiated motor response, while the other half of shapes was not paired with stop signals. In the auction phase, we assessed the subjective value of each shape via willingness-to-pay. In two experiments, we found that participants bid less for shapes that were paired with stop-signals compared to shapes that were not. This suggests that the requirement to try to rapidly stop a response decrements stimulus value. Two follow-on control experiments suggested that the result was specifically due to stopping action rather than aversiveness, effort, conflict, or salience associated with stop signals. This study makes a theoretical link between research on inhibitory control and value. It also provides a novel behavioral paradigm with carefully operationalized learning, treatment, and valuation phases. This framework lends itself to both behavioral modification procedures in clinical disorders, and research on the neural underpinnings of stimulus devaluation. PMID:25313953

  3. Stimulus-parity synaesthesia versus stimulus-dichotomy synaesthesia: Odd, even or something else?

    PubMed Central

    White, Rebekah C.; Plassart, Anna

    2015-01-01

    In stimulus-parity synaesthesia, a range of stimuli—for example, letters, numbers, weekdays, months, and colours (the inducers)—elicit an automatic feeling of oddness or evenness (the concurrent). This phenomenon was first described by Théodore Flournoy in 1893, and has only recently been “rediscovered.” Here, we describe an individual who experiences a comparable phenomenon, but uses the labels negative and positive rather than odd and even. Stimulus-parity synaesthesia may be broader than first supposed, and it is important that assessments are sensitive to this breadth. PMID:26034572

  4. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  5. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  6. Olfactory marker protein gene: its structure and olfactory neuron-specific expression in transgenic mice.

    PubMed Central

    Danciger, E; Mettling, C; Vidal, M; Morris, R; Margolis, F

    1989-01-01

    Olfactory marker protein (OMP) genomic clones were isolated from a Charon 4A phage lambda rat genomic library. A 16.5-kilobase (kb) fragment of the rat genome containing the gene was isolated and characterized. Sequence analysis of the gene showed the absence of introns and the lack of CAAT and TATA boxes in the 5' flanking region. The transcription initiation site was mapped, and two sites 55 and 58 base pairs upstream of the ATG were observed. The 5' flanking region is rich in G+C residues and contains a G+C-rich motif as well as direct and inverted repeats. Functional OMP regulatory sequences were demonstrated in transgenic mice. An 11-kb chimeric gene was constructed in which the coding region for OMP was replaced with that for Thy-1.1. In Thy-1.2 mice carrying this transgene, Thy-1.1 was expressed solely by olfactory receptor neurons and their axons and terminals in the olfactory bulb. Images PMID:2701951

  7. Interactions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers

    PubMed Central

    Brus, Maïna; Meurisse, Maryse; Keller, Matthieu; Lévy, Frédéric

    2014-01-01

    New neurons are continuously added in the dentate gyrus (DG) and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep mothers. Using Bromodeoxyuridine, a marker of cell division, in combination with markers of neuronal maturation, the percentage of neuroblasts and new mature neurons in the olfactory bulb and the DG was compared between groups of parturient ewes which could interact or not with their lamb, and virgins. In addition, a morphological analysis was performed by measuring the dendritic arbor of neuroblasts in both structures. We showed that the postpartum period was associated with a decrease in olfactory and hippocampal adult neurogenesis. In the olfactory bulb, the suppressive effect on neuroblasts was dependent on interactions with the young whereas in the DG the decrease in new mature neurons was associated with parturition. In addition, dendritic length and number of nodes of neuroblasts were significantly enhanced by interactions with the lamb in the olfactory bulb but not in the DG. Because interactions with the young involved learning of the olfactory signature of the lamb, we hypothesize that this learning is associated with a down-regulation in olfactory neurogenesis and an enhancement of olfactory neuroblast maturation. Our assumption is that fewer new neurons decrease cell competition in the olfactory bulb and enhance maturation of those new neurons selected to participate in the learning of the young odor. PMID:24600367

  8. An electroolfactogram study of odor response patterns from the mouse olfactory epithelium with reference to receptor zones and odor sorptiveness.

    PubMed

    Coppola, D M; Waggener, C T; Radwani, S M; Brooks, D A

    2013-04-01

    Olfactory sensory neuron (OSN) responses to odors, measured at the population level, tend to be spatially heterogeneous in the vertebrates that have been studied. These response patterns vary between odors but are similar across subjects for a given stimulus. However, few species have been studied making functional interpretation of these patterns problematic. One proximate explanation for the spatial heterogeneity of odor responses comes from evidence that olfactory receptor (OR) genes in rodents are expressed in OSN populations that are spatially restricted to a few zones in the olfactory epithelium (OE). A long-standing functional explanation for response anisotropy in the OE posits that it is the signature of a supplementary mechanism for quality coding, based on the sorptive properties of odor molecules. These theories are difficult to assess because most mapping studies have utilized few odors, provided little replication, or involved but a single species (rat). In fact, to our knowledge, a detailed olfactory response "map" has not been reported for mouse, the species used in most studies of gene localization. Here we report the results of a study of mouse OE response patterns using the electroolfactogram (EOG). We focused on the medial aspect of olfactory turbinates that are accessible in the midsagittal section. This limited approach still allowed us to test predictions derived from the zonal distribution of OSN types and the sorption hypothesis. In 3 separate experiments, 290 mice were used to record EOGs from a set of standard locations along each of 4 endoturbinates utilizing 11 different odors resulting in over 4,400 separate recordings. Our results confirmed a marked spatial heterogeneity in odor responses that varied with odor, as seen in other species. However, no discontinuities were found in the odor-specific response patterns across the OE as might have been predicted given the existence of classical receptor zones nor did we find clear support

  9. Fault tolerant architecture for artificial olfactory system

    NASA Astrophysics Data System (ADS)

    Lotfivand, Nasser; Nizar Hamidon, Mohd; Abdolzadeh, Vida

    2015-05-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible.

  10. Biophysical mechanisms underlying olfactory receptor neuron dynamics

    PubMed Central

    Nagel, Katherine I.; Wilson, Rachel I.

    2010-01-01

    Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding. PMID:21217763

  11. Olfactory groove meningiomas: approaches and complications.

    PubMed

    Aguiar, Paulo Henrique Pires de; Tahara, Adriana; Almeida, Antonio Nogueira; Simm, Renata; Silva, Arnaldo Neves da; Maldaun, Marcos Vinicius Calfatt; Panagopoulos, Alexandros Theodoros; Zicarelli, Carlos Alexandre; Silva, Pedro Gabriel

    2009-09-01

    Olfactory groove meningiomas (OGM) account for 4.5% of all intracranial meningiomas. We report 21 patients with OGMs. Tumors were operated on using three surgical approaches: bifrontal (7 patients), fronto-pterional (11 patients) and fronto-orbital (3 patients). Total tumor removal (Simpson Grade 1) was achieved in 13 patients and Simpson II in 8 patients. Perioperative mortality was 4.76%. The average size of the OGM was 4.3+/-1.1cm. The overall recurrence rate was 19%. We preferred to use the pterional approach, which provides quick access to the tumor with less brain exposure. It also allows complete drainage of cisternal cerebrospinal fluid, providing a good level of brain relaxation during surgery. However, for long, thin tumors, hemostasis can be difficult using this approach. PMID:19577476

  12. Coding and transformations in the olfactory system.

    PubMed

    Uchida, Naoshige; Poo, Cindy; Haddad, Rafi

    2014-01-01

    How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input. PMID:24905594

  13. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  14. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  15. Inhibition by Somatostatin Interneurons in Olfactory Cortex

    PubMed Central

    Large, Adam M.; Kunz, Nicholas A.; Mielo, Samantha L.; Oswald, Anne-Marie M.

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  16. Inhibition by Somatostatin Interneurons in Olfactory Cortex.

    PubMed

    Large, Adam M; Kunz, Nicholas A; Mielo, Samantha L; Oswald, Anne-Marie M

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  17. From the Cover: Odor maps in the olfactory cortex

    NASA Astrophysics Data System (ADS)

    Zou, Zhihua; Li, Fusheng; Buck, Linda B.

    2005-05-01

    In the olfactory system, environmental chemicals are deconstructed into neural signals and then reconstructed to form odor perceptions. Much has been learned about odor coding in the olfactory epithelium and bulb, but little is known about how odors are subsequently encoded in the cortex to yield diverse perceptions. Here, we report that the representation of odors by fixed glomeruli in the olfactory bulb is transformed in the cortex into highly distributed and multiplexed odor maps. In the mouse olfactory cortex, individual odorants are represented by subsets of sparsely distributed neurons. Different odorants elicit distinct, but partially overlapping, patterns that are strikingly similar among individuals. With increases in odorant concentration, the representations expand spatially and include additional cortical neurons. Structurally related odorants have highly related representations, suggesting an underlying logic to the mapping of odor identities in the cortex. odorant receptor | smell

  18. The muted sense: neurocognitive limitations of olfactory language

    PubMed Central

    Olofsson, Jonas K.; Gottfried, Jay A.

    2015-01-01

    Most people find it profoundly difficult to name familiar smells. This difficulty persists even though perceptual odor processing and visual object naming are unimpaired, implying deficient sensory-specific interactions with the language system. In this article, we synthesize recent behavioral and neuroimaging data to develop a biologically informed framework for olfactory lexical processing in the human brain. Our central premise is that the difficulty in naming common objects through olfactory (compared to visual) stimulation is the end result of cumulative effects occurring at three successive stages of the olfactory language pathway: object perception, lexical-semantic integration, and verbalization. Understanding the neurocognitive mechanisms by which the language network interacts with olfaction can yield unique insights into the elusive nature of olfactory naming. PMID:25979848

  19. Unravelling the Olfactory Sense: From the Gene to Odor Perception.

    PubMed

    Silva Teixeira, Carla S; Cerqueira, Nuno M F S A; Silva Ferreira, António C

    2016-02-01

    Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields. PMID:26688501

  20. Properties of odour-binding glycoproteins from rat olfactory epithelium.

    PubMed

    Fesenko, E E; Novoselov, V I; Bystrova, M F

    1988-01-22

    The specific membrane glycoproteins with high affinity for camphor and decanal were isolated from rat olfactory epithelium. Antibodies to these glycoproteins inhibited both the electroolfactogram and the binding of odorants. The enzyme immunoassay has shown these glycoproteins to be present in the olfactory epithelium of rat, mouse, guinea-pig and hamster but not in that of frog and carp. The molecular mass of the odour-binding glycoproteins from rat olfactory epithelium solubilized by Triton X-100 was approx. 140 kDa. They consisted of two subunits (88 and 55 kDa). The 88 kDa subunit was capable of binding odorants. The data obtained suggest that the glycoproteins isolated have some properties that make them plausible candidates for olfactory receptor molecules. PMID:3337807

  1. An enigmatic clinical entity: A new case of olfactory schwannoma.

    PubMed

    Manto, Andrea; Manzo, Gaetana; De Gennaro, Angela; Martino, Vincenzo; Buono, Vincenzo; Serino, Antonietta

    2016-06-01

    Olfactory schwannomas, also described as subfrontal or olfactory groove schwannomas, are very rare tumors, whose pathogenesis is still largely debated. We report a case of olfactory schwannoma in a 39-year-old woman who presented with anosmia and headache. The clinical examination did not show lesions in the nose-frontal region and there was no history of neurofibromatosis. Head MRI and CT scan revealed a lobulated extra-axial mass localized in the right anterior cranial fossa that elevated the ipsilateral frontal pole. Bilateral frontal craniotomy demonstrated a tumor strictly attached to the right portion of the cribriform plate that surrounded the right olfactory tract, not clearly identifiable. The immunohistochemical analysis suggested the diagnosis of typical schwannoma. The patient was discharged without any neurological deficit and a four-month postoperative MRI scan of the brain showed no residual or recurrent tumor. PMID:26944065

  2. Olfactory communication among Costa Rican squirrel monkeys: a field study.

    PubMed

    Boinski, S

    1992-01-01

    Behaviors with a possible role in olfactory communication among troop members were investigated as part of a field study on the reproductive and foraging ecology of squirrel monkeys (Saimiri oerstedi) in Costa Rica. All age classes engaged in the olfaction-related behaviors. Apart from olfactory investigation of female genitals by males during the mating season, no other potential olfaction-related behavior (urine wash, branch investigation, rump, chest, back rub and sneeze) exceeded 1% of mean behavioral samples. Assessment of reproduction condition appears to be the primary function of such olfactory investigation of the female genital region. The primary function of urine washing is suggested to be the general communication of reproductive status, possibly facilitating reproductive synchrony. Sneezing, rump, back and chest rubbing do not appear to deposit substances active in olfactory communication. PMID:1306175

  3. The muted sense: neurocognitive limitations of olfactory language.

    PubMed

    Olofsson, Jonas K; Gottfried, Jay A

    2015-06-01

    Most people find it profoundly difficult to name familiar smells. This difficulty persists even when perceptual odor processing and visual object naming are unimpaired, implying deficient sensory-specific interactions with the language system. Here we synthesize recent behavioral and neuroimaging data to develop a biologically informed framework for olfactory lexical processing in the human brain. Our central premise is that the difficulty in naming common objects through olfactory (compared with visual) stimulation is the end result of cumulative effects occurring at three successive stages of the olfactory language pathway: object perception, lexical-semantic integration, and verbalization. Understanding the neurocognitive mechanisms by which the language network interacts with olfaction can yield unique insights into the elusive nature of olfactory naming. PMID:25979848

  4. Olfactory dysfunction as first presenting symptom of cranial fibrous dysplasia

    PubMed Central

    Tsakiropoulou, Evangelia; Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2013-01-01

    Fibrous dysplasia (FD) is a benign bone disorder presenting with a variety of clinical manifestations. This is the first reported case of anosmia as presenting symptom of FD. We present the case of a 72-year-old female patient with a progressive olfactory dysfunction. Clinical examination revealed evidence of chronic rhinosinusitis; therefore the patient was treated with a course of oral corticosteroids. The patient had no improvement in her olfactory ability and imaging studies were ordered. Bony lesions characteristic of craniofacial FD were found, causing obstruction of the central olfactory pathway. This case emphasises the need to conduct further investigations in patients with rhinosinusitis and olfactory dysfunction especially when they present no response to oral steroid treatment. PMID:23893286

  5. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report.

    PubMed

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    BACKGROUND Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. CASE REPORT A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. CONCLUSIONS To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  6. Re-establishment of olfactory and taste functions

    PubMed Central

    Welge-Lüssen, Antje

    2005-01-01

    The incidence of olfactory disorders is appoximately 1-2% and they can seriously impact on the quality of life. Quantitative disorders (hyposmia, anosmia) are distinguished from qualitative disorders (parosmia, phantosmia). Olfactory disorders are classified according to the etiology and therapy is planned according to the underlying pathophysiology. In ENT patients olfactory disorders caused by sinonasal diseases are the most common ones, followed by postviral disorders. Therapy consists of topical and systemic steroids, whereas systemic application seems to be of greater value. It is very difficult to predict the improvement of olfactory function using surgery, moreover, the long term - success in surgery is questionable. Isolated taste disorders are rare and in most often caused by underlying diseases or side effects of medications. A meticulous history is necessary and helps to choose effective treatment. In selected cases zinc might be useful. PMID:22073054

  7. Membership of Defined Responses in Stimulus Classes

    PubMed Central

    Lionello-DeNolf, Karen M.; Braga-Kenyon, Paula

    2012-01-01

    Sidman (2000) has suggested that in addition to conditional and discriminative stimuli, class-consistent defined responses can also become part of an equivalence class. In the current study, this assertion was tested using a mixed-schedule procedure that allowed defined response patterns to be “presented” as samples in the absence of different occasioning stimuli. Four typically developing adults were first trained to make distinct response topographies to two visual color stimuli, and then were taught to match those color stimuli to two different form-sample stimuli in a matching task. Three separate tests were given in order to determine whether training had established two classes each comprised of a response, a color, and a form: a form-response test in which the forms were presented to test if the participants would make differential responses to them; and two response-matching tests to test if the participants would match visual stimulus comparisons to response-pattern samples. Three of the four participants showed class-consistent responding in the tests, although some participants needed additional training prior to passing the tests. In general, the data indicated that the different response patterns had entered into a class with the visual stimuli. These results add to a growing literature on the role of class-consistent responding in stimulus class formation, and provide support for the notion that differential responses themselves can become a part of an equivalence class. PMID:24778458

  8. Multisensory temporal integration: Task and stimulus dependencies

    PubMed Central

    Stevenson, Ryan A.; Wallace, Mark T.

    2013-01-01

    The ability of human sensory systems to integrate information across the different modalities provides a wide range of behavioral and perceptual benefits. This integration process is dependent upon the temporal relationship of the different sensory signals, with stimuli occurring close together in time typically resulting in the largest behavior changes. The range of temporal intervals over which such benefits are seen is typically referred to as the temporal binding window (TBW). Given the importance of temporal factors in multisensory integration under both normal and atypical circumstances such as autism and dyslexia, the TBW has been measured with a variety of experimental protocols that differ according to criterion, task, and stimulus type, making comparisons across experiments difficult. In the current study we attempt to elucidate the role that these various factors play in the measurement of this important construct. The results show a strong effect of stimulus type, with the TBW assessed with speech stimuli being both larger and more symmetrical than that seen using simple and complex non-speech stimuli. These effects are robust across task and statistical criteria, and are highly consistent within individuals, suggesting substantial overlap in the neural and cognitive operations that govern multisensory temporal processes. PMID:23604624

  9. Hospital Clowning as Play Stimulus in Healthcare

    PubMed Central

    Anes, Laura; Obi, Marianne

    2014-01-01

    A serious illness, a chronic medical condition or a hospital bed should not deny any child her/his basic right to play, a right essential for children’s development and general wellbeing. In fact, it is in these frightening and anxious moments that play and the stimulus that it provides can help the most. This article will focus on the impacts and benefits of professional hospital clowning for the wellbeing and recovery process of ill and hospitalized children. Our experience has shown that through interactive play and humor, “clowndoctors” can create an enabling and supportive environment that facilitates children’s adaptation to the hospital setting and improves their acceptance of medical procedures and staff. While moving from bedside to bedside, RED NOSES clowndoctors encourage children’s active participation and support their natural instinct to play, fully including them in the interaction, if the children wish to do so. Therefore, clowndoctor performances offer ill children much needed stimulus, self-confidence and courage, elements fundamental to reducing their vulnerability. In this piece, a special emphasis will be put on the various approaches used by RED NOSES clowndoctors to bond and reach out to children suffering from different medical conditions.

  10. Conditional tonic stimulus control of nonspecific arousal.

    PubMed

    Kimmel, H D; Birbaumer, N; Elbert, T; Lutzenberger, W; Rockstroh, B

    1983-01-01

    Subjects performed a reaction time (RT) task in the presence of colored indirect lighting which had previously been associated with either sporadic electric shock (Unsafe context) or no shock (Safe context). Autonomic and cortical processes were influenced by the visual context in two ways. Nonspecific arousal was elevated in the Unsafe context as compared with the Safe context (larger SCR and more accelerative HR change elicited by the RT warning stimulus, and retarded habituation of the middle component of the slow cortical potential during the warning stimulus). In addition, information processing may have been impaired in the Unsafe as compared to the Safe context, since the earliest component of the SCR and the N100 component of the auditory evoked potential were both reduced. Higher frequency of unelicited SCR was observed following changes from a Safe to an Unsafe context than with reverse changes, during the association of these contexts with shock, but this was the only evidence of direct tonic conditioning. In general, the results demonstrate the degree to which psychophysiological processes may be influenced by tonic environmental conditions. PMID:6622070

  11. Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer.

    PubMed

    Lin, Chun-Chieh; Riabinina, Olena; Potter, Christopher J

    2016-01-01

    A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)(1-3). With the recent availability of large collections of transgenic Drosophila lines that label specific neural subsets, behavioral assays have taken on a prominent role to link neurons with behaviors(4-11). Versatile and reproducible paradigms, together with the underlying computational routines for data analysis, are indispensable for rapid tests of candidate fly lines with various genotypes. Particularly useful are setups that are flexible in the number of animals tested, duration of experiments and nature of presented stimuli. The assay of choice should also generate reproducible data that is easy to acquire and analyze. Here, we present a detailed description of a system and protocol for assaying behavioral responses of Drosophila flies in a large four-field arena. The setup is used here to assay responses of flies to a single olfactory stimulus; however, the same setup may be modified to test multiple olfactory, visual or optogenetic stimuli, or a combination of these. The olfactometer setup records the activity of fly populations responding to odors, and computational analytical methods are applied to quantify fly behaviors. The collected data are analyzed to get a quick read-out of an experimental run, which is essential for efficient data collection and the optimization of experimental conditions. PMID:27585032

  12. Metacognitive knowledge of olfactory dysfunction in Parkinson's disease.

    PubMed

    White, Theresa L; Sadikot, Abbas F; Djordjevic, Jelena

    2016-04-01

    It is well known that patients with Parkinson's Disease (PD) suffer from olfactory impairments, but it is not clear whether patients are aware of their level of deficit in olfactory functioning. Since PD is a neurodegenerative disorder and its progression may be correlated with olfactory loss (Ansari & Johnson, 1975; but see also Doty, Deems, & Stellar, 1988), it is possible that these patients would be subject to metacognitive errors of over-estimation of olfactory ability (White & Kurtz, 2003). Nineteen non-demented PD patients and 19 age-matched controls were each given an objective measure of olfactory identification (the UPSIT, Doty, Shaman, Kimmelman, & Dann, 1984) and a subjective measure involving a questionnaire that asked them to self-rate both their olfactory function generally and their ability to smell each of 20 odors, 12 of which were assessed on the UPSIT. All of the PD patients showed impaired olfactory ability, as did 7 of the controls, according to the UPSIT norms. Self-rated and performance-based olfactory ability scores were significantly correlated in controls (r=.49, p=.03) but not in patients with PD (r=.20, p=.39). When the 12 odors common to both the self-rated questionnaire and UPSIT were compared, PD patients were less accurate than controls (t(36)=-4.96, p<.01) at estimating their own ability and the number of over-estimation errors was significantly higher (tone-tailed(29)=1.80, p=.04) in PD patients than in the control group, showing less metacognitive awareness of their ability than controls. These results support the idea that olfactory metacognition is often impaired in PD, as well as in controls recruited for normosmic ability (Wehling, Nordin, Espeseth, Reinvang, & Lundervold, 2011), and indicate that people with PD generally exhibit over-estimation of their olfactory ability at a rate that is higher than controls. These findings imply that PD patients, unaware of their olfactory deficit, are at greater risk of harm normally

  13. Matching-to-Sample and Stimulus-Pairing-Observation Procedures in Stimulus Equivalence: The Effects of Number of Trials and Stimulus Arrangement

    ERIC Educational Resources Information Center

    Kinloch, Jennifer May; McEwan, James Stewart Anderson; Foster, T. Mary

    2013-01-01

    Studies comparing the effectiveness of the stimulus-pairing-observation and matching-to-sample procedures in facilitating equivalence relations have reported conflicting findings. This study compared the effectiveness of these procedures and examined the effect of stimulus arrangement and the number of training trials completed prior to each…

  14. Deep sequencing of the murine olfactory receptor neuron transcriptome.

    PubMed

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S P; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H; Neuhaus, Eva M; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  15. Determinants of human olfactory performance: a cross-cultural study.

    PubMed

    Sorokowska, Agnieszka; Sorokowski, Piotr; Frackowiak, Tomasz

    2015-02-15

    Olfaction allows us to detect subtle changes in our environment, but sensitivity of the sense of smell varies among individuals. Although a significant number of research papers discuss the relationship between olfactory abilities and environmental factors, most studies have been conducted on Western populations or in developed Asian societies. The potential environmental and cultural determinants of olfactory acuity warrant further exploration. In the current study, we compared previously published data on olfaction in an industrialized, modern society (i.e., Europeans) and an indigenous society living in unpolluted, natural environmental conditions (i.e., Tsimane'), with novel data on the olfactory acuity of inhabitants of the Cook Islands. Like the European population (and contrary to the Tsimane'), the Cook Islands people form a modern society, and like the Tsimane' population (and contrary to the Europeans), they live in an unpolluted region. Thus, these comparisons enabled us to independently assess the importance of both air pollution and changes in lifestyle for olfactory abilities in modern societies. Our results indicate that people from the Cook Islands had significantly higher olfactory acuity (i.e., lower thresholds of odor detection) than did Europeans and Tsimane' people. Interestingly, the olfactory sensitivity of Europeans was significantly lower than the olfactory sensitivity of the remaining two groups. Our data suggest that air pollution is an important factor in the deterioration of the sense of smell. However, it is also possible that factors such as agricultural and/or cooking practices, alcohol consumption, and access to medical service may also influence olfactory acuity. PMID:25460952

  16. Neural crest and placode contributions to olfactory development.

    PubMed

    Suzuki, Jun; Osumi, Noriko

    2015-01-01

    Olfaction is the sense of smell that influences many primitive behaviors for survival, e.g., feeding, reproduction, social interaction, and fear response. The olfactory system is an evolutionarily ancient sensory system and composed of the olfactory epithelium (OE), the olfactory bulb (OB), and the olfactory cortex. The OE gives rise to olfactory receptor neurons (ORNs), i.e., primary sensory receptor cells whose axons project directly to the OB. The ORNs are unique in the way that they are continuously replaced during physiological turnover or following injury throughout life. In the OE, horizontal basal cells, i.e., flat and quiescent cells attached to the basal lamina, are now thought to be tissue stem cells. Although OE cells, especially ORNs, were hypothesized to be derived from the olfactory placode (OP), recent genetic fate-mapping studies using Cre reporter mice indicate a dual origin, i.e., the OP and neural crest (NC), of the olfactory system. The NC is a transient embryonic tissue that is formed between the dorsal neuroepithelium and epidermis. Neural crest cells (NCCs) are multipotent cells that migrate into various target tissues and differentiate into various cell types, including neurons and glia of the peripheral nervous system, cranial cartilage and bone, and melanocytes. Recent studies have revealed that neural crest-derived cells (NCDCs) are widely distributed in adult tissues, and that a subset of NCDCs still possesses NCC-like multipotency. Here, we review classical and recent studies of the olfactory system, especially focusing on the contribution of the NC and OP to the OE development. PMID:25662265

  17. Deep Sequencing of the Murine Olfactory Receptor Neuron Transcriptome

    PubMed Central

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S. P.; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F.; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H.; Neuhaus, Eva M.; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  18. Development of the olfactory pathways in platypus and echidna.

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The two groups of living monotremes (platypus and echidnas) have remarkably different olfactory structures in the adult. The layers of the main olfactory bulb of the short-beaked echidna are extensively folded, whereas those of the platypus are not. Similarly, the surface area of the piriform cortex of the echidna is large and its lamination complex, whereas in the platypus it is small and simple. It has been argued that the modern echidnas are derived from a platypus-like ancestor, in which case the extensive olfactory specializations of the modern echidnas would have developed relatively recently in monotreme evolution. In this study, the development of the constituent structures of the olfactory pathway was studied in sectioned platypus and echidna embryos and post-hatchlings at the Museum für Naturkunde, Berlin, Germany. The aim was to determine whether the olfactory structures follow a similar maturational path in the two monotremes during embryonic and early post-hatching ages or whether they show very different developmental paths from the outset. The findings indicate that anatomical differences in the central olfactory system between the short-beaked echidna and the platypus begin to develop immediately before hatching, although details of differences in nasal cavity architecture emerge progressively during late post-hatching life. These findings are most consistent with the proposition that the two modern monotreme lineages have followed independent evolutionary paths from a less olfaction-specialized ancestor. The monotreme olfactory pathway does not appear to be sufficiently structurally mature at birth to allow olfaction-mediated behaviour, because central components of both the main and accessory olfactory system have not differentiated at the time of hatching. PMID:22156550

  19. Olfactory System Involvement in Natural Scrapie Disease ▿

    PubMed Central

    Corona, Cristiano; Porcario, Chiara; Martucci, Francesca; Iulini, Barbara; Manea, Barbara; Gallo, Marina; Palmitessa, Claudia; Maurella, Cristiana; Mazza, Maria; Pezzolato, Marzia; Acutis, Pierluigi; Casalone, Cristina

    2009-01-01

    The olfactory system (OS) is involved in many infectious and neurodegenerative diseases, both human and animal, and it has recently been investigated in regard to transmissible spongiform encephalopathies. Previous assessments of nasal mucosa infection by prions following intracerebral challenge suggested a potential centrifugal spread along the olfactory nerve fibers of the pathological prion protein (PrPSc). Whether the nasal cavity may be a route for centripetal prion infection to the brain has also been experimentally studied. With the present study, we wanted to determine whether prion deposition in the OS occurs also under field conditions and what type of anatomical localization PrPSc might display there. We report here on detection by different techniques of PrPSc in the nasal mucosa and in the OS-related brain areas of sheep affected by natural scrapie. PrPSc was detected in the perineurium of the olfactory nerve bundles in the medial nasal concha and in nasal-associated lymphoid tissue. Olfactory receptor neurons did not show PrPSc immunostaining. PrPSc deposition was found in the brain areas of olfactory fiber projection, chiefly in the olfactory bulb and the olfactory cortex. The prevalent PrPSc deposition patterns were subependymal, perivascular, and submeningeal. This finding, together with the discovery of an intense PrPSc immunostaining in the meningeal layer of the olfactory nerve perineurium, at the border with the subdural space extension surrounding the nerve rootlets, strongly suggests a probable role of cerebrospinal fluid in conveying prion infectivity to the nasal submucosa. PMID:19158242

  20. Diverse Representations of Olfactory Information in Centrifugal Feedback Projections

    PubMed Central

    Osakada, Fumitaka; Tarabrina, Anna; Kizer, Erin; Callaway, Edward M.; Gage, Fred H.; Sejnowski, Terrence J.

    2016-01-01

    Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT Principles of anatomical organization, sometimes instantiated as “maps” in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the

  1. Multidimensional representation of odors in the human olfactory cortex.

    PubMed

    Fournel, A; Ferdenzi, C; Sezille, C; Rouby, C; Bensafi, M

    2016-06-01

    What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991044

  2. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    PubMed Central

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  3. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    PubMed

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  4. Intracellular trafficking of a tagged and functional mammalian olfactory receptor.

    PubMed

    Ivic, Lidija; Zhang, Cen; Zhang, Xinmin; Yoon, Sung Ok; Firestein, Stuart

    2002-01-01

    Tagged G-protein-coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N-terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C-terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N-terminus, or EGFP located at the C-terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells. PMID:11748633

  5. Glomerular interactions in olfactory processing channels of the antennal lobes

    PubMed Central

    Heinbockel, Thomas; Shields, Vonnie D. C.; Reisenman, Carolina E.

    2014-01-01

    An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination. PMID:23893248

  6. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities.

    PubMed

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  7. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

    PubMed Central

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  8. Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals

    PubMed Central

    Chery, Romain; L'Heureux, Barbara; Bendahmane, Mounir; Renaud, Rémi; Martin, Claire; Pain, Frédéric; Gurden, Hirac

    2011-01-01

    In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4. The olfactory system is of central importance for the survival of the vast majority of living species because it

  9. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    SciTech Connect

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-11-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport.

  10. Antennal lobe representations are optimized when olfactory stimuli are periodically structured to simulate natural wing beat effects

    PubMed Central

    Houot, Benjamin; Burkland, Rex; Tripathy, Shreejoy; Daly, Kevin C.

    2014-01-01

    Animals use behaviors to actively sample the environment across a broad spectrum of sensory domains. These behaviors discretize the sensory experience into unique spatiotemporal moments, minimize sensory adaptation, and enhance perception. In olfaction, behaviors such as sniffing, antennal flicking, and wing beating all act to periodically expose olfactory epithelium. In mammals, it is thought that sniffing enhances neural representations; however, the effects of insect wing beating on representations remain unknown. To determine how well the antennal lobe (AL) produces odor dependent representations when wing beating effects are simulated, we used extracellular methods to record neural units and local field potentials (LFPs) from moth AL. We recorded responses to odors presented as prolonged continuous stimuli or periodically as 20 and 25 Hz pulse trains designed to simulate the oscillating effects of wing beating around the antennae during odor guided flight. Using spectral analyses, we show that ~25% of all recorded units were able to entrain to “pulsed stimuli”; this includes pulsed blanks, which elicited the strongest overall entrainment. The strength of entrainment to pulse train stimuli was dependent on molecular features of the odorants, odor concentration, and pulse train duration. Moreover, units showing pulse tracking responses were highly phase locked to LFPs during odor stimulation, indicating that unit-LFP phase relationships are stimulus-driven. Finally, a Euclidean distance-based population vector analysis established that AL odor representations are more robust, peak more quickly, and do not show adaptation when odors were presented at the natural wing beat frequency as opposed to prolonged continuous stimulation. These results suggest a general strategy for optimizing olfactory representations, which exploits the natural rhythmicity of wing beating by integrating mechanosensory and olfactory cues at the level of the AL. PMID:24971052

  11. Plasticity of Glomeruli and Olfactory-Mediated Behavior in Zebrafish Following Detergent Lesioning of the Olfactory Epithelium

    PubMed Central

    White, Evan J.; Kounelis, Savannah K.; Byrd-Jacobs, Christine A.

    2014-01-01

    The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. Fish were allowed to recover for 4–10 days and were compared to untreated control fish. Axonal projections were analyzed using whole mount immunocytochemistry with anti-keyhole limpet hemocyanin, a marker of olfactory axons in teleosts. Chemical lesioning of the olfactory organ with a single dose of Triton X-100 had profound effects on glomerular distribution in the olfactory bulb at 4 days after treatment, with the most significant effects in the medial region of the bulb. Glomeruli had returned by 7 days post-treatment. Analysis of the ability of the fish to detect cocktails of amino acids or bile salts consisted of counting the number of turns the fish made before and after odorant delivery. Control fish turned more after exposure to both odorants. Fish tested 4 and 7 days after chemical lesioning made more turns in response to amino acids but did not respond to bile salts. At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days. PMID:25450960

  12. Plasticity of glomeruli and olfactory-mediated behavior in zebrafish following detergent lesioning of the olfactory epithelium.

    PubMed

    White, E J; Kounelis, S K; Byrd-Jacobs, C A

    2015-01-22

    The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. Fish were allowed to recover for 4-10 days and were compared to untreated control fish. Axonal projections were analyzed using whole mount immunocytochemistry with anti-keyhole limpet hemocyanin, a marker of olfactory axons in teleosts. Chemical lesioning of the olfactory organ with a single dose of Triton X-100 had profound effects on glomerular distribution in the olfactory bulb at 4 days after treatment, with the most significant effects in the medial region of the bulb. Glomeruli had returned by 7 days post-treatment. Analysis of the ability of the fish to detect cocktails of amino acids or bile salts consisted of counting the number of turns the fish made before and after odorant delivery. Control fish turned more after exposure to both odorants. Fish tested 4 and 7 days after chemical lesioning made more turns in response to amino acids but did not respond to bile salts. At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days. PMID:25450960

  13. Attention modulation of stimulus rivalry under swapping paradigm

    PubMed Central

    Doualot, Audrey; Simard, Mathieu; Saint-Amour, Dave

    2014-01-01

    Stimulus rivalry refers to the sustained periods of perceptual dominance that occur when different visual stimuli are swapped at a regular rate between eyes. This phenomenon is thought to involve mainly eye-independent mechanisms. Although several studies have reported that attention can increase image predominance in conventional binocular rivalry, it is unknown whether attention can specifically modulate stimulus rivalry. We addressed this question and manipulated the spatial characteristic of the stimuli to assess whether such an attention modulation could depend on visual processing hierarchy. The results showed that selective attention of stimulus rivalry significantly increased the predominance of the attended stimulus, regardless of the stimulus' spatial characteristics. No effect was observed on the swapping percept. The findings are discussed in the context of recent models attempting to characterize stimulus rivalry between eye-dependent and eye-independent levels. PMID:25469220

  14. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus.

    PubMed

    Soffan, Alan; Antony, Binu; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies. PMID:27606688

  15. Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus.

    PubMed

    Caprio, J; Dudek, J; Robinson, J J

    1989-02-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type. PMID:2703818

  16. Olfactory Memory Storage and/or Retrieval Requires the Presence of the Exact Tentacle Used During Memory Acquisition in the Terrestrial Slug Limax.

    PubMed

    Koga, Yurika; Matsuo, Yuko; Matsuo, Ryota

    2016-02-01

    Terrestrial pulmonates can form odor-aversion memories once a food odor is presented in combination with an aversive stimulus. Most of the olfactory information ascends via a tentacular ganglion located in the tip of the two pairs of tentacles, and is then transmitted to the higher olfactory center, the procerebrum. The procerebrum is the locus of memory storage and has been shown to be necessary for odor-aversion learning. However, it is unknown whether the procerebrum is the sole locus in which the memory engram resides. By exploiting the regenerative ability of tentacles, here we investigated whether tentacles function merely in transmitting olfactory information to the procerebrum, or constitute a part of the memory engram. We showed that after removal of the tentacles used during memory acquisition, slugs were unable to retrieve the memory, even if these tentacles were regenerated sufficiently to subserve memory function. Our results support the view that tentacles are more than conduits of odor information; they also participate in the formation of the memory engram. PMID:26853872

  17. Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants.

    PubMed

    Alcorta, E

    1991-03-01

    1. Amplitude as well as time course of the electroantennogram (EAG) in Drosophila has been used for describing electrical changes produced in the antenna in response to odorous stimulation. 2. Maximal amplitude of response appears to be directly correlated to stimulus concentration but, after achieving a maximum value, is independent of stimulation duration. 3. Rise time and fall time constants have been quantified for describing kinetics of response. The rise time constant decreases, but the fall time constant increases when increasing concentrations of odorant are supplied. 4. Variation among individuals for these EAG parameters is small enough to uncover even partial defects affecting the first sensory step. This fact combined with the possibility of obtaining mutants with defects in any intermediate process producing the electrical response makes the EAG of Drosophila a very useful tool for dissecting the components of the capture and transduction processes in the olfactory sense. 5. This kind of quantitative study of the EAG has been used in a new Drosophila mutant, od A, for localizing peripheral expression of the mutation. od A has been isolated as a behavioral mutant with an abnormally enhanced olfactory response to ethyl acetate. 6. The mutant's EAG in response to this odorant displays a normal amplitude but abnormal kinetics. Rise time as well as fall time show slower kinetics than normal, suggesting some defective step in the capture and transduction process. PMID:1904913

  18. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness

    PubMed Central

    2011-01-01

    Background Chemical insecticides against mosquitoes are a major component of malaria control worldwide. Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment current control strategies and mitigate the evolution of resistance to chemical-based insecticides. Methods Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as electroantennogram, electropalpogram and single sensillum recording techniques were then employed to investigate how fungal exposure affected the olfactory responses in mosquitoes. Results Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned specifically to 1-octen-3-ol and to a lesser degree, to CO2. Conclusions Fungal infection reduces the responsiveness of mosquitoes to host odour cues, both behaviourally and neuronally. These pre-lethal effects are likely to synergize with fungal-induced mortality to further reduce the capacity of mosquito populations exposed to fungal biopesticides to transmit malaria. PMID:21812944

  19. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats.

    PubMed

    Gómez, Rosa M; Ghotme, Kemel; Botero, Lucía; Bernal, Jaime E; Pérez, Rosalía; Barreto, George E; Bustos, Rosa Helena

    2016-02-01

    Olfactory nerve derived and olfactory bulb derived olfactory ensheathing cells (OECs) have the ability to promote axonal regeneration and remyelination, both of which are essential in a successful cell transplant. Thus, morphological identification of OECs is a key aspect to develop an applicable cell therapy for injuries to the nervous system. However, there is no clear definition regarding which developmental stage or anatomical origin of OECs is more adequate for neural repair. In the present study, an ultrastructural comparison was made between OECs recovered from primary cultures of olfactory nerve and bulb in two developmental stages. The most notorious difference between cells obtained from olfactory nerve and bulb was the presence of indented nuclei in bulb derived OECs, suggesting a greater ability for possible chemotaxis. In neonatal OECs abundant mitochondria, lipid vacuoles, and smooth endoplasmic reticulum were detected, suggesting an active lipid metabolism, probably involved in synthesis of myelin. Our results suggest that neonatal OECs obtained from olfactory bulb have microscopic properties that could make them more suitable for neural repair. PMID:26254553

  20. Novelty, stimulus control, and operant variability

    PubMed Central

    Shahan, Timothy A.; Chase, Philip N.

    2002-01-01

    Although behavior analysis has been criticized for failure to account for response novelty, many common behavior-analytic concepts and processes (e.g., selectionism, the operant, reinforcement, and stimulus control) assume variability both in the environment and in behavior. The importance of the relation between variability and novelty, particularly for verbal behavior, is discussed, and concepts used to account for novel behavior are examined. Experimental findings also are reviewed that suggest that variability in behavior can come under discriminative control, and these findings are applied to describe novel instances of behavior that may arise during problem solving. We conclude that variations provided and selected by the terms of the three-term contingency are powerful means for understanding novel behavior. PMID:22478385

  1. Hippocampal culture stimulus with 4-megahertz ultrasound

    NASA Astrophysics Data System (ADS)

    Muratore, Robert; LaManna, Justine K.; Lamprecht, Michael R.; Morrison, Barclay, III

    2012-10-01

    Among current modalities, ultrasound uniquely offers both millisecond and millimeter accuracy in noninvasively stimulating brain tissue. In addition, by sweeping the ultrasound beam within the refractory period of the neuronal tissue, ultrasonic neuromodulation can be adapted to target extended or multiply connected regions with quasi-simultaneity. Towards the development of this safe brain stimulus technique, the response of rat hippocampal cultures to ultrasound was investigated. Hippocampal slices, 0.4-mm thick, were obtained from 8-day old Sprague Dawley rats and cultured for 6 days. The in vitro cultures were exposed to multiple 100-ms 4.04-MHz ultrasound pulses from a 42-mm diameter, 90-mm spherical cap transducer. Peak pressure ranged from 0 through about 77 kPa. Responses in the form of electrical potentials from a sixty channel electrode array were digitized and recorded. The DG and CA1 regions of the hippocampus exhibited similar ultrasonically-evoked field potentials.

  2. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis

    PubMed Central

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  3. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    PubMed

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  4. Spatiotemporal Dynamics of Cortical Representations during and after Stimulus Presentation.

    PubMed

    van de Nieuwenhuijzen, Marieke E; van den Borne, Eva W P; Jensen, Ole; van Gerven, Marcel A J

    2016-01-01

    Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance. PMID:27242453

  5. Spatiotemporal Dynamics of Cortical Representations during and after Stimulus Presentation

    PubMed Central

    van de Nieuwenhuijzen, Marieke E.; van den Borne, Eva W. P.; Jensen, Ole; van Gerven, Marcel A. J.

    2016-01-01

    Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance. PMID:27242453

  6. Parallel and orthogonal stimulus in ultradiluted neural networks

    NASA Astrophysics Data System (ADS)

    Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.

    2006-10-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .

  7. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    PubMed

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P < 0.001). The kind of odor influenced the performances of the dogs (P < 0.001). In addition, there were interactions between genotype and the kind of odor at the following loci: OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P < 0.001). The dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential. PMID:26582499

  8. A TAP1 null mutation leads to an enlarged olfactory bulb and supernumerary, ectopic olfactory glomeruli

    PubMed Central

    Salcedo, Ernesto; Cruz, Nicole M.; Ly, Xuan; Welander, Beth A.; Hanson, Kyle; Kronberg, Eugene; Restrepo, Diego

    2013-01-01

    Major histocompatibility class I (MHCI) molecules are well known for their immunological role in mediating tissue graft rejection. Recently, these molecules were discovered to be expressed in distinct neuronal subclasses, dispelling the long-held tenet that the uninjured brain is immune-privileged. Here, we show that MHCI molecules are expressed in the main olfactory bulb (MOB) of adult animals. Furthermore, we find that mice with diminished levels of MHCI expression have enlarged MOBs containing an increased number of small, morphologically abnormal and ectopically located P2 glomeruli. These findings suggest that MHCI molecules may play an important role in the proper formation of glomeruli in the bulb. PMID:23697805

  9. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve.

    PubMed

    Quintana-Urzainqui, Idoia; Rodríguez-Moldes, Isabel; Candal, Eva

    2014-01-01

    The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb. PMID:23224251

  10. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  11. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    PubMed

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-01-01

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae. PMID:25145980

  12. Using Insect Electroantennogram Sensors on Autonomous Robots for Olfactory Searches

    PubMed Central

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-01-01

    Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15

  13. Early Olfactory Environment Influences Social Behaviour in Adult Octodon degus

    PubMed Central

    Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A.; Mpodozis, Jorge

    2015-01-01

    We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5–7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus. PMID:25671542

  14. Functional representation of olfactory impairment in early Alzheimer's disease.

    PubMed

    Förster, Stefan; Vaitl, Andreas; Teipel, Stefan J; Yakushev, Igor; Mustafa, Mona; la Fougère, Christian; Rominger, Axel; Cumming, Paul; Bartenstein, Peter; Hampel, Harald; Hummel, Thomas; Buerger, Katharina; Hundt, Walter; Steinbach, Silke

    2010-01-01

    We used [18F]fluorodeoxyglucose (FDG) PET analysis to determine performance in different olfactory domains of patients with early AD compared to cognitively healthy subjects, and to map the functional metabolic representation of olfactory impairment in the patient sample. A cohort of patients with early AD (n=24), consisting of 6 subjects with incipient AD and 18 subjects with mild AD, and a control group of 28 age-matched non-demented individuals were assembled. Patients and controls were tested for olfactory performance using the "Sniffin' Sticks" test battery [odor identification (ID), discrimination (DIS) and threshold (THR)], while patients additionally underwent resting state FDG-PET. Voxel-wise PET results in the patients were correlated with olfaction scores using the general linear model in SPM5. Patients with early AD showed significantly reduced function in all three olfactory subdomains compared to controls. After controlling for effects due to patients' age, gender, cognitive status, and treating scores in the two other olfactory subdomains as nuisance variables, ID scores correlated with normalized FDG uptake in clusters with peaks in the right superior parietal lobule, fusiform gyrus, inferior frontal gyrus, and precuneus, while DIS scores correlated with a single cluster in the left postcentral cortex, and THR scores correlated with clusters in the right thalamus and cerebellum. The subtests employed in the "Sniffin' Sticks" test battery are complementary indicators of different aspects of olfactory dysfunction in early AD, and support the theory of a parallel organized olfactory system, revealed by FDG-PET correlation analysis. PMID:20847402

  15. Neural representations of novel objects associated with olfactory experience.

    PubMed

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. PMID:27083305

  16. Stimulus-Stimulus Pairing to Increase Vocalizations in Children with Language Delays: a Review.

    PubMed

    Shillingsburg, M Alice; Hollander, Diane L; Yosick, Rachel N; Bowen, Crystal; Muskat, Lori R

    2015-10-01

    Stimulus-stimulus pairing (SSP) is a procedure used to increase vocalizations in children with significant language delays. However, results from studies that have examined the effectiveness of SSP have been discrepant. The following review of the literature summarizes the results from 13 experiments published between 1996 and 2014 that used this procedure with children with language delays. Studies were analyzed across various participant and procedural variables, and an effect size estimate (nonoverlap of all pairs) was calculated for a portion of the participants in the studies reviewed. Results indicated an overall moderate intervention effect for SSP of speech sounds. Recommendations are provided for future researchers about information to report and potential avenues for future studies. PMID:27606213

  17. The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing.

    PubMed

    Milton, Alex; Pleydell-Pearce, Christopher W

    2016-06-01

    This study examined the influence of pre-stimulus alpha phase and attention on whether two visual stimuli occurring closely in time were perceived as simultaneous or asynchronous. The results demonstrated that certain phases of alpha in the period immediately preceding stimulus onset were associated with a higher proportion of stimuli judged to be asynchronous. Furthermore, this effect was shown to occur independently of both visuo-spatial attention and alpha amplitude. The findings are compatible with proposals that alpha phase reflects cyclic shifts in neuronal excitability. Importantly, however, the results further suggest that fluctuations in neuronal excitability can create a periodicity in neuronal transfer that can have functional consequences that are decoupled from changes in alpha amplitude. This study therefore provides evidence that perceptual processes fluctuate periodically although it remains uncertain whether this implies the discrete temporal framing of perception. PMID:26924284

  18. Extracting Behaviorally Relevant Traits from Natural Stimuli: Benefits of Combinatorial Representations at the Accessory Olfactory Bulb

    PubMed Central

    Kahan, Anat; Ben-Shaul, Yoram

    2016-01-01

    For many animals, chemosensation is essential for guiding social behavior. However, because multiple factors can modulate levels of individual chemical cues, deriving information about other individuals via natural chemical stimuli involves considerable challenges. How social information is extracted despite these sources of variability is poorly understood. The vomeronasal system provides an excellent opportunity to study this topic due to its role in detecting socially relevant traits. Here, we focus on two such traits: a female mouse’s strain and reproductive state. In particular, we measure stimulus-induced neuronal activity in the accessory olfactory bulb (AOB) in response to various dilutions of urine, vaginal secretions, and saliva, from estrus and non-estrus female mice from two different strains. We first show that all tested secretions provide information about a female’s receptivity and genotype. Next, we investigate how these traits can be decoded from neuronal activity despite multiple sources of variability. We show that individual neurons are limited in their capacity to allow trait classification across multiple sources of variability. However, simple linear classifiers sampling neuronal activity from small neuronal ensembles can provide a substantial improvement over that attained with individual units. Furthermore, we show that some traits are more efficiently detected than others, and that particular secretions may be optimized for conveying information about specific traits. Across all tested stimulus sources, discrimination between strains is more accurate than discrimination of receptivity, and detection of receptivity is more accurate with vaginal secretions than with urine. Our findings highlight the challenges of chemosensory processing of natural stimuli, and suggest that downstream readout stages decode multiple behaviorally relevant traits by sampling information from distinct but overlapping populations of AOB neurons. PMID:26938460

  19. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell.

    PubMed

    Tomaru, Akihiro; Kurahashi, Takashi

    2005-04-01

    Spike discharges of single olfactory receptor cells (ORCs) were recorded with the whole cell patch-clamp method applied to slice preparation. In parallel, activities of transduction channels were measured under the voltage-clamp condition. When cells were stimulated by odorants, 54 out of 306 cells exhibited inward current responses (10 mM cineole in the puffer pipette). The amplitude of the inward current was dependent on the stimulus period, reflecting the time integration for the stimulus dose, and the relation could be fitted by the Hill equation. Under the current-clamp condition, current injection induced spike discharges. In cells showing repetitive firings, the firing frequency was dependent on the amount of injected current. The relation was fitted by the Michaelis-Menten equation showing saturation. When cells were responsive to the odorant and had abilities to discharge repetitive spikes, the depolarizing responses were accompanied by repetitive spikes. In those cells, the spike frequency was dose-dependent, expressing saturation similar to the result obtained by current injection. Since both transduction channel and spike generative steps expressed saturation in their dose dependences, we explored what step(s) actually determines saturation in ORC signaling processes. By examining dose-response relations of both the current and spikes in the same cells, saturating dose was found to be dependent largely on that of the transduction step. This suggests that the dynamic range is fundamentally determined by the transduction system. In addition, a simple model derived from the nonlinearity of the plasma membrane could explain that a critical level of dynamic range was, at least in part, modified by the membrane nonlinearity. PMID:15548631

  20. Extracting Behaviorally Relevant Traits from Natural Stimuli: Benefits of Combinatorial Representations at the Accessory Olfactory Bulb.

    PubMed

    Kahan, Anat; Ben-Shaul, Yoram

    2016-03-01

    For many animals, chemosensation is essential for guiding social behavior. However, because multiple factors can modulate levels of individual chemical cues, deriving information about other individuals via natural chemical stimuli involves considerable challenges. How social information is extracted despite these sources of variability is poorly understood. The vomeronasal system provides an excellent opportunity to study this topic due to its role in detecting socially relevant traits. Here, we focus on two such traits: a female mouse's strain and reproductive state. In particular, we measure stimulus-induced neuronal activity in the accessory olfactory bulb (AOB) in response to various dilutions of urine, vaginal secretions, and saliva, from estrus and non-estrus female mice from two different strains. We first show that all tested secretions provide information about a female's receptivity and genotype. Next, we investigate how these traits can be decoded from neuronal activity despite multiple sources of variability. We show that individual neurons are limited in their capacity to allow trait classification across multiple sources of variability. However, simple linear classifiers sampling neuronal activity from small neuronal ensembles can provide a substantial improvement over that attained with individual units. Furthermore, we show that some traits are more efficiently detected than others, and that particular secretions may be optimized for conveying information about specific traits. Across all tested stimulus sources, discrimination between strains is more accurate than discrimination of receptivity, and detection of receptivity is more accurate with vaginal secretions than with urine. Our findings highlight the challenges of chemosensory processing of natural stimuli, and suggest that downstream readout stages decode multiple behaviorally relevant traits by sampling information from distinct but overlapping populations of AOB neurons. PMID:26938460