Science.gov

Sample records for oligodendrocyte ablation affects

  1. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    SciTech Connect

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana . E-mail: borrelli@uci.edu

    2007-08-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.

  2. Oligodendrocyte ablation as a tool to study demyelinating diseases

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Miller, Robert H.

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelination and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inflammation and infiltration of peripheral immune cells. Although many risk factors and symptoms have been identified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inflammation or whether the local inflammation is the cause of OL death and demyelination. This review briefly discusses several models that have been developed to specifically ablate oligodendrocytes in an effort to separate the effects of demyelination from inflammation. PMID:27482202

  3. Oligodendrocyte ablation as a tool to study demyelinating diseases.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Miller, Robert H

    2016-06-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelination and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inflammation and infiltration of peripheral immune cells. Although many risk factors and symptoms have been identified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inflammation or whether the local inflammation is the cause of OL death and demyelination. This review briefly discusses several models that have been developed to specifically ablate oligodendrocytes in an effort to separate the effects of demyelination from inflammation. PMID:27482202

  4. Spatiotemporal ablation of CXCR2 on oligodendrocyte lineage cells

    PubMed Central

    Spangler, Lisa C.; Prager, Briana; Benson, Bryan; Hu, BingQing; Shi, Samuel; Love, Anna; Zhang, CunJin; Yu, Meigen; Cotleur, Anne C.

    2015-01-01

    Background: Residual CXCR2 expression on CNS cells in Cxcr2+/−→Cxcr2−/− chimeric animals slowed remyelination after both experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Methods: We generated Cxcr2fl/−:PLPCre-ER(T) mice enabling an inducible, conditional deletion of Cxcr2 on oligodendrocyte lineage cells of the CNS. Cxcr2fl/−:PLPCre-ER(T) mice were evaluated in 2 demyelination/remyelination models: cuprizone-feeding and in vitro lysophosphatidylcholine (LPC) treatment of cerebellar slice cultures. Results: Cxcr2fl/−:PLPCre-ER(T)+ (termed Cxcr2-cKO) mice showed better myelin repair 4 days after LPC-induced demyelination of cerebellar slice cultures. Cxcr2-cKOs also displayed enhanced hippocampal remyelination after a 2-week recovery from 6-week cuprizone feeding. Conclusion: Using 2 independent demyelination/remyelination models, our data document enhanced myelin repair in Cxcr2-cKO mice, consistent with the data obtained from radiation chimerism studies of germline CXCR2. Further experiments are appropriate to explore how CXCR2 function in the oligodendrocyte lineage accelerates myelin repair. PMID:26668819

  5. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    PubMed

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  6. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    PubMed Central

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    SUMMARY Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  7. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Casamassa, Antonella; La Rocca, Claudia; Sokolow, Sophie; Herchuelz, Andre; Matarese, Giuseppe; Annunziato, Lucio; Boscia, Francesca

    2016-07-01

    The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137. PMID:27120265

  8. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    PubMed

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    patterns of contactin-associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5-HT exposure may affect other axon-derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs-treated animals. The current in vitro study demonstrated that exposure to high level of serotonin (5-HT) led to aberrant oligodendrocyte (OL) development, cell injury, and myelination deficit. We propose that elevated extracellular serotonin levels in the fetal brain, such as upon the use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy, may adversely affect OL development and/or myelination, thus contributing to altered neural connectivity seen in Autism Spectrum Disorders. OPC = oligodendrocyte progenitor cell. PMID:25382136

  9. Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes

    PubMed Central

    Thomas, María G.; Tosar, Leandro J. Martinez; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L.

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response. PMID:15525674

  10. MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes.

    PubMed

    Schäfer, Isabelle; Müller, Christina; Luhmann, Heiko J; White, Robin

    2016-03-01

    Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments, which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of myelin basic protein (MBP), which is essential for myelin formation. The abundant myelin-associated oligodendrocytic basic protein (MOBP) resembles MBP in several aspects and has also been reported to be localized as mRNA and translated in the peripheral myelin compartment. The signals initiating local MOBP synthesis are so far unknown and the cellular function of MOBP remains elusive. Here, we show, by several approaches in cultured primary oligodendrocytes, that MOBP synthesis is stimulated by Fyn activity. Moreover, we reveal a new function for MOBP in oligodendroglial morphological differentiation. PMID:26801084

  11. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  12. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    PubMed Central

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-01

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS. PMID:26751167

  13. Analysis of laser ablation dynamics of CFRP in order to reduce heat affected zone

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Nariyama, Tatsuya; Nakai, Kazuki; Matsuoka, Fumihiro; Takahashi, Kenjiro; Masuno, Shinichiro; Ohkubo, Tomomasa; Nakano, Hitoshi

    2014-03-01

    A carbon fiber reinforced plastic [CFRP], which has high strength, light weight and weather resistance, is attractive material applied for automobile, aircraft and so on. The laser processing of CFRP is one of suitable way to machining tool. However, thermal affected zone was formed at the exposure part, since the heat conduction property of the matrix is different from that of carbon fiber. In this paper, we demonstrated that the CFRP plates were cut with UV nanosecond laser to reduce the heat affected zone. The ablation plume and ablation mass were investigated by laser microscope and ultra-high speed camera. Furthermore, the ablation model was constructed by energy balance, and it was confirmed that the ablation rate was 0.028 μg/ pulse in good agreement with the calculation value of 0.03 μg/ pulse.

  14. Oligodendrocytes in a Nutshell

    PubMed Central

    Michalski, John-Paul; Kothary, Rashmi

    2015-01-01

    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, capable of reacting to a changing CNS. This review is intended as a primer and guide, exploring how the past 5 years have fundamentally altered our appreciation of oligodendrocyte development and CNS myelination. PMID:26388730

  15. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  16. The immunomodulatory oligodendrocyte.

    PubMed

    Zeis, Thomas; Enz, Lukas; Schaeren-Wiemers, Nicole

    2016-06-15

    Oligodendrocytes, the myelinating glial cells of the central nervous system (CNS), are due to their high specialization and metabolic needs highly vulnerable to various insults. This led to a general view that oligodendrocytes are defenseless victims during brain damage such as occurs in acute and chronic CNS inflammation. However, this view is challenged by increasing evidence that oligodendrocytes are capable of expressing a wide range of immunomodulatory molecules. They express various cytokines and chemokines (e.g. Il-1β, Il17A, CCL2, CXCL10), antigen presenting molecules (MHC class I and II) and co-stimulatory molecules (e.g. CD9, CD81), complement and complement receptor molecules (e.g. C1s, C2 and C3, C1R), complement regulatory molecules (e.g. CD46, CD55, CD59), tetraspanins (e.g. TSPAN2), neuroimmune regulatory proteins (e.g. CD200, CD47) as well as extracellular matrix proteins (e.g. VCAN) and many others. Their potential immunomodulatory properties can, at specific times and locations, influence ongoing immune processes as shown by numerous publications. Therefore, oligodendrocytes are well capable of immunomodulation, especially during the initiation or resolution of immune processes in which subtle signaling might tip the scale. A better understanding of the immunomodulatory oligodendrocyte can help to invent new, innovative therapeutic interventions in various diseases such as Multiple Sclerosis. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26423932

  17. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  18. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes

    PubMed Central

    Bechler, Marie E.; Byrne, Lauren; ffrench-Constant, Charles

    2015-01-01

    Summary Since Río-Hortega’s description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions [1–3]. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization [4]. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length [1, 5, 6], as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths [7, 8]. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths [9–12]. We test this alternative signal-independent hypothesis—that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo. PMID:26320951

  19. Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells.

    PubMed

    Li, Yunxia; Guan, Qiang; Chen, Yuhui; Han, Hongjie; Liu, Wuchao; Nie, Zhiyu

    2013-01-01

    Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe(3+) in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells. PMID:25206366

  20. How to make an oligodendrocyte.

    PubMed

    Goldman, Steven A; Kuypers, Nicholas J

    2015-12-01

    Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation. PMID:26628089

  1. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  2. Remyelination by Resident Oligodendrocyte Precursor Cells in a Xenopus laevis Inducible Model of Demyelination.

    PubMed

    Sekizar, Sowmya; Mannioui, Abdelkrim; Azoyan, Loris; Colin, Catherine; Thomas, Jean-Léon; Du Pasquier, David; Mallat, Michel; Zalc, Bernard

    2015-01-01

    We have generated a Xenopus laevis transgenic line, MBP-GFP-NTR, allowing conditional ablation of myelin-forming oligodendrocytes. In this transgenic line the transgene is driven by the proximal portion of the myelin basic protein regulatory sequence, specific to mature oligodendrocytes. The transgene protein is formed by the green fluorescent protein reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. The NTR enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Ablation of oligodendrocytes by MTZ treatment of the tadpole induced demyelination, and here we show that myelin debris are subsequently eliminated by microglial cells. After cessation of MTZ treatment, remyelination proceeded spontaneously. We questioned the origin of remyelinating cells. Our data suggest that Sox10+ oligodendrocyte precursor cells (OPCs), which are already present in the optic nerve prior to the experimentally induced demyelination, are responsible for remyelination, and this required only minimal (if any) cell division of OPCs. © 2015 S. Karger AG, Basel. PMID:25896276

  3. Oligodendrocyte death results in immune-mediated CNS demyelination

    PubMed Central

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreERT;ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis. PMID:26656646

  4. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  5. Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9.

    PubMed

    Hashimoto, Ryoya; Hori, Kei; Owa, Tomoo; Miyashita, Satoshi; Dewa, Kenichi; Masuyama, Norihisa; Sakai, Kazuhisa; Hayase, Yoneko; Seto, Yusuke; Inoue, Yukiko U; Inoue, Takayoshi; Ichinohe, Noritaka; Kawaguchi, Yoshiya; Akiyama, Haruhiko; Koizumi, Schuichi; Hoshino, Mikio

    2016-05-01

    Development of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitor cells (OPCs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. However, for oligodendrocytes in the cerebellum, the developmental origins and the molecular machinery to control these distinct steps remain unclear. By in vivo fate mapping and immunohistochemical analyses, we obtained evidence that the majority of oligodendrocytes in the cerebellum originate from the Olig2-expressing neuroepithelial domain in the ventral rhombomere 1 (r1), while about 6% of cerebellar oligodendrocytes are produced in the cerebellar ventricular zone. Furthermore, to elucidate the molecular determinants that regulate their development, we analyzed mice in which the transcription factor Sox9 was specifically ablated from the cerebellum, ventral r1 and caudal midbrain by means of the Cre/loxP recombination system. This resulted in a delay in the birth of OPCs and subsequent developmental aberrations in these cells in the Sox9-deficient mice. In addition, we observed altered proliferation of OPCs, resulting in a decrease in oligodendrocyte numbers that accompanied an attenuation of the differentiation and an increased rate of apoptosis. Results from in vitro assays using oligodendrocyte-enriched cultures further supported our observations from in vivo experiments. These data suggest that Sox9 participates in the development of oligodendrocytes in the cerebellum, by regulating the timing of their generation, proliferation, differentiation and survival. PMID:26940020

  6. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32.

    PubMed

    Maglione, Marta; Tress, Oliver; Haas, Brigitte; Karram, Khalad; Trotter, Jacqueline; Willecke, Klaus; Kettenmann, Helmut

    2010-07-01

    According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole-cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction-permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin-Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47-deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47-double-deficient mice. Cx47-ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43-deficient animals, oligodendrocyte-astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30-double deficient mice, oligodendrocyte-to-astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network. PMID:20468052

  7. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision. PMID:26859354

  8. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    PubMed Central

    Mirrione, Martine M.; Konomos, Dorothy K.; Gravanis, Iordanis; Dewey, Stephen L.; Aguzzi, Adriano; Heppner, Frank L.; Tsirka, Stella E.

    2010-01-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 hours prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 hours prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation. PMID:20382223

  9. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    SciTech Connect

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  10. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination.

    PubMed

    Keirstead, H S; Blakemore, W F

    1999-01-01

    Remyelination enables restoration of saltatory conduction and a return of normal function lost during demyelination. Unfortunately, remyelination is often incomplete in the adult human central nervous system (CNS) and this failure of remyelination is one of the main reasons for clinical deficits in demyelinating disease. An understanding of the failure of remyelination in demyelinating diseases such as Multiple Sclerosis depends upon the elucidation of cellular events underlying successful remyelination. Although the potential for remyelination of the adult CNS has been well established, there is still some dispute regarding the origin of the remyelinating cell population. The literature variously reports that remyelinating oligodendrocytes arise from dedifferentiation and/or proliferation of mature oligodendrocytes, or are generated solely from proliferation and differentiation of glial progenitor cells. This review focuses on studies carried out on remyelinating lesions in the adult rat spinal cord produced by injection of antibodies to galactocerebroside plus serum complement that demonstrate: 1) oligodendrocytes which survive within an area of demyelination do not contribute to remyelination, 2) remyelination is carried out by oligodendrocyte progenitor cells, 3) recruitment of oligodendrocyte progenitors to an area of demyelination is a local response, and 4) division of oligodendrocyte progenitors is symmetrical and results in chronic depletion of the oligodendrocyte progenitor population in the normal white matter around an area of remyelination. These results suggest that failure of remyelination may be contributed to by a depletion of oligodendrocyte progenitors especially following repeated episodes of demyelination. Remyelination allows the return of saltatory conduction (Smith et al., 1979) and the functional recovery of demyelination-induced deficits (Jeffery et al., 1997). Findings such as these have encouraged research aimed at enhancing the limited

  11. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development

    PubMed Central

    Giera, Stefanie; Deng, Yiyu; Luo, Rong; Ackerman, Sarah D.; Mogha, Amit; Monk, Kelly R.; Ying, Yanqin; Jeong, Sung-Jin; Makinodan, Manabu; Bialas, Allison R.; Chang, Bernard S.; Stevens, Beth; Corfas, Gabriel; Piao, Xianhua

    2015-01-01

    Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development. PMID:25607655

  12. Protandim Protects Oligodendrocytes against an Oxidative Insult.

    PubMed

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation. PMID:27618111

  13. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice.

    PubMed

    Xin, Mei; Yue, Tao; Ma, Zhenyi; Wu, Fen-fen; Gow, Alexander; Lu, Q Richard

    2005-02-01

    Myelin-forming oligodendrocytes facilitate saltatory nerve conduction and support neuronal functions in the mammalian CNS. Although the processes of oligodendrogliogenesis and differentiation from neural progenitor cells have come to light in recent years, the molecular mechanisms underlying oligodendrocyte myelinogenesis are poorly defined. Herein, we demonstrate the pivotal role of the basic helix-loop-helix transcription factor, Olig1, in oligodendrocyte myelinogenesis in brain development. Mice lacking a functional Olig1 gene develop severe neurological deficits and die in the third postnatal week. In the brains of these mice, expression of myelin-specific genes is abolished, whereas the formation of oligodendrocyte progenitors is not affected. Furthermore, multilamellar wrapping of myelin membranes around axons does not occur, despite recognition and contact of axons by oligodendrocytes, and Olig1-null mice develop widespread progressive axonal degeneration and gliosis. In contrast, myelin sheaths are formed in the spinal cord, although the extent of myelination is severely reduced. At the molecular level, we find that Olig1 regulates transcription of the major myelin-specific genes, Mbp, Plp1, and Mag, and suppresses expression of a major astrocyte-specific gene, Gfap. Together, our data indicate that Olig1 is a central regulator of oligodendrocyte myelinogenesis in brain and that axonal recognition and myelination by oligodendrocytes are separable processes. PMID:15703389

  14. NMDA Receptors: Power Switches for Oligodendrocytes.

    PubMed

    Krasnow, Anna M; Attwell, David

    2016-07-01

    The role of NMDA receptors in oligodendrocytes has been controversial. A new paper (Saab et al., 2016) suggests they play a key role in regulating glucose uptake in response to axonal glutamate release, thus controlling metabolic cooperation between oligodendrocytes and axons. PMID:27387644

  15. Myocilin is involved in NgR1/Lingo-1-mediated oligodendrocyte differentiation and myelination of the optic nerve.

    PubMed

    Kwon, Heung Sun; Nakaya, Naoki; Abu-Asab, Mones; Kim, Hong Sug; Tomarev, Stanislav I

    2014-04-16

    Myocilin is a secreted glycoprotein that belongs to a family of olfactomedin domain-containing proteins. Although myocilin is detected in several ocular and nonocular tissues, the only reported human pathology related to mutations in the MYOCILIN gene is primary open-angle glaucoma. Functions of myocilin are poorly understood. Here we demonstrate that myocilin is a mediator of oligodendrocyte differentiation and is involved in the myelination of the optic nerve in mice. Myocilin is expressed and secreted by optic nerve astrocytes. Differentiation of optic nerve oligodendrocytes is delayed in Myocilin-null mice. Optic nerves of Myocilin-null mice contain reduced levels of several myelin-associated proteins including myelin basic protein, myelin proteolipid protein, and 2'3'-cyclic nucleotide 3'-phosphodiesterase compared with those of wild-type littermates. This leads to reduced myelin sheath thickness of optic nerve axons in Myocilin-null mice compared with wild-type littermates, and this difference is more pronounced at early postnatal stages compared with adult mice. Myocilin also affects differentiation of oligodendrocyte precursors in vitro. Its addition to primary cultures of differentiating oligodendrocyte precursors increases levels of tested markers of oligodendrocyte differentiation and stimulates elongation of oligodendrocyte processes. Myocilin stimulation of oligodendrocyte differentiation occurs through the NgR1/Lingo-1 receptor complex. Myocilin physically interacts with Lingo-1 and may be considered as a Lingo-1 ligand. Myocilin-induced elongation of oligodendrocyte processes may be mediated by activation of FYN and suppression of RhoA GTPase. PMID:24741044

  16. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Koito, Hisami; Li, Jianrong

    2010-01-01

    Neuroinflammation and increased production of tumor necrosis factor (TNF) in the central nervous system have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1−/− mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs. PMID:21044081

  17. Selective ablation of pillar and deiters' cells severely affects cochlear postnatal development and hearing in mice.

    PubMed

    Mellado Lagarde, Marcia M; Cox, Brandon C; Fang, Jie; Taylor, Ruth; Forge, Andrew; Zuo, Jian

    2013-01-23

    Mammalian auditory hair cells (HCs) are inserted into a well structured environment of supporting cells (SCs) and acellular matrices. It has been proposed that when HCs are irreversibly damaged by noise or ototoxic drugs, surrounding SCs seal the epithelial surface and likely extend the survival of auditory neurons. Because SCs are more resistant to damage than HCs, the effects of primary SC loss on HC survival and hearing have received little attention. We used the Cre/loxP system in mice to specifically ablate pillar cells (PCs) and Deiters' cells (DCs). In Prox1CreER(T2)+/-;Rosa26(DTA/+) (Prox1DTA) mice, Cre-estrogen receptor (CreER) expression is driven by the endogenous Prox1 promoter and, in presence of tamoxifen, removes a stop codon in the Rosa26(DTA/+) allele and induces diphtheria toxin fragment A (DTA) expression. DTA produces cell-autonomous apoptosis. Prox1DTA mice injected with tamoxifen at postnatal days 0 (P0) and P1 show significant DC and outer PC loss at P2-P4, that reaches ∼70% by 1 month. Outer HC loss follows at P14 and is almost complete at 1 month, while inner HCs remain intact. Neural innervation to the outer HCs is disrupted in Prox1DTA mice and auditory brainstem response thresholds in adults are 40-50 dB higher than in controls. The hearing deficit correlates with loss of cochlear amplification. Remarkably, in Prox1DTA mice, the auditory epithelium preserves the ability to seal the reticular lamina and spiral ganglion neuron counts are normal, a key requirement for cochlear implant success. In addition, our results show that cochlear SC pools should be appropriately replenished during HC regeneration strategies. PMID:23345230

  18. Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges.

    PubMed

    Lynn, B D; Tress, O; May, D; Willecke, K; Nagy, J I

    2011-12-01

    Expression of connexin26 (Cx26), Cx30 and Cx43 in astrocytes and expression of Cx29, Cx32 and Cx47 in oligodendrocytes of adult rodent brain has been well documented, as has the interdependence of connexin expression patterns of macroglial cells in Cx32- and Cx47-knockout mice. To investigate this interdependence further, we examined immunofluorescence labelling of glial connexins in transgenic Cx30 null mice. Ablation of astrocytic Cx30, confirmed by the absence of immunolabelling for this connexin in all brain regions, resulted in the loss of its coupling partner Cx32 on the oligodendrocyte side of astrocyte-oligodendrocyte (A/O) gap junctions, but had no effect on the localization of astrocytic Cx43 and oligodendrocytic Cx47 at these junctions or on the distribution of Cx32 along myelinated fibres. Surprisingly, gene deletion of Cx30 led to the near total elimination of immunofluorescence labelling for Cx26 in all leptomeningeal tissues covering brain surfaces as well as in astrocytes of brain parenchyma. Moreover northern blot analysis revealed downregulation of Cx26 mRNA in Cx30-knockout brains. Our results support earlier observations on the interdependency of Cx30/Cx32 targeting to A/O gap junctions and further suggest that Cx26 mRNA expression is affected by Cx30 gene expression. In addition, Cx30 protein may be required for co-stabilization of gap junctions or for co-trafficking in cells. PMID:22098503

  19. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460. PMID:27270750

  20. The control of reactive oxygen species production by SHP-1 in oligodendrocytes.

    PubMed

    Gruber, Ross C; LaRocca, Daria; Minchenberg, Scott B; Christophi, George P; Hudson, Chad A; Ray, Alex K; Shafit-Zagardo, Bridget; Massa, Paul T

    2015-10-01

    We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases. PMID:25919645

  1. In vivo genetic ablation of the periotic mesoderm affects cell proliferation survival and differentiation in the cochlea

    PubMed Central

    Xu, Huansheng; Chen, Li; Baldini, Antonio

    2007-01-01

    Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea. PMID:17825816

  2. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues

    PubMed Central

    Lourenço, Tânia; Paes de Faria, Joana; Bippes, Christian A.; Maia, João; Lopes-da-Silva, José A.; Relvas, João B.; Grãos, Mário

    2016-01-01

    Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein — MBP — and proteolipid protein — PLP — (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation. PMID:26879561

  3. Synthesis of gangliosides by cultured oligodendrocytes

    SciTech Connect

    Mack, S.R.; Szuchet, S.; Dawson, G.

    1981-01-01

    Gangliosides are enriched in the nervous system compared to other tissues. The synthesis of gangliosides by monolayer cultures of isolated oligodendrocytes has not previously been investigated. Cells were labeled with (3H) galactose at preselected times and gangliosides isolated by phase partition, purified, and identified by chromatography. Cultured oligodendrocytes showed selectivity in their synthesis of gangliosides, which was expressed in the type of ganglioside synthesized as well as in the change of incorporation over time in culture. For the first ten days, there was very little incorporation of (3H) galactose in gangliosides, but this was followed by a stimulation of uptake for GM3, GM1/GD3, and GD1 gangliosides, reaching a maximum after approximately 25-30 days in vitro. There was little incorporation into GM2 or trisialogangliosides throughout the life of the cultures. Since oligodendrocytes synthesize extensive membranes during this period, one may speculate that the de novo-synthesized gangliosides are used for membranes.

  4. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage.

    PubMed

    Pohl, Hartmut B F; Porcheri, Cristina; Mueggler, Thomas; Bachmann, Lukas C; Martino, Gianvito; Riethmacher, Dieter; Franklin, Robin J M; Rudin, Markus; Suter, Ueli

    2011-01-19

    Loss of oligodendrocytes is a feature of many demyelinating diseases including multiple sclerosis. Here, we have established and characterized a novel model of genetically induced adult oligodendrocyte death. Specific primary loss of adult oligodendrocytes leads to a well defined and highly reproducible course of disease development that can be followed longitudinally by magnetic resonance imaging. Histological and ultrastructural analyses revealed progressive myelin vacuolation, in parallel to disease development that includes motor deficits, tremor, and ataxia. Myelin damage and clearance were associated with induction of oligodendrocyte precursor cell proliferation, albeit with some regional differences. Remyelination was present in the mildly affected corpus callosum. Consequences of acutely induced cell death of adult oligodendrocytes included secondary axonal damage. Microglia were activated in affected areas but without significant influx of B-cells, T-helper cells, or T-cytotoxic cells. Analysis of the model on a RAG-1 (recombination activating gene-1)-deficient background, lacking functional lymphocytes, did not change the observed disease and pathology compared with immune-competent mice. We conclude that this model provides the opportunity to study the consequences of adult oligodendrocyte death in the absence of primary axonal injury and reactive cells of the adaptive immune system. Our results indicate that if the blood-brain barrier is not disrupted, myelin debris is not removed efficiently, remyelination is impaired, and axonal integrity is compromised, likely as the result of myelin detachment. This model will allow the evaluation of strategies aimed at improving remyelination to foster axon protection. PMID:21248132

  5. Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes

    PubMed Central

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O.; Wood, Teresa L.; Lu, Q. Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK–eIF2α signalling axis and Fas–JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  6. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  7. Oligodendrocytes in HIV-associated pain pathogenesis

    PubMed Central

    Shi, Yuqiang; Shu, Jianhong; Liang, Zongsuo; Yuan, Subo

    2016-01-01

    Background Although the contributions of microglia and astrocytes to chronic pain pathogenesis have been a focal point of investigation in recent years, the potential role of oligodendrocytes, another major type of glial cells in the CNS that generates myelin, remains largely unknown. Results We report here that cell markers of the oligodendrocyte lineage, including NG2, PDGFRα, and Olig2, are significantly increased in the spinal dorsal horn of HIV patients who developed chronic pain. The levels of myelin proteins myelin basic protein and proteolipid protein are also aberrant in the spinal dorsal horn of “pain-positive” HIV patients. Similarly, the oligodendrocyte and myelin markers are up-regulated in the spinal dorsal horn of a mouse model of HIV-1 gp120-induced pain. Surprisingly, the expression of gp120-induced mechanical allodynia appears intact up to 4 h after myelin basic protein is knocked down or knocked out. Conclusion These findings suggest that oligodendrocytes are reactive during the pathogenesis of HIV-associated pain. However, interfering with myelination does not alter the induction of gp120-induced pain. PMID:27306410

  8. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  9. Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1

    PubMed Central

    Edgar, N M; Touma, C; Palme, R; Sibille, E

    2011-01-01

    Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3–9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (⩽9–12 months). Notably, Cnp1KO mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1KO mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1KO behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD

  10. Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1.

    PubMed

    Edgar, N M; Touma, C; Palme, R; Sibille, E

    2011-01-01

    Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3-9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (≤ 9-12 months). Notably, Cnp1(KO) mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1(KO) mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1(KO) behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may

  11. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function

    PubMed Central

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2014-01-01

    Object Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging–guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. Methods In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Results Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. Conclusions This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively

  12. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice.

    PubMed

    Zhao, Jing-Wei; Raha-Chowdhury, Ruma; Fawcett, James W; Watts, Colin

    2009-05-01

    Brain injury induces gliosis and scar formation; its principal cell types are mainly astrocytes and some oligodendrocytes. The origin of the astrocytes and oligodendrocytes in the scar remains unclear together with the underlying mechanism of their fate choice. We examined the response of oligodendrocyte transcription factor (Olig)2(+) glial progenitors to acute brain injury. Both focal cortical (mechanical or excitotoxic) and systemic (kainic acid-induced seizure or lipopolysaccharide-induced inflammation) injury caused cytoplasmic translocation of Olig2 (Olig2(TL)) exclusively in affected brain regions as early as 2 h after injury in two-thirds of Olig2(+) cells. Many of the proliferating Olig2(+) cells reacting to injury co-expressed chondroitin sulphate proteoglycan neuron/glia antigen 2 (NG2). Using 5-bromodeoxyuridine (BrdU) tracing protocols, proliferating Olig2(TL)GFAP(+)BrdU(+) cells were observed from 2 days post-lesion (dpl). Immature oligodendrocytes were also seen from 2 dpl and all of them retained Olig2 in the nucleus (Olig2(Nuc)). From 5 dpl Olig2(TL)NG2(+)GFAP(+) cells were observed in the wound and some of them were proliferative. From 5 dpl NG2(+)RIP(+) cells were also seen, all of which were Olig2(Nuc) and some of which were also BrdU(+). Our results suggest that, in response to brain injury, NG2(+) progenitors may generate a subpopulation of astrocytes in addition to oligodendrocytes and their fate choice was associated with Olig2(TL) or Olig2(Nuc). However, the NG2(+)GFAP(+) phenotype was only seen within a limited time window (5-8 dpl) when up to 20% of glial fibrillary acidic protein (GFAP) cells co-expressed NG2. We also observed Olig2(TL)GFAP(+) cells that appeared after injury and before the NG2(+)GFAP(+) phenotype. This suggests that not all astrocytes are derived from an NG2(+) population. PMID:19473238

  13. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes

    PubMed Central

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B.; Wen, Xin; Harasta, Anne E.; Ramkumar, Roshini; Spencer, Ziggy H. T.; Housley, Gary D.; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  14. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes.

    PubMed

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B; Wen, Xin; Harasta, Anne E; Ramkumar, Roshini; Spencer, Ziggy H T; Housley, Gary D; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  15. Oxidized phosphatidylcholine formation and action in oligodendrocytes

    PubMed Central

    Qin, Jingdong; Testai, Fernando D; Dawson, Sylvia; Kilkus, John; Dawson, Glyn

    2010-01-01

    Reactive oxygen species play a major role in neurodegeneration. Increasing concentrations of peroxide induce neural cell death through activation of pro-apoptotic pathways. We now report that hydrogen peroxide generated sn-2 oxidized phosphatidylcholine (OxPC) in neonatal rat oligodendrocytes and that synthetic oxidized phosphatidylcholine (1-palmitoyl-2-(5′-oxo)valeryl-sn-glycero-3 phosphorylcholine, POVPC) also induced apoptosis in neonatal rat oligodendrocytes. POVPC activated caspases 3 and 8, and neutral sphingomyelinase (NSMase), but not acid sphingomyelinase. Downstream pro-apoptotic pathways activated by POVPC treatment included the Jun N-terminal kinase (JNK) proapoptotic cascade and the degradation of phospho-Akt. Activation of NSMase occurred within 1h, was blocked by inhibitors of caspase 8, increased mainly C18 and C24:1-ceramides, and appeared to be concentrated in detergent-resistant microdomains (Rafts). We conclude that OxPC initially activates NSMase and converts sphingomyelin into ceramide, to mediate a series of downstream pro-apoptotic events in oligodendrocytes. PMID:19545281

  16. Mechanostimulation Promotes Nuclear and Epigenetic Changes in Oligodendrocytes

    PubMed Central

    Hernandez, Marylens; Patzig, Julia; Mayoral, Sonia R.; Costa, Kevin D.; Chan, Jonah R.

    2016-01-01

    Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. SIGNIFICANCE STATEMENT It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage. PMID:26791211

  17. Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development

    PubMed Central

    Galabova-Kovacs, Gergana; Catalanotti, Federica; Matzen, Dana; Reyes, Gloria X.; Zezula, Jürgen; Herbst, Ruth; Silva, Alcino; Walter, Ingrid; Baccarini, Manuela

    2008-01-01

    Mutations in the extracellular signal-regulated kinase (ERK) pathway, particularly in the mitogen-activated protein kinase/ERK kinase (MEK) activator B-Raf, are associated with human tumorigenesis and genetic disorders. Hence, B-Raf is a prime target for molecule-based therapies, and understanding its essential biological functions is crucial for their success. B-Raf is expressed preferentially in cells of neuronal origin. Here, we show that in mice, conditional ablation of B-Raf in neuronal precursors leads to severe dysmyelination, defective oligodendrocyte differentiation, and reduced ERK activation in brain. Both B-Raf ablation and chemical inhibition of MEK impair oligodendrocyte differentiation in vitro. In glial cell cultures, we find B-Raf in a complex with MEK, Raf-1, and kinase suppressor of Ras. In B-Raf–deficient cells, more Raf-1 is recruited to MEK, yet MEK/ERK phosphorylation is impaired. These data define B-Raf as the rate-limiting MEK/ERK activator in oligodendrocyte differentiation and myelination and have implications for the design and use of Raf inhibitors. PMID:18332218

  18. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve.

    PubMed

    Jennings, Alison Ruth; Carroll, William M

    2015-09-01

    Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis-affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis. PMID:25175564

  19. Oligodendrocyte Morphometry and Expression of Myelin – Related mRNA in Ventral Prefrontal White Matter in Major Depressive Disorder

    PubMed Central

    Rajkowska, Grazyna; Mahajan, Gouri; Maciag, Dorota; Sathyanesan, Monica; Iyo, Abiye H.; Moulana, Mohadetheh; Kyle, Patrick B.; Woolverton, William L.; Miguel-Hidalgo, Jose Javier; Stockmeier, Craig A.; Newton, Samuel S.

    2015-01-01

    White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (−IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RTPCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI. PMID:25930075

  20. Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle

    NASA Technical Reports Server (NTRS)

    Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

    1996-01-01

    The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

  1. Adult sulfatide null mice maintain an increased number of oligodendrocytes

    PubMed Central

    Shroff, S; Pomicter, AD; Fox, MA; Henderson, SC; Dupree, JL

    2015-01-01

    The galactolipids galactocerebroside and sulfatide have been implicated in oligodendrocyte development and myelin formation. Much of the evidence for these galactolipid functions has been derived from antibody and chemical perturbation of cultured oligodendrocytes. Recently, we have observed abundant, unstable myelin and an increased number of oligodendrocytes in mice incapable of synthesizing the myelin galactolipids galactocerebroside and sulfatide. We have also reported that mice lacking sulfatide but that synthesize normal levels of galactocerebroside generate myelin with unstable paranodes while Hirahara et al. (2004) have shown an enhanced population of oligodendrocytes in the forebrain, medulla and cerebellum in immature sulfatide null mice. Here, we demonstrate that an increase in the number of oligodendrocytes in sulfatide null mice is not transient but is maintained through, at least, 7 months of age. Moreover, we demonstrate that the enhanced oligodendrocyte population results from, at least in part, increased cell survival. Finally, sulfatide null oligodendrocytes exhibit decreased morphological complexity, a feature which may relate to increased oligodendrocyte survival. PMID:19224580

  2. Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hathorne, Ed C.; Felis, Thomas; James, Rachael H.; Thomas, Alex

    2011-03-01

    Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.

  3. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia

    PubMed Central

    Takahashi, Nagahide; Sakurai, Takeshi; Davis, Kenneth L.; Buxbaum, Joseph D.

    2010-01-01

    Multiple lines of evidence in schizophrenia, from brain imaging, studies in postmortem brains, and genetic association studies, have implicated oligodendrocyte and myelin dysfunction in this disease. Recent studies suggest that oligodendrocyte and myelin dysfunction leads to changes in synaptic formation and function, which could lead to cognitive dysfunction, a core symptom of schizophrenia. Furthermore, there is accumulating data linking oligodendrocyte and myelin dysfunction with dopamine and glutamate abnormalities, both of which are found in schizophrenia. These findings implicate oligodendrocyte and myelin dysfunction as a primary change in schizophrenia, not only as secondary consequences of the illness or treatment. Strategies targeting oligodendrocyte and myelin abnormalities could therefore provide therapeutic opportunities for patients suffering from schizophrenia. PMID:20950668

  4. Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning.

    PubMed

    Emery, Ben; Dugas, Jason C

    2013-09-01

    Oligodendrocytes are the myelinating cells of the vertebrate central nervous system, responsible for generating the myelin sheath necessary for saltatory conduction. The use of increasingly sophisticated genetic tools, particularly in mice, has vastly increased our understanding of the molecular mechanisms that regulate development of the oligodendrocyte lineage. This increased reliance on the mouse as a genetic model has led to a need for the development of culture methods to allow the use of mouse cells in vitro as well as in vivo. Here, we present a protocol for the isolation of different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells (OPCs) and/or postmitotic oligodendrocytes, from the postnatal mouse cortex using immunopanning. This protocol allows for the subsequent culture or biochemical analysis of these cells. PMID:24003195

  5. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  6. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone

    SciTech Connect

    Hu, Z.Y.; Bourreau, E.; Jung-Testas, I.; Robel, P.; Baulieu, E.E.

    1987-12-01

    Oligodendrocyte mitochondria from 21-day-old Sprague-Dawley male rats were incubated with 100 nM (/sup 3/H)cholesterol. It yielded (/sup 3/H)pregnenolone at a rate of 2.5 +/- 0.7 and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol at a rate of 2.5 +/- 1.1 pmol per mg of protein per hr. Cultures of glial cells from 19- to 21-day-old fetuses (a mixed population of astrocytes and oligodendrocytes) were incubated for 24 hr with (/sup 3/H)mevalonolactone. (/sup 3/H)Cholesterol, (/sup 3/H)pregnenolone, and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol were characterized in cellular extracts. The formation of the /sup 3/H-labeled steroids was increased by dibutyryl cAMP (0.2 mM) added to the culture medium. The active cholesterol side-chain cleavage mechanism, recently suggested immunohistochemically and already observed in cultures of C6 glioma cells, reinforces the concept of neurosteroids applied to ..delta../sup 5/-3..beta..-hydroxysteroids previously isolated from brain.

  7. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I–induced DNA damage

    PubMed Central

    Reid, Robert J.D.; González-Barrera, Sergio; Sunjevaric, Ivana; Alvaro, David; Ciccone, Samantha; Wagner, Marisa; Rothstein, Rodney

    2011-01-01

    We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T722A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways. PMID:21173034

  8. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination

    PubMed Central

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  9. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  10. Nitric oxide targets oligodendrocytes and promotes their morphological differentiation

    PubMed Central

    Garthwaite, Giti; Hampden-Smith, Kathryn; Wilson, Gary W; Goodwin, David A; Garthwaite, John

    2015-01-01

    In the central nervous system, nitric oxide (NO) transmits signals from one neurone to another, or from neurones to astrocytes or blood vessels, but the possibility of oligodendrocytes being physiological NO targets has been largely ignored. By exploiting immunocytochemistry for cGMP, the second messenger generated on activation of NO receptors, oligodendrocytes were found to respond to both exogenous and endogenous NO in cerebellar slices from rats aged 8 days to adulthood. Atrial natriuretic peptide, which acts on membrane-associated guanylyl cyclase-coupled receptors, also raised oligodendrocyte cGMP in cerebellar slices. The main endogenous source of NO accessing oligodendrocytes appeared to be the neuronal NO synthase isoform, which was active even under basal conditions and in a manner that was independent of glutamate receptors. Oligodendrocytes in brainstem slices were also shown to be potential NO targets. In contrast, in the optic nerve, oligodendrocyte cGMP was raised by natriuretic peptides but not NO. When cultures of cerebral cortex were continuously exposed to low NO concentrations (estimated as 40–90 pM), oligodendrocytes responded with a striking increase in arborization. This stimulation of oligodendrocyte growth could be replicated by low concentrations of 8-bromo-cGMP (maximum effect at 1 µM). It is concluded that oligodendrocytes are probably widespread targets for physiological NO (or natriuretic peptide) signals, with the resulting rise in cGMP serving to enhance their growth and maturation. NO might help coordinate the myelination of axons to the ongoing level of neuronal activity during development and could potentially contribute to adaptive changes in myelination in the adult. PMID:25327839

  11. Ablative system

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A carrier liquid containing ablative material bodies is connected to a plenum chamber wall with openings to a high temperature environment. The liquid and bodies pass through the openings of the wall to form a self replacing ablative surface. The wall is composed of honeycomb layers, spheres containing ablative whiskers or wads, and a hardening catalyst for the carrier liquid. The wall also has woven wicks of ablative material fibers that extend through the wall openings and into plenum chamber which contains the liquid.

  12. Oligodendrocyte Precursor Cell-Intrinsic Effect of Rheb1 Controls Differentiation and Mediates mTORC1-Dependent Myelination in Brain

    PubMed Central

    Zou, Yi; Jiang, Wanxiang; Wang, Jianqing; Li, Zhongping; Zhang, Junyan; Bu, Jicheng; Zou, Jia; Zhou, Liang; Yu, Shouyang; Cui, Yiyuan; Yang, Weiwei; Luo, Liping; Lu, Qing R.; Liu, Yanhui; Chen, Mina

    2014-01-01

    Rheb1 is an immediate early gene that functions to activate mammalian target of rapamycin (mTor) selectively in complex 1 (mTORC1). We have demonstrated previously that Rheb1 is essential for myelination in the CNS using a Nestin-Cre driver line that deletes Rheb1 in all neural cell lineages, and recent studies using oligodendrocyte-specific CNP-Cre have suggested a preferential role for mTORC1 is myelination in the spinal cord. Here, we examine the role of Rheb1/mTORC1 in mouse oligodendrocyte lineage using separate Cre drivers for oligodendrocyte progenitor cells (OPCs) including Olig1-Cre and Olig2-Cre as well as differentiated and mature oligodendrocytes including CNP-Cre and Tmem10-Cre. Deletion of Rheb1 in OPCs impairs their differentiation to mature oligodendrocytes. This is accompanied by reduced OPC cell-cycle exit suggesting a requirement for Rheb1 in OPC differentiation. The effect of Rheb1 on OPC differentiation is mediated by mTor since Olig1-Cre deletion of mTor phenocopies Olig1-Cre Rheb1 deletion. Deletion of Rheb1 in mature oligodendrocytes, in contrast, does not disrupt developmental myelination or myelin maintenance. Loss of Rheb1 in OPCs or neural progenitors does not affect astrocyte formation in gray and white matter, as indicated by the pan-astrocyte marker Aldh1L1. We conclude that OPC-intrinsic mTORC1 activity mediated by Rheb1 is critical for differentiation of OPCs to mature oligodendrocytes, but that mature oligodendrocytes do not require Rheb1 to make myelin or maintain it in the adult brain. These studies reveal mechanisms that may be relevant for both developmental myelination and impaired remyelination in myelin disease. PMID:25411504

  13. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro

    PubMed Central

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C.; Ihara, Masafumi; Lo, Eng H.; Arai, Ken

    2015-01-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl2 treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM22–52 cancelled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders. PMID:26002630

  14. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro.

    PubMed

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C; Ihara, Masafumi; Lo, Eng H; Arai, Ken

    2015-07-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders. PMID:26002630

  15. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells

    PubMed Central

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2015-01-01

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation. PMID:26578323

  16. Oligodendrocyte Lineage and Subventricular Zone Response to Traumatic Axonal Injury in the Corpus Callosum

    PubMed Central

    Sullivan, Genevieve M.; Mierzwa, Amanda J.; Kijpaisalratana, Naruchorn; Tang, *Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed

    2013-01-01

    Abstract Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreERT:R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury. PMID:24226267

  17. A role for Sec8 in oligodendrocyte morphological differentiation.

    PubMed

    Anitei, Mihaela; Ifrim, Marius; Ewart, Marie-Ann; Cowan, Ann E; Carson, John H; Bansal, Rashmi; Pfeiffer, Steven E

    2006-03-01

    In the central nervous system, oligodendrocytes synthesize vast amounts of myelin, a multilamellar membrane wrapped around axons that dramatically enhances nerve transmission. A complex apparatus appears to coordinate trafficking of proteins and lipids during myelin synthesis, but the molecular interactions involved are not well understood. We demonstrate that oligodendrocytes express several key molecules necessary for the targeting of transport vesicles to areas of rapid membrane growth, including the exocyst components Sec8 and Sec6 and the multidomain scaffolding proteins CASK and Mint1. Sec8 overexpression significantly promotes oligodendrocyte morphological differentiation and myelin-like membrane formation in vitro; conversely, siRNA-mediated interference with Sec8 expression inhibits this process, and anti-Sec8 antibody induces a reduction in oligodendrocyte areas. In addition, Sec8 colocalizes, coimmunoprecipitates and cofractionates with the major myelin protein OSP/Claudin11 and with CASK in oligodendrocytes. These results suggest that Sec8 plays a central role in oligodendrocyte membrane formation by regulating the recruitment of vesicles that transport myelin proteins such as OSP/Claudin11 to sites of membrane growth. PMID:16478790

  18. Subtype-specific oligodendrocyte dynamics in organotypic culture.

    PubMed

    Haber, Michael; Vautrin, Sandrine; Fry, Elizabeth J; Murai, Keith K

    2009-07-01

    The morphogenesis of oligodendrocytes is essential for central nervous system myelin formation and the rapid propagation of axon potentials through saltatory conduction. However, the discrete cellular events involved in the three-dimensional maturation of oligodendrocytes remain to be fully described. To address this, we followed the developmental stages of oligodendrocytes in mouse organotypic hippocampal slice cultures for 7-60 days using viral-mediated gene delivery of membrane-targeted fluorescent proteins. Using static and time-lapse confocal imaging, we find that postmigratory NG2-expressing cells exhibit slow anatomical reorganization over the course of hours. This is in direct contrast to oligodendrocytes that take on a promyelinating and transitional phenotype, which display a more complex morphology and undergo dramatic actin-dependent structural remodeling over just minutes. More mature myelinating oligodendrocytes, which have pruned most of their processes, still retain some local remodeling behavior at developing internodes, but in general, revert to a relatively stable state. Our findings provide a detailed characterization of cellular events that help shape oligodendrocyte morphology and likely participate in neuron-glial cell interactions and the process of myelination. PMID:19115396

  19. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination.

    PubMed

    Waggener, Christopher T; Dupree, Jeffrey L; Elgersma, Ype; Fuss, Babette

    2013-06-19

    CNS myelination and the maturation of the myelinating cells of the CNS, namely oligodendrocytes, are thought to be regulated by molecular mechanisms controlling the actin cytoskeleton. However, the exact nature of these mechanisms is currently only poorly understood. Here we assessed the role of calcium/calmodulin-dependent kinase type II (CaMKII), in particular CaMKIIβ, in oligodendrocyte maturation and CNS myelination. Using in vitro culture studies, our data demonstrate that CaMKIIβ is critical for the proper morphological maturation of differentiating oligodendrocytes, an aspect of oligodendrocyte maturation that is mediated to a large extent by changes in the cellular cytoskeleton. Furthermore, our data provide evidence for an actin-cytoskeleton-stabilizing role of CaMKIIβ in differentiating oligodendrocytes. Using Camk2b knock-out and Camk2b(A303R) mutant mice, our data revealed an in vivo functional role of CaMKIIβ in regulating myelin thickness that may be mediated by a non-kinase-catalytic activity. Our data point toward a critical role of CaMKIIβ in regulating oligodendrocyte maturation and CNS myelination via an actin-cytoskeleton-regulatory mechanism. PMID:23785157

  20. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair.

    PubMed

    Abiraman, Kavitha; Pol, Suyog U; O'Bara, Melanie A; Chen, Guang-Di; Khaku, Zainab M; Wang, Jing; Thorn, David; Vedia, Bansi H; Ekwegbalu, Ezinne C; Li, Jun-Xu; Salvi, Richard J; Sim, Fraser J

    2015-02-25

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  1. Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression.

    PubMed

    Zeidán-Chuliá, Fares; de Oliveira, Ben-Hur Neves; Casanova, Manuel F; Casanova, Emily L; Noda, Mami; Salmina, Alla B; Verkhratsky, Alexei

    2016-08-01

    Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD). PMID:26189831

  2. Endometrial ablation

    MedlinePlus

    ... can be seen on the video screen. Small tools can be used through the scope to remove abnormal growths or tissue for examination. Ablation uses heat, cold, or electricity to destroy the lining of the womb. The ...

  3. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  4. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  5. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  6. The MEK/ERK Pathway is the Primary Conduit for Borrelia burgdorferi-Induced Inflammation and P53-Mediated Apoptosis in Oligodendrocytes

    PubMed Central

    Parthasarathy, Geetha; Philipp, Mario T.

    2013-01-01

    Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway. PMID:24114360

  7. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Jin, Weilin; Macklin, Wendy B

    2015-12-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. PMID:26631469

  8. Organotypic Slice Cultures to Study Oligodendrocyte Dynamics and Myelination

    PubMed Central

    Hill, Robert A.; Medved, Jelena; Patel, Kiran D.; Nishiyama, Akiko

    2014-01-01

    NG2 expressing cells (polydendrocytes, oligodendrocyte precursor cells) are the fourth major glial cell population in the central nervous system. During embryonic and postnatal development they actively proliferate and generate myelinating oligodendrocytes. These cells have commonly been studied in primary dissociated cultures, neuron cocultures, and in fixed tissue. Using newly available transgenic mouse lines slice culture systems can be used to investigate proliferation and differentiation of oligodendrocyte lineage cells in both gray and white matter regions of the forebrain and cerebellum. Slice cultures are prepared from early postnatal mice and are kept in culture for up to 1 month. These slices can be imaged multiple times over the culture period to investigate cellular behavior and interactions. This method allows visualization of NG2 cell division and the steps leading to oligodendrocyte differentiation while enabling detailed analysis of region-dependent NG2 cell and oligodendrocyte functional heterogeneity. This is a powerful technique that can be used to investigate the intrinsic and extrinsic signals influencing these cells over time in a cellular environment that closely resembles that found in vivo. PMID:25177825

  9. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  10. The mitotic history and radiosensitivity of developing oligodendrocytes in vitro

    SciTech Connect

    Hirayama, M.; Eccleston, P.A.; Silberberg, D.H.

    1984-08-01

    By use of pulse-chase exposure of dissociated cells of rat fetal spinal cord or brain to (3H)thymidine (TdR) and unlabeled TdR it has been shown that oligodendroglial precursors which do not express galactocerebroside (GalC) divide first and later differentiate to express GalC. The rate of proliferation of more mature GalC+ oligodendrocytes is considerably lower than that of their GalC- precursors. It has been found that oligodendrocyte precursor cells are extremely sensitive to (3H)TdR irradiation. Exposure to as little as 0.03 microCi/ml for 24 hr proved to be harmful, particularly during a critical period before birth. This critical period corresponded to the peak of division of oligodendrocyte precursor cells.

  11. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  12. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.

    PubMed

    Lopez, Rubén J; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C; Bentzinger, C Florian; Romanino, Klaas; Hall, Michael N; Rüegg, Markus A; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2015-02-15

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]-ryanodine and 3[H]-PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation-contraction (E-C) coupling is affected by mTORC1 signalling. PMID:25431931

  13. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  14. MRI signature in a novel mouse model of genetically induced adult oligodendrocyte cell death.

    PubMed

    Mueggler, Thomas; Pohl, Hartmut; Baltes, Christof; Riethmacher, Dieter; Suter, Ueli; Rudin, Markus

    2012-01-16

    Two general pathological processes contribute to multiple sclerosis (MS): acute inflammation and degeneration. While magnetic resonance imaging (MRI) is highly sensitive in detecting abnormalities related to acute inflammation both clinically and in animal models of experimental autoimmune encephalomyelitis (EAE), the correlation of these readouts with acute and future disabilities has been found rather weak. This illustrates the need for imaging techniques addressing neurodegenerative processes associated with MS. In the present work we evaluated the sensitivity of different MRI techniques (T(2) mapping, macrophage tracking based on labeling cells in vivo by ultrasmall particles of iron oxide (USPIO), diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI)) to detect histopathological changes in a novel animal model making use of intrinsic, temporally and spatially controlled triggering of oligodendrocyte cell death. This mouse model allows studying the MRI signature associated to neurodegenerative processes of MS in the absence of adaptive inflammatory components that appear to be foremost in the EAE models. Our results revealed pronounced T(2) hyperintensities in brain stem and cerebellar structures, which we attribute to structural alteration of white matter by pronounced vacuolation. Brain areas were found devoid of significant macrophage infiltration in line with the absence of a peripheral inflammatory response. The significant decrease in diffusion anisotropy derived from DTI measures in these structures is mainly caused by a pronounced decrease in diffusivity parallel to the fiber indicative of axonal damage. Triggering of oligodendrocyte ablation did not translate into a significant increase in radial diffusivity. Only minor decreases in MT ratio have been observed, which is attributed to inefficient removal of myelin debris. PMID:21945466

  15. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  16. Strategies for Protecting Oligodendrocytes and Enhancing Remyelination in Multiple Sclerosis

    PubMed Central

    RODGERS, JANE M.; ROBINSON, ANDREW P.; MILLER, STEPHEN D.

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by encephalitogenic leukocyte infiltration and multifocal plaques of demyelination. Patients present with debilitating clinical sequelae including motor, sensory, and cognitive deficits. For the past 30 years, immune modulating treatments have entered the marketplace and continue to improve in limiting the frequency and severity of relapses, but no cure has been found and no drug has successfully stopped chronic progressive disease. Recent work focusing on the oligodendrocyte, the myelin-producing cell, has provided needed insight into the process of demyelination, the spontaneous ability of the CNS to regenerate, and the inevitable failure of remyelination. From this a number of promising molecular targets have been identified to protect oligodendrocytes and promote remyelination. Combining immunomodulatory therapy with strategies to protect oligodendrocytes from further degeneration and enhance remyelination presents a very real means to improve clinical outcome for chronic progressive patients in the near future. Here we lay out a combination therapy approach to treating MS and survey the current literature on promising drug candidates potentially capable of mediating oligodendrocyte protection and enhancing remyelination. PMID:23911232

  17. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes

    PubMed Central

    Burzomato, Valeria; Frugier, Guillaume; Pérez-Otaño, Isabel; Kittler, Josef T; Attwell, David

    2010-01-01

    NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg2+ than are most neuronal NMDA receptors. This weak Mg2+ block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mm Mg2+ than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg2+) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg2+ block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits. PMID:20660562

  18. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

    PubMed Central

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D.; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  19. Contact-Mediated Inhibition Between Oligodendrocyte Progenitor Cells and Motor Exit Point Glia Establishes the Spinal Cord Transition Zone

    PubMed Central

    Smith, Cody J.; Morris, Angela D.; Welsh, Taylor G.; Kucenas, Sarah

    2014-01-01

    Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition. PMID:25268888

  20. The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    PubMed Central

    Södersten, Erik; Lilja, Tobias

    2010-01-01

    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 mRNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number of astrocytes was significantly increased seven days after Zbtb45 siRNA delivery to NSCs, in contrast to the numbers of neuronal and oligodendrocyte-like cells. Surprisingly, mRNA knockdown of the Zbtb45-associated factor Med31, a subunit of the Mediator complex, did not result in any detectable effect on NSC differentiation. Similar to NSCs, Zbtb45 mRNA knockdown in oligodendrocyte precursors (CG-4) reduced oligodendrocyte maturation upon mitogen withdrawal associated with downregulation of the mRNA expression and protein levels of markers for oligodendrocytic differentiation. Zbtb45 mRNA knockdown did not significantly affect proliferation or cell death in any of the cell types. Based on these observations, we propose that Zbtb45 is a novel regulator of glial differentiation. PMID:21131782

  1. Oligodendrocyte and Interneuron Density in Hippocampal Subfields in Schizophrenia and Association of Oligodendrocyte Number with Cognitive Deficits

    PubMed Central

    Falkai, Peter; Steiner, Johann; Malchow, Berend; Shariati, Jawid; Knaus, Andreas; Bernstein, Hans-Gert; Schneider-Axmann, Thomas; Kraus, Theo; Hasan, Alkomiet; Bogerts, Bernhard; Schmitt, Andrea

    2016-01-01

    In schizophrenia, previous stereological post-mortem investigations of anterior, posterior, and total hippocampal subfields showed no alterations in total neuron number but did show decreased oligodendrocyte numbers in CA4, an area that corresponds to the polymorph layer of the dentate gyrus (DG). However, these investigations identified oligodendrocytes only on the basis of morphological criteria in Nissl staining and did not assess alterations of interneurons with immunohistochemical markers. Moreover, the association of findings in the posterior hippocampus with cognitive deficits remains unknown. On the basis of the available clinical records, we compared patients with definite and possible cognitive dysfunction; nine patients had evidence in their records of either definite (n = 4) or possible (n = 5) cognitive dysfunction. Additionally, we assessed the density of two oligodendrocyte subpopulations immunostained by the oligodendrocyte transcription factors Olig1 and Olig2 and of interneurons immunolabeled by parvalbumin. We investigated posterior hippocampal subregions in the post-mortem brains of the same schizophrenia patients (SZ; n = 10) and healthy controls (n = 10) we examined in our previously published stereological studies. Our stereological studies found that patients with definite cognitive deficits had decreased total/Nissl-stained oligodendrocyte numbers in the left (p = 0.014) and right (p = 0.050) CA4, left CA2/3 (p = 0.050), left CA1 (p = 0.027), and left (p = 0.050) and right (p = 0.014) subiculum of the anterior part of the hippocampus compared to patients with possible cognitive deficits. In the present study, we found no significant influence of definite cognitive deficits in the posterior part of the hippocampus, whereas in the entire hippocampus SZ with definite cognitive deficits showed decreased oligodendrocyte numbers in the left (p = 0.050) and right (p = 0.050) DG and left CA2/3 (p = 0.050). We did not find significant differences in

  2. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  3. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  4. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes

    SciTech Connect

    Crang, A.J.; Blakemore, W.F. )

    1991-01-01

    The injection of the gliotoxic agent ethidium bromide (EB) into spinal white matter produces a CNS lesion in which it is possible to investigate the ability of transplanted glial cells to reconstruct a glial environment around demyelinated axons. This study demonstrates that transplanted mouse glial cells can repopulate EB lesions in rats provided tissue rejection is controlled. In X-irradiated EB lesions in cyclosporin-A-treated rats, mouse oligodendrocytes remyelinated rat axons and, together with mouse astrocytes, re-established a CNS environment. When transplanted into nonirradiated EB lesions in nude rats, mouse glial cells modulated the normal host repair by Schwann cells to remyelination by oligodendrocytes. In both X-irradiated and non-irradiated EB lesions, transplanted mouse glial cells behaved similarly to isogenic rat glial cell transplants. These findings indicate that the cell-cell interactions involved in reconstruction of a glial environment are common to both mouse and rat.

  5. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.

    PubMed

    Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos

    2010-11-01

    Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise. PMID:20645411

  6. Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro.

    PubMed

    Barratt, H E; Budnick, H C; Parra, R; Lolley, R J; Perry, C N; Nesic, O

    2016-04-01

    The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases. PMID:26820594

  7. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas.

    PubMed

    Riemenschneider, Markus J; Koy, Timmo H; Reifenberger, Guido

    2004-03-01

    The oligodendrocyte lineage genes OLIG1 and OLIG2 have been reported as potential diagnostic markers for oligodendrogliomas [Lu et al. (2001) Proc Natl Acad Sci USA 98:10851-10856; Marie et al. (2001) Lancet 358:298-300]. We investigated the mRNA expression of OLIG1 and OLIG2, as well as four other genes involved in oligodendrocyte development ( E2A, HEB, NKX2.2, and PDGFRA) in a panel of 70 gliomas, including 9 oligodendrogliomas, 11 anaplastic oligodendrogliomas, 5 oligoastrocytomas, 10 anaplastic oligoastrocytomas, 10 diffuse astrocytomas, 10 anaplastic astrocytomas, and 15 glioblastomas. Most tumors demonstrated higher transcript levels of these genes as compared to non-neoplastic adult brain tissue. Four glioblastomas showed markedly increased PDGFRA mRNA expression due to PDGFRA gene amplification. Statistical analyses revealed no significant expression differences between oligodendroglial and astrocytic tumors. In oligodendroglial tumors, expression of the six genes was not significantly correlated to loss of heterozygosity on chromosome arms 1p and 19q. Thus, expression of the investigated oligodendrocyte lineage genes is up-regulated relative to non-neoplastic brain tissue in the majority of oligodendroglial and astrocytic tumors, suggesting that glioma cells are arrested in or recapitulate molecular phenotypes corresponding to early stages of glial development. However, the determination of mRNA expression of these genes by means of reverse transcription-PCR does not appear to be diagnostically useful as a marker for oligodendrogliomas. PMID:14730454

  8. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation.

    PubMed

    Wang, Jing; Pol, Suyog U; Haberman, Alexa K; Wang, Chunming; O'Bara, Melanie A; Sim, Fraser J

    2014-07-15

    Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs. PMID:24982138

  9. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  10. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders.

    PubMed

    Liu, Han; Xu, Enquan; Liu, Jianuo; Xiong, Huangui

    2016-01-01

    Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis. PMID:27455335

  11. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation

    PubMed Central

    Wang, Jing; Pol, Suyog U.; Haberman, Alexa K.; Wang, Chunming; O’Bara, Melanie A.; Sim, Fraser J.

    2014-01-01

    Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a+O4+ OPCs relative to CD133+CD140a− neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs. PMID:24982138

  12. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors.

    PubMed

    Gautier, Hélène O B; Evans, Kimberley A; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J M; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  13. Autophagy Promotes Oligodendrocyte Survival and Function following Dysmyelination in a Long-Lived Myelin Mutant

    PubMed Central

    Smith, Chelsey M.; Mayer, Joshua A.; Duncan, Ian D.

    2014-01-01

    The Long–Evans shaker (les) rat has a mutation in myelin basic protein that results in severe CNS dysmyelination and subsequent demyelination during development. During this time, les oligodendrocytes accumulate cytoplasmic vesicles, including lysosomes and membrane-bound organelles. However, the mechanism and functional relevance behind these oligodendrocyte abnormalities in les have not been investigated. Using high-magnification electron microscopy, we identified the accumulations in les oligodendrocytes as early and late autophagosomes. Additionally, immunohistochemistry and Western blots showed an increase in autophagy markers in les. However, autophagy did not precede the death of les oligodendrocytes. Instead, upregulating autophagy promoted membrane extensions in les oligodendrocytes in vitro. Furthermore, upregulating autophagy in les rats via intermittent fasting increased the proportion of myelinated axons as well as myelin sheath thickness in les and control rats. Overall, this study provides insight into the abnormalities described in les as well as identifying a novel mechanism that promotes the survival and function of oligodendrocytes. PMID:23637198

  14. mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development

    PubMed Central

    Wood, Teresa L.; Bercury, Kathryn K.; Cifelli, Stacey E.; Mursch, Lauren E.; Min, Jungsoo; Dai, Jinxiang; Macklin, Wendy B.

    2013-01-01

    Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin) pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed. PMID:23421405

  15. Extracellular and intracellular regulation of oligodendrocyte development: roles of Sonic hedgehog and expression of E proteins.

    PubMed

    Sussman, Caroline R; Davies, Jeannette E; Miller, Robert H

    2002-10-01

    Recent advances in understanding oligodendrocyte development have revealed the importance of both extra- and intracellular molecules in regulating the induction, survival, and proliferation of early oligodendrocyte progenitors. The signaling molecule Sonic hedgehog (Shh) is critical for normal development of oligodendrocytes, although the precise influences of Shh on cells of the oligodendrocyte lineage are unclear. The present study shows that Shh increased the number of oligodendrocyte precursors in both pure cultures of oligodendrocyte precursors and mixed cultures from embryonic rat spinal cord. In pure precursor cultures Shh increased cell survival. In mixed cultures, Shh increased both the survival and proliferation of oligodendrocyte precursors in a concentration dependent manner. One intracellular consequence of exposure to Shh is the activation of transcription factors in oligodendrocyte lineage cells, which are critical for oligodendrocyte development, helix-loop-helix (HLH) transcription factors, Olig1 and 2. In many cases, HLH proteins such as Olig1 and Olig2 heterodimerize with other HLH proteins, such as members of the E subfamily, which are critical regulators of cell proliferation and differentiation. Immature (A2B5(+)) and more mature (O4(+)) rat oligodendrocyte precursors in dissociated cell culture expressed Olig1 as well as E proteins, HEB and E2A. Similarly, cells bearing the morphology of oligodendrocyte precursors expressed both Olig1 and HEB or E2A. We propose that E2A and/or HEB, possibly in combination with Olig1 and 2, are critical components of oligodendrogenesis and may regulate cell survival, proliferation, and fate decisions in the oligodendrocyte lineage. PMID:12237843

  16. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination

    PubMed Central

    Linden, Jennifer R.; Ma, Yinghua; Zhao, Baohua; Harris, Jason Michael; Rumah, Kareem Rashid; Schaeren-Wiemers, Nicole

    2015-01-01

    ABSTRACT Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. PMID:26081637

  17. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  18. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  19. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning.

    PubMed

    Xiao, Lin; Ohayon, David; McKenzie, Ian A; Sinclair-Wilson, Alexander; Wright, Jordan L; Fudge, Alexander D; Emery, Ben; Li, Huiliang; Richardson, William D

    2016-09-01

    We identified mRNA encoding the ecto-enzyme Enpp6 as a marker of newly forming oligodendrocytes, and used Enpp6 in situ hybridization to track oligodendrocyte differentiation in adult mice as they learned a motor skill (running on a wheel with unevenly spaced rungs). Within just 2.5 h of exposure to the complex wheel, production of Enpp6-expressing immature oligodendrocytes was accelerated in subcortical white matter; within 4 h, it was accelerated in motor cortex. Conditional deletion of myelin regulatory factor (Myrf) in oligodendrocyte precursors blocked formation of new Enpp6(+) oligodendrocytes and impaired learning within the same ∼2-3 h time frame. This very early requirement for oligodendrocytes suggests a direct and active role in learning, closely linked to synaptic strengthening. Running performance of normal mice continued to improve over the following week accompanied by secondary waves of oligodendrocyte precursor proliferation and differentiation. We concluded that new oligodendrocytes contribute to both early and late stages of motor skill learning. PMID:27455109

  20. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination.

    PubMed

    Bernard, Frédéric; Moreau-Fauvarque, Caroline; Heitz-Marchaland, Céline; Zagar, Yvrick; Dumas, Laura; Fouquet, Stéphane; Lee, Xinhua; Shao, Zhaohui; Mi, Sha; Chédotal, Alain

    2012-10-01

    Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain. In adult mice, Sema6A expression is upregulated in demyelinating lesions in cuprizone-treated mice. The analysis of the optic nerve and anterior commissure of Sema6A-deficient mice revealed a marked delay of oligodendrocyte differentiation. Accordingly, the development of the nodes of Ranvier is also transiently delayed. We also observed an arrest in the in vitro differentiation of purified oligodendrocytes lacking Sema6A, with a reduction of the expression level of Myelin Basic Protein. Their morphology is also abnormal, with less complex and ramified processes than wild-type oligodendrocytes. In myelinating co-cultures of dorsal root ganglion neurons and purified oligodendrocytes we found that myelination is perturbed in absence of Sema6A. These results suggest that Sema6A might have a role in myelination by controlling oligodendrocyte differentiation. PMID:22777942

  1. Absence of Sema4D improves oligodendrocyte recovery after cerebral ischemia/reperfusion injury in mice.

    PubMed

    Wada, Takenobu; Sawano, Toshinori; Tanaka, Takashi; Furuyama, Tatsuo; Fukumoto, Moe; Yamaguchi, Wataru; Saino, Orie; Takeda, Yuichi; Kogo, Mikihiko; Matsuyama, Tomohiro; Inagaki, Shinobu

    2016-07-01

    Sema4D, originally identified as a negative regulator of axon guidance during development, is involved in various physiological and pathological responses. In this study, we evaluated the effect of Sema4D-deficiency on oligodendrocyte restoration after the cerebral ischemia/reperfusion using direct ligation of the middle cerebral artery followed by reperfusion. In both Sema4D(+/+) wild-type and Sema4D(-/-) null mutant mice, the peri-infarct area showed a decrease in the number of oligodendrocytes at 3 days post-reperfusion. Subsequently, the number of oligodendrocytes was observed to gradually recover in both groups. Sema4D-deficient mice, however, showed an enhanced recovery of oligodendrocytes and an upregulation of oligodendrocyte progenitor cells at days 14 and 28 of reperfusion. Cell proliferation identified by incorporation of bromodeoxyuridine was enhanced in Sema4D(-/-) mice from days 3 to 14 post-reperfusion compared to the Sema4D(+/+) mice. Furthermore, apoptotic cell death of oligodendrocytes was reduced at days 7 post-reperfusion in Sema4D(-/-) mice compared to Sema4D(+/+) mice. These findings indicate that enhanced proliferation of progenitor cells and survival of oligodendrocytes resulted in improved oligodendrocyte recovery in Sema4D(-/-) mice. This may provide a new approach for neurorestorative treatment in patients with stroke, which aims to manipulate endogenous oligodendrogenesis and thereby to promote brain repair after stroke. PMID:26752319

  2. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  3. Epicardial Ventricular Tachycardia Ablation for Which Patients?

    PubMed Central

    Roten, Laurent; Sacher, Frédéric; Daly, Matthew; Pascale, Patrizio; Komatsu, Yuki; Ramoul, Khaled; Scherr, Daniel; Chaumeil, Arnaud; Shah, Ashok; Denis, Arnaud; Derval, Nicolas; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    With the widespread use of implantable cardioverter-defibrillators, an increasing number of patients present with ventricular tachycardia (VT). Large multicentre studies have shown that ablation of VT successfully reduces recurrent VT and this procedure is being performed by an increasing number of centres. However, for a number of reasons, many patients experience VT recurrence after ablation. One important reason for VT recurrence is the presence of an epicardial substrate involved in the VT circuit which is not affected by endocardial ablation. Epicardial access and ablation is now frequently performed either after failed endocardial VT ablation or as first-line treatment in selected patients. This review will focus on the available evidence for identifying VT of epicardial origin, and discuss in which patients an epicardial approach would be benefitial. PMID:26835028

  4. An ultrastructural study on the reactive oligodendrocytes, myeloclasts, and myelophages in transected dog spinal cord.

    PubMed

    Chang, L W; Kao, C C

    1980-01-01

    As early as 1 to 3 hr after cord transection, proliferation of many reactive oligodendrocytes was observed. Bundles of microfilaments and microtubules were observed in those cells that sent out long, complex pseudopodlike processes near the area of injury. These reactive oligodendrocytes may be comparable to Vaughn's multipotential glia cells. Between 1 day and 1 wk, hypertrophy of the oligodendrocytes was observed. These hypertrophied oligodendrocytes also became hyperactive and infiltrated into the axons within the myelin sheath. These infiltrating hyperactive oligodendrocytes had a scanty fibrillary cytoplasm and are believed to correspond to Jakob's "myeloclasts". The infiltration of macrophages into the nerve fibers and myelin sheaths was also observed. These macrophages were found to be very active in phagocytosis and removal of degenerated debris within the nerve fiber and are believed to represent the "myelophages" described by Jakob in 1913. PMID:6107880

  5. Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination.

    PubMed

    Nakajima, Mitsunari; Shimizu, Risei; Furuta, Kohei; Sugino, Mami; Watanabe, Takashi; Aoki, Rui; Okuyama, Satoshi; Furukawa, Yoshiko

    2016-05-15

    We investigated the effects of auraptene on mouse oligodendroglial cell lineage in an animal model of demyelination induced by cuprizone. Auraptene, a citrus coumarin, was intraperitoneally administered to mice fed the demyelinating agent cuprizone. Immunohistochemical analysis of the corpus callosum and/or Western blotting analysis of brain extracts revealed that cuprizone reduced immunoreactivity for myelin-basic protein, a marker of myelin, whereas it increased immunoreactivity to platelet derived-growth factor receptor-α, a marker of oligodendrocyte precursor cells. Administration of auraptene enhanced the immunoreactivity to oligodendrocyte transcription factor 2, a marker of oligodendrocyte precursor cells and oligodendrocyte lineage precursor cells, but had no effect on immunoreactivity to myelin-basic protein or platelet-derived growth factor receptor-α. These findings suggest that auraptene promotes the production of oligodendrocyte lineage precursor cells in an animal model of demyelination and may be useful for individuals with demyelinating diseases. PMID:26944297

  6. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress.

    PubMed

    Rathnasamy, Gurugirijha; Murugan, Madhuvika; Ling, Eng-Ang; Kaur, Charanjit

    2016-09-01

    This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption. PMID:26319559

  7. Survival of Patients with Hepatocellular Carcinoma (HCC) Treated by Percutaneous Radio-Frequency Ablation (RFA) Is Affected by Complete Radiological Response

    PubMed Central

    Cabibbo, Giuseppe; Maida, Marcello; Genco, Chiara; Alessi, Nicola; Peralta, Marco; Butera, Giuseppe; Galia, Massimo; Brancatelli, Giuseppe; Genova, Claudio; Raineri, Maurizio; Orlando, Emanuele; Attardo, Simona; Giarratano, Antonino; Midiri, Massimo; Di Marco, Vito; Craxì, Antonio; Cammà, Calogero

    2013-01-01

    Background Radio-frequency ablation (RFA) has been employed in the treatment of Barcelona Clinic Liver Cancer (BCLC) early stage hepatocellular carcinoma (HCC) as curative treatments. Aim To assess the effectiveness and the safety of RFA in patients with early HCC and compensated cirrhosis. Methods A cohort of 151 consecutive patients with early stage HCC (122 Child-Pugh class A and 29 class B patients) treated with RFA were enrolled. Clinical, laboratory and radiological follow-up data were collected from the time of first RFA. A single lesion was observed in 113/151 (74.8%), two lesions in 32/151 (21.2%), and three lesions in 6/151 (4%) of patients. Results The overall survival rates were 94%, 80%, 64%, 49%, and 41% at 12, 24, 36, 48 and 60 months, respectively. Complete response (CR) at 1 month (p<0.0001) and serum albumin levels (p = 0.0004) were the only variables indipendently linked to survival by multivariate Cox model. By multivariate analysis, tumor size (p = 0.01) is the only variable associated with an increased likehood of CR. The proportion of major complications after treatment was 4%. Conclusions RFA is safe and effective for managing HCC with cirrhosis, especially for patients with HCC ≤3 cm and higher baseline albumin levels. Complete response after RFA significantly increases survival. PMID:23922893

  8. Actomyosin contractility controls cell surface area of oligodendrocytes

    PubMed Central

    Kippert, Angelika; Fitzner, Dirk; Helenius, Jonne; Simons, Mikael

    2009-01-01

    Background To form myelin oligodendrocytes expand and wrap their plasma membrane multiple times around an axon. How is this expansion controlled? Results Here we show that cell surface area depends on actomyosin contractility and is regulated by physical properties of the supporting matrix. Moreover, we find that chondroitin sulfate proteoglycans (CSPG), molecules associated with non-permissive growth properties within the central nervous system (CNS), block cell surface spreading. Most importantly, the inhibitory effects of CSPG on plasma membrane extension were completely prevented by treatment with inhibitors of actomyosin contractility and by RNAi mediated knockdown of myosin II. In addition, we found that reductions of plasma membrane area were accompanied by changes in the rate of fluid-phase endocytosis. Conclusion In summary, our results establish a novel connection between endocytosis, cell surface extension and actomyosin contractility. These findings open up new possibilities of how to promote the morphological differentiation of oligodendrocytes in a non-permissive growth environment. See related minireview by Bauer and ffrench-Constant: PMID:19781079

  9. [Development and regeneration of oligodendrocytes: therapeutic perspectives in demyelinating diseases].

    PubMed

    Dubois-Dalcq, M

    2005-01-01

    The function of the central nervous system (CNS) is in great part depending on glial cells as, for instance, radial glial cells give rise to cortical neurons, and oligodendrocytes synthesize an immense specialized membrane that enwraps axons to make myelin internodes. Myelin allows fast saltatory conduction of action potentials along myelinated nerve tracts and assures the survival of axons. Oligodendrocytes precursors (OP) emerge during development, first in the spinal cord and later in the telencephalon from multipotential neural precursors in germinative zones around the cerebral ventricles. Morphogens and specific growth factors stimulate the growth, migration and survival of OPs toward axons, culminating in myelination. Such precursors can be isolated from human brain and persist in the adult CNS, allowing some degree of remyelination in the course of a demyelinating disease caused by an infectious agent or inflammation such as multiple sclerosis (MS). These remyelinating cells can recapitulate some molecular events of myelination while new OPs are generated by neural stem cells in the subventricular zones and niches. This natural repair process often decreases with time in man, raising questions about the appropriateness of rodent animal models where remyelination is robust. The challenge today in MS is to develop a pharmacology of myelin repair by endogenous precursors which, if successful, might be more likely to result in clinical benefits than transplantation of myelin-forming cells, shown to be so efficient in rodent models. PMID:16768245

  10. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  11. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    SciTech Connect

    Ritchie, T.; Cole, R.; Kim, H.S.; de Vellis, J.; Noble, E.P.

    1987-07-06

    Cultures of astrocytes and oligodendrocytes were prelabeled with /sup 3/H-inositol and the accumulation of /sup 3/H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of /sup 3/H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li/sup +/. The NE stimulation in astrocytes was dose-dependent and had an EC/sub 50/ of 1.2 ..mu..M. This stimulation was blocked by the low concentration of the ..cap alpha../sub 1/-adrenergic antagonist prazosin but not by the ..cap alpha../sub 2/-adrenergic antagonist yohimbine. The NE-stimulated accumulation of /sup 3/H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables.

  12. Laser-ablation processes

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    The various mechanisms by which ablation of materials can be induced with lasers are discussed in this paper. The various ablation processes and potential applications are reviewed from the threshold for ablation up to fluxes of about 10{sup 13} W/cm{sup 2}, with emphasis on three particular processes; namely, front-surface spallation, two-dimensional blowoff, and contained vaporization.

  13. Inhibition of gecko GSK-3β promotes elongation of neurites and oligodendrocyte processes but decreases the proliferation of blastemal cells.

    PubMed

    Wang, Yingjie; Gu, Qing; Dong, Yingying; Zhou, Weijuan; Song, Honghua; Liu, Yan; Liu, Mei; Yuan, Ying; Ding, Fei; Gu, Xiaosong; Wang, Yongjun

    2012-06-01

    GSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS. PMID:22234988

  14. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  15. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions

    PubMed Central

    Wrzos, Claudia; Winkler, Anne; Metz, Imke; Kayser, Dieter M.; Thal, Dietmar R.; Wegner, Christiane; Brück, Wolfgang; Nessler, Stefan; Bennett, Jeffrey L.

    2014-01-01

    Neuromyelitis optica (NMO) is a chronic, mostly relapsing inflammatory demyelinating disease of the CNS characterized by serum anti-aquaporin 4 (AQP4) antibodies in the majority of patients. Anti-AQP4 antibodies derived from NMO patients target and deplete astrocytes in experimental models when co-injected with complement. However, the time course and mechanisms of oligodendrocyte loss and demyelination and the fate of oligodendrocyte precursor cells (OPC) have not been examined in detail. Also, no studies regarding astrocyte repopulation of experimental NMO lesions have been reported. We utilized two rat models using either systemic transfer or focal intracerebral injection of recombinant human anti-AQP4 antibodies to generate NMO-like lesions. Time-course experiments were performed to examine oligodendroglial and astroglial damage and repair. In addition, oligodendrocyte pathology was studied in early human NMO lesions. Apart from early complement-mediated astrocyte destruction, we observed a prominent, very early loss of oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well as a delayed loss of myelin. Astrocyte repopulation of focal NMO lesions was already substantial after 1 week. Olig2-positive OPCs reappeared before NogoA-positive, mature oligodendrocytes. Thus, using two experimental models that closely mimic the human disease, our study demonstrates that oligodendrocyte and OPC loss is an extremely early feature in the formation of human and experimental NMO lesions and leads to subsequent, delayed demyelination, highlighting an important difference in the pathogenesis of MS and NMO. PMID:24292009

  16. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. PMID:26352325

  17. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA

    PubMed Central

    Ackerman, Sarah D.; Garcia, Cynthia; Piao, Xianhua; Gutmann, David H.; Monk, Kelly R.

    2014-01-01

    In the vertebrate central nervous system, myelinating oligodendrocytes are postmitotic and derive from proliferative oligodendrocyte precursor cells (OPCs). The molecular mechanisms that govern oligodendrocyte development are incompletely understood, but recent studies implicate the adhesion class of G protein-coupled receptors (aGPCRs) as important regulators of myelination. Here, we use zebrafish and mouse models to dissect the function of the aGPCR Gpr56 in oligodendrocyte development. We show that gpr56 is expressed during early stages of oligodendrocyte development. Additionally, we observe a significant reduction of mature oligodendrocyte number and of myelinated axons in gpr56 zebrafish mutants. This reduction results from decreased OPC proliferation, rather than increased cell death or altered neural precursor differentiation potential. Finally, we show that these functions are mediated by Gα12/13 proteins and Rho activation. Together, our data establish Gpr56 as a regulator of oligodendrocyte development. PMID:25607772

  18. CNS myelin sheath is stochastically built by homotypic fusion of myelin membranes within the bounds of an oligodendrocyte process.

    PubMed

    Szuchet, Sara; Nielsen, Lauren L; Domowicz, Miriam S; Austin, Jotham R; Arvanitis, Dimitrios L

    2015-04-01

    Myelin - the multilayer membrane that envelops axons - is a facilitator of rapid nerve conduction. Oligodendrocytes form CNS myelin; the prevailing hypothesis being that they do it by extending a process that circumnavigates the axon. It is pertinent to ask how myelin is built because oligodendrocyte plasma membrane and myelin are compositionally different. To this end, we examined oligodendrocyte cultures and embryonic avian optic nerves by electron microscopy, immuno-electron microscopy and three-dimensional electron tomography. The results support three novel concepts. Myelin membranes are synthesized as tubules and packaged into "myelinophore organelles" in the oligodendrocyte perikaryon. Myelin membranes are matured in and transported by myelinophore organelles within an oligodendrocyte process. The myelin sheath is generated by myelin membrane fusion inside an oligodendrocyte process. These findings abrogate the dogma of myelin resulting from a wrapping motion of an oligodendrocyte process and open up new avenues in the quest for understanding myelination in health and disease. PMID:25682762

  19. The tetraspanin, KAI1/CD82, is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination

    PubMed Central

    Mela, Angeliki; Goldman, James E.

    2009-01-01

    In the adult mammalian brain, oligodendrocyte progenitors can differentiate into mature oligodendrocytes during remyelination. Mechanisms that regulate migration and differentiation of progenitors are of great importance in understanding normal development and demyelinating/remyelinating conditions. In a microarray analysis comparing adult and neonatal O4+ cells, we found that the tetraspanin, KAI1/CD82, is far more highly expressed in adult O4+ cells than in neonatal O4+ cells (Lin et al., in press). CD82 is a metastasis suppressor and its expression is often down-regulated or lost in the advanced stages of metastatic cancer. We hypothesized that CD82 could be a factor that restricts migration and promotes differentiation of maturing oligodendrocytes. Western analysis of isolated adult O4+ cells confirms the elevated levels of CD82, which continues to be expressed as these become O1+ in vitro. In the adult rat white matter CD82 is co-expressed with CC1 and olig2 but not with NG2 or GFAP. Immature cells of the neonatal forebrain subventricular zone (SVZ) infected in vivo with a retrovirus that constitutively expresses CD82 do not remain immature, but differentiate either into CC1+ and MBP+ myelinating oligodendrocytes in the white matter or zebrinII+ astrocytes in the cortex. Their migration from the SVZ is severely restricted. In contrast, downregulation of CD82 in SVZ cells in vivo, using retroviral-expressed shRNAs, prevents their differentiation into myelinating oligodendrocytes. shRNA-expressing cells remained PDGFRα+, olig2+ or NG2+, or became CC1+ non-myelinating oligodendrocytes, or GFAP+ astrocytes. CD82 thus appears to be a critical molecule in the regulation of oligodendrocyte progenitor migration and myelination. PMID:19741124

  20. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  1. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  2. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    PubMed Central

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  3. Excitability and synaptic communication within the oligodendrocyte lineage.

    PubMed

    De Biase, Lindsay M; Nishiyama, Akiko; Bergles, Dwight E

    2010-03-10

    The mammalian CNS contains an abundant, widely distributed population of glial cells that serve as oligodendrocyte progenitors. It has been reported that these NG2-immunoreactive cells (NG2(+) cells) form synapses and generate action potentials, suggesting that neural-evoked excitation of these progenitors may regulate oligodendrogenesis. However, recent studies also suggest that NG2(+) cells are comprised of functionally distinct groups that differ in their ability to respond to neuronal activity, undergo differentiation, and experience injury following ischemia. To better define the physiological properties of NG2(+) cells, we used transgenic mice that allowed an unbiased sampling of this population and unambiguous identification of cells in discrete states of differentiation. Using acute brain slices prepared from developing and mature mice, we found that NG2(+) cells in diverse brain regions share a core set of physiological properties, including expression of voltage-gated Na(+) (NaV) channels and ionotropic glutamate receptors, and formation of synapses with glutamatergic neurons. Although small amplitude Na(+) spikes could be elicited in some NG2(+) cells during the first postnatal week, they were not capable of generating action potentials. Transition of these progenitors to the premyelinating stage was accompanied by the rapid removal of synaptic input, as well as downregulation of AMPA and NMDA receptors and NaV channels. Thus, prior reports of physiological heterogeneity among NG2(+) cells may reflect analysis of cells in later stages of maturation. These results suggest that NG2(+) cells are uniquely positioned within the oligodendrocyte lineage to monitor the firing patterns of surrounding neurons. PMID:20219994

  4. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  5. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish.

    PubMed

    Sidik, Harwin; Talbot, William S

    2015-12-01

    Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS. PMID:26459222

  6. Astrocyte Activation via Stat3 Signaling Determines the Balance of Oligodendrocyte versus Schwann Cell Remyelination

    PubMed Central

    Monteiro de Castro, Glaucia; Deja, Natalia A.; Ma, Dan; Zhao, Chao; Franklin, Robin J.M.

    2016-01-01

    Remyelination within the central nervous system (CNS) most often is the result of oligodendrocyte progenitor cells differentiating into myelin-forming oligodendrocytes. In some cases, however, Schwann cells, the peripheral nervous system myelinating glia, are found remyelinating demyelinated regions of the CNS. The reason for this peripheral type of remyelination in the CNS and what governs it is unknown. Here, we used a conditional astrocytic phosphorylated signal transducer and activator of transcription 3 knockout mouse model to investigate the effect of abrogating astrocyte activation on remyelination after lysolecithin-induced demyelination of spinal cord white matter. We show that oligodendrocyte-mediated remyelination decreases and Schwann cell remyelination increases in lesioned knockout mice in comparison with lesioned controls. Our study shows that astrocyte activation plays a crucial role in the balance between Schwann cell and oligodendrocyte remyelination in the CNS, and provides further insight into remyelination of CNS axons by Schwann cells. PMID:26193667

  7. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors.

    PubMed

    Küspert, Melanie; Wegner, Michael

    2016-05-01

    Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only). PMID:26232072

  8. Astrocyte Activation via Stat3 Signaling Determines the Balance of Oligodendrocyte versus Schwann Cell Remyelination.

    PubMed

    Monteiro de Castro, Glaucia; Deja, Natalia A; Ma, Dan; Zhao, Chao; Franklin, Robin J M

    2015-09-01

    Remyelination within the central nervous system (CNS) most often is the result of oligodendrocyte progenitor cells differentiating into myelin-forming oligodendrocytes. In some cases, however, Schwann cells, the peripheral nervous system myelinating glia, are found remyelinating demyelinated regions of the CNS. The reason for this peripheral type of remyelination in the CNS and what governs it is unknown. Here, we used a conditional astrocytic phosphorylated signal transducer and activator of transcription 3 knockout mouse model to investigate the effect of abrogating astrocyte activation on remyelination after lysolecithin-induced demyelination of spinal cord white matter. We show that oligodendrocyte-mediated remyelination decreases and Schwann cell remyelination increases in lesioned knockout mice in comparison with lesioned controls. Our study shows that astrocyte activation plays a crucial role in the balance between Schwann cell and oligodendrocyte remyelination in the CNS, and provides further insight into remyelination of CNS axons by Schwann cells. PMID:26193667

  9. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. PMID:26577399

  10. Chronic Expression of PPAR-δ by Oligodendrocyte Lineage Cells in the Injured Rat Spinal Cord

    PubMed Central

    Almad, Akshata; McTigue, Dana M.

    2014-01-01

    The transcription factor peroxisome proliferator-activated receptor (PPAR)-δ promotes oligodendrocyte differentiation and myelin formation in vitro and is prevalent throughout the brain and spinal cord. Its expression after injury, however, has not been examined. Thus, we used a spinal contusion model to examine the spatiotemporal expression of PPAR-δ in naïve and injured spinal cords from adult rats. As previously reported, PPAR-δ was expressed by neurons and oligodendrocytes in uninjured spinal cords; PPAR-δ was also detected in NG2 cells (potential oligodendrocyte progenitors) within the white matter and gray matter. After spinal cord injury (SCI), PPAR-δ mRNA and protein were present early and increased over time. Overall PPAR-δ+ cell numbers declined at 1 day post injury (dpi), likely reflecting neuron loss, and then rose through 14 dpi. A large proportion of NG2 cells expressed PPAR-δ after SCI, especially along lesion borders. PPAR-δ+ NG2 cell numbers were significantly higher than naive by 7 dpi and remained elevated through at least 28 dpi. PPAR-δ+ oligodendrocyte numbers declined at 1 dpi and then increased over time such that >20% of oligodendrocytes expressed PPAR-δ after SCI compared with ~10% in uninjured tissue. The most prominent increase in PPAR-δ+ oligodendrocytes was along lesion borders where at least a portion of newly generated oligodendrocytes (bromode-oxyuridine +) were PPAR-δ+. Consistent with its role in cellular differentiation, the early rise in PPAR-δ+ NG2 cells followed by an increase in new PPAR-δ+ oligodendrocytes suggests that this transcription factor may be involved in the robust oligodendrogenesis detected previously along SCI lesion borders. PMID:20058304

  11. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin.

    PubMed

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Doulazmi, Mohamed; Chen, Xiao Ru; Jaudon, Fanny; Lemaigre-Dubreuil, Yolande; Rivals, Isabelle; Sotelo, Constantino; Dusart, Isabelle

    2012-01-01

    Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin. PMID:23155445

  12. mRNA expression profile of mouse oligodendrocytes in inflammatory conditions.

    PubMed

    Kudriaeva, A A; Khaustova, N A; Maltseva, D V; Kuzina, E S; Glagoleva, I S; Surina, E A; Knorre, V D; Belogurov, A A; Tonevitsky, A G; Gabibov, A G

    2016-07-01

    In this study, we performed transcriptome profiling of oligodendrocyte culture of mice treated with the remyelinating therapeutic agent benztropine in the presence and absence of interferon gamma (IFNγ). The results of this work are important for understanding the expression profile of oligodendrocytes under conditions of systemic inflammation in the central nervous system in multiple sclerosis as well as the mechanisms of cellular response to benztropine in light of its possible use for the treatment of multiple sclerosis. PMID:27599508

  13. Purkinje Cell Maturation Participates in the Control of Oligodendrocyte Differentiation: Role of Sonic Hedgehog and Vitronectin

    PubMed Central

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Doulazmi, Mohamed; Chen, Xiao Ru; Jaudon, Fanny; Lemaigre-Dubreuil, Yolande; Rivals, Isabelle; Sotelo, Constantino; Dusart, Isabelle

    2012-01-01

    Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin. PMID:23155445

  14. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  15. Renal ablation update.

    PubMed

    Khiatani, Vishal; Dixon, Robert G

    2014-06-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity-focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  16. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. PMID:24927405

  17. Olig1 Function Is Required for Oligodendrocyte Differentiation in the Mouse Brain

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Ahrendsen, Jared T.

    2015-01-01

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord. PMID:25762682

  18. Olig1 function is required for oligodendrocyte differentiation in the mouse brain.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Ahrendsen, Jared T; Macklin, Wendy B

    2015-03-11

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord. PMID:25762682

  19. Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration.

    PubMed

    Richter-Landsberg, Christiane

    2016-03-01

    Oligodendrocytes are dependent on an intact, dynamic microtubule (MT) network, which participates in the elaboration and stabilization of myelin forming extensions, and is essential for cellular sorting processes. The microtubule-associated protein tau is constituent of oligodendrocytes. During culture maturation it is developmentally regulated and important for MT stability, MT formation and intracellular trafficking. Downregulation of tau impairs process outgrowth and the transport of myelin basic protein (MBP) mRNA to the cell periphery. Cells fail to differentiate into MBP-expressing, sheet-forming oligodendrocytes. Tau-positive inclusions originating in oligodendrocytes and white matter pathology are prominent in frontotemporal dementias, such as Pick's disease, progressive supranuclear palsy and corticobasal degeneration. An impairment or overload of the proteolytic degradation systems, i.e. the ubiquitin proteasomal system and the lysosomal degradation pathway, has been connected to the formation of protein aggregates. Large protein aggregates are excluded from the proteasome and degraded by autophagy, which is a highly selective process and requires receptor proteins for ubiquitinated proteins, including histone deacetylase 6 (HDAC6). HDAC6 is present in oligodendrocytes, and α-tubulin and tau are substrates of HDAC6. In this review our current knowledge of the role of tau and protein aggregate formation in oligodendrocyte cell culture systems is summarized. PMID:26083267

  20. Oligodendrocyte development and the onset of myelination in the human fetal brain.

    PubMed

    Jakovcevski, Igor; Filipovic, Radmila; Mo, Zhicheng; Rakic, Sonja; Zecevic, Nada

    2009-01-01

    Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better understand human diseases, such as periventricular leukomalacia, one of the leading causes of motor deficit in premature babies, and demyelinating disorders such as multiple sclerosis (MS). In this review we discuss the spatial and temporal progression of oligodendrocyte lineage characterized by the expression of specific markers and transcription factors in the human fetal brain from the early embryonic period (5 gestational weeks, gw) until midgestation (24 gw). Our in vitro evidence indicated that a subpopulation of human oligodendrocytes may have dorsal origin, from cortical radial glia cells, in addition to their ventral telencephalic origin. Furthermore, we demonstrated that the regulation of myelination in the human fetal brain includes positive and negative regulators. Chemokines, such as CXCL1, abundant in proliferative zones during brain development and in regions of remyelination in adult, are discussed in the view of their potential roles in stimulating oligodendrocyte development. Other signals are inhibitory and may include, but are not limited to, polysialic acid modification of the neural cell adhesion molecule on axons. Overall, important differences in temporal and spatial distribution and regulatory signals for oligodendrocyte differentiation exist between human and rodent brains. Those differences may underlie the unique susceptibility of humans to demyelinating diseases, such as MS. PMID:19521542

  1. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes

    PubMed Central

    Douvaras, Panagiotis; Rusielewicz, Tomasz; Kim, Kwi Hye; Haines, Jeffery D.; Casaccia, Patrizia; Fossati, Valentina

    2016-01-01

    Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species. PMID:27110779

  2. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury

    PubMed Central

    Tsenkina, Y; Ricard, J; Runko, E; Quiala- Acosta, M M; Mier, J; Liebl, D J

    2015-01-01

    We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery. PMID:26469970

  3. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  4. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  5. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation. PMID:27050331

  6. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  7. Pre-Existing Mature Oligodendrocytes Do Not Contribute to Remyelination following Toxin-Induced Spinal Cord Demyelination

    PubMed Central

    Crawford, Abbe H.; Tripathi, Richa B.; Foerster, Sarah; McKenzie, Ian; Kougioumtzidou, Eleni; Grist, Matthew; Richardson, William D.; Franklin, Robin J.M.

    2016-01-01

    Remyelination is the regenerative response to demyelination. Although the oligodendrocyte progenitor is established as the major source of remyelinating cells, there is no conclusive evidence on whether mature, differentiated oligodendrocytes can also contribute to remyelination. Using two different inducible myelin-CreER mouse strains in which mature oligodendrocytes were prelabeled by the expression of membrane-bound Green fluorescent protein, we found that after focal spinal cord demyelination, the surrounding surviving labeled oligodendrocytes did not proliferate but remained at a consistent density. Furthermore, existing (prelabeled) oligodendrocytes showed no evidence of incorporation or migration into the lesioned area, or of process extension from the peripheral margins into the lesion. Thus, mature oligodendrocytes do not normally contribute to remyelination and are therefore not a promising target for regenerative therapy. PMID:26773350

  8. Microwave Ablation of Hepatic Malignancy

    PubMed Central

    Lubner, Meghan G.; Brace, Christopher L.; Ziemlewicz, Tim J.; Hinshaw, J. Louis; Lee, Fred T.

    2013-01-01

    Microwave ablation is an extremely promising heat-based thermal ablation modality that has particular applicability in treating hepatic malignancies. Microwaves can generate very high temperatures in very short time periods, potentially leading to improved treatment efficiency and larger ablation zones. As the available technology continues to improve, microwave ablation is emerging as a valuable alternative to radiofrequency ablation in the treatment of hepatic malignancies. This article reviews the current state of microwave ablation including technical and clinical considerations. PMID:24436518

  9. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  10. Microfabricated multi-electrode device for detecting oligodendrocyte-regulated changes in axonal conduction velocity.

    PubMed

    Sakai, Koji; Shimba, Kenta; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-08-01

    Myelin disorders cause cognitive dysfunction, but little is known about how abnormal myelin sheath affects neural activities at the network level. One reason for the lack is a technical difficulty in simultaneous monitoring of changes in both the axonal conduction and network activity. Then, we aimed to develop a culture device to detect myelination dependent changes in axonal conduction velocity in a neuronal network. The photolithographically fabricated device has microtunnels for guiding axons. Two microelectrodes and an oligodendrocyte (OL) culture compartment are set at each microtunnel. This configuration allows us to monitor changes in conduction velocity of axons wrapped by OLs. Neurons and OLs dissected from rat cortical tissues were cultured in the culture device. An immunocytochemical study indicated axonal growth and maturation of OL at 42 days in vitro (DIV), suggesting that neuron-OL co-culture was maintained in microtunnels. Propagating action potentials of individual axons were detected from spontaneous neural activities with a spike sorting method and their conduction velocities were examined. Conduction velocity without seeding OLs was 0.31 m/s, which was consistent with that of previous reports with unmyelinated axons. Although no apparent myelin sheath was observed in OL culture compartments, conduction delay with seeding OLs was approximately half as long as that without seeding OLs at 45 DIV. These results suggest that the culture device enables us to detect the OL-regulated changes in axonal conduction in the neuronal network. PMID:26737935

  11. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload

    PubMed Central

    Ma, Teng; Wu, Xiyan; Cai, Qiyan; Wang, Yun; Xiao, Lan; Tian, Yanping; Li, Hongli

    2015-01-01

    Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca2+) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca2+ response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca2+ concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload. PMID:26287169

  12. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death

    PubMed Central

    Jana, Arundhati; Hogan, Edward L.; Pahan, Kalipada

    2009-01-01

    Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders. PMID:19147160

  13. Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability.

    PubMed

    Valor, Luis M; Pulopulos, Matias M; Jimenez-Minchan, Maria; Olivares, Roman; Lutz, Beat; Barco, Angel

    2011-02-01

    Rubinstein-Taybi syndrome (RSTS) is an inheritable disease associated with mutations in the gene encoding the CREB (cAMP response element-binding protein)-binding protein (CBP) and characterized by growth impairment, learning disabilities, and distinctive facial and skeletal features. Studies in mouse models for RSTS first suggested a direct role for CBP and histone acetylation in cognition and memory. Here, we took advantage of the genetic tools for generating mice in which the CBP gene is specifically deleted in postmitotic principal neurons of the forebrain to investigate the consequences of the loss of CBP in the adult brain. In contrast to the conventional CBP knock-out mice, which exhibit very early embryonic lethality, postnatal forebrain-restricted CBP mutants were viable and displayed no overt abnormalities. We identified the dimer of histones H2A and H2B as the preferred substrate of the histone acetyltransferase domain of CBP. Surprisingly, the loss of CBP and subsequent histone hypoacetylation had a very modest impact in the expression of a number of immediate early genes and did not affect neuronal viability. In addition, the behavioral characterization of these mice dissociated embryonic and postnatal deficits caused by impaired CBP function, narrowed down the anatomical substrate of specific behavioral defects, and confirmed the special sensitivity of object recognition memory to CBP deficiency. Overall, our study provides novel insights into RSTS etiology and clarifies some of the standing questions concerning the role of CBP and histone acetylation in activity-driven gene expression, memory formation, and neurodegeneration. PMID:21289174

  14. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26546966

  15. Maturation and electrophysiological properties of human pluripotent stem cell‐derived oligodendrocytes

    PubMed Central

    Livesey, Matthew R.; Magnani, Dario; Cleary, Elaine M.; Vasistha, Navneet A.; James, Owain T.; Selvaraj, Bhuvaneish T.; Burr, Karen; Shaw, Christopher E.; Kind, Peter C.; Hardingham, Giles E.; Wyllie, David J.A.

    2016-01-01

    Abstract Rodent‐based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation‐specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage‐gated sodium and potassium channels and a loss of tetrodotoxin‐sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72‐carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease‐causing mutations on oligodendrocyte maturation to be studied. Stem Cells 2016;34:1040–1053 PMID:26763608

  16. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    PubMed Central

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  17. The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes.

    PubMed

    Kolodziejczyk, Karolina; Hamilton, Nicola B; Wade, Anna; Káradóttir, Ragnhildur; Attwell, David

    2009-06-01

    Elevations of the levels of N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) are associated with myelin loss in the leucodystrophies Canavan's disease and Pelizaeus-Merzbacher-like disease. NAAG and NAA can activate and antagonize neuronal N-methyl-D-aspartate (NMDA) receptors, and also act on group II metabotropic glutamate receptors. Oligodendrocytes and their precursors have recently been shown to express NMDA receptors, and activation of these receptors in ischaemia leads to the death of oligodendrocyte precursors and the loss of myelin. This raises the possibility that the failure to develop myelin, or demyelination, occurring in the leucodystrophies could reflect an action of NAAG or NAA on oligodendrocyte NMDA receptors. However, since the putative subunit composition of NMDA receptors on oligodendrocytes differs from that of neuronal NMDA receptors, the effects of NAAG and NAA on them are unknown. We show that NAAG, but not NAA, evokes an inward membrane current in cerebellar white matter oligodendrocytes, which is reduced by NMDA receptor block (but not by block of metabotropic glutamate receptors). The size of the current evoked by NAAG, relative to that evoked by NMDA, was much smaller in oligodendrocytes than in neurons, and NAAG induced a rise in [Ca(2+)](i) in neurons but not in oligodendrocytes. These differences in the effect of NAAG on oligodendrocytes and neurons may reflect the aforementioned difference in receptor subunit composition. In addition, as a major part of the response in oligodendrocytes was blocked by tetrodotoxin (TTX), much of the NAAG-evoked current in oligodendrocytes is a secondary consequence of activating neuronal NMDA receptors. Six hours exposure to 1 mM NAAG did not lead to the death of cells in the white matter. We conclude that an action of NAAG on oligodendrocyte NMDA receptors is unlikely to be a major contributor to white matter damage in the leucodystrophies. PMID:19383832

  18. 17 β-estradiol Protects Male Mice from Cuprizone-induced Demyelination and Oligodendrocyte Loss

    PubMed Central

    Taylor, Lorelei C; Puranam, Kasturi; Gilmore, Wendy; Ting, Jenny P-Y.; Matsushima, G.K.

    2010-01-01

    In addition to regulating reproductive functions in the brain and periphery, estrogen has trophic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson’s disease, Alzheimer’s disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17β-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation. PMID:20347981

  19. α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy.

    PubMed

    May, Verena E L; Ettle, Benjamin; Poehler, Anne-Maria; Nuber, Silke; Ubhi, Kiren; Rockenstein, Edward; Winner, Beate; Wegner, Michael; Masliah, Eliezer; Winkler, Jürgen

    2014-10-01

    Multiple system atrophy (MSA), an atypical parkinsonian disorder, is characterized by α-synuclein (α-syn(+)) cytoplasmatic inclusions in mature oligodendrocytes. Oligodendrocyte progenitor cells (OPCs) represent a distinct cell population with the potential to replace dysfunctional oligodendrocytes. However, the role of OPCs in MSA and their potential to replace mature oligodendrocytes is still unclear. A postmortem analysis in MSA patients revealed α-syn within OPCs and an increased number of striatal OPCs. In an MSA mouse model, an age-dependent increase of dividing OPCs within the striatum and the cortex was detected. Despite of myelin loss, there was no reduction of mature oligodendrocytes in the corpus callosum or the striatum. Dissecting the underlying molecular mechanisms an oligodendroglial cell line expressing human α-syn revealed that α-syn delays OPC maturation by severely downregulating myelin-gene regulatory factor and myelin basic protein. Brain-derived neurotrophic factor was reduced in MSA models and its in vitro supplementation partially restored the phenotype. Taken together, efficacious induction of OPC maturation may open the window to restore glial and neuronal function in MSA. PMID:24698767

  20. A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation.

    PubMed

    Baxi, Emily G; Schott, Jason T; Fairchild, Amanda N; Kirby, Leslie A; Karani, Rabia; Uapinyoying, Prech; Pardo-Villamizar, Carlos; Rothstein, Jeffrey R; Bergles, Dwight E; Calabresi, Peter A

    2014-09-01

    Nerve conduction within the mammalian central nervous system is made efficient by oligodendrocyte-derived myelin. Historically, thyroid hormones have a well described role in regulating oligodendrocyte differentiation and myelination during development; however, it remains unclear which thyroid hormone receptors are required to drive these effects. This is a question with clinical relevance since nonspecific thyroid receptor stimulation can produce deleterious side-effects. Here we report that GC-1, a thyromimetic with selective thyroid receptor β action and a potentially limited side-effect profile, promotes in vitro oligodendrogenesis from both rodent and human oligodendrocyte progenitor cells. In addition, we used in vivo genetic fate tracing of oligodendrocyte progenitor cells via PDGFαR-CreER;Rosa26-eYFP double-transgenic mice to examine the effect of GC-1 on cellular fate and find that treatment with GC-1 during developmental myelination promotes oligodendrogenesis within the corpus callosum, occipital cortex and optic nerve. GC-1 was also observed to enhance the expression of the myelin proteins MBP, CNP and MAG within the same regions. These results indicate that a β receptor selective thyromimetic can enhance oligodendrocyte differentiation in vitro and during developmental myelination in vivo and warrants further study as a therapeutic agent for demyelinating models. PMID:24863526

  1. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  2. Aspirin Promotes Oligodendrocyte Precursor Cell Proliferation and Differentiation after White Matter Lesion

    PubMed Central

    Chen, Jing; Zuo, Shilun; Wang, Jing; Huang, Jian; Zhang, Xiao; Liu, Yang; Zhang, Yunxia; Zhao, Jun; Han, Junliang; Xiong, Lize; Shi, Ming; Liu, Zhirong

    2014-01-01

    Cerebral white matter lesion (WML) is one of the main causes for cognitive impairment and is often caused by chronic cerebral hypoperfusion. A line of evidence has shown that aspirin has neuroprotective effects and produces some benefits in long-term outcome and survival for ischemic stroke patients. However, whether aspirin exerts a protective effect against WML is still largely unknown. Here, we showed that aspirin could promote oligodendrocyte precursor cell (OPC) proliferation and differentiation into oligodendrocytes after WML. Male Sprague-Dawley rats were subjected to permanent bilateral common carotid artery occlusion, a well-established model for WML. Four weeks later, Morris water maze test showed an impairment of learning and memory ability of rat while aspirin treatment improved behavioral performance. Low dose of aspirin (25 mg/kg) was found to elevate the number of OPCs while relatively high doses (100–200 mg/kg) increased that of oligodendrocytes, and ameliorated WML-induced the thinning of myelin, as revealed by the electron microscope. Similarly, our in vitro study also showed that relatively low and high doses of aspirin enhanced OPC proliferation and differentiation into oligodendrocytes, respectively. Furthermore, we revealed that aspirin enhanced extracellular signal-related kinase (ERK) but inhibited RhoA activities. In summary, we provided the first evidence that aspirin can promote oligodendrogenesis and oligodendrocyte myelination after WML, which may involve ERK and RhoA pathways. PMID:24478700

  3. miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation

    PubMed Central

    Galloway, Dylan A.; Moore, Craig S.

    2016-01-01

    Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair. PMID:27379236

  4. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths.

    PubMed

    Rinholm, Johanne E; Vervaeke, Koen; Tadross, Michael R; Tkachuk, Ariana N; Kopek, Benjamin G; Brown, Timothy A; Bergersen, Linda H; Clayton, David A

    2016-05-01

    Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons. GLIA 2016;64:810-825. PMID:26775288

  5. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy; Chandley, Michelle J; Crawford, Jessica D; Stockmeier, Craig A; Ordway, Gregory A

    2014-10-01

    Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N = 12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD. PMID:24967945

  6. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  7. Is cell migration or proliferation dominant in the formation of linear arrays of oligodendrocytes?

    PubMed

    Walsh, Darragh M; Röth, Philipp T; Holmes, William R; Landman, Kerry A; Merson, Tobias D; Hughes, Barry D

    2016-10-01

    Oligodendrocytes are the myelin-producing cells of the central nervous system that are responsible for electrically insulating axons to speed the propagation of electrical impulses. A striking feature of oligodendrocyte development within white matter is that the cell bodies of many oligodendrocyte progenitor cells become organised into discrete linear arrays of three or more cells before they differentiate into myelin-producing oligodendrocytes. These linear arrays align parallel to the direction of the axons within white matter tracts and are believed to play an important role in the co-ordination of myelination. Guided by experimental data on the abundance and composition of linear arrays in the corpus callosum of the postnatal mouse brain, we construct discrete and continuous models of linear array generation to specifically investigate the relative influence of cell migration, proliferation, differentiation and death of oligodendroglia upon the genesis of linear arrays during early postnatal development. We demonstrate that only models that incorporate significant cell migration can replicate all of the experimental observations on number of arrays, number of cells in arrays and total cell count of oligodendroglia within a given area of the corpus callosum. These models are also necessary to accurately reflect experimental data on the abundance of linear arrays composed of oligodendrocytes that derive from progenitors of different clonal origins. PMID:27343034

  8. Convergent ablator performance measurements

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-01

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile ρ(r ) and effective backlighter profile I0(y) at each time step to be uniquely determined subject to the constraints that ρ(r ) is localized in radius space and I0(y) is delocalized in object space. Moments of ρ(r ) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  9. Convergent ablator performance measurements

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.; Olson, R. E.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile {rho}(r) and effective backlighter profile I{sub 0}(y) at each time step to be uniquely determined subject to the constraints that {rho}(r) is localized in radius space and I{sub 0}(y) is delocalized in object space. Moments of {rho}(r) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  10. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  11. Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein

    PubMed Central

    Breithaupt, Constanze; Schubart, Anna; Zander, Hilke; Skerra, Arne; Huber, Robert; Linington, Christopher; Jacob, Uwe

    2003-01-01

    Multiple sclerosis is a chronic disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal loss. The immunopathogenesis of demyelination in multiple sclerosis involves an autoantibody response to myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the surface of CNS myelin. Here we present the crystal structures of the extracellular domain of MOG (MOGIgd) at 1.45-Å resolution and the complex of MOGIgd with the antigen-binding fragment (Fab) of the MOG-specific demyelinating monoclonal antibody 8-18C5 at 3.0-Å resolution. MOGIgd adopts an IgV like fold with the A′GFCC′C″ sheet harboring a cavity similar to the one used by the costimulatory molecule B7-2 to bind its ligand CTLA4. The antibody 8-18C5 binds to three loops located at the membrane-distal side of MOG with a surprisingly dominant contribution made by MOG residues 101–108 containing a strained loop that forms the upper edge of the putative ligand binding site. The sequence R101DHSYQEE108 is unique for MOG, whereas large parts of the remaining sequence are conserved in potentially tolerogenic MOG homologues expressed outside the immuno-privileged environment of the CNS. Strikingly, the only sequence identical to DHSYQEE was found in a Chlamydia trachomatis protein of unknown function, raising the possibility that Chlamydia infections may play a role in the MOG-specific autoimmune response in man. Our data provide the structural basis for the development of diagnostic and therapeutic strategies targeting the pathogenic autoantibody response to MOG. PMID:12874380

  12. Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation

    PubMed Central

    Kuypers, Nicholas J.; Bankston, Andrew N.; Howard, Russell M.; Beare, Jason E.

    2016-01-01

    Oligodendrocyte (OL) loss contributes to the functional deficits underlying diseases with a demyelinating component. Remyelination by oligodendrocyte progenitor cells (OPCs) can restore these deficits. To understand the role that microRNAs (miRNAs) play in remyelination, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-EGFP+ mice were treated with cuprizone, and OPCs were sorted from the corpus callosum. Microarray analysis revealed that Sfmbt2 family miRNAs decreased during cuprizone treatment. One particular Sfmbt2 miRNA, miR-297c-5p, increased during mouse OPC differentiation in vitro and during callosal development in vivo. When overexpressed in both mouse embryonic fibroblasts and rat OPCs (rOPCs), cell cycle analysis revealed that miR-297c-5p promoted G1/G0 arrest. Additionally, miR-297c-5p transduction increased the number of O1+ rOPCs during differentiation. Luciferase reporter assays confirmed that miR-297c-5p targets cyclin T2 (CCNT2), the regulatory subunit of positive transcription elongation factor b, a complex that inhibits OL maturation. Furthermore, CCNT2-specific knockdown promoted rOPC differentiation while not affecting cell cycle status. Together, these data support a dual role for miR-297c-5p as both a negative regulator of OPC proliferation and a positive regulator of OL maturation via its interaction with CCNT2. SIGNIFICANCE STATEMENT This work describes the role of oligodendrocyte progenitor cell (OPC) microRNAs (miRNAs) during remyelination and development in vivo and differentiation in vitro. This work highlights the importance of miRNAs to OPC biology and describes miR-297c-5p, a novel regulator of OPC function. In addition, we identified CCNT2 as a functional target, thus providing a mechanism by which miR-297c-5p imparts its effects on differentiation. These data are important, given our lack of understanding of OPC miRNA regulatory networks and their potential clinical value. Therefore, efforts to understand the role of miR-297c-5p

  13. Ablation of kidney tumors.

    PubMed

    Karam, Jose A; Ahrar, Kamran; Matin, Surena F

    2011-04-01

    While surgical excision remains the gold standard for curative treatment of small renal cell carcinomas, ablative therapy has a place as a minimally invasive, kidney function-preserving therapy in carefully selected patients who are poor candidates for surgery. Although laparoscopic cryoablation and percutaneous radiofrequency ablation (RFA) are commonly performed, percutaneous cryoablation and laparoscopic RFA are reportedly being performed with increasing frequency. The renal function and complication profiles following ablative therapy are favorable, while oncologic outcomes lag behind those of surgery, thus reinforcing the need for careful patient selection. PMID:21377587

  14. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  15. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair.

    PubMed

    Domingues, Helena S; Portugal, Camila C; Socodato, Renato; Relvas, João B

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  16. Plexin A3 is involved in semaphorin 3F-mediated oligodendrocyte precursor cell migration.

    PubMed

    Xiang, Xin; Zhang, Xuan; Huang, Qi-Lin

    2012-11-21

    Class 3 semaphorins are expressed in the neurodevelopmental or damage repair phase of the central nervous system (CNS). They play an important role in guiding axon growth and directing cell migration, including the migration of oligodendrocyte precursor cells (OPCs). As co-receptors for semaphorin 3F(sema3F), the expression and role of neuropilin-2 (NRP2) and plexin A3 in OPC migration are unclear. Using RT-PCR, Western blot analysis, and immunofluorescence, we demonstrated that primary OPCs and immature oligodendrocytes from neonatal rats express NRP2 and plexin A3. After transfection with NRP2 siRNA and plexin A3 siRNA, the number of migrating OPCs attracted to sema3F remarkably decreased. These results suggest that plexin A3 is expressed in OPCs and immature oligodendrocytes and is involved in OPC migration. PMID:23063687

  17. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes.

    PubMed

    Hornig, Julia; Fröb, Franziska; Vogl, Michael R; Hermans-Borgmeyer, Irm; Tamm, Ernst R; Wegner, Michael

    2013-10-01

    Myelin is essential for rapid saltatory conduction and is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In both cell types the transcription factor Sox10 is an essential component of the myelin-specific regulatory network. Here we identify Myrf as an oligodendrocyte-specific target of Sox10 and map a Sox10 responsive enhancer to an evolutionarily conserved element in intron 1 of the Myrf gene. Once induced, Myrf cooperates with Sox10 to implement the myelination program as evident from the physical interaction between both proteins and the synergistic activation of several myelin-specific genes. This is strongly reminiscent of the situation in Schwann cells where Sox10 first induces and then cooperates with Krox20 during myelination. Our analyses indicate that the regulatory network for myelination in oligodendrocytes is organized along similar general principles as the one in Schwann cells, but is differentially implemented. PMID:24204311

  18. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium

    SciTech Connect

    Saneto, R.P.; de Vellis, J.

    1985-05-01

    A serumless, chemically defined medium has been developed for the culture of oligodendrocytes isolated from primary neonatal rat cerebral cultures. Combined together, insulin, transferrin, and fibroblast growth factor synergistically induced an essentially homogeneous population (95-98%) of cells expressing glycerol-3-phosphate dehydrogenase activity to undergo cell division. Proliferating cells were characterized by several criteria: (i) ultrastructural analysis by transmission electron microscopy identified the cell type as an oligodendrocyte; (ii) biochemical assays showed expression of three oligodendrocyte biochemical markers, induction of both glycerol phosphate dehydrogenase and lactate dehydrogenase, and presence of 2',3'-cyclic nucleotide 3'-phosphodiesterase; and (iii) immunocytochemical staining showed cultures to be 95-98% positive for glycerol phosphate dehydrogenase, 90% for myelin basic protein, 60-70% for galactocerebroside, and 70% for A2B5.

  19. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  20. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder.

    PubMed

    Miyata, Shingo; Hattori, Tsuyoshi; Shimizu, Shoko; Ito, Akira; Tohyama, Masaya

    2015-01-01

    The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD. PMID:25705664

  1. Overexpression of the Dominant-Negative Form of Interferon Regulatory Factor 1 in Oligodendrocytes Protects against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Ren, Zhihua; Wang, Yan; Tao, Duan; Liebenson, David; Liggett, Thomas; Goswami, Rajendra; Clarke, Robert; Stefoski, Dusan

    2011-01-01

    Interferon regulatory factor 1 (IRF-1) is a transcription factor that has been implicated in the pathogenesis of the human autoimmune demyelinating disease multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The goal of the present study was to directly examine the role of IRF-1 in oligodendrocyte injury and inflammatory demyelination. For the purpose of this study, we generated a transgenic mouse line (CNP/dnIRF-1) that overexpresses the dominant-negative form of IRF-1 (dnIRF1) specifically in oligodendrocytes. CNP/dnIRF-1 mice exhibited no phenotypic abnormalities but displayed suppressed IRF-1 signaling in oligodendrocytes. The major finding of our study was that the CNP/dnIRF-1 mice, compared with the wild-type mice, were protected against EAE, a phenomenon associated with significant reduction of inflammatory demyelination and with oligodendrocyte and axonal preservation. The observed protection was related to suppressed IRF-1 signaling and impaired expression of immune and proapoptotic genes in oligodendrocytes. No significant differences in the peripheral immune responses between the wild-type and the CNP/dnIRF-1 mice were identified throughout the experiments. This study indicates that IRF-1 plays a critical role in the pathogenesis of EAE by mediating oligodendrocyte response to inflammation and injury. It also suggests that oligodendrocytes are actively involved in the neuroimmune network, and that exploring oligodendrocyte-related pathogenic mechanisms, in addition to the conventional immune-based ones, may have important therapeutic implications in MS. PMID:21653838

  2. Cardiac ablation procedures

    MedlinePlus

    ... Accessory pathway, such as Wolff-Parkinson-White Syndrome Atrial fibrillation and atrial flutter Ventricular tachycardia ... consensus statement on catheter and surgical ablation of atrial fibrillation: ... for personnel, policy, procedures and follow-up. ...

  3. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. PMID:24488638

  4. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  5. Monoclonal antibody Rip specifically recognizes 2',3'-cyclic nucleotide 3'-phosphodiesterase in oligodendrocytes.

    PubMed

    Watanabe, Masatomo; Sakurai, Yoko; Ichinose, Tatsuya; Aikawa, Yoshikatsu; Kotani, Masaharu; Itoh, Kouichi

    2006-08-15

    The antigen recognized with monoclonal antibody (mAb) Rip (Rip-antigen) has been long used as a marker of oligodendrocytes and myelin sheaths. However, the identity of Rip-antigen has yet to be elucidated. We herein identified the Rip-antigen. No signal recognized by mAb-Rip was detected by immunoblot analyses in the rat brain, cultured rat oligodendrocytes, or the oligodendrocyte cell line CG-4. As this antibody worked very well on immunocytochemistry and immunohistochemistry, Rip-antigen was immunopurified with mAb-Rip from the differentiated CG-4 cells. Eight strong-intensity bands thus appeared on 5-20% SDS-PAGE with SYPRO ruby fluorescence staining. To identify these molecules, each band extracted from the gel was analyzed by MALDI-QIT/TOF mass spectrometry. We found an interesting molecule in the oligodendrocytes from an approximately 44-kDa band as 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP). To test whether CNP was recognized by mAb-Rip, double-immunofluorescence staining was performed by using Alexa Fluor 488-conjugated mAb-Rip and Alexa Fluor 568-conjugated mAb-CNP in the rat cerebellum, mouse cerebellum, cultured rat oligodendrocytes, and CG-4 cells. The Rip-antigen was colocalized with CNP in these cells and tissues. To provide direct evidence that CNP was recognized by mAb-Rip, rat Cnp1-transfected HEK293T cells were used for double-immunofluorescence staining with mAb-Rip and mAb-CNP. The Rip-antigen was colocalized with CNP in rat Cnp1-transfected HEK293T cells, but the antigen was not detected by mAb-Rip and mAb-CNP in mock-transfected HEK293T cells. Overall, we have demonstrated that the antigen labeled with mAb-Rip is CNP in the oligodendrocytes. PMID:16786579

  6. Restoration of Oligodendrocyte Pools in a Mouse Model of Chronic Cerebral Hypoperfusion

    PubMed Central

    McQueen, Jamie; Reimer, Michell M.; Holland, Philip R.; Manso, Yasmina; McLaughlin, Mark; Fowler, Jill H.; Horsburgh, Karen

    2014-01-01

    Chronic cerebral hypoperfusion, a sustained modest reduction in cerebral blood flow, is associated with damage to myelinated axons and cognitive decline with ageing. Oligodendrocytes (the myelin producing cells) and their precursor cells (OPCs) may be vulnerable to the effects of hypoperfusion and in some forms of injury OPCs have the potential to respond and repair damage by increased proliferation and differentiation. Using a mouse model of cerebral hypoperfusion we have characterised the acute and long term responses of oligodendrocytes and OPCs to hypoperfusion in the corpus callosum. Following 3 days of hypoperfusion, numbers of OPCs and mature oligodendrocytes were significantly decreased compared to controls. However following 1 month of hypoperfusion, the OPC pool was restored and increased numbers of oligodendrocytes were observed. Assessment of proliferation using PCNA showed no significant differences between groups at either time point but showed reduced numbers of proliferating oligodendroglia at 3 days consistent with the loss of OPCs. Cumulative BrdU labelling experiments revealed higher numbers of proliferating cells in hypoperfused animals compared to controls and showed a proportion of these newly generated cells had differentiated into oligodendrocytes in a subset of animals. Expression of GPR17, a receptor important for the regulation of OPC differentiation following injury, was decreased following short term hypoperfusion. Despite changes to oligodendrocyte numbers there were no changes to the myelin sheath as revealed by ultrastructural assessment and fluoromyelin however axon-glial integrity was disrupted after both 3 days and 1 month hypoperfusion. Taken together, our results demonstrate the initial vulnerability of oligodendroglial pools to modest reductions in blood flow and highlight the regenerative capacity of these cells. PMID:24498301

  7. Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions.

    PubMed

    Islam, Mohammad Shyful; Tatsumi, Kouko; Okuda, Hiroaki; Shiosaka, Sadao; Wanaka, Akio

    2009-01-01

    Many oligodendrocyte progenitor cells (OPCs) are found in acute or chronic demyelinated area, but not all of them differentiate efficiently into mature oligodendrocytes in the demyelinated central nervous system (CNS). Recent studies have shown that the basic helix-loop-helix transcription factor Olig2, which stimulates OPCs to differentiate into oligodendrocyte, is strongly up-regulated in many pathological conditions including acute or chronic demyelinating lesions in the adult CNS. Despite their potential role in the treatment of demyelinating diseases, the long-term fate of these up-regulated Olig2 cells has not been identified due to the lack of stable labeling methods. To trace their fate we have used double-transgenic mice, in which we were able to label Olig2-positive cells conditionally with green fluorescent protein (GFP). Demyelination was induced in these mice by feeding cuprizone, a copper chelator. After 6 weeks of cuprizone exposure, GFP-positive (GFP(+)) cells were processed for a second labeling with antibodies to major neural cell markers APC (mature oligodendrocyte marker), GFAP (astrocyte marker), NeuN (neuron marker), Iba1 (microglia marker) and NG2 proteoglycan (oligodendrocyte progenitor marker). More than half of the GFP(+) cells in the external capsule showed co-localization with NG2 proteoglycan. While the percentages of NG2-positive (NG2(+)) and APC-positive (APC(+)) oligodendrocyte lineage cells in cuprizone-treated mice were significantly higher than those in the normal diet group, no significant difference was observed for GFAP-positive (GFAP(+)) astrocytic lineage cells. Our data therefore provide direct evidence that proliferation and differentiation of local and/or recruited Olig2 progenitors contribute to remyelination in demyelinated lesions. PMID:19070638

  8. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  9. Activation of PPAR-γ and PTEN Cascade Participates in Lovastatin-mediated Accelerated Differentiation of Oligodendrocyte Progenitor Cells

    PubMed Central

    Paintlia, Ajaib S; Paintlia, Manjeet K; Singh, Avtar K; Singh, Inderjit

    2010-01-01

    Previously, we and others documented that statins including—lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone-CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum-deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl-pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV-treated OPCs ascribed to inhibition of RhoA-Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR-γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K-Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR-γ induction in normal brain may be tightly regulated — providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin-mediated activation of the PPAR-γ — PTEN cascade participates in OL differentiation, thus suggesting new therapeutic-interventions for MS or related CNS-demyelinating diseases. PMID:20578043

  10. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules

    PubMed Central

    Cassoli, Juliana Silva; Guest, Paul C; Malchow, Berend; Schmitt, Andrea; Falkai, Peter; Martins-de-Souza, Daniel

    2015-01-01

    Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease. PMID:27336040

  11. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  12. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  13. Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia.

    PubMed

    Zai, G; King, N; Wigg, K; Couto, J; Wong, G W H; Honer, W G; Barr, C L; Kennedy, J L

    2005-02-01

    Schizophrenia (SCZ) is a neuropsychiatric disorder that affects approximately 1% of the general population. The human leukocyte antigen (HLA) system has been implicated in several genetic studies of SCZ. The myelin oligodendrocyte glycoprotein (MOG) gene, which is located close to the HLA region, is considered a candidate for SCZ due to its association with white matter abnormalities and its importance in mediating the complement cascade. Four polymorphisms in the MOG gene (CA)n (TAAA)n, and two intronic polymorphisms, C1334T and C10991T, were investigated for the possibility of association with SCZ using 111 SCZ proband and their families. We examined the transmission of the alleles of each of these polymorphisms with the transmission disequilibrium test. We did not observe significant evidence for biased transmission of alleles at the (CA)n (chi2=2.430, 6 df, P=0.876) (TAAA)n (chi2=3.550, 5 df, P=0.616), C1334T (chi2=0.040, 1 df, P=0.841) and C10991T (chi2=0.154, 1 df, P=0.695) polymorphisms. Overall haplotype analysis using the TRANSMIT program was also not significant (chi2=7.954, 9 df, P=0.539). Furthermore, our results comparing mean age at onset in the genotype groups using the Kruskal-Wallis Test were not significant. Our case-control analyses (182 cases age-, sex- and ethnicity-matched with healthy controls) and combined z-score [(CA)n: z-score=-1.126, P=0.130; (TAAA)n: z-score=-0.233, P=0.408; C1334T: z-score=0.703, P=0.241; C10991T: z-score=0.551, P=0.291] were also not significant. Although our data are negative, the intriguing hypothesis for MOG in SCZ may warrant further investigation of this gene. PMID:15660663

  14. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    SciTech Connect

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. )

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  15. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  16. Chemical and Spectroscopic Aspects of Polymer Ablation-Special Features and Novel Directions-

    NASA Astrophysics Data System (ADS)

    Lippert, Thomas

    2004-03-01

    Laser ablation of polymers has become an established technique in the electronic industry and the large number of studies published annually indicates that this is still an attractive area of research. Several new approaches with new techniques and materials have given new insights in the ablation process. One of these approaches is the development of polymers designed specifically for laser ablation which are a unique tool for probing the ablation mechanisms as well as for improving ablation properties. These novel polymers exhibit very low thresholds of ablation, with high ablation rates (even at low fluences), and excellent ablation quality. New commercial applications will require improved ablation rates and control of undesirable surface effects, such as debris. The complexity of the interactions between polymers and laser photons are illustrated by the various processes associated with different irradiation conditions. i) Photothermal-photochemical laser ablation under excimer laser irradiation. ii) Dopant-induced laser ablation. iii) Photo-oxidative etching with lamps in an oxidizing atmosphere. iv) VUV etching in the absence of oxidizing conditions. v) Photokinetic etching with CW UV lasers. vi) Ultrafast laser ablation, affected by pulse length, wavelength, and possibly shock waves. vii) Shock assisted photothermal ablation on picosecond time scales. viii) VUV laser ablation: purely photochemical? ix) Synchrotron structuring. x) Mid-IR ablation (FEL and CO2 laser), the influence of exciting various functional groups. Several of these new approaches and processes will be discussed to emphasize the importance of different approaches but also to review some fundamental processes. The combination of various experimental techniques (new approaches and 'well-known') with materials made to measure has given new insights in the ablation mechanisms, but has also shown new possible future directions of laser polymer ablation.

  17. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  18. Detection of Autoantibodies Against Myelin Oligodendrocyte Glycoprotein in Multiple Sclerosis and Related Diseases.

    PubMed

    Spadaro, Melania; Meinl, Edgar

    2016-01-01

    Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with different inflammatory demyelinating diseases of the central nervous system, such as childhood multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and neuromyelitis optica spectrum disorders (NMOSD). We describe here in detail a sensitive cell-based assay that allows the identification of autoantibodies against MOG in serum. PMID:25814289

  19. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update

    PubMed Central

    Li, Ning; Leung, Gilberto K. K.

    2015-01-01

    Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies. PMID:26491661

  20. Effects of Rolipram on Adult Rat Oligodendrocytes and Functional Recovery after Contusive Cervical Spinal Cord Injury

    PubMed Central

    Beaumont, Eric; Whitaker, Christopher M.; Burke, Darlene A.; Hetman, Michal; Onifer, Stephen M.

    2009-01-01

    Traumatic human spinal cord injury causes devastating and long-term hardships. These are due to the irreparable primary mechanical injury and secondary injury cascade. In particular, oligodendrocyte cell death, white matter axon damage, spared axon demyelination, and the ensuing dysfunction in action potential conduction lead to the initial deficits and impair functional recovery. For these reasons, and that oligodendrocyte and axon survival may be related, various neuroprotective strategies after SCI are being investigated. We previously demonstrated that oligodendrocytes in the adult rat epicenter ventrolateral funiculus express 3′-5′-cyclic adenosine monophosphate-dependent phosphodiesterase 4 subtypes and that their death was attenuated up to 3 days after contusive cervical spinal cord injury when rolipram, a specific inhibitor of phosphodiesterase 4, was administered. Here, we report that 1) there are more oligodendrocyte somata in the adult rat epicenter ventrolateral funiculus, 2) descending and ascending axonal conductivity in the ventrolateral funiculus improves, and that 3) there are fewer hindlimb footfall errors during grid-walking at 5 weeks after contusive cervical spinal cord injury when rolipram is delivered for 2 weeks. This is the first demonstration of improved descending and ascending long-tract axonal conductivity across a spinal cord injury with this pharmacological approach. Since descending long-tract axonal conductivity did not return to normal, further evaluations of the pharmacokinetics and therapeutic window of rolipram as well as optimal combinations are necessary before consideration for neuroprotection in humans with spinal cord injury. PMID:19635528

  1. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation.

    PubMed

    Dai, JinXiang; Bercury, Kathryn K; Macklin, Wendy B

    2014-12-01

    A multitude of factors regulate oligodendrocyte differentiation and remyelination, and to elucidate the mechanisms underlying this process, we analyzed the interactions of known signaling pathways involved in these processes. Previous work from our lab and others shows that Akt, mTOR, and Erk 1/2 are major signaling pathways regulating oligodendrocyte differentiation and myelination in vitro and in vivo. However, the relative contribution of the different pathways has been difficult to establish because the impact of inhibiting one pathway in in vitro cell culture models or in vivo may alter signaling through the other pathway. These studies were undertaken to clarify the interactions between these major pathways and understand more specifically the crosstalk between them. Oligodendrocyte differentiation in vitro required Akt, mTOR, and Erk 1/2 signaling, as inhibition of Akt, mTOR, or Erk 1/2 resulted in a significant decrease of myelin basic protein mRNA and protein expression. Interestingly, while inhibition of the Erk1/2 pathway had little impact on Akt/mTOR signaling, inhibition of the Akt/mTOR pathways significantly increased Erk1/2 signaling, although not enough to overcome the loss of Akt/mTOR signaling in the regulation of oligodendrocyte differentiation. Furthermore, such crosstalk was also noted in an in vivo context, after mTOR inhibition by rapamycin treatment of perinatal pups. GLIA 2014;62:2096-2109. PMID:25060812

  2. Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes

    PubMed Central

    Cassoli, Juliana S.; Iwata, Keiko; Steiner, Johann; Guest, Paul C.; Turck, Christoph W.; Nascimento, Juliana M.; Martins-de-Souza, Daniel

    2016-01-01

    Separate lines of evidence have demonstrated the involvement of N-methyl-D-aspartate (NMDA) receptor and oligodendrocyte dysfunctions in schizophrenia. Here, we have carried out shotgun mass spectrometry proteome analysis of oligodendrocytes treated with the NMDA receptor antagonist MK-801 to gain potential insights into these effects at the molecular level. The MK-801 treatment led to alterations in the levels of 68 proteins, which are associated with seven distinct biological processes. Most of these proteins are involved in energy metabolism and many have been found to be dysregulated in previous proteomic studies of post-mortem brain tissues from schizophrenia patients. Finally, addition of the antipsychotic clozapine to MK-801-treated oligodendrocyte cultures resulted in changes in the levels of 45 proteins and treatment with clozapine alone altered 122 proteins and many of these showed opposite changes to the MK-801 effects. Therefore, these proteins and the associated energy metabolism pathways should be explored as potential biomarkers of antipsychotic efficacy. In conclusion, MK-801 treatment of oligodendrocytes may provide a useful model for testing the efficacy of novel treatment approaches. PMID:26973466

  3. Enrichment of Oligodendrocyte Progenitors from Differentiated Neural Precursors by Clonal Sphere Preparations.

    PubMed

    Umebayashi, Daisuke; Coles, Brenda; van der Kooy, Derek

    2016-05-01

    Remyelination is the goal of potential cell transplantation therapies for demyelinating diseases and other central nervous system injuries. Transplantation of oligodendrocyte precursor cells (OPCs) can result in remyelination in the central nervous system, and induced pluripotent stem cells (iPSCs) are envisioned to be an autograft cell source of transplantation therapy for many cell types. However, it remains time-consuming and difficult to generate OPCs from iPSCs. Clonal sphere preparations are reliable cell culture methods for purifying select populations of proliferating cells. To make clonal neurospheres from human embryonic stem cell (ESC)/iPSC colonies, we have found that a monolayer differentiation phase helps to increase the numbers of neural precursor cells. Indeed, we have compared a direct isolation of neural stem cells from human ESC/iPSC colonies (protocol 1) with monolayer neural differentiation, followed by clonal neural stem cell sphere preparations (protocol 2). The two-step method combining monolayer neuralization, followed by clonal sphere preparations, is more useful than direct sphere preparations in generating mature human oligodendrocytes. The initial monolayer culture stage appears to bias cells toward the oligodendrocyte lineage. This method of deriving oligodendrocyte lineage spheres from iPSCs represents a novel strategy for generating OPCs. PMID:26972950

  4. Do the Purkinje cells have a special type of oligodendrocyte as satellites?

    PubMed Central

    Monteiro, R A

    1983-01-01

    Two types of oligodendrocytes considered to be a constant feature in the cerebellar cortex of the rat are described. One cell type (I) exhibits rounded or elliptical nuclei, whereas the other type (II) presents more irregular nuclear and cellular contours and wider perinuclear cisternae. The latter cell type shows a more electron-dense cytoplasm with more heavily clumped heterochromatin, contrasting strongly with the euchromatin; also long and parallel cisternae of rough endoplasmic reticulum are more frequent. The percentages of both types of oligodendrocytes in relation to the total population of common glial cell types were calculated in the cortical layers and at several levels in these layers. The distribution of oligodendrocytes in the associated white matter was also carried out for purposes of comparison. The results provide evidence the the Purkinje cells may have a special kind of oligodendrocyte (Type II) as satellites. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:6630036

  5. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    PubMed

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production. PMID:26690027

  6. Differential regulation of sphingomyelin synthesis and catabolism in oligodendrocytes and neurons

    PubMed Central

    Kilkus, John P.; Goswami, Rajendra; Dawson, Sylvia A.; Testai, Fernando D.; Berdyshev, Eugeny V.; Han, Xianlin; Dawson, Glyn

    2008-01-01

    Neurons (both primary cultures of 3-day rat hippocampal neurons and embryonic chick neurons) rapidly converted exogenous NBD-sphingomyelin (SM) to NBD-Cer but only slowly converted NBD-Cer to NBD-SM. This was confirmed by demonstrating low in vitro sphingomyelin synthase (SMS) and high sphingomyelinase (SMase) activity in neurons. Similar results were observed in a human neuroblastoma cell line (LA-N-5). In contrast, primary cultures of 3-day-old rat oligodendrocytes only slowly converted NBD-SM to NBD-Cer but rapidly converted NBD-Cer to NBD-SM. This difference was confirmed by high in vitro SMS and low SMase activity in neonatal rat oligodendrocytes. Similar results were observed in a human oligodendroglioma cell line. Mass-Spectrometric analyses confirmed that neurons had a low SM/Cer ratio of (1.5 : 1) whereas oligodendroglia had a high SM/Cer ratio (9 : 1). Differences were also confirmed by [3H]palmitate-labeling of ceramide, which was higher in neurons compared with oligodendrocytes. Stable transfection of human oligodendroglioma cells with neutral SMase, which enhanced the conversion of NBD-SM to NBD-Cer and increased cell death, whereas transfection with SMS1 or SMS2 enhanced conversion of NBD-Cer to NBD-SM and was somewhat protective against cell death. Thus, SMS rather than SMases may be more important for sphingolipid homeostasis in oligodendrocytes, whereas the reverse may be true for neurons. PMID:18489714

  7. Brg1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification.

    PubMed

    Matsumoto, Steven; Banine, Fatima; Feistel, Kerstin; Foster, Scott; Xing, Rubing; Struve, Jaime; Sherman, Larry S

    2016-05-15

    The Olig2 basic-helix-loop-helix transcription factor promotes oligodendrocyte specification in early neural progenitor cells (NPCs), including radial glial cells, in part by recruiting SWI/SNF chromatin remodeling complexes to the enhancers of genes involved in oligodendrocyte differentiation. How Olig2 expression is regulated during oligodendrogliogenesis is not clear. Here, we find that the Brg1 subunit of SWI/SNF complexes interacts with a proximal Olig2 promoter and represses Olig2 transcription in the mouse cortex at E14, when oligodendrocyte progenitors (OPCs) are not yet found in this location. Brg1 does not interact with the Olig2 promoter in the E14 ganglionic eminence, where NPCs differentiate into Olig2-positive OPCs. Consistent with these findings, Brg1-null NPCs demonstrate precocious expression of Olig2 in the cortex. However, these cells fail to differentiate into OPCs. We further find that Brg1 is necessary for neuroepithelial-to-radial glial cell transition, but not neuronal differentiation despite a reduction in expression of the pro-neural transcription factor Pax6. Collectively, these and earlier findings support a model whereby Brg1 promotes neurogenic radial glial progenitor cell specification but is dispensable for neuronal differentiation. Concurrently, Brg1 represses Olig2 expression and the specification of OPCs, but is required for OPC differentiation and oligodendrocyte maturation. PMID:27067865

  8. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  9. Atrial fibrillation ablation.

    PubMed

    Pappone, Carlo; Santinelli, Vincenzo

    2012-06-01

    Atrial fibrillation is the commonest cardiac arrhythmia, with significant morbidity related to symptoms, heart failure, and thromboembolism, which is associated with excess mortality. Over the past 10 years, many centers worldwide have reported high success rates and few complications after a single ablation procedure in patients with paroxysmal atrial fibrillation. Recent studies indicate a short-term and long-term superiority of catheter ablation as compared with conventional antiarrhythmic drug therapy in terms of arrhythmia recurrence, quality of life, and arrhythmia progression. As a result, catheter ablation is evolving to a front-line therapy in many patients with atrial fibrillation. However, in patients with persistent long-standing atrial fibrillation catheter ablation strategy is more complex and time-consuming, frequently requiring repeat procedures to achieve success rates as high as in paroxysmal atrial fibrillation. In the near future, however, with growing experience and evolving technology, catheter ablation of atrial fibrillation may be extended also to patients with long-standing atrial fibrillation. PMID:22541284

  10. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  11. Tumour ablation: technical aspects

    PubMed Central

    Bodner, Gerd; Bale, Reto

    2009-01-01

    Abstract Image-guided percutaneous radiofrequency ablation (RFA) is a minimally invasive, relatively low-risk procedure for tumour treatment. Local recurrence and survival rates depend on the rate of complete ablation of the entire tumour including a sufficient margin of surrounding healthy tissue. Currently a variety of different RFA devices are available. The interventionalist must be able to predict the configuration and extent of the resulting ablation necrosis. Accurate planning and execution of RFA according to the size and geometry of the tumour is essential. In order to minimize complications, individualized treatment strategies may be necessary for tumours close to vital structures. This review examines the state-of-the art of different device technologies, approaches, and treatment strategies for percutaneous RFA of liver tumours. PMID:19965296

  12. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  13. Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration.

    PubMed

    Luyt, Karen; Slade, Timothy P; Dorward, Jienchi J; Durant, Claire F; Wu, Yue; Shigemoto, Ryuichi; Mundell, Stuart J; Váradi, Anikó; Molnár, Elek

    2007-02-01

    GABA(B) receptors (GABA(B)Rs) are involved in early events during neuronal development. The presence of GABA(B)Rs in developing oligodendrocytes has not been established. Using immunofluorescent co-localization, we have identified GABA(B)R proteins in O4 marker-positive oligodendrocyte precursor cells (OPCs) in 4-day-old mouse brain periventricular white matter. In culture, OPCs, differentiated oligodendrocytes (DOs) and type 2 astrocytes (ASTs) express both the GABA(B1abcdf) and GABA(B2) subunits of the GABA(B)R. Using semiquantitative PCR analysis with GABA(B)R isoform-selective primers we found that the expression level of GABA(B1abd) was substantially higher in OPCs or ASTs than in DOs. In contrast, the GABA(B2) isoform showed a similar level of expression in OPCs and DOs, and a significantly higher level in ASTs. This indicates that the expression of GABA(B1) and GABA(B2) subunits are under independent control during oligodendroglial development. Activation of GABA(B)Rs using the selective agonist baclofen demonstrated that these receptors are functionally active and negatively coupled to adenylyl cyclase. Manipulation of GABA(B)R activity had no effect on OPC migration in a conventional agarose drop assay, whereas baclofen significantly increased OPC migration in a more sensitive transwell microchamber-based assay. Exposure of cultured OPCs to baclofen increased their proliferation, providing evidence for a functional role of GABA(B)Rs in oligodendrocyte development. The presence of GABA(B)Rs in developing oligodendrocytes provides a new mechanism for neuronal-glial interactions during development and may offer a novel target for promoting remyelination following white matter injury. PMID:17144904

  14. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  15. Alpha-synuclein mRNA expression in oligodendrocytes in MSA

    PubMed Central

    Asi, Yasmine T; Simpson, Julie E; Heath, Paul R; Wharton, Stephen B; Lees, Andrew J; Revesz, Tamas; Houlden, Henry; Holton, Janice L

    2014-01-01

    Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α-Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser-capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls. PMID:24590631

  16. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  17. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease.

    PubMed

    Olympiou, Margarita; Sargiannidou, Irene; Markoullis, Kyriaki; Karaiskos, Christos; Kagiava, Alexia; Kyriakoudi, Styliana; Abrams, Charles K; Kleopa, Kleopas A

    2016-01-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte

  18. Ablative thermal protection systems

    NASA Technical Reports Server (NTRS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed.

  19. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury.

    PubMed

    Itoh, Kanako; Maki, Takakuni; Shindo, Akihiro; Egawa, Naohiro; Liang, Anna C; Itoh, Naoki; Lo, Eng H; Lok, Josephine; Arai, Ken

    2016-05-01

    Hypoxic-ischemic (HI) brain injury in newborns results in serious damage. Magnesium sulfate has been clinically used as a cyto-protective agent against HI brain injury in newborns in some countries, including Japan. However, it is not clear how magnesium exerts this effect and how it acts on the individual types of cells within the newborn brain. In this study, we exposed cultured rat oligodendrocyte precursor cells to magnesium sulfate during the period when they differentiate into oligodendrocytes, and showed that magnesium-exposed oligodendrocytes exhibited more resistance to HI injury. Our data may support the use of magnesium sulfate in the clinical setting. PMID:26699082

  20. Therapeutic stimulation versus ablation.

    PubMed

    Hariz, Marwan I; Hariz, Gun-Marie

    2013-01-01

    The renaissance of functional stereotactic neurosurgery was pioneered in the mid 1980s by Laitinen's introduction of Leksell's posteroventral pallidotomy for Parkinson´s disease (PD). This ablative procedure experienced a worldwide spread in the 1990s, owing to its excellent effect on dyskinesias and other symptoms of post-l-dopa PD. Modern deep brain stimulation (DBS), pioneered by Benabid and Pollak in 1987 for the treatment of tremor, first became popular when it was applied to the subthalamic nucleus (STN) in the mid 1990s, where it demonstrated a striking effect on all cardinal symptoms of advanced PD, and permitted reduced dosages of medication. DBS, as a nondestructive, adaptable, and reversible procedure that is proving safe in bilateral surgery on basal ganglia, has great appeal to clinicians and patients alike, despite the fact that it is expensive, laborious, and relies on very strict patient selection criteria, especially for STN DBS. Psychiatric surgery has experienced the same phenomenon, with DBS supplanting completely stereotactic ablative procedures. This chapter discusses the pros and cons of ablation versus stimulation and investigates the reasons why DBS has overshadowed proven efficient ablative procedures such as pallidotomy for PD, and capsulotomy and cingulotomy for obsessive-compulsive disorder and depression. PMID:24112885

  1. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  2. New Ablation Technologies and Techniques

    PubMed Central

    Berte, Benjamin; Yamashita, Seigo; Derval, Nicolas; Denis, Arnaud; Shah, Ashok; Amraoui, Sana; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Sacher, Frederic

    2014-01-01

    Catheter ablation is an established treatment strategy for a range of different cardiac arrhythmias. Over the past decade two major areas of expansion have been ablation of atrial fibrillation (AF) and ventricular tachycardia (VT) in the context of structurally abnormal hearts. In parallel with the expanding role of catheter ablation for AF and VT, multiple novel technologies have been developed which aim to increase safety and procedural success. Areas of development include novel catheter designs, novel navigation technologies and higher resolution imaging techniques. The aim of the present review is to provide an overview of novel developments in AF ablation and VT ablation in patients with of structural cardiac diseases. PMID:26835075

  3. New Ablation Technologies and Techniques.

    PubMed

    Mahida, Saagar; Berte, Benjamin; Yamashita, Seigo; Derval, Nicolas; Denis, Arnaud; Shah, Ashok; Amraoui, Sana; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Sacher, Frederic

    2014-08-01

    Catheter ablation is an established treatment strategy for a range of different cardiac arrhythmias. Over the past decade two major areas of expansion have been ablation of atrial fibrillation (AF) and ventricular tachycardia (VT) in the context of structurally abnormal hearts. In parallel with the expanding role of catheter ablation for AF and VT, multiple novel technologies have been developed which aim to increase safety and procedural success. Areas of development include novel catheter designs, novel navigation technologies and higher resolution imaging techniques. The aim of the present review is to provide an overview of novel developments in AF ablation and VT ablation in patients with of structural cardiac diseases. PMID:26835075

  4. Percutaneous Ablation of Adrenal Tumors

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Dupuy, Damian E.; Wood, Bradford J.

    2010-01-01

    Adrenal tumors comprise a broad spectrum of benign and malignant neoplasms, and include functional adrenal adenomas, pheochromocytomas, primary adrenocortical carcinoma and adrenal metastases. Percutaneous ablative approaches that have been described and used in the treatment of adrenal tumors include percutaneous radiofrequency ablation (RFA), cryoablation, microwave ablation and chemical ablation. Local tumor ablation in the adrenal gland presents unique challenges, secondary to the adrenal gland’s unique anatomic and physiologic features. The results of clinical series employing percutaneous ablative techniques in the treatment of adrenal tumors are reviewed in this article. Clinical and technical considerations unique to ablation in the adrenal gland are presented, including approaches commonly used in our practices, and risks and potential complications are discussed. PMID:20540918

  5. Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury.

    PubMed

    Braun, Simon M G; Pilz, Gregor-Alexander; Machado, Raquel A C; Moss, Jonathan; Becher, Burkhard; Toni, Nicolas; Jessberger, Sebastian

    2015-06-23

    Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain. PMID:26074082

  6. Histone Deacetylase 11 Regulates Oligodendrocyte-Specific Gene Expression and Cell Development in OL-1 Oligodendroglia Cells

    PubMed Central

    Liu, Hedi; Hu, Qichen; D’Ercole, A. Joseph; Ye, Ping

    2008-01-01

    Both in vivo and in vitro studies indicate a correlation between reduced acetylation of histone core proteins and oligodendrocyte development. The nature of these histone modifications and the mechanisms mediating them remain undefined. To address these issues we utilized OL-1 cells, a rat non-transformed oligodendrocyte cell line, and primary oligodendrocyte cultures. We found that the acetylated histone H3 at lysine 9 and lysine 14 (H3K9/K14ac) is reduced in both the myelin basic protein (MBP) and proteolipid protein (PLP) genes of maturing oligodendroglial OL-1 cells, and furthermore, this temporally correlates with increases in MBP, PLP, and histone deacetylase (HDAC) 11 expression. Disruption of developmentally-regulated histone H3 deacetylation within the MBP and PLP genes by the HDAC inhibitor trichostatin A blunts MBP and PLP expression. With its increased expression, interaction of HDAC 11 with acetylated histone H3 and recruitment of HDAC 11 to the MBP and PLP genes markedly increases in maturing OL-1 cells. Moreover, suppressing HDAC 11 expression with small interfering RNA significantly: 1) increases H3K9/K14ac globally and within the MBP and PLP genes, 2) decreases MBP and PLP mRNA expression, and 3) blunts the morphological changes associated with oligodendrocyte development. Our data strongly support a specific role for HDAC 11 in histone deacetylation and in turn the regulation of oligodendrocyte-specific protein gene expression and oligodendrocyte development. PMID:18627006

  7. The cyclooxygenase-2 pathway via the PGE2 EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination

    PubMed Central

    Palumbo, Sara; Toscano, Christopher D.; Parente, Laura; Weigert, Roberto; Bosetti, Francesca

    2011-01-01

    Cyclooxygenases (COX)-1 and -2 are key enzymes required for the conversion of arachidonic acid (AA) to eicosanoids, potent mediators of inflammation. In patients with multiple sclerosis (MS), COX-2 derived prostaglandins (PGs) are elevated in the cerebrospinal fluid and COX-2 is upregulated in demyelinating plaques. However, it is not known whether COX-2 activity contributes to oligodendrocyte death. In cuprizone-induced demyelination, oligodendrocyte apoptosis and a concomitant increase in the gene expression of COX-2 and PGE2-EP2 receptor precede histological demyelination. COX-2 and EP2 receptor were expressed by oligodendrocytes, suggesting a causative role for the COX-2/EP2 pathway in the initiation of oligodendrocyte death and demyelination. COX-2 gene deletion, chronic treatment with the COX-2 selective inhibitor celecoxib, or with the EP2 receptor antagonist AH6809 reduced cuprizone-induced oligodendrocyte apoptosis, the degree of demyelination and motor dysfunction. These data indicate that the PGE2 EP2 receptor contributes to oligodendrocyte apoptosis and open possible new therapeutic approaches for MS. PMID:21699540

  8. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells.

    PubMed

    Weider, Matthias; Wegener, Amélie; Schmitt, Christian; Küspert, Melanie; Hillgärtner, Simone; Bösl, Michael R; Hermans-Borgmeyer, Irm; Nait-Oumesmar, Brahim; Wegner, Michael

    2015-02-01

    Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. PMID:25680202

  9. Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells

    PubMed Central

    Weider, Matthias; Wegener, Amélie; Schmitt, Christian; Küspert, Melanie; Hillgärtner, Simone; Bösl, Michael R.; Hermans-Borgmeyer, Irm; Nait-Oumesmar, Brahim; Wegner, Michael

    2015-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. PMID:25680202

  10. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.