Sample records for oligophenylenes

  1. Electrosynthesis and characterization of oligophenylene deriving from 4-(methoxyphenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    Amor, Sarra Ben; Said, Ayoub Haj; Chemek, Mourad; Ayachi, Sahbi; Massuyeau, Florian; Wéry, Jany; Alimi, Kamel; Roudesli, Sadok

    2013-01-01

    An oligophenylene deriving from the 4-(methoxyphenyl)acetonitrile (MPA), was electrosynthesized by direct anodic oxidation at a constant potential in acetonitrile on a platinium electrode. This oligomer (OMPA) showed a good solubility in common organic solvents. The results of osmometry and gel permeation chromatography analyzes indicated that the average chain length for OMPA was about 5 units. Its chemical structure was elucidated by 1H and 13C NMR, FTIR and UV spectroscopy. A thermal study carried out by thermogravimetric analysis and Differential Scanning Calorimetry showed that the oligomer was stable up to 268 °C. In addition, the photoluminescent properties of OMPA were investigated. In solution, an emission was recorded in the indigo-blue region, however, in solid state this emission was shifted to the orange-red zone. Finally a mechanism for the electro-oligomerization was evoked in the light of the electronic structures of the MPA and its radical cation obtained by DFT calculation.

  2. Carbo-biphenyls and Carbo-terphenyls: Oligo(phenylene ethynylene) Ring Carbo-mers.

    PubMed

    Zhu, Chongwei; Poater, Albert; Duhayon, Carine; Kauffmann, Brice; Saquet, Alix; Maraval, Valérie; Chauvin, Remi

    2018-05-14

    Ring carbo-mers of oligo(phenylene ethynylene)s (OPEn, n=0-2), made of C 2 -catenated C 18 carbo-benzene rings, have been synthesized and characterized by NMR and UV-vis spectroscopy, crystallography and voltammetry. Analyses of crystal and DFT-optimized structures show that the C 18 rings preserve their individual aromatic character according to structural and magnetic criteria (NICS indices). Carbo-terphenyls (n=2) are reversibly reduced at ca. -0.42 V/SCE, i.e. 0.41 V more readily than the corresponding carbo-benzene (-0.83 V/SCE), thus revealing efficient inter-ring π-conjugation. An accurate linear fit of E 1/2 red1 vs. the DFT LUMO energy suggests a notably higher value (-0.30 V/SCE) for a carbo-quaterphenyl congener (n=3). Increase with n of the effective π-conjugation is also evidenced by a red shift of two of the three main visible light absorption bands, all being assigned to TDDFT-calculated excited states, one of them restricting to a HOMO→LUMO main one-electron transition. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Conductance enhancement of InAs/InP heterostructure nanowires by surface functionalization with oligo(phenylene vinylene)s.

    PubMed

    Schukfeh, Muhammed Ihab; Storm, Kristian; Mahmoud, Ahmed; Søndergaard, Roar R; Szwajca, Anna; Hansen, Allan; Hinze, Peter; Weimann, Thomas; Svensson, Sofia Fahlvik; Bora, Achyut; Dick, Kimberly A; Thelander, Claes; Krebs, Frederik C; Lugli, Paolo; Samuelson, Lars; Tornow, Marc

    2013-05-28

    We have investigated the electronic transport through 3 μm long, 45 nm diameter InAs nanowires comprising a 5 nm long InP segment as electronic barrier. After assembly of 12 nm long oligo(phenylene vinylene) derivative molecules onto these InAs/InP nanowires, we observed a pronounced, nonlinear I-V characteristic with significantly increased currents of up to 1 μA at 1 V bias, for a back-gate voltage of 3 V. As supported by our model calculations based on a nonequilibrium Green Function approach, we attribute this effect to charge transport through those surface-bound molecules, which electrically bridge both InAs regions across the embedded InP barrier.

  4. Synthesis of Bridged Oligophenylene Laser Dyes

    DTIC Science & Technology

    1991-05-10

    the Grignard formation. Pure 22 as the free base could then be coulpled with the Grignard reagent from bromonaphthalene 20 using nickel acetoacetate as...preparation of 22 free of any positional isomer. We were able to prepare quite pure 22 by the Grignard coupling reaction of an excess p-chlorophenylmagnesium...fluorene 14 into the methoxyterphenyl 23 by the palladium-catalyzed Grignard coupling. Bromination of 23 was not clean as both the activated 7-position on

  5. Electronically Transparent Au-N Bonds for Molecular Junctions.

    PubMed

    Zang, Yaping; Pinkard, Andrew; Liu, Zhen-Fei; Neaton, Jeffrey B; Steigerwald, Michael L; Roy, Xavier; Venkataraman, Latha

    2017-10-25

    We report a series of single-molecule transport measurements carried out in an ionic environment with oligophenylenediamine wires. These molecules exhibit three discrete conducting states accessed by electrochemically modifying the contacts. Transport in these junctions is defined by the oligophenylene backbone, but the conductance is increased by factors of ∼20 and ∼400 when compared to traditional dative junctions. We propose that the higher-conducting states arise from in situ electrochemical conversion of the dative Au←N bond into a new type of Au-N contact. Density functional theory-based transport calculations establish that the new contacts dramatically increase the electronic coupling of the oligophenylene backbone to the Au electrodes, consistent with experimental transport data. The resulting contact resistance is the lowest reported to date; more generally, our work demonstrates a facile method for creating electronically transparent metal-organic interfaces.

  6. Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps

    NASA Astrophysics Data System (ADS)

    Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun

    Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots

  7. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles.

    PubMed

    Chen, Min; Shang, Jian; Wang, Yongfeng; Wu, Kai; Kuttner, Julian; Hilt, Gerhard; Hieringer, Wolfgang; Gottfried, J Michael

    2017-01-24

    We report the on-surface formation and characterization of [30]-honeycombene, a cyclotriacontaphenylene, which consists of 30 phenyl rings (C 180 H 120 ) and has a diameter of 4.0 nm. This shape-persistent, conjugated, and unsubstituted hexagonal hydrocarbon macrocycle was obtained by solvent-free synthesis on a silver (111) single-crystal surface, making solubility-enhancing alkyl side groups unnecessary. Side products include strained macrocycles with square, pentagonal, and heptagonal shape. The molecules were characterized by scanning tunneling microscopy and density functional theory (DFT) calculations. On the Ag(111) surface, the macrocycles act as molecular quantum corrals and lead to the confinement of surface-state electrons inside the central cavity. The energy of the confined surface state correlates with the size of the macrocycle and is well described by a particle-in-the-box model. Tunneling spectroscopy suggests conjugation within the planar rings and reveals influences of self-assembly on the electronic structure. While the adsorbed molecules appear to be approximately planar, the free molecules have nonplanar conformation, according to DFT.

  8. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    PubMed

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  9. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  10. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  11. Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew; Carman, M. Leslie; Glenn, Andrew M.; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-09-01

    The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U

  12. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  13. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthusubramanian, N.; Zant, H. S. J. van der; Galan, E.

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were usedmore » to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.« less

  14. En route to surface-bound electric field-driven molecular motors.

    PubMed

    Jian, Huahua; Tour, James M

    2003-06-27

    Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.

  15. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    PubMed Central

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  16. Tuning the thermal conductance of molecular junctions with interference effects

    NASA Astrophysics Data System (ADS)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  17. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    PubMed

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  18. Synthesis of a new π-conjugated redox oligomer: Electrochemical and optical investigation

    NASA Astrophysics Data System (ADS)

    Blili, Saber; Zaâboub, Zouhour; Maaref, Hassen; Haj Said, Ayoub

    2017-01-01

    A new π-conjugated redox oligomer was prepared according a two-Step Synthesis. Firstly, an oligophenylene (OMPA) was obtained from the anodic oxidation of the (4-methoxyphenyl)acetonitrile. Then, the resulting material was chemically modified by the Knoevenagel condensation with the ferrocenecarboxaldehyde. This reaction led to a redox-conjugated oligomer the Fc-OMPA. The synthesized material was characterized using different spectroscopic techniques: NMR, FTIR, UV-vis and photoluminescence (PL) spectroscopy. The Fc-OMPA was used to modify a platinum electrode surface and the electrochemical response of the ferrocene redox-center was investigated by cyclic voltammetry. Moreover, the room temperature PL spectra of Fc-OMPA revealed that the ferrocene moiety, which acts as an electron donor, can effectively quench the oligomer luminescence. However, when ferrocene was oxidized to ferrocenium ion, the intramolecular charge transfer process was prevented which consequently enhanced the light emission. Thus, the oligomer light-emission can be, chemically or electrochemically tuned. The obtained results showed that the prepared material is a good candidate for the elaboration of electrochemical sensors and for the development of luminescent Redox-switchable devices.

  19. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  20. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  1. On the nucleation and initial film growth of rod-like organic molecules

    NASA Astrophysics Data System (ADS)

    Winkler, Adolf

    2016-10-01

    In this article, some fundamental topics related to the initial steps of organic film growth are reviewed. General conclusions will be drawn based on experimental results obtained for the film formation of oligophenylene and pentacene molecules on gold and mica substrates. Thin films were prepared via physical vapor deposition under ultrahigh-vacuum conditions and characterized in-situ mainly by thermal desorption spectroscopy, and ex-situ by X-ray diffraction and atomic force microscopy. In this short review article the following topics will be discussed: What are the necessary conditions to form island-like films which are either composed of flat-lying or of standing molecules? Does a wetting layer exist below and in between the islands? What is the reason behind the occasionally observed bimodal island size distribution? Can one describe the nucleation process with the diffusion-limited aggregation model? Do the impinging molecules directly adsorb on the surface or rather via a hot-precursor state? Finally, it will be described how the critical island size can be determined by an independent measurement of the deposition rate dependence of the island density and the capture-zone distribution via a universal relationship.

  2. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    PubMed

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  3. Charge transport through molecular rods with reduced pi-conjugation.

    PubMed

    Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike

    2008-10-24

    A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.

  4. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires

    PubMed Central

    Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  5. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    PubMed

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  6. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    NASA Astrophysics Data System (ADS)

    Modzelewski, Tomasz

    oar's on adjacent polymer chains, and lock the chains in place, similar to the way in which the oars on one ship will interdigitate with the oars of another ship if they get too close. Chapter 6 expands the chemistry of the non-traditional elastomers described in Chapter 5. Specifically, the substituent groups on the cyclotriphosphazene groups are changed from 2,2,2- trifluoroethoxy to phenoxy, while the remaining chlorine atoms along the polymer backbone are still replaced with 2,2,2-trifluoroethoxide. The new polymers are shown to have better mechanical properties then the polymers described in Chapter 5. Chapter 7 describes a further extension of the ideas in Chapters 5 and 6. Specifically it involves the synthesis and mechanical testing of polyphosphazenes bearing oligo-p-phenylene groups co-substituted with 2,2,2-trifluoroethoxide. The oligo-phenylene groups are incorporated to act as variable length cross-linking moieties to further expand the new family of non-traditional polyphosphazene elastomers. The mechanical and physical properties of these polymers reveal a strong dependence on both the length and concentration of the oligo-phenylene minor co-substituent groups. (Abstract shortened by UMI.).

  7. Supported Intrinsically Porous Oligomers as Hybrid Materials for Separations, Storage, and Sensing

    NASA Astrophysics Data System (ADS)

    Thompson, Anthony Boone

    Adsorption-desorption phenomena are often difficult to study at the molecular level because the surfaces on which they occur can be heterogeneous, giving a wide distribution of adsorption sites and associated energies. Considering that these phenomena underlie an incredibly wide variety of industrially important processes, a better understanding could aid in the development of more efficient methods. In this work, we describe an approach to designing materials with well-defined adsorption sites by covalently attaching intrinsically porous molecules to solid surfaces by a rigid multidentate linker. These cup-shaped molecules are intended to act as adsorption sites on the material, whereas the rigid attachment to the solid support serves to prevent movement and conformational changes of the sites, leading to better understanding of adsorption phenomena. As a proof-of-concept application, materials were used for adsorption of n-butanol biofuel and related compounds from dilute aqueous solution. The materials were thermally and hydrolytically stable, and adsorption phenomena were reversible. Adsorption sites containing more hydrophobic molecular area led to stronger adsorption, suggesting that it is driven by weak van der Waals forces. Likewise, adsorption sites that were strongly polarized performed poorly, possibly reflecting a greater energy penalty of removing water molecules from the cavity. Upon placing a Lewis acidic metal at the bottom of the cavity, an enhancement was seen only with the most acidic metal, which may indicate weak guest coordination. Observing that hydrophobic interactions dominate adsorption on these materials, efforts were made to develop hybrid materials with large hydrophobic area for adsorption. Glaser coupling of diethynylbenzene was used to grow oligo(phenylene butadiynylene)s from the surface of silica, resulting in materials that were more than 25% organic by weight. In addition to their potential use as adsorbents, these materials may

  8. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the