Science.gov

Sample records for oligophenylenes

  1. Repetitive synthetic method for o,o,p-oligophenylenes using C-H arylation.

    PubMed

    Manabe, Kei; Kimura, Takeshi

    2013-01-18

    A synthetic method for the preparation of o,o,p-oligophenylenes has been developed. It involves Miura's C-H arylation of 2-biphenols with aryl nonaflates as the key step. Oligophenylenes with defined lengths are successfully synthesized using this method. PMID:23289430

  2. Synthesis and Chiroptical Properties of Double-Helical (M)- and (P)-o-Oligophenylenes.

    PubMed

    Chen, Jing-Xing; Han, Jian-Wei; Wong, Henry N C

    2015-09-01

    All of the M and P isomers of optically pure oligophenylenes with 6, 8, 10, and 12 phenyl rings were synthesized and fully characterized. The Suzuki cross-coupling reaction has been revealed to be a viable strategy in the syntheses of tetraphenylene derivatives, which, together with the copper-mediated oxidative cross-coupling reaction, were employed in the quest for the oligophenylenes. X-ray diffraction analysis in combination with specific rotation and circular dichroism spectroscopy unambiguously identified the unique covalent double-helical frameworks of these oligophenylene molecules. PMID:26284894

  3. Aggregates of a hetero-oligophenylene derivative as reactors for the generation of palladium nanoparticles: a potential catalyst in the Sonogashira coupling reaction under aerial conditions.

    PubMed

    Walia, Preet Kamal; Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj

    2015-12-18

    The utilization of Pd nanoparticles stabilized by aggregates of hetero-oligophenylene derivative 3 as an excellent catalyst in a copper/amine free Sonogashira coupling reaction under aerial conditions at room temperature has been demonstrated. PMID:26460180

  4. Electrosynthesis and characterization of oligophenylene deriving from 4-(methoxyphenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    Amor, Sarra Ben; Said, Ayoub Haj; Chemek, Mourad; Ayachi, Sahbi; Massuyeau, Florian; Wéry, Jany; Alimi, Kamel; Roudesli, Sadok

    2013-01-01

    An oligophenylene deriving from the 4-(methoxyphenyl)acetonitrile (MPA), was electrosynthesized by direct anodic oxidation at a constant potential in acetonitrile on a platinium electrode. This oligomer (OMPA) showed a good solubility in common organic solvents. The results of osmometry and gel permeation chromatography analyzes indicated that the average chain length for OMPA was about 5 units. Its chemical structure was elucidated by 1H and 13C NMR, FTIR and UV spectroscopy. A thermal study carried out by thermogravimetric analysis and Differential Scanning Calorimetry showed that the oligomer was stable up to 268 °C. In addition, the photoluminescent properties of OMPA were investigated. In solution, an emission was recorded in the indigo-blue region, however, in solid state this emission was shifted to the orange-red zone. Finally a mechanism for the electro-oligomerization was evoked in the light of the electronic structures of the MPA and its radical cation obtained by DFT calculation.

  5. The role of the substrate structure in the on-surface synthesis of organometallic and covalent oligophenylene chains.

    PubMed

    Dai, Jingya; Fan, Qitang; Wang, Tao; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa

    2016-07-27

    The influences of the substrate structure on the formation of one-dimensional organometallic and covalent oligomers on a Cu(110) surface were studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED) in ultrahigh vacuum (UHV). Vapor deposition of submonolayer 4,4''-dibromo-meta-terphenyl (DMTP) onto a Cu(110) surface at 300 K leads to scission of C-Br bonds and the formation of organometallic chains (cis/trans and all-trans) connected by C-Cu-C bonds. Larger islands (120 × 120 nm(2)) of all-trans zigzag organometallic chains as sole products were obtained by the deposition of DMTP onto Cu(110) held at 383 K. The domains are oriented along two directions with an angle of ±13° relative to the [0 0 1] direction due to the two-fold symmetry of the Cu(110) surface lattice. This study reveals at a sub-molecular level that the organometallic chains firstly lose copper atoms and then undergo C-C coupling into oligophenylene chains at a substrate temperature around 417 K. Annealing the large islands of organometallic chains at 458 K results in the formation of completely C-C covalently bonded zigzag oligophenylene chains. The zigzag angle of 125° slightly deviates from the ideal value of 120°. This is attributed to a stretching of the zigzag oligophenylene chains due to substrate template effects. PMID:27411742

  6. Cyclometalated Osmium-Amine Electronic Communication through the p-Oligophenylene Wire.

    PubMed

    Shen, Jun-Jian; Shao, Jiang-Yang; Gong, Zhong-Liang; Zhong, Yu-Wu

    2015-11-16

    A series of bis-tridentate cyclometalated osmium complexes with a redox-active triarylamine substituent have been prepared, where the amine substituent is separated from the osmium ion by a p-oligophenylene wire of various lengths. X-ray crystallographic data of complexes 3(PF6) and 4(PF6) with three or four repeating phenyl units between the osmium ion and the amine substituent are presented. These complexes show two consecutive anodic redox couples between +0.1 and +0.9 V vs Ag/AgCl, with the potential splitting in the range of 300-390 mV. A combined experimental and theoretical study suggests that, in the one-electron-oxidized state, the odd electron is delocalized for short congeners and localized on the osmium component for long congeners. The electronic coupling parameter (Vab) was estimated by the Marcus-Hush analysis. The distance dependence plot of ln(Vab) versus the osmium-amine geometrical distance (Rab) gives a negative linear relationship with a decay slope of -0.19 Å(-1), which is slightly steeper with respect to the previously reported ruthenium-amine series with the same molecular wire. DFT calculations with the long-range-corrected UCAM-B3LYP functional gave more reasonable results for the osmium complexes with respect to those with UB3LYP. PMID:26567859

  7. Long-Range Ruthenium-Amine Electronic Communication through the para-Oligophenylene Wire

    PubMed Central

    Shen, Jun-Jian; Zhong, Yu-Wu

    2015-01-01

    The studies of long-range electronic communication are hampered by solubility and potential-splitting issues. A “hybridized redox-asymmetry” method using a combination of organic and inorganic redox species is proposed and exemplified to overcome these two issues. Complexes 1(PF6)–6(PF6) (from short to long in length) with the organic redox-active amine and inorganic cyclometalated ruthenium termini bridged by the para-oligophenylene wire have been prepared. Complex 6 has the longest Ru-amine geometrical distance of 27.85 Å. Complexes 3(PF6) and 4(PF6) show lamellar crystal packing on the basis of a head-to-tail anti-parallelly aligned dimeric structure. Two redox waves are observed for all complexes in the potential region between +0.2 and +0.9 V vs Ag/AgCl. The electrochemical potential splitting is 410, 220, 143, 112, 107, and 105 mV for 1(PF6) through 6(PF6), respectively. Ruthenium (+2) to aminium (N•+) charge transfer transitions have been identified for the odd-electron compounds 12+–62+ by spectroelectrochemical measurements. The electronic communication between amine and ruthenium decreases exponentially with a decay slope of −0.137 Å−1. DFT calculations have been performed to complement these experimental results. PMID:26344929

  8. Long-Range Ruthenium-Amine Electronic Communication through the para-Oligophenylene Wire

    NASA Astrophysics Data System (ADS)

    Shen, Jun-Jian; Zhong, Yu-Wu

    2015-09-01

    The studies of long-range electronic communication are hampered by solubility and potential-splitting issues. A “hybridized redox-asymmetry” method using a combination of organic and inorganic redox species is proposed and exemplified to overcome these two issues. Complexes 1(PF6)-6(PF6) (from short to long in length) with the organic redox-active amine and inorganic cyclometalated ruthenium termini bridged by the para-oligophenylene wire have been prepared. Complex 6 has the longest Ru-amine geometrical distance of 27.85 Å. Complexes 3(PF6) and 4(PF6) show lamellar crystal packing on the basis of a head-to-tail anti-parallelly aligned dimeric structure. Two redox waves are observed for all complexes in the potential region between +0.2 and +0.9 V vs Ag/AgCl. The electrochemical potential splitting is 410, 220, 143, 112, 107, and 105 mV for 1(PF6) through 6(PF6), respectively. Ruthenium (+2) to aminium (N•+) charge transfer transitions have been identified for the odd-electron compounds 12+-62+ by spectroelectrochemical measurements. The electronic communication between amine and ruthenium decreases exponentially with a decay slope of -0.137 Å-1. DFT calculations have been performed to complement these experimental results.

  9. Long-Range Ruthenium-Amine Electronic Communication through the para-Oligophenylene Wire.

    PubMed

    Shen, Jun-Jian; Zhong, Yu-Wu

    2015-01-01

    The studies of long-range electronic communication are hampered by solubility and potential-splitting issues. A "hybridized redox-asymmetry" method using a combination of organic and inorganic redox species is proposed and exemplified to overcome these two issues. Complexes 1(PF6)-6(PF6) (from short to long in length) with the organic redox-active amine and inorganic cyclometalated ruthenium termini bridged by the para-oligophenylene wire have been prepared. Complex 6 has the longest Ru-amine geometrical distance of 27.85 Å. Complexes 3(PF6) and 4(PF6) show lamellar crystal packing on the basis of a head-to-tail anti-parallelly aligned dimeric structure. Two redox waves are observed for all complexes in the potential region between +0.2 and +0.9 V vs Ag/AgCl. The electrochemical potential splitting is 410, 220, 143, 112, 107, and 105 mV for 1(PF6) through 6(PF6), respectively. Ruthenium (+2) to aminium (N(•+)) charge transfer transitions have been identified for the odd-electron compounds 1(2+)-6(2+) by spectroelectrochemical measurements. The electronic communication between amine and ruthenium decreases exponentially with a decay slope of -0.137 Å(-1). DFT calculations have been performed to complement these experimental results. PMID:26344929

  10. Rectifying Properties of Oligo(Phenylene Ethynylene) Heterometallic Molecular Junctions: Molecular Length and Side Group Effects

    PubMed Central

    Fu, Xiao-Xiao; Zhang, Rui-Qin; Zhang, Guang-Ping; Li, Zong-Liang

    2014-01-01

    The rectifying properties of α,ω-dithiol terminated oligo(phenylene ethynylene) molecules sandwiched between heterometallic electrodes, including the molecular length and side group effects, are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. The results show nonlinear variation with changes in molecule length: when the molecule becomes longer, the current decreases at first and then increases while the rectification shifts in the opposite direction. This stems from the change in molecular eigenstates and the coupling between the molecule and electrodes caused by different molecular lengths. The rectifying behavior of heterometallic molecular junctions can be attributed to the asymmetric molecule-electrode contacts, which lead to asymmetric electronic tunneling spectra, molecular eigenvalues, molecular orbitals, and potential drop at reversed equivalent bias voltages. Our results provide a fundamental understanding of the rectification of heterometallic molecular junction, and a prediction of rectifiers with different rectification properties from those in the experiment, using electrodes with reduced sizes. PMID:25220880

  11. Electron Transfer through Surface-Grown, Ferrocene-Capped Oligophenylene Molecular Wires (5-50 Å) on n-Si(111) Photoelectrodes.

    PubMed

    Li, Feng; Basile, Victoria M; Rose, Michael J

    2015-07-21

    We report the surface growth of oligophenylene molecular wires on Si(111) substrates and their electron-transfer (ET) properties. Iterative wire growth of biphenylene was achieved via Pd-catalyzed Negishi reactions for lengths of nphenyl = 1, 2, 4, 6, 8, and 12 (d ≈ 5-50 Å). The triflato-capped wires were functionalized with vinylferrocene for potentiometric studies. For the oligophenylenes of nphenyl = 1, 2, and 4 (wire length d ≈ 5-20 Å), there was a strong distance dependence (kapp = 22.6, 16.0, 8.40 s(-1), respectively), correlated to β = 0.07 Å(-1). In contrast, longer oligophenylenes for nphenyl = 4-12 (d ≈ 20-50 Å) displayed a negligible distance dependence with an ET rate of kapp ≈ 10.0 ± 1.6 s(-1). These data suggest a distance-dependent tunneling mechanism at short lengths (d < 20 Å) and a distance-independent ET at longer lengths (d > 20 Å). PMID:26153919

  12. Facile Decoration of Multiwalled Carbon Nanotubes with Hetero-oligophenylene Stabilized-Gold Nanoparticles: Visible Light Photocatalytic Degradation of Rhodamine B Dye.

    PubMed

    Kaur, Sharanjeet; Bhalla, Vandana; Kumar, Manoj

    2015-08-01

    A hetero-oligophenylene derivative 3 has been designed and synthesized which forms fluorescent spherical aggregates in mixed aqueous media due to its aggregation-induced emission enhancement characteristics. These fluorescent aggregates act as a ratiometric probe for the detection of gold ions in aqueous media and serve as reactors and stabilizers for the preparation of gold nanoparticles. The in situ generated gold nanoparticles have been decorated on multiwalled carbon nanotubes to form AuNPs@MWCNTs nanohybrid materials, which serve as recyclable photocatalysts for carrying out degradation of rhodamine dye in aqueous media. PMID:26156289

  13. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function.

    PubMed

    Xie, Zuoti; Bâldea, Ioan; Smith, Christopher E; Wu, Yanfei; Frisbie, C Daniel

    2015-08-25

    We report the results of an extensive investigation of metal-molecule-metal tunnel junctions based on oligophenylene dithiols (OPDs) bound to several types of electrodes (M1-S-(C6H4)n-S-M2, with 1 ≤ n ≤ 4 and M1,2 = Ag, Au, Pt) to examine the impact of molecular length (n) and metal work function (Φ) on junction properties. Our investigation includes (1) measurements by scanning Kelvin probe microscopy of electrode work function changes (ΔΦ = ΦSAM - Φ) caused by chemisorption of OPD self-assembled monolayers (SAMs), (2) measurements of junction current-voltage (I-V) characteristics by conducting probe atomic force microscopy in the linear and nonlinear bias ranges, and (3) direct quantitative analysis of the full I-V curves. Further, we employ transition voltage spectroscopy (TVS) to estimate the energetic alignment εh = EF - EHOMO of the dominant molecular orbital (HOMO) relative to the Fermi energy EF of the junction. Where photoelectron spectroscopy data are available, the εh values agree very well with those determined by TVS. Using a single-level model, which we justify via ab initio quantum chemical calculations at post-density functional theory level and additional UV-visible absorption measurements, we are able to quantitatively reproduce the I-V measurements in the whole bias range investigated (∼1.0-1.5 V) and to understand the behavior of εh and Γ (contact coupling strength) extracted from experiment. We find that Fermi level pinning induced by the strong dipole of the metal-S bond causes a significant shift of the HOMO energy of an adsorbed molecule, resulting in εh exhibiting a weak dependence with the work function Φ. Both of these parameters play a key role in determining the tunneling attenuation factor (β) and junction resistance (R). Correlation among Φ, ΔΦ, R, transition voltage (Vt), and εh and accurate simulation provide a remarkably complete picture of tunneling transport in these prototypical molecular junctions. PMID

  14. X-ray spectroscopy characterization of self-assembled monolayers of nitrile-substituted oligo(phenylene ethynylene)s with variable chain length

    PubMed Central

    Hamoudi, Hicham; Kao, Ping; Nefedov, Alexei; Allara, David L

    2012-01-01

    Summary Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs. PMID:22428092

  15. Two-level spatial modulation of vibronic conductance in conjugated oligophenylenes on boron nitride.

    PubMed

    Palma, Carlos-Andres; Joshi, Sushobhan; Hoh, Tobias; Ecija, David; Barth, Johannes V; Auwärter, Willi

    2015-04-01

    Intramolecular current-induced vibronic excitations are reported in highly ordered monolayers of quaterphenylene dicarbonitriles at an electronically patterned boron nitride on copper platform (BN/Cu(111)). A first level of spatially modulated conductance at the nanometer-scale is induced by the substrate. Moreover, a second level of conductance variations at the molecular level is found. Low temperature scanning tunneling microscopy studies in conjunction with molecular dynamics calculations reveal collective amplification of the molecule's interphenylene torsion angles in the monolayer. Librational modes influencing these torsion angles are identified as initial excitations during vibronic conductance. Density functional theory is used to map phenylene breathing modes and other vibrational excitations that are suggested to be at the origin of the submolecular features during vibronic conductance. PMID:25756645

  16. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  17. Geometries, Electronic Couplings, and Hole Dissociation Dynamics of Photoinduced Electron-Hole Pairs in Polyhexylthiophene-Fullerene Dyads Rigidly Linked by Oligophenylenes.

    PubMed

    Miura, Taku; Tao, Ran; Shibata, Sho; Umeyama, Tomokazu; Tachikawa, Takashi; Imahori, Hiroshi; Kobori, Yasuhiro

    2016-05-11

    To shed a light on fundamental molecular functions of photoinduced charge conductions by organic photovoltaic materials, it is important to directly observe molecular geometries of the intermediate charges just after the photoinduced electron-transfer reactions. However, highly inhomogeneous molecular environments at the bulk heteojunction interfaces in the photoactive layers have prevented us from understanding the mechanism of the charge conductions. We have herein investigated orbital geometries, electronic couplings, and hole-dissociation dynamics of photoinduced charge-separated (CS) states in a series of poly(3-hexylthiophene)-fullerene linked dyads bridged by rigid oligo-p-phenylene spacers by using time-resolved EPR spectroscopy. It has been revealed that one-dimensional intramolecular hole-dissociations exothermically take place from localized holes in initial CS states, following bridge-mediated, photoinduced charge-separations via triplet exciton diffusions in the conjugated polymer-backbones. This molecular wire property of the photoinduced charges in solution at room temperature demonstrates the potential utility of the covalently bridged polymer molecules applied for the molecular devices. PMID:27082279

  18. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    PubMed

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms. PMID:27172452

  19. Nano-rings with a handle - Synthesis of substituted cycloparaphenylenes.

    PubMed

    Tran-Van, Anne-Florence; Wegner, Hermann A

    2014-01-01

    The research of cycloparaphenylenes (CPPs), the smallest armchair carbon nanotube, has been a quest for the past decades which experienced a revival in 2008 when the first synthesis was achieved. Since then CPPs with various ring sizes have been realized. The incorporation of substituents and the synthesis of CPPs with building blocks different from phenyl rings bear challenges of their own. Such structures, however, are highly interesting, as they allow for an incorporation of CPPs as defined nano-objects for other applications. Therefore, this review provides a status report about the current efforts in synthesizing CPPs beyond the parent unsubstituted oligo-phenylene structure. PMID:25247115

  20. Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory.

    PubMed

    Kushmerick, J G; Holt, D B; Yang, J C; Naciri, J; Moore, M H; Shashidhar, R

    2002-08-19

    Charge transport studies across molecular length scales under symmetric and asymmetric metal-molecule contact conditions using a simple crossed-wire tunnel junction technique are presented. It is demonstrated that oligo(phenylene ethynylene), a conjugated organic molecule, acts like a molecular wire under symmetric contact conditions, but exhibits characteristics of a molecular diode when the connections are asymmetric. To understand this behavior, we have calculated current-voltage (I-V) characteristics using extended Huckel theory coupled with a Green's function approach. The experimentally observed I-V characteristics are in excellent qualitative agreement with the theory. PMID:12190491

  1. Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts

    SciTech Connect

    Thiele, Cornelius; Vieker, Henning; Beyer, André; Gölzhäuser, Armin; Flavel, Benjamin S.; Hennrich, Frank; Muñoz Torres, David; Eaton, Thomas R.; Mayor, Marcel; Kappes, Manfred M.; Löhneysen, Hilbert v.; and others

    2014-03-10

    Carbon nanotube nanogaps have been used to contact individual organic molecules. However, the reliable fabrication of a truly nanometer-sized gap remains a challenge. We use helium ion beam lithography to sputter nanogaps of only (2.8 ± 0.6) nm size into single metallic carbon nanotubes embedded in a device geometry. The high reproducibility of the gap size formation provides a reliable nanogap electrode testbed for contacting small organic molecules. To demonstrate the functionality of these nanogap electrodes, we integrate oligo(phenylene ethynylene) molecular rods, and measure resistance before and after gap formation and with and without contacted molecules.

  2. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  3. Study of deoxyribonucleic acid-ligand interactions by partial filling affinity capillary electrophoresis.

    PubMed

    Růžička, Martin; Čížková, Martina; Jirásek, Michael; Teplý, Filip; Koval, Dušan; Kašička, Václav

    2014-07-01

    In this work, a new partial filling affinity capillary electrophoresis (PF-ACE) method has been developed and applied to investigation of non-covalent molecular interactions between double stranded DNA oligonucleotide (Dickerson dodecamer) and classical DNA intercalator ligand-ethidiumbromide (EtBr) or oligophenylene derivatives-based potential new type of DNA ligands. Binding constants of DNA-ligand complexes were determined from the dependence of migration time changes of DNA oligomer (applied as analyte) on the length of ligand zones introduced beforehand as plugs of various lengths (0-75mm with 12.5mm step) in hydroxypropylcellulose coated fused silica capillary of 50/375μm I.D./O.D. and 400/300mm total/effective length. PF-ACE experiments were performed in two background electrolytes, Tris-borate, pH 8.0, ionic strength 14.3mM (BGE1), and sodium phosphate, pH 7.5, ionic strength 133mM (BGE2). Binding constants of DNA-EtBr complex (ca 15300L/mol in the BGE1 and 4200L/mol in the BGE2) were found to be significantly higher than those of DNA complexes with oligophenylene derivatives (ca 2200-3600L/mol in the BGE1 and 1600-2300L/mol in the BGE2). PMID:24861783

  4. Supramolecular self-assembly of conjugated diblock copolymers.

    PubMed

    Wang, Hengbin; You, Wei; Jiang, Ping; Yu, Luping; Wang, H Hau

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles. PMID:14978825

  5. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    PubMed Central

    2015-01-01

    Summary We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule–electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions. PMID:26885460

  6. Nonsymmetric bent-core liquid crystals based on a 1,3,4-thiadiazole core unit and their nematic mesomorphism

    SciTech Connect

    Seltmann, Jens; Marini, Alberto; Mennucci, Benedetta; Dey, Sonal; Kumar, Satyendra; Lehmann, Matthias

    2012-09-06

    The synthesis and thermotropic properties of novel V-shaped molecules having a central 1,3,4-thiadiazole core with a bend-angle of 160 degrees are reported. The compounds consist of a shape-persistent oligo(phenylene ethynylene) scaffold with lateral alkyloxy substituents. One of the terminal aromatic units possesses an alkoxy chain capped by an ethyl ester group while the second terminus is a pyridyl group. They exhibit enantiotropic nematic phases and are characterized by polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results from conoscopy indicate a biaxial nature of the nematic phase near room temperature. DFT calculations of dipole moments and molecular polarizabilities are used to substantiate the experimental findings.

  7. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions

    NASA Astrophysics Data System (ADS)

    von Wrochem, Florian; Gao, Deqing; Scholz, Frank; Nothofer, Heinz-Georg; Nelles, Gabriele; Wessels, Jurina M.

    2010-08-01

    Molecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals. Ultraviolet photoelectron spectroscopy and density functional theory show the presence of electronic states at 0.6 eV below the Fermi level of Au, which effectively reduce the charge injection barrier across the metal-molecule interface. Charge transport measurements across oligophenylene monolayers reveal that the conductance of terphenyl-dithiocarbamate junctions is two orders of magnitude higher than that of terphenyl-thiolate junctions. The stability and low contact resistance of dithiocarbamate-based molecular junctions represent a significant step towards the development of robust, organic-based electronic circuits.

  8. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions.

    PubMed

    von Wrochem, Florian; Gao, Deqing; Scholz, Frank; Nothofer, Heinz-Georg; Nelles, Gabriele; Wessels, Jurina M

    2010-08-01

    Molecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals. Ultraviolet photoelectron spectroscopy and density functional theory show the presence of electronic states at 0.6 eV below the Fermi level of Au, which effectively reduce the charge injection barrier across the metal-molecule interface. Charge transport measurements across oligophenylene monolayers reveal that the conductance of terphenyl-dithiocarbamate junctions is two orders of magnitude higher than that of terphenyl-thiolate junctions. The stability and low contact resistance of dithiocarbamate-based molecular junctions represent a significant step towards the development of robust, organic-based electronic circuits. PMID:20562871

  9. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  10. Nanotag luminescent fingerprint anti-counterfeiting technology

    NASA Astrophysics Data System (ADS)

    Johansen, Stefan; Radziwon, Michal; Tavares, Luciana; Rubahn, Horst-Günter

    2012-05-01

    We describe a method to fabricate, transfer and validate via image processing nanofibre-based, unique security marks (`nanotags') for anti-counterfeiting purposes. Epitaxial surface growth of oligophenylenes on a heated muscovite mica crystal results in a thin film of mutually aligned nanofibres with dimensions of tens of nanometres in height, hundreds of nanometres in width and tens to hundreds of micrometres in length. By applying a shadow mask, a film pattern is generated which contains only sparse, randomly grown nanofibres, which in turn represent a unique `fingerprint' of the growth area. This fingerprint can be transferred on an adhesive tape as a label of a product, imaged using low magnification microscopy, digitalised and stored in a database. Infrared surface heating, enforced cooling and load lock transfer makes the fabrication process fast and scalable to mass production.

  11. C-Au Covalently Bonded Molecular Junctions Using Nonprotected Alkynyl Anchoring Groups.

    PubMed

    Olavarria-Contreras, Ignacio José; Perrin, Mickael L; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; van der Zant, Herre S J

    2016-07-13

    We report on an approach to realize carbon-gold (C-Au) bonded molecular junctions without the need for an additive to deprotect the alkynyl carbon as endstanding anchor group. Using the mechanically controlled break junction (MCBJ) technique, we determine the most probable conductance value of a family of alkynyl terminated oligophenylenes (OPA(n)) connected to gold electrodes through such an akynyl moiety in ambient conditions. The molecules bind to the gold leads through an sp-hybridized carbon atom at each side. Comparing our results with other families of molecules that present organometallic C-Au bonds, we conclude that the conductance of molecules contacted via an sp-hybridized carbon atom is lower than the ones using sp(3) hybridization due to strong differences in the coupling of the conducting orbitals with the gold leads. PMID:27266477

  12. Suppression of single-molecule conductance fluctuations using extended anchor groups on graphene and carbon-nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Péterfalvi, Csaba G.; Lambert, Colin J.

    2012-08-01

    Devices formed from single molecules attached to noble-metal electrodes exhibit large conductance fluctuations, which inhibit their development as reproducible functional units. We demonstrate that single molecules with planar anchor groups attached to carbon-based electrodes are more resilient to atomic-scale variation in the contacts and exhibit significantly lower conductance fluctuations. We examine the conductance of a 2,6-dibenzylamino core-substituted naphthalenediimide chromophore attached to carbon electrodes by either phenanthrene anchors or more extended anchor groups, which include oligophenylene ethynylene spacers. We demonstrate that for the more spatially extended anchor groups conductance fluctuations are significantly reduced. The current-voltage characteristic arising from long-range tunneling is found to be strongly nonlinear with pronounced conductance suppression below a threshold voltage of approximately 2.5 V.

  13. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  14. Nanoscale templating and self-assembly of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hulvat, James Francis

    Improvements in organic electronic materials could lead to novel device applications, ranging from large-area, flexible displays to light weight, plastic electronics. Progress on these applications would benefit from development of low-cost, aqueous, solution-based fabrication techniques for organic semiconductors. Supramolecular self-assembly enables molecules to organize in complex structures through non-covalent interactions. The nanoscale structure and aggregation of organic semiconductors influence conductivity, charge mobility and luminescence. We developed three approaches to enhance the performance of organic semiconductors through molecular self-assembly. The first uses a liquid crystalline (LC) template to mediate electrochemical polymerization of poly(3,4-ethyldioxythiophene) (PEDOT), a conducting polymer used for hole injection in organic light emitting diodes (OLED). Monomers were polymerized in the cylindrical, hydrophobic cores of a hexagonal, lyotropic LC formed by a non-ionic amphiphile in water, The templated, conducting polymer films exhibited anisotropic optical properties and increased conductivity as a direct result of the nanoscale, self-organized structure of the template. Another approach was used to control molecular order by preparing organic semiconductors that are themselves liquid crystalline. We developed a novel series of triblock oligo(phenylene vinylene) (OPV) amphiphiles that form thermotropic and lyotropic LC mesophases. The self-organized, layered structure of these mesophases influences aggregation of OPV, enhancing fluorescence in the liquid crystalline state compared with disordered films. These OPV-amphiphiles are the first example of a water-soluble oligo(phenylene vinylene) that can self-organize into aligned, well-ordered, highly fluorescent films. In a third system, a triblock, dendron rod-coil (DRC) molecule containing a quaterthiophene segment was prepared and its self-assembly and electronic properties investigated

  15. Helical Folding Competing with Unfolded Aggregation in Phenylene Ethynylene Foldamers.

    PubMed

    Luo, Zhouyang; Zhu, Ningbo; Zhao, Dahui

    2016-07-25

    The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n-hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self-aggregation of unfolded chains, as a minor component, gradually drives the folding-unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3 OH/H2 O) both folded and unfolded oligomer 2 appear to undergo self-association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2 O content, self-aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded-unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers. PMID:27374725

  16. Large protonation-gated photochromism of an OPE-embedded difurylperfluorocyclopentene.

    PubMed

    Wolf, Jannic; Huhn, Thomas; Steiner, Ulrich E

    2015-02-28

    A recently reported protolytic gating effect on the ring closing reaction of an oligo(phenylene ethynylene) (OPE) embedded difurylperfluorocyclopentene (S) with a dimethylaminophenyl chain link in each of the side arms, was quantitatively analyzed in detail. The reaction system (So, SoH(+), SoH2(2+), Sc, ScH(+), ScH2(2+)) comprising three protolytic forms in both open and closed configuration, is characterized by four protolytic equilibrium constants and six photochemical quantum yields of ring closing and ring opening. The absorption spectra, conductivity, and effective photochemical quantum yields were measured in acetonitrile as functions of solvent acidity varied by addition of trifluoroacetic acid and triethylamine and characterized by an effective pHnon-aq. Based on the derivation of a rigorous method for assessing the individual quantum yields of ring closure and ring opening of the six species, it was shown that it is specifically the second protonation step that is responsible for a more than 10-fold increase in the quantum yield of ring closure. PMID:25639342

  17. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics

    PubMed Central

    Frisenda, Riccardo; Tarkuç, Simge; Galán, Elena; Perrin, Mickael L; Eelkema, Rienk; Grozema, Ferdinand C

    2015-01-01

    Summary We report on an experimental investigation of transport through single molecules, trapped between two gold nano-electrodes fabricated with the mechanically controlled break junction (MCBJ) technique. The four molecules studied share the same core structure, namely oligo(phenylene ethynylene) (OPE3), while having different aurophilic anchoring groups: thiol (SAc), methyl sulfide (SMe), pyridyl (Py) and amine (NH2). The focus of this paper is on the combined characterization of the electrical and mechanical properties determined by the anchoring groups. From conductance histograms we find that thiol anchored molecules provide the highest conductance; a single-level model fit to current–voltage characteristics suggests that SAc groups exhibit a higher electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional theory combined with non-equlibrium Green’s function calculations help in elucidating the experimental findings. PMID:26425407

  18. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires

    PubMed Central

    Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  19. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  20. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    PubMed Central

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  1. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold.

    PubMed

    Vij, Varun; Bhalla, Vandana; Kumar, Manoj

    2016-08-24

    The easily rotatable peripheral aromatic rings around central benzene in hexaarylbenzene (HAB) derivatives create a very intriguing nonplanar, propeller-shaped geometry. Because of the very low susceptibility toward self-aggregation, HAB derivatives are much stronger candidates among various polyphenylenes/hetero-oligophenylenes when poor molecular cohesion and inefficient packing is required. However, the native properties of hexaphenylbenzene (HPB) can be varied by proper tailoring and substitution of the HAB core. The cohesion and packing in the structures of HAB aggregates induce effective structural variations so as to modify the fundamental features. Recently, HAB derivatives attracted a lot of research interest because of their significant role as liquid crystalline materials, organic light-emitting diodes, photochemical switches, redox materials, and molecular receptors. Herein, detailed attention is given to the pioneering work based on synthetic optimization of different HAB cores, elaborated study of their crystal engineering, various interesting applications of HAB derivatives, and future possibilities and capabilities of this still underexplored scaffold. PMID:27498592

  2. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires.

    PubMed

    Reeler, Nini E A; Lerstrup, Knud A; Somerville, Walter; Speder, Jozsef; Petersen, Søren V; Laursen, Bo W; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  3. Shape and size effects on the optical properties of piezochromic organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Huo, Jianqiang; Yan, Shuai; Hou, Xueqing; Li, Yahong; Yin, Lingxia; Arulsamy, Navamoney

    2015-11-01

    Two oligo(phenylene vinylenes), namely, (E,E)-1,4-alkyloxy-2,5-bis[2-cyano-2-(4-(methylsulfanyl)phenyl)vinyl]benzene (1) and (E,E)-1,4-dioctyloxy-2,5-bis[2-(4-(methylsulfanyl)phenyl)vinyl]benzene (2) are synthesized. Both compounds are piezochromic fluorescent, and the alkyloxy substituents present in the compounds significantly influence their optical properties. Nanoparticles of various shapes ranging from spherical to clavate are prepared by the reprecipitation method. The fluorescent excitation and emission properties measured for the nanoparticles dispersed in water are compared with those measured for dilute solutions of the compound in THF. The nanoparticles exhibit a red shift in their fluorescence emission spectra with a decrease in efficiency as their size increases from 30 to 50 nm. In contrast, the molecular UV-Vis absorptions of the nanoparticles are blue-shifted in comparison to that of the solution spectra of the compound. The large n-octyloxy substituents at the phenylene core cause distortion of the aromatic rings from planarity and hinder π-stacking.

  4. Reliable anchoring groups for single-molecule junctions

    NASA Astrophysics Data System (ADS)

    González, M. Teresa; Leary, Edmund; Evangeli, Charalambos; Arroyo, Carlos; Rubio-Bollinger, Gabino; Agraïit, Nicolás

    2012-02-01

    In the field of molecular electronics, thiols have been extensively used as the most common anchoring groups to bind molecules to gold electrodes. However, other anchoring groups as amines can provide interesting advantages. Recently, C-60 has been also proposed as a possible very efficient binding group. In this talk, I will present our studies on molecular junctions formed by thiol-, amine-, and C-60-terminated molecules. We use a STM (scanning tunneling microscope) break-junction technique to create and characterized single-molecule junctions both in ambient and liquid environment. We compare thiols and amines on the alkane family and an oligo(phenylene ethynylene). Our study of the molecular-junction stretching length allows us to conclude that thiols affect atomic rearrangement at the electrodes significantly more than amines. Using C-60-terminated molecules, we have recently introduced a new technique for controllably wiring one molecule at a time. We first get STM images to located isolated molecules on a gold substrate, which are then specifically targeted and contacted using a STM gold tip. This technique offers a significant improvement over other techniques, as it guaranties that one and only one molecule is contacted at a time between the electrodes.

  5. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    NASA Astrophysics Data System (ADS)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S. R.; Henneberger, F.; Koch, N.

    2015-04-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  6. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics.

    PubMed

    Frisenda, Riccardo; Tarkuç, Simge; Galán, Elena; Perrin, Mickael L; Eelkema, Rienk; Grozema, Ferdinand C; van der Zant, Herre S J

    2015-01-01

    We report on an experimental investigation of transport through single molecules, trapped between two gold nano-electrodes fabricated with the mechanically controlled break junction (MCBJ) technique. The four molecules studied share the same core structure, namely oligo(phenylene ethynylene) (OPE3), while having different aurophilic anchoring groups: thiol (SAc), methyl sulfide (SMe), pyridyl (Py) and amine (NH2). The focus of this paper is on the combined characterization of the electrical and mechanical properties determined by the anchoring groups. From conductance histograms we find that thiol anchored molecules provide the highest conductance; a single-level model fit to current-voltage characteristics suggests that SAc groups exhibit a higher electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional theory combined with non-equlibrium Green's function calculations help in elucidating the experimental findings. PMID:26425407

  7. Electrical and Spectroscopic Characterization of Metal-Molecule-Metal Junctions

    NASA Astrophysics Data System (ADS)

    Mayer, Theresa

    2005-03-01

    Considerable attention has been devoted to developing an understanding of the mechanisms that dominate electrical transport in metal- molecule-metal junctions comprised of single and small ensembles of molecules. In this talk, we will present an overview of recent research on the electrical and spectroscopic characterization of molecular junctions inserted along the length of sub-40-nm diameter Au and Pd metal nanowires (i.e., in-wire junctions) fabricated by template-directed synthesis. In particular, we will show results that investigate the relationship between the temperature dependent (10 -- 300 K) current-voltage (I-V) characteristics and the vibrational spectra measured by inelastic electron tunneling (IET) spectroscopy for candidate molecular wires and bistable switching molecules. The two types of molecular wire junctions that were studied incorporate a self assembled monolayer of dithiolated oligo(phenylene- ethynylene) (OPE) molecules or their -NO2 derivatives. The I-V of these junctions are stable and reproducible between +/-1V. Temperature independent I-V are measured for both types of junctions, which is indicative of coherent tunneling transport. Moreover, strong vibrations associated with υ(18b) and υ(19a) ring modes were observed in both junctions. In contrast, measurements of molecular junctions that incorporate SAMs based on aniline derivatives show reproducible bistable switching with an on-off ratio of >10:1 at 1V. Differences are observed in the vibrational spectra that depend on the state of the junction.

  8. Important issues facing model-based approaches to tunneling transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Bâldea, Ioan

    Extensive studies on thin films indicated a generic cubic current-voltage $I-V$ dependence as a salient feature of charge transport by tunneling. A quick glance at $I-V$ data for molecular junctions suggests a qualitatively similar behavior. This would render model-based studies almost irrelevant, since, whatever the model, its parameters can always be adjusted to fit symmetric (asymmetric) $I-V$ curves characterized by two (three) expansion coefficients. Here, we systematically examine popular models based on tunneling barrier or tight-binding pictures and demonstrate that, for a quantitative description at biases of interest ($V$ slightly higher than the transition voltage $V_t$), cubic expansions do not suffice. A detailed collection of analytical formulae as well as their conditions of applicability are presented to facilitate experimentalists colleagues to process and interpret their experimental data by obtained by measuring currents in molecular junctions. We discuss in detail the limits of applicability of the various models and emphasize that uncritically adjusting model parameters to experiment may be unjustified because the values deduced in this way may fall in ranges rendering a specific model invalid or incompatible to ab initio estimates. We exemplify with the benchmark case of oligophenylene-based junctions, for which results of ab initio quantum chemical calculations are also reported. As a specific issue, we address the impact of the spatial potential profile and show that it is not notable up to biases V somewhat larger than V_t, unlike at higher biases, where it may be responsible for negative differential resistance effects.

  9. Ambipolar Phosphine Derivatives to Attain True Blue OLEDs with 6.5% EQE.

    PubMed

    Kondrasenko, Ilya; Tsai, Zheng-Hua; Chung, Kun-You; Chen, Yi-Ting; Ershova, Yana Yu; Doménech-Carbó, Antonio; Hung, Wen-Yi; Chou, Pi-Tai; Karttunen, Antti J; Koshevoy, Igor O

    2016-05-01

    A family of new branched phosphine derivatives {Ph2N-(C6H4)n-}3P → E (E = O 1-3, n = 1-3; E = S 4-6, n = 1-3; E = Se 7-9, n = 1-3; E = AuC6F5 4-6, n = 1-3), which are the donor-acceptor type molecules, exhibit efficient deep blue room temperature fluorescence (λem = 403-483 nm in CH2Cl2 solution, λem = 400-469 nm in the solid state). Fine tuning the emission characteristics can be achieved varying the length of aromatic oligophenylene bridge -(C6H4)n-. The pyramidal geometry of central R3P → E fragment on the one hand disrupts π-conjugation between the branches to preserve blue luminescence and high triplet energy, while on the other hand provides amorphous materials to prevent excimer formation and fluorescence self-quenching. Hence, compounds 2, 3, 5, and 12 were used as emitters to fabricate nondoped and doped electroluminescent devices. The luminophore 2 (E = O, n = 2) demonstrates excellently balanced bipolar charge transport and good nondoped device performance with a maximum external quantum efficiency (EQEmax) of 3.3% at 250 cd/m(2) and Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.08). The doped device of 3 (E = O, n = 3) shows higher efficiency (EQEmax of 6.5, 6.0 at 100 cd/m(2)) and high color purity with CIE (0.15, 0.06) that matches the HDTV standard blue. The time-resolved electroluminescence measurement indicates that high efficiency of the device can be attributed to the triplet-triplet annihilation to enhance generation of singlet excitons. PMID:27100797

  10. Non-Interpenetrated Metal-Organic Frameworks Based on Copper(II) Paddlewheel and Oligoparaxylene-Isophthalate Linkers: Synthesis, Structure, and Gas Adsorption.

    PubMed

    Yan, Yong; Juríček, Michal; Coudert, François-Xavier; Vermeulen, Nicolaas A; Grunder, Sergio; Dailly, Anne; Lewis, William; Blake, Alexander J; Stoddart, J Fraser; Schröder, Martin

    2016-03-16

    Two metal-organic framework materials, MFM-130 and MFM-131 (MFM = Manchester Framework Material), have been synthesized using two oligoparaxylene (OPX) tetracarboxylate linkers containing four and five aromatic rings, respectively. Both fof-type non-interpenetrated networks contain Kagomé lattice layers comprising [Cu2(COO)4] paddlewheel units and isophthalates, which are pillared by the OPX linkers. Desolvated MFM-130, MFM-130a, shows permanent porosity (BET surface area of 2173 m(2)/g, pore volume of 1.0 cm(3)/g), high H2 storage capacity at 77 K (5.3 wt% at 20 bar and 2.2 wt% at 1 bar), and a higher CH4 adsorption uptake (163 cm(3)(STP)/cm(3) (35 bar and 298 K)) compared with its structural analogue, NOTT-103. MFM-130a also shows impressive selective adsorption of C2H2, C2H4, and C2H6 over CH4 at room temperature, indicating its potential for separation of C2 hydrocarbons from CH4. The single-crystal structure of MFM-131 confirms that the methyl substituents of the paraxylene units block the windows in the Kagomé lattice layer of the framework, effectively inhibiting network interpenetration in MFM-131. This situation is to be contrasted with that of the doubly interpenetrated oligophenylene analogue, NOTT-104. Calculation of the mechanical properties of these two MOFs confirms and explains the instability of MFM-131 upon desolvation in contrast to the behavior of MFM-130. The incorporation of paraxylene units, therefore, provides an efficient method for preventing network interpenetration as well as accessing new functional materials with modified and selective sorption properties for gas substrates. PMID:26928460

  11. Important issues facing model-based approaches to tunneling transport in molecular junctions.

    PubMed

    Bâldea, Ioan

    2015-08-21

    Extensive studies on thin films indicated a generic cubic current-voltage I-V dependence as a salient feature of charge transport by tunneling. A quick glance at I-V data for molecular junctions suggests a qualitatively similar behavior. This would render model-based studies almost irrelevant, since, whatever the model, its parameters can always be adjusted to fit symmetric (asymmetric) I-V curves characterized by two (three) expansion coefficients. Here, we systematically examine popular models based on tunneling barriers or tight-binding pictures and demonstrate that, for a quantitative description at biases of interest (V slightly higher than the transition voltage Vt), cubic expansions do not suffice. A detailed collection of analytical formulae as well as their conditions of applicability is presented to facilitate experimentalist colleagues to process and interpret their experimental data obtained by measuring currents in molecular junctions. We discuss in detail the limits of applicability of the various models and emphasize that uncritically adjusting the model parameters to experiment may be unjustified because the values deduced in this way may fall in ranges rendering a specific model invalid or incompatible to ab initio estimates. We exemplify with the benchmark case of oligophenylene-based junctions, for which the results of ab initio quantum chemical calculations are also reported. As a specific issue, we address the impact of the spatial potential profile and show that it is not notable up to biases V ≳ Vt, unlike at higher biases, where it may be responsible for negative differential resistance effects. PMID:26186139

  12. Molecular Self-Assembly into One-Dimensional Nanostructures

    PubMed Central

    PALMER, LIAM C.; STUPP, SAMUEL I.

    2008-01-01

    appear as nanofiber bundles. Surprisingly, TEM of a PA substituted by a nitrobenzyl group revealed assembly into quadruple helical fibers with a braided morphology. Upon photocleavage of this the nitrobenzyl group, the helices transform into single cylindrical nanofibers. Finally, inspired by the tobacco mosaic virus, we used a dumbbell-shaped, oligo(phenylene ethynylene) template to control the length of a PA nanofiber self-assembly (<10 nm). AFM showed complete disappearance of long nanofibers in the presence of this rigid-rod template. Results from quick-freeze/deep-etch TEM and dynamic light scattering demonstrated the templating behavior in aqueous solution. This strategy could provide a general method to control size the length of non-spherical supramolecular nanostructures. PMID:18754628

  13. Electron Transport, Energy Transfer, and Optical Response in Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    White, Alexander James

    interactions quantum mechanically within nonequilibrium molecular junctions. Finally we perform preliminary calculations of the Raman spectrum of a three-ring oligophenylene vinylene terminating in amine functional groups molecule in a molecular junction and compare our results to experimental measurements. This work is the rst steps towards full calculations of the optical response of current-carrying molecular junction, which should combine classical calculations of the plasmon enhanced electric field with quantum calculations for the plasmon-molecular exciton interaction and nonequilibrium Raman scattering.

  14. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  15. Controlled synthesis of linear and cyclic liquid crystals containing conformationally flexible structural units

    NASA Astrophysics Data System (ADS)

    Asandei, Alexandru Dragos

    these compounds on their DP and on the nature of their chain ends was investigated. A very convenient and inexpensive avenue for the synthesis of main chain polymers containing alternating oligophenylenes and various nonaromatic spacer units (X) such as -O-, -CO-, -C(CHsb3)sb2-, -CH(Et)-CHsb2-, SOsb2-, etc is described. These polymers are synthesized via the Ni(0)-catalyzed coupling of the corresponding arylbismesylate monomers. The nature of X controls the solubility, molecular weight and thermal behavior of the resulting polymers.

  16. Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(iii) porphyrin and fullerene entities

    NASA Astrophysics Data System (ADS)

    Poddutoori, Prashanth K.; Lim, Gary N.; Sandanayaka, Atula S. D.; Karr, Paul A.; Ito, Osamu; D'Souza, Francis; Pilkington, Melanie; van der Est, Art

    2015-07-01

    The distance dependence of sequential electron transfer has been studied in six, vertical, linear supramolecular triads, (TTF-Phn-py --> AlPor-Phm-C60, n = 0, 1 and m = 1, 2, 3), constructed using tetrathiafulvalene (TTF), aluminum(iii) porphyrin (AlPor) and fullerene (C60) entities. The C60 and TTF units are bound to the Al center on opposite faces of the porphyrin; the C60 through a covalent axial bond using a benzoate spacer, and the TTF through a coordination bond via an appended pyridine. Time-resolved optical and EPR spectroscopic methods and computational studies are used to demonstrate that excitation of the porphyrin leads to step-wise, sequential electron transfer (ET) between TTF and C60, and to study the electron transfer rates and exchange coupling between the components of the triads as a function of the bridge lengths. Femtosecond transient absorption studies show that the rates of charge separation, kCS are in the range of 109-1011 s-1, depending on the length of the bridges. The lifetimes of the charge-separated state TTF&z.rad;+-C&z.rad;-60 obtained from transient absorbance experiments and the singlet lifetimes of the radical pairs obtained by time-resolved EPR are in good agreement with each other and range from 60-130 ns in the triads. The time-resolved EPR data also show that population of the triplet sublevels of the charge-separated state in the presence of a magnetic field leads to much longer lifetimes of >1 μs. The data show that a modest stabilization of the charge separation lifetime occurs in the triads. The attenuation factor β = 0.36 Å-1 obtained from the exchange coupling values between TTF&z.rad;+ and C&z.rad;-60 is consistent with values reported in the literature for oligophenylene bridged TTF-C60 conjugates. The singlet charge recombination lifetime shows a much weaker dependence on the distance between the donor and acceptor, suggesting that a simple superexchange model is not sufficient to describe the back reaction