Science.gov

Sample records for olive oil mill

  1. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.

    PubMed

    Navarro, Marta; Fiore, Alberto; Fogliano, Vincenzo; Morales, Francisco J

    2015-02-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules containing o-dihydroxyl functions such as verbascoside. Two powders were obtained after the ultrafiltration and nanofiltration of olive mill wastewater, and successive spray drying with maltodextrin and acacia fiber. The samples were characterized by phenolic composition and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-glucose and BSA-methylglyoxal assays, formation of Amadori products and direct trapping of reactive dicarbonyls (methylglyoxal and glyoxal). Both ultrafiltered and nanofiltered olive mill wastewater powders had an activity comparable to quercetin and hydroxytyrosol against the inhibition of protein glycation (IC50 = 0.3 mg mL(-1)). The antiglycative activity of the powder was further investigated after separation by reverse phase solid extraction. Fractions extracted with the methanol content higher than 40% and rich in hydroxytyrosol and verbascoside exerted the highest reactivity against dicarbonyls. Data confirmed that the direct trapping of dicarbonyl compounds is the main route explaining the antiglycative action rather than of the already known antioxidant capacity. Results support further investigations to evaluate the technological feasibility to use olive mill wastewater powders as antiglycative ingredients in foods or in pharmacological preparations in future. PMID:25519075

  2. Availability of triazine herbicides in aged soils amended with olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive oil extraction generates a lot of organic waste, which can potentially cause adverse environmental impacts. Application of olive oil mill waste, alperujo, to the land could be an effective way to dispose of the waste. However, addition of olive oil mill wastes can modify the binding capacity o...

  3. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  4. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    PubMed

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. PMID:24810202

  5. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    PubMed

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. PMID:25779104

  6. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    PubMed

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product". PMID:26001089

  7. Effects of olive oil mill waste water (OMWW) on the frog larvae.

    PubMed

    Inceli, Ahmet Levent; Sengezer-Inceli, Meliha

    2012-08-01

    In this research, acute effect of the olive oil mill wastewater (OMWW) on the frog larvae has been studied. Larvae showed hyperactivity symptoms first and loss of balance and remained motionless due to toxicity of wastewater. Toxicity was observed between 2 and 159 min depending on the test concentrations. Upon removing the phenolic compounds from the OMWW, this effect was seen after 248 min. Potential effects of the OMWW in Lake Iznik were also researched. Salinity of the lake water changed from 0.2 ‰ to 0.0 ‰ respectively in the measurements done in May and December. PMID:22653307

  8. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment. PMID:22766882

  9. The Effects of Different Irrigation Treatments on Olive Oil Quality and Composition: A Comparative Study between Treated and Olive Mill Wastewater.

    PubMed

    Ben Brahim, Samia; Gargouri, Boutheina; Marrakchi, Fatma; Bouaziz, Mohamed

    2016-02-17

    In the present paper, two irrigation treatments were applied to olive trees cv. Chemlali: irrigation with treated wastewater (TWW) and with olive mill wastewater (OMW), which was spread at three levels (50, 100, and 200 m(3)/ha). This work is interested in two topics: (1) the influence of different irrigation treatments on olive oil composition and quality and (2) the comparison between OMW and TWW application using different statistical analyses. The obtained variance analysis (ANOVA) has confirmed that there are no significant differences in oil quality indices and flavonoids between the control and treatments amended by OMW or TWW (p > 0.05). However, the irrigation affected some aspects of olive oil composition such as the reduction in palmitic acid (16.32%) and increase in linoleic acid (19.55%). Furthermore, the total phenols and α-tocopherol contents increased significantly following OMW and TWW treatments. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) defined three irrigation groups: OMW 50 and 100 m(3)/ha, OMW 200 m(3)/ha and control, and TWW treatment. The full factorial design revealed that OMW amendment by 100 m(3)/ha is the best irrigation treatment. Thus, the optimal performances in terms of olive oil quality and composition were shown by olive oil extracted from olives grown under irrigation with 100 m(3)/ha of OMW. PMID:26805521

  10. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    PubMed

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute. PMID:24191487

  11. Phanerochaete flavido-alba Laccase Induction and Modification of Manganese Peroxidase Isoenzyme Pattern in Decolorized Olive Oil Mill Wastewaters

    PubMed Central

    Pérez, J.; de la Rubia, T.; Hamman, O. Ben; Martínez, J.

    1998-01-01

    Lignin-degrading enzymes were partially purified from supernatant solutions obtained from Phanerochaete flavido-alba-decolorized olive oil mill wastewaters (OMW). The dominant enzymes, manganese peroxidases, exhibited different isoform patterns in decolorized OMW-containing cultures than in residue-free samples. Laccase induction was also detected in OMW-containing cultures but not in control cultures. PMID:9647858

  12. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. PMID:25236238

  13. Fixation of ammonium-N and nitrate-N with olive oil mill wastewaters.

    PubMed

    Jiménez Aguilar, Manuel

    2010-04-01

    The present work evaluates whether ammonium and nitrate ions become linked with diluted olive oil mill wastewaters (OOMW). From a laboratory experiment it was concluded that the ammonium ion linked with OOMW in the presence of carbonates or hydroxides and OOMW could block up to a third of the present ammonium-N ion. On the other hand, OOMW are capable of joining with the nitrate ion, in a sulphuric diluted medium at room temperature, retaining up to 80% of nitrate-N. These complexes could be useful for recycling OOMW as new OOMW-N fertilizers. In soils treated with OOMW-N fertilizers, the nitrate-N emissions were reduced by 90% for two months. So, inorganic-N fertilizers mixed with OOMW could produce new organic fertilizers with a higher efficiency index for N. PMID:20450113

  14. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation.

    PubMed

    Aytar, Pınar; Gedikli, Serap; Sam, Mesut; Farizoğlu, Burhanettin; Çabuk, Ahmet

    2013-05-01

    Olive oil mill wastewater (OMWW), a recalcitrant pollutant, has features including high phenolic content and dark color; thereby, several chemical or physical treatments or biological processes were not able to remediate it. In this study, the treatment efficiencies of three treatments, including adsorption, biological application, and photo-Fenton oxidation were sequentially evaluated for OMWW. Adsorption, biological treatment, and photo-Fenton caused decreasing phenolic contents of 48.69 %, 59.40 %, and 95 %, respectively. However, after three sequential treatments were performed, higher reduction percentages in phenolic (total 99 %) and organic contents (90 %) were observed. Although the studied fungus has not induced significant color reduction, photo-Fenton oxidation was considered to be an attractive solution, especially for color reduction. Besides, toxicity of OMWW treatment was significantly reduced. PMID:23054778

  15. Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst.

    PubMed

    De Rosa, Salvatore; Giordano, Girolamo; Granato, Teresa; Katovic, Andrea; Siciliano, Alessio; Tripicchio, Francesco

    2005-10-19

    Olive oil mill wastewaters (OOMW) are not suited for direct biological treatment because of their nonbiodegradable and phytotoxic compound (such as polyphenols) content. Advanced technologies for treatment of OOMW consider mainly the use of solid catalysts in processes that can be operated at room conditions. A system based on combined actions of catalytic oxidations and microbial technologies was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process is one of the new emerging oxidation processes particularly attractive for the pretreatment of highly polluted OOMW containing polyphenols that are not suited for classical treatments. In this work, the biodegradability of OOMW was evaluated before and after treating the wastewater samples by the WHPCO process using a metal-organic framework (MOF) as a catalyst. This material, containing Cu and prepared with benzene-1,3,5-tricarboxylic acid (BTC), is a robust metal-organic polymer with a microporous structure that is reminiscent of the topology of zeolite frameworks. PMID:16218680

  16. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  17. Impact of milling, enzyme addition, and steam explosion on the solid waste biomethanation of an olive oil production plant.

    PubMed

    Donoso-Bravo, Andres; Ortega-Martinez, E; Ruiz-Filippi, G

    2016-02-01

    Anaerobic digestion is a consolidated bioprocess which can be further enhanced by incorporating an upstream pretreatment unit. The olive oil production produces a large amount of solid waste which needs to be properly managed and disposed. Three different pretreatment techniques were evaluated in regard to their impact on the anaerobic biodegradability: manual milling of olive pomace (OP), enzyme maceration, direct enzyme addition, and thermal hydrolysis of two-phase olive mill waste. The Gompertz equation was used to obtain parameters for comparison purposes. A substrate/inoculum ratio 0.5 was found to be the best to be used in anaerobic batch test with olive pomace as substrate. Mechanical pretreatment of OP by milling increases the methane production rate while keeping the maximum methane yield. The enzymatic pretreatment showed different results depending on the chosen pretreatment strategies. After the enzymatic maceration pretreatment, a methane production of 274 ml CH4 g VS added (-1) was achieved, which represents an improvement of 32 and 71 % compared to the blank and control, respectively. The direct enzyme addition pretreatment showed no improvement in both the rate and the maximum methane production. Steam explosion showed no improvement on the anaerobic degradability of two-phase olive mill waste; however, thermal hydrolysis with no rapid depressurization enhanced notoriously both the maximum rate (50 %) and methane yield (70 %). PMID:26670779

  18. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  19. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    PubMed

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. PMID:20580156

  20. Physical and oxidative stability of functional olive oil-in-water emulsions formulated using olive mill wastewater biophenols and whey proteins.

    PubMed

    Caporaso, Nicola; Genovese, Alessandro; Burke, Róisín; Barry-Ryan, Catherine; Sacchi, Raffaele

    2016-01-01

    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated by analysing the creaming rate, mean particle size distribution and mean droplet size, viscosity and rheological properties, while chemical stability was assessed through the measurement of primary and secondary oxidation products. The rheological behaviour and creaming stability of the emulsions were dramatically improved by using xanthan gum, whereas the concentration of WPI and the addition of encapsulated OMW phenolics did not result in a significant improvement of physical stability. The formation of oxidation products was higher when higher concentrations of encapsulated polyphenols were used, indicating a possible binding with the WPI added in the system as a natural emulsifier. This paper might help in solving the issue of using the olive mill wastewater from olive processing in formulating functional food products with high antioxidant activity and improved health properties. PMID:26692051

  1. Olive oil mill wastewater purification by combination of coagulation- flocculation and biological treatments.

    PubMed

    Jaouani, A; Vanthournhout, M; Penninckx, M J

    2005-06-01

    In order to define an efficient pre-treatment of Olive Oil Mill Wastewater (OOMW) to overcome major obstacles to biological treatment, various organic and mineral coagulants have been tested. In particular, the application of quicklime until a pH around 12 - 12.4 was reached, allowed the reduction of almost 37% of the initial COD, and approximately 88% and 71% of the colour and phenolic content of the waste. Hence, further biological treatments with an adapted aerobic consortium (AC) and a white rot fungus (WRF) strain were improved. The WRF Coriolopsis polyzona was more efficient than AC to reduce colour and polyphenols when the waste was prior diluted or pre-treated; however, it was less effective in COD removal. The combined treatment: lime - AC of OOMW having initial COD of 102 g l(-1) led to the elimination of about 77, 91 and 63%, of the COD, phenols and colour, respectively. Interestingly, the opposite combination AC - lime permitted better COD, phenols and colour reduction to respectively, 21, 11 and 11% of the initial values. This latter condition is technically recommended since only one step separation was needed and no pH correction was necessary before undergoing aerobic treatment. Moreover, the process would produce a sludge potentially rich in organic matter, and consequently, useful as an agricultural amendment or/and as an additive in animal nutrition. PMID:16035656

  2. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Rato-Nunes, José Manuel; Sánchez-Llerena, Javier; Becerra, Daniel; Ramírez, Manuel

    2016-01-15

    The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin. PMID:26437341

  3. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.

    PubMed

    Moya Ramírez, Ignacio; Tsaousi, Konstantina; Rudden, Michelle; Marchant, Roger; Jurado Alameda, Encarnación; García Román, Miguel; Banat, Ibrahim M

    2015-12-01

    Olive mill waste (OMW) creates a major environmental problem due to the difficulty of further waste processing. In this work we present an approach to give OMW added value by using it for the production of biosurfactants. Two bacterial species, Pseudomonas aeruginosa and Bacillus subtilis, were grown with OMW as the sole carbon source. Glycerol and waste frying oil were used as comparative carbon sources. B. subtilis produced surfactin (a lipopeptide) at a maximum concentration of 3.12 mg/L with 2% w/v of OMW in the medium, dropping to 0.57 mg/L with 10% w/v of OMW. In contrast, P. aeruginosa produced 8.78 mg/L of rhamnolipid with 2% w/v OMW increasing to 191.46 mg/L with 10% w/v OMW. The use of solvent-extracted OMW reduced the biosurfactant production by 70.8% and 88.3% for B. subtilis and P. aeruginosa respectively. These results confirm that OMW is a potential substrate for biosurfactant production. PMID:26398666

  4. Characterization of monovarietal olive oils obtained from mills of Calabria region (Southern Italy).

    PubMed

    Piscopo, Amalia; De Bruno, Alessandra; Zappia, Angela; Ventre, Carmine; Poiana, Marco

    2016-12-15

    The qualitative characteristics of four monovarietal olive oils produced in Calabria region (Southern Italy) were evaluated. The aim of this work was to evidence the differences on chemical parameters due to variety and to growing environment. Results demonstrated a large variability in qualitative indexes according to the variety. Most of the Grossa di Gerace oils sampled in Ionian Southern coast revealed a high total acidity (percentage upper 0.8% of oleic acid). Fatty acid composition showed some varietal characters: in Grossa di Gerace oils possessed a low content of oleic acid and many Carolea oils showed a heptadecenoic acid level higher than 0.3% as European Rules requires for the extra virgin olive oil category. Carolea cultivar is widely grown in different sites of Calabria and so it is influenced by the different climatic conditions: the obtained oils strongly differed according to the production area. PMID:27451186

  5. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  6. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (a...

  7. Olive oil mill effluents as a feedstock for production of biodegradable polymers.

    PubMed

    Dionisi, D; Carucci, G; Papini, M Petrangeli; Riccardi, C; Majone, M; Carrasco, F

    2005-05-01

    The aim of the present paper was to study the feasibility of using olive oil mill effluents (OMEs) as a substrate in biodegradable polymer production. OMEs were anaerobically fermented to obtain volatile fatty acids (VFAs), which are the most highly used substrate for polyhydroxyalkanotes (PHAs) production. The anaerobic fermentation step was studied both without pretreatment and with different pretreatments (i.e., centrifugation, bentonite addition, and bentonite addition followed by centrifugation) and at various concentrations (28.5, 36.7 and 70.4 g CODL(-1)). During fermentation, VFA concentration was determined (7-16 g CODL(-1)) as well as the corresponding yield with respect to initial COD (22-44%). At all initial concentrations, centrifugation pretreatment (with or without previous addition of bentonite) significantly increased the final VFA concentration and yield, whereas the addition of bentonite alone had no influence. Moreover, centrifugation pretreatment led to a different acid distribution, which affected the hydroxyvalerate (HV) content within the obtained copolymer poly beta-(hydroxybutyrate-hydroxyvalerate) [P(HB-HV)]. OMEs were tested for PHA production by using a mixed culture from an aerobic SBR. Centrifuged OMEs, both with or without fermentation, were tested. PHAs were produced from both matrices, but with fermented OMEs PHA production was much higher, because of the higher VFA concentration. The initial specific rate of PHA production obtained with fermented OMEs was approximately 420 mg COD g COD(-1)h(-1) and the maximum HV content within the copolymer was about 11% (on a molar basis). The HV monomer was produced only until propionic acid remained present in the medium. PMID:15913705

  8. A new process for the management of olive oil mill waste water and recovery of natural antioxidants.

    PubMed

    Agalias, Apostolis; Magiatis, Prokopios; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Tsarbopoulos, Anthony; Gikas, Evagelos; Spanos, Ioannis; Manios, Thrasyvoulos

    2007-04-01

    The high polyphenol content of the wastewater is the major environmental problem caused by the olive mills. A pilot scale system for the treatment of the olive oil mills wastewater was developed aiming at the recovery of high added value-contained polyphenols and the reduction of the environmental problems. The treatment system consists of three main successive sections: The first one includes successive filtration stages aiming at the gradual reduction of the wastewater suspended solids up to a limit of 25 microm. The second section includes passing of the filtered wastewater through a series of adsorbent resins (XAD16 and XAD7HP) in order to achieve the de-odoring and decolorization of the wastewater and the removal/ recovery of the polyphenol and lactone content. The third section of the procedure includes the thermal evaporation and recovery of the organic solvents mixture, which has been used in the resin regeneration process, and finally the separation of the polyphenols and other organic substance contents using fast centrifuge partition chromatography. The final outcome of the whole procedure is (i) an odorless yellowish wastewater with a 99.99% reduced content in polyphenols and 98% reduced COD, (ii) an extract rich in polyphenols and lactones with high antioxidant activity and high added value, (iii) an extract containing the coloring substances of the olive fruit, and (iv) pure hydroxytyrosol. PMID:17348673

  9. Olive oil mill wastewaters pollution abatement by physical treatments and biodegradation with Phanerochaetae chrysosporium.

    PubMed

    Mebirouk, M; Sbai, L; Lopez, M; Gonzalez, J

    2006-12-01

    This paper discusses decolorization and chemical oxygen demand (COD) abatement in olive mill wastewaters (OMW) by Phanerochaetae chrysosporium grown in static, suspended and immobilised cultures. When P chrysosporium is used in cultures, no decolorization of crude OMW is observed. Decolorization occurs only after removal of polyphenols by adsorption on wood sawdust, which allows for removal of 39% of polyphenols. The use of High lignin peroxides (Lip) producing medium, yields the highest OMW decolorization and COD removal efficiencies. The use of P. chrysosporium immobilized on polyurethane foam leads to significant abatements of OMW polluting characteristics. In fact, chemical oxygen demand (COD), Biological oxygen demand (BOD5) and polyphenols contents are significantly reduced. In addition, a significant effluent decolorization is obvious. PMID:17285940

  10. Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica.

    PubMed

    Daâssi, Dalel; Lozano-Sánchez, Jesus; Borrás-Linares, Isabel; Belbahri, Lassaad; Woodward, Steve; Zouari-Mechichi, Héla; Mechichi, Tahar; Nasri, Moncef; Segura-Carretero, Antonio

    2014-10-01

    Olive mill wastewaters (OMW) pose a serious environmental concern owing to high polyphenol content. Decolorization and degradation of phenolic compounds (PC) by Coriolopsis gallica was demonstrated in our laboratory as a potential biotreatment of OMW in solid and liquid media. High performance liquid chromatography coupled to electrospray time-of-flight mass spectrometry was used to analyze the evolution of the main phenolic compounds during the C. gallica biodegradation process. Amongst total the compounds characterized in methanolic extracts of OMW, 12 were unknown, 15 were from different polyphenolic families, and 27 were other non-phenolic compounds. The evolution of PC content during the degradation process indicated that, despite the complexity of the OMW phenolic fraction, C. gallica was able to grow on OMW-based media using PC as sources of carbon and energy, particularly acids, alcohols, lignans and flavones. Complete dephenolization of OMW was obtained. PMID:25065791

  11. Sorting Olive Batches for the Milling Process Using Image Processing.

    PubMed

    Aguilera Puerto, Daniel; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  12. Sorting Olive Batches for the Milling Process Using Image Processing

    PubMed Central

    Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  13. Characteristics and biodegradability of olive mill wastewaters.

    PubMed

    Karahan Özgün, Özlem; Pala Özkök, İlke; Kutay, Can; Orhon, Derin

    2016-05-01

    Olive mill wastewaters (OMWs) are mostly characterized by their high-organic content and complex organic compounds in addition to the phenolic compounds. European olive oil manufacturers have to cope up with the same wastewater treatment problem and the applied conventional treatment technologies for OMW were not proved to be very successful in each case. Olive mills are mostly small and medium-sized installations and OMW is generated during the three-four-month-long manufacturing season. The problem is not only the complex wastewater to be treated but also the scattered positioning of the olive mills, the seasonal wastewater generation and the size of the manufacturing facilities. The aim of the study is to identify the organic content of OMW and to assess the biological and chemical treatability of OMWs, in order to assist the development of integrated chemical-biological treatment schemes for best appropriate techniques implementation. The experimental studies show that separation of the particulate fraction improved the biodegradability or reduced the refractory and inhibitory effects of particulate organics. PMID:26507588

  14. Efforts to explain and control the prolonged thermophilic period in two-phase olive oil mill sludge composting.

    PubMed

    Manios, Thrassyvoulos; Maniadakis, Konstantinos; Kalogeraki, Maria; Mari, Eirini; Stratakis, Emmanouil; Terzakis, Stelios; Boytzakis, Panagiotis; Naziridis, Yiannis; Zampetakis, Leonidas

    2006-06-01

    The aim of this paper was to evaluate the use of different bulking agents in different ratios as a means to control, optimise and eventually reduce the duration of the thermophilic period in two-phase olive oil mill sludge (OOMS) composting. The bulking agents used were: (i) olive tree leaves (OTL), (ii) olive tree shredded branches (OTB) and (iii) woodchips (WDC). The selection of these materials was based on their abundance and availability on the island of Crete, the southernmost point of Greece. The ratios studied were: Pile 1, OOMS:OTL in 1:1 v/v; Pile 2, OOMS:WDC in 1:1.5 v/v; Pile 3, OOMS:OTL in 1:2 v/v; Pile 4, OOMS:OTL:OTB in 1:1:1 v/v; and Pile 5, OOMS:OTL:OTB in 1:1:2 v/v. The composting system used was that of windrows with the volume of each pile approximately 20-25 m3. The experiments took place over two consecutive years. A composting turner was used and turnings were performed at one and two week intervals. In each pile a variety of physiochemical parameters were monitored. Temperature remained high in all five trials. Piles 1, 2, 3, 4 and 5 temperatures recorded values of above 50 degrees C for 106, 158, 160, 175 and 183 days, respectively. Volumes were reduced by approximately 67%, 62%, 63%, 80% and 84%, respectively. Temperature remained high, mainly due to the presence in large amounts of oily substances which during their complete oxidation release important amounts of energy and aid the cometabolism of more stable molecules such as lignin. This process is better described as the slow "burning" of a "fuel" mixture in an "engine" than composting. This approach is based on the extensive similarities of this process to that of crude oil sludge or similar waste composting. PMID:16715407

  15. Sustainable technologies for olive mill wastewater management (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  16. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens.

    PubMed

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Kokkas, Stylianos; Petrotos, Konstantinos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-08-01

    In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status. PMID:25916917

  17. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds. PMID:16678883

  18. Olive mill wastewater microconstituents composition according to olive variety and extraction process.

    PubMed

    Aggoun, Moufida; Arhab, Rabah; Cornu, Agnès; Portelli, Josiane; Barkat, Malika; Graulet, Benoît

    2016-10-15

    Olive oil production yields a considerable amount of wastewater, a powerful pollutant that is currently discarded but could be considered as a potential source of valuable natural products due to its content in phenolic compounds and other natural antioxidants. The aim of this work was to explore the variability in olive mill wastewater composition from Algerian olive oil mills considering extraction processes (traditional discontinuous press vs 3-phases centrifugal system) and olive varieties (Azerraj, Sigoise, Chemlal). Whereas pH, dry or organic matter content didn't vary, there was a significant difference in ash content according to extraction process and olive variety. Carotenoid content was 2.2-fold higher with 3-phases than with press systems whereas tocopherol content was not significantly different. Among the phenolic compounds quantified, tyrosol was usually the most abundant whereas oleuropein concentrations were highly variable. Differences in phenolic compound concentrations were more pronounced between olive varieties than between processes. PMID:27173536

  19. Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus.

    PubMed

    Neifar, Mohamed; Jaouani, Atef; Martínez, María Jesús; Penninckx, Michel J

    2012-10-01

    The efficiency of the two white-rot fungi Pycnoporus coccineus and Coriolopsis polyzona in the Olive Oil Mill Wastewater (OOMW) treatment was investigated. Both fungi were active in the decolourisation and COD removal of OOMW at 50 g/L COD, but only the first fungus remains effective on the crude effluent (COD=100 g/L). Moreover P. coccineus was less affected by oxygen supplementation and exhibited a high tolerance to agitation in comparison to C. polyzona. However, it required a nitrogen supplementation to obtain faster and higher COD removal. To overcome the negative effect of agitation on fungi growth and efficiency, immobilisation of C. polyzona and P. coccineus in polyurethane foam was applied. The immobilized system showed better COD decreases during three consecutive batches without remarkable loss of performances. The results obtained in this study suggested that immobilized C. polyzona and especially immobilized P. coccineus might be applicable to a large scale for the removal colour and COD of OOMW. PMID:23124741

  20. Olive mill wastewater membrane filtration fraction: Drying techniques and quality assessment of the dried product (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also utilize valuable co-products. Recovery of phenolics from OMWW could help olive oil processors add value to their co-product, increasing the sustainability of olive oil production. The ...

  1. A Novel Photocatalyst with Ferromagnetic Core Used for the Treatment of Olive Oil Mill Effluents from Two-Phase Production Process

    PubMed Central

    Ochando-Pulido, Javier Miguel; Víctor-Ortega, María Dolores; Martínez-Ferez, Antonio

    2013-01-01

    Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW) and mixture of olives and olive oil (1 v/v) washing wastewaters (MOMW) was demonstrated. At lab-scale, the %COD removal and residence time (τ) for MOMW and OMW were 58.4% (τ = 2 h) and 21.4% (τ = 3 h), respectively. On the other hand, at pilot scale, 23.4% CODremoval, 19.2% total phenolsremoval, and 28.1% total suspended solidsremoval were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% CODremoval, 27.5% total phenolsremoval, and 25.0% total suspended solidsremoval for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of CODremoval, in contrast with 33.2% of CODremoval for OMW. PMID:24489490

  2. A novel photocatalyst with ferromagnetic core used for the treatment of olive oil mill effluents from two-phase production process.

    PubMed

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Víctor-Ortega, María Dolores; Martínez-Ferez, Antonio

    2013-01-01

    Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW) and mixture of olives and olive oil (1 v/v) washing wastewaters (MOMW) was demonstrated. At lab-scale, the %COD removal and residence time (τ) for MOMW and OMW were 58.4% (τ = 2 h) and 21.4% (τ = 3 h), respectively. On the other hand, at pilot scale, 23.4% COD(removal), 19.2% total phenols(removal), and 28.1% total suspended solids(removal) were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% COD(removal), 27.5% total phenols(removal), and 25.0% total suspended solids(removal) for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of COD(removal), in contrast with 33.2% of COD(removal) for OMW. PMID:24489490

  3. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  4. Removal of molecular weight fractions of COD and phenolic compounds in an integrated treatment of olive oil mill effluents.

    PubMed

    Beccari, M; Carucci, G; Lanz, A M; Majone, M; Petrangeli Papini, M

    2002-01-01

    Previous works (Beccari et al. 1999b; Beccari et al. 2001a; Beccari et al. 2001b) on the anaerobic treatment of olive oil mill effluents (OME) have shown: (a) a pre-treatment based on the addition of Ca(OH)2 and bentonite was able to remove lipids (i.e. the most inhibiting substances present in OME) almost quantitatively; (b) the mixture OME-Ca(OH)2-bentonite, fed to a methanogenic reactor without providing an intermediate phase separation, gave way to high biogas production even at very low dilution ratios; (c) the effluent from the methanogenic reactor still contained significant concentrations of residual phenolic compounds (i.e. the most biorecalcitrant substances present in OME). Consequently, this paper was aimed at evaluating the fate of the phenolic fractions with different molecular weights during the sequence of operations (adsorption on bentonite, methanogenic digestion, activated sludge post-treatment). The results show that a very high percentage (above 80%) of the phenolic fraction below 500 D is removed by the methanogenic process whereas the phenolic fractions above 1,000 D are significantly adsorbed on bentonite; the 8-day activated sludge post-treatment allows an additional removal of about 40% of total filtered phenolic compounds. The complete sequence of treatments was able to remove more than the 96% of the phenolic fraction below 500 D (i.e. the most toxic fraction towards plant germination). Preliminary respirometric tests show low level of inhibition exerted by the effluent from the methanogenic reactor on aerobic activated sludges taken from full-scale municipal wastewater plants. PMID:12713132

  5. Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view.

    PubMed

    Justino, Celine I L; Pereira, Ruth; Freitas, Ana C; Rocha-Santos, Teresa A P; Panteleitchouk, Teresa S L; Duarte, Armando C

    2012-03-01

    The olive oil mill wastewater (OMW) is a problematic and polluting effluent which may degrade the soil and water quality, with critical negative impacts on ecosystems functions and services provided. The main purpose of this review paper is presenting the state of the art of OMW treatments focusing on their efficiency to reduce OMW toxicity, and emphasizing the role of ecotoxicological tests on the evaluation of such efficiency before the up-scale of treatment methodologies being considered. In the majority of research works, the reduction of OMW toxicity is related to the degradation of phenolic compounds (considered as the main responsible for the toxic effects of OMW on seed germination, on bacteria, and on different species of soil and aquatic invertebrates) or the decrease of chemical oxygen demand content, which is not scientifically sound. Batteries of ecotoxicological tests are not applied before and after OMW treatments as they should be, thus leading to knowledge gaps in terms of accurate and real assessment of OMW toxicity. Although the toxicity of OMW is usually high, the evaluation of effects on sub-lethal endpoints, on individual and multispecies test systems, are currently lacking, and the real impacts yielded by its dilution, in freshwater trophic chains of receiving systems can not be assessed. As far as the terrestrial compartment is considered, ecotoxicological data available include tests only with plants and the evaluation of soil microbial parameters, reflecting concerns with the impacts on crops when using OMW for irrigation purposes. The evaluation of its ecotoxicity to other edaphic species were not performed giving rise to a completely lack of knowledge about the consequences of such practice on other soil functions. OMW production is a great environmental problem in Mediterranean countries; hence, engineers, chemists and ecotoxicologists should face this problem together to find an ecologically friend solution. PMID:22042608

  6. The Microbiology of Olive Mill Wastes

    PubMed Central

    Ntougias, Spyridon; Bourtzis, Kostas

    2013-01-01

    Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependant. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes. PMID:24199199

  7. Phenolic profile and antioxidant activities of olive mill wastewater.

    PubMed

    El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif

    2012-05-01

    Olive trees play an important role in the Moroccan agro-economy, providing both employment and export revenue. However, the olive oil industry generates large amounts of wastes and wastewaters. The disposal of these polluting by-products is a significant environmental problem that needs an adequate solution. On one hand, the phytotoxic and antimicrobial effects of olive mill wastewaters are mainly due to their phenolic content. The hydrophilic character of the polyphenols results in the major proportion of natural phenols being separated into the water phase during the olive processing. On other hand, the health benefits arising from a diet containing olive oil have been attributed to its richness in phenolic compounds that act as natural antioxidants and are thought to contribute to the prevention of heart diseases and cancers. Olive mill wastewater (OMW) samples have been analysed in terms of their phenolic constituents and antioxidant activities. The total phenolic content, flavonoids, flavanols, and proanthocyanidins were determined. The antioxidant and radical scavenging activity of phenolic extracts and microfiltred samples was evaluated using different tests (iron(II) chelating activity, total antioxidant capacity, DPPH assays and lipid peroxidation test). The obtained results reveal the considerable antioxidant capacity of the OMW, that can be considered as an inexpensive potential source of high added value powerful natural antioxidants comparable to some synthetic antioxidants commonly used in the food industry. PMID:26434308

  8. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology.

    PubMed

    Ochando-Pulido, Javier Miguel; Victor-Ortega, Maria Dolores; Hodaifa, Gassan; Martinez-Ferez, Antonio

    2015-01-15

    Physicochemical characterization of olive mill wastewaters (OMW) was studied after a primary and secondary treatment was implemented in an olive oil factory in Jaén (Spain), comprising natural precipitation, Fenton-like reaction, flocculation-sedimentation and olive stone filtration in series. The application of membrane technology in improving the quality of the secondary-treated OMW (OMW/ST) was examined, to reduce the hazardous electroconductivity (EC) values (2-3 mS cm(-1)). Particle size distribution on OMW/ST shows supra-micron colloids and suspended solids as well as sub-micron particles with a mean size below 1.5 μm remaining in considerable concentration. The high organic pollutants percentage (31.7%) registered with an average diameter below 3 kDa is sensibly relevant for membrane fouling. Mesophilic aerobic bacteria growth warns of possible membrane biofouling formation. The saturation index indicates to work upon recovery factor below 90%. Finally, operating at a pressure equal to 15 bar ensured low fouling and high flux production on the selected NF membrane (69.9 L h(-1)m(-2)) and significant rejection efficiencies (55.5% and 88.5% for EC and COD). This permits obtaining an effluent with good quality according to the recommendations of the Food and Agricultural Association (FAO) with the goal of reusing the regenerated water for irrigation. PMID:25017639

  9. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. PMID:26218340

  10. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Becerra, Daniel; Sánchez-Llerena, Javier

    2015-09-01

    Olive oil agrifood industry generates large amounts of waste whose recycling as organic amendment represents an alternative to their disposal. The impact of de-oiled two-phase olive mill waste (DW) on the fate of 4-chloro-2-methylphenoxyacetic acid (MCPA) in Mediterranean agricultural soils was evaluated. Furthermore, the effect of the transformation of organic matter from this waste under field conditions was assessed. Four Mediterranean agricultural soils were selected and amended in laboratory with fresh DW and field-aged DW (DW and ADW treatments, respectively). Adsorption capacity increased by factors between 1.18 and 3.59, for the DW-amended soils, and by factor of 4.93, for ADW-amended soil, with respect to unamended soils, when 5% amendment was applied. The DW amendment had inhibitory effect on dehydrogenase activity and slowed herbicide dissipation, whereas the opposite effect was observed in ADW treatments. In the field-amended soil, the amount of MCPA leached was significantly reduced from 56.9% for unamended soil to 15.9% at the 5% rate. However, leaching losses of MCPA increased in the laboratory-amended soils, because of their high water-soluble organic carbon values which could enhance MCPA mobility, especially in the acidic soils. Therefore, the application of DW as organic amendment in Mediterranean agricultural soils could be an important management strategy to reduce MCPA leaching, especially if the organic matter had been previously transformed by ageing processes. PMID:25948384

  11. Effect of microwave- and microwave-convection drying conditions on the total soluble phenolic content of 2-phase olive mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California olive oil industry produces tons of 2-phase olive mill waste (2POMW) every year as a byproduct of the olive oil milling process. 2POMW is rich in health-promoting phenolic compounds, but it is greater than 60% moisture (wet basis) in its native form and thus expensive to store and tr...

  12. Centrifugation as a pre-treatment in olive mill wastewater processing (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW), generated during production of olive oil, is an untapped source of nutritious compounds. Thus, processors want to separate OMWW into a high-value, concentrated product stream and near-pure water. However, the amount and characteristics of the produced OMWW depend on t...

  13. Effects of olive mill wastes added to olive grove soils on erosion and soil properties

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    INTRODUCTION The increasing degradation of olive groves by effect of organic matter losses derived from intensive agricultural practices has promoted the use (by olive farmers) of olive mill wastes (olive leaves and alperujo) which contain large amounts of organic matter and are free of heavy metals and pathogenic microorganisms. In this work we compared the effects of these oil mill wastes on the decrease of soil erosion, also, we undertook the assessment of the organic carbon and nitrogen contents of soil, their distribution across the profile, the accumulation and Stratification ratios (SRs) of soil organic carbon (SOC) and total nitrogen (TN), and the C:N ratio, in Cambisols in Mediterranean olive groves treated with olive leaves and alperujo. MATERIALS AND METHODS The study area was a typical olive grove in southern Spain under conventional tillage (CT). Three plots were established. The first one was the control plot; the second one was treated with olive leaves (CTol) and the third one, with alperujo (CTa). 9 samples per plot were collected to examine the response of the soil 3 years after application of the wastes. Soil properties determined were: soil particle size, pH, bulk density, the available water capacity, SOC, TN and C:N ratio. SOC and N stock, expressed for a specific depth in Mg ha-1. Stratification ratios (SRs) (that can be used as an indicator of dynamic soil quality) for SOC and TN at three different depths were calculated. The erosion study was based on simulations of rain; that have been carried out in order to highlight differences in the phenomena of runoff and soil losses in the three plots considered. The effect of different treatments on soil properties was analyzed using a ANOVA, followed by an Anderson-Darling test. RESULTS Supplying the soil with the wastes significantly improved physical and chemical properties in the studied soils with respect to the control. C and N stocks increased, the SOC stock was 75.4 Mg ha-1 in CT, 91.5 Mg

  14. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  15. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  16. Aerobic degradation of olive mill wastewaters.

    PubMed

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V

    1997-02-01

    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data. PMID:9077005

  17. The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation.

    PubMed

    Yazdanbakhsh, Ahmadreza; Mehdipour, Fayyaz; Eslami, Akbar; Maleksari, Hajar Sharifi; Ghanbari, Farshid

    2015-01-01

    Olive oil mill wastewater (OOMW) is one of the most important industrial wastewaters in the world due to high organic load and phenolic compounds. In this study, an integration of three processes including coagulation, acid cracking and Fenton-like was evaluated to treat OOMW. The performance of alum, ferric chloride and polyaluminum chloride was studied as coagulants. Among coagulants, ferric chloride showed the best results in comparison with the others. Coagulation process with FeCl3 removed 91.2% chemical oxygen demand (COD), 91.3% phenol, 98.9% total suspended solids and 99.2% turbidity at condition of pH = 6 and 3,000 mg/L coagulant dosage. Acid cracking process following the coagulation process with ferric chloride could slightly degrade organic compounds and provided suitable condition for the next process. Fenton-like process with zero valent iron (ZVI) was applied after coagulation and acid cracking. The optimal removal efficiency was achieved by Fenton-like process which was accomplished in condition of 7 g/L ZVI, 1,000 mg/L H2O2 and 180 min reaction time. The biodegradability of final effluent of this integration was improved significantly and biochemical oxygen demand5/COD value increased from 0.14 to 0.83. The results of germination tests revealed that phytotoxicity of the final effluent decreased. PMID:25860714

  18. Biodegradation of organic compounds during co-composting of olive oil mill waste and municipal solid waste with added rock phosphate.

    PubMed

    Barje, Farid; El Fels, Loubna; El Hajjouji, Houda; Winterton, Peter; Hafidi, Mohamed

    2013-01-01

    Liquid and solid olive oil mill waste was treated by com posting in a mixture with the organic part of municipal solid waste and rock phosphate. The transformations that occurred during the process were evaluated by physical, chemical and spectroscopic analyses. After five months of com posting, the final compost presented a C/N ratio under 20, an NH4+/NO3(-)] ratio under 1 and a pH around neutral. A high level of organic matter decomposition paralleled a notable abatement of phenols and lipids. The results show the effective dissolution of mineral elements during composting. This transformation was followed by Fourier transform infrared which showed a decrease in the absorption bands of aliphatic bonds (2925 and 2855 cm(-1)) and carbonyls of carboxylic origin (1740 cm (-1)). In addition to the increase in humic substances and the improvement of germination indices, the parameters studied confirm the stability and the maturity of the composts. The absence of phytotoxicity opens the way to agricultural spreading. PMID:24617055

  19. Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model

    NASA Astrophysics Data System (ADS)

    Seferou, P.; Soupios, P.; Kourgialas, N. N.; Dokou, Z.; Karatzas, G. P.; Candasayar, E.; Papadopoulos, N.; Dimitriou, V.; Sarris, A.; Sauter, M.

    2013-09-01

    An integrated approach for monitoring the vertical transport of a solute into the subsurface by using a geophysical method and a simulation model is proposed and evaluated. A medium-scale (1 m3) laboratory tank experiment was constructed to represent a real subsurface system, where an olive-oil mill wastewater (OOMW) spill might occur. High-resolution cross-hole electrical resistivity tomography (ERT) was performed to monitor the OOMW transport. Time-lapse ERT images defined the spatial geometry of the interface between the contaminated and uncontaminated soil into the unsaturated and saturated zones. Knowing the subsurface characteristics, the finite element flow and transport model FEFLOW was used for simulating the contaminant movement, utilizing the ERT results as a surrogate for concentration measurements for the calibration process. A statistical analysis of the ERT measurements and the corresponding transport model results for various time steps showed a good agreement between them. In addition, a sensitivity analysis of the most important parameters of the simulation model (unsaturated flow, saturated flow and transport) was performed. This laboratory-scale study emphasizes that the combined use of geophysical and transport-modeling approaches can be useful for small-scale field applications where contaminant concentration measurements are scarce, provided that its transferability from laboratory to field conditions is investigated thoroughly.

  20. Effect of the organic loading rate on the production of polyhydroxyalkanoates in a multi-stage process aimed at the valorization of olive oil mill wastewater.

    PubMed

    Campanari, Sabrina; e Silva, Francisca A; Bertin, Lorenzo; Villano, Marianna; Majone, Mauro

    2014-11-01

    Mixed microbial culture polyhydroxyalkanoates (PHA) production has been investigated by using olive oil mill wastewater (OMW) as no-cost feedstock in a multi-stage process, also involving phenols removal and recovery. The selection of PHA-storing microorganisms occurred in a sequencing batch reactor (SBR), fed with dephenolized and fermented OMW and operated at different organic loading rates (OLR), ranging from 2.40 to 8.40gCOD/Ld. The optimal operating condition was observed at an OLR of 4.70gCOD/Ld, which showed the highest values of storage rate and yield (339±48mgCOD/gCODh and 0.56±0.05 COD/COD, respectively). The OLR applied to the SBR largely affected the performance of the PHA-accumulating reactor, which was fed through multiple pulsed additions of pretreated OMW. From an overall mass balance, involving all the stages of the process, an abatement of about 85% of the OMW initial COD (chemical oxygen demand) was estimated whereas the conversion of the influent COD into PHA was about 10% (or 22% by taking into account only the COD contained in the pretreated OMW, which is directly fed to the PHA production stages). Overall, polymer volumetric productivity (calculated from the combination of both the SBR and the accumulation reactor) accounted for 1.50gPHA/Ld. PMID:24950311

  1. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed. PMID:24068561

  2. Virgin Olive Oil and Hypertension.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Abia, Rocio; Muriana, Francisco Jg

    2016-01-01

    The incidence of high blood pressure (BP) along with other cardiovascular (CV) risk factors on human health has been studied for many years. These studies have proven a link between unhealthy dietary habits and sedentary lifestyle with the onset of hypertension, which is a hallmark of CV and cerebrovascular diseases. The Mediterranean diet, declared by the UNESCO as an Intangible Cultural Heritage since 2013, is rich in vegetables, legumes, fruits and virgin olive oil. Thanks to its many beneficial effects, including those with regard to lowering BP, the Mediterranean diet may help people from modern countries to achieve a lower occurrence of CV disease. Data from human and animal studies have shown that the consumption of virgin olive oil shares most of the beneficial effects of the Mediterranean diet. Virgin olive oil is the only edible fat that can be consumed as a natural fruit product with no additives or preservatives, and contains a unique constellation of bioactive entities, namely oleic acid and minor constituents. In this review, we summarize what is known about the effects of virgin olive oil on hypertension. PMID:26775852

  3. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity. PMID:27386985

  4. Does wastewater from olive mills induce toxicity and water repellency in soil?

    NASA Astrophysics Data System (ADS)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  5. Mitigation of olive mill wastewater toxicity.

    PubMed

    Greco, Guido; Colarieti, M Letizia; Toscano, Giuseppe; Iamarino, Giuseppina; Rao, Maria A; Gianfreda, Liliana

    2006-09-01

    The toxicity of olive mill wastewaters (OMW) is commonly attributed to monomeric phenols. OMW were treated in an aerated, stirred reactor containing agricultural soil, where the oxidative polymerization of phenols took place. In 24 h, OMW monomeric phenols decreased by >90%. This resulted in a corresponding reduction in phytotoxicity, as measured by germination tests with tomato and English cress seeds, and in microbial toxicity, as measured by lag phase duration in Bacillus cereus batch growth. Soil germination capability after irrigation with OMW was assessed in long-term pot experiments. The relative germination percentage of tomato was higher when the soil was irrigated with treated OMW rather than with untreated ones, although it was lower than the control (e.g., soil irrigated with distilled water). At longer incubation times, a complete recovery of the soil germination capability was achieved with treated, but not with untreated, OMW. PMID:16939339

  6. Effect of Olive-mill Waste Addition to Soil on Sorption, Persistence, and Leaching of the Herbicide Fluometuron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic amendment addition to agricultural soils is an agronomic practice that can greatly affect the behavior of pesticides. Olive-mill waste (OMW) is an organic residue generated in great amounts in olive oil producing countries, and its addition to agricultural soils has been proposed as an alter...

  7. Klebsiella sp. strain C2A isolated from olive oil mill waste is able to tolerate and degrade tannic acid in very high concentrations.

    PubMed

    Pepi, Milva; Cappelli, Serena; Hachicho, Nancy; Perra, Guido; Renzi, Monia; Tarabelli, Alessandro; Altieri, Roberto; Esposito, Alessandro; Focardi, Silvano E; Heipieper, Hermann J

    2013-06-01

    Four bacterial strains capable of growing in the presence of tannic acid as sole carbon and energy source were isolated from olive mill waste mixtures. 16S rRNA gene sequencing assigned them to the genus Klebsiella. The most efficient strain, Klebsiella sp. strain C2A, was able to degrade 3.5 g L(-1) tannic acid within 35 h with synthesizing gallic acid as main product. The capability of Klebsiella sp. strain C2A to produce tannase was evidenced at high concentrations of tannic acid up to 50 g L(-1) . The bacteria adapted to the toxicity of tannic acids by an increase in the membrane lipid fatty acids degree of saturation, especially in the presence of concentrations higher than 20 g L(-1) . The highly tolerant and adaptable bacterial strain characterized in this study could be used in bioremediation processes of wastes rich in polyphenols such as those derived from olive mills, winery or tanneries. PMID:23521025

  8. Extra virgin olive oil's polyphenols: biological activities.

    PubMed

    Visioli, Francesco; Bernardini, Elena

    2011-01-01

    In addition to its high proportion of oleic acid (which is considered as "neutral" in terms of cardioprotection), extra virgin olive oil is rich in phenolic compounds, which other vegetable oils do not contain. This review critically appraises the current scientific evidence of a healthful role of olive phenols, with particular emphasis on hydroxytyrosol and related molecules. PMID:21443485

  9. Lipase production by Aspergillus ibericus using olive mill wastewater.

    PubMed

    Abrunhosa, Luís; Oliveira, Felisbela; Dantas, Danielle; Gonçalves, Cristiana; Belo, Isabel

    2013-03-01

    Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively. PMID:22791217

  10. Evaluation of an aerobic treatment for olive mill wastewater detoxification.

    PubMed

    El Hajjouji, Houda; El Fels, Loubna; Pinelli, Eric; Barje, Farid; El Asli, Abdelghani; Merlina, Georges; Hafidi, Mohamed

    2014-01-01

    Olive mill wastewater (OMWW) is a by-product of the olive oil extraction industry. Its dumping creates severe environmental problems in the Mediterranean countries. The phytoxicity of OMWW is due to the phenolic substances and is evaluated through a genotoxicity method. An aerobic treatment of OMWW was conducted during 45 days. Different concentrations of raw and treated OMWW were tested using the Vicia faba micronuclei test. Results showed that raw OMWW induced significant micronuclei formation at 10% of OMWW dilution. At 20% of dilution, no mitosis was recorded. The 45 days aerobic treatment OMWW showed an important decrease in the genotoxicity and also in the toxicity that was observed at 10% and 20% OMWW dilution. This could be correlated with the biodegradation of 76% of the total phenols. Indeed, qualitative analysis by high performance liquid chromatography shows the disappearance of the majority of phenolic compounds after 45 days of treatment. This study was completed by an agricultural test with V. faba plant. Data showed significant growth yield of 36.3% and 29.9% after being irrigated with 5 and 10 t/ha, respectively. These results supported the positive role of aerobic treatment on OMWW and their capacity to ameliorate the agronomic potential of these effluents. PMID:25244133

  11. Antioxidants in Greek Virgin Olive Oils.

    PubMed

    Kalogeropoulos, Nick; Tsimidou, Maria Z

    2014-01-01

    Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars-excluding clonal selections-is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878

  12. Antioxidants in Greek Virgin Olive Oils

    PubMed Central

    Kalogeropoulos, Nick; Tsimidou, Maria Z.

    2014-01-01

    Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878

  13. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    PubMed

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. PMID:23993554

  14. Vasculoprotective potential of olive oil components.

    PubMed

    Carluccio, Maria Annunziata; Massaro, Marika; Scoditti, Egeria; De Caterina, Raffaele

    2007-10-01

    Epidemiological and clinical studies found that the traditional Mediterranean-style diet is associated with significantly lower mortality from coronary artery disease. Although it is difficult to isolate individual dietary factors, cumulative evidence suggests that olive oil, used as primary source of fat by Mediterranean populations, may play a key role in the observed cardiovascular benefit. Olive oil is a priceless source of vitamins and polyphenolic antioxidants, and has a balanced ratio of monounsaturated and polyunsaturated fatty acids. There are multiple mechanisms by which olive oil might impact the development of atherosclerosis. Olive oil decreases LDL-cholesterol and increases HDL-cholesterol, and also reduces oxidative stress due to polyphenols, which are able to scavenge free radicals and protect LDL from oxidation. In addition, olive oil components may interfere with the inflammatory response within atherosclerotic lesion, by inhibiting endothelial activation involved in monocyte recruitment during early atherogenesis and macrophage production of inflammatory cytokines and matrix degrading enzymes, thus improving vascular stability. Other vasculoprotective mechanisms by olive oil components derive from anti-thrombotic and anti-hypertensive actions. The available data support the need to preserve certain dietary traditions, such as olive oil consumption, to counteract the burden of cardiovascular disease. PMID:17912721

  15. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation.

    PubMed

    Hanafi, F; Assobhei, O; Mountadar, M

    2010-02-15

    The objective of the present study was to assess the electrocoagulation treatment of olive mill wastewater using an aluminum electrode. We have examined the effect of the following parameters on the removal of chemical oxygen demand (COD), polyphenols and dark color removal efficiency: Electrolysis time, Current density, Chloride concentration and Initial pH. The olive mill wastewater (OMW)--diluted 5 times--used in this study had 20.000 mg/L chemical oxygen demand, 3.6 mS/cm conductivity and acidic pH (4.2). It also contains considerable quantities of polyphenols (260 mg/L). The evolution of the physico-chemical parameters during the treatment by electrocoagulation showed that under the following conditions: electrolysis time 15 min, NaCl concentration 2g/L, initial pH 4.2 and current density 250 A/m(2), the discoloration of the olive mill wastewater, the reduction of the chemical oxygen demand and the reduction of polyphenols exceeded 70%, the electrodes consumption was 0.085 kg Al/kg COD(removed) and the specific energy consumed was 2.63 kWh/ kg COD(removed). Under these optimal experimental conditions, olive mill wastewater became non-toxic for Bacillus cereus. PMID:19880250

  16. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    PubMed

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling. PMID:26472261

  17. Discriminating olive and non-olive oils using HPLC-CAD and chemometrics.

    PubMed

    de la Mata-Espinosa, P; Bosque-Sendra, J M; Bro, R; Cuadros-Rodríguez, L

    2011-02-01

    This work presents a method for an efficient differentiation of olive oil and several types of vegetable oils using chemometric tools. Triacylglycerides (TAGs) profiles of 126 samples of different categories and varieties of olive oils, and types of edible oils, including corn, sunflower, peanut, soybean, rapeseed, canola, seed, sesame, grape seed, and some mixed oils, have been analyzed. High-performance liquid chromatography coupled to a charged aerosol detector was used to characterize TAGs. The complete chromatograms were evaluated by PCA, PLS-DA, and MCR in combination with suitable preprocessing. The chromatographic data show two clusters; one for olive oil samples and another for the non-olive oils. Commercial oil blends are located between the groups, depending on the concentration of olive oil in the sample. As a result, a good classification among olive oils and non-olive oils and a chemical justification of such classification was achieved. PMID:21060998

  18. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.

    PubMed

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-09-01

    The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. PMID:24731380

  19. Gross and net rates of nitrogen mineralisation in soil amended with composted olive mill pomace.

    PubMed

    Gómez-Muñoz, B; Hatch, D J; Bol, R; Dixon, E R; García-Ruiz, R

    2011-06-15

    Olive mill pomace is the major waste product in the olive oil industry and composting these by-products for the purpose of recycling nutrients and organic matter is a sound environmental strategy. Yet little is known about the quantity and timing of nitrogen (N) release from composted olive mill pomace. This paper assesses both gross (using the (15)N dilution technique) and net (aerobic incubation) nitrogen (N) mineralisation and N(2)O emissions of soil amended with seven commercially available composts of olive mill pomace (COMP). All are currently produced in Andalusia and differ in the proportions of raw materials co-composted with the pomace. The absence of significant differences in net N or gross mineralisation and nitrification in COMP-amended soil compared with a control, except for COMP combined with poultry manure, highlighted the recalcitrant nature of the COMP-N. Applications of COMP are hence unlikely to supply available N in available forms, at least in the short-term. Furthermore, N(2)O emissions from COMP-amended soil were negligible and, therefore, applications in the field should not result in increased N loss through denitrification. PMID:21594919

  20. Olive oil biophenols and women's health.

    PubMed

    Fistonić, Ivan; Situm, Mirna; Bulat, Vedrana; Harapin, Mario; Fistonić, Nikola; Verbanac, Donatella

    2012-02-01

    Olea europea, the olive tree, is an ancient tree that originates from the Mediterranean environment of Asia Minor. The edible olive fruit is also used for its oil, gained by the process of pressing, a nutrient with proven beneficial effects. Virgin olive oil is the natural juice of the olive fruit, which plays a major role in the healthy Mediterranean diet. The source of its health effects are the biophenols and squalenes (oleocanthal, tyrosol, hydroxytyrosol, oleuropein) it contains. They provide an exceptional antioxidative activity, removing harmful compounds from the body. Oxidants are essential in the genesis of many diseases and conditions, such as cardiovascular disorders, cancer, osteoporosis, Alzheimer disease, and premenstrual syndrome. Oleic acid, an unsaturated fatty acid, has demonstrated a significant effect in the prevention of malignant diseases such as colon cancer and breast cancer. Biophenols from olive oil successfully suppress the synthesis of LDL, a protein that is crucial in the development of cardiovascular disease, by reducing blood pressure and the development of atherosclerotic plaques. In addition, there is strong evidence of the antimicrobic effect of the biphenols from olive oil that successfully destroy colonies of microorganisms which may cause respiratory tract, intestinal, and genital tract infections. PMID:22634935

  1. Olive Oil and the Hallmarks of Aging.

    PubMed

    Fernández del Río, Lucía; Gutiérrez-Casado, Elena; Varela-López, Alfonso; Villalba, José M

    2016-01-01

    Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the "hallmarks of aging", which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source. PMID:26840281

  2. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    PubMed

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  3. Quality characteristics and antioxidant properties of Turkish monovarietal olive oils regarding stages of olive ripening.

    PubMed

    Köseoğlu, Oya; Sevim, Didar; Kadiroğlu, Pınar

    2016-12-01

    The aim of this study was to discriminate the extra virgin olive oils (EVOO) based on quality characteristics, chemical composition and antioxidant activity according to ripening stages of olives. Two different olive varieties (Memecik and Gemlik) were obtained at different stages of ripening based on skin color (green, purple and black). Quality properties of olive oils; free fatty acidity, peroxide value, K232 and K270, purity properties; fatty acid and triacylglycerol (TAG) composition and antioxidant compounds like total phenol, carotenoid and chlorophyll content and antioxidant activity (oxidative stability, ABTS radical scavenging activity) analyses were performed. Higher amount of oleic, linoleic and palmitic acids were observed in olive oils. Oleic acid amount of olive oils decreased, linoleic acid increased with ripening. The most abundant TAG of olive oils were ECN 48, OOO, SLO+POO, ECN 46 and LOO/PLO. Olive oils were clearly classified by principal component analysis based on fatty acid and TAG composition. PMID:27374577

  4. [Olive oil, immune system and infection].

    PubMed

    Puertollano, M A; Puertollano, E; Alvarez de Cienfuegos, G; de Pablo Martínez, Manuel Antonio

    2010-01-01

    Polyunsaturated fatty acids contribute to the suppression of immune system functions. For this reason, n-3 polyunsaturated fatty acids have been applied in the resolution of inflammatory disorders. Although the inhibition of several immune functions promotes beneficial effects on the human health, this state may lead to a significant reduction of immune protection against infectious microorganisms (viruses, bacteria, fungi and parasites). Nevertheless, less attention has been paid to the action of olive oil in immunonutrition. Olive oil, a main constituent of the Mediterranean diet, is capable of modulating several immune functions, but it does not reduce host immune resistance to infectious microorganisms. Based on these criteria, we corroborate that olive oil administration may exert beneficial effects on the human health and especially on immune system, because it contributes to the reduction of typical inflammatory activity observed in patients suffering from autoimmune disorders, but without exacerbating the susceptibility to pathogen agents. The administration of olive oil in lipid emulsions may exert beneficial effects on the health and particularly on the immune system of immunocompromised patients. Therefore, this fact acquires a crucial importance in clinical nutrition. This review contributes to clarify the interaction between the administration of diets containing olive oil and immune system, as well as to determine the effect promoted by this essential component of Mediterranean diet in the immunomodulation against an infectious agent. PMID:20204249

  5. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  6. DUCKWEED (LEMNA GIBBA) GROWTH INHIBITION BIOASSAYS FOR EVALUATING THE TOXICITY OF OLIVE MILL WASTES BEFORE AND DURING COMPOSTING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-phase olive mill waste (TPOMW) is considered a major problem confronting the modern oil extraction and processing industry. Composting has been recently proposed as a suitable method to treat TPOMW so that it is suitable for use in agriculture. In the work reported here, the Lemna gibba bioassay...

  7. Micronutrient dynamics after thermal pretreatment of olive mill solid waste.

    PubMed

    Almansa, Ana R; Rodriguez-Galan, Monica; Borja, Rafael; Fermoso, Fernando G

    2015-09-01

    This study investigated metal dynamics, and their bioavailability, before and after thermal pretreatment of olive mill solid waste (OMSW), using a sequential metal extraction scheme. The 11.5% increase of cobalt in the most available fraction after the pretreatment coupled to the increase of methane production rate have been a good indicator that the OMSW anaerobic digestion might be metal limited due to the lack of cobalt. PMID:26004390

  8. Saturated hydrocarbon content in olive fruits and crude olive pomace oils.

    PubMed

    Gómez-Coca, Raquel B; Pérez-Camino, María Del Carmen; Moreda, Wenceslao

    2016-03-01

    Olive fruits contain an n-alkane series of saturated hydrocarbons mainly in the pulp. Lower amounts of a complex mixture of paraffins, unresolved by gas chromatography (UCM - unresolved complex mixture), have been found in cuticle, stone (woody shell and seed), olive leaves, and talc used as an aid to olive oil extraction. The amounts of both kinds of hydrocarbons are related to the olive cultivar and are transferred to oils in a proportion depending on the oil-obtaining process (centrifugation or solvent extraction). In olive oil obtained by centrifugation, only n-alkanes were detected. However, in olive oil extracted by second centrifugation, small amounts of UCM paraffins were detected together with the n-alkanes. Olive pomace oils showed a very variable content of both types of hydrocarbons according to the different obtaining process, such as double centrifugation, solvent extraction or centrifugation followed by solvent extraction. 'White mineral oil' used in oil extraction machinery is the source of the high concentrations of UCM paraffins found in some olive and olive pomace oils. In the case of second centrifugation olive oil, a maximum limit of 50 mg kg(-1) of UCM is suggested, whereas in the case of crude olive pomace oil, it amounts to 250 mg kg(-1) plus an additional minimum of 1.0 for the n-alkanes/UCM ratio. PMID:26679220

  9. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. PMID:25112823

  10. Ozonated olive oils and the troubles.

    PubMed

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  11. Ozonated olive oils and the troubles

    PubMed Central

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  12. Effect of amurca on olive oil quality during storage.

    PubMed

    Janakat, Sana; Al-Nabulsi, Anas; Hammad, Fwzieh; Holley, Richard

    2015-03-01

    Total phenolic compounds (TPC), antioxidant activity (AA), lipid peroxidation inhibition (percent) (LPOIP), free fatty acid and peroxide values were measured in olive oil samples over the period of 12 months in comparison with oil samples extracted from amurca (olive oil lees) and olive oil samples taken from the bottom of the canister (near amurca) after 12 months of storage. Olive oil samples taken over the period of 12 months possessed decreasing amounts of TPC, AA and LPOIP, which led to increased peroxide and free fatty acid values. In contrast, oil extracted from amurca and olive oil samples taken from the bottom of the container after 12 months of storage possessed significantly higher TPC, AA, LPOIP and consequently lower free fatty acid and peroxide values. These results show that the presence of naturally occurring amurca (sediment) in stored olive oil stabilizes olive oil quality during storage. PMID:25745252

  13. Olive

    MedlinePlus

    ... a tree. People use the oil from the fruit and seeds, water extracts of the fruit, and the leaves to make medicine. Olive oil ... and increasing urine flow. Water extracts of olive fruit pulp are used for rheumatoid arthritis and osteoarthritis.

  14. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-01

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications. PMID:23656613

  15. Partitioning of olive oil antioxidants between oil and water phases.

    PubMed

    Rodis, Panayotis S; Karathanos, Vaios T; Mantzavinou, Antonia

    2002-01-30

    The partition coefficient (K(p)) of the natural phenolic antioxidant compounds in the olive fruit between aqueous and olive oil phases was determined. The antioxidants of olive oil are either present in the olive fruit or formed during the olive oil extraction process. The antioxidants impart stability to and determine properties of the oil and are valuable from the nutritional point of view. The olive oil antioxidants are amphiphilic in nature and are more soluble in the water than in the oil phase. Consequently, a large amount of the antioxidants is lost with the wastewater during processing. The determination of antioxidants was performed using HPLC, and the K(p) was estimated to be from as low as 0.0006 for oleuropein to a maximum of 1.5 for 3,4-DHPEA-EA (di-hydroxy-phenyl-ethanol-elenolic acid, oleuropein aglycon). Henry's law fitted very well to the experimental data. The partition coefficients were also estimated by applying the activity coefficients of the antioxidants in the two phases using a predictive group contribution method, the UNIFAC equation. The K(p) values estimated with UNIFAC method were of the same order of magnitude but varied from the experimental values. Nevertheless, this method may be a rough predictive tool for process optimization or design. Because the K(p) values were very low, some changes in the process are recommended in order to achieve a higher concentration of antioxidants in the oil. A temperature increase may lead to increasing the partition coefficient. Also, limiting the quantity of water during oil extraction could be a basis for designing alternative processes for increasing the antioxidant concentration in the olive oil. PMID:11804535

  16. Olive oil phenols are absorbed in humans.

    PubMed

    Vissers, Maud N; Zock, Peter L; Roodenburg, Annet J C; Leenen, Rianne; Katan, Martijn B

    2002-03-01

    Animal and in vitro studies suggest that olive oil phenols are effective antioxidants. The most abundant phenols in olive oil are the nonpolar oleuropein- and ligstroside-aglycones and the polar hydroxytyrosol and tyrosol. The aim of this study was to gain more insight into the metabolism of those phenols in humans. We measured their absorption in eight healthy ileostomy subjects. We also measured urinary excretion in the ileostomy subjects and in 12 volunteers with a colon. Subjects consumed three different supplements containing 100 mg of olive oil phenols on separate days in random order. Ileostomy subjects consumed a supplement with mainly nonpolar phenols, one with mainly polar phenols and one with the parent compound oleuropein-glycoside. Subjects with a colon consumed a supplement without phenols (placebo) instead of the supplement with oleuropein-glycoside. Ileostomy effluent and urine were collected for 24 h after supplement intake. Tyrosol and hydroxytyrosol concentrations were low (< 4 mol/100 mol of intake) in the ileostomy effluent, and no aglycones were detected. We estimated that the apparent absorption of phenols was at least 55-66% of the ingested dose. Absorption was confirmed by the excretion of tyrosol and hydroxytyrosol in urine. In ileostomy subjects, 12 mol/100 mol and in subjects with a colon, 6 mol/100 mol of the phenols from the nonpolar supplement were recovered in urine as tyrosol or hydroxytyrosol. In both subject groups, 5--6 mol/100 mol of the phenols was recovered from the polar supplement. When ileostomy subjects were given oleuropein-glycoside, 16 mol/100 mol was recovered in 24-h urine, mainly in the form of hydroxytyrosol. Thus, humans absorb a large part of ingested olive oil phenols and absorbed olive oil phenols are extensively modified in the body. PMID:11880564

  17. Effect of olive storage conditions on Chemlali olive oil quality and the effective role of fatty acids alkyl esters in checking olive oils authenticity.

    PubMed

    Jabeur, Hazem; Zribi, Akram; Abdelhedi, Ridha; Bouaziz, Mohamed

    2015-02-15

    The present paper accounts for the study of the storage of Chemlali olive fruits at two conditions of limited aerobiosis: in closed plastic bags and in open perforated plastic boxes for different periods before oil extraction. The ultimate objective is to investigate the effect of the container type of the postharvest fruit storage on the deterioration of the olive oil quality. The results have shown that the oil quality of Chemlali olives deteriorated more rapidly during fruit storage in closed plastic bags than in perforated plastic boxes. Therefore, the use of perforated plastic boxes is recommended for keeping the olives for longer periods of storage. The repeated measures analysis of variance of all parameters analyzed indicated that the olive oil quality is mainly affected by the olives storage conditions (containers type and storage periods). Finally, blends of extra-virgin olive oil and mildly deodorized low-quality olive oils can be detected by their alkyl esters concentrations. PMID:25236229

  18. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    PubMed Central

    Dell'Aquila, M. E.; Bogliolo, L.; Russo, R.; Martino, N. A.; Filioli Uranio, M.; Ariu, F.; Amati, F.; Sardanelli, A. M.; Linsalata, V.; Ferruzzi, M. G.; Cardinali, A.; Minervini, F.

    2014-01-01

    Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs. PMID:24719893

  19. A review of olive mill solid wastes to energy utilization techniques.

    PubMed

    Christoforou, Elias; Fokaides, Paris A

    2016-03-01

    In recent years, the utilization of olive industry by-products for energy purposes has gained significant research interest and many studies have been conducted focused on the exploitation of olive mill solid waste (OMSW) derived from the discontinuous or continuous processing of olive fruits. In this review study, the primary characteristics of OMSW and the techniques used to define their thermal performance are described. The theoretical background of the main waste-to-energy conversion pathways of solid olive mill wastes, as well as the basic pre-treatment techniques for upgrading solid fuels, are presented. The study aims to present the main findings and major conclusions of previously published works undertaken in the last two decades focused on the characterization of olive mill solid wastes and the utilization of different types of solid olive mill residues for energy purposes. The study also aims to highlight the research challenges in this field. PMID:26810031

  20. Sample preparation approaches for the analysis of pesticide residues in olives and olive oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices generally require the use of pesticides by olive growers for the best olive and olive oil production. Thus, analytical methods are needed to identify and quantify the pesticide residues that may be present, and ensure that the product complies with regulatory requirements. I...

  1. Noise exposure in oil mills

    PubMed Central

    Kumar, G. V. Prasanna; Dewangan, K. N.; Sarkar, Amaresh

    2008-01-01

    Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM) (Model-824, Larson and Davis, USA), equivalent SPL was measured at operator's ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS) were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m × 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis

  2. Virgin olive oil: a key food for cardiovascular risk protection.

    PubMed

    Covas, María-Isabel; de la Torre, Rafael; Fitó, Montserrat

    2015-04-01

    Olive oil is considered to be one of the most healthy dietary fats. However, several types of olive oils are present in the market. A key question for the consumer is: What of the olive oils is the best when concerning nutritional purposes? With the data available at present, the answer is: the Virgin Olive Oil (VOO), rich in phenolic compounds. On November 2011, the European Food Safety Authority released a claim concerning the benefits of daily ingestion of olive oil rich in phenolic compounds, such as VOO. In this review, we summarised the key work that has provided the evidence of the benefits of VOO consumption on other types of edible oils, even olive oils. We focused on data from randomised, controlled human studies, which are capable of providing the evidence of Level I that is required for performing nutritional recommendations at population level. PMID:26148918

  3. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  4. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  5. Mathematical modeling of olive mill waste composting process.

    PubMed

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. PMID:26174354

  6. Quantitative assessment of different phenolic compounds in Texas olive oils versus foreign oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas Olive Ranch is the first one to produce olive oil and has the sole product in the Texas market place; several growers are now starting to cultivate olive at various sites in Texas. The quality of olive oil produced and pressed in Texas has never been explored. This study was conducted to inv...

  7. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants.

    PubMed

    Cardinali, Angela; Pati, Sandra; Minervini, Fiorenza; D'Antuono, Isabella; Linsalata, Vito; Lattanzio, Vincenzo

    2012-02-22

    Olive oil processing industries generate substantial quantities of phenolic-rich byproducts, which could be valuable natural sources of antioxidants. This work is focused on the recovery and structural characterization of antioxidant compounds from olive mill wastewater (OMWW), a polluting byproduct of the olive oil production process. Phenolics were extracted from the waste material using a membrane technology coupled to low-pressure gel filtration chromatography on a Sephadex LH-20. The LH-20 fraction was, in turn, characterized for its phenolic composition by HPLC-DAD-MS/MS analyses. Verbascoside, isoverbascoside, β-hydroxyverbascoside, β-hydroxyisoverbascoside, and various oxidized phenolics were identified. Uptake of verbascoside, purified from the LH-20 fraction, by HT-29 cells, an established model system for studying drug transport properties, was also assayed. Finally, the antioxidant activities of the LH-20 fraction and verbascoside were characterized by two different techniques. Individual verbascoside was more active as a scavenger of reactive oxygen species and as a chemopreventive agent protecting low-density lipoproteins from oxidative damage than the LH-20 fraction. PMID:22268549

  8. Olive-mill wastewaters: a promising substrate for microbial lipase production.

    PubMed

    D'Annibale, Alessandro; Sermanni, Giovanni Giovannozzi; Federici, Federico; Petruccioli, Maurizio

    2006-10-01

    The present study investigated the valorization of olive-mill wastewater (OMW) by its use as a possible growth medium for the microbial production of extra-cellular lipase. To this end, strains of Geotrichum candidum (NRRL Y-552 and Y-553), Rhizopus arrhizus (NRRL 2286 and ISRIM 383), Rhizopus oryzae (NRRL 6431), Aspergillus oryzae (NRRL 1988 and 495), Aspergillus niger (NRRL 334), Candida cylindracea (NRRL Y-17506) and Penicillium citrinum (NRRL 1841 and 3754, ISRIM 118) were screened. All strains were able to grow on the undiluted OMW, producing extra-cellular lipase activity. C. cylindracea NRRL Y-17506 showed the highest lipase activity on all the typologies of OMW used. Its lipase production on OMW was markedly affected by the type of nitrogen source and was induced by the addition of olive oil. The highest activity (9.23 IU ml(-1)) of the yeast was obtained on OMW supplemented with NH(4)Cl (2.4 g l(-1)) and olive oil (3.0 g l(-1)). PMID:16236495

  9. Thin Layer Drying Kinetics of By-Products from Olive Oil Processing

    PubMed Central

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20–50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10−11 to 1.406 × 10−9 m2/s in forced convection (ma = 0.22 kg/s), and from 9.296 × 10−11 to 6.277 × 10−10 m2/s in natural convection (ma = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick’s diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order. PMID:22174639

  10. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    NASA Astrophysics Data System (ADS)

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  11. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites.

    PubMed

    Kanakis, Periklis; Termentzi, Aikaterini; Michel, Thomas; Gikas, Evagelos; Halabalaki, Maria; Skaltsounis, Alexios-Leandros

    2013-11-01

    The aim of the current study was the qualitative exploration and quantitative monitoring of key olive secondary metabolites in different production steps (drupes, paste, first and final oil) throughout a virgin olive oil production line. The Greek variety Koroneiki was selected as one of the most representative olives, which is rich in biological active compounds. For the first time, an HPLC-Orbitrap platform was employed for both qualitative and quantitative purposes. Fifty-two components belonging to phenyl alcohols, secoiridoids, flavonoids, triterpenes, and lactones were identified based on HRMS and HRMS/MS data. Nine biologically and chemically significant metabolites were quantitatively determined throughout the four production steps. Drupes and paste were found to be rich in several components, which are not present in the final oil. The current study discloses the chemical nature of different olive materials in a successive and integrated way and reveals new sources of high added value constituents of olives. PMID:24072502

  12. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities.

    PubMed

    Leouifoudi, Inass; Harnafi, Hicham; Zyad, Abdelmajid

    2015-01-01

    Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE) and the olive cake extracts (OCE). Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90 ± 0.728 g/L versus 0.95 ± 0.017 mg/g). The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS). With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH) and emulsion (BCBT) systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50 = 12.1 ± 5.6 μg/mL; EC50 = 157.7 ± 34.9 μg/mL, resp.). However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis. PMID:26693221

  13. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    PubMed Central

    Leouifoudi, Inass; Harnafi, Hicham; Zyad, Abdelmajid

    2015-01-01

    Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE) and the olive cake extracts (OCE). Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90 ± 0.728 g/L versus 0.95 ± 0.017 mg/g). The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS). With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH) and emulsion (BCBT) systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50 = 12.1 ± 5.6 μg/mL; EC50 = 157.7 ± 34.9 μg/mL, resp.). However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis. PMID:26693221

  14. Characterization of the harmful effect of olive mill wastewater on spearmint.

    PubMed

    El Hassani, F Z; Zinedine, A; Amraoui, M Bendriss; Errachidi, F; Alaoui, S Mdaghri; Aissam, H; Merzouki, M; Benlemlih, M

    2009-10-30

    In this study, changes in viability, biomass production, essential oil yield and essential oil composition of Mentha spicata L. (spearmint) exposed to olive mill wastewater (OMW) were investigated. Spearmint cuttings were sensitive to OMW and, after 6h of incubation in raw or diluted OMW, their viability was null. The short contact of raw OMW with mint cuttings caused an irreversible damage in rhizogenesis and shoots development. Roots were more sensitive to phytotoxicity than shoots. In a field essay, spearmint showed a good capability to recover when OMW was spread at 8 l m(-2) at the vegetative phase of growth (45 days after plantation). At this dose, a slight increase of mostly of the mint essential oil constituents was obtained. When the dose applied was 16 l m(-2), phytotoxicity was manifested by a high reduction of biomass and essential oil yield. The essential oil composition was also affected and a disappearance of many of mint essential oil constituents was observed with an increase of 59% for carvone, the major compound of spearmint essential oil. As far as we know, this is the first report on the effect of field application of OMW on an aromatic plant essential oil yield and composition. PMID:19482423

  15. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    PubMed

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system. PMID:25408073

  16. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.

    PubMed

    Ochando-Pulido, J M; Rodriguez-Vives, S; Hodaifa, G; Martinez-Ferez, A

    2012-10-01

    Management of the effluent from the olive oil industry is of capital importance nowadays, especially in the Mediterranean countries. Most of the scarce existing studies concerning olive mill wastewater (OMW) treatment by means of membrane processes not only do fix their aims simply on achieving irrigation standards, but lack suitable pretreatments against deleterious fouling issues. With the target of achieving the parametric requirements for public waterways discharge or even for reuse in the production process, a bench-scale study was undertaken to evaluate the feasibility of a thin-film composite reverse osmosis (RO) membrane (polyamide/polysulfone) for the purification of OMW. Previously, OMW was pretreated by means of chemical oxidation based on Fenton's reagent, flocculation-sedimentation and biosorption through olive stones. Impacts of the main operating parameters on permeate flux and pollutants rejection of the RO process, as well as fouling on the membrane surface, were examined for removing the significant ionic concentration and remaining organic matter load of the pretreated OMW. Combining operating parameters adequately in a semibatch operating regime ensured high and sustainable permeate flux, yielding over 99.4% and 98.5% removal efficiencies for the chemical oxygen demand and ionic content respectively, as well as complete rejection of phenols, iron and suspended solids. PMID:22771149

  17. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.

    PubMed

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A

    2015-03-21

    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol. PMID:25497019

  18. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-01

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules. PMID:27399282

  19. Milling by product Utilization Research at USDA-ARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the State of California, waste material from olive milling (“alperujo” for 2-phase milling and “pomace” for 3-phase milling) is increasing as the domestic olive oil industry grows. Current best practices, including land application and conversion to animal feed, for disposing of olive milling wa...

  20. Pinoresinol of olive oil decreases vitamin D intestinal absorption.

    PubMed

    Goncalves, Aurélie; Margier, Marielle; Tagliaferri, Camille; Lebecque, Patrice; Georgé, Stéphane; Wittrant, Yohann; Coxam, Véronique; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2016-09-01

    Enriching oils, such as olive oil, could be one solution to tackle the worldwide epidemic of vitamin D deficiency and to better fit with omega 3 (DHA) recommendations. However, data regarding the interactions occurring at the intestinal level between vitamin D and phenols from olive oil are scarce. We first determined the effect of polyphenols from a virgin olive oil, and a virgin olive oil enriched with DHA, on vitamin D absorption in rats. We then investigated the effects of 3 main olive oil phenols (oleuropein, hydroxytyrosol and pinoresinol) on vitamin D uptake by Caco-2 cells. The presence of polyphenols in the olive oil supplemented with DHA inhibited vitamin D postprandial response in rats (-25%, p<0.05). Similar results were obtained with a mix of the 3 polyphenols delivered to Caco-2 cells. However, this inhibitory effect was due to the presence of pinoresinol only. As the pinoresinol content can highly vary between olive oils, the present results should be taken into account to formulate an appropriate oil product enriched in vitamin D. PMID:27041321

  1. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0...

  2. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0...

  3. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0...

  4. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0...

  5. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0...

  6. Valorization of solid olive mill wastes by cultivation of a local strain of edible mushrooms.

    PubMed

    Mansour-Benamar, Malika; Savoie, Jean-Michel; Chavant, Louis

    2013-08-01

    Olive oil industry generates huge quantities of solid olive mill wastes (SOMW), causing environmental damage. Cultivation of edible mushrooms, such as Pleurotus ostreatus is a valuable approach for SOMW valorization. A local strain mycelium (Tizi-Ouzou, Algeria) of P. ostreatus (LPO) was isolated from castor oil plants. Oyster mushroom spawn, produced on barley grains, was used to inoculate wet SOMW, steamed in a traditional steamer during 45 min. The mycelium growth rate on SOMW was first estimated in Petri dish by measuring the surface colonized by the mycelium. The fruit body yields were estimated on culture bags containing 2 kg each of SOMW inoculated at 7% (w/w). The local strain potential was compared with that of a commercial one. Both strains produced high-quality mushrooms, but with low yields. The supplementation of the SOMW with wheat straw at the rate of 10% and 2% of CaCO3 had significantly enhanced the productivity of the two strains, multiplying it by 3.2 for LPO and by 2.6 for CPO. PMID:24018198

  7. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells. PMID:24165748

  8. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    PubMed

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. PMID:26989993

  9. The activity of ozonated olive oil against Leishmania major promastigotes

    PubMed Central

    Rajabi, Omid; Sazgarnia, Ameneh; Abbasi, Fatemeh; Layegh, Pouran

    2015-01-01

    Objective(s): Cutaneous Leishmaniasis is a common and endemic disease in Khorasan province in North-East of Iran. The pentavalant antimony (Sb V) is the mainstay of treatment that has many side effects and resistance to the drug has been reported. The microbicidal effect of ozone was proven in different microorganisms. Since there is no study in this respect and to achieve a low cost and effective treatment, we decided to evaluate the efficacy of ozone against promastigotes of Leishmania major, in vitro. Materials and Methods: Ozonated olive oil was prepared after production of ozone by bubbling ozone-oxygen gas produced by ozone generator through olive oil until it solidified. Promastigotes of L. major were cultivated in two phasic media. After calculation of the number of promastigotes, they were incubated with ozonated olive oil (0, 0.626, 0.938, 1.25, 2.5, 5, 10 mcg/ml) at 28 °c for 24 hr. Parasites survival percentage was evaluated using MTS and microscopic assay, and then compared with Glucantime and non-ozonated olive oil. Results: According to the results, there were significant differences in parasites survival percentage between ozonated olive oil and non-ozonated olive oil, at similar concentrations (P<0.001). Ozonated olive oil was more effective than Glucantime. According to MTS results, Glucantime and ozonated olive oil gel concentrations that are required to inhibit the growth of L. major promastigotes by 50% (IC50), were 165 and 0.002 mg/ml, respectively. Conclusion: Ozonated olive oil has in vitro activity against the promastigotes of L. major and this effect is dose dependent. PMID:26523224

  10. Effect of olive ripening degree on the oxidative stability and organoleptic properties of cv. Nostrana di Brisighella extra virgin olive oil.

    PubMed

    Rotondi, Annalisa; Bendini, Alessandra; Cerretani, Lorenzo; Mari, Matteo; Lercker, Giovanni; Toschi, Tullia Gallina

    2004-06-01

    The evaluation of the influence of olive ripening degree on the stability of extra virgin olive oils by the determination of the oxidative stability index, the DPPH(*) radical test, and the quali-quantitative analysis of phenolic compounds, as well as the study of the variation of their sensory profiles, plays a key role in the assessment of the overall olive oil quality. Olives of the cv. Nostrana di Brisighella grown in the north-central Italian region of Emilia-Romagna were picked at four different stages of ripeness and immediately processed in an experimental mill. The polar extracts of oil samples were submitted to spectrophotometric analysis of total phenols and o-diphenols and to liquid chromatographic determination of their quali-quantitative profile (HPLC-DAD/MSD). To attain a complete description of oil samples, fatty acid composition, ultraviolet indices (K(232), K(270), and deltaK), free acidity degree, and peroxide value were also determined according to the European Union methods stated in Regulation 2568/91 (1, Off. J. Eur. Communities 1991, L248, 1-82). Sensory quantitative descriptive analysis (QDA) and triangular tests were performed to establish the influence of olive ripening degree on the resulting oil's organoleptic properties. The evolution of the analytical parameters studied shows that the ripeness stage of Nostrana di Brisighella olives that yields the best oil corresponds to a Jaén index value between 2.5 and 3.5. Oils produced from olives harvested within this time frame present a superior sensory profile accompanied by the highest possible chemical and nutritional properties. PMID:15161244

  11. Antioxidant activity of phenolic fractions in olive mill wastewater.

    PubMed

    Azaizeh, Hassan; Halahlih, Fares; Najami, Naim; Brunner, Doris; Faulstich, Martin; Tafesh, Ahmed

    2012-10-15

    Olive mill wastewater (OMW) contains a substantial amount of valuable antioxidant phenols that can be recovered for industrial application as food additives and pharmaceuticals. The present study was aimed at extracting different phenolic OMW fractions, and determining their antioxidant potential. Five different OMW fractions were obtained using fractionation techniques, their antioxidant potential determined by DPPH, ORAC and a β-carotene bleaching test. The total phenol level ranged between 115 and 170 mg/l. The phenolic compounds present in individual fractions were identified using the HPLC-PAD method, where the main compounds were hydroxytyrosol, tyrosol, caffeic acid, vanillic acid, verbascoside, oleuropein, ferulic acid, and p-coumaric acid. The five OMW fractions showed different antioxidant levels depending on the test used. DPPH test showed that the fraction of alkyl aromatic alcohols (AAAs) was the best with EC(50) of 20 mg/l and the pure hydroxytyrosol with 2 mg/l. ORAC test showed that AAA and semi hydrolysed total phenol (s-TP) fractions were significantly better than Trolox when compared to 20 mg/l of Trolox. PMID:23442678

  12. Effect of Olive Mill Wastewater Spreading on Soil Properties.

    PubMed

    Vella, Filomena M; Galli, Emanuela; Calandrelli, Roberto; Cautela, Domenico; Laratta, Bruna

    2016-07-01

    The effect of untreated olive mill wastewater (OMW) spreading on chemical and biological soil properties of two different fields located in Campania (Italy) was investigated. Fields were irrigated since 2003 with quantities of about 30 m(3) ha(-1) year(-1), a volume lower than the maximum limit of 80 m(3) ha(-1) year(-1) established by Italian law. Results showed that the addition of OMW, even if repeated for many years, had little impact on pH, electrical conductivity, organic matter, concentrations of main cations and polyphenolic content of both soil plots; moreover, microbial respiration was low during the winter time, but an increase was evident in the second sampling carried out in warm season. This study suggests that OMW, without pre-treatments, can be annually used for crops and tree irrigation. As a consequence, OMW should be a readily and inexpensive source of nutrients that could replace chemical fertilizers which are extensively employed in agricultural practices of Mediterranean countries. PMID:27209544

  13. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    PubMed Central

    Tafesh, Ahmed; Najami, Naim; Jadoun, Jeries; Halahlih, Fares; Riepl, Herbert; Azaizeh, Hassan

    2011-01-01

    Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW). Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%), verbascoside (7.4%), and tyrosol (2.6%). The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria. PMID:21647315

  14. Valorization of treated olive mill wastewater in fertigation practice.

    PubMed

    Mseddi, Salma; Chaari, Leila; Belaid, Chokri; Chakchouk, Ikram; Kallel, Monem

    2016-08-01

    Olive mill wastewater (OMW) brings about a major environmental problem in Tunisia as well as in the other Mediterranean countries. Its strong organic load and its toxicity due to the presence of complex phenolic compounds have dire effects when applied to soil. To overcome this difficulty, the OMW pretreatment was investigated in the present work using the Fenton oxidation reaction with zero-valent iron. Then, this pretreated wastewater was valorized in fertigation practice. The effects of the addition of different concentrations of both treated and raw OMW on soil and cropping system were investigated. The treatment by Fenton oxidation with zero-valent iron could reduce 50 % of COD and decrease 53 % of phenolic compounds. OMW application had a temporary effect on the soil pH and EC. The results showed that the evolution of soil pH and EC was related to the organic matter of the soil which depends on the spread concentrations of raw or treated OMW. After 15-day incubation period, the soil pH and EC tended to stabilize and return to the control level. Moreover, this stabilization is faster in treated OMW than that in raw OMW especially for concentrations as high as 3 and 4 %. Plants cultivated with treated OMW showed an increase in their germination. The results pointed an improvement in the stem length of plants which is almost similar to that of the control for both pea and tomato, especially for high concentrations of 3 and 4 %. PMID:25794584

  15. Anaerobic digestion challenge of raw olive mill wastewater.

    PubMed

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  16. Characterization of Virgin Olive Oils with Two Kinds of 'Frostbitten Olives' Sensory Defect.

    PubMed

    Romero, Inmaculada; Aparicio-Ruiz, Ramón; Oliver-Pozo, Celia; Aparicio, Ramón; García-González, Diego L

    2016-07-13

    The frost of olives on the tree due to drops of temperature can produce sensory defects in virgin olive oil (VOO). Temperature changes can be abrupt with freeze-thaw cycles or gradual, and they produce sensory and chemical variations in the oil. This study has analyzed the quality parameters (free fatty acids, peroxide value, UV absorption, and fatty acid ethyl esters) and phenols of VOOs described with the 'frostbitten olives' sensory defect. The phenol profiles allowed grouping these VOOs into two types. One of them, characterized with "soapy" and "strawberry-like" aroma descriptors, had higher values of 1-acetoxypinoresinol, pinoresinol, and aldehydic form of the ligstroside aglycon. The other one, characterized with "wood" and "humidity" descriptors, had higher concentrations of luteolin and apigenin. Most VOOs (75%) from the first group, associated with abrupt drops of temperature, have concentration of phenols higher than the value established by the health claim on olive oil polyphenols approved by the European Commission. PMID:27315238

  17. Olive Fruit Phenols Transfer, Transformation, and Partition Trail during Laboratory-Scale Olive Oil Processing.

    PubMed

    Jerman Klen, Tina; Golc Wondra, Alenka; Vrhovšek, Urška; Sivilotti, Paolo; Vodopivec, Branka Mozetič

    2015-05-13

    This work is the most comprehensive study on the quantitative behavior of olive fruit phenols during olive oil processing, providing insight into their transfer, transformation, and partition trail. In total, 69 phenols were quantified in 6 olive matrices from a three-phase extraction line employing ultra high pressure liquid chromatography-diode array detection analysis. Crushing had a larger effect than malaxation in terms of phenolic degradation and transformation, resulting in several new evolutions of respective derivatives. The peel and pulp together confined 95% of total fruit phenols, while stone only 5%. However, only 0.53% of all ended-up in olive oil, nearly 6% in wastewater, and 48% in pomace. Secoiridoids were the predominant class in all matrices, though represented by different individuals. Their partition behavior was rather similar to other phenolic classes, where with few minor exceptions only aglycones were partitioned to the oil, while other glycosides were lost with the wastes. PMID:25891748

  18. Bio-Friendly Alternatives for Xylene – Carrot oil, Olive oil, Pine oil, Rose oil

    PubMed Central

    Nandan, Surapaneni Rateesh Kumar; Kulkarni, Pavan G.; Rao, Thokala Madhusudan; Palakurthy, Pavan

    2015-01-01

    Background Xylene is a flammable liquid with characteristic petroleum or aromatic odours, it is miscible with most of the organic solvents and paraffin wax. Xylene clears tissues rapidly and renders transparency, facilitating clearing endpoint determination, this made it to be used as a clearing agent in routine histopathological techniques. Even though it is a good clearing agent, it causes damage to the tissues by its hardening effect particularly those fixed in non-protein coagulant fixatives. Apart from these tissue effects, it has severe, long lasting ill effects on health of technicians and pathologists when exposed to longer duration. Hence in order to overcome these effects and replace xylene with a safe alternative agent, the present study was carried out to assess the clearing ability and bio-friendly nature of four different natural oils i.e., Carrot oil, Olive oil, Pine oil and Rose oil in comparison with that of Xylene. According to Bernoulli’s principle of fluid dynamics, to decrease viscosity of these oils and increase penetration into tissues for rapid clearing hot-air oven technique was used. Aims To assess:1) Clearing ability and bio-friendly nature of four different oils i.e., Carrot oil, Olive oil, Pine oil, Rose oil in comparison with that of xylene, 2) Application of Bernoulli’s principle of fluid dynamics in rapid clearing of tissues by using hot-air oven. Materials and Methods Forty different formalin fixed tissue samples were taken. Each sample of tissue was cut into 5 bits (40x5=200 total bits) which were subjected for dehydration in differential alcohol gradients. Later, each bit is kept in 4 different oils such as Carrot oil, Olive oil, Pine oil, Rose oil and xylene and transferred into hot-air oven. Further routine steps of processing, sectioning and staining were done. Individual sections cleared in four different oils were assessed for cellular architecture, staining quality and a comparison was done between them. Results Results

  19. Origin assessment of EV olive oils by esterified sterols analysis.

    PubMed

    Giacalone, Rosa; Giuliano, Salvatore; Gulotta, Eleonora; Monfreda, Maria; Presti, Giovanni

    2015-12-01

    In this study extra virgin olive oils of Italian and non-Italian origin (from Spain, Tunisia and blends of EU origin) were differentiated by GC-FID analysis of sterols and esterified sterols followed by chemometric tools. PCA allowed to highlight the high significance of esterified sterols to characterise extra virgin olive oils in relation to their origin. SIMCA provided a sensitivity and specificity of 94.39% and 91.59% respectively; furthermore, an external set of 54 extra virgin olive oils bearing a designation of Italian origin on the labelling was tested by SIMCA. Prediction results were also compared with organoleptic assessment. Finally, the poor correlation found between ethylesters and esterified sterols allowed to hazard the guess, worthy of further investigations, that esterified sterols may prove to be promising in studies of geographical discrimination: indeed they appear to be independent of those factors causing the formation of ethyl esters and related to olive oil production. PMID:26041193

  20. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    PubMed Central

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  1. Olive mill wastewater treatment using a simple zeolite-based low-cost method.

    PubMed

    Aly, Anwar A; Hasan, Yousef N Y; Al-Farraj, Abdullah S

    2014-12-01

    Olive mill wastewater (OMW), a liquid by-product of the olive oil industry, represents a severe environmental problem owing to its high pollution load. In this study, successive columns containing different types of natural materials were investigated for their OMW treatment efficiency. Passing OMW through three columns of gravel, fine sand, and a mixture of acidified cotton and zeolite (weight:weight ratio of cotton:clinoptilolite of 2:1), followed by treatment with activated charcoal (AC) and lime, was the best treatment in terms of the quality of water obtained. This treatment decreased concentrations of [Formula: see text] , B, K, P, and total fat in OMW by mean percentages of 78.0, 92.4, 66.6, 48.3, and 93.3%, respectively. Furthermore, it decreased OMW turbidity and electric conductivity (EC) by 96.8 and 48.4%, respectively. Most contaminants were removed from the OMW in the cotton/clinoptilolite column owing to the high sorption affinity of clinoptilolite on its active sites. The AC was efficient for organic particle removal; meanwhile, lime was used to raise the pH of the treated OMW (TOMW) from 2.9 to 5.1. This simple method enables us to obtain environmentally friendly TOMW that can be safely used for irrigation. PMID:25113228

  2. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles). PMID:22179541

  3. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.

    PubMed

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  4. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    PubMed Central

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  5. Soil spreading of liquid olive mill processing wastes impacts leaching of adsorbed terbuthylazine.

    PubMed

    Aharonov-Nadborny, R; Raviv, M; Graber, E R

    2016-08-01

    Olive mill waste water (OMWW) is a major byproduct of the three phase olive oil production process. OMWW has high acidity (pH ∼ 4-5), high salt content (EC ∼ 5-10 mS cm(-1)), extremely high biological and chemical oxygen demand (BOD and COD up to 100,000 and 220,000 mg L(-1), respectively), and also high concentrations of organic compounds such as phenols and polyphenols. As a result, OMWW cannot be freely discharged into domestic wastewater treatment plants, but on-site treatment is very expensive and not sufficiently effective. Uses for OMWW such as agricultural recycling and co-composting were found to be impractical or expensive. Thus, OMWW is frequently spread on agricultural land for disposal. However, excessive or uncontrolled spreading of such organic-rich and saline wastewater could have many deleterious effects on soil quality, including salinization, phytotoxicity, or contaminant movement. The impact of OMWW on the leaching of adsorbed terbuthylazine, a soil-applied herbicide, was tested in four soils of varying physical and chemical properties. Although terbuthylazine solubility in OMWW is significantly higher than in water, leaching of adsorbed terbuthylazine from OMWW-treated soils was less than from control treatments. Low soil organic carbon and clay contents were major factors that contributed to reduced terbuthylazine leaching after soil treatment with OMWW. PMID:27179239

  6. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    NASA Astrophysics Data System (ADS)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  7. Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater.

    PubMed

    Nadour, Malika; Laroche, Celine; Pierre, Guillaume; Delattre, Cedric; Moulti-Mati, Farida; Michaud, Philippe

    2015-09-01

    Olive mill wastewater (OMWW), the main waste product of olive oil extraction process, was investigated as a source of polysaccharides. The yield of alcohol insoluble residue (AIR) was 20.5 % based on the dry matter of OMWW. Extraction with water gave water soluble (WSF) and insoluble (WIF) fractions from AIR with yields of 13.3 % (w/w) and 3.7 % (w/w) based on the dry matter, respectively. Chemical composition and monosaccharide analysis indicated that glucose was the main monosaccharide of these extracts in addition to galactose, arabinose, rhamnose, and galacturonic acid. Prebiotic and antioxidant activities of polysaccharidic fractions from OMWW were evaluated. Results gave evidence for their scavenging capacity toward the 2,2'-diphenyl-1-picrylhydrazyle (DPPH) (IC50 value of 89.43 μg/mL) and hydroxyl radicals (IC50 value of 158.70 μg/mL), resistance toward artificial human gastric juice, and ability to be fermented by Lactobacilli strains. PMID:26189104

  8. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants.

    PubMed

    Asfi, Maria; Ouzounidou, Georgia; Panajiotidis, Sampson; Therios, Ioannis; Moustakas, Michael

    2012-06-01

    Olive mill-wastewater (OMW), a by-product of the olive oil extraction process, represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:10 and 1:20) on growth, photosynthesis, proline and sugar accumulation as well as on pollen morphology of spinach (Spinacia oleracea L.) plants, to evaluate the application of OMW dilutions as pretreatment technique, prior to land disposal. Biomass, height, total chlorophyll and leaf area of spinach declined progressively with decreasing OMW dilution. Since fatty acids and phenolic compounds (present in the OMW) are considered precursors in the polymerization of sporopollenin, we suggest that under OMW treatment spinach plants seem to 'direct' the excess of these substances in the production and formation of increased pollen grains. Proline did not accumulate under OMW stress, but decreased possible due to transport to pollens in response to increased demand to over-production of pollens. Both OMW dilutions resulted in a decreased efficiency of PSII functioning and an increased excitation pressure (1-q(p)). It is concluded that, higher than 1:20 OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment. PMID:22455663

  9. Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

    PubMed

    Koutrotsios, Georgios; Zervakis, Georgios I

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  10. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  11. Effect of olive mill wastewater application on soil water repellency mitigation

    NASA Astrophysics Data System (ADS)

    Diamantis, V.; Gazani, E.

    2009-04-01

    Olive mill wastewater (OMW) is a by-product of olive oil production and it is generated in large quantities in the Mediterranean region. Waste disposal is a growing problem and therefore there is an increasing interest in sustainable (economical and environmental) reuse of this material. In this study OMW was applied in water drops on a water repellent sandy soil and the time until complete penetration was recorded. For this reason different dilutions of OMW were used while comparison was made with the standard procedure of the water drop penetration time (WDPT) using de-ionised water. The results of this study showed that with increasing OMW concentration the lower the water penetration time was. Analyzing the OMW samples using Capillary Gas Chromatography revealed increased concentrations of low molecular fatty acids (mainly acetic, propionic, butyric and valeric). Direct application of OMW on the field combined with the rapid infiltration into the soil matrix, is an interesting option to mitigate soil water repellency and deplete hydrophobic compounds.

  12. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    PubMed

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process. PMID:15747599

  13. Oxidative Stress Induced in Sunflower Seedling Roots by Aqueous Dry Olive-Mill Residues

    PubMed Central

    Garrido, Inmaculada; García-Sánchez, Mercedes; Casimiro, Ilda; Casero, Pedro Joaquin; García-Romera, Inmaculada; Ocampo, Juan Antonio; Espinosa, Francisco

    2012-01-01

    The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress. PMID:23049960

  14. Reduction of virgin olive oil bitterness by fruit cold storage.

    PubMed

    Yousfi, Khaled; Cayuela, José A; García, José M

    2008-11-12

    Green mature olives (Olea europaea L. cv. 'Manzanilla', 'Picual', and 'Verdial') were stored at 5 degrees C, and the oil extracted from them showed a middle intensity level of sensory-evaluated bitterness. The storage times necessary for this reduction were different for the three varieties tested, requiring 4, 6, and 8 weeks, respectively, for 'Manzanilla', 'Picual', and 'Verdial' olives. The level of commercial quality of the extracted oil did not deteriorate as a consequence of previous fruit storage. Olives matured during refrigeration at 5 degrees C, as the increase of maturation index and the decrease of color index and fruit firmness indicated. Similarly, as the fruit storage period progressed, the total phenolic compound content of the extracted oils decreased. Although the use of green mature olives may require a more prolonged storage time, it allows for a better postharvest handling of the fruits, which are more resistant to physical damage or fungal infections than the riper ones. PMID:18937491

  15. Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters.

    PubMed

    Aguilera, Margarita; Quesada, Maria Teresa; Del Aguila, Víctor Guerra; Morillo, José Antonio; Rivadeneyra, Maria Angustias; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2008-09-01

    A total of 10 bacterial strains were isolated from a compost of corn treated with olive mill wastewaters (OMW) and selected by their capacity to synthesize exopolysaccharides (EPS). Morphological, physiological, biochemical and nutritional tests were used for a phenotypic study. A numerical analysis showed that all strains were 90% similar to each other. A DNA-DNA hybridization assay confirmed that all the strains belonged to Paenibacillus jamilae species. All the characterized strains were able to produce EPS growing on OMW batch cultures. The strain which was able to produce the highest EPS yield was chosen to perform an assay for testing its putative detoxifying activity, and it showed to reduce more than half the toxic capacity of the OMW. The results presented in this study, indicated the possible perspectives for using these bacterial strains to produce EPS and contribute to the bioremediation of the waste waters that are produced in the olive oil elaboration process. PMID:18054485

  16. Treatment of olive-mill wastewater from a two-phase process by chemical oxidation on an industrial scale.

    PubMed

    Nieto, L M; Hodaifa, G; Vives, S R; Casares, J A G; Driss, S B; Grueso, R

    2009-01-01

    This study offers a solution for reducing the environmental effect of wastewaters generated by the olive-oil industry. Olive-oil companies produce variable quantities of wastewaters, which require treatment for disposal or reuse. Today, regulations are becoming increasingly strict regarding the parameters measured in these effluents. In Spain, the resolution by the president of the Hydrographical Confederation of the Guadalquivir on water use 2004 set parameter limits as follows: pH = 6.0-9.0, total suspended solid = 500 mg/L; and COD and BOD(5) (20)=1,500 mg O(2)/L. For the year 2006, maximum values for COD and BOD(5) (20) were fixed at 1,000 mg O(2)/L. To solve this problem, a study has been made to derive irrigation water from the above-mentioned effluents through chemical oxidation based on the Fenton's process. This would be first step towards using a closed-circuit system in olive-oil mills to treat and reuse effluents. PMID:19474497

  17. Characterization of olive mill wastes composts and their humic acids: stability assessment within different particle size fractions.

    PubMed

    Masmoudi, Saoussan; Jarboui, Raja; El Feki, Hafedh; Gea, Teresa; Medhioub, Khaled; Ammar, Emna

    2013-01-01

    Compost stability assessment within different particle size fractions was studied. Humic acids (HAs) were extracted from two kinds of co-composts prepared using evaporated olive mill wastewater (OMSW) or solid waste from olive oil extraction (OC) and poultry manure (PM). The elemental composition, Fourier-transform infrared spectroscopy (FTIR) and 13C-NMR (nuclear magnetic resonance) analysis and molecular weight distribution were investigated to assess the composted organic matter stability in different fractions. In both composts, organic matter content was higher in the > 2 mm fractions than in the < 2 mm fractions, because of fractions' richness in hardly biodegradable compounds. Spectroscopic analysis revealed that OMSW compost fraction < 2 mm and OC compost 2-4 mm fraction were rich in aromatic compounds and oxygenated groups but poor in aliphatic structure. Moreover, the HA distribution reflected a high stabilized compost < 2 mm fraction, especially from evaporated effluent known as phytotoxic. However, the 4-6 mm fraction included high aliphatic compounds besides aromatic structures and did not exhibit any phytotoxicity, confirming compost fraction maturity. However, the low C/N ratio, the high OMSW compost mineral nutritive elements and the high aromatic C rate reflected highly stabilized products. Consequently, the performance of both prepared organic fertilizers for agriculture use contested the previous negative effect ascribed to olive mill wastewater. PMID:23837330

  18. Characterization of virgin olive oils produced with autochthonous Galician varieties.

    PubMed

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Simal-Gandara, Jesus

    2016-12-01

    The interest of Galician oil producers (NW Spain) in recovering the ancient autochthonous olive varieties Brava and Mansa has increased substantially in recent years. Virgin olive oils produced by co-crushing both varieties in two different proportions, reflecting the usual and most common practice adopted in this region, have gradually emerged for the production of virgin olive oils. Herein, the sensory and chemical characteristics of such oils were characterized by quality and genuineness-related parameters. The results of chemical analysis are discussed in terms of their effective contribution to the sensory profile, which suggests useful recommendations for olive oil producers to improve the quality of oils. Antioxidant compounds, together with aromas and coloured pigments were determined, and their contribution in determining the functional value and the sensory properties of oils was investigated. In general, given the high levels of phenolic compounds (ranging between 254 and 375mg/kg oil), tocopherols (about 165mg/kg oil) and carotenoids (10-12mg/kg oil); these are oils with long stability, especially under dark storage conditions, because stability is reinforced with the contribution of chlorophylls (15-22mg/kg oil). A major content of phenolic compounds, as well as a predominance of trans-2-hexen-1-al within odor-active compounds (from 897 to 1645μg/kg oil), responsible for bitter sensory notes. This characterization allows to developing new antioxidant-rich and flavour-rich VOOs, when co-crushing with a higher proportion of Brava olives, satisfying the consumers' demand in having access to more healthy dishes and peculiar sensory attributes. PMID:27374520

  19. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    PubMed

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p<0.05) in terms of SCOD parameter, but not for raw OMW (p>0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (p<0.05). Anaerobic

  20. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania

    2016-07-15

    The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. PMID:26948650

  1. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability

    PubMed Central

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed

    2016-01-01

    Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/ PMID:26827236

  2. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability.

    PubMed

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed

    2016-01-01

    Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/. PMID:26827236

  3. Olive oil consumption and non-alcoholic fatty liver disease

    PubMed Central

    Assy, Nimer; Nassar, Faris; Nasser, Gattas; Grosovski, Maria

    2009-01-01

    The clinical implications of non-alcoholic fatty liver diseases (NAFLD) derive from their potential to progress to fibrosis and cirrhosis. Inappropriate dietary fat intake, excessive intake of soft drinks, insulin resistance and increased oxidative stress results in increased free fatty acid delivery to the liver and increased hepatic triglyceride (TG) accumulation. An olive oil-rich diet decreases accumulation of TGs in the liver, improves postprandial TGs, glucose and glucagon-like peptide-1 responses in insulin-resistant subjects, and upregulates glucose transporter-2 expression in the liver. The principal mechanisms include: decreased nuclear factor-kappaB activation, decreased low-density lipoprotein oxidation, and improved insulin resistance by reduced production of inflammatory cytokines (tumor necrosis factor, interleukin-6) and improvement of jun N-terminal kinase-mediated phosphorylation of insulin receptor substrate-1. The beneficial effect of the Mediterranean diet is derived from monounsaturated fatty acids, mainly from olive oil. In this review, we describe the dietary sources of the monounsaturated fatty acids, the composition of olive oil, dietary fats and their relationship to insulin resistance and postprandial lipid and glucose responses in non-alcoholic steatohepatitis, clinical and experimental studies that assess the relationship between olive oil and NAFLD, and the mechanism by which olive oil ameliorates fatty liver, and we discuss future perspectives. PMID:19370776

  4. A focus on pressure-driven membrane technology in olive mill wastewater reclamation: state of the art.

    PubMed

    Ochando-Pulido, J M; Martinez-Ferez, A

    2012-01-01

    Direct disposal of the heavily polluted effluent from olive oil industry (olive mill wastewater, OMW) to the environment or to domestic wastewater treatment plants is actually prohibited in most countries, and conventional treatments are ineffective. Membranes are currently one of the most versatile technologies for environmental quality control. Notwithstanding, studies on OMW reclamation by membranes are still scarce, and fouling inhibition and prediction to improve large-scale membrane performance still remain unresolved. Consequently, adequately targeted pretreatment for the specific binomium membrane-feed, as well as optimized operating conditions for the proper membranes, is today's challenge to ensure threshold flux values. Several membrane materials, configurations and pore sizes have been elucidated, and also different pretreatments including sedimentation, centrifugation, biosorption, sieving, filtration and microfiltration, various types of flocculation as well as advance oxidation processes have been applied so far. Recovery of potential-value compounds, such as a variety of polyphenols highlighting oleuropein and hydroxytyrosol, has been attempted too. All this research should constitute the starting point to proceed with OMW purification beyond recycling for irrigation or depuration for sewer discharge, with the aim of complying with standards to reuse the effluent in the olive oil production process, together with cost-effective recovery of added-value compounds. PMID:23109564

  5. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    PubMed

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. PMID:26775971

  6. Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...

  7. Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the drying behavior of 2-phase olive mill waste (2POMW) under isothermal microwave-convection drying conditions. 2POMW samples were dried in a thin layer in a variable-power pilot microwave oven with impinging air, using a feedback controller to maintain...

  8. Reduced toxicity of olive mill waste waters by oxidative coupling with biomimetic catalysis.

    PubMed

    Celano, Giuseppe; Smejkalová, Daniela; Spaccini, Riccardo; Piccolo, Alessandro

    2008-07-01

    Large quantities of environmentally toxic olive mill waste waters (OMWW) result from olive oil production worldwide. A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride (FePha) was used as biomimetic catalystto oxidatively couple toxic phenols in OMWW fractions obtained by micro-, ultra-, and nanofiltration, and reverse osmosis. The occurrence of oxidative coupling in different OMWW size-fractions was assessed by high performance size exclusion chromatography (HPSEC), before and after conformational disruption with acetic acid, and measurements of proton spin-lattice relaxation time in the rotating frame (T1(rho)H) through 13C-CPMAS-NMR spectroscopy. The concurrent reduction in toxicity of OMWW size-fractions brought about by the FePha treatment was monitored by an algal bioassay. HPSEC chromatograms of OMWW samples subjected to catalyzed coupling showed apparent weight-average molecular weight (Mwa) values varying from 18 to 185% larger than for control. Moreover, when such FePha-treated fractions were added to acetic acid prior to HPSEC, the Mwa values still ranged from 14 to 162% larger than for control fractions similarly treated with acetic acid. This evidence of polymerization among toxic phenols was confirmed by T1(rho)(H) values which were significantly enhanced by the FePha treatment, thereby indicating an increased conformational rigidity of OMWW materials. These molecular changes were reflected in a significantly reduced toxicity exerted on microalgae by the OMWW size-fractions subjected to catalyzed oxidative couplings. Our results suggest that OMWW can be effectively treated with a biomimetic catalyst to induce oxidative phenol polymerization and reduce their toxicity before amendments to soils or other disposal means. PMID:18678023

  9. Olive oil phenolic compounds affect the release of aroma compounds.

    PubMed

    Genovese, Alessandro; Caporaso, Nicola; Villani, Veronica; Paduano, Antonello; Sacchi, Raffaele

    2015-08-15

    Twelve aroma compounds were monitored and quantified by dynamic headspace analysis after their addition in refined olive oil model systems with extra virgin olive oil (EVOO) biophenols to simulate EVOO aroma. The influence of polyphenols on aroma release was studied under simulated mouth conditions by using human saliva, and SPME-GC/MS analysis. While few differences were observed in orthonasal assay (without saliva), interesting results were obtained for retronasal aroma. Biophenols caused generally the lowest headspace release of almost all volatile compounds. However, only ethyl esters and linalool concentrations were significantly lower in retronasal than orthonasal assay. Saliva also caused higher concentration of hexanal, probably due to hydroperoxide lyase (HPL) action on linoleyl hydroperoxides. Epicatechin was compared to EVOO phenolics and the behaviour was dramatically different, likely to be due to salivary protein-tannin binding interactions, which influenced aroma headspace release. These results were also confirmed using two extra virgin olive oils. PMID:25794752

  10. Modeling Free Energies of Solvation in Olive Oil

    PubMed Central

    Chamberlin, Adam C.; Levitt, David G.; Cramer, Christopher J.; Truhlar, Donald G.

    2009-01-01

    Olive oil partition coefficients are useful for modeling the bioavailability of drug-like compounds. We have recently developed an accurate solvation model called SM8 for aqueous and organic solvents (Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011) and a temperature-dependent solvation model called SM8T for aqueous solution (Chamberlin, A. C.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2008, 112, 3024). Here we describe an extension of SM8T to predict air–olive oil and water–olive oil partitioning for drug-like solutes as functions of temperature. We also describe the database of experimental partition coefficients used to parameterize the model; this database includes 371 entries for 304 compounds spanning the 291–310 K temperature range. PMID:19434923

  11. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions

    PubMed Central

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63% of total transfer rate) and for flavonoids (0.18%–0.67% of total transfer rate). ‘Picual’ was the cultivar that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  12. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  13. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters.

    PubMed

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  14. Co-treatment of olive-mill and urban wastewaters by experimental stabilization ponds.

    PubMed

    Jail, A; Boukhoubza, F; Nejmeddine, A; Sayadi, S; Hassani, L

    2010-04-15

    Olive oil mill wastewater (OMW) constitutes a source of environmental problems in Morocco due to its significantly high organic load, its phytotoxic properties and its relatively low biodegradability. An effective option for its disposal is its agricultural use after co-treatment with urban wastewater (UWW). The main objective of this investigation was to evaluate the potential of this co-treatment, using experimental waste stabilization ponds, in removing OMW phytotoxicity. We examined the influence of the organic load, at the entry of the treatment system, on the evolution of some physicochemical (chemical oxygen demand and polyphenols) and microbiological (fecal coliforms and fecal streptococci) parameters. The results showed a removal of the organic, phenolic and microbial load throughout the treatment which differed from one system to another according to the OMW load applied to each system. The results concerning the germination assays of Zea mays and Solanum lycopersicum suggested that the co-treatment of OMW with UWW would decrease the phytotoxicity of this waste. PMID:20018449

  15. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  16. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products. PMID:27138726

  17. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    PubMed

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH. PMID:23880238

  18. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. PMID:26847164

  19. Chemometric analysis for discrimination of extra virgin olive oils from whole and stoned olive pastes.

    PubMed

    De Luca, Michele; Restuccia, Donatella; Clodoveo, Maria Lisa; Puoci, Francesco; Ragno, Gaetano

    2016-07-01

    Chemometric discrimination of extra virgin olive oils (EVOO) from whole and stoned olive pastes was carried out by using Fourier transform infrared (FTIR) data and partial least squares-discriminant analysis (PLS1-DA) approach. Four Italian commercial EVOO brands, all in both whole and stoned version, were considered in this study. The adopted chemometric methodologies were able to describe the different chemical features in phenolic and volatile compounds contained in the two types of oil by using unspecific IR spectral information. Principal component analysis (PCA) was employed in cluster analysis to capture data patterns and to highlight differences between technological processes and EVOO brands. The PLS1-DA algorithm was used as supervised discriminant analysis to identify the different oil extraction procedures. Discriminant analysis was extended to the evaluation of possible adulteration by addition of aliquots of oil from whole paste to the most valuable oil from stoned olives. The statistical parameters from external validation of all the PLS models were very satisfactory, with low root mean square error of prediction (RMSEP) and relative error (RE%). PMID:26920315

  20. Performance Modeling and Cost Analysis of a Pilot-Scale Reverse Osmosis Process for the Final Purification of Olive Mill Wastewater

    PubMed Central

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-01-01

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated. PMID:24957058

  1. Transesterification of Waste Olive Oil by "Candida" Lipase

    ERIC Educational Resources Information Center

    Shen, Xiangping; Vasudevan, Palligarnai T.

    2008-01-01

    Biodiesel was produced by transesterification of waste olive oil with methanol and Novozym [R] 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, reaction temperature, and mixing speed on biodiesel yield was determined. The effect of different acyl acceptors and/or solvents on biodiesel yield was also evaluated.…

  2. Polycyclic aromatic hydrocarbons in olive oils on the Italian market.

    PubMed

    Menichini, E; Bocca, A; Merli, F; Ianni, D; Monfredini, F

    1991-01-01

    The six olive oils and seven virgin olive oils which are most consumed in Italy were analysed for 28 polycyclic aromatic hydrocarbons (PAHs). The aim was to evaluate whether a carcinogenic hazard for the general population can derive from the dietary intake of this food, which is consumed particularly highly in the Mediterranean area. The analytical method involved extraction by liquid-liquid partition, filtration on silica gel, clean-up by thin-layer chromatography on silica gel, and analysis by high-resolution gas chromatography with a flame ionization detector. The 3- and 4-ring PAHs which are most abundant in the environment were found in all samples, at individual levels up to ca. 40 micrograms/kg (for phenanthrene); no important difference was observed between olive oils and virgin olive oils. PAHs which are most suspected of being carcinogenic for humans were not detected (limit of detection, ca. 3 micrograms/kg). The average yearly intake of the detected PAHs through this food was estimated at ca. 0.56 mg per capita. PMID:1778272

  3. Olive Oil and its Potential Effects on Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  4. Phenolic compounds and antioxidant capacity of virgin olive oil.

    PubMed

    Franco, Ma Nieves; Galeano-Díaz, Teresa; López, Oscar; Fernández-Bolaños, José G; Sánchez, Jacinto; De Miguel, Concepción; Gil, Ma Victoria; Martín-Vertedor, Daniel

    2014-11-15

    The characterisation of virgin olive oil from Arbequina, Carrasqueña, Corniche, Manzanilla Cacereña, Morisca, Picual, and Verdial de Badajoz varieties according to the individual phenolic compounds at different ripening stage was carried out. In all olive oil varieties studied, secoiridoid derivatives were most abundant, followed by phenolic alcohols, flavonoids and phenolic acids. The secoiridoid derivatives of hydroxytyrosol were the most important complex phenols for Picual and Carrasqueña, whereas the tyrosol derivatives were the major ones found in Manzanilla Cacereña, and Verdial de Badajoz. For secoiridoid derivatives of hydroxytyrosol and tyrosol, Arbequina was the oil variety showing the lowest concentration. Tyrosol, hydroxytyrosol, vanillic acid, p-cumaric acid, luteolin, and apigenin levels were greater in early harvested samples in almost all oils analysed. Antioxidant activity measurements (antiradical, lipid peroxide inhibition, H2O2 and NO scavenging) were also accomplished for the seven varieties in the first ripening stage. PMID:24912728

  5. Olive oil exhibits osteoprotection in ovariectomized rats without estrogenic effects

    PubMed Central

    ZHENG, XIAOHUA; HUANG, HUIJUAN; ZHENG, XIAOBING; LI, BAOHENG

    2016-01-01

    The present study was designed to evaluate the effect of olive oil on bone and uterus in ovariectomized rats. A total of 34 surgically ovariectomized or sham-operated virgin Sprague-Dawley rats were divided into four groups: i) Sham-operated control rats (sham group); ii) Ovariectomized rats (OVX group); iii) Olive oil-supplemented ovariectomized rats (olive group); and iv) Diethylstilbestrol-supplemented ovariectomized rats (E2 group). At 12 weeks following left ventricular blood sacrificed to detect plasma estradiol (E2), interleukin-1β (IL-1β) and IL-6 levels. Bone mineral density (BMD) of the lumbar spine was evaluated using dual-energy X-ray absorptiometry, and the left femur proximal 1/3 slices were observed using transmission electron microscopy. Uterine wet weight and the uterus index (ratio of uterine wet weight and body weight) were compared, and the uterine endometrium was observed using a light microscope. In the OVX group, serum E2 was significantly lower and IL-1β and IL-6 levels were significantly higher compared with the sham group. By contrast, serum E2 levels increased and IL-1β levels decreased in the olive group, but showed no significant difference compared with the sham group. The lumbar spine BMD in the olive group was increased compared with OVX group. Electron microscopy revealed sparse collagen fibers in the OVX group, with decreased density and multi-cavity, showing pathological features of osteoporosis. By contrast, the situation was improved in the E2 and olive groups, in which organelles such as the rough endoplasmic reticulum, mitochondria and Golgi apparatus were visible and active. Compared with the sham group rats, the uterine wet weight and uterine index decreased in the OVX and olive groups; however, no statistically significant difference was observed in the E2 group. Furthermore, endometrial hyperplasia was not observed in the olive group, which were apparently different from E2 group. The present results suggest that olive

  6. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine

    PubMed Central

    Leishman, Emma

    2016-01-01

    Background Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methods Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Results Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Conclusions Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil. PMID:26565552

  7. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    PubMed

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. PMID:24799245

  8. Involvement of microbial populations during the composting of olive mill wastewater sludge.

    PubMed

    Abid, N; Chamkha, M; Godon, J J; Sayadi, S

    2007-07-01

    Olive mill waste water sludge obtained by the electro-Fenton oxidation of olive mill waste water was composted in a bench scale reactor. The evolution of microbial species within the composter was investigated using a respirometric test and by means of both cultivation-dependent and independent approaches (Polymerase Chain Reaction-Single Strand Conformation Polymorphism, PCR SSCP). During the period of high respiration rate (7-24 days), cultivation method showed that thermophilic bacteria as well as actinomycetes dominated over eumycetes. During the composting process, the PCR-SSCP method showed a higher diversity of the bacterial community than the eukaryotic one. After 60 days of composting, the compost exhibited a microbial stability and a clear absence of phytotoxicity. PMID:17674648

  9. Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes.

    PubMed

    Panizza, Marco; Cerisola, Giacomo

    2006-03-01

    Olive mill wastewater is characterized by very high chemical oxygen demand (COD) values and contains high concentrations of polyphenols that inhibit the activity of micro-organisms during biological oxidations. In this paper, the applicability of electrochemical oxidation of a real olive-mill wastewater was studied by performing galvanostatic electrolysis using parallel plate electrodes. A mixed titanium and ruthenium oxide (Ti/TiRuO2) was used as anode and stainless steel as cathode. The effect of chloride concentration and applied current on the removal of COD, aromatic content and colour was investigated. The experimental results showed that an effective electrochemical oxidation was achieved in which the wastewater was decolourised and the COD and aromatic content completely eliminated. In particular, the mineralisation took place by indirect oxidation, mediated by active chlorine, and the COD removal rate was enhanced by the addition of 5 g L(-1) of NaCl to the wastewater and by increasing the applied current. PMID:16510168

  10. Olive (Olea europaea L.) tree nitrogen status is a key factor for olive oil quality.

    PubMed

    Erel, Ran; Kerem, Zohar; Ben-Gal, Alon; Dag, Arnon; Schwartz, Amnon; Zipori, Isaac; Basheer, Loai; Yermiyahu, Uri

    2013-11-27

    The influence of macronutrient status on olive oil properties was studied for three years. Data were analyzed by a multivariate model considering N, P, K, and fruiting year as explanatory factors. Oil quality parameters were primarily associated with N concentration in leaves and fruits which increased with N in irrigation solution. The effect of P on oil quality was mainly indirect since increased P availability increased N accumulation. The potassium level had negligible effects. The oil phenolic content decreased linearly as a function of increased leaf N, indicating protein-phenol competition in leaves. The overall saturation level of the fatty acids decreased with fruit N, resulting in increased polyunsaturated fatty acids. Free fatty acids increased with increased levels of fruit N. High fruit load tended to reduce fruit N and subsequently improve oil quality. The effect of N on oil properties depended solely on its concentration in leaves or fruits, regardless of the cause. PMID:24245487

  11. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12

    PubMed Central

    Carraro, Lisa; Fasolato, Luca; Montemurro, Filomena; Martino, Maria Elena; Balzan, Stefania; Servili, Maurizio; Novelli, Enrico; Cardazzo, Barbara

    2014-01-01

    Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E. coli K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product. Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to phenols extract from olive vegetation water (PEOVW). Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility. Given these anti-biofilm properties PEOVW has proved to be a high-value natural product. PMID:24628798

  12. Comparative study of phytosterol derivatives in monovarietal olive oils.

    PubMed

    Gómez-Coca, Raquel B; Fernandes, Gabriel D; Del Aguila-Sánchez, Chellah; Pérez-Camino, María Del Carmen; Moreda, Wenceslao

    2014-06-18

    Plant sterols and their derivatives are minor compounds that have been extensively studied in vegetable oils, mainly in olive oil, where they are closely related with its identity. The objective of this work is to determine the content of free and esterified steryl glucosides and their profiles in olive oil in relation to different geographical situation of olive orchards, cultivar, farming modality, and sampling time. The orchards under study were located in the outer ring of the submetropolitan area of Madrid (Spain), where olives from Cornicabra, Manzanilla Cacereña, Manzanilla Castellana, and Picual varieties were grown under traditional and organic modes, and harvested in four different samplings. Conclusions state that cultivar, farming mode, and light exposure do not have outstanding effects, whereas pedoclimate might affect the steryl glucoside presence in a substantial way. Further studies are being carried out presently in order to confirm such statement. Also glucoside derivative profiles are discussed, and reasons for differences with results in previous studies pointed out. PMID:24861171

  13. Healthy virgin olive oil: a matter of bitterness.

    PubMed

    Vitaglione, Paola; Savarese, Maria; Paduano, Antonello; Scalfi, Luca; Fogliano, Vincenzo; Sacchi, Raffaele

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives VOO a bitter and pungent taste. The recent substantiation by European Food Safety Authority (EFSA) of a health claim for VOO polyphenols may represent an efficient stimulus to get the maximum health benefit from one of the most valuable traditional product of Mediterranean countries educating consumers to the relationship between the VOO bitterness and its health effect. Agronomical practices and new processing technology to avoid phenolic oxidation and hydrolysis and to enhance the aromatic components of the VOO have been developed and they can be used to modulate taste and flavor to diversify the products on the market. VOOs having high concentration of phenol compounds are bitter and pungent therefore many people do not consume them, thus loosing the health benefits related to their intake. In this paper, the chemist's and nutritionist's point of view has been considered to address possible strategies to overcome the existing gap between the quality perceived by consumer and that established by expert tasters. Educational campaigns emphasizing the bitter-health link for olive oils should be developed. PMID:24915318

  14. Biochar improves N cycling during composting of olive mill wastes and sheep manure.

    PubMed

    López-Cano, Inés; Roig, Asunción; Cayuela, María Luz; Alburquerque, Jose Antonio; Sánchez-Monedero, Miguel Angel

    2016-03-01

    The use of biochar has been revealed to have beneficial effects during the composting of manures and other N-rich materials by reducing N losses and enhancing the rate of the process. However, the impact of biochar has not been explored in other complex organic matrices with low N nitrogen that may hinder the composting process. The main novelty of this work was to study the impact of a small amount of biochar (4%) on the composting process of olive mill wastes, which are characterised by a recalcitrant lignocellulosic composition with reduced nitrogen (N) availability. Two treatments: (i) control (olive mill waste 46%+sheep manure 54%, dry weight) and (ii) the same mixture treated with biochar (4%), were composted during 31 weeks. The incorporation of a small amount of biochar improved N cycling by increasing NO3(-)-N content, indicating a higher nitrifying activity, and reducing N losses by 15% without affecting the amount of N2O released. The use of biochar as an additive for composting could improve the value of olive mill waste composts by reducing N losses and increasing N availability in lignocellulosic and N-poor materials. PMID:26777305

  15. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  16. Augmentation of biodegradability of olive mill wastewater by electrochemical pre-treatment: effect on phytotoxicity and operating cost.

    PubMed

    Hanafi, F; Belaoufi, A; Mountadar, M; Assobhei, O

    2011-06-15

    In order to exploit the fertilizer value of olive oil mill wastewaters (OMW), a novel method has been developed for its treatment. OMW effluents were pre-treated first by electrocoagulation using aluminum electrode and then by a biological process using a selected strain of Aspergillus niger van Tieghem. The effect of treatments was assessed through COD removal, reduction of total phenols, and decrease of phytotoxicity using durum wheat (Triticum durum) seeds. This sequential treatment scheme was capable of reducing concentration of organics, phenolics and phytotoxicity. The goal of this investigation was achieved, the phytotoxicity was completely removed and the germination index was 106% of OMW after sequential treatment. It can be concluded that the sequential process of OMW treatment might serve for the production of a fertilizer which is able to improve the growth of plants. These results are encouraging in the context of developing a low-budget technology for the effective management of OMW. PMID:21435785

  17. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays.

    PubMed

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  18. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    PubMed Central

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  19. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    NASA Astrophysics Data System (ADS)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  20. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil.

    PubMed

    Kırış, Sevilay; Velioglu, Yakup Sedat

    2016-01-01

    The effects of different wash times (2 and 5 min) with tap and ozonated water on the removal of nine pesticides from olives and the transfer ratios of these pesticides during olive oil production were determined. The reliability of the analytical methods was also tested. The applied methods of analysis were found to be suitable based on linearity, trueness, repeatability, selectivity and limit of quantification all the pesticides tested. All tap and ozonated water wash cycles removed a significant quantity of the pesticides from the olives, with a few exceptions. Generally, extending the wash time increased the pesticide reduction with ozonated water, but did not make significant differences with tap water. During olive oil processing, depending on the processing technique and physicochemical properties of the pesticides, eight of nine pesticides were concentrated into olive oil (processing factor > 1) with almost no significant difference between treatments. Imidacloprid did not pass into olive oil. Ozonated water wash for 5 min reduced chlorpyrifos, β-cyfluthrin, α-cypermethrin and imidacloprid contents by 38%, 50%, 55% and 61% respectively in olives. PMID:26565682

  1. Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale 'Abencor' milling system.

    PubMed

    Aviani, I; Raviv, M; Hadar, Y; Saadi, I; Dag, A; Ben-Gal, A; Yermiyahu, U; Zipori, I; Laor, Y

    2012-03-01

    Olive mill wastewaters (OMW) were obtained at laboratory scale by milling olives from four cultivars grown at different irrigation levels and harvested at different times. Samples were compared based on wastewater quantity, pH, suspended matter, salinity, organic load, total phenols, NPK, and phytotoxicity. Principal component analysis discriminated between harvest times, regardless of olive cultivar, indicating substantial influence of fruit ripeness on OMW characteristics. OMW properties were affected both by the composition and the extraction efficiency of fruit water. As the fruit water content increased, the concentrations of solutes in the fruit water decreased, but the original fruit water composed a larger portion of the total wastewater volume. These contradicting effects resulted in lack of correlation between fruit water content and OMW properties. The significant effects shown for fruit ripeness, irrigation and cultivar on OMW characteristics indicate that olive horticultural conditions should be considered in future OMW management. PMID:22226593

  2. Sediment quality in Rivers and their estuaries of an olive oil production area, Messinia, Greece.

    NASA Astrophysics Data System (ADS)

    Anastasopoulou, Evaggelia; Pavlidou, Alexandra; Skoulikidis, Nikos; Dassenakis, Manos; Hatzianestis, Ioannis

    2014-05-01

    Sediment analysis at four major rivers (Pamisos, Aris, Velikas and Nedon) and their estuaries towards heavy metals took place in the Prefecture of Messinia, Greece, during two sampling campaigns in 2008 and 2011. The main industrial activity in the region is the operation of 250 olive oil industries and the main problem concerning pollution derives from the vast quantities of olive mill waste waters that are being generated annually most of which is currently discharged in nearby streams. Chemical parameters such as phenols, total organic carbon and certain heavy metals were found to be strongly correlated with the wastes from the olive oil industries. Major and minor elements (heavy metals) were measured in riverine and estuarine sediments. In parallel heavy metals were determined in the olive waste from a local industry, using atomic absorption spectrometry, in order to correlate the results with the sediment analysis. Major and Minor elements were recorded based upon the total percentage of the sediment samples and in order to eliminate the grain size effect, the concentrations were normalized towards Al. A pollution indice, the sediment enrichment factor, was also calculated, the high values of which towards Cr are of particular interest. Additionally organic carbon and total phenolic compounds were determined in rivers and their estuaries. High concentrations of Chromium were recorded in River Aris sediment, which seems to be the most polluted. Relatively high concentrations of zinc were encountered at rivers Aris and Pamisos while the chromium load seems to be higher near the estuaries of the rivers. The olive mill waste water analysis confirmed the existence of chromium in the waste and extremely elevated values were also found at a nearby station where these wastes tend to accumulate for decades. In contrast the results from the Nedon River indicated that it is not affected, since the low values found remained constant from the source of the river until its

  3. Making Sense of Olive Oil: Simple Experiments to Connect Sensory Observations with the Underlying Chemistry

    ERIC Educational Resources Information Center

    Blatchly, Richard A.; Delen, Zeynep; O'Hara, Patricia B.

    2014-01-01

    In the last decade, our understanding of the chemistry of olive oil has dramatically improved. Here, the essential chemistry of olive oil and its important minor constituents is described and related to the typical sensory categories used to rate and experience oils: color, aroma, bitterness, and pungency. We also describe experiments to explore…

  4. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    PubMed

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added. PMID:19946735

  5. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    PubMed

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. PMID:20435457

  6. Comparison Between Different Flavored Olive Oil Production Techniques: Healthy Value and Process Efficiency.

    PubMed

    Clodoveo, Maria Lisa; Dipalmo, Tiziana; Crupi, Pasquale; Durante, Viviana; Pesce, Vito; Maiellaro, Isabella; Lovece, Angelo; Mercurio, Annalisa; Laghezza, Antonio; Corbo, Filomena; Franchini, Carlo

    2016-03-01

    Three different flavoring methods of olive oil were tested employing two different herbs, thyme and oregano. The traditional method consist in the infusion of herbs into the oil. A second scarcely diffused method is based on the addition of herbs to the crushed olives before the malaxation step during the extraction process. The third innovative method is the implementation of the ultrasound before the olive paste malaxation. The objective of the study is to verify the effect of the treatments on the quality of the product, assessed by means of the chemical characteristics, the phenol composition and the radical scavenging activity of the resulting oils. The less favorable method was the addition of herbs directly to the oil. A positive effect was achieved by the addition of herbs to the olive paste and other advantages were attained by the employment of ultrasound. These last two methods allow to produce oils "ready to sell", instead the infused oils need to be filtered. Moreover, the flavoring methods applied during the extraction process determine a significant increment of phenolic content and radical scavenging activity of olive oils. The increments were higher when oregano is used instead of thyme. Ultrasound inhibited the olive polyphenoloxidase, the endogenous enzyme responsible for olive oil phenol oxidation. This treatment of olive paste mixed with herbs before malaxation was revealed as the most favorable method due to the best efficiency, reduced time consumption and minor labor, enhancing the product quality of flavored olive oil. PMID:26852311

  7. Influence of the fruit's ripeness on virgin olive oil quality.

    PubMed

    Franco, Ma Nieves; Sánchez, Jacinto; De Miguel, Concepción; Martínez, Manuel; Martín-Vertedor, Daniel

    2015-01-01

    Virgin Olive Oil (VOO) is a product much demanded by consumers looking for the highest quality and certain traits considered to be typical of the Mediterranean area. The olive fruit's properties and the industry-regulated physicochemical and sensory parameters of seven cultivars were evaluated during the ripening process. In general, the oil percentage in both the wet and dry material increased for all the cultivars from the green to the spotted stages of maturation, and they stayed constant statistically until the ripe stage with just a few exceptions. The lowest oil content was observed in the Manzanilla Cacereña cultivar in all stages of maturation. The cultivars that presented the lowest oil yields in the Abencor system were Manzanilla Cacereña and Carrasqueña, and the highest Corniche. In general, all the cultivars except one presented good behaviour during the mixing process, the exception being Manzanilla Cacereña which presented the lowest values of the extractability percentage. The moisture content of the olives presented a common pattern, increasing from the green to the spotted stage, with the differences being significant in the Corniche, Picual, and Verdial de Badajoz cultivars. All the oils analysed were classified into the "extra virgin" category according to the results for the regulated parameters. The fruity, bitter, and pungent attributes decreased during ripening in all the cultivars studied. In the green stage of maturation, Arbequina had the least intensity of bitterness and pungency, but there were no significant differences among cultivars in the fruity attribute. PMID:25757430

  8. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-12-01

    The determination of phenolic compounds in extra virgin olive oils (EVOO) by means of rapid, low-cost, environment-free methods would be a desirable achievement. A natural deep eutectic solvent (DES) based on glucose and lactic acid was considered as extraction solvent for phenolic compounds in EVOO. DESs are green solvents characterized by high availability, biodegradability, safety, and low cost. The spectrophotometric characteristics of DES extracts of 65 EVOO samples were related to the total phenolic content of the oils, assessed by methanol-water extraction coupled to the Folin-Ciocalteu assay. A regression model (ncalibration=45, nvalidation=20), including the absorbance at two wavelengths (257, 324nm), was obtained, with an adjusted R(2)=0.762. Therefore the DES could provide a promising and viable approach for a green screening method of phenolic compounds in EVOO, by means of simple spectrophotometric measurements of extracts, even for on-field analysis (for example in olive mills). PMID:27374504

  9. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.

    PubMed

    Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G

    2015-01-01

    This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean

  10. Modification of volatile compound profile of virgin olive oil due to hot-water treatment of olive fruit.

    PubMed

    Pérez, Ana G; Luaces, Pilar; Ríos, José J; García, José M; Sanz, Carlos

    2003-10-22

    The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments. PMID:14558776

  11. Avocado and olive oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  12. In vitro activity of olive oil polyphenols against Helicobacter pylori.

    PubMed

    Romero, Concepción; Medina, Eduardo; Vargas, Julio; Brenes, Manuel; De Castro, Antonio

    2007-02-01

    Helicobacter pylori is linked to a majority of peptic ulcers and to some types of gastric cancer, and resistance of the microorganism to antibiotic treatment is now found worldwide. Virgin olive oil is an unrefined vegetable oil that contains a significant amount of phenolic compounds. Under simulated conditions, we have demonstrated that these substances can diffuse from the oil into the gastric juice and be stable for hours in this acidic environment. In vitro, they exerted a strong bactericidal activity against eight strains of H. pylori, three of them resistant to some antibiotics. Among the phenolic compounds, the dialdehydic form of decarboxymethyl ligstroside aglycon showed the strongest bactericidal effect at a concentration as low as 1.3 microg/mL. Although the experimental conditions are different from other reported works, this bactericidal concentration is much lower than those found for phenolic compounds from tea, wine, and plant extracts. These results open the possibility of considering virgin olive oil a chemopreventive agent for peptic ulcer or gastric cancer, but this bioactivity should be confirmed in vivo in the future. PMID:17263460

  13. Reduction of oil bitterness by heating of olive (Olea europaea) fruits.

    PubMed

    García, J M; Yousfi, K; Mateos, R; Olmo, M; Cert, A

    2001-09-01

    Olives (Olea europaea) of the Manzanilla and Verdial varieties, harvested at the green mature stage of ripening, were heated at 30, 40, 45, and 50 degrees C during 24 h and at 40 degrees C during 24, 48, and 72 h, respectively. Just after treatments, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the time and temperature used. Fruit heating at < or =40 degrees C during 24 h did not produce significant changes of acidity, UV absorption, peroxide index, panel test score, or oxidative stability of the obtained oils. Both longer treatments at 40 degrees C and heating at >40 degrees C yielded oils with less oxidative stability. Oils obtained from olives heated at > or =40 degrees C showed higher concentrations of chlorophylls and carotenes. For each olive variety, a good correlation between oil bitterness and content of hydroxytyrosol secoiridoid derivatives was found. PMID:11559116

  14. Detection of virgin olive oil adulteration using low field unilateral NMR.

    PubMed

    Xu, Zheng; Morris, Robert H; Bencsik, Martin; Newton, Michael I

    2014-01-01

    The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR) method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils. PMID:24469355

  15. [Study of differences between the fatty acid content, several quality parameters, fatty acids and alpha tocopherol between 9 varieties of olive oil from the same plantation].

    PubMed

    Murillo Ramos, J J; Bonilla Polo, A; González Bonillo, J; Sanz Pérez, B

    1997-01-01

    The yield variations in fatty acid content, degree of acidity, peroxides, K270 and K232 indexes, the profile of the different fatty acids and alpha tocopherol were studied in different virgin olive oils obtained in the laboratory oil-mill. These different olive oils were pressed from the following olive varieties: Arbequina, Blanqueta, Empeltre, Frantoio, Hojiblanca, Manzanilla, Negral, Picual, and Royal, all of which were grown since being planted, on the same land, under the same growth conditions. The differences found must not be considered as absolute values but rather in comparative terms between the varieties. The greatest balance between the different parameters analyzed was seen in the Empeltre variety, which is that planted in greatest number in the trial area. PMID:9477658

  16. 75 FR 22363 - United States Standards for Grades of Olive Oil and Olive-Pomace Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... to decide. AMS published a Notice in the November 8, 2004, Federal Register (69 FR 64713) with a... then published a Notice in the June 2, 2008, Federal Register (73 FR 31426) with a sixty-day comment... attributable to poor storage conditions of the olives, usually promoting the bacterial growth of...

  17. Cross-cultural perception of six commercial olive oils: A study with Spanish and US consumers.

    PubMed

    Vázquez-Araújo, L; Adhikari, K; Chambers, E; Chambers, D H; Carbonell-Barrachina, A A

    2015-09-01

    A cross-cultural study was conducted with Spanish and US consumers to gain an insight into the preferred characteristics of olive oils in both countries. Six commercial olive oils (four samples from Spain and two samples from the US) were analyzed by a highly trained panel (descriptive analysis) and also by two consumers' groups (100 consumers from Spain and 100 from the US). Demographic, acceptability, and Just-About-Right data were collected to study the preferences of both groups, and the relationships with descriptive data were explored to determine the drivers of like/dislike. The Spanish extra virgin olive oils and the imported US extra virgin olive oil were characterized by having bitter, pungent, and more green notes, and were preferred by the Spanish consumers. The US consumers liked the bland Spanish refined olive oil, and the Californian olive oil that was characterized by fruity, floral, and sweet notes. The results showed that the Spanish consumers were more aware about olive oil quality in general than their US counterparts, maybe because of a higher usage of the product in Spain. The present study provides essential data which might help producers in designing and promoting olive oils matching US consumers' requirements, an emerging market for this Mediterranean product. PMID:25028154

  18. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    PubMed

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. PMID:23178773

  19. The effect of the olive fruit fly (Bactrocera oleae) on quality parameters, and antioxidant and antibacterial activities of olive oil.

    PubMed

    Medjkouh, Lynda; Tamendjari, Abderezak; Keciri, Sonia; Santos, Joana; Nunes, M Antónia; Oliveira, M B P P

    2016-06-15

    The present study was performed on olives from two Algerian cultivars (Limli and Rougette de Metidja) with different rates of attack by the Bactrocera oleae fly (0%, not attacked; 100%, all attacked; and real attacked %) and the corresponding olive oils. The aim was to verify the attack effect on quality parameters (free fatty acid, peroxide value, K232 and K270, oxidation stability), bioactive compounds (fatty acids and tocopherols, and total phenols and flavonoids), and on the antioxidant (reducing power, FRAP, β-carotene bleaching inhibition, ABTS and DPPH) and antibacterial (against 8 referenced human enteropathogenic bacteria by the agar disc diffusion method) capacities. Oils from infested olives were downgraded to the virgin olive oil category. Rougette de Metidja, the cultivar with a higher drupe size, was more attacked than Limli. The B. oleae attack causes an important decrease in the total phenolic contents (>30%) but to a lesser degree in the case of tocopherols. Among them, α-tocopherol is the most affected. The antioxidant and antibacterial activities were highly correlated with phenolic levels. The results of this study show the importance of controlling the fly attack because it causes a decrease in the beneficial health effects of olive oils. PMID:27220688

  20. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    EPA Science Inventory

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  1. Visible and near-infrared spectral signatures for adulteration assessment of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-04-01

    Because of its high price, the extra virgin olive oil is frequently target for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying the adulteration of extra virgin olive oil caused by lowergrade olive oils. It relies on spectral fingerprinting the test liquid by means of diffuse-light absorption spectroscopy carried out by optical fiber technology in the wide 400-1700 nm spectral range. Then, a smart multivariate processing of spectroscopic data is applied for immediate prediction of adulterant concentration.

  2. Rapid determination of alpha tocopherol in olive oil adulterated with sunflower oil by reversed phase high-performance liquid chromatography.

    PubMed

    Bakre, S M; Gadmale, D K; Toche, R B; Gaikwad, V B

    2015-05-01

    A new method is developed to determine the presence of sunflower oil in olive oil. α-tocopherol is selected as discriminating parameter for detecting sunflower oil adulterant in olive oil. Admixtures of olive oil and sunflower oil (5 %, 10 %, 15 % and 20 % sunflower oil in olive oil) are prepared. These admixtures are analysed by reversed phase high pressure liquid chromatography coupled with fluorescence detector. The sample preparation does not require saponification or addition of antioxidant. The chromatographic system consists of a C18 column with methanol: acetonitrile (50:50) mobile phase. Fluorescence detector excitation wavelength is set at 290 nm and emission wavelength is set at 330 nm. The α tocopherol concentration increases linearly in olive oil adulterated with sunflower oil. The method is simple, selective, sensitive and is precise (RSD = 2.65 %) for α tocopherol. The present method can precisely detect 5 % sunflower oil in olive oil. PMID:25892814

  3. Olive

    MedlinePlus

    ... teeth, ears, and urinary tract, and infections following surgery. Other uses include high blood pressure, diabetes, hay fever, improving kidney and digestive function, and increasing urine flow. Water extracts of olive fruit pulp are used for rheumatoid arthritis and osteoarthritis.

  4. Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling

    PubMed Central

    Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar

    2013-01-01

    Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947

  5. Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry.

    PubMed

    Nortes-Méndez, Rocío; Robles-Molina, José; López-Blanco, Rafael; Vass, Andrea; Molina-Díaz, Antonio; Garcia-Reyes, Juan F

    2016-09-01

    This article reports the development of two HPLC-MS methods for the determination of polar pesticides in olive oil and olive samples by hydrophilic interaction liquid chromatography (HILIC) separation followed by mass spectrometry detection with tandem mass spectrometry using a triple quadrupole instrument operated in multiple reaction monitoring mode (HILIC-MS/MS) or electrospray time-of-flight mass spectrometry (HILIC-TOFMS). The selected polar pesticides included in the study were: amitrol, cyromazine, diquat, paraquat, mepiquat, trimethylsulfonium (trimesium, glyphosate counterion) and fosetyl aluminium. The simple sample treatment procedure was based on liquid partitioning with methanol. The performance of the sample extraction was evaluated in terms of recovery rates and matrix effects in both olive oil and olives matrices. The results obtained for olive oil were satisfactory while, due to the high complexity of olives, poor recovery rates were obtained for the extraction of diquat, paraquat and amitrol, although with a reasonable precision enabling its use in routine analysis. Similarly, matrix effects were minor in the case of olive oil (ca. 20% suppression average), while significantly higher suppression was observed for olives (30-50% suppression average). The studied approaches were found to be useful for the determination of the pesticides studied in olive oil and olives with limits of quantitation below 5µgkg(-1) in most cases when tandem mass spectrometry was used, thus being in compliance with MRLs set by current EU regulation. PMID:27343599

  6. Highlighting metabolic indicators of olive oil during storage by the AComDim method.

    PubMed

    Korifi, R; Plard, J; Le Dréau, Y; Rébufa, C; Rutledge, D N; Dupuy, N

    2016-07-15

    Lipid oxidation during olive oil storage induces changes in the metabolite content of the oil, which can be measured using so-called quality indices. High values indicate poor quality oils that should be labeled accordingly or removed from the market. Based on quality indices measured over two years for two olive oils, the AComDim method was used to highlight the influence of five factors (olive oil type, oxygen, light, temperature and storage time) on oxidative stability during storage. To identify the significant factors, two full factorial experimental designs were built, each containing four of the five factors examined. The results showed that all five factors, as well as some two-factor interactions, were significant. Phenols and hydroperoxides were identified as being the most sensitive to these factors, and potential markers for the ageing of olive oil. PMID:26948595

  7. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    PubMed

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated. PMID:27534114

  8. Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions.

    PubMed

    Giacintucci, Veronica; Di Mattia, Carla; Sacchetti, Giampiero; Neri, Lilia; Pittia, Paola

    2016-12-15

    The effect of olive oil phenolic content and pattern on the physical properties and stability of olive oil mayonnaise-like emulsions has been investigated. Mayonnaises were formulated with either naturally phenolic-rich extra virgin olive oils or purified olive oil artificially enriched with a phenolic-rich olive extract and pure oleuropein. Mayonnaises were characterized by droplet size distribution, microstructure, textural properties and flow behaviour. The addition of phenolic extracts significantly affected the dispersion degree of the corresponding mayonnaise-like emulsions, their microstructure and physical stability especially in the systems prepared with purified olive oil treated with pure oleuropein and the highest olive phenolic extract concentration. The viscosity and back-extrusion analyses evidenced that the systems characterized by a relatively high content of phenolics, either natural or by addition, presented lower yield stress and viscosity indices and were easier to deform and to break. This study confirms the main role of olive phenolic compounds, and in particular that of oleuropein, in the dispersion state, and physical properties of emulsions with main effects on their quality and stability. PMID:27451193

  9. A Supervised Feature Extraction Method For GC-MS Data Based On PLS. Application To Olive Oil Adulteration Detection

    NASA Astrophysics Data System (ADS)

    Burian, C.; Brezmes, J.; Correig, X.; Martinelli, E.; Di Natale, C.

    2011-09-01

    Olive oil adulteration is often complicated and more than one test is necessary to determine olive oil authenticity. In particular, detection of hazelnut oil in admixtures has been difficult to confirm due to the similarity of the two oils. In this work a method to identify the olive oil adulteration is presented based on GC-MS analysis coupled with data analysis techniques and a feature selection step.

  10. Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy.

    PubMed

    Rinaldi, S; Barbanera, M; Lascaro, E

    2014-06-01

    The cradle to grave carbon footprint (CF) and energy footprint (EF) analysis of extra virgin olive oil (EVOO) produced in the Province of Perugia (Umbria, Italy) is assessed. In this study, olive orchard cultivation, EVOO extraction, bottling, packaging, storage at -18°C and distribution in the main importing countries were studied from a life cycle assessment perspective, with the main objective of identifying the processes with the largest environmental impacts. The selected functional unit was 1L of EVOO, packaged for distribution. Inventory data was gathered mainly through both direct communication using questionnaires and direct measurements. To determine the CF the ISO/TS 14067:2013 was followed while the EF was evaluated according to ISO standards 14040 and 14044. Results showed that the most impacting process is the distribution, mainly due to the choice of employing air transport. The main other hot spots identified were the olive orchard fertilization, EVOO freezing during its storage at the olive mill factory and the manufacture of glass bottles. Suggested improvement opportunities included shifts in the EVOO transportation policy, the introduction of lighter glass bottles in the bottling process, the use of cooling agent with lower global warming potential and the employment of biodiesel in the farming machineries. PMID:24636888

  11. Bioconversion of olive-mill dry residue by Fusarium lateritium and subsequent impact on its phytotoxicity.

    PubMed

    Sampedro, I; D'Annibale, A; Ocampo, J A; Stazi, S R; García-Romera, I

    2005-09-01

    The present study investigated the ability of the non-pathogenic fungus Fusarium lateritium to either degrade or modify aromatic substances in olive-mill dry residue (DOR) and to reduce its phytotoxicity. The 80% reduction of ethylacetate extractable phenols in DOR colonized by the fungus for 20 weeks appeared to be due to polymerization reactions of phenol molecules as suggested by mass-balance ultrafiltration and size-exclusion chromatography experiments. Several lignin-modifying oxidases, including laccase, Mn-peroxidase and Mn-inhibited peroxidase were detected in F. lateritium solid-state cultures. Tests performed with tomato seedlings in soils containing 6% (w/w) sterilized non-inoculated DOR showed that the waste was highly phytotoxic. By contract, F. lateritium growth on DOR for 20 weeks led to a complete removal of the waste toxicity and to a higher shoot dry weight of tomato plants than that obtained in the absence of DOR. PMID:16054908

  12. New tailor-made bio-organoclays for the remediation of olive mill waste water

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  13. Strategy for olive mill wastewater treatment and reuse with a sewage plant in an arid region.

    PubMed

    Boukchina, R; Choi, E; Kim, S; Yu, Y B; Cheung, Y J

    2007-01-01

    This study was conducted to evaluate the treatability of OMW (olive mill wastewater) with sewage and sewage sludge, which could supplement nutrients and microbes required for OMW treatment and reduce its possible toxicity. The amount of OMW added to an aeration tank was based on the loading difference between the designed and actual COD loads, while the amount added to anaerobic digestion for energy recovery was determined by CH4 production. The COD removal efficiencies were 70-85% for both systems. Compost of OMW with dried sewage sludge also showed a similar temperature profile without OMW addition. This strongly suggested that OMW can be treated at a sewage plant without pretreatment and the treated effluent can be reused in irrigation for an arid region. PMID:17564372

  14. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    SciTech Connect

    Hamdi, M. Universite de Provence, Marseille )

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

  15. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    PubMed

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model. PMID:25244135

  16. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12.

    PubMed

    Carraro, Lisa; Fasolato, Luca; Montemurro, Filomena; Martino, Maria Elena; Balzan, Stefania; Servili, Maurizio; Novelli, Enrico; Cardazzo, Barbara

    2014-05-01

    Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E. coli K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product. PMID:24628798

  17. Flash Thermal Conditioning of Olive Pastes during the Oil Mechanical Extraction Process: Cultivar Impact on the Phenolic and Volatile Composition of Virgin Olive Oil.

    PubMed

    Veneziani, Gianluca; Esposto, Sonia; Taticchi, Agnese; Selvaggini, Roberto; Urbani, Stefania; Di Maio, Ilona; Sordini, Beatrice; Servili, Maurizio

    2015-07-01

    The concentration of phenolic and volatile compounds in virgin olive oil (VOO) is closely related to the different operative conditions applied to the mechanical extraction process of the olive oil. However, the great qualitative and quantitative variability of these compounds indicates an important role played by genetic and agronomic aspects. A heat exchanger was placed in front of a traditional, covered malaxer to study the impact of flash thermal conditioning (FTC) of olive paste on the quality of VOO, which is highly influenced by phenolic release and aroma generation. The VOO flash thermal conditioning of five major Italian cultivars showed a higher concentration of phenols (range of increase percentage, 9.9-37.3%) compared to the control trials, whereas the FTC treatment featured a differentiated impact on the volatile fractions, associated with the genetic origins of the olives. PMID:26072976

  18. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil.

    PubMed

    Cicerale, S; Lucas, L J; Keast, R S J

    2012-04-01

    The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time. PMID:22000808

  19. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study

    PubMed Central

    2014-01-01

    Background It is unknown whether individuals at high cardiovascular risk sustain a benefit in cardiovascular disease from increased olive oil consumption. The aim was to assess the association between total olive oil intake, its varieties (extra virgin and common olive oil) and the risk of cardiovascular disease and mortality in a Mediterranean population at high cardiovascular risk. Methods We included 7,216 men and women at high cardiovascular risk, aged 55 to 80 years, from the PREvención con DIeta MEDiterránea (PREDIMED) study, a multicenter, randomized, controlled, clinical trial. Participants were randomized to one of three interventions: Mediterranean Diets supplemented with nuts or extra-virgin olive oil, or a control low-fat diet. The present analysis was conducted as an observational prospective cohort study. The median follow-up was 4.8 years. Cardiovascular disease (stroke, myocardial infarction and cardiovascular death) and mortality were ascertained by medical records and National Death Index. Olive oil consumption was evaluated with validated food frequency questionnaires. Multivariate Cox proportional hazards and generalized estimating equations were used to assess the association between baseline and yearly repeated measurements of olive oil intake, cardiovascular disease and mortality. Results During follow-up, 277 cardiovascular events and 323 deaths occurred. Participants in the highest energy-adjusted tertile of baseline total olive oil and extra-virgin olive oil consumption had 35% (HR: 0.65; 95% CI: 0.47 to 0.89) and 39% (HR: 0.61; 95% CI: 0.44 to 0.85) cardiovascular disease risk reduction, respectively, compared to the reference. Higher baseline total olive oil consumption was associated with 48% (HR: 0.52; 95% CI: 0.29 to 0.93) reduced risk of cardiovascular mortality. For each 10 g/d increase in extra-virgin olive oil consumption, cardiovascular disease and mortality risk decreased by 10% and 7%, respectively. No significant

  20. Extra virgin olive oil: from composition to "molecular gastronomy".

    PubMed

    Sacchi, Raffaele; Paduano, Antonello; Savarese, Maria; Vitaglione, Paola; Fogliano, Vincenzo

    2014-01-01

    The aim of this chapter is to provide a brief overview of the recent results of studies on extra virgin olive oil (EVOO) and its interactions with other food ingredients during cooking, to highlight basic molecular aspects of the "magic" of EVOO and its role in Mediterranean gastronomy. The use of raw EVOO added to foods after cooking (or as a salad oil) is the best way to express the original flavour and to maximize the intake of natural antioxidants and compounds related to positive effects on human health (hypotensive, anti-inflammatory, and anti-cancerogenic, among others). EVOO, however, also exhibits its protective properties during/after cooking. Different chemical interactions between biophenolic compounds and other food ingredients (water, milk proteins, carotenoids of tomato, omega-3 polyunsaturated fatty acids in canned-in-oil fish and meat or fish proteins) occur. Even during cooking, EVOO exhibits strong antioxidant properties and influences the overall flavour of cooked foods. The physical (partitioning, emulsion) and chemical (hydrolysis, covalent binding, antioxidant properties) phenomena occurring during cooking of EVOO are discussed with emphasis on the changes in the sensory (bitterness and fruity flavour) and nutritional qualities of some traditional Mediterranean foods. In particular, tomato-oil interactions during cooking, fish canning in EVOO, meat marinated in EVOO before cooking and roasting and frying in EVOO are examined. The interactions between EVOO antioxidants and flavours with milk proteins are also briefly discussed. PMID:24114489

  1. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food.

    PubMed

    Ramos-Gómez, Sonia; Busto, María D; Albillos, Silvia M; Ortega, Natividad

    2016-03-01

    The traceability of olive oil is an unresolved issue that remains a challenge. In this field, DNA-based techniques are very powerful tools for discrimination that are less negatively influenced by environmental conditions than other techniques. More specifically, quantitative real time PCR (qPCR) achieves a high degree of sensitivity, although the DNA that it can directly isolate from these oils presents drawbacks. Our study reports the analysis of eight systems, in order to determine their suitability for olive detection in oil and oil-derived foodstuffs. The eight systems were analyzed on the basis of their sensitivity and specificity in the qPCR assay, their relative sensitivity to olive DNA detection and DNA mixtures, their sensitivity and specificity to olive in vegetable oils and the detection of olive in commercial products. The results show that the PetN-PsbM system, designed in this study, is a suitable and reliable technique in relation to olive oil and olive ingredients in both food authentication and food safety processes. PMID:26471578

  2. A novel reliable method of DNA extraction from olive oil suitable for molecular traceability.

    PubMed

    Raieta, Katia; Muccillo, Livio; Colantuoni, Vittorio

    2015-04-01

    Extra virgin olive oil production has a worldwide economic impact. The use of this brand, however, is of great concern to Institutions and private industries because of the increasing number of fraud and adulteration attempts to the market products. Here, we present a novel, reliable and not expensive method for extracting the DNA from commercial virgin and extra virgin olive oils. The DNA is stable overtime and amenable for molecular analyses; in fact, by carrying out simple sequence repeats (SSRs) markers analysis, we characterise the genetic profile of monovarietal olive oils. By comparing the oil-derived pattern with that of the corresponding tree, we can unambiguously identify four cultivars from Samnium, a region of Southern Italy, and distinguish them from reference and more widely used varieties. Through a parentage statistical analysis, we also identify the putative pollinators, establishing an unprecedented and powerful tool for olive oil traceability. PMID:25442596

  3. Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters.

    PubMed

    Amaral-Silva, Nuno; Martins, Rui C; Castro-Silva, Sérgio; Quinta-Ferreira, Rosa M

    2016-10-01

    A complete industrial treatment system (involving the integration of coagulation/flocculation and Fenton processes) to depurate real wastewaters coming from two-phase olive oil production mills has been studied. The experimental results indicated that at the end of this combined strategy, involving a primary physical separation stage followed by Fenton's chemical oxidation, chemical oxygen demand (COD) is reduced up to 90% and total polyphenols' concentration is decreased up to 92%. The treated stream biodegradability (BOD5/COD) reached 0.52 and the Total Suspended Solids (TSSs) and Total Dissolved Solids (TDSs) decreased up to 95% and 69%, respectively. Fenton's procedure was optimized bearing in mind the pH adjustment step, different procedures for hydrogen peroxide addition and the use of coagulants instead of the chemical precipitation (by raising pH) to promote iron sludge settling. Our results demonstrated that pH (3.0 ± 0.1) control during the oxidation reaction improves the oxidation efficiency. Moreover, the final NaOH addition is essential to a better sludge formation and consequent precipitation of the residual iron removing also some organic matter. PMID:26878594

  4. Olive Oil Consumption and Age-Related Macular Degeneration: The Alienor Study

    PubMed Central

    Cougnard-Grégoire, Audrey; Merle, Bénédicte M. J.; Korobelnik, Jean-François; Rougier, Marie-Bénédicte; Delyfer, Marie-Noëlle; Le Goff, Mélanie; Samieri, Cécilia; Dartigues, Jean-François; Delcourt, Cécile

    2016-01-01

    Background Olive oil provides a mixture of lipids and antioxidant nutrients which may help preventing age-related diseases such as age-related macular degeneration (AMD). However, little is known about the associations between olive oil consumption and the risk of AMD. Objective To examine associations between olive oil use and AMD prevalence in elderly subjects. Methods Alienor (Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes) is a population-based study on eye diseases performed in elderly residents of Bordeaux (France). In 1999–2000, frequencies of consumption of main categories of dietary fats used were collected. In 2006–2088, AMD was graded from non mydriatic retinal photographs into three exclusive stages: no AMD, early AMD, and late AMD. Two categories of preferred dietary fat used (olive oil, n-3 rich oils, n-6 rich oils, mixed oils, butter and margarine) were defined: “no use” and “regular use” (using fat for spreading and/or cooking and/or dressing). Associations of AMD with each fat use were estimated using Generalized Estimating Equation logistic regressions models. Results Our study included 654 subjects (1269 eyes) with complete data (n = 268 eyes with early AMD and n = 56 with late AMD). After adjustment for potential confounders, regular use of olive oil was significantly associated with a decreased risk of late AMD (odds ratio [OR] = 0.44, 95% confidence interval [CI]: 0.21;0.91). In contrast, regular use of olive oil was not significantly associated with early AMD (OR = 0.84, 95%CI: 0.59;1.21). No associations were found between regular consumption of n-3 rich oils, n-6 rich oils, mixed oils, butter and margarine and AMD, whatever the stage. Conclusions This study suggests a protective effect of olive oil consumption for late AMD in this elderly community-dwelling population. Characterization of the mediating nutrients deserves further research. PMID:27467382

  5. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil. PMID:27116959

  6. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans.

    PubMed

    Machowetz, Anja; Poulsen, Henrik E; Gruendel, Sindy; Weimann, Allan; Fitó, Montserrat; Marrugat, Jaume; de la Torre, Rafael; Salonen, Jukka T; Nyyssönen, Kristiina; Mursu, Jaakko; Nascetti, Simona; Gaddi, Antonio; Kiesewetter, Holger; Bäumler, Hans; Selmi, Hany; Kaikkonen, Jari; Zunft, Hans-Joachim F; Covas, Maria-Isabel; Koebnick, Corinna

    2007-01-01

    High consumption of olive oil in the Mediterranean diet has been suggested to protect DNA against oxidative damage and to reduce cancer incidence. We investigated the impact of the phenolic compounds in olive oil, and the oil proper, on DNA and RNA oxidation in North, Central, and South European populations. In a multicenter, double-blind, randomized, controlled crossover intervention trial, the effect of olive oil phenolic content on urinary oxidation products of guanine (8-oxo-guanine, 8-oxo-guanosine and 8-oxo-deoxyguanosine) was investigated. Twenty-five milliliters of three olive oils with low, medium, and high phenolic content were administered to healthy males (n=182) daily for 3 wk. At study baseline the urinary excretion of 8-oxo-guanosine (RNA oxidation) and 8-oxo-deoxyguanosine (DNA oxidation) was higher in the Northern regions of Europe compared with Central and Southern European regions (P=0.035). Urinary excretion of the 8 hydroxylated forms of guanine, guanosine, deoxyguanosine and their nonoxidized forms were not different when comparing olive oils with low, medium, and high phenolic content given for 2 wk. Testing the effect of oil from urinary 8-oxo-deoxyguanosine changes from baseline to post-treatment showed a reduction of DNA oxidation by 13% (P=0.008). These findings support the idea that ingestion of olive oil is beneficial and can reduce the rate of oxidation of DNA. This effect is not due to the phenolic content in the olive oil. The higher DNA and RNA oxidation in Northern European regions compared with that in Central and Southern regions supports the contention that olive oil consumption may explain some of the North-South differences in cancer incidences in Europe. PMID:17110467

  7. Consumption of tomato products with olive oil but not sunflower oil increases the antioxidant activity of plasma.

    PubMed

    Lee, A; Thurnham, D I; Chopra, M

    2000-11-15

    Health benefits of lycopene from tomato products have been suggested to be related to its antioxidant activity. Dietary fat may influence the absorption and hence the plasma levels and antioxidant activity of lycopene. In the present study, we have compared the effect of consumption of tomato products with extra-virgin olive oil vs. tomato products plus sunflower oil on plasma lycopene and antioxidant levels. Results show that the oil composition does not affect the absorption of lycopene from tomato products because similar levels of plasma lycopene (mean +/- SD) were obtained on feeding tomatoes (providing approximately 46 mg lycopene/d) for 7 d with either olive oil (0.66 +/- 0.26 vs 1.20 +/- 0.20 micromol/l, p <.002) or sunflower oil (0.67 +/- 0.27 vs. 1.14 micromol/l, p <.001). However, consumption of tomato products with olive oil significantly raised the plasma antioxidant activity (FRAP) from 930 +/- 150 to 1118 +/- 184 micromol/l, p <.01) but no effect was observed when the sunflower oil was used. The change (supplementation minus start values) in FRAP following the consumption of tomato products with oil was significantly higher for olive oil (190 +/- 101) than for sunflower oil (-9.6 +/- 99, p <. 005). In conclusion, the results of the study show that consumption of tomato products with olive oil but not with sunflower oil improves the antioxidant activity of the plasma. PMID:11084294

  8. Olive oil and hyperthermal water bigels for cosmetic uses.

    PubMed

    Lupi, F R; Gentile, L; Gabriele, D; Mazzulla, S; Baldino, N; de Cindio, B

    2015-12-01

    Bigels are biphasic systems produced with an organogel (or oleogel) and a hydrogel mixed together at high shear rates. These systems are promising for different uses, among them the formulation of new cosmetic matrices for cosmetic agents delivery is under investigation. In the present paper, a common cosmetic formulation for skin care was enriched with increasing fractions of monoglycerides of fatty acids/olive oil organogels, in order to understand the rheology and the microstructure of these systems. Small amplitude oscillation tests, NMR-self diffusion analysis, contrast phase microscopy and electric conductivity confirmed that the addition of the organogel caused a microstructural change of the starting material, which turned from O/W to a more complex system where, probably, a matrix-in-matrix structure is present at the highest fractions of added organogel. PMID:26263497

  9. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    PubMed

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index. PMID:22647243

  10. Electrocoagulation of Palm Oil Mill Effluent

    PubMed Central

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537