Science.gov

Sample records for oncogenic pathway activation

  1. Knockin of mutant PIK3CA activates multiple oncogenic pathways

    PubMed Central

    Gustin, John P.; Karakas, Bedri; Weiss, Michele B.; Abukhdeir, Abde M.; Lauring, Josh; Garay, Joseph P.; Cosgrove, David; Tamaki, Akina; Konishi, Hiroyuki; Konishi, Yuko; Mohseni, Morassa; Wang, Grace; Rosen, D. Marc; Denmeade, Samuel R.; Higgins, Michaela J.; Vitolo, Michele I.; Bachman, Kurtis E.; Park, Ben Ho

    2009-01-01

    The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to “knock in” PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3β phosphorylation. Paradoxically, the GSK3β inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3β target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3β is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations. PMID:19196980

  2. Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways.

    PubMed Central

    del Peso, L; Lucas, L; Esteve, P; Lacal, J C

    1997-01-01

    Phospholipase D (PLD) is activated by a variety of stimuli, including mitogenic stimulation by growth factors and oncogene transformation. Activation of PLD by growth factors requires protein kinase C (PKC) since depletion of the enzyme by down-regulation or direct inhibition by specific drugs completely abrogates this effect. Transformation by the ras and src oncogenes is also associated with an increase in basal PLD activity. However, this effect is not dependent on PKC, suggesting that growth factors and oncogenes may activate PLD by two independent mechanisms. Here we demonstrate that activation of PLD by phorbol esters is greatly enhanced in ras-transformed cells, suggesting synergistic activation of PLD by ras oncogenes and PKC. Also, ras-transformed cells showed a dramatic attenuation of the PLD activation induced by growth factors, although receptor function was still detectable. This attenuation paralleled the specific uncoupling of the phosphatidylinositol-specific phospholipase C (PI-PLC) pathway, indicating that activation of PLD by growth factors may be mediated by PI-PLC and PKC activation. Attenuation of PLD activation by platelet-derived growth factor was also observed in several oncogene-transformed cells, as well as the uncoupling of the PI-PLC pathway. Neither the co-operation with PKC activation nor the attenuation of the PLD response to growth factors in ras-transformed cells was a general consequence of cell transformation, since cells transformed by other oncogenes showed a normal response to either treatment. These results support the existence of at least two alternative signalling routes for the activation of PLD, one mediated by the PI-PLC/diacylglycerol/PKC pathway and a second one mediated by several oncogenes, independent of the PKC pathway, which synergizes with the PI-PLC/PKC-dependent pathway. PMID:9065772

  3. Activation of diverse signaling pathways by oncogenic PIK3CA mutations

    PubMed Central

    Wu, Xinyan; Renuse, Santosh; Sahasrabuddhe, Nandini A.; Zahari, Muhammad Saddiq; Chaerkady, Raghothama; Kim, Min-Sik; Nirujogi, Raja S.; Mohseni, Morassa; Kumar, Praveen; Raju, Rajesh; Zhong, Jun; Yang, Jian; Neiswinger, Johnathan; Jeong, Jun-Seop; Newman, Robert; Powers, Maureen A.; Somani, Babu Lal; Gabrielson, Edward; Sukumar, Saraswati; Stearns, Vered; Qian, Jiang; Zhu, Heng; Vogelstein, Bert; Park, Ben Ho; Pandey, Akhilesh

    2014-01-01

    The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets. PMID:25247763

  4. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    PubMed

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development. PMID:27142852

  5. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation

    PubMed Central

    Jung, Bomi; Messias, Ana C.; Schorpp, Kenji; Geerlof, Arie; Schneider, Günter; Saur, Dieter; Hadian, Kamyar; Sattler, Michael; Wanker, Erich E.; Hasenöder, Stefan; Lickert, Heiko

    2016-01-01

    Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics. PMID:26931153

  6. KLK6-regulated miRNA networks activate oncogenic pathways in breast cancer subtypes.

    PubMed

    Sidiropoulos, Konstantinos G; Ding, Qiang; Pampalakis, Georgios; White, Nicole M A; Boulos, Peter; Sotiropoulou, Georgia; Yousef, George M

    2016-08-01

    KLK6 is expressed in normal mammary tissues and is aberrantly regulated in breast cancer. At physiological levels of expression, i.e. those found in normal mammary tissues, KLK6 acts as a tumor suppressor in human breast cancer. However, aberrant overexpression of KLK6 (i.e. 50-100-fold higher than normal), a characteristic of a subset of human breast cancers is associated with increased tumorigenicity (Pampalakis et al. Cancer Res 69:3779-3787, 2009). Here, we stably transfected KLK6-non-expressing MDA-MB-231 breast cancer cells with the full-length KLK6 cDNA to overexpress KLK6 at levels comparable to those observed in patients, and investigated potential oncogenic miRNA networks regulated by these abnormally high KLK6 expression levels and increased activity of this serine protease. A number of miRNAs that are upregulated (e.g. miR-146a) or downregulated (e.g. miR-34a) via KLK6-induced alterations in the miRNA biogenesis machinery were identified. Integrated experimental and bioinformatics analyses identified convergent miRNA networks targeting the cell cycle, MYC, MAPK, and other signaling pathways. In large clinical datasets, significant correlations between KLK6 and downstream MAPK and MYC targets at both the RNA and protein levels was confirmed, as well as negative correlation with GATA3. It was also demonstrated that KLK6 overexpression and likely its proteolytic activity is associated with alterations in downstream miRNAs and their targets, and these differ with the molecular subtypes of breast cancer. The data partly explains the different characteristics of breast cancer subtypes. Importantly, we introduce a combined KLK6-CDKN1B+MYC+CDKN1C score for prediction of long-term patient survival outcomes, with higher scores indicating poor survival. PMID:27093921

  7. The Synovial Sarcoma SYT-SSX2 Oncogene Remodels the Cytoskeleton through Activation of the Ephrin Pathway

    PubMed Central

    Barco, Roy; Hunt, Laura B.; Frump, Andrea L.; Garcia, Christina B.; Benesh, Andrew; Caldwell, Robert L.

    2007-01-01

    Synovial sarcoma is a soft tissue cancer associated with a recurrent t(X:18) translocation that generates one of two fusion proteins, SYT-SSX1 or SYT-SSX2. In this study, we demonstrate that SYT-SSX2 is a unique oncogene. Rather than confer enhanced proliferation on its target cells, SYT-SSX2 instead causes a profound alteration of their architecture. This aberrant morphology included elongation of the cell body and formation of neurite-like extensions. We also observed that cells transduced with SYT-SSX2 often repulsed one another. Notably, cell repulsion is a known component of ephrin signaling. Further analysis of SYT-SSX2–infected cells revealed significant increases in the expression and activation of Eph/ephrin pathway components. On blockade of EphB2 signaling SYT-SSX2 infectants demonstrated significant reversion of the aberrant cytoskeletal phenotype. In addition, we discovered, in parallel, that SYT-SSX2 induced stabilization of the microtubule network accompanied by accumulation of detyrosinated Glu tubulin and nocodazole resistance. Glu tubulin regulation was independent of ephrin signaling. The clinical relevance of these studies was confirmed by abundant expression of both EphB2 and Glu tubulin in SYT-SSX2–positive synovial sarcoma tissues. These results indicate that SYT-SSX2 exerts part of its oncogenic effect by altering cytoskeletal architecture in an Eph-dependent manner and cytoskeletal stability through a concurrent and distinct pathway. PMID:17686994

  8. The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway Through E-Syt1 Phosphorylation

    PubMed Central

    Jun, Hyun Jung; Johnson, Hannah; Bronson, Roderick T.; de Feraudy, Sebastien; White, Forest; Charest, Alain

    2013-01-01

    Patients with lung cancer often present with metastatic disease and therefore have a very poor prognosis. The recent discovery of several novel ROS receptor tyrosine kinase molecular alterations in non-small-cell lung cancer (NSCLC) presents a therapeutic opportunity for the development of new targeted treatment strategies. Here, we report that the NSCLC-derived fusion CD74-ROS, which accounts for 30% of all ROS fusion kinases in NSCLC, is an active and oncogenic tyrosine kinase. We found that CD74-ROS expressing cells were highly invasive in vitro and metastatic in vivo. Pharmacological inhibition of CD74-ROS kinase activity reversed its transforming capacity by attenuating downstrream signaling networks. Using quantitative phosphoproteomics, we uncovered a mechanism by which CD74-ROS activates a novel pathway driving cell invasion. Expression of CD74-ROS resulted in the phosphorylation of the extended synaptotagmin-like protein E-Syt1. Elimination of E-Syt1 expression drastically reduced invasiveness both in vitro and in vivo without modifying the oncogenic activity of CD74-ROS. Furthermore, expression of CD74-ROS in non-invasive NSCLC cell lines readily confered invasive properties that paralleled the acquisition of E-Syt1 phosphorylation. Taken together, our findings indicate that E-Syt1 is a mediator of cancer cell invasion and molecularly define ROS fusion kinases as therapeutic targets in the treatment of NSCLC. PMID:22659450

  9. RABEX-5 plays an oncogenic role in breast cancer by activating MMP-9 pathway

    PubMed Central

    2013-01-01

    Background RABEX-5, a guanine nucleotide exchange factor (GEF) for RAB-5, plays an important role in cell mobility and altered expression associated with tumor metastasis. This study aimed to investigate the role of RABEX-5 in proliferation and metastasis of breast cancer in vitro and ex vivo. Methods RABEX-5 expression was examined in breast cancer, benign tumor and normal breast tissues by immunohistochemistry and western blot. Two stable cell lines were established, the MCF-7/NC negative control cell line and the MCF-7/KD cell line, which stably expressed an RNA interference (RNAi) construct that induced downregulation of RABEX-5 expression. These cell lines were utilized to evaluate the role of RABEX-5 in cell proliferation and migration in vitro and tumorigenicity in vivo. The possible role of RABEX-5 in the regulation of matrix metallopeptidase 9 (MMP-9) was evaluated using western blot and real-time PCR. Results RABEX-5 expression was found to be significantly higher in breast cancer tissues compared with benign tumor and normal breast tissues. High levels of RABEX-5 expression were associated with axillary lymph node metastasis. In addition, RABEX-5 silencing significantly reduced cancer cell proliferation, colony formation and migration ability in vitro and inhibited tumor growth in vivo. RABEX −5 knockdown also attenuated the migration of breast cancer cells via modulation of MMP-9 transcriptional activity. Conclusions Our results indicate that RABEX-5 plays an oncogenic role in breast cancer by modulating the proliferation and metastasis potential of breast cancer cells. Thus, RABEX-5 is a promising prognostic indicator for patients with breast cancer. PMID:23941575

  10. Oncogenic Activation of the Wnt/β-Catenin Signaling Pathway in Signet Ring Stromal Cell Tumor of the Ovary.

    PubMed

    Kopczynski, Janusz; Kowalik, Artur; Chłopek, Małgorzata; Wang, Zeng-Feng; Góźdź, Stanisław; Lasota, Jerzy; Miettinen, Markku

    2016-01-01

    Signet ring stromal cell tumor (SRSCT) of the ovary is a very rare benign ovarian neoplasm. To date, no underlying genetic mechanism has been identified. In this study, 50 oncogenes and tumor suppressor genes were evaluated for mutations in a typical SRSCT using the next-generation DNA sequencing approach. An in-frame deletion of 30 nucleotides in the glycogen serine kinase-3 beta phosphorylation region of the β-catenin gene (CTNNB1) was identified, and the finding was confirmed by Sanger sequencing. This deletion (c.68_97del) at the protein level would lead to a p.Ser23_Ser33delinsThr oncogenic-type mutation. Subsequent immunohistochemistry showed prominent nuclear accumulation of β-catenin and cyclin D1 in tumor cells. Thus, mutational activation of the Wnt/β-catenin pathway could be a crucial event in the molecular pathogenesis of SRSCT of the ovary. These findings may also assist in the diagnosis of this rare tumor. PMID:26509912

  11. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway

    PubMed Central

    Conti, Annalisa; Majorini, Maria Teresa; Elliott, Richard; Ashworth, Alan; Lord, Christopher J.; Cancelliere, Carlotta; Bardelli, Alberto; Seneci, Pierfausto; Walczak, Henning; Delia, Domenico; Lecis, Daniele

    2015-01-01

    KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation. PMID:26028667

  12. Oncogenic Activities of Human Papillomaviruses

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Münger, Karl

    2009-01-01

    Infectious etiologies for certain human cancers have long been suggested by epidemiological studies and studies with animals. Important support for this concept came from the discovery by Harald zur Hausen’s group that human cervical carcinoma almost universally contains certain “high-risk” human papillomavirus (HPV) types. Over the years, much has been learned about the carcinogenic activities of high-risk HPVs. These studies have revealed that two viral proteins, E6 and E7, that are consistently expressed in HPV-associated carcinomas, are necessary for induction and maintenance of the transformed phenotype. Hence, HPV-associated tumors are unique amongst human solid tumors in that they are universally caused by exposure to the same, molecularly defined oncogenic agents, and the molecular signal transduction pathways subverted by these viral transforming agents are frequently disrupted in other, non-virus associated human cancers. PMID:19540281

  13. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    PubMed

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  14. Oncogenes

    SciTech Connect

    Compans, R.W.; Cooper, M.; Koprowski, H.; McConell, I.; Melchers, F.; Nussenzweig, V.; Oldstone, M.; Olsnes, S.; Saedler, H.; Vogt, P.K.

    1989-01-01

    This book covers the following topics: Roles of drosophila proto-oncogenes and growth factor homologs during development of the fly; Interaction of oncogenes with differentiation programs; Genetics of src: structure and functional organization of a protein tyrosine kinase; Structures and activities of activated abl oncogenes; Eukaryotic RAS proteins and yeast proteins with which they interact. This book presents up-to-data review articles on oncogenes. The editor includes five contributions which critically evaluate recent research in the field.

  15. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    PubMed Central

    2012-01-01

    Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses

  16. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer.

    PubMed

    Coe, Bradley P; Thu, Kelsie L; Aviel-Ronen, Sarit; Vucic, Emily A; Gazdar, Adi F; Lam, Stephen; Tsao, Ming-Sound; Lam, Wan L

    2013-01-01

    Small cell lung cancer (SCLC) is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2). Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a "stem-cell like" hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease. PMID:23967231

  17. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance

    PubMed Central

    Ihle, NathanT.; Lemos, Robert; Wipf, Peter; Yacoub, Adly; Mitchell, Clint; Siwak, Doris; Mills, Gordon B.; Dent, Paul; Kirkpatrick, D Lynn.; Powis, Garth

    2008-01-01

    The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents. PMID:19117997

  18. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway.

    PubMed

    Jiang, Weiliang; Zhao, Senlin; Jiang, Xiaohua; Zhang, Erquan; Hu, Guoyong; Hu, Bin; Zheng, Ping; Xiao, Junhua; Lu, Zhanjun; Lu, Yingying; Ni, Jianbo; Chen, Congying; Wang, Xingpeng; Yang, Lijuan; Wan, Rong

    2016-02-28

    Disruption of the circadian clock has been shown to be associated with tumor development. This study aimed to investigate the role of the core circadian gene Bmal1 in pancreatic cancer (PC). We first found that the levels of Bmal1 were downregulated in PC samples and were closely correlated with the clinicopathological features of patients. To dissect the underlying mechanism, we performed a RNA-seq assay followed by systematic gene function and pathway enrichment analyses. We detected an anti-apoptotic and pro-proliferative transcriptome profile after Bmal1 knockdown in PC cells. Further in vitro and in vivo studies confirmed that Bmal1 overexpression significantly inhibited cell proliferation and invasion and induced G2/M cell cycle arrest, whereas Bmal1 knockdown promoted PC growth, as demonstrated in Bmal1-manipulated AsPC-1 and BxPC-3 cell lines. Our mechanistic studies indicated that Bmal1 could directly bind to the p53 gene promoter and thereby transcriptionally activate the downstream tumor suppressor pathway in a p53-dependent manner. In sum, our findings suggest that Bmal1 acts as an anti-oncogene in PC and represents a potential biomarker for its diagnosis. PMID:26683776

  19. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF–induced neutrophil recruitment

    PubMed Central

    Phan, Vernon T.; Wu, Xiumin; Cheng, Jason H.; Sheng, Rebecca X.; Chung, Alicia S.; Zhuang, Guanglei; Tran, Christopher; Song, Qinghua; Kowanetz, Marcin; Sambrone, Amy; Tan, Martha; Meng, Y. Gloria; Jackson, Erica L.; Peale, Franklin V.; Junttila, Melissa R.; Ferrara, Napoleone

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b+Gr1+ myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b+Ly6G+ neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies. PMID:23530240

  20. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment.

    PubMed

    Phan, Vernon T; Wu, Xiumin; Cheng, Jason H; Sheng, Rebecca X; Chung, Alicia S; Zhuang, Guanglei; Tran, Christopher; Song, Qinghua; Kowanetz, Marcin; Sambrone, Amy; Tan, Martha; Meng, Y Gloria; Jackson, Erica L; Peale, Franklin V; Junttila, Melissa R; Ferrara, Napoleone

    2013-04-01

    Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b(+)Gr1(+) myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b(+)Ly6G(+) neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies. PMID:23530240

  1. Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias

    PubMed Central

    Kvinlaug, Brynn T; Chan, Wai-In; Bullinger, Lars; Ramaswami, Mukundhan; Sears, Christopher; Foster, Donna; Lazic, Stanley E; Okabe, Rachel; Benner, Axel; Lee, Benjamin H; De Silva, Inusha; Valk, Peter JM; Delwel, Ruud; Armstrong, Scott A; Döhner, Hartmut; Gilliland, D Gary; Huntly, Brian JP

    2011-01-01

    Fusion oncogenes in acute myeloid leukemia (AML) promote self-renewal from committed progenitors, thereby linking transformation and self-renewal pathways. Like most cancers, AML is a genetically and biologically heterogeneous disease, but it is unclear whether transformation results from common or overlapping genetic programs acting downstream of multiple mutations, or by the engagement of unique genetic programs acting cooperatively downstream of individual mutations. This distinction is important, because the involvement of common programs would imply the existence of common molecular targets to treat AML, no matter which fusion oncogenes are involved. Here we demonstrate that the ability to promote self-renewal is a generalized property of leukemia-associated oncogenes. Disparate oncogenes initiated overlapping transformation and self-renewal gene expression programs, the common elements of which were defined in established leukemia stem cells from an animal model as well as from a large cohort of patients with differing AML subtypes, where they strongly predicted pathobiological character. Notably, individual genes commonly activated in these programs could partially phenocopy the self-renewal function of leukemia-associated oncogenes in committed murine progenitors. Further, they could generate AML following expression in murine bone marrow. In summary, our findings reveal the operation of common programs of self-renewal and transformation downstream of leukemia-associated oncogenes, suggesting mechanistically common therapeutic approaches to AML are likely to be possible, regardless of the identity of the driver oncogene involved. PMID:21505102

  2. Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma

    PubMed Central

    Hsiao, Tzu-Hung; Chen, Hung-I Harry; Lu, Jo-Yang; Lin, Pei-Ying; Keller, Charles; Comerford, Sarah; Tomlinson, Gail E.; Chen, Yidong

    2013-01-01

    Extracting maximal information from gene signature sets (GSSs) via microarray-based transcriptional profiling involves assigning function to up and down regulated genes. Here we present a novel sample scoring method called Signature-score (S-score) which can be used to quantify the expression pattern of tumor samples from previously identified gene signature sets. A simulation result demonstrated an improved accuracy and robustness by S-score method comparing with other scoring methods. By applying the S-score method to cholangiocarcinoma (CAC), an aggressive hepatic cancer that arises from bile ducts cells, we identified enriched oncogenic pathways in two large CAC data sets. Thirteen pathways were enriched in CAC compared with normal liver and bile duct. Moreover, using S-score, we were able to dissect correlations between CAC-associated oncogenic pathways and Gene Ontology function. Two major oncogenic clusters and associated functions were identified. Cluster 1, which included beta-catenin and Ras, showed a positive correlation with the cell cycle, while cluster 2, which included TGF-beta, cytokeratin 19 and EpCAM was inversely correlated with immune function. We also used S-score to identify pathways that are differentially expressed in CAC and hepatocellular carcinoma (HCC), the more common subtype of liver cancer. Our results demonstrate the utility and effectiveness of S-score in assigning functional roles to tumor-associated gene signature sets and in identifying potential therapeutic targets for specific liver cancer subtypes. PMID:23905013

  3. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis

    PubMed Central

    Song, Xiaowen; Xin, Na; Wang, Wei; Zhao, Chenghai

    2015-01-01

    A section of gastric cancers presents nuclear β-catenin accumulation correlated with H. pylori infection. H. pylori stimulate Wnt/β-catenin pathway by activating oncogenic c-Met and epidermal growth factor receptor (EGFR), or by inhibiting tumor suppressor Runx3 and Trefoil factor 1 (TFF1). H. pylori also trigger Wnt/β-catenin pathway by recruiting macrophages. Moreover, Wnt/β-catenin pathway is found involved in H. pylori-induced gastric cancer stem cell generation. Recently, by using gastroids, researchers have further revealed that H. pylori induce gastric epithelial cell proliferation through β-catenin. These findings indicate that Wnt/β-catenin is an oncogenic pathway activated by H. pylori. Therefore, this pathway is a potential therapy target for H. pylori-related gastric cancer. PMID:26417932

  4. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  5. Implication of oncogenic signaling pathways as a treatment strategy for neurodegenerative disorders - contemporary approaches.

    PubMed

    Sieradzki, Adrian; Yendluri, Bharat B; Palacios, Hector H; Parvathaneni, Kalpana; Reddy, V Prakash; Obrenovich, Mark E; Gąsiorowski, Kazimierz; Leszek, Jerzy; Aliev, Gjumrakch

    2011-03-01

    Recent evidence has associated the aberrant, proximal re-expression of various cell cycle control elements with neuronal cell vulnerability in Alzheimer's and Parkinson's diseases, as a common chronic neurodegeneration. This phenomenon associated with oncogenic transduction pathway activation has attracted the interest of scientists all over the world for a few years now. The purpose of this paper is to outline areas of research related to oncogenic factors or medicines in the context of potential applications for future treatment of the above mentioned chronic and, largely, incurable diseases. PMID:21222633

  6. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator.

    PubMed

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2011-11-11

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC(50), 0.3 μM) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC(50), 5 and 2 μM, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47-49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  7. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias.

    PubMed

    Keller, Ross R; Gestl, Shelley A; Lu, Amy Q; Hoke, Alicia; Feith, David J; Gunther, Edward J

    2016-08-01

    Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes. PMID:27207659

  8. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer

    PubMed Central

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C.; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S.; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S.

    2014-01-01

    In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with RPKM values (Reads Per Kilobase per Million mapped reads1) for ERBB2 (14.4, 400 and 300 for SUM149, SUM 190 and SKBR3 respectively and for EGFR 60.1, not detected and 1.4 for the same 3 cell lines. We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g. 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs. total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used the following bioinformatics sites, GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways which contained the four main oncogenes, had good coverage in the transcriptomic and proteomic data sets as well as significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell

  9. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    PubMed

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells. PMID:26940867

  10. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer.

    PubMed

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-Ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S

    2013-06-01

    In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines

  11. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy. PMID:25714018

  12. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway

    PubMed Central

    Pu, Qiang; Yuan, Yue; Yang, Weihan; Luo, Xinmei; Jiang, Qianqian; Hu, Xueting; Gong, Yi; Tang, Kui; Su, Xiaolan; Liu, Lunxu; Zhu, Wen; Wei, Yuquan

    2016-01-01

    SLC34A2 had been reported to be down-regulated in human NSCLC cells and patient tissues, and played a significant role in lung cancer. However, the mechanism of its unusual expressionin NSCLC has not been fully elucidated. In present study, we identified SLC34A2 was a direct target of miR-410 and could be inhibited by miR-410 transcriptionally and post-transcriptionally. MiR-410 promoted the growth, invasion and migration of NSCLC cells in vitro. An orthotopic xenograft nude mouse model further affirmed that miR-410 promoted NSCLC cell growth and metastasis in vivo. Moreover, restoring SLC34A2 expression effectively reversed the miR-410-mediated promotion of cell growth, invasion and migration in NSCLC cells. In addition, miR-410high /SLC34A2low expression signature frequently existed in NSCLC cells and tumor tissues. MiR-410 significantly increased the expression of DVL2 and β-catenin protein while decreased that of Gsk3β protein of Wnt/β-catenin signaling pathway, while SLC34A2 partly blocked the effects of miR-410 on those protein expressions. Hence, our data for the first time delineated that unusual expression of SLC34A2 was modulated by miR-410, and miR-410 might positivelycontribute to the tumorigenesis and development of NSCLC by down-regulating SLC34A2 and activating Wnt/β-catenin signaling pathway. MiR-410 might be a new potential therapeutic target for NSCLC. PMID:26910912

  13. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  14. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  15. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  16. A Leak Pathway for Luminal Protons in Endosomes Drives Oncogenic Signaling in Glioblastoma

    PubMed Central

    Kondapalli, Kalyan C.; Llongueras, Jose P.; Capilla-González, Vivian; Prasad, Hari; Hack, Anniesha; Smith, Christopher; Guerrero-Cázares, Hugo; Quiñones-Hinojosa, Alfredo; Rao, Rajini

    2015-01-01

    Epidermal growth factor receptor (EGFR) signaling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective, and EGFR persists on the plasma membrane to maintain tumor growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na+/H+ exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signaling pathways that drive tumor growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumor initiating cells attenuates tumorsphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signaling and is a highly druggable target for pan-specific receptor clearance in cancer therapy. PMID:25662504

  17. Oncogenic role of the Notch pathway in primary liver cancer

    PubMed Central

    LU, JIE; XIA, YUJING; CHEN, KAN; ZHENG, YUANYUAN; WANG, JIANRONG; LU, WENXIA; YIN, QIN; WANG, FAN; ZHOU, YINGQUN; GUO, CHUANYONG

    2016-01-01

    Primary liver cancer, which includes hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and fibrolamellar HCC, is one of the most common malignancies and the third leading cause of cancer-associated mortality, worldwide. Despite the development of novel therapies, the prognosis of liver cancer patients remains extremely poor. Thus, investigation of the genetic background and molecular mechanisms underlying the development and progression of this disease has gained significant attention. The Notch signaling pathway is a crucial determinant of cell fate during development and disease in several organs. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis, and is also significant in the development of HCC and ICC. These findings suggest that the modulation of Notch pathway activity may have therapeutic relevance. The present review summarizes Notch signaling during HCC and ICC development and discusses the findings of recent studies regarding Notch expression, which reveal novel insights into its function in liver cancer progression. PMID:27347091

  18. Microparticles induce multifactorial resistance through oncogenic pathways independently of cancer cell type

    PubMed Central

    de Souza, Paloma Silva; Cruz, André LS; Viola, João PB; Maia, Raquel C

    2015-01-01

    Multidrug resistance (MDR) is considered a multifactorial event that favors cancer cells becoming resistant to several chemotherapeutic agents. Numerous mechanisms contribute to MDR, such as P-glycoprotein (Pgp/ABCB1) activity that promotes drug efflux, overexpression of inhibitors of apoptosis proteins (IAP) that contribute to evasion of apoptosis, and oncogenic pathway activation that favors cancer cell survival. MDR molecules have been identified in membrane microparticles (MP) and can be transferred to sensitive cancer cells. By co-culturing MP derived from MDR-positive cells with recipient cells, we showed that sensitive cells accumulated Pgp, IAP proteins and mRNA. In addition, MP promoted microRNA transfer and NFκB and Yb-1 activation. Therefore, our results indicate that MP can induce a multifactorial phenotype in sensitive cancer cells. PMID:25457412

  19. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  20. Multidimensional Screening Platform for Simultaneously Targeting Oncogenic KRAS and Hypoxia-Inducible Factors Pathways in Colorectal Cancer.

    PubMed

    Bousquet, Michelle S; Ma, Jia Jia; Ratnayake, Ranjala; Havre, Pamela A; Yao, Jin; Dang, Nam H; Paul, Valerie J; Carney, Thomas J; Dang, Long H; Luesch, Hendrik

    2016-05-20

    Colorectal cancer (CRC) is a genetic disease, due to progressive accumulation of mutations in oncogenes and tumor suppressor genes. Large scale genomic sequencing projects revealed >100 mutations in any individual CRC. Many of these mutations are likely passenger mutations, and fewer are driver mutations. Of these, activating mutations in RAS proteins are essential for cancer initiation, progression, and/or resistance to therapy. There has been significant interest in developing drugs targeting mutated cancer gene products or downstream signaling pathways. Due to the number of mutations involved and inherent redundancy in intracellular signaling, drugs targeting one mutation or pathway have been either ineffective or led to rapid resistance. We have devised a strategy whereby multiple cancer pathways may be simultaneously targeted for drug discovery. For proof-of-concept, we targeted the oncogenic KRAS and HIF pathways, since oncogenic KRAS has been shown to be required for cancer initiation and progression, and HIF-1α and HIF-2α are induced by the majority of mutated oncogenes and tumor suppressor genes in CRC. We have generated isogenic cell lines defective in either oncogenic KRAS or both HIF-1α and HIF-2α and subjected them to multiplex genomic, siRNA, and high-throughput small molecule screening. We have identified potential drug targets and compounds for preclinical and clinical development. Screening of our marine natural product library led to the rediscovery of the microtubule agent dolastatin 10 and the class I histone deacetylase (HDAC) inhibitor largazole to inhibit oncogenic KRAS and HIF pathways. Largazole was further validated as an antiangiogenic agent in a HIF-dependent manner in human cells and in vivo in zebrafish using a genetic model with activated HIF. Our general strategy, coupling functional genomics with drug susceptibility or chemical-genetic interaction screens, enables the identification of potential drug targets and candidates with

  1. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma

    PubMed Central

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David JH; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David TW; Kool, Marcel; Remke, Marc; Cavalli, Florence; Zuyderduyn, Scott; Bader, Gary; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H. Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimlmg, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-01-01

    Summary Paragraph Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation, and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoural heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and Group 4 subgroup medulloblastomas account for the majority of paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to Groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family protooncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1/GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer. PMID:25043047

  2. Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy

    PubMed Central

    Chowdhury, Pinki; Lin, Gregory E.; Liu, Kang; Song, Yongcheng; Lin, Fang-Tsyr; Lin, Weei-Chin

    2014-01-01

    The progression of many solid tumors is driven by de-regulation of multiple common pathways, particularly Rb, PI (3) K/Akt and p53. Prior studies identified TopBP1as a key mediator for the oncogenic gain-of-function activities of mutant p53 (mutp53) in cancer. In Akt-hyperactive cancer, TopBP1 forms oligomers and represses E2F1-dependent apoptosis. Here we perform a molecular docking screening and identify a lead compound, calcein, capable of blocking TopBP1 oligomerization and p53 binding, resulting in re-activation of E2F1-dependent apoptosis and blockade of mutp53 gain-of-function. Calcein AM, the cell permeable derivative of calcein, shows significant anti-tumor activity in a wide-spectrum of cultured cancer cells harboring high TopBP1 levels. These biochemical findings are recapitulated in breast cancer xenograft models. Thus, our study provides proof-of-concept evidence for targeting TopBP1, a convergent point of multiple pathways, as a cancer therapy. PMID:25400145

  3. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability

    PubMed Central

    Qi, Qi; Li, Dean Y.; Luo, Hongbo R.; Guan, Kun-Liang; Ye, Keqiang

    2015-01-01

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1–induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene. PMID:26039999

  4. Activation of spinal MrgC-Gi-NR2B-nNOS signaling pathway by Mas oncogene-related gene C receptor agonist bovine adrenal medulla 8-22 attenuates bone cancer pain in mice

    PubMed Central

    Sun, Yu’e; Zhang, Juan; Lei, Yishan; Lu, Cui’e; Hou, Bailing; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objectives: In the present study, we investigate the effects of Mas oncogene-related gene (Mrg) C receptors (MrgC) on the expression and activation of spinal Gi protein, N-methyl-D-aspartate receptor subunit 2B (NR2B), and neuronal nitric oxide synthase (nNOS) in mouse model of bone cancer pain. Methods: The number of spontaneous foot lift (NSF) and paw withdrawal mechanical threshold (PWMT) were measured after inoculation of tumor cells and intrathecal injection of MrgC agonist bovine adrenal medulla 8-22 (BAM8-22) or MrgC antagonist anti-MrgC for 14 days after operation. Expression of spinal MrgC, Gi protein, NR2B and nNOS and their phosphorylated forms after inoculation was examined by immunohistochemistry and Western blotting. Double labeling was used to identify the co-localization of NR2B or nNOS with MrgC in spinal cord dorsal horn (SCDH) neurons. The effects of intrathecal injection of BAM8-22 or anti-MrgC on nociceptive behaviors and the corresponding expression of spinal MrgC, Gi protein, NR2B and nNOS were also investigated. Results: The expression of spinal MrgC, Gi protein, NR2B, and nNOS was higher in tumor-bearing mice in comparison to sham mice or normal mice. Intrathecal injection of MrgC agonist BAM8-22 significantly alleviated bone cancer pain, up-regulated MrgC and Gi protein expression, and down-regulated the expression of spinal p-NR2B, t-nNOS and p-nNOS in SCDH on day 14 after operation, whereas administration of anti-MrgC produced the opposite effect. Meanwhile, MrgC-like immunoreactivity (IR) co-localizes with NR2B-IR or nNOS-IR in SCDH neurons. Conclusions: The present study demonstrates that MrgC-activated spinal Gi-NR2B-nNOS signaling pathway plays important roles in the development of bone cancer pain. These findings may provide a novel strategy for the treatment of bone cancer pain. PMID:27158400

  5. Autophagic activity dictates the cellular response to oncogenic RAS

    PubMed Central

    Wang, Yihua; Wang, Xiao Dan; Lapi, Eleonora; Sullivan, Alexandra; Jia, Wei; He, You-Wen; Ratnayaka, Indrika; Zhong, Shan; Goldin, Robert D.; Goemans, Christoph G.; Tolkovsky, Aviva M.; Lu, Xin

    2012-01-01

    RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2(Δ3/Δ3) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce. PMID:22847423

  6. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  7. Computational Design of Selective Peptides to Discriminate Between Similar PDZ Domains in an Oncogenic Pathway

    PubMed Central

    Zheng, Fan; Jewell, Heather; Fitzpatrick, Jeremy; Zhang, Jian; Mierke, Dale F.; Grigoryan, Gevorg

    2016-01-01

    Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules—e.g., PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2—N2P2 and MAGI-3 PDZ6—M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 increases tumorigenicity and M3P6 decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding, yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting. PMID:25451599

  8. Pinworm and TNKS inhibitors, an eccentric duo to derail the oncogenic WNT pathway.

    PubMed

    Ouelaa-Benslama, Radia; Emami, Shahin

    2011-09-01

    The WNT/β-catenin pathway underlies many human cancers through mutations in the APC, β-catenin, and Axin genes. Activation of WNT signalling can also occur due to the localization of glycogen synthase kinase 3β(GSK3β) to the multivesicular bodies, which prevents the degradation of β-catenin. This leads to accumulation of β-catenin within the cytoplasmic matrix and nucleus of cancer cells, which triggers the transactivation of genes involved in cell proliferation, including various oncogenes. Recent research into the mechanistic regulations of molecule homeostasis and identification of new small-targeted inhibitors has provided further insights into the WNT signalling pathway and its role in human cancers. Novel WNT inhibitors target unsuspected cellular enzymes, such as tankyrases, or casein kinase 1α/γ, which controls the destruction of β-catenin and GSK3β. These could lead to the identification of new biomarkers and WNT-targeted inhibitors for the treatment of cancer. PMID:21782548

  9. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma.

    PubMed

    Kondapalli, Kalyan C; Llongueras, Jose P; Capilla-González, Vivian; Prasad, Hari; Hack, Anniesha; Smith, Christopher; Guerrero-Cázares, Hugo; Quiñones-Hinojosa, Alfredo; Rao, Rajini

    2015-01-01

    Epidermal growth factor receptor (EGFR) signalling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective and EGFR persists on the plasma membrane to maintain tumour growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na(+)/H(+) exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signalling pathways that drive tumour growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumour-initiating cells attenuates tumoursphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signalling and is a highly druggable target for pan-specific receptor clearance in cancer therapy. PMID:25662504

  10. A novel function of the human oncogene Stil: Regulation of PC12 cell toxic susceptibility through the Shh pathway.

    PubMed

    Li, Lei; Carr, Aprell L; Sun, Lei; Drewing, Audrey; Lee, Jessica; Rao, Zihe

    2015-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Here, we report new findings of Stil in the regulation of toxic susceptibility in mammalian dopaminergic (DA)-like PC12 cells. RNAi-mediated knockdown of Stil expression did not affect the survival of proliferating PC12 cells but caused a significant amount of cell death in differentiated neurons after toxic drug treatment. In contrast, overexpression of Stil increased toxic susceptibility only in proliferating cells but produced no effect in mature neurons. Exogenetic inactivation or activation of the Sonic hedgehog (Shh) signaling transduction mimicked the effect of Stil knockdown or overexpression in regulation of PC12 cell toxic susceptibility, suggesting that Stil exerts its role through the Shh pathway. Together, the data provide evidence for novel functions of the human oncogene Stil in neural toxic susceptibility. PMID:26549353

  11. A novel function of the human oncogene Stil: Regulation of PC12 cell toxic susceptibility through the Shh pathway

    PubMed Central

    Li, Lei; Carr, Aprell L.; Sun, Lei; Drewing, Audrey; Lee, Jessica; Rao, Zihe

    2015-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Here, we report new findings of Stil in the regulation of toxic susceptibility in mammalian dopaminergic (DA)-like PC12 cells. RNAi-mediated knockdown of Stil expression did not affect the survival of proliferating PC12 cells but caused a significant amount of cell death in differentiated neurons after toxic drug treatment. In contrast, overexpression of Stil increased toxic susceptibility only in proliferating cells but produced no effect in mature neurons. Exogenetic inactivation or activation of the Sonic hedgehog (Shh) signaling transduction mimicked the effect of Stil knockdown or overexpression in regulation of PC12 cell toxic susceptibility, suggesting that Stil exerts its role through the Shh pathway. Together, the data provide evidence for novel functions of the human oncogene Stil in neural toxic susceptibility. PMID:26549353

  12. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways.

    PubMed

    Kaipparettu, Benny Abraham; Ma, Yewei; Park, Jun Hyoung; Lee, Tin-Lap; Zhang, Yiqun; Yotnda, Patricia; Creighton, Chad J; Chan, Wai-Yee; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial-nucleus cross talks and mitochondrial retrograde regulation can play a significant role in cellular properties. Transmitochondrial cybrid systems (cybrids) are an excellent tool to study specific effects of altered mitochondria under a defined nuclear background. The majority of the studies using the cybrid model focused on the significance of specific mitochondrial DNA variations in mitochondrial function or tumor properties. However, most of these variants are benign polymorphisms without known functional significance. From an objective of rectifying mitochondrial defects in cancer cells and to establish mitochondria as a potential anticancer drug target, understanding the role of functional mitochondria in reversing oncogenic properties under a cancer nuclear background is very important. Here we analyzed the potential reversal of oncogenic properties of a highly metastatic cell line with the introduction of non-cancerous mitochondria. Cybrids were established by fusing the mitochondria DNA depleted 143B TK- ρ0 cells from an aggressive osteosarcoma cell line with mitochondria from benign breast epithelial cell line MCF10A, moderately metastatic breast cancer cell line MDA-MB-468 and 143B cells. In spite of the uniform cancerous nuclear background, as observed with the mitochondria donor cells, cybrids with benign mitochondria showed high mitochondrial functional properties including increased ATP synthesis, oxygen consumption and respiratory chain activities compared to cybrids with cancerous mitochondria. Interestingly, benign mitochondria could reverse different oncogenic characteristics of 143B TK(-) cell including cell proliferation, viability under hypoxic condition, anti-apoptotic properties, resistance to anti-cancer drug, invasion, and colony formation in soft agar, and in vivo tumor growth in nude mice. Microarray analysis suggested that several oncogenic pathways observed in cybrids with cancer mitochondria are inhibited in cybrids with

  13. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  14. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway.

    PubMed

    Fagegaltier, Delphine; Falciatori, Ilaria; Czech, Benjamin; Castel, Stephane; Perrimon, Norbert; Simcox, Amanda; Hannon, Gregory J

    2016-07-15

    Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer. PMID:27474441

  15. CDK1 phosphorylation of TAZ in mitosis inhibits its oncogenic activity

    PubMed Central

    Zhang, Lin; Chen, Xingcheng; Stauffer, Seth; Yang, Shuping; Chen, Yuanhong; Dong, Jixin

    2015-01-01

    The transcriptional co-activator with PDZ-binding motif (TAZ) is a downstream effector of the Hippo tumor suppressor pathway, which plays important roles in cancer and stem cell biology. Hippo signaling inactivates TAZ through phosphorylation (mainly at S89). In the current study, we define a new layer of regulation of TAZ activity that is critical for its oncogenic function. We found that TAZ is phosphorylated in vitro and in vivo by the mitotic kinase CDK1 at S90, S105, T326, and T346 during the G2/M phase of the cell cycle. Interestingly, mitotic phosphorylation inactivates TAZ oncogenic activity, as the non-phosphorylatable mutant (TAZ-S89A/S90A/S105A/T326A/T346A, TAZ-5A) possesses higher activity in epithelial-mesenchymal transition, anchorage-independent growth, cell migration, and invasion when compared to the TAZ-S89A mutant. Accordingly, TAZ-5A has higher transcriptional activity compared to the TAZ-S89A mutant. Finally, we show that TAZ-S89A or TAZ-5A (to a greater extent) was sufficient to induce spindle and centrosome defects, and chromosome misalignment/missegregation in immortalized epithelial cells. Together, our results reveal a previously unrecognized connection between TAZ oncogenicity and mitotic phospho-regulation. PMID:26375055

  16. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation

    PubMed Central

    Smorodinsky-Atias, Karina; Goshen-Lago, Tal; Goldberg-Carp, Anat; Melamed, Dganit; Shir, Alexei; Mooshayef, Navit; Beenstock, Jonah; Karamansha, Yael; Darlyuk-Saadon, Ilona; Livnah, Oded; Ahn, Natalie G.; Admon, Arie; Engelberg, David

    2016-01-01

    The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk’s activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation. PMID:26658610

  17. Cytomodulin-1, a synthetic peptide abrogates oncogenic signaling pathways to impede invasion and angiogenesis in the hamster cheek pouch carcinogenesis model.

    PubMed

    Kavitha, K; Kranthi Kiran Kishore, T; Bhatnagar, R S; Nagini, S

    2014-07-01

    Constitutive activation of the various oncogenic signaling pathways plays a pivotal role in promoting malignant transformation. The aim of this study was to investigate the therapeutic potential of a synthetic bioactive heptapeptide cytomodulin-1 (CM-1) against hamster cheek pouch carcinomas based on its influence on the predominant carcinogenic signaling pathways - NF-κB, TGFβ, and Wnt/β-catenin and their downstream target events invasion and angiogenesis. Topical application of CM-1 to DMBA-painted hamsters significantly inhibited activation of the canonical NF-κB pathway by blocking kinase activity of IKKβ and increasing the cytosolic accumulation of the inhibitor IκB-α. In addition, CM-1 inactivated IKKβ by disrupting IKKβ/Nemo interactions. CM-1 also hampered the activation of TGFβ and Wnt/β-catenin signaling by averting the phosphorylation of the key upstream ser/thr kinases TGFβ RI and GSK-3β respectively. Attenuation of these oncogenic signaling pathways by CM-1 also mitigated invasion and angiogenesis by suppressing the expression of pro-invasive matrix metalloproteinases, pro-angiogenic VEGF and HIF-1α and upregulating the anti-angiogenic TIMP-2. Synthetic peptides such as CM-1 that target multiple key molecules in oncogenic signaling pathways and their downstream events are ideal candidate agents for cancer chemotherapy. PMID:24582832

  18. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc

    PubMed Central

    D'Artista, Luana; Bisso, Andrea; Piontini, Andrea; Doni, Mirko; Verrecchia, Alessandro; Kress, Theresia R.; Morelli, Marco J.; Del Sal, Giannino; Amati, Bruno; Campaner, Stefano

    2016-01-01

    The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors. PMID:26943576

  19. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  20. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers.

    PubMed

    Hnisz, Denes; Schuijers, Jurian; Lin, Charles Y; Weintraub, Abraham S; Abraham, Brian J; Lee, Tong Ihn; Bradner, James E; Young, Richard A

    2015-04-16

    Super-enhancers and stretch enhancers (SEs) drive expression of genes that play prominent roles in normal and disease cells, but the functional importance of these clustered enhancer elements is poorly understood, so it is not clear why genes key to cell identity have evolved regulation by such elements. Here, we show that SEs consist of functional constituent units that concentrate multiple developmental signaling pathways at key pluripotency genes in embryonic stem cells and confer enhanced responsiveness to signaling of their associated genes. Cancer cells frequently acquire SEs at genes that promote tumorigenesis, and we show that these genes are especially sensitive to perturbation of oncogenic signaling pathways. Super-enhancers thus provide a platform for signaling pathways to regulate genes that control cell identity during development and tumorigenesis. PMID:25801169

  1. Insulator dysfunction and oncogene activation in IDH mutant gliomas.

    PubMed

    Flavahan, William A; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Venteicher, Andrew S; Stemmer-Rachamimov, Anat O; Suvà, Mario L; Bernstein, Bradley E

    2016-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  2. Insulator dysfunction and oncogene activation in IDH mutant gliomas

    PubMed Central

    Flavahan, William A.; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Venteicher, Andrew S.; Stemmer-Rachamimov, Anat O.; Suvà, Mario L.; Bernstein, Bradley E.

    2015-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas1,2. Mutant IDH protein produces a novel onco-metabolite, 2-hydroxyglutarate (2-HG), that interferes with iron-dependent hydroxylases, including the TET family of 5′-methylcytosine hydroxylases3–7. TET enzymes catalyze a key step in the removal of DNA methylation8,9. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP)10,11, though the functional significance of this altered epigenetic state remains unclear. Here we show that IDH mutant gliomas exhibit hyper-methylation at CTCF binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to aberrantly interact with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with demethylating agent partially restores insulator function and down-regulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wildtype gliomaspheres up-regulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  3. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    PubMed

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  4. JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma.

    PubMed

    Durbin, Adam D; Somers, Gino R; Forrester, Michael; Pienkowska, Malgorzata; Hannigan, Gregory E; Malkin, David

    2009-06-01

    Although most reports describe the protein kinase integrin-linked kinase (ILK) as a proto-oncogene, occasional studies detail opposing functions in the regulation of normal and transformed cell proliferation, differentiation, and apoptosis. Here, we demonstrated that ILK functions as an oncogene in the highly aggressive pediatric sarcoma alveolar rhabdomyosarcoma (ARMS) and as a tumor suppressor in the related embryonal rhabdomyosarcoma (ERMS). These opposing functions hinge on signaling through a noncanonical ILK target, JNK1, to the proto-oncogene c-Jun. RNAi-mediated depletion of ILK induced activation of JNK and its target, c-Jun, resulting in growth of ERMS cells, whereas in ARMS cells, it led to loss of JNK/c-Jun signaling and suppression of growth both in vitro and in vivo. Ectopic expression of the fusion gene characteristic of ARMS (paired box 3-forkhead homolog in rhabdomyosarcoma [PAX3-FKHR]) in ERMS cells was sufficient to convert them to an ARMS signaling phenotype and render ILK activity oncogenic. Furthermore, restoration of JNK1 in ARMS reestablished a tumor-suppressive function for ILK. These findings indicate what we believe to be a novel effector pathway regulated by ILK, provide a mechanism for interconversion of oncogenic and tumor-suppressor functions of a single regulatory protein based on the genetic background of the tumor cells, and suggest a rationale for tailored therapy of rhabdomyosarcoma based on the different activities of ILK. PMID:19478459

  5. BRAF vs RAS oncogenes: are mutations of the same pathway equal? differential signalling and therapeutic implications

    PubMed Central

    Oikonomou, Eftychia; Koustas, Evangelos; Goulielmaki, Maria; Pintzas, Alexander

    2014-01-01

    As the increased knowledge of tumour heterogeneity and genetic alterations progresses, it exemplifies the need for further personalized medicine in modern cancer management. Here, the similarities but also the differential effects of RAS and BRAF oncogenic signalling are examined and further implications in personalized cancer diagnosis and therapy are discussed. Redundant mechanisms mediated by the two oncogenes as well as differential regulation of signalling pathways and gene expression by RAS as compared to BRAF are addressed. The implications of RAS vs BRAF differential functions, in relevant tumour types including colorectal cancer, melanoma, lung cancer are discussed. Current therapeutic findings and future viewpoints concerning the exploitation of RAS-BRAF-pathway alterations for the development of novel therapeutics and efficient rational combinations, as well as companion tests for relevant markers of response will be evaluated. The concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance posed a major therapy hindrance. PMID:25361007

  6. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

    PubMed

    Crescenzo, Ramona; Abate, Francesco; Lasorsa, Elena; Tabbo', Fabrizio; Gaudiano, Marcello; Chiesa, Nicoletta; Di Giacomo, Filomena; Spaccarotella, Elisa; Barbarossa, Luigi; Ercole, Elisabetta; Todaro, Maria; Boi, Michela; Acquaviva, Andrea; Ficarra, Elisa; Novero, Domenico; Rinaldi, Andrea; Tousseyn, Thomas; Rosenwald, Andreas; Kenner, Lukas; Cerroni, Lorenzo; Tzankov, Alexander; Ponzoni, Maurilio; Paulli, Marco; Weisenburger, Dennis; Chan, Wing C; Iqbal, Javeed; Piris, Miguel A; Zamo', Alberto; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Shultz, Leonard D; Mevellec, Laurence; Vialard, Jorge E; Piva, Roberto; Bertoni, Francesco; Rabadan, Raul; Inghirami, Giorgio

    2015-04-13

    A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo. PMID:25873174

  7. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase.

    PubMed Central

    Rodrigues, G A; Park, M

    1993-01-01

    Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed. Images PMID:8413267

  8. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis

    PubMed Central

    Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-01-01

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  9. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis.

    PubMed

    Chen, San-Cher; Hu, Tsung-Hui; Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-06-30

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  10. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis.

    PubMed

    Wiel, C; Augert, A; Vincent, D F; Gitenay, D; Vindrieux, D; Le Calvé, B; Arfi, V; Lallet-Daher, H; Reynaud, C; Treilleux, I; Bartholin, L; Lelievre, E; Bernard, D

    2013-01-01

    Cellular senescence, a stable proliferation arrest, is induced in response to various stresses. Oncogenic stress-induced senescence (OIS) results in blocked proliferation and constitutes a fail-safe program counteracting tumorigenesis. The events that enable a tumor in a benign senescent state to escape from OIS and become malignant are largely unknown. We show that lysyl oxidase activity contributes to the decision to maintain senescence. Indeed, in human epithelial cell the constitutive expression of the LOX or LOXL2 protein favored OIS escape, whereas inhibition of lysyl oxidase activity was found to stabilize OIS. The relevance of these in vitro observations is supported by in vivo findings: in a transgenic mouse model of aggressive pancreatic ductal adenocarcinoma (PDAC), increasing lysyl oxidase activity accelerates senescence escape, whereas inhibition of lysyl oxidase activity was found to stabilize senescence, delay tumorigenesis, and increase survival. Mechanistically, we show that lysyl oxidase activity favors the escape of senescence by regulating the focal-adhesion kinase. Altogether, our results demonstrate that lysyl oxidase activity participates in primary tumor growth by directly impacting the senescence stability. PMID:24113189

  11. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure

    PubMed Central

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-01-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as ‘oncogene addiction’. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies. PMID:25680965

  12. MicroRNAs Involved in Tumor Suppressor and Oncogene Pathways; Implications for Hepatobiliary Neoplasia

    PubMed Central

    Mott, Justin L.

    2009-01-01

    MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are upregulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia. PMID:19585622

  13. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-10-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  14. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  15. Genome and transcriptome delineation of two major oncogenic pathways governing invasive ductal breast cancer development

    PubMed Central

    Aswad, Luay; Yenamandra, Surya Pavan; Ow, Ghim Siong; Grinchuk, Oleg; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    Invasive ductal carcinoma (IDC) is a major histo-morphologic type of breast cancer. Histological grading (HG) of IDC is widely adopted by oncologists as a prognostic factor. However, HG evaluation is highly subjective with only 50%–85% inter-observer agreements. Specifically, the subjectivity in the assignment of the intermediate grade (histologic grade 2, HG2) breast cancers (comprising ~50% of IDC cases) results in uncertain disease outcome prediction and sub-optimal systemic therapy. Despite several attempts to identify the mechanisms underlying the HG classification, their molecular bases are poorly understood. We performed integrative bioinformatics analysis of TCGA and several other cohorts (total 1246 patients). We identified a 22-gene tumor aggressiveness grading classifier (22g-TAG) that reflects global bifurcation in the IDC transcriptomes and reclassified patients with HG2 tumors into two genetically and clinically distinct subclasses: histological grade 1-like (HG1-like) and histological grade 3-like (HG3-like). The expression profiles and clinical outcomes of these subclasses were similar to the HG1 and HG3 tumors, respectively. We further reclassified IDC into low genetic grade (LGG = HG1+HG1-like) and high genetic grade (HGG = HG3-like+HG3) subclasses. For the HG1-like and HG3-like IDCs we found subclass-specific DNA alterations, somatic mutations, oncogenic pathways, cell cycle/mitosis and stem cell-like expression signatures that discriminate between these tumors. We found similar molecular patterns in the LGG and HGG tumor classes respectively. Our results suggest the existence of two genetically-predefined IDC classes, LGG and HGG, driven by distinct oncogenic pathways. They provide novel prognostic and therapeutic biomarkers and could open unique opportunities for personalized systemic therapies of IDC patients. PMID:26474389

  16. FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer.

    PubMed

    Fan, Qipeng; Cai, Qingchun; Xu, Yan

    2015-09-29

    Lysophosphatidic acid (LPA), a prototypical ligand for G protein coupled receptors, and Forkhead box protein M1 (FOXM1), a transcription factor that regulates expression of a wide array of genes involved in cancer initiation and progression, are two important oncogenic signaling molecules in human epithelial ovarian cancers (EOC). We conducted in vitro mechanistic studies using pharmacological inhibitors, genetic forms of the signaling molecules, and RNAi-mediated gene knock-down to uncover the molecular mechanisms of how these two molecules interact in EOC cells. Additionally, in vivo mouse studies were performed to confirm the functional involvement of FOXM1 in EOC tumor formation and progression. We show for the first time that LPA up-regulates expression of active FOXM1 splice variants in a time- and dose-dependent manner in the human EOC cell lines OVCA433, CAOV3, and OVCAR5. Gi-PI3K-AKT and G12/13-Rho-YAP signaling pathways were both involved in the LPA receptor (LPA1-3) mediated up-regulation of FOXM1 at the transcriptional level. In addition, down-regulation of FOXM1 in CAOV3 xenografts significantly reduced tumor and ascites formation, metastasis, and expression of FOXM1 target genes involved in cell proliferation, migration, or invasion. Collectively, our data link the oncolipid LPA, the oncogene YAP, and the central regulator of cell proliferation/mutagenesis FOXM1 in EOC cells. Moreover, these results provide further support for the importance of these pathways as potential therapeutic targets in EOC. PMID:26299613

  17. Rodent p53 suppresses the transforming activity of the activated Neu oncogene by modulating the Basal promoter activity of Neu.

    PubMed

    Matin, A; Xie, Y; Kao, M; Hung, M

    1995-05-01

    The rat neu oncogene encodes a dominant transforming oncogene. The mouse wild-type p53 suppresses the transforming activity of the neu oncogene while different p53 mutants demonstrate varying ability to repress neu-induced transformation. Suppression of neu-transforming activity is due to inhibition of transcription. Deletion analysis of the rat neu promoter shows that p53 represses the basal promoter activity of neu. Therefore, rodent p53 suppresses the transforming potential of neu by inhibiting transcription from the basal promoter of neu. PMID:21556644

  18. The cell survival pathways of the primordial RNA–DNA complex remain conserved in the extant genomes and may function as proto-oncogenes

    PubMed Central

    2015-01-01

    Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix–loop–helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt–β-catenin, Hedgehog, PI3K, MAPK–ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous “cancer cells”. PMID:25883792

  19. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes.

    PubMed

    Sinkovics, J G

    2015-03-01

    Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells". PMID:25883792

  20. Uncoupling of the LKB1-AMPKα Energy Sensor Pathway by Growth Factors and Oncogenic BRAFV600E

    PubMed Central

    Esteve-Puig, Rosaura; Canals, Francesc; Colomé, Núria; Merlino, Glenn; Recio, Juan Ángel

    2009-01-01

    Background Understanding the biochemical mechanisms contributing to melanoma development and progression is critical for therapeutical intervention. LKB1 is a multi-task Ser/Thr kinase that phosphorylates AMPK controlling cell growth and apoptosis under metabolic stress conditions. Additionally, LKB1Ser428 becomes phosphorylated in a RAS-Erk1/2-p90RSK pathway dependent manner. However, the connection between the RAS pathway and LKB1 is mostly unknown. Methodology/Principal Findings Using the UV induced HGF transgenic mouse melanoma model to investigate the interplay among HGF signaling, RAS pathway and PI3K pathway in melanoma, we identified LKB1 as a protein directly modified by HGF induced signaling. A variety of molecular techniques and tissue culture revealed that LKB1Ser428 (Ser431 in the mouse) is constitutively phosphorylated in BRAFV600E mutant melanoma cell lines and spontaneous mouse tumors with high RAS pathway activity. Interestingly, BRAFV600E mutant melanoma cells showed a very limited response to metabolic stress mediated by the LKB1-AMPK-mTOR pathway. Here we show for the first time that RAS pathway activation including BRAFV600E mutation promotes the uncoupling of AMPK from LKB1 by a mechanism that appears to be independent of LKB1Ser428 phosphorylation. Notably, the inhibition of the RAS pathway in BRAFV600E mutant melanoma cells recovered the complex formation and rescued the LKB1-AMPKα metabolic stress-induced response, increasing apoptosis in cooperation with the pro-apoptotic proteins Bad and Bim, and the down-regulation of Mcl-1. Conclusions/Significance These data demonstrate that growth factor treatment and in particular oncogenic BRAFV600E induces the uncoupling of LKB1-AMPKα complexes providing at the same time a possible mechanism in cell proliferation that engages cell growth and cell division in response to mitogenic stimuli and resistance to low energy conditions in tumor cells. Importantly, this mechanism reveals a new level for

  1. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    PubMed

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes. PMID:25624498

  2. Opposing oncogenic activities of small DNA tumor virus transforming proteins

    PubMed Central

    Chinnadurai, G.

    2011-01-01

    The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the surprising discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed. PMID:21330137

  3. Biological activities of v-myc and rearranged c-myc oncogenes in rat fibroblast cells in culture.

    PubMed

    Mougneau, E; Lemieux, L; Rassoulzadegan, M; Cuzin, F

    1984-09-01

    Two distinct forms of the myc oncogene were assayed for their ability to induce, in cultured rat fibroblast cells, the alterations of cellular growth controls observed upon transfer of the gene of polyoma virus encoding only the large T protein (plt). Both of these rearranged myc genes and the plt gene had been previously shown to cooperate with ras oncogenes for transformation of rat embryo fibroblasts (REF) and were thought to induce the same early step ("immortalization") of the tumoral transformation pathway. We now report that these two different oncogenes elicite the same response in the following biological assays: (i) reduction of the requirements in serum factors for growth in culture of cells of the established FR3T3 line; (ii) expression of transformed properties in low serum medium after transfer into FR3T3 cells expressing only the middle T protein of polyoma virus (MTT lines); (iii) conferring on REF cells the ability to grow as clonal colonies after seeding at low cell density; (iv) conferring on REF cells the ability to grow continuously in cell culture. These congruent phenotypes suggest that the activities of the large T and myc proteins result in the induction of the same molecular events. These results also provide simple biological assays and selective systems for oncogenes of the myc class. PMID:6091107

  4. SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity

    PubMed Central

    Turato, Cristian; Cannito, Stefania; Simonato, Davide; Villano, Gianmarco; Morello, Elisabetta; Terrin, Liliana; Quarta, Santina; Biasiolo, Alessandra; Ruvoletto, Mariagrazia; Martini, Andrea; Fasolato, Silvano; Zanus, Giacomo; Cillo, Umberto; Gatta, Angelo; Parola, Maurizio; Pontisso, Patrizia

    2015-01-01

    SerpinB3 has been recently described as an early marker of liver carcinogenesis, but the potential mechanistic role of this serpin in tumor development is still poorly understood. Overexpression of Myc often correlates with more aggressive tumour forms, supporting its involvement in carcinogenesis. Yes-associated protein (Yap), the main effector of the Hippo pathway, is a central regulator of proliferation and it has been found up-regulated in hepatocellular carcinomas. The study has been designed to investigate and characterize the interplay and functional modulation of Myc by SerpinB3 in liver cancer. Results from this study indicate that Myc was up-regulated by SerpinB3 through calpain and Hippo-dependent molecular mechanisms in transgenic mice and hepatoma cells overexpressing human SerpinB3, and also in human hepatocellular carcinomas. Human recombinant SerpinB3 was capable to inhibit the activity of Calpain in vitro, likely reducing its ability to cleave Myc in its non oncogenic Myc-nick cytoplasmic form. SerpinB3 indirectly increased the transcription of Myc through the induction of Yap pathway. These findings provide for the first time evidence that SerpinB3 can improve the production of Myc through direct and indirect mechanisms that include the inhibition of generation of its cytoplasmic form and the activation of Yap pathway. PMID:26634820

  5. The free energy landscape in translational science: how can somatic mutations result in constitutive oncogenic activation?

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2014-04-14

    The free energy landscape theory has transformed the field of protein folding. The significance of perceiving function in terms of conformational heterogeneity is gradually shifting the interest in the community from folding to function. From the free energy landscape standpoint the principles are unchanged: rather than considering the entire protein conformational landscape, the focus is on the ensemble around the bottom of the folding funnel. The protein can be viewed as populating one of two states: active or inactive. The basins of the two states are separated by a surmountable barrier, which allows the conformations to switch between the states. Unless the protein is a repressor, under physiological conditions it typically populates the inactive state. Ligand binding (or post-translational modification) triggers a switch to the active state. Constitutive allosteric mutations work by shifting the population from the inactive to the active state and keeping it there. This can happen by either destabilizing the inactive state, stabilizing the active state, or both. Identification of the mechanism through which they work is important since it may assist in drug discovery. Here we spotlight the usefulness of the free energy landscape in translational science, illustrating how oncogenic mutations can work in key proteins from the EGFR/Ras/Raf/Erk/Mek pathway, the main signaling pathway in cancer. Finally, we delineate the key components which are needed in order to trace the mechanism of allosteric events. PMID:24445437

  6. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review)

    PubMed Central

    SINKOVICS, JOSEPH G.

    2015-01-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the Dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  7. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review).

    PubMed

    Sinkovics, Joseph G

    2015-10-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  8. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants

    PubMed Central

    Chen, Ke; Yang, Jianling; Li, Jianning; Wang, Xuefei; Chen, Yuhai; Huang, Shile; Chen, Ji-Long

    2016-01-01

    Activation of eIF4B correlates with Abl-mediated cellular transformation, but the precise mechanisms are largely unknown. Here we show that eIF4B is a convergent substrate of JAK/STAT/Pim and PI3K/Akt/mTOR pathways in Abl transformants. Both pathways phosphorylated eIF4B in Abl-transformed cells, and such redundant regulation was responsible for the limited effect of single inhibitor on Abl oncogenicity. Persistent inhibition of one signaling pathway induced the activation of the other pathway and thereby restored the phosphorylation levels of eIF4B. Simultaneous inhibition of the two pathways impaired eIF4B phosphorylation more effectively, and synergistically induced apoptosis in Abl transformed cells and inhibited the growth of engrafted tumors in nude mice. Similarly, the survival of Abl transformants exhibited a higher sensitivity to the pharmacological inhibition, when combined with the shRNA-based silence of the other pathway. Interestingly, such synergy was dependent on the phosphorylation status of eIF4B on Ser422, as overexpression of eIF4B phosphomimetic mutant S422E in the transformants greatly attenuated the synergistic effects of these inhibitors on Abl oncogenicity. In contrast, eIF4B knockdown sensitized Abl transformants to undergo apoptosis induced by the combined blockage. Collectively, the results indicate that eIF4B integrates the signals from Pim and PI3K/Akt/mTOR pathways in Abl-expressing leukemic cells, and is a promising therapeutic target for such cancers. PMID:26848623

  9. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants.

    PubMed

    Chen, Ke; Yang, Jianling; Li, Jianning; Wang, Xuefei; Chen, Yuhai; Huang, Shile; Chen, Ji-Long

    2016-03-01

    Activation of eIF4B correlates with Abl-mediated cellular transformation, but the precise mechanisms are largely unknown. Here we show that eIF4B is a convergent substrate of JAK/STAT/Pim and PI3K/Akt/mTOR pathways in Abl transformants. Both pathways phosphorylated eIF4B in Abl-transformed cells, and such redundant regulation was responsible for the limited effect of single inhibitor on Abl oncogenicity. Persistent inhibition of one signaling pathway induced the activation of the other pathway and thereby restored the phosphorylation levels of eIF4B. Simultaneous inhibition of the two pathways impaired eIF4B phosphorylation more effectively, and synergistically induced apoptosis in Abl transformed cells and inhibited the growth of engrafted tumors in nude mice. Similarly, the survival of Abl transformants exhibited a higher sensitivity to the pharmacological inhibition, when combined with the shRNA-based silence of the other pathway. Interestingly, such synergy was dependent on the phosphorylation status of eIF4B on Ser422, as overexpression of eIF4B phosphomimetic mutant S422E in the transformants greatly attenuated the synergistic effects of these inhibitors on Abl oncogenicity. In contrast, eIF4B knockdown sensitized Abl transformants to undergo apoptosis induced by the combined blockage. Collectively, the results indicate that eIF4B integrates the signals from Pim and PI3K/Akt/mTOR pathways in Abl-expressing leukemic cells, and is a promising therapeutic target for such cancers. PMID:26848623

  10. Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas

    PubMed Central

    Baia, Gilson S.; Caballero, Otavia L.; Orr, Brent A.; Lal, Anita; Ho, Janelle S.Y.; Cowdrey, Cynthia; Tihan, Tarik; Mawrin, Christian; Riggins, Gregory J.

    2015-01-01

    The Hippo signaling pathway is functionally conserved in Drosophila melanogaster and mammals, and its proposed function is to control tissue homeostasis by regulating cell proliferation and apoptosis. The core components are composed of a kinase cascade that culminates with the phosphorylation and inhibition of Yes-associated protein 1 (YAP1). Phospho-YAP1 is retained in the cytoplasm. In the absence of Hippo signaling, YAP1 translocates to the nucleus, associates with co-activators TEAD1-4, and functions as a transcriptional factor promoting the expression of key target genes. Components of the Hippo pathway are mutated in human cancers, and deregulation of this pathway plays a role in tumorigenesis. Loss of the NF2 tumor suppressor gene is the most common genetic alteration in meningiomas, and the NF2 gene product, Merlin, acts upstream of the Hippo pathway. Here, we show that primary meningioma tumors have high nuclear expression of YAP1. In meningioma cells, Merlin expression is associated with phosphorylation of YAP1. Using an siRNA transient knockdown of YAP1 in NF2-mutant meningioma cells, we show that suppression of YAP1 impaired cell proliferation and migration. Conversely, YAP1 overexpression led to a strong augment of cell proliferation and anchorage-independent growth and restriction of cisplatin-induced apoptosis. In addition, expression of YAP1 in nontransformed arachnoidal cells led to the development of tumors in nude mice. Together, these findings suggest that in meningiomas, deregulation of the Hippo pathway is largely observed in primary tumors and that YAP1 functions as an oncogene promoting meningioma tumorigenesis. PMID:22618028

  11. FMNL2/FMNL3 formins are linked with oncogenic pathways and predict melanoma outcome

    PubMed Central

    Heuser, Vanina D; Koskivuo, Ilkka; Koivisto, Mari; Carpén, Olli

    2016-01-01

    Abstract While most early (stage I‐II) melanomas are cured by surgery, recurrence is not uncommon. Prognostication by current clinicopathological parameters does not provide sufficient means for identifying patients who are at risk of developing metastases and in need of adjuvant therapy. Actin‐regulating formins may account for invasive properties of cancer cells, including melanoma. Here, we studied formin‐like protein 2 and 3 (FMNL2 and FMNL3) in melanoma by analysing their role in the invasive properties of melanoma cells and by evaluating whether FMNL2 expression is associated with melanoma outcome. Immunohistochemical characterization of FMNL2 in a cohort of 175 primary cutaneous stage I‐II melanomas indicated that high FMNL2 reactivity correlates with poor outcome as evaluated by recurrence free survival (p < 0.0001) or disease specific survival (p < 0.0001). In multivariate analysis, Breslow's thickness (p < 0.05) and FMNL2 expression (p < 0.001) remained as independent prognostic factors. Cellular studies revealed that FMNL2 is a component of filopodia in many melanoma cell lines. Inhibition of either FMNL2 or the closely related FMNL3 affected the maintenance of melanoma cell morphology and reduced migration. Finally, inhibition of the BRAF, PI3K and MAPK oncogenic pathways markedly reduced expression of both FMNL2 and FMNL3 in melanoma cells. The results suggest a major role for FMNL2/FMNL3 formins in melanoma biology and raise the possibility that the novel targeted melanoma drugs may interfere with the cellular properties regulated by these formins.

  12. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  13. Evaluating the Safety of Retroviral Vectors Based on Insertional Oncogene Activation and Blocked Differentiation in Cultured Thymocytes

    PubMed Central

    Zhou, Sheng; Fatima, Soghra; Ma, Zhijun; Wang, Yong-Dong; Lu, Taihe; Janke, Laura J; Du, Yang; Sorrentino, Brian P

    2016-01-01

    Insertional oncogenesis due to retroviral (RV) vector integration has caused recurrent leukemia in multiple gene therapy trials, predominantly due to vector integration effects at the LMO2 locus. While currently available preclinical safety models have been used for evaluating vector safety, none have predicted or reproduced the recurrent LMO2 integrations seen in previous X-linked severe combined immunodeficiency (X-SCID) and Wiskott–Aldrich clinical gene therapy trials. We now describe a new assay for assessing vector safety that recapitulates naturally occurring insertions into Lmo2 and other T-cell proto-oncogenes leading to a preleukemic developmental arrest in primary murine thymocytes cultured in vitro. This assay was used to compare the relative oncogenic potential of a variety of gamma-RV and lentiviral vectors and to assess the risk conferred by various transcriptional elements contained in these genomes. Gamma-RV vectors that contained full viral long-terminal repeats were most prone to causing double negative 2 (DN2) arrest and led to repeated cases of Lmo2 pathway activation, while lentiviral vectors containing these same elements were significantly less prone to activate proto-oncogenes or cause DN2 arrest. This work provides a new preclinical assay that is especially relevant for assessing safety in SCID disorders and provides a new tool for designing safer RV vectors. PMID:26957223

  14. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  15. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1

    PubMed Central

    Liu, Wensheng; Yue, Fei; Zheng, Minhua; Merlot, Angelica; Bae, Dong-Hun; Huang, Michael; Lane, Darius; Jansson, Patric; Liu, Goldie Yuan Lam; Richardson, Vera; Sahni, Sumit; Kalinowski, Danuta; Kovacevic, Zaklina; Richardson, Des. R.

    2015-01-01

    N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a “molecular switch” to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics. PMID:25860930

  16. Oncogenic Human T-Cell Lymphotropic Virus Type 1 Tax Suppression of Primary Innate Immune Signaling Pathways

    PubMed Central

    Hyun, Jinhee; Ramos, Juan Carlos; Toomey, Ngoc; Balachandran, Siddharth; Lavorgna, Alfonso; Harhaj, Edward

    2015-01-01

    ABSTRACT Human T-cell lymphotropic virus type I (HTLV-1) is an oncogenic retrovirus considered to be the etiological agent of adult T-cell leukemia (ATL). The viral transactivator Tax is regarded as the oncoprotein responsible for contributing toward the transformation process. Here, we demonstrate that Tax potently inhibits the activity of DEx(D/H) box helicases RIG-I and MDA5 as well as Toll-dependent TIR-domain-containing adapter-inducing interferon-β (TRIF), which function as cellular sensors or mediators of viral RNA and facilitate innate immune responses, including the production of type I IFN. Tax manifested this function by binding to the RIP homotypic interaction motif (RHIM) domains of TRIF and RIP1 to disrupt interferon regulatory factor 7 (IRF7) activity, a critical type I IFN transcription factor. These data provide further mechanistic insight into HTLV-1-mediated subversion of cellular host defense responses, which may help explain HTLV-1-related pathogenesis and oncogenesis. IMPORTANCE It is predicted that up to 15% of all human cancers may involve virus infection. For example, human T-cell lymphotropic virus type 1 (HTLV-1) has been reported to infect up to 25 million people worldwide and is the causative agent of adult T-cell leukemia (ATL). We show here that HTLV-1 may be able to successfully infect the T cells and remain latent due to the virally encoded product Tax inhibiting a key host defense pathway. Understanding the mechanisms by which Tax subverts the immune system may lead to the development of a therapeutic treatment for HTLV-1-mediated disease. PMID:25694597

  17. Oncogenic transformation by vrel requires an amino-terminal activation domain

    SciTech Connect

    Kamens, J.; Brent, R. . Dept. of Molecular Biology); Richardson, P.; Gilmore, T. . Dept. of Biology); Mosialos, G. . Dept. of Chemistry)

    1990-06-01

    The mechanism by which the products of the v-{ital rel} oncogene, the corresponding c-{ital rel} proto-oncogene, and the related {ital dorsal} gene of {ital Drosophila melanogaster} exert their effects is not clear. The authors show that the v-{ital rel}, chicken c-{ital rel}, and {ital dorsal} proteins activated gene expression when fused to LexA sequences and bound to DNA upstream of target genes in {ital Saccharomyces cerevisiae}. They have defined two distinct activation regions in the c-{ital rel} protein. Region I, located in the amino-terminal half of {ital rel} and {ital dorsal} proteins, contains no stretches of glutamines, prolines, or acidic amino acids and therefore may be a novel activation domain. Lesions in the v-{ital rel} protein that diminished or abolished oncogenic transformation of avian spleen cells correspondingly affected transcription activation by region I. Region II, located in the carboxy terminus of the c-{ital rel} protein, is highly acidic. Region II is not present in the v-{ital rel} protein or in a transforming mutant derivative of the c-{ital rel} protein. The authors' results show that the oncogenicity of Rel proteins requires activation region I and suggest that the biological function of {ital rel} and {ital dorsal} proteins depends on transcription activation by this region.

  18. Oncogenic activation of ERG: A predominant mechanism in prostate cancer.

    PubMed

    Sreenath, Taduru L; Dobi, Albert; Petrovics, Gyorgy; Srivastava, Shiv

    2011-01-01

    Prevalent gene fusions involving regulatory sequences of the androgen receptor (AR) regulated genes (primarily TMPRSS2) and protein coding sequences of nuclear transcription factors of the ETS gene family (predominantly ERG) result in unscheduled androgen dependent ERG expression in prostate cancer (CaP).Cumulative data from a large number of studies in the past six years accentuate ERG alterations in more than half of all CaP patients in Western countries. Studies underscore that ERG functions are involved in the biology of CaP. ERG expression in normal context is selective to endothelial cells, specific hematopoetic cells and pre-cartilage cells. Normal functions of ERG are highlighted in hematopoetic stem cells. Emerging data continues to unravel molecular and cellular mechanisms by which ERG may contribute to CaP. Herein, we focus on biological and clinical aspects of ERG oncogenic alterations, potential of ERG-based stratification of CaP and the possibilities of targeting the ERG network in developing new therapeutic strategies for the disease. PMID:22279422

  19. Fibroblast Growth Factor Receptors: From the Oncogenic Pathway to Targeted Therapy.

    PubMed

    Saichaemchan, S; Ariyawutyakorn, W; Varella-Garcia, M

    2016-01-01

    The family of fibroblast growth factor (FGFs) and their receptors (FGFRs) regulates vital roles in many biological processes affecting cell proliferation, migration, differentiation and survival. Deregulation of the FGF/FGFR signaling pathway in cancers has been better understood and the main molecular mechanisms responsible for the activation of this pathway are gene mutations, gene fusions and gene amplification. DNA and RNA-based technologies have been used to detect these abnormalities, especially in FGFR1, FGFR2 and FGFR3 and tests have been developed for their detection, but no assay has been proved ideal for molecular diagnosis. Interestingly, the increase in the molecular biology knowledge has supported and assisted the development of therapeutic drugs targeting the most important components of this pathway. Multi- and selective tyrosine kinase inhibitors (TKIs) as well as monoclonal antibodies anti-FGFR are under investigation in preclinical and clinical trials. In this article, we reviewed those aspects with special emphasis on the pathway genomic alterations related to solid tumors, and the molecular diagnostic assays potentially able to stratify patients for the treatment with FGFR TKIs. PMID:26695695

  20. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells

    PubMed Central

    Cao, Lili; Zhang, Lijun; Zhao, Xiang; Zhang, Ye

    2016-01-01

    Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC). To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3’,4’,5’-trimethoxy-5-chloro-isatinylchalcone (3MCIC). 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT)-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC), target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS). Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4), cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development. PMID:27525972

  1. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells.

    PubMed

    Cao, Lili; Zhang, Lijun; Zhao, Xiang; Zhang, Ye

    2016-01-01

    Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC). To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3',4',5'-trimethoxy-5-chloro-isatinylchalcone (3MCIC). 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT)-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC), target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS). Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4), cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development. PMID:27525972

  2. The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis

    PubMed Central

    Lee, Dong Yun

    2008-01-01

    The oncogene latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) without a ligand drives proliferation of EBV-infected B cells. Its levels vary in cells of clonal populations by more than 100-fold, which leads to multiple distinct activities of the oncogene. At intermediate levels it drives proliferation, and at high levels it inhibits general protein synthesis by inducing phosphorylation of eukaryotic initiation factor 2α (eIF2α). We have found that LMP1 activates PERK to induce phosphorylation of eIF2α, which upregulates activating transcription factor 4 (ATF4) expression. ATF4, in turn, transactivates LMP1's own promoter. LMP1 activates not only PERK but also inositol requiring kinase 1 (IRE1) and ATF6, 3 pathways of the unfolded protein response (UPR). Increasing expression levels of LMP1 induced a dose-dependent increase in IRE1 activity, as measured by its “splicing” of XBP-1. These infected B cells secrete immunoglobins independent of the levels of LMP1, indicating that only a threshold level of XBP-1 is required for the secretion. These findings indicate that LMP1's activation of the UPR is a normal event in a continuum of LMP1's expression that leads both to stimulatory and inhibitory functions and regulates the physiology of EBV-infected B cells in multiple, unexpected modes. PMID:18042799

  3. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: six degrees of separation.

    PubMed

    Trusolino, Livio; Bertotti, Andrea

    2012-10-01

    The efficacy of targeted therapies against mutationally activated kinases is typically limited by the engagement of growth-promoting cues that compensate for inhibition of the targeted kinase. Initial studies have highlighted the contribution of genomic alterations, functional characteristics, and signaling feedback loops--all intrinsic to cancer cells--in sustaining such substitute activities. New evidence now indicates that the relative expression of growth factor ligands produced by the tumor microenvironment can relay redundant survival pathways, which may broadly impair responsiveness to kinase inhibitors. PMID:23071031

  4. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects. PMID:25841994

  5. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt.

    PubMed

    Rangarajan, A; Syal, R; Selvarajah, S; Chakrabarti, O; Sarin, A; Krishna, S

    2001-07-20

    Invasive cervical tumors, a major subset of human epithelial neoplasms, are characterized by the consistent presence of papillomavirus oncogenes 16 or 18 E6 and E7 products. Cervical tumors also consistently exhibit cytosolic and nuclear forms of Notch1, suggesting the possible persistent activation of the Notch pathway. Here we show that activated Notch1 synergizes with papillomavirus oncogenes in transformation of immortalized epithelial cells and leads to the generation of resistance to anoikis, an apoptotic response induced on matrix withdrawal. This resistance to anoikis by activated Notch1 is mediated through the activation of PKB/Akt, a key effector of activated Ras in transformation. We suggest that activated Notch signaling may serve to substitute for the lack of activated Ras mutations in the majority of human cervical neoplasms. PMID:11448155

  6. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer

    PubMed Central

    Starczynowski, Daniel T.; Lockwood, William W.; Deléhouzée, Sophie; Chari, Raj; Wegrzyn, Joanna; Fuller, Megan; Tsao, Ming-Sound; Lam, Stephen; Gazdar, Adi F.; Lam, Wan L.; Karsan, Aly

    2011-01-01

    Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer–associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non–small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor–associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers. PMID:21911935

  7. Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling.

    PubMed

    Kang, Hee-Bum; Fan, Jun; Lin, Ruiting; Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A; Zhou, Lu; Pollack, Brian P; Fisher, Kevin; Kudchadkar, Ragini R; Lawson, David H; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Boggon, Titus J; He, Chuan; Kang, Sumin; Chen, Jing

    2015-08-01

    Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  8. MicroRNA-135b Promotes Cancer Progression by Acting as a Downstream Effector of Oncogenic Pathways in Colon Cancer

    PubMed Central

    Valeri, Nicola; Braconi, Chiara; Gasparini, Pierluigi; Murgia, Claudio; Lampis, Andrea; Paulus-Hock, Viola; Hart, Jonathan R.; Ueno, Lynn; Grivennikov, Sergei I.; Lovat, Francesca; Paone, Alessio; Cascione, Luciano; Sumani, Khlea M.; Veronese, Angelo; Fabbri, Muller; Carasi, Stefania; Alder, Hansjuerg; Lanza, Giovanni; Gafa’, Roberta; Moyer, Mary P.; Ridgway, Rachel A.; Cordero, Julia; Nuovo, Gerard J.; Frankel, Wendy L.; Rugge, Massimo; Fassan, Matteo; Groden, Joanna; Vogt, Peter K.; Karin, Michael; Sansom, Owen J.; Croce, Carlo M.

    2014-01-01

    Summary MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment. PMID:24735923

  9. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer.

    PubMed

    Valeri, Nicola; Braconi, Chiara; Gasparini, Pierluigi; Murgia, Claudio; Lampis, Andrea; Paulus-Hock, Viola; Hart, Jonathan R; Ueno, Lynn; Grivennikov, Sergei I; Lovat, Francesca; Paone, Alessio; Cascione, Luciano; Sumani, Khlea M; Veronese, Angelo; Fabbri, Muller; Carasi, Stefania; Alder, Hansjuerg; Lanza, Giovanni; Gafa', Roberta; Moyer, Mary P; Ridgway, Rachel A; Cordero, Julia; Nuovo, Gerard J; Frankel, Wendy L; Rugge, Massimo; Fassan, Matteo; Groden, Joanna; Vogt, Peter K; Karin, Michael; Sansom, Owen J; Croce, Carlo M

    2014-04-14

    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment. PMID:24735923

  10. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation

    PubMed Central

    Ogrunc, M; Di Micco, R; Liontos, M; Bombardelli, L; Mione, M; Fumagalli, M; Gorgoulis, V G; d'Adda di Fagagna, F

    2014-01-01

    Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents. PMID:24583638

  11. YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway

    PubMed Central

    Pikor, Larissa A.; Lockwood, William W.; Thu, Kelsie L.; Vucic, Emily A.; Chari, Raj; Gazdar, Adi F.; Lam, Stephen; Lam, Wan L.

    2013-01-01

    Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells (HBECs). Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis. PMID:24170126

  12. Oncogenic activity of BIRC2 and BIRC3 mutants independent of nuclear factor-κB-activating potential.

    PubMed

    Yamato, Azusa; Soda, Manabu; Ueno, Toshihide; Kojima, Shinya; Sonehara, Kyuto; Kawazu, Masahito; Sai, Eirin; Yamashita, Yoshihiro; Nagase, Takahide; Mano, Hiroyuki

    2015-09-01

    BIRC2 and BIRC3 are closely related members of the inhibitor of apoptosis (IAP) family of proteins and play pivotal roles in regulation of nuclear factor-κB (NF-κB) signaling and apoptosis. Copy number loss for and somatic mutation of BIRC2 and BIRC3 have been frequently detected in lymphoid malignancies, with such genetic alterations being thought to contribute to carcinogenesis through activation of the noncanonical NF-κB signaling pathway. Here we show that BIRC2 and BIRC3 mutations are also present in a wide range of epithelial tumors and that most such nonsense or frameshift mutations confer direct transforming potential. This oncogenic function of BIRC2/3 mutants is largely independent of their ability to activate NF-κB signaling. Rather, all of the transforming mutants lack an intact RING finger domain, with loss of ubiquitin ligase activity being essential for transformation irrespective of NF-κB regulation. The serine-threonine kinase NIK was found to be an important, but not exclusive, mediator of BIRC2/3-driven carcinogenesis, although this function was independent of NF-κB activation. Our data thus suggest that, in addition to the BIRC2/3-NIK-NF-κB signaling pathway, BIRC2/3-NIK signaling targets effectors other than NF-κB and thereby contributes directly to carcinogenesis. Identification of these effectors may provide a basis for the development of targeted agents for the treatment of lymphoid malignancies and other cancers with BIRC2/3 alterations. PMID:26094954

  13. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  14. MicroRNA-7 Inhibits Multiple Oncogenic Pathways to Suppress HER2Δ16 Mediated Breast Tumorigenesis and Reverse Trastuzumab Resistance

    PubMed Central

    Huynh, Felicia C.; Jones, Frank E.

    2014-01-01

    The oncogenic isoform of HER2, HER2Δ16, is expressed with HER2 in nearly 50% of HER2 positive breast tumors where HER2Δ16 drives metastasis and resistance to multiple therapeutic interventions including tamoxifen and trastuzumab. In recent years microRNAs have been shown to influence multiple aspects of tumorigenesis and tumor cell response to therapy. Accordingly, the HER2Δ16 oncogene alters microRNA expression to promote endocrine resistance. With the goal of identifying microRNA suppressors of HER2Δ16 oncogenic activity we investigated the contribution of altered microRNA expression to HER2Δ16 mediated tumorigenesis and trastuzumab resistance. Using a gene array strategy comparing microRNA expression profiles of MCF-7 to MCF-7/HER2Δ16 cells, we found that expression of HER2Δ16 significantly altered expression of 16 microRNAs by 2-fold or more including a 4.8 fold suppression of the miR-7 tumor suppressor. Reestablished expression of miR-7 in the MCF-7/HER2Δ16 cell line caused a G1 cell cycle arrest and reduced both colony formation and cell migration activity to levels of parental MCF-7 cells. Suppression of miR-7 in the MCF-7 cell line resulted in enhanced colony formation activity but not cell migration, indicating that miR-7 suppression is sufficient to drive tumor cell proliferation but not migration. MiR-7 inhibited MCF-7/HER2Δ16 cell migration through a mechanism involving suppression of the miR-7 target gene EGFR. In contrast, miR-7 inhibition of MCF-7/HER2Δ16 cell proliferation involved a pathway where miR-7 expression resulted in the inactivation of Src kinase independent of suppressed EGFR expression. Also independent of EGFR suppression, reestablished miR-7 expression sensitized refractory MCF-7/HER2Δ16 cells to trastuzumab. Our results demonstrate that reestablished miR-7 expression abolishes HER2Δ16 induced cell proliferation and migration while sensitizing HER2Δ16 expressing cells to trastuzumab therapy. We propose that miR-7 regulated

  15. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  16. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  17. The Pbx Interaction Motif of Hoxa1 Is Essential for Its Oncogenic Activity

    PubMed Central

    Delval, Stéphanie; Taminiau, Arnaud; Lamy, Juliette; Lallemand, Cécile; Gilles, Christine; Noël, Agnès; Rezsohazy, René

    2011-01-01

    Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx. PMID:21957483

  18. The Pbx interaction motif of Hoxa1 is essential for its oncogenic activity.

    PubMed

    Delval, Stéphanie; Taminiau, Arnaud; Lamy, Juliette; Lallemand, Cécile; Gilles, Christine; Noël, Agnès; Rezsohazy, René

    2011-01-01

    Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx. PMID:21957483

  19. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.

    PubMed

    Groner, Anna C; Cato, Laura; de Tribolet-Hardy, Jonas; Bernasocchi, Tiziano; Janouskova, Hana; Melchers, Diana; Houtman, René; Cato, Andrew C B; Tschopp, Patrick; Gu, Lei; Corsinotti, Andrea; Zhong, Qing; Fankhauser, Christian; Fritz, Christine; Poyet, Cédric; Wagner, Ulrich; Guo, Tiannan; Aebersold, Ruedi; Garraway, Levi A; Wild, Peter J; Theurillat, Jean-Philippe; Brown, Myles

    2016-06-13

    Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients. PMID:27238081

  20. Conventional Chemotherapy and Oncogenic Pathway Targeting in Ovarian Carcinosarcoma Using a Patient-Derived Tumorgraft

    PubMed Central

    Becker, Marc A.; Hou, Xiaonan; Enderica-Gonzalez, Sergio; Harrington, Sean C.; Haluska, Paul

    2015-01-01

    Ovarian carcinosarcoma is a rare subtype of ovarian cancer with poor clinical outcomes. The low incidence of this disease makes accrual to large clinical trials challenging. However, studies have shown that treatment responses in patient-derived xenograft (PDX) models correlate with matched-patient responses in the clinic, supporting their use for preclinical testing of standard and novel therapies. An ovarian carcinosarcoma PDX is presented herein and showed resistance to carboplatin and paclitaxel (similar to the patient) but exhibited significant sensitivity to ifosfamide and paclitaxel. The PDX demonstrated overexpression of EGFR mRNA and gene amplification by array comparative genomic hybridization (log2 ratio 0.399). EGFR phosphorylation was also detected. Angiogensis and insulin-like growth factor pathways were also implicated by overexpression of VEGFC and IRS1. In order to improve response to chemotherapy, the PDX was treated with carboplatin/paclitaxel with or without a pan-HER and VEGF inhibitor (BMS-690514) but there was no tumor growth inhibition or improved animal survival, which may be explained by a KRAS mutation. Resistance was also observed when the IGF-1R inhibitor BMS-754807 was combined with carboplatin/paclitaxel. Because poly (ADP-ribose) polymerase inhibitors have activity in ovarian cancer patients, with and without BRCA mutations, ABT-888 was also tested but found to have no activity. Pathogenic mutations were also detected in TP53 and PIK3CA. In conclusion, ifosfamide/paclitaxel was superior to carboplatin/paclitaxel in this ovarian carcinosarcoma PDX and gene overexpression or amplification alone was not sufficient to predict response to targeted therapy. Better predictive markers of response are needed. PMID:25962155

  1. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway.

    PubMed

    Rauth, Sanchita; Ray, Sudipta; Bhattacharyya, Sayantan; Mehrotra, Debapriya Ghosh; Alam, Neyaz; Mondal, Goutam; Nath, Partha; Roy, Asoke; Biswas, Jaydip; Murmu, Nabendu

    2016-06-01

    Epidermal growth factor receptor (EGFR) pathway is overexpressed in head and neck cancer (HNC). Lupeol, a natural triterpene (phytosterol found in fruits, vegetables, etc.), has been reported to be effective against multiple cancer indications. Here we investigate the antitumor effects of Lupeol and underlying mechanism in oral cancer. Lupeol-induced antitumor response was evaluated in two oral squamous cell carcinoma (OSCC) cell lines (UPCI:SCC131 and UPCI:SCC084) by viability (MTT), proliferation, and colony formation assays. Lupeol-mediated induction of apoptosis was examined by caspase 3/7 assay and flow cytometry. Effect of Lupeol on EGFR in the presence or absence of EGF was delineated by Western blot. The mRNA stability assay was performed to check the role of Lupeol on COX-2 mRNA regulation. Lupeol inhibited proliferation of OSCC cells in vitro by inducing apoptosis 48 h post treatment. Ligand-induced phosphorylation of EGFR and subsequent activation of its downstream molecules such as protein kinase B (PKB or AKT), I kappa B (IκB), and nuclear factor kappa B (NF-κB) was also found to be, in part, suppressed. Interestingly, Lupeol suppressed expression of COX-2 at mRNA and protein level in a time-dependent manner. Primary explants from oral squamous cell carcinoma tissues further confirmed significant inhibition of proliferation (Ki67) in Lupeol-treated explants as compared to untreated control at 48 h. Together these data suggest that Lupeol may act as a potent inhibitor of the EGFR signaling in OSCC and therefore imply its role in triggering antitumor efficacy. PMID:27206736

  2. Rab1A is an mTORC1 activator and a colorectal oncogene.

    PubMed

    Thomas, Janice D; Zhang, Yan-Jie; Wei, Yue-Hua; Cho, Jun-Hung; Morris, Laura E; Wang, Hui-Yun; Zheng, X F Steven

    2014-11-10

    Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy. PMID:25446900

  3. Proto-oncogenes II.

    PubMed

    Rosen, P

    1988-12-01

    In reviewing recent literature on activated proto-oncogenes including retroviral infection (without oncogene), translocation and inherited childhood cancer, I have come to the conclusion that activated proto-oncogenes are not involved in development of tumors. There is one exception in which a translocated proto-myc leads to transformation. That is the case of the trangenic mouse embryo where faulty development occurs. PMID:3226361

  4. Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development

    PubMed Central

    Lockwood, William W.; Wilson, Ian M.; Coe, Bradley P.; Chari, Raj; Pikor, Larissa A.; Thu, Kelsie L.; Solis, Luisa M.; Nunez, Maria I.; Behrens, Carmen; Yee, John; English, John; Murray, Nevin; Tsao, Ming-Sound; Minna, John D.; Gazdar, Adi F.; Wistuba, Ignacio I.; MacAulay, Calum E.; Lam, Stephen; Lam, Wan L.

    2012-01-01

    For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC. PMID:22629454

  5. Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity

    PubMed Central

    Lubecka, Katarzyna; Kurzava, Lucinda; Flower, Kirsty; Buvala, Hannah; Zhang, Hao; Teegarden, Dorothy; Camarillo, Ignacio; Suderman, Matthew; Kuang, Shihuan; Andrisani, Ourania; Flanagan, James M.; Stefanska, Barbara

    2016-01-01

    DNA hypomethylation was previously implicated in cancer progression and metastasis. The purpose of this study was to examine whether stilbenoids, resveratrol and pterostilbene thought to exert anticancer effects, target genes with oncogenic function for de novo methylation and silencing, leading to inactivation of related signaling pathways. Following Illumina 450K, genome-wide DNA methylation analysis reveals that stilbenoids alter DNA methylation patterns in breast cancer cells. On average, 75% of differentially methylated genes have increased methylation, and these genes are enriched for oncogenic functions, including NOTCH signaling pathway. MAML2, a coactivator of NOTCH targets, is methylated at the enhancer region and transcriptionally silenced in response to stilbenoids, possibly explaining the downregulation of NOTCH target genes. The increased DNA methylation at MAML2 enhancer coincides with increased occupancy of repressive histone marks and decrease in activating marks. This condensed chromatin structure is associated with binding of DNMT3B and decreased occupancy of OCT1 transcription factor at MAML2 enhancer, suggesting a role of DNMT3B in increasing methylation of MAML2 after stilbenoid treatment. Our results deliver a novel insight into epigenetic regulation of oncogenic signals in cancer and provide support for epigenetic-targeting strategies as an effective anticancer approach. PMID:27207652

  6. Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity.

    PubMed

    Lubecka, Katarzyna; Kurzava, Lucinda; Flower, Kirsty; Buvala, Hannah; Zhang, Hao; Teegarden, Dorothy; Camarillo, Ignacio; Suderman, Matthew; Kuang, Shihuan; Andrisani, Ourania; Flanagan, James M; Stefanska, Barbara

    2016-07-01

    DNA hypomethylation was previously implicated in cancer progression and metastasis. The purpose of this study was to examine whether stilbenoids, resveratrol and pterostilbene thought to exert anticancer effects, target genes with oncogenic function for de novo methylation and silencing, leading to inactivation of related signaling pathways. Following Illumina 450K, genome-wide DNA methylation analysis reveals that stilbenoids alter DNA methylation patterns in breast cancer cells. On average, 75% of differentially methylated genes have increased methylation, and these genes are enriched for oncogenic functions, including NOTCH signaling pathway. MAML2, a coactivator of NOTCH targets, is methylated at the enhancer region and transcriptionally silenced in response to stilbenoids, possibly explaining the downregulation of NOTCH target genes. The increased DNA methylation at MAML2 enhancer coincides with increased occupancy of repressive histone marks and decrease in activating marks. This condensed chromatin structure is associated with binding of DNMT3B and decreased occupancy of OCT1 transcription factor at MAML2 enhancer, suggesting a role of DNMT3B in increasing methylation of MAML2 after stilbenoid treatment. Our results deliver a novel insight into epigenetic regulation of oncogenic signals in cancer and provide support for epigenetic-targeting strategies as an effective anticancer approach. PMID:27207652

  7. Oncogenic activation of the PI3-kinase p110β isoform via the tumor-derived PIK3Cβ(D1067V) kinase domain mutation.

    PubMed

    Pazarentzos, E; Giannikopoulos, P; Hrustanovic, G; St John, J; Olivas, V R; Gubens, M A; Balassanian, R; Weissman, J; Polkinghorn, W; Bivona, T G

    2016-03-01

    Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs widely in human cancers. Although somatic mutations in the PI3K pathway genes PIK3CA and PTEN are known to drive PI3K pathway activation and cancer growth, the significance of somatic mutations in other PI3K pathway genes is less clear. Here, we establish the signaling and oncogenic properties of a recurrent somatic mutation in the PI3K p110β isoform that resides within its kinase domain (PIK3Cβ(D1067V)). We initially observed PIK3Cβ(D1067V) by exome sequencing analysis of an EGFR-mutant non-small cell lung cancer (NSCLC) tumor biopsy from a patient with acquired erlotinib resistance. On the basis of this finding, we hypothesized that PIK3Cβ(D1067V) might function as a novel tumor-promoting genetic alteration, and potentially an oncogene, in certain cancers. Consistent with this hypothesis, analysis of additional tumor exome data sets revealed the presence of PIK3Cβ(D1067V) at low frequency in other patient tumor samples (including renal cell carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, melanoma, thyroid carcinoma and endometrial carcinoma). Functional studies revealed that PIK3Cβ(D1067V) promoted PI3K pathway signaling, enhanced cell growth in vitro, and was sufficient for tumor formation in vivo. Pharmacologic inhibition of PIK3Cβ with TGX-221 (isoform-selective p110β inhibitor) specifically suppressed growth in patient-derived renal-cell carcinoma cells with endogenous PIK3Cβ(D1067V) and in NIH-3T3 and human EGFR-mutant lung adenocarcinoma cells engineered to express this mutant PI3K. In the EGFR-mutant lung adenocarcinoma cells, expression of PIK3Cβ(D1067V) also promoted erlotinib resistance. Our data establish a novel oncogenic form of PI3K, revealing the signaling and oncogenic properties of PIK3Cβ(D1067V) and its potential therapeutic relevance in cancer. Our findings provide new insight into the genetic mechanisms underlying PI3K pathway activation in

  8. Targeting oncogenic Ras signaling in hematologic malignancies

    PubMed Central

    Ward, Ashley F.; Braun, Benjamin S.

    2012-01-01

    Ras proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼ 25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer. PMID:22898602

  9. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  10. Reversing HOXA9 Oncogene Activation by PI3K Inhibition: Epigenetic Mechanism and Prognostic Significance in Human Glioblastoma

    PubMed Central

    Costa, Bruno M.; Smith, Justin S.; Chen, Ying; Chen, Justin; Phillips, Heidi S.; Aldape, Kenneth D.; Zardo, Giuseppe; Nigro, Janice; James, C. David; Fridlyand, Jane; Reis, Rui M.; Costello, Joseph F.

    2010-01-01

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using RT-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrantly activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a PI3K inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with TRAIL resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets, and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  11. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma.

    PubMed

    Costa, Bruno M; Smith, Justin S; Chen, Ying; Chen, Justin; Phillips, Heidi S; Aldape, Kenneth D; Zardo, Giuseppe; Nigro, Janice; James, C David; Fridlyand, Jane; Reis, Rui M; Costello, Joseph F

    2010-01-15

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using reverse transcription-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrently activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a phosphoinostide 3-kinase (PI3K) inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with tumor necrosis factor-related apoptosis-including ligand resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent, and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  12. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1

    PubMed Central

    Ben-Hur, Vered; Denichenko, Polina; Siegfried, Zahava; Maimon, Avi; Krainer, Adrian; Davidson, Ben; Karni, Rotem

    2016-01-01

    Ribosomal S6 Kinase 1 (S6K1) is a major mTOR downstream signaling molecule which regulates cell size and translation efficiency. Here we report that short isoforms of S6K1 are over-produced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects: It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induced transformation, suggesting that Iso-1 has a tumor suppressor activity. We further found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells elevating oncogenic isoforms that activate mTORC1. PMID:23273915

  13. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  14. Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers.

    PubMed

    Lawson, Campbell D; Fan, Cheng; Mitin, Natalia; Baker, Nicole M; George, Samuel D; Graham, David M; Perou, Charles M; Burridge, Keith; Der, Channing J; Rossman, Kent L

    2016-07-01

    The basal-like breast cancer (BLBC) subtype accounts for a disproportionately high percentage of overall breast cancer mortality. The current therapeutic options for BLBC need improvement; hence, elucidating signaling pathways that drive BLBC growth may identify novel targets for the development of effective therapies. Rho GTPases have previously been implicated in promoting tumor cell proliferation and metastasis. These proteins are inactivated by Rho-selective GTPase-activating proteins (RhoGAP), which have generally been presumed to act as tumor suppressors. Surprisingly, RNA-Seq analysis of the Rho GTPase signaling transcriptome revealed high expression of several RhoGAP genes in BLBC tumors, raising the possibility that these genes may be oncogenic. To evaluate this, we examined the roles of two of these RhoGAPs, ArhGAP11A (also known as MP-GAP) and RacGAP1 (also known as MgcRacGAP), in promoting BLBC. Both proteins were highly expressed in human BLBC cell lines, and knockdown of either gene resulted in significant defects in the proliferation of these cells. Knockdown of ArhGAP11A caused CDKN1B/p27-mediated arrest in the G1 phase of the cell cycle, whereas depletion of RacGAP1 inhibited growth through the combined effects of cytokinesis failure, CDKN1A/p21-mediated RB1 inhibition, and the onset of senescence. Random migration was suppressed or enhanced by the knockdown of ArhGAP11A or RacGAP1, respectively. Cell spreading and levels of GTP-bound RhoA were increased upon depletion of either RhoGAP. We have established that, via the suppression of RhoA, ArhGAP11A and RacGAP1 are both critical drivers of BLBC growth, and propose that RhoGAPs can act as oncogenes in cancer. Cancer Res; 76(13); 3826-37. ©2016 AACR. PMID:27216196

  15. Targeting PML-RARα and Oncogenic Signaling Pathways by Chinese Herbal Mixture Tien-Hsien Liquid in Acute Promyelocytic Leukemia NB4 Cells

    PubMed Central

    Yao, Chih-Jung; Yang, Chia-Ming; Chuang, Shuang-En; Yan, Jiann-Long; Liu, Chun-Yen; Chen, Suz-Wen; Yan, Kun-Huang; Lai, Tung-Yuan; Lai, Gi-Ming

    2011-01-01

    Tien-Hsien Liquid (THL) is a Chinese herbal mixture that has been used worldwide as complementary treatment for cancer patients in the past decade. Recently, THL has been shown to induce apoptosis in various types of solid tumor cells in vitro. However, the underlying molecular mechanisms have not yet been well elucidated. In this study, we explored the effects of THL on acute promyelocytic leukemia (APL) NB4 cells, which could be effectively treated by some traditional Chinese remedies containing arsenic trioxide. The results showed THL could induce G2/M arrest and apoptosis in NB4 cells. Accordingly, the decrease of cyclin A and B1 were observed in THL-treated cells. The THL-induced apoptosis was accompanied with caspase-3 activation and decrease of PML-RARα fusion protein. Moreover, DNA methyltransferase 1 and oncogenic signaling pathways such as Akt/mTOR, Stat3 and ERK were also down-regulated by THL. By using ethyl acetate extraction and silica gel chromatography, an active fraction of THL named as EAS5 was isolated. At about 0.5–1% of the dose of THL, EAS5 appeared to have most of THL-induced multiple molecular targeting effects in NB4 cells. Based on the findings of these multi-targeting effects, THL might be regarding as a complementary and alternative therapeutic agent for refractory APL. PMID:19897545

  16. RAF inhibitors that evade paradoxical MAPK pathway activation.

    PubMed

    Zhang, Chao; Spevak, Wayne; Zhang, Ying; Burton, Elizabeth A; Ma, Yan; Habets, Gaston; Zhang, Jiazhong; Lin, Jack; Ewing, Todd; Matusow, Bernice; Tsang, Garson; Marimuthu, Adhirai; Cho, Hanna; Wu, Guoxian; Wang, Weiru; Fong, Daniel; Nguyen, Hoa; Shi, Songyuan; Womack, Patrick; Nespi, Marika; Shellooe, Rafe; Carias, Heidi; Powell, Ben; Light, Emily; Sanftner, Laura; Walters, Jason; Tsai, James; West, Brian L; Visor, Gary; Rezaei, Hamid; Lin, Paul S; Nolop, Keith; Ibrahim, Prabha N; Hirth, Peter; Bollag, Gideon

    2015-10-22

    Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394. PMID:26466569

  17. Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL

    PubMed Central

    Jeannet, Robin; Mastio, Jérôme; Macias-Garcia, Alejandra; Oravecz, Attila; Ashworth, Todd; Geimer Le Lay, Anne-Solen; Jost, Bernard; Le Gras, Stéphanie; Ghysdael, Jacques; Gridley, Thomas; Honjo, Tasuku; Radtke, Freddy; Aster, Jon C.; Kastner, Philippe

    2010-01-01

    The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell–specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase–cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3′ part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3′ promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5′ Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter. PMID:20829372

  18. Specific Oncogenic Activity of the Src-Family Tyrosine Kinase c-Yes in Colon Carcinoma Cells

    PubMed Central

    Paquay de Plater, Ludmilla; Edmonds, Thomas; David, Géraldine; Jan, Michel; de Montrion, Catherine; Cogé, Francis; Léonce, Stéphane; Burbridge, Michael; Bruno, Alain; Boutin, Jean A.; Lockhart, Brian; Roche, Serge; Cruzalegui, Francisco

    2011-01-01

    c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src. PMID:21390316

  19. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers

    PubMed Central

    David, Gregory

    2012-01-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes. PMID:22825329

  20. Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    PubMed Central

    Dengler, Michael A.; Staiger, Annette M.; Gutekunst, Matthias; Hofmann, Ute; Doszczak, Malgorzata; Scheurich, Peter; Schwab, Matthias; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death. During the first 30 hours after imatinib deprivation, Bcr-Abl hyper-activation did not affect proliferation but resulted in cellular swelling, vacuolization, and induction of eIF2α phosphorylation, CHOP expression, as well as alternative splicing of XPB, indicating endoplasmic reticulum stress response. Cell death was dependent on p38 and RIP1 signaling, whereas classical death effectors of ER stress, namely CHOP-BIM were antagonized by concomitant up-regulation of Bcl-xL. Screening of 1,120 compounds for their potential effects on oncogenic stress-induced cell death uncovered that corticosteroids antagonize cell death upon Bcr-Abl hyper-activation by normalizing cellular metabolism. This protective effect is further demonstrated by the finding that corticosteroids rendered lymphocytes permissive to the transforming activity of Bcr-Abl. As corticosteroids are used together with imatinib for treatment of Bcr-Abl positive acute lymphoblastic leukemia these data could have important implications for the design of

  1. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  2. Oncogenic NanogP8 expression regulates cell proliferation and migration through the Akt/mTOR signaling pathway in human gastric cancer – SGC-7901cell line

    PubMed Central

    Jiang, Zheng; Liu, Yao; Wang, Chuan

    2016-01-01

    Background Although elevated expression of NanogP8 has been detected in many human tumor tissues, its role in gastric tumorigenesis remains unclear. Therefore, this study aimed to investigate the function and regulatory mechanism of NanogP8 in gastric cancer. Methods In this study, NanogP8 cDNA was amplified by real time polymerase chain reaction from the human gastric cancer cell line SGC-7901. The shRNA for RNA interference was established. The NanogP8, pAkt, Akt, pERK, ERK, p-mTOR, and mTOR proteins were detected by using the Western blot assay. Cell viability was evaluated by using the CCK-8 assay. Cell migration and invasion were also examined by using the transwell assay. Results The results indicated that the NanogP8 overexpression promoted proliferation and migration of SGC-7901 cell line, whereas its ablation exerted opposite effects. Interestingly, NanogP8 activated Akt, a key mediator of survival signals, and without affecting total Akt protein level. The NanogP8-increased gastric cell proliferation was downregulated by Akt inhibition. Our results further showed that increasing NanogP8 expression in human gastric cancer cells promoted cell proliferation by activating the AKT/mTOR pathway and further maintained gastric cell survival. Conclusion Our findings extend the knowledge regarding the oncogenic functions and proved that the NanogP8 regulates cell proliferation and migration by Akt/mTOR signaling pathway in human gastric cancer SGC-7901cell line. PMID:27563247

  3. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias

    SciTech Connect

    Muller, A.J.; Witte, O.N. ); Young, J.C.; Pendergast, A.; Pondel, M. ); Landau, N.R.; Littman, D.R. )

    1991-04-01

    The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.

  4. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism that Mimics the Role of Activated RAS in Malignancy

    PubMed Central

    Neupane, Manish; Clark, Allison P.; Landini, Serena; Birkbak, Nicolai J.; Eklund, Aron C.; Lim, Elgene; Culhane, Aedin C.; Barry, William T.; Schumacher, Steven E.; Beroukhim, Rameen; Szallasi, Zoltan; Vidal, Marc; Hill, David E.; Silver, Daniel P.

    2015-01-01

    An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified MECP2 as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers, and many cancer cell lines have amplified, overexpressed MECP2 and are dependent on MECP2 expression for growth. MECP2 copy number gain and RAS family member alterations are mutually exclusive in several cancer types. The MECP2 splicing isoforms activate the major growth factor pathways targeted by activated RAS, the MAPK and PI3K pathways. MECP2 rescued the growth of a KRASG12C-addicted cell line after KRAS down-regulation, and activated KRAS rescues the growth of an MECP2-addicted cell line after MECP2 downregulation. MECP2 binding to the epigenetic modification 5-hydroxymethylcytosine is required for efficient transformation. These observations suggest that MECP2 is a commonly amplified oncogene with an unusual epigenetic mode of action. PMID:26546296

  5. His499 Regulates Dimerization and Prevents Oncogenic Activation by Asparagine Mutations of the Human Thrombopoietin Receptor.

    PubMed

    Leroy, Emilie; Defour, Jean-Philippe; Sato, Takeshi; Dass, Sharmila; Gryshkova, Vitalina; Shwe, Myat M; Staerk, Judith; Constantinescu, Stefan N; Smith, Steven O

    2016-02-01

    Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His(499) near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His(499) is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His(499) regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain. PMID:26627830

  6. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  7. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  8. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer.

    PubMed

    Su, Yen-Hao; Tang, Wan-Chun; Cheng, Ya-Wen; Sia, Peik; Huang, Chi-Chen; Lee, Yi-Chao; Jiang, Hsin-Yi; Wu, Ming-Heng; Lai, I-Lu; Lee, Jun-Wei; Lee, Kuen-Haur

    2015-10-01

    There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II-IV. Therefore, new, more-efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly downregulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVP-AUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1-β-catenin-cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC. PMID:25982393

  9. MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways

    PubMed Central

    Wu, N; Lin, X; Zhao, X; Zheng, L; Xiao, L; Liu, J; Ge, L; Cao, S

    2013-01-01

    Background: We have recently identified miR-125b upregulation in glioblastoma (GMB). The aim of this study is to determine the correlation between miR-125b expression and malignant grades of glioma and the genes targeted by miR-125b. Methods: Real-time PCR was employed to measure the expression level of miR-125b. Cell viability was evaluated by cell growth and colony formation in soft-agar assays. Cell apoptosis was determined by Hoechst 33342 staining and AnnexinV-FITC assay. The Luciferase assay was used to confirm the actual binding sites of p38MAPK mRNA. Western blot was used to detect the gene expression level. Results: The expression level of miR-125b is positively correlated with the malignant grade of glioma. Ectopic expression of miR-125b promotes the proliferation of GMB cells. Knockdown of endogenous miR-125b inhibits cell proliferation and promotes cell apoptosis. Further studies reveal that p53 is regulated by miR-125b. However, downregulation of the endogenous miR-125b also results in p53-independent apoptotic pathway leading to apoptosis in p53 mutated U251 cells and p53 knockdown U87 cells. Moreover, p38MAPK is also regulated by miR-125b and downregulation of miR-125b activates the p38MAPK-induced mitochondria apoptotic pathway. Conclusion: High-level expression of miR-125b is associated with poor outcomes of GMB. MiR-125b may have an oncogenic role in GMB cells by promoting cell proliferation and inhibiting apoptosis. PMID:24169356

  10. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity

    PubMed Central

    Tsai, James; Lee, John T.; Wang, Weiru; Zhang, Jiazhong; Cho, Hanna; Mamo, Shumeye; Bremer, Ryan; Gillette, Sam; Kong, Jun; Haass, Nikolas K.; Sproesser, Katrin; Li, Ling; Smalley, Keiran S. M.; Fong, Daniel; Zhu, Yong-Liang; Marimuthu, Adhirai; Nguyen, Hoa; Lam, Billy; Liu, Jennifer; Cheung, Ivana; Rice, Julie; Suzuki, Yoshihisa; Luu, Catherine; Settachatgul, Calvin; Shellooe, Rafe; Cantwell, John; Kim, Sung-Hou; Schlessinger, Joseph; Zhang, Kam Y. J.; West, Brian L.; Powell, Ben; Habets, Gaston; Zhang, Chao; Ibrahim, Prabha N.; Hirth, Peter; Artis, Dean R.; Herlyn, Meenhard; Bollag, Gideon

    2008-01-01

    BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors. PMID:18287029

  11. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1

    PubMed Central

    Erkizan, Hayriye Verda; Schneider, Jeffrey A.; Sajwan, Kamal; Graham, Garrett T.; Griffin, Brittany; Chasovskikh, Sergey; Youbi, Sarah E.; Kallarakal, Abraham; Chruszcz, Maksymilian; Padmanabhan, Radhakrishnan; Casey, John L.; Üren, Aykut; Toretsky, Jeffrey A.

    2015-01-01

    RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy. PMID:25564528

  12. Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence.

    PubMed

    de Graaf, Erik L; Kaplon, Joanna; Mohammed, Shabaz; Vereijken, Lisette A M; Duarte, Daniel P; Redondo Gallego, Laura; Heck, Albert J R; Peeper, Daniel S; Altelaar, A F Maarten

    2015-07-01

    We report a straightforward strategy to comprehensively monitor signal transduction pathway dynamics in mammalian systems. Combining targeted quantitative proteomics with highly selective phosphopeptide enrichment, we monitor, with great sensitivity, phosphorylation dynamics of the PI3K-mTOR and MAPK signaling networks. Our approach consists of a single enrichment step followed by a single targeted proteomics experiment, circumventing the need for labeling and immune purification while enabling analysis of selected phosphorylation nodes throughout signaling pathways. The need for such a comprehensive pathway analysis is illustrated by highlighting previously uncharacterized phosphorylation changes in oncogene-induced senescence, associated with diverse biological phenotypes and pharmacological intervention of the PI3K-mTOR pathway. PMID:26011226

  13. p210 bcr-abl confers overexpression of inosine monophosphate dehydrogenase: an intrinsic pathway to drug resistance mediated by oncogene.

    PubMed

    Gharehbaghi, K; Burgess, G S; Collart, F R; Litz-Jackson, S; Huberman, E; Jayaram, H N; Boswell, H S

    1994-08-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin. PMID:7520100

  14. p210 Bcr-Abl confers overexpression of inosine monophosphate dehydrogenase : an intrinsic pathway to drug resistance mediated by oncogene.

    SciTech Connect

    Gharehbaghi, K.; Burgess, G. S.; Collart, F. R.; Litz-Jackson, S.; Huberman, E.; Jayaram, H. N.; Boswell, H. S.; Center for Mechanistic Biology and Biotechnology; Lab. for Experimental Oncology; Indiana Univ. School of Medicine

    1994-01-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin.

  15. Cigarette smoke activates the proto-oncogene c-src to promote airway inflammation and lung tissue destruction.

    PubMed

    Geraghty, Patrick; Hardigan, Andrew; Foronjy, Robert F

    2014-03-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke-exposed mice. Moreover, inhibiting Src deterred the cigarette smoke-mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605

  16. Cigarette Smoke Activates the Proto-Oncogene c-Src to Promote Airway Inflammation and Lung Tissue Destruction

    PubMed Central

    Geraghty, Patrick; Hardigan, Andrew

    2014-01-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605

  17. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  18. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry.

    PubMed

    Feng, Xiaodong; Degese, Maria Sol; Iglesias-Bartolome, Ramiro; Vaque, Jose P; Molinolo, Alfredo A; Rodrigues, Murilo; Zaidi, M Raza; Ksander, Bruce R; Merlino, Glenn; Sodhi, Akrit; Chen, Qianming; Gutkind, J Silvio

    2014-06-16

    Mutually exclusive activating mutations in the GNAQ and GNA11 oncogenes, encoding heterotrimeric Gαq family members, have been identified in ∼ 83% and ∼ 6% of uveal and skin melanomas, respectively. However, the molecular events underlying these GNAQ-driven malignancies are not yet defined, thus limiting the ability to develop cancer-targeted therapies. Here, we focused on the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway that controls organ size. We found that Gαq stimulates YAP through a Trio-Rho/Rac signaling circuitry promoting actin polymerization, independently of phospholipase Cβ and the canonical Hippo pathway. Furthermore, we show that Gαq promotes the YAP-dependent growth of uveal melanoma cells, thereby identifying YAP as a suitable therapeutic target in uveal melanoma, a GNAQ/GNA11-initiated human malignancy. PMID:24882515

  19. A complex containing PBX2 contributes to activation of the proto-oncogene HOX11.

    PubMed

    Brake, R L; Kees, U R; Watt, P M

    2002-05-31

    Ectopic expression of the homeobox gene HOX11 is associated with a significant proportion of childhood T-cell acute lymphoblastic leukaemias (T-ALLs). We hypothesise that one mechanism of gene deregulation involves overcoming the silencing mechanism(s) of gene expression present in normal cells. Here, we describe a search for trans-acting factors that control transcriptional activity from a distal 5' region of the HOX11 promoter. We have identified a region of this promoter which contributes significantly to HOX11 activation and two distinct regulatory elements are involved. First, a PBX2 Regulatory Element PRE-1048 has been identified which contains a novel DNA-binding sequence and mediates significant activation of the HOX11 gene in K562 cells. This is the first report of a homeobox gene being specifically regulated by PBX2 and the second report of a vertebrate homeobox target gene of a PBX protein. The PREP1 protein was also shown to be part of the PRE-1048-binding complex. The other regulatory element we describe here RE-1019 contains little sequence conservation to known transcription control elements. It appears that this element is a novel sequence that binds an as yet unidentified factor, mediating significant activation of the HOX11 gene in K562 cells. This is the first detailed report of elements that mediate regulation of the proto-oncogene HOX11. PMID:12054735

  20. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles.

    PubMed

    Walz, Susanne; Lorenzin, Francesca; Morton, Jennifer; Wiese, Katrin E; von Eyss, Björn; Herold, Steffi; Rycak, Lukas; Dumay-Odelot, Hélène; Karim, Saadia; Bartkuhn, Marek; Roels, Frederik; Wüstefeld, Torsten; Fischer, Matthias; Teichmann, Martin; Zender, Lars; Wei, Chia-Lin; Sansom, Owen; Wolf, Elmar; Eilers, Martin

    2014-07-24

    In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response. PMID:25043018

  1. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    PubMed Central

    Le Rolle, Anne-France; Chiu, Thang K.; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R.; Paty, Philip B.; Chiu, Vi K.

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer. PMID:26744320

  2. Upregulation of p-Smad2 contributes to FAT10-induced oncogenic activities in glioma.

    PubMed

    Dai, Bin; Zhang, Yisong; Zhang, Peng; Pan, Changcun; Xu, Cheng; Wan, Weiqing; Wu, Zhen; Zhang, Junting; Zhang, Liwei

    2016-07-01

    The human leukocyte antigen f-associated transcript 10 (FAT10) has a similar structure and function with ubiquitin, which efficiently mediate proteasome degradation in an ubiquitin-independent manner. FAT10 expression is upregulated in many tumor tissues and plays a vital role in cell cycle regulation and tumor genesis. However, its role in glioma has not been illuminated. The aim of this study was to evaluate the prognostic value of FAT10 and investigate its functional roles in glioma. The expression of FAT10 in glioma patient samples was examined using quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry methods. Glioma cell lines with either FAT10 overexpression or knockdown were created. The effect of FAT10 on glioma cell migration and invasion was investigated using these cells. In the present study, we had shown that FAT10 was elevated significantly in glioma samples and correlated with tumor pathological grade. FAT10 high-expression glioma is associated with a poor clinical prognosis. Overexpression of FAT10 promoted proliferation, invasion, migration, and sphere formation of glioma cells, whereas downregulation of FAT10 had an opposite effect. Overexpression of FAT10 also promoted the growth of glioma cells in vivo. Moreover, FAT10 enhanced the phosphorylation of Smad2, which contributes to FAT10-induced oncogenic activities in glioma. In conclusion, these findings indicate that FAT10 is a critical regulator potential therapeutic target of glioma. PMID:26733179

  3. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  4. Loss of E-Cadherin–mediated Cell–Cell Contacts Activates a Novel Mechanism for Up-Regulation of the Proto-Oncogene c-Jun

    PubMed Central

    Knirsh, Revital; Ben-Dror, Iris; Spangler, Barbara; Matthews, Gideon D.; Kuphal, Silke; Bosserhoff, Anja K.

    2009-01-01

    Loss of E-cadherin–mediated cell–cell contacts can elicit a signaling pathway that leads to acquisition of an invasive phenotype. Here, we show that at the receiving end of this pathway is the proto-oncogene c-Jun, a member of the activator protein-1 family of transcription factors that play a key role in stimulation of cell proliferation and tumor promotion. Cell separation or abrogation of E-cadherin–mediated cell–cell contacts both cause a dramatic increase in accumulation of the c-Jun protein. Unlike growth factors that enhance the expression of c-Jun by activating the transcription of the c-jun gene, the cell contact-dependent increase in c-Jun accumulation is not accompanied by a corresponding increase in c-Jun mRNA or c-Jun protein stability but rather in the translatability of the c-Jun transcript. Consistently, the increase in c-Jun accumulation is not dependent on activation of the mitogen-activated protein kinase or β-catenin pathways but is mediated by signals triggered by the restructured cytoskeleton. Depolymerization of the cytoskeleton can mimic the effect of cell separation and cause a dramatic increase in c-Jun accumulation, whereas Taxol inhibits the cell contact-dependent increase. This novel mechanism of c-Jun regulation seems to underlie the robust overexpression of c-Jun in tumor cells of patients with colon carcinoma. PMID:19193763

  5. Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein.

    PubMed

    Sabiani, Samaneh; Geppert, Tim; Engelbrecht, Christian; Kowarz, Eric; Schneider, Gisbert; Marschalek, Rolf

    2015-05-01

    We have recently demonstrated that Taspase1-mediated cleavage of the AF4-MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4-MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4-MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4-MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4-MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed. PMID:26137584

  6. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells

    PubMed Central

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells. PMID:26269757

  7. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer.

    PubMed Central

    Shimizu, K; Nakatsu, Y; Sekiguchi, M; Hokamura, K; Tanaka, K; Terada, M; Sugimura, T

    1985-01-01

    Transfection with high molecular weight DNA from a primary stomach cancer induced foci of transformed NIH 3T3 cells, and the transformed cells were tumorigenic in nude mice. By screening with a human Alu-family probe, we isolated the human DNA sequence from the secondary transformant cells. This transforming sequence encompasses about 60 kilobase pairs and is unrelated to known human transforming genes. Examination of homologies between this sequence and retroviral oncogenes revealed that the human transforming sequence is closely related to the v-raf oncogene of murine transforming retrovirus 3611-MSV. Images PMID:3862088

  8. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover.

    PubMed

    Hong, Xin; Nguyen, Hung Thanh; Chen, Qingfeng; Zhang, Rui; Hagman, Zandra; Voorhoeve, P Mathijs; Cohen, Stephen M

    2014-11-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of Ras(V12) depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1. PMID:25180228

  9. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover

    PubMed Central

    Hong, Xin; Nguyen, Hung Thanh; Chen, Qingfeng; Zhang, Rui; Hagman, Zandra; Voorhoeve, P Mathijs; Cohen, Stephen M

    2014-01-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of RasV12 depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1. PMID:25180228

  10. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea

    SciTech Connect

    Perantoni, A.O.; Rice, J.M.; Reed, C.D.; Watatani, M.; Wenk, M.L.

    1987-09-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). The authors prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and form schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogen was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified in cultured cell lines derived from EtNU-induced neurogenic tumors appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain.

  11. Regulation of protein kinase C activity in neuronal differentiation induced by the N-ras oncogene in PC-12 cells.

    PubMed Central

    Lacal, J C; Cuadrado, A; Jones, J E; Trotta, R; Burstein, D E; Thomson, T; Pellicer, A

    1990-01-01

    Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional. Images PMID:2188105

  12. Retroviral insertional activation of the c-myb proto-oncogene in a Marek's disease T-lymphoma cell line.

    PubMed Central

    Le Rouzic, E; Perbal, B

    1996-01-01

    Marek's disease virus (MDV) is an avian herpesvirus that causes, in chickens, a lymphoproliferative disease characterized by malignant transformation of T lymphocytes. The rapid onset of polyclonal tumors indicates the existence of MDV-encoded oncogenic products. However, the molecular basis of MDV-induced lymphoproliferative disease and latency remains largely unclear. Several lines of evidence suggest that MDV and Rous-associated virus (RAV) might cooperate in the development of B-cell lymphomas induced by RAV. Our present results indicate for the first time that MDV and RAV might also act synergistically in the development of T-cell lymphomas. We report an example of an MDV-transformed T-lymphoblastoid cell line (T9) expressing high levels of a truncated C-MYB protein as a result of RAV integration within one c-myb allele. The chimeric RAV-c-myb mRNA species initiated in the 5' long terminal repeat of RAV are deprived of sequences corresponding to c-myb exons 1 to 3. The attenuation of MDV oncogenicity has been strongly related to structural changes in the MDV BamHI-D and BamHI-H DNA fragments. We have established that both DNA restriction fragments are rearranged in the T9 MDV-transformed cells. Our results suggest that retroviral insertional activation of the c-myb proto-oncogene is a critical factor involved in the maintenance of the transformed phenotype and the tumorigenic potential of this T-lymphoma cell line. PMID:8892859

  13. Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion.

    PubMed

    Tervonen, T A; Belitškin, D; Pant, S M; Englund, J I; Marques, E; Ala-Hongisto, H; Nevalaita, L; Sihto, H; Heikkilä, P; Leidenius, M; Hewitson, K; Ramachandra, M; Moilanen, A; Joensuu, H; Kovanen, P E; Poso, A; Klefström, J

    2016-04-01

    Hepsin belongs to a family of cell-surface serine proteases, which have sparked interest as therapeutic targets because of the accessibility of extracellular protease domain for inhibitors. Hepsin is frequently amplified and/or overexpressed in epithelial cancers, but it is not clear how enhanced hepsin expression confers a potential for oncogenicity. We show that hepsin is consistently overexpressed in more than 40% of examined breast cancers, including all major biological subtypes. The effects of doxycycline-induced hepsin overexpression were examined in mammary epithelial organoids, and we found that induced hepsin acutely downmodulates its cognate inhibitor, hepatocyte growth factor (HGF) activator inhibitor type 1 (HAI-1). Hepsin-induced depletion of cellular HAI-1 led to a sharp increase in pericellular serine protease activity. The derepressed hepsin proteolytically activated downstream serine proteases, augmented HGF/MET signalling and caused deterioration of desmosomes and hemidesmosomes; structures important for cell cohesion and cell-basement membrane interaction. Moreover, chronic induction of hepsin considerably shortened the latency of Myc-dependent tumourigenesis in the mouse mammary gland. The serine protease and uPA system inhibitor WX-UK1, identified as a micromolar range hepsin inhibitor, prevented hepsin from augmenting HGF/MET signalling and disrupting desmosomes and hemidesmosomes. The findings suggest that the oncogenic activity of hepsin arises not only from elevated expression level but also from depletion of HAI-1, events which together trigger gain-of-function activity impacting HGF/MET signalling and epithelial cohesion. Thus, hepsin overexpression is a major oncogenic conferrer to a serine protease activity involved in breast cancer dissemination. PMID:26165838

  14. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events.

    PubMed Central

    Clurman, B E; Hayward, W S

    1989-01-01

    We have examined avian leukosis virus-induced B-cell lymphomas for multiple, stage-specific oncogene activations. Three targets for viral integration were identified: c-myb, c-myc, and a newly identified locus termed c-bic. The c-myb and c-myc genes were associated with different lymphoma phenotypes. The c-bic locus was a target for integration in one class of lymphomas, usually in conjunction with c-myc activation. The data indicate that c-myc and c-bic may act synergistically during lymphomagenesis and that c-bic is involved in late stages of tumor progression. Images PMID:2548084

  15. TARGETING ONCOGENIC BRAF IN HUMAN CANCER

    PubMed Central

    Pratilas, Christine; Xing, Feng; Solit, David

    2012-01-01

    MAPK pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. BRAF missense kinase domain mutations, the vast majority of which are V600E, occur in approximately 8% of human tumors. These mutations, which are non-overlapping in distribution with RAS mutations, are observed most frequently in melanoma but also in tumors arising in the colon, thyroid, lung and other sites. Supporting its classification as an oncogene, V600EBRAF stimulates ERK signaling, induces proliferation and is capable of promoting transformation. Given the frequent occurrence of BRAF mutations in human cancer and the continued requirement for BRAF activity in the tumors in which it is mutated, efforts are underway to develop targeted inhibitors of BRAF and its downstream effectors. These agents offer the possibility of greater efficacy and less toxicity than the systemic therapies currently available for tumors driven by activating mutations in the MAPK pathway. Early clinical results with the BRAF-selective inhibitors PLX4032 and GSK2118436 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by oncogenic BRAF. PMID:21818706

  16. Hidden among the crowd: differential DNA methylation-expression correlations in cancer occur at important oncogenic pathways

    PubMed Central

    Mosquera Orgueira, Adrián

    2015-01-01

    DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238

  17. Somatic Mutations in CCK2R Alter Receptor Activity that Promote Oncogenic Phenotypes

    PubMed Central

    Willard, Melinda D.; Lajiness, Mary E.; Wulur, Isabella H.; Feng, Bo; Swearingen, Michelle L.; Uhlik, Mark T.; Kinzler, Kenneth W.; Velculescu, Victor E.; Sjöblom, Tobias; Markowitz, Sanford D.; Powell, Steven M.; Vogelstein, Bert; Barber, Thomas D.

    2013-01-01

    The roles of cholecystokinin 2 receptor (CCK2R) in numerous physiologic processes in the gastrointestinal tract and central nervous system are ‘well documented. There has been some evidence that CCK2R alterations play a role in cancers, but the functional significance of these alterations for tumorigenesis is unknown. We have identified six mutations in CCK2R among a panel of 140 colorectal cancers and 44 gastric cancers. We show that these mutations increase receptor activity, activate multiple downstream signaling pathways, increase cell migration, and promote angiogenesis. Our findings suggest that somatic mutations in CCK2R may promote tumorigenesis through deregulated receptor activity and highlight the importance of evaluating CCK2R inhibitors to block both the normal and mutant forms of the receptor. PMID:22516348

  18. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  19. Pancreatitis promotes oncogenic KrasG12D-induced pancreatic transformation through activation of Nupr1

    PubMed Central

    Grasso, Daniel; Garcia, Maria Noé; Hamidi, Tewfik; Cano, Carla; Calvo, Ezequiel; Lomberk, Gwen; Urrutia, Raul; Iovanna, Juan L

    2014-01-01

    During the initiation stage of pancreatic adenocarcinoma induced by oncogenic Kras, pancreatic cells are exposed to both a protumoral effect and an opposing tumor suppressive process known as oncogene-induced senescence. Pancreatitis disrupts this balance in favor of the transforming effect of oncogenes by lowering the tumor suppressive threshold of oncogene-induced senescence through expression of the stress protein Nupr1. PMID:27308320

  20. Klf5 Deletion Promotes Pten Deletion–Initiated Luminal-Type Mouse Prostate Tumors through Multiple Oncogenic Signaling Pathways12

    PubMed Central

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N.; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-01-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5. PMID:25425963

  1. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110β.

    PubMed

    Nakanishi, Yoshito; Walter, Kimberly; Spoerke, Jill M; O'Brien, Carol; Huw, Ling Y; Hampton, Garret M; Lackner, Mark R

    2016-03-01

    Activation of the PI3K pathway occurs commonly in a wide variety of cancers. Experience with other successful targeted agents suggests that clinical resistance is likely to arise and may reduce the durability of clinical benefit. Here, we sought to understand mechanisms underlying resistance to PI3K inhibition in PTEN-deficient cancers. We generated cell lines resistant to the pan-PI3K inhibitor GDC-0941 from parental PTEN-null breast cancer cell lines and identified a novel PIK3CB D1067Y mutation in both cell lines that was recurrent in cancer patients. Stable expression of mutant PIK3CB variants conferred resistance to PI3K inhibition that could be overcome by downstream AKT or mTORC1/2 inhibitors. Furthermore, we show that the p110β D1067Y mutant was highly activated and induced PIP3 levels at the cell membrane, subsequently promoting the localization and activation of AKT and PDK1 at the membrane and driving PI3K signaling to a level that could withstand treatment with proximal inhibitors. Finally, we demonstrate that the PIK3CB D1067Y mutant behaved as an oncogene and transformed normal cells, an activity that was enhanced by PTEN depletion. Collectively, these novel preclinical and clinical findings implicate the acquisition of activating PIK3CB D1067 mutations as an important event underlying the resistance of cancer cells to selective PI3K inhibitors. PMID:26759240

  2. Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish

    PubMed Central

    Valvezan, Alexander J.; Huang, Jian; Lengner, Christopher J.; Pack, Michael; Klein, Peter S.

    2014-01-01

    Truncating mutations in adenomatous polyposis coli (APC) are strongly linked to colorectal cancers. APC is a negative regulator of the Wnt pathway and constitutive Wnt activation mediated by enhanced Wnt–β-catenin target gene activation is believed to be the predominant mechanism responsible for APC mutant phenotypes. However, recent evidence suggests that additional downstream effectors contribute to APC mutant phenotypes. We previously identified a mechanism in cultured human cells by which APC, acting through glycogen synthase kinase-3 (GSK-3), suppresses mTORC1, a nutrient sensor that regulates cell growth and proliferation. We hypothesized that truncating Apc mutations should activate mTORC1 in vivo and that mTORC1 plays an important role in Apc mutant phenotypes. We find that mTORC1 is strongly activated in apc mutant zebrafish and in intestinal polyps in Apc mutant mice. Furthermore, mTORC1 activation is essential downstream of APC as mTORC1 inhibition partially rescues Apc mutant phenotypes including early lethality, reduced circulation and liver hyperplasia. Importantly, combining mTORC1 and Wnt inhibition rescues defects in morphogenesis of the anterior-posterior axis that are not rescued by inhibition of either pathway alone. These data establish mTORC1 as a crucial, β-catenin independent effector of oncogenic Apc mutations and highlight the importance of mTORC1 regulation by APC during embryonic development. Our findings also suggest a new model of colorectal cancer pathogenesis in which mTORC1 is activated in parallel with Wnt/β-catenin signaling. PMID:24092877

  3. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    SciTech Connect

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  4. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  5. The Ubiquitin-associated (UBA) Domain of SCCRO/DCUN1D1 Protein Serves as a Feedback Regulator of Biochemical and Oncogenic Activity*

    PubMed Central

    Huang, Guochang; Towe, Christopher W.; Choi, Lydia; Yonekawa, Yoshihiro; Bommeljé, Claire C.; Bains, Sarina; Rechler, Willi; Hao, Bing; Ramanathan, Yegnanarayana; Singh, Bhuvanesh

    2015-01-01

    Amplification of squamous cell carcinoma-related oncogene (SCCRO) activates its function as an oncogene in a wide range of human cancers. The oncogenic activity of SCCRO requires its potentiating neddylation domain, which regulates its E3 activity for neddylation. The contribution of the N-terminal ubiquitin-associated (UBA) domain to SCCRO function remains to be defined. We found that the UBA domain of SCCRO preferentially binds to polyubiquitin chains in a linkage-independent manner. Binding of polyubiquitin chains to the UBA domain inhibits the neddylation activity of SCCRO in vivo by inhibiting SCCRO-promoted nuclear translocation of neddylation components and results in a corresponding decrease in cullin-RING-ligase-promoted ubiquitination. The results of colony formation and xenograft assays showed a mutation in the UBA domain of SCCRO that reduces binding to polyubiquitin chains, significantly enhancing its oncogenic activity. Analysis of 47 lung and head and neck squamous cell carcinomas identified a case with a frameshift mutation in SCCRO that putatively codes for a protein that lacks a UBA domain. Analysis of data from The Cancer Genome Atlas showed that recurrent mutations cluster in the UBA domains of SCCRO, lose the ability to bind to polyubiquitinated proteins, and have increased neddylation and transformation activities. Combined, these data suggest that the UBA domain functions as a negative regulator of SCCRO function. Mutations in the UBA domain lead to loss of inhibitory control, which results in increased biochemical and oncogenic activity. The clustering of mutations in the UBA domain of SCCRO suggests that mutations may be a mechanism of oncogene activation in human cancers. PMID:25411243

  6. Retrograde TrkAIII transport from ERGIC to ER: a re-localisation mechanism for oncogenic activity

    PubMed Central

    Farina, Antonietta Rosella; Cappabianca, Lucia; Ruggeri, Pierdomenico; Gneo, Luciana; Maccarone, Rita; Mackay, Andrew Reay

    2015-01-01

    In human SH-SY5Y neuroblastoma (NB) cells, nascent immature N-glycosylated 110kDa TrkA moves rapidly from the endoplasmic reticulum (ER) to the Golgi Network (GN), where it matures into the 140kDa receptor prior to being transported to the cell surface, creating GN and cell surface pools of inactive receptor maintained below the spontaneous activation threshold by a full compliment of inhibitory domains and endogenous PTPases. In contrast, the oncogenic alternative TrkAIII splice variant is not expressed at the cell surface but re-localises to intracellular membranes, within which it exhibits spontaneous ERGIC/COPI-associated activation and oncogenic Akt signalling. In this study, we characterise the mechanism responsible for TrkAIII re-localisation. Spontaneous TrkAIII activation, facilitated by D4 IG-like domain and N-glycosylation site omission, increases spontaneous activation potential by altering intracellular trafficking, inhibiting cell surface expression and eliminating an important inhibitory domain. TrkAIII, spontaneously activated within the permissive ERGIC/COPI compartment, rather than moving in an anterograde direction to the GN exhibits retrograde transport back to the ER, where it is inactivated. This sets-up self-perpetuating TrkAIII re-cycling between the ERGIC and ER, that ensures continual accumulation above the spontaneous activation threshold of the ERGIC/COPI compartment. This is reversed by TrkA tyrosine kinase inhibitors, which promote anterograde transport of inactivated TrkAIII to the GN, resulting in GN-associated TrkAIII maturation to a 120kDa species that is degraded at the proteasome. PMID:26415233

  7. Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene.

    PubMed

    Snijders, A M; Huey, B; Connelly, S T; Roy, R; Jordan, R C K; Schmidt, B L; Albertson, D G

    2009-02-01

    Hedgehog signaling is often activated in tumors, yet it remains unclear how GLI2, a transcription factor activated by this pathway, acts as an oncogene. We show that GLI2 is a pleiotropic oncogene. The overexpression induces genomic instability and blocks differentiation, likely mediated in part by enhanced expression of the stem cell gene SOX2. GLI2 also induces transforming growth factor (TGF)B1-dependent transdifferentiation of foreskin and tongue, but not gingival fibroblasts into myofibroblasts, creating an environment permissive for invasion by keratinocytes, which are in various stages of differentiation having downregulated GLI2. Thus, upregulated GLI2 expression is sufficient to induce a number of the acquired characteristics of tumor cells; however, the stroma, in a tissue-specific manner, determines whether certain GLI2 oncogenic traits are expressed. PMID:19015636

  8. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  9. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-κB

    PubMed Central

    Zuo, Lielian; Yu, Haibo; Liu, Lingzhi; Tang, Yunlian; Wu, Hongzhuan; Yang, Jing; Zhu, Meijuan; Du, Shujuan; Zhao, Lian; Cao, Li; Li, Guiyuan; Lu, Jianhong

    2015-01-01

    A tumor model that Epstein-Barr virus (EBV) latent infection facilitated the tumorigenicity was previously established using the Maxi-EBV system. In the present approach, EBV-lost cell clones demonstrated significantly decreased tumorigenesis. On the other hand, the LMP1 gene in Maxi-EBV genome was replaced by that of nasopharyngeal carcinoma origin. The resultant cell line, 293–1/NL showed much lower malignancy than the original 293-EBV. The result was opposite to our expectation. The change of 293 sublineage cells for EBV harboring also got similar result. To seek the underlying reason, the copy number of EBV genome in all the cell lines was detected. The result indicated that 293-EBV contained about 4.5-fold higher EBV copies than 293–1/NL did. Parallel EBV genomes led to relatively stable copies in different 293 sublineages, suggesting the viral genome structure is a factor for the sustainability of EBV's copy number. Moreover, the LMP1 transcription in high copy-containing cells showed abnormally high level. Furthermore, the main LMP1-driven pathway, transcription factor NF-κB, was highly activated in high-copy cells. Here we first manifest by experimental model that the copy number of EBV latent genome correlates with the viral pathogenesis, which depends on the activation level of LMP1 and NF-κB. Overall, both the presence and amount of EBV genome are crucial for the viral oncogenicity. PMID:26517512

  10. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers.

    PubMed

    Goldstein, Leonard D; Lee, James; Gnad, Florian; Klijn, Christiaan; Schaub, Annalisa; Reeder, Jens; Daemen, Anneleen; Bakalarski, Corey E; Holcomb, Thomas; Shames, David S; Hartmaier, Ryan J; Chmielecki, Juliann; Seshagiri, Somasekar; Gentleman, Robert; Stokoe, David

    2016-09-01

    The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain. The Nrf2 alterations result in the loss of interaction with KEAP1, Nrf2 stabilization, induction of a Nrf2 transcriptional response, and Nrf2 pathway dependence. In all analyzed cases, transcript variants were the result of heterozygous genomic microdeletions. Thus, we identify an alternative mechanism for Nrf2 pathway activation in human tumors and elucidate its functional consequences. PMID:27568559

  11. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  12. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  13. Identifying molecular genetic features and oncogenic pathways of clear cell renal cell carcinoma through the anatomical (PADUA) scoring system

    PubMed Central

    Lin, Zhiqian; Shi, Guohai; Lin, Xiaozhu; Wu, Zhiyuan; Zhang, Xia; Zhang, Xi

    2016-01-01

    Although the preoperative aspects and dimensions used for the PADUA scoring system were successfully applied in macroscopic clinical practice for renal tumor, the relevant molecular genetic basis remained unclear. To uncover meaningful correlations between the genetic aberrations and radiological features, we enrolled 112 patients with clear cell renal cell carcinoma (ccRCC) whose clinicopathological data, genomics data and CT data were obtained from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). Overall PADUA score and several radiological features included in the PADUA system were assigned for each ccRCC. Despite having observed no significant association between the gene mutation frequency and the overall PADUA score, correlations between gene mutations and a few radiological features (tumor rim location and tumor size) were identified. A significant association between rim location and miRNA molecular subtypes was also observed. Survival analysis revealed that tumor size > 7 cm was significantly associated with poor survival. In addition, Gene Set Enrichment Analysis (GSEA) on mRNA expression revealed that the high PADUA score was related to numerous cancer-related networks, especially epithelial to mesenchymal transition (EMT) related pathways. This preliminary analysis of ccRCC revealed meaningful correlations between PADUA anatomical features and molecular basis including genomic aberrations and molecular subtypes. PMID:26848523

  14. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters.

    PubMed

    Gan, L; Xiu, R; Ren, P; Yue, M; Su, H; Guo, G; Xiao, D; Yu, J; Jiang, H; Liu, H; Hu, G; Qing, G

    2016-06-01

    Deregulation of the MYC oncogene produces Myc protein that regulates multiple aspects of cancer cell metabolism, contributing to the acquisition of building blocks essential for cancer cell growth and proliferation. Therefore, disabling Myc function represents an attractive therapeutic option for cancer treatment. However, pharmacological strategies capable of directly targeting Myc remain elusive. Here, we identified that 3-bromopyruvate (3-BrPA), a drug candidate that primarily inhibits glycolysis, preferentially induced massive cell death in human cancer cells overexpressing the MYC oncogene, in vitro and in vivo, without appreciable effects on those exhibiting low MYC levels. Importantly, pharmacological inhibition of glutamine metabolism synergistically potentiated the synthetic lethal targeting of MYC by 3-BrPA due in part to the metabolic disturbance caused by this combination. Mechanistically, we identified that the proton-coupled monocarboxylate transporter 1 (MCT1) and MCT2, which enable efficient 3-BrPA uptake by cancer cells, were selectively activated by Myc. Two regulatory mechanisms were involved: first, Myc directly activated MCT1 and MCT2 transcription by binding to specific recognition sites of both genes; second, Myc transcriptionally repressed miR29a and miR29c, resulting in enhanced expression of their target protein MCT1. Of note, expressions of MCT1 and MCT2 were each significantly elevated in MYCN-amplified neuroblastomas and C-MYC-overexpressing lymphomas than in tumors without MYC overexpression, correlating with poor prognosis and unfavorable patient survival. These results identify a novel mechanism by which Myc sensitizes cells to metabolic inhibitors and validate 3-BrPA as potential Myc-selective cancer therapeutics. PMID:26434591

  15. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling.

    PubMed

    Callahan, Brian P; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  16. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis

    PubMed Central

    Vredeveld, Liesbeth C.W.; Possik, Patricia A.; Smit, Marjon A.; Meissl, Katrin; Michaloglou, Chrysiis; Horlings, Hugo M.; Ajouaou, Abderrahim; Kortman, Pim C.; Dankort, David; McMahon, Martin; Mooi, Wolter J.; Peeper, Daniel S.

    2012-01-01

    Human melanocytic nevi (moles) are benign lesions harboring activated oncogenes, including BRAF. Although this oncogene initially acts mitogenically, eventually, oncogene-induced senescence (OIS) ensues. Nevi can infrequently progress to melanomas, but the mechanistic relationship with OIS is unclear. We show here that PTEN depletion abrogates BRAFV600E-induced senescence in human fibroblasts and melanocytes. Correspondingly, in established murine BRAFV600E-driven nevi, acute shRNA-mediated depletion of PTEN prompted tumor progression. Furthermore, genetic analysis of laser-guided microdissected human contiguous nevus–melanoma specimens recurrently revealed identical mutations in BRAF or NRAS in adjacent benign and malignant melanocytes. The PI3K pathway was often activated through either decreased PTEN or increased AKT3 expression in melanomas relative to their adjacent nevi. Pharmacologic PI3K inhibition in melanoma cells suppressed proliferation and induced the senescence-associated tumor suppressor p15INK4B. This treatment also eliminated subpopulations resistant to targeted BRAFV600E inhibition. Our findings suggest that a significant proportion of melanomas arise from nevi. Furthermore, these results demonstrate that PI3K pathway activation serves as a rate-limiting event in this setting, acting at least in part by abrogating OIS. The reactivation of senescence features and elimination of cells refractory to BRAFV600E inhibition by PI3K inhibition warrants further investigation into the therapeutic potential of simultaneously targeting these pathways in melanoma. PMID:22549727

  17. HOTAIR IS A NEGATIVE PROGNOSTIC FACTOR AND EXHIBITS PRO-ONCOGENIC ACTIVITY IN PANCREATIC CANCER

    PubMed Central

    Kim, Kyounghyun; Jutooru, Indira; Chadalapaka, Gayathri; Johnson, Greg; Frank, James; Burghardt, Robert; Kim, Sangbae; Safe, Stephen

    2012-01-01

    HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared to non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR plays an important role in pancreatic cancer cell invasion and as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression, and induced apoptosis, demonstrating an expanded function for HOTAIR in pancreatic cancer cells compared to other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic vs. breast cancer cells and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6 pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer. PMID:22614017

  18. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer.

    PubMed

    Dhillon, A S; Tulchinsky, E

    2015-08-20

    Tumour heterogeneity is a major factor undermining the success of therapies targeting metastatic cancer. Two major theories are thought to explain the phenomenon of heterogeneity in cancer--clonal evolution and cell plasticity. In this review, we examine a growing body of work implicating the transcription factor FOS-related antigen 1 (FRA-1) as a central node in tumour cell plasticity networks, and discuss mechanisms regulating its activity in cancer cells. We also discuss evidence from the FRA-1 perspective supporting the notion that clonal selection and cell plasticity represent two sides of the same coin. We propose that FRA-1-overexpressing clones featuring high plasticity undergo positive selection during consecutive stages of multistep tumour progression. This model underscores a potential mechanism through which tumour cells retaining elevated levels of plasticity acquire a selective advantage over other clonal populations within a tumour. PMID:25381818

  19. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    PubMed Central

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Smissen, Patrick Van Der; Veithen, Alex; Courtoy, Pierre J.

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of fluid-phase endocytosis. These alterations closely correlated with activation of PI3K and phosphatidylinositol-specific phospholipase C (PI-PLC), as assayed by 3-phosphoinositide synthesis in situ and in vitro and inositol 1,4,5 trisphosphate steady-state levels, respectively; they were abolished by stable transfection of v-Src–transformed cells for dominant-negative truncated p85α expression and by pharmacological inhibitors of PI3K and PI-PLC, indicating a requirement for both enzymes. Whereas PI3K activation resisted PI-PLC inhibition, PI-PLC activation was abolished by a PI3K inhibitor and dominant-negative transfection, thus placing PI-PLC downstream of PI3K. Together, these data suggest that permanent sequential activation of both PI3K and PI-PLC is necessary for the dramatic reorganization of the actin cytoskeleton in oncogene-transformed fibroblasts, resulting in constitutive ruffling and macropinocytosis. PMID:11029048

  20. Pleiotropic Anti-Angiogenic and Anti-Oncogenic Activities of the Novel Mithralog Demycarosyl-3D-ß-D-Digitoxosyl-Mithramycin SK (EC-8042).

    PubMed

    Fernández-Guizán, Azahara; López-Soto, Alejandro; Acebes-Huerta, Andrea; Huergo-Zapico, Leticia; Villa-Álvarez, Mónica; Núñez, Luz-Elena; Morís, Francisco; Gonzalez, Segundo

    2015-01-01

    Demycarosyl-3D-ß-D-digitoxosyl-mithramycin SK (DIG-MSK) is a recently isolated analogue of mithramycin A (MTA) that showed differences with MTA in the DNA binding strength and selectivity. These differences correlated with a better therapeutic index and less toxicity in animal studies. Herein, we show that DIG-MSK displays a potent anti-tumor activity against different types of cancer cell lines, ovarian tumor cells being particularly sensitive to this drug. Of relevance, DIG-MSK exerts low toxicity on fibroblasts and peripheral blood mononuclear cells, this toxicity being significantly lower than that of MTA. In correlation with its antitumor activity, DIG-MSK strongly inhibited Sp1-mediated transcription and endogenous Sp1 mRNA expression, which correlated with the inhibition of the expression of key Sp1-regulated genes involved in tumorigenesis, including VEGFA, BCL2L1 (Bcl-XL), hTERT, BRCA2, MYC and SRC in several ovarian cells. Significantly, DIG-MSK was a stronger inhibitor of VEGFA expression than MTA. Accordingly, DIG-MSK also exhibited potent anti-angiogenic activity on microvascular endothelial cells. Likewise, it significantly inhibited the gene expression of VEGFR1, VEGFR2, FGFR, PDGFB and PDGFRA and, additionally, it induced the expression of the anti-angiogenic factors angiostatin and tunstatin. These effects correlated with a pro-apoptotic effect on proliferating microvascular endothelial cells and the inhibition of the formation of endothelial capillary structures. Overall, the pleiotropic activity of DIG-MSK in inhibiting key oncogenic and angiogenic pathways, together with its low toxicity profile, highlight the therapeutic potential of this new drug. PMID:26536461

  1. Pleiotropic Anti-Angiogenic and Anti-Oncogenic Activities of the Novel Mithralog Demycarosyl-3D-ß-D-Digitoxosyl-Mithramycin SK (EC-8042)

    PubMed Central

    Fernández-Guizán, Azahara; López-Soto, Alejandro; Acebes-Huerta, Andrea; Huergo-Zapico, Leticia; Villa-Álvarez, Mónica; Núñez, Luz-Elena; Morís, Francisco; Gonzalez, Segundo

    2015-01-01

    Demycarosyl-3D-ß-D-digitoxosyl-mithramycin SK (DIG-MSK) is a recently isolated analogue of mithramycin A (MTA) that showed differences with MTA in the DNA binding strength and selectivity. These differences correlated with a better therapeutic index and less toxicity in animal studies. Herein, we show that DIG-MSK displays a potent anti-tumor activity against different types of cancer cell lines, ovarian tumor cells being particularly sensitive to this drug. Of relevance, DIG-MSK exerts low toxicity on fibroblasts and peripheral blood mononuclear cells, this toxicity being significantly lower than that of MTA. In correlation with its antitumor activity, DIG-MSK strongly inhibited Sp1-mediated transcription and endogenous Sp1 mRNA expression, which correlated with the inhibition of the expression of key Sp1-regulated genes involved in tumorigenesis, including VEGFA, BCL2L1 (Bcl-XL), hTERT, BRCA2, MYC and SRC in several ovarian cells. Significantly, DIG-MSK was a stronger inhibitor of VEGFA expression than MTA. Accordingly, DIG-MSK also exhibited potent anti-angiogenic activity on microvascular endothelial cells. Likewise, it significantly inhibited the gene expression of VEGFR1, VEGFR2, FGFR, PDGFB and PDGFRA and, additionally, it induced the expression of the anti-angiogenic factors angiostatin and tunstatin. These effects correlated with a pro-apoptotic effect on proliferating microvascular endothelial cells and the inhibition of the formation of endothelial capillary structures. Overall, the pleiotropic activity of DIG-MSK in inhibiting key oncogenic and angiogenic pathways, together with its low toxicity profile, highlight the therapeutic potential of this new drug. PMID:26536461

  2. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence

    PubMed Central

    Agger, Karl; Cloos, Paul A.C.; Rudkjær, Lise; Williams, Kristine; Andersen, Gitte; Christensen, Jesper; Helin, Kristian

    2009-01-01

    The tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A–ARF locus, are key regulators of cellular senescence. The locus is epigenetically silenced by the repressive H3K27me3 mark in normally growing cells, but becomes activated in response to oncogenic stress. Here, we show that expression of the histone H3 Lys 27 (H3K27) demethylase JMJD3 is induced upon activation of the RAS–RAF signaling pathway. JMJD3 is recruited to the INK4A–ARF locus and contributes to the transcriptional activation of p16INK4A in human diploid fibroblasts. Additionally, inhibition of Jmjd3 expression in mouse embryonic fibroblasts results in suppression of p16Ink4a and p19Arf expression and in their immortalization. PMID:19451217

  3. Display of cardiac activation pathways with echocardiography

    NASA Astrophysics Data System (ADS)

    Olstad, Bjoern; Brodin, Lars A.; Berg, Sevald

    1997-05-01

    The study of cardiac activation dynamics is an important factor in the characterization of the cardiac function. One such example is the localization of WPW-pathways inside the myocardium. Accurate localization of these pathways can be used to determine if the patient should be treated with catheter techniques or surgical techniques. This paper analyzes the temporal information in tissue velocity imaging with both qualitative and quantitative methods. The clinical experiments indicate that echocardiography can become an alternative technique for non-invasive electrophysiology in these kinds of applications.

  4. Oncogenic Activity of miR-650 in Prostate Cancer Is Mediated by Suppression of CSR1 Expression

    PubMed Central

    Zuo, Ze-Hua; Yu, Yan P.; Ding, Ying; Liu, Silvia; Martin, Amantha; Tseng, George; Luo, Jian-Hua

    2016-01-01

    Cellular stress response 1 (CSR1) is a tumor suppressor gene whose expression was frequently down-regulated in prostate cancer. The mechanism of its down-regulation, however, is not clear. Here, we show that the 3′ untranslated region of CSR1 contains a target site of miR-650. High level of miR-650 was found in prostate cancer samples and cell lines. Degradation of miR-650 by specific inhibitor dramatically increased the expression levels of CSR1. Interaction between miR-650 and its target site in the 3′ untranslated region was validated through luciferase reporter system. Mutation at the target site completely abrogated the activity of miR-650 on the 3′ untranslated region of CSR1. Inhibition of miR-650 reversed the expression suppression of CSR1, suppressed colony formation, and blocked cell cycle entry to the S phase of both PC3 and DU145 cells. Animal model showed significant decrease of tumor volume, rate of metastasis, and mortality of severe combined immunodeficient mice xenografted with PC3 or DU145 cells transformed with inhibitor of miR-650. Our analyses demonstrate that suppression of CSR1 expression is a novel mechanism critical for the oncogenic activity of miR-650. PMID:25956032

  5. Oncogenic Activity of miR-650 in Prostate Cancer Is Mediated by Suppression of CSR1 Expression.

    PubMed

    Zuo, Ze-Hua; Yu, Yan P; Ding, Ying; Liu, Silvia; Martin, Amantha; Tseng, George; Luo, Jian-Hua

    2015-07-01

    Cellular stress response 1 (CSR1) is a tumor suppressor gene whose expression was frequently down-regulated in prostate cancer. The mechanism of its down-regulation, however, is not clear. Here, we show that the 3' untranslated region of CSR1 contains a target site of miR-650. High level of miR-650 was found in prostate cancer samples and cell lines. Degradation of miR-650 by specific inhibitor dramatically increased the expression levels of CSR1. Interaction between miR-650 and its target site in the 3' untranslated region was validated through luciferase reporter system. Mutation at the target site completely abrogated the activity of miR-650 on the 3' untranslated region of CSR1. Inhibition of miR-650 reversed the expression suppression of CSR1, suppressed colony formation, and blocked cell cycle entry to the S phase of both PC3 and DU145 cells. Animal model showed significant decrease of tumor volume, rate of metastasis, and mortality of severe combined immunodeficient mice xenografted with PC3 or DU145 cells transformed with inhibitor of miR-650. Our analyses demonstrate that suppression of CSR1 expression is a novel mechanism critical for the oncogenic activity of miR-650. PMID:25956032

  6. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  7. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway.

    PubMed

    Li, Mao; Zhang, Zhuo; Hill, Donald L; Wang, Hui; Zhang, Ruiwen

    2007-03-01

    The oncoprotein MDM2, a major ubiquitin E3 ligase of tumor suppressor p53, has been suggested as a novel target for human cancer therapy based on its p53-dependent and p53-independent activities. We have identified curcumin, which has previously been shown to have anticancer activity, as an inhibitor of MDM2 expression. Curcumin down-regulates MDM2, independent of p53. In a human prostate cancer cell lines PC3 (p53(null)), curcumin reduced MDM2 protein and mRNA in a dose- and time-dependent manner, and enhanced the expression of the tumor suppressor p21(Waf1/CIP1). The inhibitory effects occur at the transcriptional level and seem to involve the phosphatidylinositol 3-kinase/mammalian target of rapamycin/erythroblastosis virus transcription factor 2 pathway. Curcumin induced apoptosis and inhibited proliferation of PC3 cells in culture, but both MDM2 overexpression and knockdown reduced these effects. Curcumin also inhibited the growth of these cells and enhanced the cytotoxic effects of gemcitabine. When it was administered to tumor-bearing nude mice, curcumin inhibited growth of PC3 xenografts and enhanced the antitumor effects of gemcitabine and radiation. In these tumors, curcumin reduced the expression of MDM2. Down-regulation of the MDM2 oncogene by curcumin is a novel mechanism of action that may be essential for its chemopreventive and chemotherapeutic effects. Our observations help to elucidate the process by which mitogens up-regulate MDM2, independent of p53, and identify a mechanism by which curcumin functions as an anticancer agent. PMID:17332326

  8. Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein

    PubMed Central

    Sabiani, Samaneh; Geppert, Tim; Engelbrecht, Christian; Kowarz, Eric; Schneider, Gisbert; Marschalek, Rolf

    2015-01-01

    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed. PMID:26137584

  9. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ.

    PubMed

    Habbig, Sandra; Bartram, Malte P; Sägmüller, Josef G; Griessmann, Anabel; Franke, Mareike; Müller, Roman-Ulrich; Schwarz, Ricarda; Hoehne, Martin; Bergmann, Carsten; Tessmer, Claudia; Reinhardt, H Christian; Burst, Volker; Benzing, Thomas; Schermer, Bernhard

    2012-12-15

    Nephronophthisis (NPH) is a genetically heterogenous kidney disease and represents the most common genetic cause for end-stage renal disease in children. It is caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs) which localize to primary cilia or centrosomes, classifying this disease as a 'ciliopathy'. Recently, it has been shown that NPHP4 acts as a potent negative regulator of mammalian Hippo signalling by interacting with the Lats protein kinase and controlling the phosphorylation of the oncogenic transcriptional activator TAZ. Here, we demonstrate that NPHP9, another NPH family member, also controls TAZ activity by a distinct mechanism. NPHP9, which is also called NEK8, directly interacted with TAZ and induced nuclear translocation of the TAZ/NPHP9 protein complex. Binding of NPHP9 to TAZ was enhanced in a TAZ mutant that lost its ability to bind 14-3-3, suggesting that 14-3-3 and NPHP9 may compete for TAZ binding, with 14-3-3 favouring cytoplasmic retention and NPHP9 mediating nuclear delivery. Consistently, co-expression of NPHP4, which inhibits TAZ phosphorylation at the 14-3-3 binding site through the inhibition of Lats kinase activity, induced efficient nuclear delivery of the TAZ/NPHP9 protein pair. Consistent with a role for TAZ in controlling proliferation and tumorigenesis, the downregulation of NPHP9 inhibited the TAZ-dependent proliferation of hippo-responsive normal epithelial and also breast cancer cells. As NPHP9 has been shown to be upregulated in breast cancer, these data do not only support a critical role for TAZ/hippo signalling in the pathogenesis of NPH but may also imply a possible role for NPHP9 in TAZ-mediated tumorigenesis. PMID:23026745

  10. CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity

    PubMed Central

    Kasper, Lawryn H.; Brindle, Paul K.; Schnabel, Catherine A.; Pritchard, Colin E. J.; Cleary, Michael L.; van Deursen, Jan M. A.

    1999-01-01

    Genes encoding the Phe-Gly (FG) repeat-containing nucleoporins NUP98 and CAN/NUP214 are at the breakpoints of several chromosomal translocations associated with human acute myeloid leukemia (AML), but their role in oncogenesis is unclear. Here we demonstrate that the NUP98-HOXA9 fusion gene encodes two nuclear oncoproteins with either 19 or 37 NUP98 FG repeats fused to the DNA binding and PBX heterodimerization domains of the transcription factor HOXA9. Both NUP98-HOXA9 chimeras transformed NIH 3T3 fibroblasts, and this transformation required the HOXA9 domains for DNA binding and PBX interaction. Surprisingly, the FG repeats acted as very potent transactivators of gene transcription. This NUP98-derived activity is essential for transformation and can be replaced by the bona fide transactivation domain of VP16. Interestingly, FG repeat-containing segments derived from the nucleoporins NUP153 and CAN/NUP214 functioned similarly to those from NUP98. We further demonstrate that transactivation by FG repeat-rich segments of NUP98 correlates with their ability to interact functionally and physically with the transcriptional coactivators CREB binding protein (CBP) and p300. This finding shows, for the first time, that a translocation-generated fusion protein appears to recruit CBP/p300 as an important step of its oncogenic mechanism. Together, our results suggest that NUP98-HOXA9 chimeras are aberrant transcription factors that deregulate HOX-responsive genes through the transcriptional activation properties of nucleoporin-specific FG repeats that recruit CBP/p300. Indeed, FG repeat-mediated transactivation may be a shared pathogenic function of nucleoporins implicated human AML. PMID:9858599

  11. Bright light activates a trigeminal nociceptive pathway

    PubMed Central

    Okamoto, Keiichiro; Tashiro, Akimasa; Chang, Zheng; Bereiter, David A.

    2010-01-01

    Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10 s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye. PMID:20206444

  12. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    PubMed Central

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  13. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice.

    PubMed

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C; Lambert, Paul F

    2016-01-01

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE  : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA

  14. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia.

    PubMed

    Panuzzo, Cristina; Volpe, Gisella; Cibrario Rocchietti, Elisa; Casnici, Claudia; Crotta, Katia; Crivellaro, Sabrina; Carrà, Giovanna; Lorenzatti, Roberta; Peracino, Barbara; Torti, Davide; Morotti, Alessandro; Camacho-Leal, Maria Pilar; Defilippi, Paola; Marelli, Ornella; Saglio, Giuseppe

    2015-01-01

    In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies. PMID:26682280

  15. MTDH-SND1 Interaction is Essential for the Expansion and Activity of Tumor-Initiating Cells in Diverse Oncogene- and Carcinogen-Induced Mammary Tumors

    PubMed Central

    Wan, Liling; Lu, Xin; Yuan, Salina; Wei, Yong; Guo, Feng; Shen, Minhong; Yuan, Min; Chakrabarti, Rumela; Hua, Yuling; Smith, Heath A.; Blanco, Mario Andres; Chekmareva, Marina; Wu, Hao; Bronson, Roderick T.; Haffty, Bruce G.; Xing, Yongna; Kang, Yibin

    2014-01-01

    SUMMARY The Metadherin gene (MTDH) is prevalently amplified in breast cancer and associated with poor prognosis but its functional contribution to tumorigenesis is poorly understood. Using mouse models representing different subtypes of breast cancer, we demonstrated that MTDH plays a critical role in mammary tumorigenesis by regulating oncogene-induced expansion and activities of tumor-initiating cells (TICs), whereas it is largely dispensable for normal development. Mechanistically, MTDH supports the survival of mammary epithelial cells (MECs) under oncogenic/stress conditions by interacting with and stabilizing Staphylococcal nuclease domain-containing 1 (SND1). Silencing MTDH or SND1 individually or disrupting their interaction compromises tumorigenenic potential of TICs in vivo. Finally, this functional significance of MTDH-SND1 interaction is supported by clinical analysis of human breast cancer samples. PMID:24981741

  16. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma

    PubMed Central

    Coppo, Paul; Gouilleux-Gruart, Valérie; Huang, Yenlin; Bouhlal, Hicham; Bouamar, Hakim; Bouchet, Sandrine; Perrot, Christine; Vieillard, Vincent; Dartigues, Peggy; Gaulard, Philippe; Agbalika, Félix; Douay, Luc; Lassoued, Kaiss; Gorin, Norbert-Claude

    2009-01-01

    Nasal-type natural killer (NK) cell lymphoma is an infrequent aggressive malignant disease with very poor prognosis. We aimed to explore the possible role of the transcription factor STAT3 in the pathophysiology of this malignancy, as it was involved in oncogenesis and chemoresistance. For this, we established and characterized a continuous interleukin 2-dependent NK cell line (MEC04) from a patient with a fatal nasal-type NK cell lymphoma. Cells harbored poor cytotoxic activity against K562 cells, and spontaneously secreted interferon-γ, IL-10 and vascular-endothelium growth factor in vitro. STAT3 was phosphorylated in Y705 dimerization residue in MEC04 cells and restricted to the nucleus. Y705 STAT3 phosphorylation involved JAK2, since exposure of cells to AG490 inhibitor inhibited Y705 STAT3 phosphorylation. By using recombinant transducible TAT-STAT3β (βisoform), TAT-STAT3Y705F (a STAT3 protein mutated on Y705 residue which prevents STAT3 dimerization), and peptides inhibiting specifically STAT3 dimerization, we inhibited STAT3 phosphorylation and cell growth, with cell death induction. Finally, STAT3 was phosphorylated in Y705 residue in the nuclei of lymphoma cells in 8/9 patients with nasal-type NK/T cell lymphoma and in YT, another NK cell line. Our results suggest that STAT3 protein has a major role in the oncogenic process of nasal-type NK cell lymphomas, and may represent a promising therapeutical target. PMID:19421230

  17. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence

    PubMed Central

    Thompson, Keyata N.; Whipple, Rebecca A.; Yoon, Jennifer R.; Lipsky, Michael; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Bhandary, Lekhana; Hessler, Lindsay K.; Martin, Stuart S.; Vitolo, Michele I.

    2015-01-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  18. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  19. AMP-activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    PubMed Central

    Li, Yen-Hsing; Luo, Jia; Mosley, Yung-Yi C.; Hedrick, Victoria E.; Paul, Lake N.; Chang, Julia; Zhang, GuangJun; Wang, Yu-Kuo; Banko, Max R.; Brunet, Anne; Kuang, Shihuan; Wu, Jen-Leih; Chang, Chun-Ju; Scott, Matthew P.; Yang, Jer-Yen

    2015-01-01

    Summary The Hedgehog (Hh) pathway regulates cell differentiation and proliferation during development by controlling the Gli transcription factors. Cell fate decisions and progression toward organ and tissue maturity must be coordinated and how energy sensor regulates Hh pathway is not clear. AMP-activated Protein Kinase (AMPK) is an important sensor of energy stores that controls protein synthesis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhibiting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic hedgehog-induced transcriptional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This in turn leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency. PMID:26190112

  20. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer.

    PubMed

    Cheng, Yan; Holloway, Michael P; Nguyen, Kevin; McCauley, Dilara; Landesman, Yosef; Kauffman, Michael G; Shacham, Sharon; Altura, Rachel A

    2014-03-01

    Inhibition of XPO1 (CRM1)-mediated nuclear export of multiple tumor suppressor proteins has been proposed as a novel cancer therapeutic strategy to turn off oncogenic signals and enhance tumor suppression. Survivin is a multifunctional protein with oncogenic properties when expressed in the cytoplasm that requires the XPO1-RanGTP complex for its nuclear export. We investigated the antitumor mechanisms of the drug-like selective inhibitors of nuclear export (SINE) XPO1 antagonists KPT-185, KPT-251 KPT-276, and KPT-330 in estrogen receptor-positive and triple-negative breast cancer (TNBC) cell lines and xenograft models of human breast tumors. KPT compounds significantly inhibited breast cancer cell growth and induced tumor cell death, both in vitro and in vivo. These drugs initially promoted survivin accumulation within tumor cell nuclei. However, their major in vitro effect was to decrease survivin cytoplasmic protein levels, correlating with the onset of apoptosis. XPO1 inhibition repressed Survivin transcription by inhibiting CREB-binding protein-mediated STAT3 acetylation, and blocking STAT3 binding to the Survivin promoter. In addition, caspase-3 was activated to cleave survivin, rendering it unavailable to bind X-linked inhibitor of apoptosis protein and block the caspase cascade. Collectively, these data demonstrate that XPO1 inhibition by SINE compounds represses STAT3 transactivation to block the selective oncogenic properties of survivin and supports their clinical use in TNBC. PMID:24431073

  1. Oncogene Overdose: Too Much of a Bad Thing for Oncogene-Addicted Cancer Cells

    PubMed Central

    Amin, Amit Dipak; Rajan, Soumya S.; Groysman, Matthew J.; Pongtornpipat, Praechompoo; Schatz, Jonathan H.

    2015-01-01

    Acquired resistance to targeted inhibitors remains a major, and inevitable, obstacle in the treatment of oncogene-addicted cancers. Newer-generation inhibitors may help overcome resistance mutations, and inhibitor combinations can target parallel pathways, but durable benefit to patients remains elusive in most clinical scenarios. Now, recent studies suggest a third approach may be available in some cases—exploitation of oncogene overexpression that may arise to promote resistance. Here, we discuss the importance of maintaining oncogenic signaling at “just-right” levels in cells, with too much signaling, or oncogene overdose, being potentially as detrimental as too little. This is highlighted in particular by recent studies of mutant-BRAF in melanoma and the fusion kinase nucleophosmin–anaplastic lymphoma kinase (NPM–ALK) in anaplastic large cell lymphoma. Oncogene overdose may be exploitable to prolong tumor control through intermittent dosing in some cases, and studies of acute lymphoid leukemias suggest that it may be specifically pharmacologically inducible. PMID:26688666

  2. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-05-01

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1-3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target. PMID:19244234

  3. Proto-oncogene FBI-1 Represses Transcription of p21CIP1 by Inhibition of Transcription Activation by p53 and Sp1*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-01-01

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1–3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target. PMID:19244234

  4. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  5. Transcriptional repression of Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation.

    PubMed

    DiMauro, T; Cantor, D J; Bainor, A J; David, G

    2015-07-23

    The Polycomb group protein Bmi-1 is an essential regulator of cellular senescence and is believed to function largely through the direct repression of the Ink4a/Arf locus. However, concurrent deletion of Ink4a/Arf does not fully rescue the defects detected in Bmi-1(-/-) mice, indicating that additional Bmi-1 targets remain to be identified. The expression of the chromatin-associated Sin3B protein is stimulated by oncogenic stress, and is required for oncogene-induced senescence. Here we demonstrate that oncogenic stress leads to the dissociation of Bmi-1 from the Sin3B locus, resulting in increased Sin3B expression and subsequent entry into cellular senescence. Furthermore, Sin3B is required for the senescent phenotype and elevated levels of reactive oxygen species elicited upon Bmi-1 depletion. Altogether, these results identify Sin3B as a novel direct target of Bmi-1, and establish Bmi-1-driven repression of Sin3B as an essential regulator of cellular senescence. PMID:25263442

  6. Transcriptional repression of Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation

    PubMed Central

    Bainor, Anthony J.; David, Gregory

    2014-01-01

    The Polycomb group protein Bmi-1 is an essential regulator of cellular senescence and is believed to function largely through the direct repression of the Ink4a/Arf locus. However, concurrent deletion of Ink4a/Arf does not fully rescue the defects detected in Bmi-1−/− mice, indicating that additional Bmi-1 targets remain to be identified. The expression of the chromatin associated Sin3B protein is stimulated by oncogenic stress, and is required for oncogene-induced senescence. Here we demonstrate that oncogenic stress leads to the dissociation of Bmi-1 from the Sin3B locus, resulting in increased Sin3B expression and subsequent entry into cellular senescence. Furthermore, Sin3B is required for the senescent phenotype and elevated levels of reactive oxygen species elicited upon Bmi-1 depletion. Altogether, these results identify Sin3B as a novel direct target of Bmi-1, and establish Bmi-1-driven repression of Sin3B as an essential regulator of cellular senescence. PMID:25263442

  7. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    PubMed

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. PMID:23948303

  8. Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma

    PubMed Central

    Baeurle, Anne; Ritter, Cathrin; Schrama, David; Landthaler, Michael; Becker, Juergen C.

    2012-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV). Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4%) MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients. PMID:22363598

  9. Loss of Keratinocytic RXRα Combined with Activated CDK4 or oncogenic NRAS Generates UVB-induced Melanomas via Loss of p53 and PTEN in the Tumor Microenvironment

    PubMed Central

    Coleman, Daniel J.; Chagani, Sharmeen; Hyter, Stephen; Sherman, Anna M.; Löhr, Christiane V.; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup K.

    2014-01-01

    Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRASQ61K (constitutively active RAS) or mutant activated CDK4R24C/R24C (prevents binding of CDK4 by kinase inhibitor p16INK4A) with an epidermis-specific knockout of the nuclear retinoid X receptor alpha (RXRαep−/−) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared to control mice with functional RXRα. Melanomas from both groups of bigenic RXRαep−/− mice are larger in size with higher proliferative capacity, and exhibit enhanced angiogenic properties and increased expression of malignant melanoma markers. Analysis of tumor adjacent normal skin from these mice revealed altered expression of several biomarkers indicative of enhanced melanoma susceptibility, including reduced expression of tumor suppressor p53 and loss of PTEN, with concomitant increase in activated AKT. Loss of epidermal RXRα in combination with UVB significantly enhances invasion of melanocytic cells to draining lymph nodes in bigenic mice expressing oncogenic NRASQ61K compared to controls with functional RXRα. These results suggest a crucial role of keratinocytic RXRα to suppress formation of UVB-induced melanomas and their progression to malignant cancers in the context of driver mutations such as activated CDK4R24C/R24C or oncogenic NRASQ61K. PMID:25189354

  10. Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma

    PubMed Central

    Brayer, Kathryn J.; Frerich, Candace A.; Kang, Huining; Ness, Scott A.

    2015-01-01

    Adenoid Cystic Carcinoma (ACC), the second most common malignancy of salivary glands, is a rare tumor with bleak prognosis for which therapeutic targets are unavailable. We used RNA-sequencing (RNA-seq) to analyze low-quality RNA from archival, formaldehyde-fixed, paraffin-embedded samples. In addition to detecting the most common ACC translocation, t(6;9) fusing the MYB proto-oncogene to NFIB, we also detected previously unknown t(8;9) and t(8;14) translocations fusing the MYBL1 gene to the NFIB and RAD51B genes, respectively. RNA-seq provided information about gene fusions, alternative RNA splicing and gene expression signatures. Interestingly, tumors with MYB and MYBL1 translocations displayed similar gene expression profiles, and the combined MYB and MYBL1 expression correlated with outcome, suggesting that the related Myb proteins are interchangeable oncogenic drivers in ACC. Our results provide important details about the biology of ACC and illustrate how archival tissue samples can be used for detailed molecular analyses of rare tumors. PMID:26631070

  11. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction.

    PubMed

    Gargini, Ricardo; García-Escudero, Vega; Izquierdo, Marta; Wandosell, Francisco

    2016-06-01

    The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that non‑transformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications. PMID:27035659

  12. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery

    PubMed Central

    Eishingdrelo, Haifeng; Kongsamut, Sathapana

    2013-01-01

    It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today’s knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug

  13. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

    PubMed

    Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. PMID:27342662

  14. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  15. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer.

    PubMed

    Murray, Nicole R; Kalari, Krishna R; Fields, Alan P

    2011-04-01

    Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM. PMID:20945390

  16. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    PubMed Central

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  17. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    PubMed

    Jonscher, Karen R; Alfonso-Garcia, Alba; Suhalim, Jeffrey L; Orlicky, David J; Potma, Eric O; Ferguson, Virginia L; Bouxsein, Mary L; Bateman, Ted A; Stodieck, Louis S; Levi, Moshe; Friedman, Jacob E; Gridley, Daila S; Pecaut, Michael J

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  18. MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity.

    PubMed

    Chen, Yi-Fen; Yang, Cheng-Chieh; Kao, Shou-Yen; Liu, Chung-Ji; Lin, Shu-Chun; Chang, Kuo-Wei

    2016-08-15

    miR-211 expression in human oral squamous cell carcinoma (OSCC) has been implicated in poor patient survival. To investigate the oncogenic roles of miR-211, we generated K14-EGFP-miR-211 transgenic mice tagged with GFP. Induction of oral carcinogenesis in transgenic mice using 4-nitroquinoline 1-oxide (4NQO) resulted in more extensive and severe tongue tumorigenesis compared with control animals. We found that 4NQO and arecoline upregulated miR-211 expression in OSCC cells. In silico and experimental evidence further revealed that miR-211 directly targeted transcription factor 12 (TCF12), which mediated suppressor activities in OSCC cells and was drastically downregulated in tumor tissues. We used GeneChip analysis and bioinformatic algorithms to identify transcriptional targets of TCF12 and confirmed through reporter and ChIP assays that family with sequence similarity 213, member A (FAM213A), a peroxiredoxin-like antioxidative protein, was repressed transcriptionally by TCF12. FAM213A silencing in OSCC cells diminished oncogenic activity, reduced the ALDH1-positive cell population, and increased reactive oxygen species. TCF12 and FAM213A expression was correlated inversely in head and neck carcinoma samples according to The Cancer Genome Atlas. OSCC patients bearing tumors with high FAM213A expression tended to have worse survival. Furthermore, 4NQO treatment downregulated TCF12 and upregulated FAM213A by modulating miR-211 both in vitro and in vivo Overall, our findings develop a mouse model that recapitulates the molecular and histopathologic alterations of human OSCC pathogenesis and highlight a new miRNA-mediated oncogenic mechanism. Cancer Res; 76(16); 4872-86. ©2016 AACR. PMID:27221705

  19. Proviral activation of the c-myb proto-oncogene is detectable in preleukemic mice infected neonatally with Moloney murine leukemia virus but not in resulting end stage T lymphomas.

    PubMed

    Belli, B; Wolff, L; Nazarov, V; Fan, H

    1995-08-01

    Moloney murine leukemia virus induces myeloid leukemia when inoculated intravenously into pristane-primed adult BALB/c mice. One hundred percent of these tumors show insertional activation of the c-myb proto-oncogene, and reverse transcriptase PCR assays have shown that the c-myb activation could be detected soon after infection. We tested BALB/c and NIH Swiss mice that had been inoculated as newborns with Moloney murine leukemia virus, under which conditions they develop T lymphomas exclusively. Reverse transcriptase-PCR assays indicated that c-myb activations were detectable soon after neonatal infection. However, none of the resulting T lymphomas contained c-myb activations. The implications of these results to the timing of proto-oncogene activations in leukemogenesis and the specificity of proto-oncogene activations for different diseases are discussed. PMID:7609084

  20. Protumoral TSP50 Regulates Macrophage Activities and Polarization via Production of TNF-α and IL-1β, and Activation of the NF-κB Signaling Pathway

    PubMed Central

    Yang, Cheng; Zhang, Dong-Mei; Song, Zhen-Bo; Hou, Ya-Qin; Bao, Yong-Li; Sun, Lu-Guo; Yu, Chun-Lei; Li, Yu-Xin

    2015-01-01

    Testes-specific protease 50 (TSP50) is abnormally overexpressed in many kinds of cancers and promotes cell proliferation and migration. However, whether TSP50 can influence the tumor microenvironment, especially the function of immune cells in the microenvironment, remains largely unknown. We demonstrated that exposure to the conditioned medium from TSP50-overexpressing cells, or co-culture with TSP50-overexpressing cells, enhanced the cytokine production and phagocytic activities of macrophages, and induced M2b polarization. Further investigation showed that production of TNF-α and IL-1β was strongly induced by TSP50 in TSP50-overexpressing cells. TSP50-induced TNF-α and IL-1β were main factors that mediated the effects of TSP50-overexpressing cells on macrophages. The NF-κB pathway could be activated in macrophages upon the treatment of conditioned medium of TSP50-overexpressing cells and its activation is necessary for the observed effects on macrophages. Taken together, our results suggested that oncogenic TSP50 expressed in cells could activate surrounding macrophages and induce M2b polarization, partly through inducing TNF-α/ IL-1β secretion and subsequent NF-κB pathway activation. This implies a potential mechanism by which oncogene TSP50 regulates tumor microenvironment to support tumor development. PMID:26684869

  1. Oncogene activation and tumor suppressor gene inactivation find their sites of expression in the changes in time and space of the age-adjusted cancer incidence rate.

    PubMed

    Kodama, M; Kodama, T; Murakami, M

    2000-01-01

    The purpose of the present investigation is to elucidate the relation between the distribution pattern of the age-adjusted incidence rate (AAIR) changes in time and space of 15 tumors of bothe sexes and the locations of centers of centripetal-(oncogene type) and centrifugal-(tumoe suppressor gene type) forces. The fitness of the observed log AAIR data sets to the oncogene type- and the tumor suppressor gene type-equilibrium models and the locations of 2 force centers were calculated by applying the least square method of Gauss to log AAIR pair data series with and without topological data manipulations, which are so designed as to let log AAIR pair data series fit to 2 variant (x, y) frameworks, the Rect-coordinates and the Para-coordinates. The 2 variant (x, y) coordinates are defined each as an (x, y) framework with its X axis crossed at a right angle to the regression line of the original log AAIR data (the Rect-coordinates) and as another framework with its X axis run in parallel with the regression line of the original log AAIR pair data series (the Para-coordinates). The fitness test of log AAIR data series to either the oncogene activation type equilibrium model (r = -1.000) or the tumor suppressor gene inactivation type (r = 1.000) was conducted for each of the male-female type pair data and the female-male type data, for each of log AAIR changes in space and log AAIR changes in time, and for each of the 3 (x, y) frameworks in a given neoplasia of both sexes. The results obtained are given as follows: 1) The positivity rates of the fitness test to the oncogene type equilibrium model and the tumor suppressor gene type model were each 63.3% and 56.7% with the log AAIR changes in space, and 73.3% and 73.3% with log AAIR changes in time, as tested in 15 human neoplasias of both sexes. 2) Evidence was presented to indicate that the clearance of oncogene activation and tumor suppressor gene inactivation is the sine qua non premise of carciniogenesis. 3) The r

  2. Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B.

    PubMed

    Beales, Ian L P; Garcia-Morales, Carla; Ogunwobi, Olorunseun O; Mutungi, Gabriel

    2014-01-25

    Obesity is characterised by hyperleptinaemia and hypoadiponectinaemia and these metabolic abnormalities may contribute to the progression of several obesity-associated cancers including oesophageal adenocarcinoma (OAC). We have examined the effects of leptin and adiponectin on OE33 OAC cells. Leptin stimulated proliferation, invasion and migration and inhibited apoptosis in a STAT3-dependant manner. Leptin-stimulated MMP-2 secretion in a partly STAT3-dependent manner and MMP-9 secretion via a STAT3-independent pathway. Adiponectin inhibited leptin-induced proliferation, migration, invasion, MMP secretion and reduced the anti-apoptotic effects: these effects of adiponectin were ameliorated by both a non-specific tyrosine phosphatase inhibitor and a specific PTP1B inhibitor. Adiponectin reduced leptin-stimulated JAK2 activation and STAT3 transcriptional activity in a PTP1B-sensitive manner and adiponectin increased both PTP1B protein and activity. We conclude that adiponectin restrains leptin-induced signalling and pro-carcinogenic behaviour by inhibiting the early events in leptin-induced signal transduction by activating PTP1B. Relative adiponectin deficiency in obesity may contribute to the promotion of OAC. PMID:23994026

  3. Oncogenic mutations in GNAQ occur early in uveal melanoma

    PubMed Central

    Onken, Michael D.; Worley, Lori A.; Long, Meghan D.; Duan, Shenghui; Council, M. Laurin; Bowcock, Anne M.; Harbour, J. William

    2008-01-01

    Purpose Early/initiating oncogenic mutations have been identified for many cancers, but such mutations remain unidentified in uveal melanoma (UM). An extensive search for such mutations was undertaken, focusing on the RAF/MEK/ERK pathway, which is often the target of initiating mutations in other types of cancer. Methods DNA samples from primary UMs were analyzed for mutations in 24 potential oncogenes that affect the RAF/MEK/ERK pathway. For GNAQ, a stimulatory αq G-protein subunit which was recently found to be mutated in uveal melanomas, re-sequencing was expanded to include 67 primary UMs and 22 peripheral blood samples. GNAQ status was analyzed for association with clinical, pathologic, chromosomal, immunohistochemical and transcriptional features. Results Activating mutations at codon 209 were identified in GNAQ in 33/67 (49%) primary UMs, including 2/9 (22%) iris melanomas and 31/58 (54%) posterior UMs. No mutations were found in the other 23 potential oncogenes. GNAQ mutations were not found in normal blood DNA samples. Consistent with GNAQ mutation being an early or initiating event, this mutation was not associated with any clinical, pathologic or molecular features associated with late tumor progression. Conclusions GNAQ mutations occur in about half of UMs, representing the most common known oncogenic mutation in this cancer. The presence of this mutation in tumors at all stages of malignant progression suggests that it is an early event in UM. Mutations in this G-protein provide new insights into UM pathogenesis and could lead to new therapeutic possibilities. PMID:18719078

  4. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation

    PubMed Central

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G.; Serrano, Manuel; Brooks, Harold B.; Campbell, Robert M.; Barrero, Maria J.

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  5. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation.

    PubMed

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G; Serrano, Manuel; Brooks, Harold B; Campbell, Robert M; Barrero, Maria J

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  6. Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals.

    PubMed

    Wu, Xudong; Bekker-Jensen, Ida Holst; Christensen, Jesper; Rasmussen, Kasper Dindler; Sidoli, Simone; Qi, Yan; Kong, Yu; Wang, Xi; Cui, Yajuan; Xiao, Zhijian; Xu, Guogang; Williams, Kristine; Rappsilber, Juri; Sønderby, Casper Kaae; Winther, Ole; Jensen, Ole N; Helin, Kristian

    2015-11-01

    ASXL1 mutations are frequently found in hematological tumors, and loss of Asxl1 promotes myeloid transformation in mice. Here we present data supporting a role for an ASXL1-BAP1 complex in the deubiquitylation of mono-ubiquitylated lysine 119 on Histone H2A (H2AK119ub1) in vivo. The Polycomb group proteins control the expression of the INK4B-ARF-INK4A locus during normal development, in part through catalyzing mono-ubiquitylation of H2AK119. Since the activation of the locus INK4B-ARF-INK4A plays a fail-safe mechanism protecting against tumorigenesis, we investigated whether ASXL1-dependent H2A deubiquitylation plays a role in its activation. Interestingly, we found that ASXL1 is specifically required for the increased expression of p15(INK4B) in response to both oncogenic signaling and extrinsic anti-proliferative signals. Since we found that ASXL1 and BAP1 both are enriched at the INK4B locus, our results suggest that activation of the INK4B locus requires ASXL1/BAP1-mediated deubiquitylation of H2AK119ub1. Consistently, our results show that ASXL1 mutations are associated with lower expression levels of p15(INK4B) and a proliferative advantage of hematopoietic progenitors in primary bone marrow cells, and that depletion of ASXL1 in multiple cell lines results in resistance to growth inhibitory signals. Taken together, this study links ASXL1-mediated H2A deubiquitylation and transcriptional activation of INK4B expression to its tumor suppressor functions. PMID:26470845

  7. Cancer-specific mutations in PIK3CA are oncogenic in vivo

    PubMed Central

    Bader, Andreas G.; Kang, Sohye; Vogt, Peter K.

    2006-01-01

    The PIK3CA gene, coding for the catalytic subunit p110α of class IA phosphatidylinositol 3-kinases (PI3Ks), is frequently mutated in human cancer. Mutated p110α proteins show a gain of enzymatic function in vitro and are oncogenic in cell culture. Here, we show that three prevalent mutants of p110α, E542K, E545K, and H1047R, are oncogenic in vivo. They induce tumors in the chorioallantoic membrane of the chicken embryo and cause hemangiosarcomas in the animal. These tumors are marked by increased angiogenesis and an activation of the Akt pathway. The target of rapamycin inhibitor RAD001 blocks tumor growth induced by the H1047R p110α mutant. The in vivo oncogenicity of PIK3CA mutants in an avian species strongly suggests a critical role for these mutated proteins in human malignancies. PMID:16432179

  8. Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30.

    PubMed

    Vigna, Elisa; Chiriaco, Cristina; Cignetto, Simona; Fontani, Lara; Basilico, Cristina; Petronzelli, Fiorella; Comoglio, Paolo M

    2015-11-01

    An awesome number of experimental and clinical evidences indicate that constitutive activation of the Met oncogenic receptor plays a critical role in the progression of cancer toward metastasis and/or resistance to targeted therapies. While mutations are rare, the common mechanism of Met activation is overexpression, either by gene amplification ('addiction') or transcriptional activation ('expedience'). In the first instance ligand-independent kinase activation plays a major role in sustaining the transformed phenotype. Anti-Met antibodies directed against the receptor binding site behave essentially as ligand (Hepatocyte Growth Factor, HGF) antagonists and are ineffective to counteract ligand-independent activation. The monovalent chimeric MvDN30 antibody fragment, PEGylated to extend its half-life, binds the fourth IPT domain and induces 'shedding' of the Met extracellular domain, dramatically reducing both the number of receptors on the surface and their phosphorylation. Downstream signaling is thus inhibited, both in the absence or in the presence of the ligand. In vitro, MvDN30 is a strong inhibitor not only of ligand-dependent invasive growth, sustained by both paracrine and autocrine HGF, but notably, also of ligand-independent growth of 'Met-addicted' cells. In immunocompromised mice, lacking expression of Hepatocyte Growth Factor cross-reacting with the human receptor - thus providing, by definition, a model of 'ligand-independent' Met activation - PEGylated MvDN30 impairs growth of Met 'addicted' human gastric carcinoma cells. In a Met-amplified patient-derived colo-rectal tumor (xenopatient) MvDN30-PEG overcomes the resistance to EGFR targeted therapy (Cetuximab). The PEGylated MvDN30 is thus a strong candidate for targeting tumors sustained by ligand-independent Met oncogenic activation. PMID:26119717

  9. The Oncogenic Activity of RET Point Mutants for Follicular Thyroid Cells May Account for the Occurrence of Papillary Thyroid Carcinoma in Patients Affected by Familial Medullary Thyroid Carcinoma

    PubMed Central

    Melillo, Rosa Marina; Cirafici, Anna Maria; De Falco, Valentina; Bellantoni, Marie; Chiappetta, Gennaro; Fusco, Alfredo; Carlomagno, Francesca; Picascia, Antonella; Tramontano, Donatella; Tallini, Giovanni; Santoro, Massimo

    2004-01-01

    Activating germ-line point mutations in the RET receptor are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinoma (MTC), whereas somatic RET rearrangements are prevalent in papillary thyroid carcinomas (PTCs). Some rare kindreds, carrying point mutations in RET, are affected by both cancer types, suggesting that, under specific circumstances, point mutations in RET can drive the generation of PTC. Here we describe a family whose siblings, affected by both PTC and MTC, carried a germ-line point mutation in the RET extracellular domain, converting cysteine 634 into serine. We tested on thyroid follicular cells the transforming activity of RET(C634S), RET(K603Q), another mutant identified in a kindred with both PTC and MTC, RET(C634R) a commonly isolated allele in MEN2A, RET(M918T) responsible for MEN2B and also identified in kindreds with both PTC and MTC, and RET/PTC1 the rearranged oncogene that characterizes bona fide PTC in patients without MTC. We show that the various RET point mutants, but not wild-type RET, scored constitutive kinase activity and exerted mitogenic effects for thyroid PC Cl 3 cells, albeit at significantly lower levels compared to RET/PTC1. The low mitogenic activity of RET point mutants paralleled their reduced kinase activity compared to RET/PTC. Furthermore, RET point mutants maintained a protein domain, the intracellular juxtamembrane domain, that exerted negative effects on the mitogenic activity. In conclusion, RET point mutants can behave as dominant oncogenes for thyroid follicular cells. Their transforming activity, however, is rather modest, providing a possible explanation for the rare association of MTC with PTC. PMID:15277225

  10. Overexpression of the Transcription Factor Sp1 Activates the OAS-RNAse L-RIG-I Pathway

    PubMed Central

    Dupuis-Maurin, Valéryane; Brinza, Lilia; Baguet, Joël; Plantamura, Emilie; Schicklin, Stéphane; Chambion, Solène; Macari, Claire; Tomkowiak, Martine; Deniaud, Emmanuelle; Leverrier, Yann

    2015-01-01

    Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1) is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen. PMID:25738304

  11. Comparison of liver oncogenic potential among human RAS isoforms

    PubMed Central

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang

    2016-01-01

    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p < 0.001), and KRAS4AG12V mice lived significantly longer than KRRAS4BG12V mice (p < 0.0001). Notably, tumors from KRAS4AG12V mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  12. Oncogenic rearrangements driving ionizing radiation–associated human cancer

    PubMed Central

    Santoro, Massimo; Carlomagno, Francesca

    2013-01-01

    The Chernobyl nuclear disaster has caused a remarkable increase in radiation-induced papillary thyroid carcinoma in children and young adults. In this issue of the JCI, Ricarte-Filho and colleagues demonstrate that chromosomal rearrangements are the oncogenic “drivers” in most post-Chernobyl carcinomas and that they often lead to unscheduled activation of the MAPK signaling pathway. These findings represent a major step forward in our understanding of radiation-induced carcinogenesis and suggest various hypotheses about the mechanisms underlying the formation and selection of gene rearrangements during cancer cell evolution. PMID:24162670

  13. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia

    PubMed Central

    Chan, Steven M.; Weng, Andrew P.; Tibshirani, Robert; Aster, Jon C.

    2007-01-01

    Constitutive Notch activation is required for the proliferation of a subgroup of T-cell acute lymphoblastic leukemia (T-ALL). Downstream pathways that transmit pro-oncogenic signals are not well characterized. To identify these pathways, protein microarrays were used to profile the phosphorylation state of 108 epitopes on 82 distinct signaling proteins in a panel of 13 T-cell leukemia cell lines treated with a gamma-secretase inhibitor (GSI) to inhibit Notch signals. The microarray screen detected GSI-induced hypophosphorylation of multiple signaling proteins in the mTOR pathway. This effect was rescued by expression of the intracellular domain of Notch and mimicked by dominant negative MAML1, confirming Notch specificity. Withdrawal of Notch signals prevented stimulation of the mTOR pathway by mitogenic factors. These findings collectively suggest that the mTOR pathway is positively regulated by Notch in T-ALL cells. The effect of GSI on the mTOR pathway was independent of changes in phosphatidylinositol-3 kinase and Akt activity, but was rescued by expression of c-Myc, a direct transcriptional target of Notch, implicating c-Myc as an intermediary between Notch and mTOR. T-ALL cell growth was suppressed in a highly synergistic manner by simultaneous treatment with the mTOR inhibitor rapamycin and GSI, which represents a rational drug combination for treating this aggressive human malignancy. PMID:17363738

  14. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  15. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  16. Involvement of V-Ets erythroblastosis virus E26 oncogene homolog 2 in regulation of transcription activity of MDR1 gene.

    PubMed

    Wang, Jian; Zeng, Xiaoqing; Luo, Tiancheng; Jin, Wei; Chen, Shiyao

    2012-09-01

    Over-expression of MDR1 confers multidrug resistance (MDR) in cancers and remains a major cause for the failure of chemotherapy. In the present study, we found that V-Ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) could activate MDR1 transcription and P-glycoprotein (P-gp) expression in SGC7901 cells. Knockdown of ETS2 attenuated MDR1 transcription and P-gp expression, and increased the sensitivity of MDR cancer cells to cytotoxic drugs that were transported by P-gp in SGC7901/VCR cells. ETS2 could bind to the ETS2 sites on the MDR1 promoter and activate its transcription. The regulation of MDR1 expression by ETS2 may provide potential ways to overcome MDR in cancer treatment. PMID:22819965

  17. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  18. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

    PubMed

    Barbie, David A; Tamayo, Pablo; Boehm, Jesse S; Kim, So Young; Moody, Susan E; Dunn, Ian F; Schinzel, Anna C; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M; Sos, Martin L; Michel, Kathrin; Mermel, Craig; Silver, Serena J; Weir, Barbara A; Reiling, Jan H; Sheng, Qing; Gupta, Piyush B; Wadlow, Raymond C; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S; Ramaswamy, Sridhar; Livingston, David M; Sabatini, David M; Meyerson, Matthew; Thomas, Roman K; Lander, Eric S; Mesirov, Jill P; Root, David E; Gilliland, D Gary; Jacks, Tyler; Hahn, William C

    2009-11-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  19. Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes

    PubMed Central

    XIE, YINGQIU; NAIZABEKOV, SANZHAR; CHEN, ZHANLIN; TOKAY, TURSONJAN

    2016-01-01

    An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy. PMID:27347153

  20. Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas

    PubMed Central

    Koh, Shan; Komatsubara, Kim; Chen, Joy; Horng, George; Bellovin, David I.; Giuriato, Sylvie; Wang, Craig S.; Whitsett, Jeffrey A.; Felsher, Dean W.

    2008-01-01

    Background Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as “oncogene-addiction.” However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment. Methodology/Principal Findings To examine how the MYC and K-rasG12D oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-rasG12D to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-rasG12D- or MYC/K-rasG12D-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-rasG12D-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-rasG12D resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-rasG12D in maintenance of lung tumors, we found that the down-stream mediators of K-rasG12D signaling, Stat3 and Stat5, are dephosphorylated following conditional K-rasG12D but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-rasG12D. Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation. Conclusions/Significance Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic

  1. Sequential activation of metabolic pathways: a dynamic optimization approach.

    PubMed

    Oyarzún, Diego A; Ingalls, Brian P; Middleton, Richard H; Kalamatianos, Dimitrios

    2009-11-01

    The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed.In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis-Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation. PMID:19412635

  2. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  3. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.

    PubMed

    Nishida, Haruka; Matsumoto, Yoko; Kawana, Kei; Christie, R James; Naito, Mitsuru; Kim, Beob Soo; Toh, Kazuko; Min, Hyun Su; Yi, Yu; Matsumoto, Yu; Kim, Hyun Jin; Miyata, Kanjiro; Taguchi, Ayumi; Tomio, Kensuke; Yamashita, Aki; Inoue, Tomoko; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Yoshida, Mitsuyo; Adachi, Katsuyuki; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Nishiyama, Nobuhiro; Kataoka, Kazunori; Osuga, Yutaka; Fujii, Tomoyuki

    2016-06-10

    Human papillomavirus (HPV) E6 and E7 oncogenes are essential for the immortalization and maintenance of HPV-associated cancer and are ubiquitously expressed in cervical cancer lesions. Small interfering RNA (siRNA) coding for E6 and E7 oncogenes is a promising approach for precise treatment of cervical cancer, yet a delivery system is required for systemic delivery to solid tumors. Here, an actively targeted polyion complex (PIC) micelle was applied to deliver siRNAs coding for HPV E6/E7 to HPV cervical cancer cell tumors in immune-incompetent tumor-bearing mice. A cell viability assay revealed that both HPV type 16 and 18 E6/E7 siRNAs (si16E6/E7 and si18E6/E7, respectively) interfered with proliferation of cervical cancer cell lines in an HPV type-specific manner. A fluorescence imaging biodistribution analysis further revealed that fluorescence dye-labeled siRNA-loaded PIC micelles efficiently accumulated within the tumor mass after systemic administration. Ultimately, intravenous injection of si16E6/E7 and si18E6/E7-loaded PIC micelles was found to significantly suppress the growth of subcutaneous SiHa and HeLa tumors, respectively. The specific activity of siRNA treatment was confirmed by the observation that p53 protein expression was restored in the tumors excised from the mice treated with si16E6/E7- and si18E6/E7-loaded PIC micelles for SiHa and HeLa tumors, respectively. Therefore, the actively targeted PIC micelle incorporating HPV E6/E7-coding siRNAs demonstrated its therapeutic potential against HPV-associated cancer. PMID:26979870

  4. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways

    PubMed Central

    2014-01-01

    Both tumor hypoxia and dysregulated metabolism are classical features of cancer. Recent analyses have revealed complex interconnections between oncogenic activation, hypoxia signaling systems and metabolic pathways that are dysregulated in cancer. These studies have demonstrated that rather than responding simply to error signals arising from energy depletion or tumor hypoxia, metabolic and hypoxia signaling pathways are also directly connected to oncogenic signaling mechanisms at many points. This review will summarize current understanding of the role of hypoxia inducible factor (HIF) in these networks. It will also discuss the role of these interconnected pathways in generating the cancer phenotype; in particular, the implications of switching massive pathways that are physiologically 'hard-wired’ to oncogenic mechanisms driving cancer. PMID:24491179

  5. The unpredictability of prolonged activation of stress response pathways

    PubMed Central

    Lamech, Lilian T.

    2015-01-01

    In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered. PMID:26101215

  6. Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles.

    PubMed

    Movassaghian, Sara; Xie, Yuran; Hildebrandt, Claudia; Rosati, Rayna; Li, Ying; Kim, Na Hyung; Conti, Denise S; da Rocha, Sandro R P; Yang, Zeng-Quan; Merkel, Olivia M

    2016-08-01

    Basal-like breast cancer (BLBC) accounts for the most aggressive types of breast cancer, marked by high rates of relapse and poor prognoses and with no effective clinical therapy yet. Therefore, investigation of new targets and treatment strategies is more than necessary. Here, we identified a receptor that can be targeted in BLBC for efficient and specific siRNA mediated gene knockdown of therapeutically relevant genes such as the histone demethylase GASC1, which is involved in multiple signaling pathways leading to tumorigenesis. Breast cancer and healthy breast cell lines were compared regarding transferrin receptor (TfR) expression via flow cytometry and transferrin binding assays. Nanobioconjugates made of low molecular weight polyethylenimine (LMW-PEI) and transferrin (Tf) were synthesized to contain a bioreducible disulfide bond. siRNA complexation was characterized by condensation assays and dynamic light scattering. Cytotoxicity, transfection efficiency, and the targeting specificity of the conjugates were investigated in TfR positive and negative healthy breast and breast cancer cell lines by flow cytometry, confocal microscopy, RT-PCR, and Western blot. Breast cancer cell lines revealed a significantly higher TfR expression than healthy breast cells. The conjugates efficiently condensed siRNA into particles with 45 nm size at low polymer concentrations, showed no apparent toxicity on different breast cancer cell lines, and had significantly greater transfection and gene knockdown activity on mRNA and protein levels than PEI/siRNA leading to targeted and therapeutic growth inhibition post GASC1 knockdown. The synthesized nanobioconjugates improved the efficiency of gene transfer and targeting specificity in transferrin receptor positive cells but not in cells with basal receptor expression. Therefore, these materials in combination with our newly identified siRNA sequences are promising candidates for therapeutic targeting of hard-to-treat BLBC and are

  7. p38γ Mitogen-Activated Protein Kinase Contributes to Oncogenic Properties Maintenance and Resistance to Poly (ADP-Ribose)-Polymerase-1 Inhibition in Breast Cancer12

    PubMed Central

    Meng, Fanyan; Zhang, Haijun; Liu, Gang; Kreike, Bas; Chen, Wei; Sethi, Seema; Miller, Fred R; Wu, Guojun

    2011-01-01

    p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G2/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor. PMID:21532888

  8. Oncogenic Potential of Hepatitis C Virus Proteins

    PubMed Central

    Banerjee, Arup; Ray, Ratna B.; Ray, Ranjit

    2010-01-01

    Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today. PMID:21994721

  9. A Double-Edged Sword: How Oncogenes and Tumor Suppressor Genes Can Contribute to Chromosomal Instability

    PubMed Central

    Orr, Bernardo; Compton, Duane A.

    2013-01-01

    Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN. PMID:23825799

  10. In utero exposure to second-hand smoke activates pro-asthmatic and oncogenic miRNAs in adult asthmatic mice.

    PubMed

    Xiao, Rui; Noël, Alexandra; Perveen, Zakia; Penn, Arthur L

    2016-04-01

    Exposures to environmental pollutants contribute to dysregulated microRNA (miRNA) expression profiles, which have been implicated in various diseases. Previously, we reported aggravated asthmatic responses in ovalbumin (OVA)-challenged adult mice that had been exposed in utero to second-hand smoke (SHS). Whether in utero SHS exposure dysregulates miRNA expression patterns in the adult asthma model has not been investigated. Pregnant BALB/c mice were exposed (days 6-19 of pregnancy) to SHS (10 mg/m(3)) or HEPA-filtered air. All offspring were sensitized and challenged with OVA (19-23 weeks) before sacrifice. RNA samples extracted from lung homogenates, were subjected to RNA sequencing (RNA-seq). RNA-seq identified nine miRNAs that were most significantly up-regulated by in utero SHS exposure. Among these nine, miR-155-5p, miR-21-3p, and miR-18a-5p were also highly correlated with pro-asthmatic Th2 cytokine levels in bronchoalveolar lavage fluid. Further analysis indicated that these up-regulated miRNAs shared common chromosome locations, particularly Chr 11C, with pro-asthmatic genes. These three miRNAs have also been characterized as oncogenic miRNAs (oncomirs). We cross-referenced miRNA-mRNA expression profiles and identified 16 tumor suppressor genes that were down-regulated in the in utero-exposed offspring and that are predicted targets of the up-regulated oncomirs. In conclusion, in utero SHS exposure activates pro-asthmatic genes and miRNAs, which colocalize at specific chromosome locations, in OVA-challenged adult mice. The oncogenic characteristics of the miRNAs and putative miRNA-mRNA regulatory networks suggest that the synergistic effect of in utero SHS exposure and certain adult irritants may promote an oncogenic milieu in mouse lungs via inhibition of miRNA-regulated tumor suppressor genes. PMID:26859758

  11. Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma

    PubMed Central

    Derenzini, Enrico; Agostinelli, Claudio; Imbrogno, Enrica; Iacobucci, Ilaria; Casadei, Beatrice; Brighenti, Elisa; Righi, Simona; Fuligni, Fabio; Di Rorà, Andrea Ghelli Luserna; Ferrari, Anna; Martinelli, Giovanni; Pileri, Stefano; Zinzani, Pier Luigi

    2015-01-01

    The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. PMID:25544753

  12. Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma.

    PubMed

    Derenzini, Enrico; Agostinelli, Claudio; Imbrogno, Enrica; Iacobucci, Ilaria; Casadei, Beatrice; Brighenti, Elisa; Righi, Simona; Fuligni, Fabio; Ghelli Luserna Di Rorà, Andrea; Ferrari, Anna; Martinelli, Giovanni; Pileri, Stefano; Zinzani, Pier Luigi

    2015-03-30

    The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. PMID:25544753

  13. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  14. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    SciTech Connect

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. )

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  15. Honokiol activates LKB1-miR-34a axis and antagonizes the oncogenic actions of leptin in breast cancer

    PubMed Central

    Bonner, Michael Y.; Arbiser, Jack L.; Saxena, Neeraj K.; Sharma, Dipali

    2015-01-01

    Leptin, a major adipocytokine produced by adipocytes, is emerging as a key molecule linking obesity with breast cancer therefore, it is important to find effective strategies to antagonize oncogenic effects of leptin to disrupt obesity-cancer axis. Here, we examine the potential of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, as a leptin-antagonist and systematically elucidate the underlying mechanisms. HNK inhibits leptin-induced epithelial-mesenchymal-transition (EMT), and mammosphere-formation along with a reduction in the expression of stemness factors, Oct4 and Nanog. Investigating the downstream mediator(s), that direct leptin-antagonist actions of HNK; we discovered functional interactions between HNK, LKB1 and miR-34a. HNK increases the expression and cytoplasmic-localization of LKB1 while HNK-induced SIRT1/3 accentuates the cytoplasmic-localization of LKB1. We found that HNK increases miR-34a in LKB1-dependent manner as LKB1-silencing impedes HNK-induced miR-34a which can be rescued by LKB1-overexpression. Finally, an integral role of miR-34a is discovered as miR-34a mimic potentiates HNK-mediated inhibition of EMT, Zeb1 expression and nuclear-localization, mammosphere-formation, and expression of stemness factors. Leptin-antagonist actions of HNK are further enhanced by miR-34a mimic whereas miR-34a inhibitor results in inhibiting HNK's effect on leptin. These data provide evidence for the leptin-antagonist potential of HNK and reveal the involvement of LKB1 and miR-34a. PMID:26359358

  16. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  17. Honokiol activates LKB1-miR-34a axis and antagonizes the oncogenic actions of leptin in breast cancer.

    PubMed

    Avtanski, Dimiter B; Nagalingam, Arumugam; Bonner, Michael Y; Arbiser, Jack L; Saxena, Neeraj K; Sharma, Dipali

    2015-10-01

    Leptin, a major adipocytokine produced by adipocytes, is emerging as a key molecule linking obesity with breast cancer therefore, it is important to find effective strategies to antagonize oncogenic effects of leptin to disrupt obesity-cancer axis. Here, we examine the potential of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, as a leptin-antagonist and systematically elucidate the underlying mechanisms. HNK inhibits leptin-induced epithelial-mesenchymal-transition (EMT), and mammosphere-formation along with a reduction in the expression of stemness factors, Oct4 and Nanog. Investigating the downstream mediator(s), that direct leptin-antagonist actions of HNK; we discovered functional interactions between HNK, LKB1 and miR-34a. HNK increases the expression and cytoplasmic-localization of LKB1 while HNK-induced SIRT1/3 accentuates the cytoplasmic-localization of LKB1. We found that HNK increases miR-34a in LKB1-dependent manner as LKB1-silencing impedes HNK-induced miR-34a which can be rescued by LKB1-overexpression. Finally, an integral role of miR-34a is discovered as miR-34a mimic potentiates HNK-mediated inhibition of EMT, Zeb1 expression and nuclear-localization, mammosphere-formation, and expression of stemness factors. Leptin-antagonist actions of HNK are further enhanced by miR-34a mimic whereas miR-34a inhibitor results in inhibiting HNK's effect on leptin. These data provide evidence for the leptin-antagonist potential of HNK and reveal the involvement of LKB1 and miR-34a. PMID:26359358

  18. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway

    PubMed Central

    Jagani, Zainab; Mora-Blanco, E Lorena; Sansam, Courtney G; McKenna, Elizabeth S; Wilson, Boris; Chen, Dongshu; Klekota, Justin; Tamayo, Pablo; Nguyen, Phuong T L; Tolstorukov, Michael; Park, Peter J; Cho, Yoon-Jae; Hsiao, Kathy; Buonamici, Silvia; Pomeroy, Scott L; Mesirov, Jill P; Ruffner, Heinz; Bouwmeester, Tewis; Luchansky, Sarah J; Murtie, Joshua; Kelleher, Joseph F; Warmuth, Markus; Sellers, William R; Roberts, Charles W M; Dorsch, Marion

    2013-01-01

    Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis1. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling2, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli–activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells. PMID:21076395

  19. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  20. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma

    PubMed Central

    Unni, Arun M; Lockwood, William W; Zejnullahu, Kreshnik; Lee-Lin, Shih-Queen; Varmus, Harold

    2015-01-01

    Human lung adenocarcinomas (LUAD) contain mutations in EGFR in ∼15% of cases and in KRAS in ∼30%, yet no individual adenocarcinoma appears to carry activating mutations in both genes, a finding we have confirmed by re-analysis of data from over 600 LUAD. Here we provide evidence that co-occurrence of mutations in these two genes is deleterious. In transgenic mice programmed to express both mutant oncogenes in the lung epithelium, the resulting tumors express only one oncogene. We also show that forced expression of a second oncogene in human cancer cell lines with an endogenous mutated oncogene is deleterious. The most prominent features accompanying loss of cell viability were vacuolization, other changes in cell morphology, and increased macropinocytosis. Activation of ERK, p38 and JNK in the dying cells suggests that an overly active MAPK signaling pathway may mediate the phenotype. Together, our findings indicate that mutual exclusivity of oncogenic mutations may reveal unexpected vulnerabilities and therapeutic possibilities. DOI: http://dx.doi.org/10.7554/eLife.06907.001 PMID:26047463

  1. Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies.

    PubMed

    Xi, Yongming; Chen, Yan

    2015-09-01

    Being a tumor suppressor, PTEN functions as a dual-specificity protein and phospholipid phosphatase and regulates a variety of cellular processes and signal transduction pathways. Loss of PTEN function has been detected frequently in different forms of cancers, such as breast, prostate and lung cancer, gastric and colon cancer, skin cancer, as well as endometrial carcinoma. In this review, we provide a summary of PTEN and its role in bone malignancies including bone metastases, multiple myeloma, and osteosarcoma, etc. We highlight the importance of PTEN loss leading to activation of the oncogenic PI3K/Akt/mTOR pathway in tumorigenesis and progression, which can be attributed to both genetic and non-genetic alterations involving gene mutation, loss of heterozygosity, promoter hypermethylation, and microRNA mediated negative regulation. We also discuss the emerging therapeutic applications targeting PTEN loss for the treatment of these bone malignant diseases. PMID:25773992

  2. Ring Finger Protein 149 Is an E3 Ubiquitin Ligase Active on Wild-type v-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF)*

    PubMed Central

    Hong, Seung-Woo; Jin, Dong-Hoon; Shin, Jae-Sik; Moon, Jai-Hee; Na, Young-Soon; Jung, Kyung-Ah; Kim, Seung-Mi; Kim, Jin Cheon; Kim, Kyu-pyo; Hong, Yong Sang; Lee, Jae-Lyun; Choi, Eun Kyung; Lee, Jung Shin; Kim, Tae Won

    2012-01-01

    Members of the RAF family (ARAF, BRAF, and CRAF/RAF-1) are involved in a variety of cellular activities, including growth, survival, differentiation, and transformation. An oncogene encodes BRAF, the function of which is linked to MEK activation. BRAF is the most effective RAF kinase in terms of induction of MEK/ERK activity. However, the mechanisms involved in BRAF regulation remain unclear. In the present work, we used a tandem affinity purification approach to show that RNF149 (RING finger protein 149) interacts with wild-type BRAF. The latter protein is a RING domain-containing E3 ubiquitin ligase involved in control of gene transcription, translation, cytoskeletal organization, cell adhesion, and epithelial development. We showed that RNF149 bound directly to the C-terminal kinase-containing domain of wild-type BRAF and induced ubiquitination, followed by proteasome-dependent degradation, of the latter protein. Functionally, RNF149 attenuated the increase in cell growth induced by wild-type BRAF. However, RNF149 did not bind to mutant BRAF or induce ubiquitination thereof. Thus, we show that RNF149 is an E3 ubiquitin ligase active on wild-type BRAF. PMID:22628551

  3. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  4. Oncogenic KRAS confers chemoresistance by upregulating NRF2

    PubMed Central

    Tao, Shasha; Wang, Shue; Moghaddam, Seyed Javad; Ooi, Aikseng; Chapman, Eli; Wong, Pak K.; Zhang, Donna D.

    2014-01-01

    Oncogenic KRAS mutations found in 20–30% of all non-small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells. Mechanistically, KRAS increased NRF2 gene transcription through a TPA response element (TRE) located in the NRF2 promoter. In a mouse model of mutant KrasG12D-induced lung cancer, we found that suppressing the NRF2 pathway with the chemical inhibitor brusatol enhanced the antitumor efficacy of cisplatin. Co-treatment reduced tumor burden and improved survival. Our findings illuminate the mechanistic details of KRAS-mediated drug resistance and provide a preclinical rationale to improve the management of lung tumors harboring KRAS mutations with NRF2 pathway inhibitors. PMID:25339352

  5. Metabolic alterations accompanying oncogene-induced senescence

    PubMed Central

    Aird, Katherine M; Zhang, Rugang

    2014-01-01

    Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs in normal primary human cells after activation of an oncogene in the absence of other cooperating oncogenic stimuli. OIS is therefore considered a bona fide tumor suppression mechanism in vivo. Indeed, overcoming OIS-associated stable cell growth arrest can lead to tumorigenesis. Although cells that have undergone OIS do not replicate their DNA, they remain metabolically active. A number of recent studies report significant changes in cellular metabolism during OIS, including alterations in nucleotide, glucose, and mitochondrial metabolism and autophagy. These alterations may be necessary for stable senescence-associated cell growth arrest, and overcoming these shifts in metabolism may lead to tumorigenesis. This review highlights what is currently known about alterations in cellular metabolism during OIS and the implication of OIS-associated metabolic changes in cellular transformation and the development of cancer therapeutic strategies. PMID:27308349

  6. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway.

    PubMed

    Carbonneau, Mélissa; M Gagné, Laurence; Lalonde, Marie-Eve; Germain, Marie-Anne; Motorina, Alena; Guiot, Marie-Christine; Secco, Blandine; Vincent, Emma E; Tumber, Anthony; Hulea, Laura; Bergeman, Jonathan; Oppermann, Udo; Jones, Russell G; Laplante, Mathieu; Topisirovic, Ivan; Petrecca, Kevin; Huot, Marc-Étienne; Mallette, Frédérick A

    2016-01-01

    The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway. PMID:27624942

  7. Fibulin-4 is a novel Wnt/β-Catenin pathway activator in human osteosarcoma.

    PubMed

    Li, Renzeng; Wang, Limin

    2016-06-10

    Fibulin-4, an extracellular glycoprotein implicated in connective tissue development and elastic fiber formation, draws increasing focuses in cancer research. However, little is known about the underlying oncogenic roles of Fibulin-4 in human osteosarcoma (OS). In this study, by immunohistochemical analysis, upregulated expression of Fibulin-4 was found in the OS clinical specimens and cell lines compared to their normal counterparts. Fibulin-4 was positively correlated with the T stage of OS patients, and the proliferation index Ki67. Based on informatics analysis and functional verification, microRNA-137 was identified as a potential upstream regulator of Fibulin-4. Knockdown of Fibulin-4 or introduction of microRNA-137 inhibited cell proliferation and promoted cell apoptosis, and adverse effects were observed by overexpression of Fibulin-4. Furthermore, the tumor-suppressive functions of microRNA-137 were markedly abolished by restoration of Fibulin-4 expression in OS cells. Mechanistically, Fibulin-4 activated Wnt/β-Catenin pathway and promoted the expression of its downstream targets, including CCND2, c-Myc and VEGF. Taken together, Fibulin-4 plays critical neoplastic roles in tumor growth of human OS by activating Wnt/β-Catenin signaling and may represent a potential therapeutic target. PMID:27157136

  8. Oncogenic RAS-induced senescence in human primary thyrocytes: molecular effectors and inflammatory secretome involved

    PubMed Central

    Vizioli, Maria Grazia; Santos, Joana; Pilotti, Silvana; Mazzoni, Mara; Anania, Maria Chiara; Miranda, Claudia; Pagliardini, Sonia; Pierotti, Marco A.

    2014-01-01

    Oncogene-induced senescence (OIS) is a robust and sustained antiproliferative response to oncogenic stress and constitutes an efficient barrier to tumour progression. We have recently proposed that OIS may be involved in the pathogenesis of thyroid carcinoma by restraining tumour progression as well as the transition of well differentiated to more aggressive variants. Here, an OIS inducible model was established and used for dissecting the molecular mechanisms and players regulating senescence in human primary thyrocytes. We show that oncogenic RAS induces senescence in thyrocytes as judged by changes in cell morphology, activation of p16INK4a and p53/p21CIP1 tumour suppressor pathways, senescence-associated β-galactosidase (SA-β-Gal) activity, and induction of proinflammatory components including IL-8 and its receptor CXCR2. Using RNA interference (RNAi) we demonstrate that p16INK4a is necessary for the onset of senescence in primary thyrocytes as its depletion rescues RAS-induced senescence. Furthermore, we found that IL-8/CXCR2 network reinforces the growth arrest triggered by oncogenic RAS, as its abrogation is enough to resume proliferation. Importantly, we observed that CXCR2 expression coexists with OIS markers in thyroid tumour samples, suggesting that CXCR2 contributes to senescence, thus limiting thyroid tumour progression. PMID:25268744

  9. Trisubstituted-Imidazoles Induce Apoptosis in Human Breast Cancer Cells by Targeting the Oncogenic PI3K/Akt/mTOR Signaling Pathway.

    PubMed

    Mohan, Chakrabhavi Dhananjaya; Srinivasa, V; Rangappa, Shobith; Mervin, Lewis; Mohan, Surender; Paricharak, Shardul; Baday, Sefer; Li, Feng; Shanmugam, Muthu K; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Bender, Andreas; Sethi, Gautam; Basappa; Rangappa, Kanchugarakoppal S

    2016-01-01

    Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway. PMID:27097161

  10. Trisubstituted-Imidazoles Induce Apoptosis in Human Breast Cancer Cells by Targeting the Oncogenic PI3K/Akt/mTOR Signaling Pathway

    PubMed Central

    Mervin, Lewis; Mohan, Surender; Paricharak, Shardul; Baday, Sefer; Li, Feng; Shanmugam, Muthu K.; Chinnathambi, Arunachalam; Zayed, M. E.; Alharbi, Sulaiman Ali; Bender, Andreas; Sethi, Gautam; Basappa; Rangappa, Kanchugarakoppal S.

    2016-01-01

    Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway. PMID:27097161

  11. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    PubMed Central

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations

  12. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes.

    PubMed

    Cheng, Xiaodong

    2008-01-01

    Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively. PMID:18385037

  13. Using ILP to Identify Pathway Activation Patterns in Systems Biology

    PubMed Central

    Neaves, Samuel R; Millard, Louise A C; Tsoka, Sophia

    2016-01-01

    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist. PMID:27478883

  14. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma

    PubMed Central

    Patel, Jayeshkumar; Hatzi, Katerina; Malik, Alka; Tam, Wayne; Martin, Peter; Leonard, John; Melnick, Ari; Cerchietti, Leandro

    2016-01-01

    The BCL6 oncogene plays a crucial role in sustaining diffuse large B-cell lymphomas (DLBCL) through transcriptional repression of key checkpoint genes. BCL6-targeted therapy kills lymphoma cells by releasing these checkpoints. However BCL6 also directly represses several DLBCL oncogenes such as BCL2 and BCL-XL that promote lymphoma survival. Herein we show that DLBCL cells that survive BCL6-targeted therapy induce a phenomenon of “oncogene-addiction switching” by reactivating BCL2-family dependent anti-apoptotic pathways. Thus, most DLBCL cells require concomitant inhibition of BCL6 and BCL2-family members for effective lymphoma killing. Moreover, in DLBCL cells initially resistant to BH3 mimetic drugs, BCL6 inhibition induces a newly developed reliance on anti-apoptotic BCL2-family members for survival that translates in acquired susceptibility to BH3 mimetic drugs ABT-737 and obatoclax. In germinal center B cell-like (GCB)-DLBCL cells, the proteasome inhibitor bortezomib and the NEDD inhibitor MLN4924 post-transcriptionally activated the BH3-only sensitizer NOXA thus counteracting the oncogenic switch to BCL2 induced by BCL6-targeting. Hence our study indicates that BCL6 inhibition induces an on-target feedback mechanism based on the activation of anti-apoptotic BH3 members. This oncogene-addition switching mechanism was harnessed to develop rational combinatorial therapies for GCB-DLBCL. PMID:26657288

  15. Different pathways of macrophage activation and polarization.

    PubMed

    Juhas, Ulana; Ryba-Stanisławowska, Monika; Szargiej, Patryk; Myśliwska, Jolanta

    2015-01-01

    Monocytes are short-lived cells and undergo spontaneous apoptosis every day. Inflammatory responses may induce dramatic up-regulation of monocyte survival and differentiation. When monocytes are recruited to an area of infection they may differentiate into macrophages. In different microenvironments macrophages polarize into two types. The M1 or classically activated macrophages are characterized by the high ability to produce pro-inflammatory cytokines and the production of NO through the induced synthesis of iNOS. The M2 or alternatively activated macrophages are divided into 3 subtypes, M2 a, b and c, and they have anti-inflammatory properties. Mediators of M1 macrophage TLR-dependent polarization include transcription factors such as NF-κB, AP-1, PU.1, CCAAT/enhancer-binding protein α (C/EBP-α), STAT1 as well as interferon regulatory factor 5 (IRF5), while the transcription factors which promote M2 activation include IRF4, C/EBP-β, Krüppel-like factor 4 (KLF4), STAT6 and PPARγ receptor. PMID:25983288

  16. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.

    PubMed

    Simon, C; Simon, M; Vucelic, G; Hicks, M J; Plinkert, P K; Koitschev, A; Zenner, H P

    2001-12-10

    The invasive phenotype of cancers critically depends on the expression of proteases such as the M(R) 92,000 type IV collagenase (MMP-9). Several growth factors and oncogenes were found to increase promoter activity and as a consequence protease expression. This frequently requires the activation of the transcription factor AP-1 by signal transduction cascades such as the ERK and JNK pathways. We have previously demonstrated that the tumor promoter TPA can induce MMP-9 expression via a third signaling cascade, the p38 pathway. Considering that TPA is a potent activator of AP-1, we hypothesized that this transcription factor might also be required for p38 pathway-dependent MMP-9 regulation. While dominant negative p38 and MKK-6 mutants reduced MMP-9 promoter activity in CAT assays, a construct encoding an activating mutation in the MKK-6 protein potently stimulated it. This was mediated via 144 bp of the 5'flanking region of the wild-type promoter, which contains an AP-1 site at -79. Both point mutations in this motif and the expression of a c-jun protein lacking its transactivation domain and therefore acting as a dominant negative AP-1 mutant abrogated MKK-6-dependent promoter stimulation. Finally SB 203580, a specific p38 pathway inhibitor, reduced MMP-9 expression/secretion and in vitro invasion of cancer cells. Thus, our results provide evidence that also the third SAPK/MAPK signaling cascade, the p38 signal transduction pathway, stimulates MMP-9 expression in an AP-1-dependent fashion. PMID:11716547

  17. Oncogenic Transcription Factors: Cornerstones of Inflammation-Linked Pancreatic Carcinogenesis

    PubMed Central

    Baumgart, Sandra; Ellenrieder, Volker; Fernandez-Zapico, Martin E.

    2012-01-01

    Transcription factors are proteins that regulate gene expression by modulating the synthesis of messenger RNA. Since this process is frequently one dominant control point in the production of many proteins, transcription factors represent the key regulators of numerous cellular functions, including proliferation, differentiation, and apoptosis. Pancreatic cancer progression is characterized by the activation of inflammatory signaling pathways converging on a limited set of transcription factors that fine-tune gene expression patterns contributing to the growth and maintenance of these tumors. Thus, strategies targeting these transcriptional networks activated in pancreatic cancer cells could block the effects of upstream inflammatory responses participating in pancreatic tumorigenesis. In this article we review this field of research and summarize current strategies to target oncogenic transcription factors and their activating signaling networks in the treatment of pancreatic cancer. PMID:21997559

  18. Dose-dependent carcinogenicity and frequent Ki-ras proto-oncogene activation by dietary N-nitrosodiethylamine in rainbow trout.

    PubMed

    Hendricks, J D; Cheng, R; Shelton, D W; Pereira, C B; Bailey, G S

    1994-07-01

    While the experimental data upon which current concepts in mechanistically based risk assessment and molecular epidemiology are grounded derive almost entirely from rodent models, fish models have several attributes (e.g., low background incidence, extremely low cost tumor studies, nonmammalian comparative status for extrapolation of mechanisms to humans) that make them valuable adjuncts for addressing these concepts. This report provides an initial characterization of the dose dependency of dietary N-nitrosodiethylamine (DEN) hepatocarcinogenicity in Shasta strain rainbow trout (Oncorhynchus mykiss) and the potential of DEN to elicit ras proto-oncogene activation in this species. Carcinogen was administered in the diet at five concentrations for 12 months. Necropsies were performed at 9, 12, and 18 months, the latter on fish maintained on control diet for 6 months after cessation of DEN exposure. The incidence of hepatic neoplasms at the lower dietary concentrations (< or = 70 ppm) did not consistently exceed that for control groups, which were higher in this particular study (2%) than expected (historically 0.1%). For the higher DEN concentrations, a linear relationship between the hepatic tumor incidence (expressed as log odds, log [p/(1-p)], where p = proportion of fish bearing tumors), and the logarithm of total cumulative dose was observed, with response being independent of the length of time (9 or 12 months) during which the dose was accumulated. The dose-response curve for fish maintained an additional 6 months postexposure was shifted toward higher incidence but was parallel to the curve for fish killed at cessation of exposure. The model predicts that doubling the dose will produce somewhat more than a doubling of the odds (p/(100-p)) for tumor incidence and that the odds for lesions 6 months postexposure will be approximately double those at cessation of exposure. Comparison of these results with previous studies using rats suggests an overall

  19. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes.

    PubMed Central

    Fickenscher, H; Biesinger, B; Knappe, A; Wittmann, S; Fleckenstein, B

    1996-01-01

    Herpesvirus saimiri strain C488, a T-cell tumor virus of New World primates, transforms human T lymphocytes to stable interleukin-2-dependent growth without need for further stimulation by antigen or mitogen. The transformed cell lines show the phenotype of activated mature T cells and retain many essential features of the primary parental cells, e.g., antigen specificity. In contrast to transformed New World monkey T cells, the human lines do not support lytic growth of the virus, even after chemical stimulation. Here we show that many viral genes remain silent during episomal persistence. However, the viral oncogene stpC is predominantly transcribed and translated to a stable cytoplasmic protein of 20 kDa that is heterogeneously expressed in individual cells. This 1.7-kb mRNA is bicistronic, encoding also Tip, a viral protein interacting with the T-cell-specific tyrosine kinase Lck. stpC/tip transcripts are heavily induced upon stimulation by mitogen or phorbol ester. Block of protein synthesis does not abolish transcription: treatment with cycloheximide greatly induces stpC/tip mRNA levels. Thus, this gene complex is regulated similarly to early T-cell activation genes. Constitutive and induced expression engage different transcription start sites. The T-cell regulation of the viral genes stpC and tip may contribute to the T-cell tropism of growth transformation by herpesvirus saimiri. PMID:8709223

  20. Lymphatic Reprogramming by Kaposi Sarcoma Herpes Virus Promotes the Oncogenic Activity of the Virus-Encoded G-protein Coupled Receptor

    PubMed Central

    Aguilar, Berenice; Choi, Inho; Choi, Dongwon; Chung, Hee Kyoung; Lee, Sunju; Yoo, Jaehyuk; Lee, Yong Suk; Maeng, Yong Sun; Lee, Ha Neul; Park, Eunkyung; Kim, Kyu Eui; Kim, Nam Yoon; Baik, Jae Myung; Jung, Jae U.; Koh, Chester J.; Hong, Young-Kwon

    2012-01-01

    Kaposi sarcoma (KS), the most common cancer in HIV-positive individuals, is caused by endothelial transformation mediated by the KS herpes virus (KSHV)-encoded G-protein coupled receptor (vGPCR). Infection of blood vascular endothelial cells (BECs) by KSHV reactivates an otherwise silenced embryonic program of lymphatic differentiation. Thus, KS tumors express numerous lymphatic endothelial cell (LEC)-signature genes. A key unanswered question is how lymphatic reprogramming by the virus promotes tumorigenesis leading to KS formation. In this study, we present evidence that this process creates an environment needed to license the oncogenic activity of vGPCR. We found that the G-protein regulator RGS4 is an inhibitor of vGPCR that is expressed in BECs, but not in LECs. RGS4 was downregulated by the master regulator of LEC differentiation PROX1, which is upregulated by KSHV and directs KSHV-induced lymphatic reprogramming. Moreover, we found that KSHV upregulates the nuclear receptor LRH1, which physically interacts with PROX1 and synergizes with it to mediate repression of RGS4 expression. Mechanistic investigations revealed that RGS4 reduced vGPCR-enhanced cell proliferation, migration, VEGF expression and Akt activation and to suppress tumor formation induced by vGPCR. Our findings resolve long-standing questions about the pathological impact of KSHV-induced reprogramming of host cell identity, and they offer biological and mechanistic insights supporting the hypothesis that a lymphatic microenvironment is more favorable for KS tumorigenesis. PMID:22942256

  1. Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene.

    PubMed Central

    Fung, Y K; Shackleford, G M; Brown, A M; Sanders, G S; Varmus, H E

    1985-01-01

    The mouse int-1 gene is a putative mammary oncogene discovered as a target for transcriptionally activating proviral insertion mutations in mammary carcinomas induced by the mouse mammary tumor virus in C3H mice. We have isolated molecular clones of full- or nearly full-length cDNA transcribed from int-1 RNA (2.6 kilobases) in a virus-induced mammary tumor. Comparison of the nucleotide sequence of the cDNA clones with that of the int-1 gene (A. van Ooyen and R. Nusse, Cell 39:233-240, 1984) shows the following. The coding region of the int-1 gene is composed of four exons. The splice donor and acceptor sites conform to consensus; however, at least two closely spaced polyadenylation sites are used, and the transcriptional initiation site remains ambiguous. The major open reading frame is preceded by an open frame 10 codons in length. The mRNA encodes a 41-kilodalton protein with several striking features--a strongly hydrophobic amino terminus, a cysteine-rich carboxy terminus, and four potential glycosylation sites. There are no differences in nucleotide sequence between the known exons of the normal and a provirally activated allele. The length of the deduced open reading frame was further confirmed by in vitro translation of RNA transcribed from the cDNA clones with SP6 RNA polymerase. Images PMID:3018519

  2. Oncogenes and growth control

    SciTech Connect

    Kahn, P.; Graf, T.

    1986-01-01

    This book contains six sections, each consisting of several papers. Some of the paper titles are: A Role for Proto-Oncogenes in Differentiation.; The ras Gene Family; Regulation of Human Globin Gene Expression; Regulation of Gene Expression by Steroid Hormones; The Effect of DNA Methylation on DNA-Protein Interactions and on the Regulation of Gene Expression; and Trans-Acting Elements Encoded in Immediate Early Genes of DNA Tumor Viruses.

  3. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  4. Wnt pathway activation by ADP-ribosylation

    PubMed Central

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P.; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S.; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)—known to target Axin for proteolysis—regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  5. Wnt pathway activation by ADP-ribosylation.

    PubMed

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  6. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    PubMed Central

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  7. [Hypophosphatemic oncogenic osteomalacia].

    PubMed

    Mátyus, J; Szebenyi, B; Rédl, P; Mikita, J; Gáspár, L; Haris, A; Radó, J; Kakuk, G

    2000-12-17

    The first case of oncogen osteomalacia in Hungary is reported, to draw the attention of the medical profession to it and to present the new data about its pathomechanism. Pathological hip fracture caused by hypophosphataemic osteomalacia due to isolated renal phosphate wasting was found in a previously healthy 19 years old sportsman. In spite of daily 1.5 micrograms calcitriol treatment and phosphate supplementation, hypophosphataemia persisted for 13 years and he needed regular indometacin medication for his bone pain. During that time an 1.5 cm gingival tumour was found and radically removed. The serum phosphate level returned to normal in a few hours after the operation (preoperative 0.51, after 2, 4 and 8 hours 0.61, 0.68 and 0.79 mmol/l respectively), and remained normal without calcitriol. The histological examination showed epulis with fibroblast and vascular cell proliferation, which has never been previously reported in connection with oncogenic osteomalacia. The pain resolved after 3 months and the bone density became normal in one year. Oncogenic osteomalacia must be considered in every case presenting with atypical hypophosphataemic osteomalacia. Careful dental examination is needed also in the course of search for the underlying tumour. Every tumour-like growth, even the common epulis, has to be operated radically and serum phosphate monitored in the postoperative period in all such cases. PMID:11196239

  8. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  9. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway.

    PubMed

    Raina, Deepak; Ahmad, Rehan; Chen, Dongshu; Kumar, Shailendra; Kharbanda, Surender; Kufe, Donald

    2008-12-01

    The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway. PMID:18981727

  10. HIV-1 Nef and KSHV oncogene K1 synergistically promote angiogenesis by inducing cellular miR-718 to regulate the PTEN/AKT/mTOR signaling pathway

    PubMed Central

    Xue, Min; Yao, Shuihong; Hu, Minmin; Li, Wan; Hao, Tingting; Zhou, Feng; Zhu, Xiaofei; Lu, Hongmei; Qin, Di; Yan, Qin; Zhu, Jianzhong; Gao, Shou-Jiang; Lu, Chun

    2014-01-01

    Kaposi's sarcoma (KS) is an AIDS-defining cancer with aberrant neovascularization caused by KS-associated herpesvirus (KSHV). Although the interaction between HIV-1 and KSHV plays a pivotal role in promoting the aggressive manifestations of KS, the pathogenesis underlying AIDS-KS remains largely unknown. Here we examined HIV-1 Nef protein promotion of KSHV oncoprotein K1-induced angiogenesis. We showed that both internalized and ectopic expression of Nef in endothelial cells synergized with K1 to facilitate vascular tube formation and cell proliferation, and enhance angiogenesis in a chicken CAM model. In vivo experiments further indicated that Nef accelerated K1-induced angiogenesis and tumorigenesis in athymic nu/nu mice. Mechanistic studies revealed that Nef and K1 synergistically activated PI3K/AKT/mTOR signaling by downregulating PTEN. Furthermore, Nef and K1 induced cellular miR-718, which inhibited PTEN expression by directly targeting a seed sequence in the 3′ UTR of its mRNA. Inhibition of miR-718 expression increased PTEN synthesis and suppressed the synergistic effect of Nef- and K1-induced angiogenesis and tumorigenesis. These results indicate that, by targeting PTEN, miR-718 mediates Nef- and K1-induced angiogenesis via activation of AKT/mTOR signaling. Our results demonstrate an essential role of miR-718/AKT/mTOR axis in AIDS-KS and thus may represent an attractive therapeutic target. PMID:25104021

  11. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus.

    PubMed Central

    Reynolds, A B; Vila, J; Lansing, T J; Potts, W M; Weber, M J; Parsons, J T

    1987-01-01

    The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity. Images Fig. 2. Fig. 3. Fig. 4. PMID:2822389

  12. HTLV-1 tax-induced NF-kappaB activation is synergistically enhanced by 12-O-tetradecanoylphorbol-13-acetate: mechanism and implications for Tax oncogenicity.

    PubMed

    Azran-Shaish, Inbal; Tabakin-Fix, Yulia; Huleihel, Mahmoud; Bakhanashvili, Mary; Aboud, Mordechai

    2008-07-01

    Nuclear factor kappa B (NF-kappaB) factors regulate a wide range of physiological and oncogenic processes. Normally, these factors are transiently activated by specific external signals which induce their dissociation from inhibitors of kappaB (IkappaB) and subsequent translocation to the nucleus where p65 links to the cyclic adenosine monophosphate response element binding protein (CBP)-p300 and P/CAF coactivators that are essential for its transcriptional activity. The pathogenic potential of human T-cell leukemia virus type 1 (HTLV-1) Tax protein is partly ascribed to its capacity to constitutively activate NF-kappaB factors because constitutive activity of these factors play an important role in the pathophysiology of adult T-cell leukemia (ATL) and tropical spastic paraparesis-HTLV-1 associated myelopathy (TSP-HAM). In assessing the possibility of modulating Tax pathogenic potential by external factors, we focused here on 12-O -tetradecanoylphorbol-13-acetate (TPA) which is a potent protein kinase C (PKC) activator. There are conflicting reports regarding the effect of TPA and PKC on NF-kappaB. Therefore, we reassessed this issue and also investigated their influence on Tax-mediated activation of these factors. We found that TPA promoted NF-kappaB nuclear translocation and the DNA binding of p65 dimers through PKC activation. However, both TPA and ectopically expressed PKC had only a marginal effect on the transcriptional competence of these dimers, indicating that the DNA binding of such dimers is insufficient by itself for gene activation. Notably, however, both TPA and the ectopic PKC displayed strong synergistic enhancement of the Tax-induced activation of the NF-kappaB transcriptional function. In contrast, TPA and the ectopic PKC only slightly elevated the low activation of the NF-kappaB transcriptional capacity by cytoplasmic Tax mutants, indicating that the nuclear translocation of Tax was essential for this synergism. Subsequent experiments suggested

  13. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma

    PubMed Central

    Sukowati, Caecilia HC; El-Khobar, Korri E; Ie, Susan I; Anfuso, Beatrice; Muljono, David H; Tiribelli, Claudio

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Chronic infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is a major risk factor in the development of the HCC, independently from excessive alcohol abuse and metabolic disease. Since the biology of HBV and HCV is different, their oncogenic effect may go through different mechanisms, direct and/or indirect. Viral hepatitis infection is associated with cellular inflammation, oxidative stress, and DNA damage, that may lead to subsequent hepatic injuries such as chronic hepatitis, fibrosis, cirrhosis, and finally HCC. Direct oncogenic properties of these viruses are related with their genotypic characteristics and the ability of viral proteins to interact with host proteins, thus altering the molecular pathways balance of the cells. In addition, the integration of HBV DNA, especially the gene S and X, in a particular site of the host genome can disrupt chromosomal stability and may activate various oncogenic mechanisms, including those in hematopoietic cells. Recently, several studies also had demonstrated that viral hepatitis could trigger the population of hepatic cancer stem cells. This review summarize available pre-clinical and clinical data in literature regarding oncogenic properties of HBV and HCV in the early initiation of HCC. PMID:26819517

  14. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators.

    PubMed Central

    Paz-Ares, J; Ghosal, D; Wienand, U; Peterson, P A; Saedler, H

    1987-01-01

    The structure of the wild-type c1 locus of Zea mays was determined by sequence analysis of one genomic and two cDNA clones. The coding region is composed of three exons (150 bp, 129 bp and one, at least 720 bp) and two small introns (88 bp and 145 bp). Transcription of the mRNAs corresponding to the two cDNA clones cLC6 (1.1 kb) and cLC28 (2.1 kb) starts from the same promoter. Both cDNAs are identical except that cLC28 extends further at its 3' end. A putative protein, 273 amino acids in length was deduced from the sequence of both transcripts. It contains two domains, one basic and the other acidic and might function as a transcriptional activator. The basic domain of this c1-encoded protein shows 40% sequence homology to the protein products of animal myb proto-oncogenes. Images Fig. 3. PMID:3428265

  15. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  16. Responsive Fluorescent PNA Analogue as a Tool for Detecting G-quadruplex Motifs of Oncogenes and Activity of Toxic Ribosome-Inactivating Proteins.

    PubMed

    Sabale, Pramod M; Srivatsan, Seergazhi G

    2016-09-01

    Fluorescent oligomers that are resistant to enzymatic degradation and report their binding to target oligonucleotides (ONs) by changes in fluorescence properties are highly useful in developing nucleic-acid-based diagnostic tools and therapeutic strategies. Here, we describe the synthesis and photophysical characterization of fluorescent peptide nucleic acid (PNA) building blocks made of microenvironment-sensitive 5-(benzofuran-2-yl)- and 5-(benzothiophen-2-yl)-uracil cores. The emissive monomers, when incorporated into PNA oligomers and hybridized to complementary ONs, are minimally perturbing and are highly sensitive to their neighboring base environment. In particular, benzothiophene-modified PNA reports the hybridization process with significant enhancement in fluorescence intensity, even when placed in the vicinity of guanine residues, which often quench fluorescence. This feature was used in the turn-on detection of G-quadruplex-forming promoter DNA sequences of human proto-oncogenes (c-myc and c-kit). Furthermore, the ability of benzothiophene-modified PNA oligomer to report the presence of an abasic site in RNA enabled us to develop a simple fluorescence hybridization assay to detect and estimate the depurination activity of ribosome-inactivating protein toxins. Our results demonstrate that this approach with responsive PNA probes will provide new opportunities to develop robust tools to study nucleic acids. PMID:27271025

  17. Tumor suppressor p53 inhibits transcriptional activation of invasion gene thromboxane synthase mediated by the proto-oncogenic factor ets-1.

    PubMed

    Kim, Ella; Günther, Willy; Yoshizato, Kimio; Meissner, Hildegard; Zapf, Srenja; Nüsing, Rolf M; Yamamoto, Hirotaka; Van Meir, Erwin G; Deppert, Wolfgang; Giese, Alf

    2003-10-30

    Cancer formation and progression is a complex process determined by several mechanisms that promote cell growth, invasiveness, neo-angiogenesis, and render neoplastic cells resistant to apoptosis. The tumor suppressor p53 and the proto-oncogenic factor ets-1 are important regulators of such mechanisms. While it is well established that p53 and ets-1 influence various aspects of cell behavior by regulating the transcription of specific genes, little is known about the functional relationship between these transcription factors. We found that the gene encoding thromboxane synthase (TXSA), which we recently identified as a factor promoting invasion and resistance to apoptosis in gliomas, is a novel target gene for both p53 and ets-1. We demonstrate that p53 and ets-1 coregulate TXSA in an antagonistic and inter-related manner, with ets-1 being a potent transcriptional activator and p53 inhibiting ets-1-dependent transcription. Negative interference with ets-1 transcription requires functional p53 and is lost in mutant p53 proteins. We show that ets-1 and p53 associate physically in vitro and in vivo and that their interaction, rather than a direct binding of p53 to the TXSA promoter, is required for transcriptional repression of TXSA by wild-type p53. An important implication of our findings is that the loss of p53-mediated negative control over ets-1-dependent transcription may lead to the acquisition of an invasive phenotype in tumor cells. PMID:14586398

  18. Identification of polymorphisms and transcriptional activity of the proto-oncogene KIT located on both autosomal and B chromosomes of the Chinese raccoon dog.

    PubMed

    Li, Y M; Zhang, Y; Zhu, W J; Yan, S Q; Sun, J H

    2016-01-01

    B chromosomes are dispensable and co-exist with autosomal and sex chromosomes. The karyotype of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) comprises 0-4 B chromosomes. The proto-oncogene KIT is found on all B chromosomes of the Chinese raccoon dog. In the present study, partial DNA and mRNA sequences of KIT were amplified and sequenced from four individuals containing B chromosomes. Sequence analyses revealed that polymorphisms including single nucleotide polymorphisms (SNPs) and inserts/deletions were rich in the KIT gene of Chinese raccoon dog at the genomic level. However, no polymorphism was detected at the mRNA level. A comparison of mRNA sequences from Chinese raccoon dogs with the corresponding sequences derived from arctic fox and dog, which do not contain B chromosomes, revealed the mRNA sequences of the 10 SNPs to be identical between these three species. Therefore, these findings suggest that KIT located on the B chromosomes in Chinese raccoon dog lacks transcriptional activity. PMID:26909958

  19. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells.

    PubMed

    Li, Ling; Osdal, Tereza; Ho, Yinwei; Chun, Sookhee; McDonald, Tinisha; Agarwal, Puneet; Lin, Allen; Chu, Su; Qi, Jing; Li, Liang; Hsieh, Yao-Te; Dos Santos, Cedric; Yuan, Hongfeng; Ha, Trung-Quang; Popa, Mihaela; Hovland, Randi; Bruserud, Oystein; Gjertsen, Bjørn Tore; Kuo, Ya-Huei; Chen, Wenyong; Lain, Sonia; McCormack, Emmet; Bhatia, Ravi

    2014-10-01

    The FLT3-ITD mutation is frequently observed in acute myeloid leukemia (AML) and is associated with poor prognosis. In such patients, FLT3 tyrosine kinase inhibitors (TKIs) are only partially effective and do not eliminate the leukemia stem cells (LSCs) that are assumed to be the source of treatment failure. Here, we show that the NAD-dependent SIRT1 deacetylase is selectively overexpressed in primary human FLT3-ITD AML LSCs. This SIRT1 overexpression is related to enhanced expression of the USP22 deubiquitinase induced by c-MYC, leading to reduced SIRT1 ubiquitination and enhanced stability. Inhibition of SIRT1 expression or activity reduced the growth of FLT3-ITD AML LSCs and significantly enhanced TKI-mediated killing of the cells. Therefore, these results identify a c-MYC-related network that enhances SIRT1 protein expression in human FLT3-ITD AML LSCs and contributes to their maintenance. Inhibition of this oncogenic network could be an attractive approach for targeting FLT3-ITD AML LSCs to improve treatment outcomes. PMID:25280219

  20. SIRT1 Activation by a c-MYC Oncogenic Network Promotes the Maintenance and Drug Resistance of Human FLT3-ITD Acute Myeloid Leukemia Stem Cells

    PubMed Central

    Li, Ling; Osdal, Tereza; Ho, Yinwei; Chun, Sookhee; McDonald, Tinisha; Agarwal, Puneet; Lin, Allen; Chu, Su; Qi, Jing; Li, Liang; Hsieh, Yao-Te; Santos, Cedric Dos; Yuan, Hongfeng; Ha, Trung-Quang; Popa, Mihaela; Hovland, Randi; Bruserud, Øystein; Gjertsen, Bjørn Tore; Kuo, Ya-Huei; Chen, Wenyong; Lain, Sonia; McCormack, Emmet; Bhatia, Ravi

    2015-01-01

    SUMMARY The FLT3-ITD mutation is frequently observed in acute myeloid leukemia (AML) and is associated with poor prognosis. In such patients, FLT3 tyrosine kinase inhibitors (TKIs) are only partially effective and do not eliminate the leukemia stem cells (LSCs) that are assumed to be the source of treatment failure. Here, we show that the NAD-dependent SIRT1 de-acetylase is selectively overexpressed in primary human FLT3-ITD AML LSCs. This SIRT1 overexpression is related to enhanced expression of the USP22 deubiquitinase induced by c-MYC, leading to reduced SIRT1 ubiquitination and enhanced stability. Inhibition of SIRT1 expression or activity reduced the growth of FLT3-ITD AML LSCs and significantly enhanced TKI-mediated killing of the cells. Therefore, these results identify a c-MYC-related network that enhances SIRT1 protein expression in human FLT3-ITD AML LSCs and contributes to their maintenance. Inhibition of this oncogenic network could be an attractive approach for targeting FLT3-ITD AML LSCs to improve treatment outcomes. PMID:25280219

  1. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer

    PubMed Central

    Malinowsky, K; Nitsche, U; Janssen, K-P; Bader, F G; Späth, C; Drecoll, E; Keller, G; Höfler, H; Slotta-Huspenina, J; Becker, K-F

    2014-01-01

    Background: Patients with UICC/AJCC stage II colon cancer have a high 5-year overall survival rate after surgery. Nevertheless, a significant subgroup of patients develops tumour recurrence. Currently, there are no clinically established biomarkers available to identify this patient group. We applied reverse-phase protein arrays (RPPA) for phosphatidylinositide-3-kinase pathway activation mapping to stratify patients according to their risk of tumour recurrence after surgery. Methods: Full-length proteins were extracted from formalin-fixed, paraffin-embedded tissue samples of 118 patients who underwent curative resection. RPPA technology was used to analyse expression and/or phosphorylation levels of six major factors of the phosphatidylinositide-3-kinase pathway. Oncogenic mutations of KRAS and BRAF, and DNA microsatellite status, currently discussed as prognostic markers, were analysed in parallel. Results: Expression of phospho-AKT (HR=3.52; P=0.032), S6RP (HR=6.3; P=0.044), and phospho-4E-BP1 (HR=4.12; P=0.011) were prognostic factors for disease-free survival. None of the molecular genetic alterations were significantly associated with prognosis. Conclusions: Our data indicate that activation of the PI3K/AKT pathway evidenced on the protein level might be a valuable prognostic marker to stratify patients for their risk of tumour recurrence. Beside adjuvant chemotherapy targeting of upregulated PI3K/AKT signalling may be an attractive strategy for treatment of high-risk patients. PMID:24619078

  2. The role of human cervical cancer oncogene in cancer progression.

    PubMed

    Li, Xin-Yu; Wang, Xin

    2015-01-01

    Human cervical cancer oncogene (HCCR) was identified by differential display RT-PCR by screened abnormally expressed genes in cervical human cancers. The overexpressed gene is not only identified in cervical tissues, but also in various human cancers as leukemia/lymphoma, breast, stomach, colon, liver, kidney and ovarian cancer. For its special sensitivities and specificities in human breast cancer and hepatocellular carcinoma, it is expected to be a new biomarker to replace or combine with the existing biomarkers in the diagnose. The HCCR manifests as a negative regulator of the p53 tumor suppressor gene, and its expression is regulated by the PI3K/Akt signaling pathway, modulated by TCF/β-catenin, it also participates in induction of the c-kit proto-oncogene, in activation of PKC and telomerase activities, but the accurate biochemical mechanisms of how HCCR contributes to the malignancies is still unknown. The aim of this review is to summarize the roles of HCCR in cancer progression and the molecular mechanisms involved. PMID:26309489

  3. Translation-dependent mechanisms lead to PML upregulation and mediate oncogenic K-RAS-induced cellular senescence

    PubMed Central

    Scaglioni, Pier Paolo; Rabellino, Andrea; Yung, Thomas M; Bernardi, Rosa; Choi, Sooyeon; Konstantinidou, Georgia; Nardella, Caterina; Cheng, Ke; Pandolfi, Pier Paolo

    2012-01-01

    Expression of oncogenic K-RAS in primary cells elicits oncogene-induced cellular senescence (OIS), a form of growth arrest that potently opposes tumourigenesis. This effect has been largely attributed to transcriptional mechanisms that depend on the p53 tumour suppressor protein. The PML tumour suppressor was initially identified as a component of the PML-RARα oncoprotein of acute promyelocytic leukaemia (APL). PML, a critical OIS mediator, is upregulated by oncogenic K-RAS in vivo and in vitro. We demonstrate here that oncogenic K-RAS induces PML protein upregulation by activating the RAS/MEK1/mTOR/eIF4E pathway even in the absence of p53. Under these circumstances, PML mRNA is selectively associated to polysomes. Importantly, we find that the PML 5′ untranslated mRNA region plays a key role in mediating PML protein upregulation and that its presence is essential for an efficient OIS response. These findings demonstrate that upregulation of PML translation plays a central role in oncogenic K-RAS-induced OIS. Thus, selective translation initiation plays a critical role in tumour suppression with important therapeutic implications for the treatment of solid tumours and APL. PMID:22359342

  4. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer.

    PubMed

    Wang, Dejie; Ding, Liya; Wang, Liguo; Zhao, Yu; Sun, Zhifu; Karnes, R Jeffrey; Zhang, Jun; Huang, Haojie

    2015-12-01

    The Polycomb protein enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in advanced human prostate cancer (PCa), especially in lethal castration-resistant prostate cancer (CRPC). However, the signaling pathways that regulate EZH2 functions in PCa remain incompletely defined. Using EZH2 antibody-based RNA immunoprecipitation-coupled high throughput sequencing (RIP-seq), we demonstrated that EZH2 binds to MALAT1, a long non-coding RNA (lncRNA) that is overexpressed during PCa progression. GST pull-down and RIP assays demonstrated that the 3' end of MALAT1 interacts with the N-terminal of EZH2. Knockdown of MALAT1 impaired EZH2 recruitment to its target loci and upregulated expression of EZH2 repressed genes. Further studies indicated that MALAT1 plays a vital role in EZH2-enhanced migration and invasion in CRPC cell lines. Meta-analysis and RT-qPCR of patient specimens demonstrated a positive correlation between MALAT1 and EZH2 expression in human CRPC tissues. Finally, we showed that MALAT1 enhances expression of PRC2-independent target genes of EZH2 in CRPC cells in culture and patient-derived xenografts. Together, these data indicate that MALAT1 may be a crucial RNA cofactor of EZH2 and that the EZH2-MALAT1 association may provide a new avenue for development new strategies for treatment of CRPC. PMID:26516927

  5. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer

    PubMed Central

    Wang, Liguo; Zhao, Yu; Sun, Zhifu; Karnes, R. Jeffrey; Zhang, Jun; Huang, Haojie

    2015-01-01

    The Polycomb protein enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in advanced human prostate cancer (PCa), especially in lethal castration-resistant prostate cancer (CRPC). However, the signaling pathways that regulate EZH2 functions in PCa remain incompletely defined. Using EZH2 antibody-based RNA immunoprecipitation-coupled high throughput sequencing (RIP-seq), we demonstrated that EZH2 binds to MALAT1, a long non-coding RNA (lncRNA) that is overexpressed during PCa progression. GST pull-down and RIP assays demonstrated that the 3′ end of MALAT1 interacts with the N-terminal of EZH2. Knockdown of MALAT1 impaired EZH2 recruitment to its target loci and upregulated expression of EZH2 repressed genes. Further studies indicated that MALAT1 plays a vital role in EZH2-enhanced migration and invasion in CRPC cell lines. Meta-analysis and RT-qPCR of patient specimens demonstrated a positive correlation between MALAT1 and EZH2 expression in human CRPC tissues. Finally, we showed that MALAT1 enhances expression of PRC2-independent target genes of EZH2 in CRPC cells in culture and patient-derived xenografts. Together, these data indicate that MALAT1 may be a crucial RNA cofactor of EZH2 and that the EZH2-MALAT1 association may provide a new avenue for development new strategies for treatment of CRPC. PMID:26516927

  6. SOCS1 in cancer: An oncogene and a tumor suppressor.

    PubMed

    Beaurivage, Claudia; Champagne, Audrey; Tobelaim, William S; Pomerleau, Véronique; Menendez, Alfredo; Saucier, Caroline

    2016-06-01

    The Suppressor Of Cytokine Signaling 1 (SOCS1) has been extensively investigated in immune cells where it works as a potent inhibitor of inflammation by negative feedback regulation of the cytokine-activated JAK-STAT signaling pathways. SOCS1 is also recognized as a tumor suppressor in numerous cancers and its critical functional relevance in non-immune cells, including epithelial cells, has just begun to emerge. Most notably, conflicting results from clinical and experimental studies suggest that SOCS1 may function as either a tumor suppressor or a tumor promoter, in a cell context-dependent manner. Here, we present an overview of the mechanisms underlying SOCS1 function as a tumor suppressor and discuss the emerging evidences of SOCS1 activity as an oncogene. PMID:26811119

  7. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma.

    PubMed

    Yoo, Jae Hyuk; Shi, Dallas S; Grossmann, Allie H; Sorensen, Lise K; Tong, ZongZhong; Mleynek, Tara M; Rogers, Aaron; Zhu, Weiquan; Richards, Jackson R; Winter, Jacob M; Zhu, Jie; Dunn, Christine; Bajji, Ashok; Shenderovich, Mark; Mueller, Alan L; Woodman, Scott E; Harbour, J William; Thomas, Kirk R; Odelberg, Shannon J; Ostanin, Kirill; Li, Dean Y

    2016-06-13

    Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as β-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and β-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases. PMID:27265506

  8. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  9. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  10. Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway.

    PubMed Central

    Rausch, O; Marshall, C J

    1997-01-01

    The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK. PMID:9032244

  11. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma

    PubMed Central

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J.; Pellegata, Natalia S.

    2015-01-01

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  12. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma.

    PubMed

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J; Pellegata, Natalia S

    2015-11-17

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  13. Activation of the proto-oncogene p60c-src by point mutations in the SH2 domain.

    PubMed Central

    O'Brien, M C; Fukui, Y; Hanafusa, H

    1990-01-01

    To investigate the importance of a conserved region spanning residues 137 to 241 in the noncatalytic domain of p60c-src (SH2 region), we used oligonucleotide-directed mutagenesis to change residues that are highly conserved in this region. Chicken embryo fibroblasts infected with a p60c-src variant containing arginine instead of tryptophan at residue 148 (W148R) appeared more rounded than cells overexpressing a normal c-src gene, and they formed colonies in soft agar. p60c-src variants containing serine instead of arginine at residue 155 (R155S) or isoleucine instead of glycine at residue 170 (G170I) also appeared transformed and were anchorage independent, but to a lesser extent than W148R. Mutation of residue 201 from histidine to leucine (H201L) had no observable effect. The in vitro kinase activity of cells infected with W148R or G170I was elevated twofold. Expression of p60W148R (or, to a lesser extent, of p60G170I) increased the number of proteins phosphorylated on tyrosine in infected cells. All of the mutants were phosphorylated in vivo on Tyr-527, instead of Tyr-416 as observed for p60v-src. Immunoprecipitated p60W148R and p60G170I were found to be associated with a phosphatidylinositol kinase activity, a factor which appears to be necessary for transformation by tyrosine-specific protein kinases. These results show that a single point mutation in the SH2 region of the cellular src gene can activate its transforming potential. This type of activation is in a new category of alterations at the amino terminus that activate but do not cause a shift in phosphorylation at the carboxy terminus. Images PMID:2111444

  14. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  15. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  16. Mitogenic and Oncogenic Stimulation of K433 Acetylation Promotes PKM2 Protein Kinase Activity and Nuclear Localization

    PubMed Central

    Lv, Lei; Xu, Yan-Ping; Zhao, Di; Li, Fu-Long; Wang, Wei; Sasaki, Naoya; Jiang, Ying; Zhou, Xin; Li, Ting-Ting; Guan, Kun-Liang; Lei, Qun-Ying; Xiong, Yue

    2014-01-01

    SUMMARY Alternative splicing of the PKM2 gene produces two isoforms, M1 and M2, which are preferentially expressed in adult and embryonic tissues, respectively. The M2 isoform is reexpressed in human cancer and has nonmetabolic functions in the nucleus as a protein kinase. Here, we report that PKM2 is acetylated by p300 acetyltransferase at K433, which is unique to PKM2 and directly contacts its allosteric activator, fructose 1,6-bisphosphate (FBP). Acetylation prevents PKM2 activation by interfering with FBP binding and promotes the nuclear accumulation and protein kinase activity of PKM2. Acetylationmimetic PKM2(K433) mutant promotes cell proliferation and tumorigenesis. K433 acetylation is decreased by serum starvation and cell-cell contact, increased by cell cycle stimulation, epidermal growth factor (EGF), and oncoprotein E7, and enriched in breast cancers. Hence, K433 acetylation links cell proliferation and transformation to the switch of PKM2 from a cytoplasmic metabolite kinase to a nuclear protein kinase. PMID:24120661

  17. NF-κB as a target for oncogenic viruses

    PubMed Central

    Sun, Shao-Cong; Cesarman, Ethel

    2013-01-01

    NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase (IKK), which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T-cell leukemia virus type 1 (HTLV1), the Kaposi sarcoma-associated herpesvirus (KSHV), and the Epstein bar virus (EBV). These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins. PMID:20845110

  18. Targeted Disruption of the Murine fps/fes Proto-Oncogene Reveals that Fps/Fes Kinase Activity Is Dispensable for Hematopoiesis

    PubMed Central

    Senis, Yotis; Zirngibl, Ralph; McVeigh, Jennifer; Haman, Andre; Hoang, Trang; Greer, Peter A.

    1999-01-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses. PMID:10523632

  19. Activating the Expression of Human K-rasG12D Stimulates Oncogenic Transformation in Transgenic Goat Fetal Fibroblast Cells

    PubMed Central

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established. PMID:24594684

  20. MK-4101, a Potent Inhibitor of the Hedgehog Pathway, Is Highly Active against Medulloblastoma and Basal Cell Carcinoma.

    PubMed

    Filocamo, Gessica; Brunetti, Mirko; Colaceci, Fabrizio; Sasso, Romina; Tanori, Mirella; Pasquali, Emanuela; Alfonsi, Romina; Mancuso, Mariateresa; Saran, Anna; Lahm, Armin; Di Marcotullio, Lucia; Steinkühler, Christian; Pazzaglia, Simonetta

    2016-06-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is implicated in the pathogenesis of many cancers, including medulloblastoma and basal cell carcinoma (BCC). In this study, using neonatally irradiated Ptch1(+/-) mice as a model of Hh-dependent tumors, we investigated the in vivo effects of MK-4101, a novel SMO antagonist, for the treatment of medulloblastoma and BCC. Results clearly demonstrated a robust antitumor activity of MK-4101, achieved through the inhibition of proliferation and induction of extensive apoptosis in tumor cells. Of note, beside antitumor activity on transplanted tumors, MK-4101 was highly efficacious against primary medulloblastoma and BCC developing in the cerebellum and skin of Ptch1(+/-) mice. By identifying the changes induced by MK-4101 in gene expression profiles in tumors, we also elucidated the mechanism of action of this novel, orally administrable compound. MK-4101 targets the Hh pathway in tumor cells, showing the maximum inhibitory effect on Gli1 MK-4101 also induced deregulation of cell cycle and block of DNA replication in tumors. Members of the IGF and Wnt signaling pathways were among the most highly deregulated genes by MK-4101, suggesting that the interplay among Hh, IGF, and Wnt is crucial in Hh-dependent tumorigenesis. Altogether, the results of this preclinical study support a therapeutic opportunity for MK-4101 in the treatment of Hh-driven cancers, also providing useful information for combination therapy with drugs targeting pathways cooperating with Hh oncogenic activity. Mol Cancer Ther; 15(6); 1177-89. ©2016 AACR. PMID:26960983

  1. URG11 promotes gastric cancer growth and invasion by activation of β-catenin signalling pathway

    PubMed Central

    Du, Rui; Xia, Lin; Sun, Shiren; Lian, Zhaorui; Zou, Xue; Gao, Juan; Xie, Huahong; Fan, Rui; Song, Jiugang; Li, Xiaohua; Liu, Jie; Fan, Daiming

    2010-01-01

    Abstract Upregulated gene 11 (URG11), a new gene upregulated by Heptatitis B Virus X protein (HBx), was previously shown to activate β-catenin and promote hepatocellular growth and tumourigenesis. Although the oncogenic role of URG11 in the development of hepatocellular carcinoma has been well documented, its relevance to other human malignancies and the underlying molecular mechanisms remain largely unknown. Here we reported a novel function of URG11 to promote gastric cancer growth and metastasis. URG11 was found to be highly expressed in gastric cancer tissues compared with adjacent nontumourous ones by immunohistochemical staining and western blot. Knockdown of URG11 expression by small interfering RNA (siRNA) effectively attenuated the proliferation, anchorage-independent growth, invasiveness and metastatic potential of gastric cancer cells. URG11 inhibition led to decreased expression of β-catenin and its nuclear accumulation in gastric cancer cells and extensive costaining between URG11 and β-catenin was observed in gastric cancer tissues. Transient transfection assays with the β-catenin promoter showed that it was inhibited by URG11-specific small inhibitory RNA. Moreover, suppression of endogenous URG11 expression results in decreased activation of β-catenin/TCF and its downstream effector genes, cyclinD1 and membrane type 1 matrix metallopeptidase (MT1-MMP), which are known to be involved in cell proliferation and invasion, respectively. Taken together, our data suggest that URG11 contributes to gastric cancer growth and metastasis at least partially through activation of β-catenin signalling pathway. These findings also propose a promising target for gene therapy in gastric cancer. PMID:19413886

  2. The RhoE/ROCK/ARHGAP25 signaling pathway controls cell invasion by inhibition of Rac activity.

    PubMed

    Thuault, Sylvie; Comunale, Franck; Hasna, Jessy; Fortier, Mathieu; Planchon, Damien; Elarouci, Nabila; De Reynies, Aurélien; Bodin, Stéphane; Blangy, Anne; Gauthier-Rouvière, Cécile

    2016-09-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of skeletal muscle origin in children and adolescents. Among RMS subtypes, alveolar rhabdomyosarcoma (ARMS), which is characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor, is associated with poor prognosis and a strong risk of metastasis compared with the embryonal subtype (ERMS). To identify molecular pathways involved in ARMS aggressiveness, we first characterized the migratory behavior of cell lines derived from ARMS and ERMS biopsies using a three-dimensional spheroid cell invasion assay. ARMS cells were more invasive than ERMS cells and adopted an ellipsoidal morphology to efficiently invade the extracellular matrix. Moreover, the invasive potential of ARMS cells depended on ROCK activity, which is regulated by the GTPase RhoE. Specifically, RhoE expression was low in ARMS biopsies, and its overexpression in ARMS cells reduced their invasion potential. Conversely, ARHGAP25, a GTPase-activating protein for Rac, was up-regulated in ARMS biopsies. Moreover, we found that ARHGAP25 inhibits Rac activity downstream of ROCKII and is required for ARMS cell invasion. Our results indicate that the RhoE/ROCK/ARHGAP25 signaling pathway promotes ARMS invasive potential and identify these proteins as potential therapeutic targets for ARMS treatment. PMID:27413008

  3. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways

    PubMed Central

    Onodera, Yasuhito; Nam, Jin-Min; Bissell, Mina J.

    2013-01-01

    There is a considerable resurgence of interest in the role of aerobic glycolysis in cancer; however, increased glycolysis is frequently viewed as a consequence of oncogenic events that drive malignant cell growth and survival. Here we provide evidence that increased glycolytic activation itself can be an oncogenic event in a physiologically relevant 3D culture model. Overexpression of glucose transporter type 3 (GLUT3) in nonmalignant human breast cells activated known oncogenic signaling pathways, including EGFR, β1 integrin, MEK, and AKT, leading to loss of tissue polarity and increased growth. Conversely, reduction of glucose uptake in malignant cells promoted the formation of organized and growth-arrested structures with basal polarity, and suppressed oncogenic pathways. Unexpectedly and importantly, we found that unlike reported literature, in 3D the differences between “normal” and malignant phenotypes could not be explained by HIF-1α/2α, AMPK, or mTOR pathways. Loss of epithelial integrity involved activation of RAP1 via exchange protein directly activated by cAMP (EPAC), involving also O-linked N-acetylglucosamine modification downstream of the hexosamine biosynthetic pathway. The former, in turn, was mediated by pyruvate kinase M2 (PKM2) interaction with soluble adenylyl cyclase. Our findings show that increased glucose uptake activates known oncogenic pathways to induce malignant phenotype, and provide possible targets for diagnosis and therapeutics. PMID:24316969

  4. Oncogenic Herpesvirus KSHV Hijacks BMP-Smad1-Id Signaling to Promote Tumorigenesis

    PubMed Central

    Li, Shasha; Dong, Jiazhen; Wang, Xing; Wang, Yuhan; He, Li; He, Zhiheng; Gao, Yuan; Gao, Shou-Jiang; Lan, Ke

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a malignancy commonly found in AIDS patients. Whether KS is a true neoplasm or hyperplasia has been a subject of intensive debate until recently when KSHV is unequivocally shown to efficiently infect, immortalize and transform rat primary mesenchymal precursor cells (MM). Moreover, KSHV-transformed MM cells (KMM) efficiently induce tumors with hallmark features of KS when inoculated into nude mice. Here, we showed Smad1 as a novel binding protein of KSHV latency-associated nuclear antigen (LANA). LANA interacted with and sustained BMP-activated p-Smad1 in the nucleus and enhanced its loading on the Id promoters. As a result, Ids were significantly up-regulated in KMM cells and abundantly expressed in human KS lesions. Strikingly, genetic and chemical inhibition of the BMP-Smad1-Id pathway blocked the oncogenic phenotype of KSHV-transformed cells in vitro and in vivo. These findings illustrate a novel mechanism by which a tumor virus hijacks and converts a developmental pathway into an indispensable oncogenic pathway for tumorigenesis. Importantly, our results demonstrate the efficacy of targeting the BMP-Smad1-Id pathway for inhibiting the growth of KSHV-induced tumors, and therefore identify the BMP pathway as a promising therapeutic target for KS. PMID:25010525

  5. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia

    PubMed Central

    Pylayeva-Gupta, Yuliya; Lee, Kyoung Eun; Hajdu, Cristina H.; Miller, George; Bar-Sagi, Dafna

    2013-01-01

    Summary Stromal responses elicited by early stage neoplastic lesions can promote tumor growth. However, the molecular mechanisms that underlie the early recruitment of stromal cells to sites of neoplasia remain poorly understood. Here we demonstrate an oncogenic KrasG12D-dependent upregulation of GM-CSF in mouse pancreatic ductal epithelial cells (PDEC). An enhanced GM-CSF production is also observed in human PanIN lesions. KrasG12D-dependent production of GM-CSF in vivo is required for the recruitment of Gr1+CD11b+ myeloid cells. The suppression of GM-CSF production inhibits the in vivo growth of KrasG12D-PDECs and, consistent with the role of GM-CSF in Gr1+CD11b+ mobilization, this effect is mediated by CD8+ T cells. These results identify a pathway that links oncogenic activation to the evasion of anti-tumor immunity. PMID:22698407

  6. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation.

    PubMed

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-06-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  7. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance.

    PubMed

    Pritchard, Antonia L; Hayward, Nicholas K

    2013-05-01

    Receptor tyrosine kinases are a diverse family of transmembrane proteins that can activate multiple pathways upon ligation of the receptor, one of which is the series of mitogen-activated protein kinase (MAPK) signaling cascades. The MAPK pathways play critical roles in a wide variety of cancer types, from hematologic malignancies to solid tumors. Aberrations include altered expression levels and activation states of pathway components, which can sometimes be attributable to mutations in individual members. The V600E mutation of BRAF was initially described in 2002 and has been found at particularly high frequency in melanoma and certain subtypes of colorectal cancer. In the relatively short time since this discovery, a family of drugs has been developed that specifically target this mutated BRAF isoform, which, after results from phase I/II and III clinical trials, was granted U.S. Food and Drug Administration approval in August 2011. Although these drugs produce clinically meaningful increases in progression-free and overall survival, due to acquired resistance they have not improved mortality rates. New drugs targeting other members of the MAPK pathways are in clinical trials or advanced stages of development. It is hoped that combination therapies of these new drugs in conjunction with BRAF inhibitors will counteract the mechanisms of resistance and provide cures. The clinical implementation of next-generation sequencing is leading to a greater understanding of the genetic architecture of tumors, along with acquired mechanisms of drug resistance, which will guide the development of tumor-specific inhibitors and combination therapies in the future. PMID:23406774

  8. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells.

    PubMed

    Textor, Sonja; Bossler, Felicitas; Henrich, Kai-Oliver; Gartlgruber, Moritz; Pollmann, Julia; Fiegler, Nathalie; Arnold, Annette; Westermann, Frank; Waldburger, Nina; Breuhahn, Kai; Golfier, Sven; Witzens-Harig, Mathias; Cerwenka, Adelheid

    2016-07-01

    Natural Killer (NK) cells are innate effector cells that are able to recognize and eliminate tumor cells through engagement of their surface receptors. NKp30 is a potent activating NK cell receptor that elicits efficient NK cell-mediated target cell killing. Recently, B7-H6 was identified as tumor cell surface expressed ligand for NKp30. Enhanced B7-H6 mRNA levels are frequently detected in tumor compared to healthy tissues. To gain insight in the regulation of expression of B7-H6 in tumors, we investigated transcriptional mechanisms driving B7-H6 expression by promoter analyses. Using luciferase reporter assays and chromatin immunoprecipitation we mapped a functional binding site for Myc, a proto-oncogene overexpressed in certain tumors, in the B7-H6 promoter. Pharmacological inhibition or siRNA/shRNA-mediated knock-down of c-Myc or N-Myc significantly decreased B7-H6 expression on a variety of tumor cells including melanoma, pancreatic carcinoma and neuroblastoma cell lines. In tumor cell lines from different origin and primary tumor tissues of hepatocellular carcinoma (HCC), lymphoma and neuroblastoma, mRNA levels of c-Myc positively correlated with B7-H6 expression. Most importantly, upon inhibition or knock-down of c-Myc in tumor cells impaired NKp30-mediated degranulation of NK cells was observed. Thus, our data imply that Myc driven tumors could be targets for cancer immunotherapy exploiting the NKp30/B7-H6 axis. PMID:27622013

  9. Key gravity-sensitive signaling pathways drive T cell activation.

    PubMed

    Boonyaratanakornkit, J B; Cogoli, A; Li, C-F; Schopper, T; Pippia, P; Galleri, G; Meloni, M A; Hughes-Fulford, M

    2005-12-01

    Returning astronauts have experienced altered immune function and increased vulnerability to infection during spaceflights dating back to Apollo and Skylab. Lack of immune response in microgravity occurs at the cellular level. We analyzed differential gene expression to find gravity-dependent genes and pathways. We found inhibited induction of 91 genes in the simulated freefall environment of the random positioning machine. Altered induction of 10 genes regulated by key signaling pathways was verified using real-time RT-PCR. We discovered that impaired induction of early genes regulated primarily by transcription factors NF-kappaB, CREB, ELK, AP-1, and STAT after crosslinking the T-cell receptor contributes to T-cell dysfunction in altered gravity environments. We have previously shown that PKA and PKC are key early regulators in T-cell activation. Since the majority of the genes were regulated by NF-kappaB, CREB, and AP-1, we studied the pathways that regulated these transcription factors. We found that the PKA pathway was down-regulated in vg. In contrast, PI3-K, PKC, and its upstream regulator pLAT were not significantly down-regulated by vectorless gravity. Since NF-kappaB, AP-1, and CREB are all regulated by PKA and are transcription factors predicted by microarray analysis to be involved in the altered gene expression in vectorless gravity, the data suggest that PKA is a key player in the loss of T-cell activation in altered gravity. PMID:16210397

  10. Oncogene-dependent apoptosis is mediated by caspase-9

    PubMed Central

    Fearnhead, Howard O.; Rodriguez, Joe; Govek, Eve-Ellen; Guo, Wenjun; Kobayashi, Ryuji; Hannon, Greg; Lazebnik, Yuri A.

    1998-01-01

    Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria. PMID:9811857

  11. The Cryptococcus neoformans Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator

    PubMed Central

    Ost, Kyla S.; O’Meara, Teresa R.; Huda, Naureen; Esher, Shannon K.; Alspaugh, J. Andrew

    2015-01-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels. PMID:25859664

  12. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma

    SciTech Connect

    Wang, Dong; Han, Sheng; Peng, Rui; Wang, Xing; Yang, Xin-Xiang; Yang, Ren-Jie; Jiao, Chen-Yu; Ding, Dong; Ji, Gu-Wei; Li, Xiang-Cheng

    2015-03-06

    Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Taken together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC. - Highlights: • FAM83D is up-regulated in HCC tissues and cell lines. • Ectopic expression of FAM83D promotes HCC cell proliferation and colony formation. • Depletion of FAM83D inhibits HCC cell proliferation and colony formation. • FAM83D activates the MEK/ERK signaling pathway in HCC.

  13. A novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway

    PubMed Central

    Zhu, Jingyu; Xu, Yujia; Wang, Siyu; Xu, Xin; Ji, Peng; Yu, Yang; Cao, Biyin; Han, Kunkun; Hou, Tingjun; Xu, Zhuan; Kong, Yan; Jiang, Gaofeng; Tang, Xiaowen; Qiao, Chunhua; Mao, Xinliang

    2016-01-01

    The oncogenic STAT3 signaling pathway is emerging as a promising target for the treatment of multiple myeloma (MM). In the present study, we identified a novel STAT3 inhibitor SC99 in a target-based high throughput screen. SC99 inhibited JAK2-STAT3 activation but had no effects on other transcription factors such as NF-κB, and kinases such as AKT, ERK, and c-Src that are in association with STAT3 signaling pathway. Furthermore, SC99 downregulated the expression of STAT3-modulated genes, including Bcl-2, Bcl-xL, VEGF, cyclin D2, and E2F-1. By inhibiting the STAT3 signaling, SC99 induced MM cell apoptosis which could be partly abolished by the ectopic expression of STAT3. Furthermore, SC99 displayed potent anti-MM activity in two independent MM xenograft models in nude mice. Oral administration of SC99 led to marked decrease of tumor growth within 10 days at a daily dosage of 30 mg/kg, but did not raise toxic effects. Taken together, this study identified a novel oral JAK2/STAT3 inhibitor that could be developed as an anti-myeloma agent. PMID:26814430

  14. Sucrose activates human taste pathways differently from artificial sweetener.

    PubMed

    Frank, Guido K W; Oberndorfer, Tyson A; Simmons, Alan N; Paulus, Martin P; Fudge, Julie L; Yang, Tony T; Kaye, Walter H

    2008-02-15

    Animal models suggest that sucrose activates taste afferents differently than non-caloric sweeteners. Little information exists how artificial sweeteners engage central taste pathways in the human brain. We assessed sucrose and sucralose taste pleasantness across a concentration gradient in 12 healthy control women and applied 10% sucrose and matched sucralose during functional magnet resonance imaging. The results indicate that (1) both sucrose and sucralose activate functionally connected primary taste pathways; (2) taste pleasantness predicts left insula response; (3) sucrose elicits a stronger brain response in the anterior insula, frontal operculum, striatum and anterior cingulate, compared to sucralose; (4) only sucrose, but not sucralose, stimulation engages dopaminergic midbrain areas in relation to the behavioral pleasantness response. Thus, brain response distinguishes the caloric from the non-caloric sweetener, although the conscious mind could not. This could have important implications on how effective artificial sweeteners are in their ability to substitute sugar intake. PMID:18096409

  15. Activated factor XI increases the procoagulant activity of the extrinsic pathway by inactivating tissue factor pathway inhibitor

    PubMed Central

    Tucker, Erik I.; Matafonov, Anton; Cheng, Qiufang; Zientek, Keith D.; Gailani, Dave; Gruber, András; McCarty, Owen J. T.

    2015-01-01

    Activation of coagulation factor XI (FXI) may play a role in hemostasis. The primary substrate of activated FXI (FXIa) is FIX, leading to FX activation (FXa) and thrombin generation. However, recent studies suggest the hemostatic role of FXI may not be restricted to the activation of FIX. We explored whether FXI could interact with and inhibit the activity of tissue factor pathway inhibitor (TFPI). TFPI is an essential reversible inhibitor of activated factor X (FXa) and also inhibits the FVIIa-TF complex. We found that FXIa neutralized both endothelium- and platelet-derived TFPI by cleaving the protein between the Kunitz (K) 1 and K2 domains (Lys86/Thr87) and at the active sites of the K2 (Arg107/Gly108) and K3 (Arg199/Ala200) domains. Addition of FXIa to plasma was able to reverse the ability of TFPI to prolong TF-initiated clotting times in FXI- or FIX-deficient plasma, as well as FXa-initiated clotting times in FX-deficient plasma. Treatment of cultured endothelial cells with FXIa increased the generation of FXa and promoted TF-dependent fibrin formation in recalcified plasma. Together, these results suggest that the hemostatic role of FXIa may be attributed not only to activation of FIX but also to promoting the extrinsic pathway of thrombin generation through inactivation of TFPI. PMID:25587039

  16. Activated factor XI increases the procoagulant activity of the extrinsic pathway by inactivating tissue factor pathway inhibitor.

    PubMed

    Puy, Cristina; Tucker, Erik I; Matafonov, Anton; Cheng, Qiufang; Zientek, Keith D; Gailani, Dave; Gruber, András; McCarty, Owen J T

    2015-02-26

    Activation of coagulation factor XI (FXI) may play a role in hemostasis. The primary substrate of activated FXI (FXIa) is FIX, leading to FX activation (FXa) and thrombin generation. However, recent studies suggest the hemostatic role of FXI may not be restricted to the activation of FIX. We explored whether FXI could interact with and inhibit the activity of tissue factor pathway inhibitor (TFPI). TFPI is an essential reversible inhibitor of activated factor X (FXa) and also inhibits the FVIIa-TF complex. We found that FXIa neutralized both endothelium- and platelet-derived TFPI by cleaving the protein between the Kunitz (K) 1 and K2 domains (Lys86/Thr87) and at the active sites of the K2 (Arg107/Gly108) and K3 (Arg199/Ala200) domains. Addition of FXIa to plasma was able to reverse the ability of TFPI to prolong TF-initiated clotting times in FXI- or FIX-deficient plasma, as well as FXa-initiated clotting times in FX-deficient plasma. Treatment of cultured endothelial cells with FXIa increased the generation of FXa and promoted TF-dependent fibrin formation in recalcified plasma. Together, these results suggest that the hemostatic role of FXIa may be attributed not only to activation of FIX but also to promoting the extrinsic pathway of thrombin generation through inactivation of TFPI. PMID:25587039

  17. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction

    PubMed Central

    Luo, Ji; Solimini, Nicole L.; Elledge, Stephen J.

    2010-01-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  18. Principles of cancer therapy: oncogene and non-oncogene addiction.

    PubMed

    Luo, Ji; Solimini, Nicole L; Elledge, Stephen J

    2009-03-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  19. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  20. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  1. Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway

    PubMed Central

    Li, Zhenwei; Zhao, Liang; Wang, Qiugen

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors that are involved in tumorigenesis and chemotherapy resistance. HOTTIP is located at the 5’ tip of the HOXA locus and coordinates the activation of multiple 5’ HOXA genes, which plays an important role in multiple cancers. However, its biological role in the development of the chemoresistance phenotype of osteosarcoma (OS) is still unknown. In this study, we explored the roles of lncRNA HOTTIP in the initiation and chemoresistance of OS. We found that HOTTIP was increased in OS and up-regulated expression of HOTTIP could promoted OS cell proliferation and cell cycle progression by activating the Wnt/β-catenin pathway. Down-regulated expression of HOTTIP inhibited cell proliferation and arrested cell cycle at G1 phase by inhibition of Wnt/β-catenin pathway. Furthermore, our data showed that increased expression of HOTTIP was correlated with chemoresistance in OS. In vitro, HOTTIP induced cellular resistance to cisplatin by activating the Wnt/β-catenin pathway, which could be reversed by treatment with the Wnt/β-catenin inhibitor. Taken together, these findings indicated that HOTTIP play a pivotal role in OS cell initiation and chemoresistance via activating Wnt/β-catenin signaling pathway, which suggested potential use of HOTTIP for the treatment of osteosarcoma. PMID:27347346

  2. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents.

    PubMed

    Perera, David; Venkitaraman, Ashok R

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  3. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents

    PubMed Central

    Perera, David; Venkitaraman, Ashok R.

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  4. Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth

    PubMed Central

    Chabu, Chiswili; Xu, Tian

    2014-01-01

    Oncogenic mutations in Ras deregulate cell death and proliferation to cause cancer in a significant number of patients. Although normal Ras signaling during development has been well elucidated in multiple organisms, it is less clear how oncogenic Ras exerts its effects. Furthermore, cancers with oncogenic Ras mutations are aggressive and generally resistant to targeted therapies or chemotherapy. We identified the exocytosis component Sec15 as a synthetic suppressor of oncogenic Ras in an in vivo Drosophila mosaic screen. We found that oncogenic Ras elevates exocytosis and promotes the export of the pro-apoptotic ligand Eiger (Drosophila TNF). This blocks tumor cell death and stimulates overgrowth by activating the JNK-JAK-STAT non-autonomous proliferation signal from the neighboring wild-type cells. Inhibition of Eiger/TNF exocytosis or interfering with the JNK-JAK-STAT non-autonomous proliferation signaling at various steps suppresses oncogenic Ras-mediated overgrowth. Our findings highlight important cell-intrinsic and cell-extrinsic roles of exocytosis during oncogenic growth and provide a new class of synthetic suppressors for targeted therapy approaches. PMID:25411211

  5. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  6. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one

  7. The oncogenic FIP1L1-PDGFRα fusion protein displays skewed signaling properties compared to its wild-type PDGFRα counterpart

    PubMed Central

    Haan, Serge; Bahlawane, Christelle; Wang, Jiali; Nazarov, Petr V; Muller, Arnaud; Eulenfeld, René; Haan, Claude; Rolvering, Catherine; Vallar, Laurent; Satagopam, Venkata P; Sauter, Thomas; Wiesinger, Monique Yvonne

    2015-01-01

    Aberrant activation of oncogenic kinases is frequently observed in human cancers, but the underlying mechanism and resulting effects on global signaling are incompletely understood. Here, we demonstrate that the oncogenic FIP1L1-PDGFRα kinase exhibits a significantly different signaling pattern compared to its PDGFRα wild type counterpart. Interestingly, the activation of primarily membrane-based signal transduction processes (such as PI3-kinase- and MAP-kinase- pathways) is remarkably shifted toward a prominent activation of STAT factors. This diverging signaling pattern compared to classical PDGF-receptor signaling is partially coupled to the aberrant cytoplasmic localization of the oncogene, since membrane targeting of FIP1L1-PDGFRα restores activation of MAPK- and PI3K-pathways. In stark contrast to the classical cytokine-induced STAT activation process, STAT activation by FIP1L1-PDGFRα does neither require Janus kinase activity nor Src kinase activity. Furthermore, we investigated the mechanism of STAT5 activation via FIP1L1-PDGFRα in more detail and found that STAT5 activation does not involve an SH2-domain-mediated binding mechanism. We thus demonstrate that STAT5 activation occurs via a non-canonical activation mechanism in which STAT5 may be subject to a direct phosphorylation by FIP1L1-PDGFRα. PMID:26413425

  8. Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells.

    PubMed

    Liu, Xue; Zhou, Yi; Gong, Hai-Qing; Liang, Pei-Ji

    2007-10-26

    In the present study, the spatiotemporal pattern of chicken retinal ganglion cells' firing activity in response to full-field white light stimulation was investigated. Cross-correlation analysis showed that ganglion cells of sustained subtype fired in precise synchrony with their adjacent neurons of the same subtype (delay lag within 2 ms, narrow correlation). On the other hand, the activities of neighboring ganglion cells of transient subtype were correlated with distributed time lags (10-30 ms, medium correlation). Pharmacological studies demonstrated that the intensity of the medium correlations could be strengthened when exogenous GABA was applied and attenuated when GABA receptors were blocked by picrotoxin. Meanwhile, the GABAergic modulation on the narrow correlations was not consistent. These results suggest that, in the chicken retina, GABAergic pathway(s) are likely involved in the formation of medium correlations between ganglion cells. Neurons might fire at a lower rate but with higher level of synchronization to improve the efficiency of information transmission, with the mechanism involving the GABAergic inhibitory input. PMID:17919471

  9. Livin enhances tumorigenesis by regulating the mitogen-activated protein kinase signaling pathway in human hypopharyngeal squamous cell carcinoma.

    PubMed

    Kim, Sun-Ae; Yoon, Tae Mi; Lee, Dong Hoon; Lee, Joon Kyoo; Park, Young-Lan; Chung, Ik-Joo; Joo, Young-Eun; Lim, Sang Chul

    2016-07-01

    Livin, a member of the human inhibitor of apoptosis protein (IAP) family, is expressed at high levels in various human cancer tissues and may have prognostic significance. The aim of the present study was to evaluate the effect of Livin on tumor cell behavior and oncogenic signaling pathways in human hypopharyngeal squamous cell carcinoma (HSCC). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to determine the mRNA and protein expression levels, respectively. A cell proliferation assay and cell cycle analysis were used to assess the functional effects of small interfering RNA‑mediated Livin knockdown. Livin was overexpressed in fresh HSCC tissues, compared with the adjacent normal mucosa. Livin knockdown led to significantly reduced cell proliferation and cell cycle arrest in the G1 phase of the human HSCC cells. The expression levels of c‑myc, cyclin D1, cyclin D3, cyclin‑dependent kinase (CDK)4 and CDK6 were decreased. The phosphorylation levels of extracellular signal‑regulated kinase 1/2, p38, c‑Jun N-terminal kinase and Akt were also decreased by Livin knockdown in the HSCC cells. Taken together, the results of the present study suggested that Livin may enhance tumorigenesis by modulating the mitogen‑activated/Akt signaling pathways in human HSCC. PMID:27175933

  10. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  11. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    PubMed Central

    2011-01-01

    Introduction Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. Methods p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. Results Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. Conclusions The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study. PMID:22132754

  12. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  13. Noncanonical Roles of the Immune System in Eliciting Oncogene Addiction

    PubMed Central

    Casey, Stephanie C.; Bellovin, David I.; Felsher, Dean W.

    2013-01-01

    Summary Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression illustrating that cancers can be “oncogene addicted” [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases necessarily their surfeit of activation is paramaount to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is mediated both through both tumor intrinsic cell-autonomous mechanisms including proliferative arrest, apoptosis, differentiation and cellular senescence [1,2,4,12] but also host-dependent mechanisms that interact with these tumor intrinsic programs [14,15]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16]. Hence, immune effectors are critically involved in tumor initiation and prevention [17-19] and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21-23]. The understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both a robust tumor intrinsic as well as immunological effectively leading to sustained tumor regression. PMID:23571026

  14. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes

    PubMed Central

    Marchi, Saverio; Giorgi, Carlotta; Oparka, Monika; Duszynski, Jerzy; Wieckowski, Mariusz R; Pinton, Paolo

    2014-01-01

    The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins. PMID:27308328

  15. Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas

    PubMed Central

    Bognar, M K; Vincendeau, M; Erdmann, T; Seeholzer, T; Grau, M; Linnemann, J R; Ruland, J; Scheel, C H; Lenz, P; Ott, G; Lenz, G; Hauck, S M; Krappmann, D

    2016-01-01

    Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis. PMID:26776161

  16. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways.

    PubMed

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. PMID:25970033

  17. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition

    PubMed Central

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J.; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  18. Metabolic activation of efferent pathways from the rat area postrema.

    PubMed

    Gross, P M; Wainman, D S; Shaver, S W; Wall, K M; Ferguson, A V

    1990-03-01

    We used the quantitative [14C]deoxyglucose method and autoradiography to evaluate metabolic activity in 47 individual cerebral structures or subregions that are part of neural pathways emanating from the brain stem circumventricular organ, area postrema. Electrical stimulation of the dorsocentral area postrema in halothane-ventilated rats produced hypotension and increased glucose metabolism by several structures within the ascending trajectories of efferent neural projections from the nucleus. Structures in the caudal medulla oblongata, including three subnuclei of the nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and nucleus ambiguus-A1 noradrenergic region, had increases of metabolism during stimulation of 32-62%. Pontine activation occurred specifically in the locus coeruleus and lateral parabrachial nuclei (increases of 24-36%). Magnocellular and parvocellular subdivisions of the hypothalamic paraventricular nucleus, supraoptic and suprachiasmatic nuclei, and median eminence showed increases in metabolism of 22-34%. An 89% elevation of glucose metabolism by the pituitary neural lobe resulted. The findings are evidence for functional activation of specific structures within ascending neural pathways from area postrema to forebrain mechanisms regulating blood pressure and fluid balance. PMID:2316724

  19. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition.

    PubMed

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  20. The Plasticity of Oncogene Addiction: Implications for Targeted Therapies Directed to Receptor Tyrosine Kinases12

    PubMed Central

    Pillay, Vinochani; Allaf, Layal; Wilding, Alexander L; Donoghue, Jacqui F; Court, Naomi W; Greenall, Steve A; Scott, Andrew M; Johns, Terrance G

    2009-01-01

    A common mutation of the epidermal growth factor receptor (EGFR) in glioblastoma multiforme (GBM) is an extracellular truncation known as the de2-7 EGFR (or EGFRvIII). Hepatocyte growth factor (HGF) is the ligand for the receptor tyrosine kinase (RTK) c-Met, and this signaling axis is often active in GBM. The expression of the HGF/c-Met axis or de2-7 EGFR independently enhances GBMgrowth and invasiveness, particularly through the phosphatidylinositol-3 kinase/pAkt pathway. Using RTK arrays, we show that expression of de2-7 EGFR in U87MG GBM cells leads to the coactivation of several RTKs, including platelet-derived growth factor receptor β and c-Met. A neutralizing antibody to HGF (AMG102) did not inhibit de2-7 EGFR-mediated activation of c-Met, demonstrating that it is ligand-independent. Therapy for parental U87MG xenografts with AMG 102 resulted in significant inhibition of tumor growth, whereas U87MG.Δ2-7 xenografts were profoundly resistant. Treatment of U87MG.Δ2-7 xenografts with panitumumab, an anti-EGFR antibody, only partially inhibited tumor growth as xenografts rapidly reverted to the HGF/c-Met signaling pathway. Cotreatment with panitumumab and AMG 102 prevented this escape leading to significant tumor inhibition through an apoptotic mechanism, consistent with the induction of oncogenic shock. This observation provides a rationale for using panitumumab and AMG 102 in combination for the treatment of GBM patients. These results illustrate that GBM cells can rapidly change the RTK driving their oncogene addiction if the alternate RTK signals through the same downstream pathway. Consequently, inhibition of a dominant oncogene by targeted therapy can alter the hierarchy of RTKs resulting in rapid therapeutic resistance. PMID:19412429

  1. Mast cell degranulation activates a pain pathway underlying migraine headache

    PubMed Central

    Levy, Dan; Burstein, Rami; Kainz, Vanessa; Jakubowski, Moshe; Strassman, Andrew M.

    2007-01-01

    Intracranial headaches such as that of migraine are generally accepted to be mediated by prolonged activation of meningeal nociceptors but the mechanisms responsible for such nociceptor activation are poorly understood. In this study, we examined the hypothesis that meningeal nociceptors can be activated locally through a neuroimmune interaction with resident mast cells, granulated immune cells that densely populate the dura mater. Using in vivo electrophysiological single unit recording of meningeal nociceptors in the rat we observed that degranulation of dural mast cells using intraperitoneal administration of the basic secretagogue agent compound 48/80 (2 mg/kg) induced a prolonged state of excitation in meningeal nociceptors. Such activation was accompanied by increased expression of the phosphorylated form of the extracellular signal-regulated kinase (pERK), an anatomical marker for nociceptor activation. Mast cell - induced nociceptor interaction was also associated with downstream activation of the spinal trigeminal nucleus as indicated by an increase in c-fos expression. Our findings provide evidence linking dural mast cell degranulation to prolonged activation of the trigeminal pain pathway believed to underlie intracranial headaches such as that of migraine. PMID:17459586

  2. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  3. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules.

    PubMed

    Vo, Duc Duy; Staedel, Cathy; Zehnacker, Laura; Benhida, Rachid; Darfeuille, Fabien; Duca, Maria

    2014-03-21

    MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic

  4. ERβ decreases the invasiveness of triple-negative breast cancer cells by regulating mutant p53 oncogenic function

    PubMed Central

    Bado, Igor; Nikolos, Fotis; Rajapaksa, Gayani; Gustafsson, Jan-Åke; Thomas, Christoforos

    2016-01-01

    Most (80%) of the triple-negative breast cancers (TNBCs) express mutant p53 proteins that acquire oncogenic activities including promoting metastasis. We previously showed that wild-type ERβ (ERβ1) impedes epithelial to mesenchymal transition (EMT) and decreases the invasiveness of TNBC cells. In the present study we searched for signaling pathways that ERβ1 uses to inhibit EMT and invasion in TNBC cells. We show that ERβ1 binds to and opposes the transcriptional activity of mutant p53 at the promoters of genes that regulate metastasis. p63 that transcriptionally cooperates with mutant p53 also binds to ERβ1. Downregulation of p63 represses the epithelial phenotype of ERβ1-expressing cells and alters the expression of mutant p53 target genes. These results describe a novel mechanism through which ERβ1 can disturb oncogenic signals to inhibit aggressiveness in TNBCs. PMID:26871946

  5. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition

    PubMed Central

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  6. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition.

    PubMed

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  7. Complement Alternative Pathway Activation in Human Nonalcoholic Steatohepatitis

    PubMed Central

    Segers, Filip M.; Verdam, Froukje J.; de Jonge, Charlotte; Boonen, Bas; Driessen, Ann; Shiri-Sverdlov, Ronit; Bouvy, Nicole D.; Greve, Jan Willem M.; Buurman, Wim A.; Rensen, Sander S.

    2014-01-01

    The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway

  8. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    SciTech Connect

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  9. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  10. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells.

    PubMed

    Mason, J A; Davison-Versagli, C A; Leliaert, A K; Pape, D J; McCallister, C; Zuo, J; Durbin, S M; Buchheit, C L; Zhang, S; Schafer, Z T

    2016-08-01

    In order for cancer cells to survive during metastasis, they must overcome anoikis, a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, and rectify detachment-induced metabolic defects that compromise cell survival. However, the precise signals used by cancer cells to facilitate their survival during metastasis remain poorly understood. We have discovered that oncogenic Ras facilitates the survival of ECM-detached cancer cells by using distinct effector pathways to regulate metabolism and block anoikis. Surprisingly, we find that while Ras-mediated phosphatidylinositol (3)-kinase signaling is critical for rectifying ECM-detachment-induced metabolic deficiencies, the critical downstream effector is serum and glucocorticoid-regulated kinase-1 (SGK-1) rather than Akt. Our data also indicate that oncogenic Ras blocks anoikis by diminishing expression of the phosphatase PHLPP1 (PH Domain and Leucine-Rich Repeat Protein Phosphatase 1), which promotes anoikis through the activation of p38 MAPK. Thus, our study represents a novel paradigm whereby oncogene-initiated signal transduction can promote the survival of ECM-detached cells through divergent downstream effectors. PMID:26915296

  11. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    PubMed

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions. PMID:26811379

  12. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels.

    PubMed

    Kong, Bo; Qia, Chengjia; Erkan, Mert; Kleeff, Jörg; Michalski, Christoph W

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease without clearly known disease causes. Recent epidemiological and animal studies suggest that the supplementation of dietary antioxidants (e.g., vitamins C and E) decreases cancer risk, implying that increased reactive oxygen species (ROS) may play a role in pancreatic carcinogenesis. However, oncogenic Kras mutations (e.g., Kras(G12D)), which are present in more than 90% of PDAC, have been proven to foster low intracellular ROS levels. Here, oncogenic Kras activates expression of a series of anti-oxidant genes via Nrf2 (nuclear factor, erythroid derived 2, like 2) and also mediates an unusual metabolic pathway of glutamine to generate NADPH. This can then be used as the reducing power for ROS detoxification, leading collectively to low ROS levels in pancreatic pre-neoplastic cells and in cancer cells. In adult stem cells and cancer stem cells, low ROS levels have been associated with the formation of a proliferation-permissive intracellular environment and with perseverance of self-renewal capacities. Therefore, it is conceivable that low intracellular ROS levels may contribute significantly to oncogenic Kras-mediated PDAC formation. PMID:24062691

  13. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation

    PubMed Central

    Groenendijk, Floris H; Mellema, Wouter W; van der Burg, Eline; Schut, Eva; Hauptmann, Michael; Horlings, Hugo M; Willems, Stefan M; van den Heuvel, Michel M; Jonkers, Jos; Smit, Egbert F; Bernards, René

    2015-01-01

    The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP-activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non-small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials. PMID:25080865

  14. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways.

    PubMed

    Kovacevic, Zaklina; Menezes, Sharleen V; Sahni, Sumit; Kalinowski, Danuta S; Bae, Dong-Hun; Lane, Darius J R; Richardson, Des R

    2016-01-15

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  15. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    PubMed Central

    Jeng, Kuo-Shyang; Sheen, I-Shyan; Jeng, Wen-Juei; Yu, Ming-Che; Hsiau, Hsin-I; Chang, Fang-Yu; Tsai, Hsin-Hua

    2013-01-01

    Background The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC). Some researchers have proposed that the sonic hedgehog (Shh) pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer. Materials and methods We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133− cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1), glioma-associated oncogene homolog 1 (Gli-1), and smoothened homolog (Smoh) by real-time polymerase chain reaction of both CD133+ and CD133− cells. Results The number (mean ± standard deviation) of colonies of CD133+ cells and CD133− cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001). Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001). CD133+ cells and CD133− cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively). Conclusion CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these cells that harbor stem cell features, with an underexpression of Shh mRNA and an overexpression of Smoh mRNA. Blockade of the Shh signaling pathway may be a potential therapeutic strategy for hepatocarcinogenesis. PMID:23950652

  16. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  17. Oncogenes in Cell Survival and Cell Death

    PubMed Central

    Shortt, Jake; Johnstone, Ricky W.

    2012-01-01

    The transforming effects of proto-oncogenes such as MYC that mediate unrestrained cell proliferation are countered by “intrinsic tumor suppressor mechanisms” that most often trigger apoptosis. Therefore, cooperating genetic or epigenetic effects to suppress apoptosis (e.g., overexpression of BCL2) are required to enable the dual transforming processes of unbridled cell proliferation and robust suppression of apoptosis. Certain oncogenes such as BCR-ABL are capable of concomitantly mediating the inhibition of apoptosis and driving cell proliferation and therefore are less reliant on cooperating lesions for transformation. Accordingly, direct targeting of BCR-ABL through agents such as imatinib have profound antitumor effects. Other oncoproteins such as MYC rely on the anti-apoptotic effects of cooperating oncoproteins such as BCL2 to facilitate tumorigenesis. In these circumstances, where the primary oncogenic driver (e.g., MYC) cannot yet be therapeutically targeted, inhibition of the activity of the cooperating antiapoptotic protein (e.g., BCL2) can be exploited for therapeutic benefit. PMID:23209150

  18. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  19. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  20. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  1. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation

    PubMed Central

    Cao, Bo; Wang, Kebing; Liao, Jun-Ming; Zhou, Xiang; Liao, Peng; Zeng, Shelya X; He, Meifang; Chen, Lianzhou; He, Yulong; Li, Wen; Lu, Hua

    2016-01-01

    Increasing evidence highlights the important roles of microRNAs in mediating p53’s tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p. DOI: http://dx.doi.org/10.7554/eLife.15978.001 PMID:27383270

  2. Molecular Pathways: Anticancer Activity by Inhibition of Nucleocytoplasmic Shuttling.

    PubMed

    Conforti, Fabio; Wang, Yisong; Rodriguez, Jose A; Alberobello, Anna Teresa; Zhang, Yu-Wen; Giaccone, Giuseppe

    2015-10-15

    A dynamic distribution between nucleus and cytoplasm (nucleocytoplasmic shuttling) is one of the control mechanisms adapted by normal cells to regulate the activity of a variety of molecules. Growing evidence suggests that dysregulation of the nucleocytoplasmic shuttling is involved in promoting abnormal cell survival, tumor progression, and drug resistance, and is associated with poor cancer prognosis. Aberrant nucleocytoplasmic shuttling in cancer cells may result from a hyperactive status of diverse signal-transduction pathways, such as the PI3K-AKT and MAPK pathways, or from alterations in the general nuclear import/export machinery. Among the large number of molecules involved in the shuttling process, exportin XPO1, also known as chromosome region maintenance 1, appears to play a particularly prominent role in pathogenesis of both hematological malignancies and solid tumors. Given the importance of nucleocytoplasmic shuttling in cancer pathogenesis and the rapidly expanding knowledge in this field, attempts have been made to develop compounds able to revert the aberrant nucleocytoplasmic shuttling. A promising new drug, KPT-330 (Selinexor), which belongs to the class of XPO1 inhibitors called selective inhibitors of nuclear export, is now being tested in phase I/II clinical trials. PMID:26324742

  3. Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways.

    PubMed

    Qiu, Quanhe; Jiang, Jing; Lin, Liangbo; Cheng, Si; Xin, Daqi; Jiang, Wei; Shen, Jieliang; Hu, Zhenming

    2016-06-01

    RSK2 (90 kDa ribosomal S6 kinase) is a downstream effector of the Ras/ERK (extracellular signal-regulated kinase) signaling pathway that has major functions in cell biological activities, including regulating nuclear signaling, cell cycle progression, cell proliferation, cell growth, protein synthesis, cell migration and cell survival, and is expressed in most types of human malignant tumors, including lung cancer, prostate and breast tumors, skin cancer and osteosarcomas (OS). RSK2 was found to be essential for osteosarcoma formation. To investigate whether RSK2 is expressed at high levels in human osteosarcome tissues and whether its expression is correlated with the aggressive biological behavior of osteosarcoma cell line (OCLs), we assessed the association between RSK2 expression and OS cell progression, as well as the effects of RSK2 inhibition on the biological activities of osteosarcoma cells. We performed immunohistochemistry to analyze the expression of RSK2 in specimens from 30 humans with osteosarcoma, and 15 normal tissues. RSK2 gene expression levels in 30 specimens with osteosarcoma were significantly higher than those of normal tissues. We performed RNA interference on three OCLs to evaluate cell apoptosis, cell growth, cell proliferation, cell motility, chemosensitivity and oncogenicity. After transfection with RSK2 shRNA, increased cell apoptosis, cell growth inhibition, cell cycle progression, weaker cell proliferation, cell migration and weaker tumor formation were observed in all OCLs. These results suggested that RSK2 expression may mediate the biological activities of OS cells and RSK2 may be an effective therapeutic target for the treatment of osteosarcomas. The AKT/mTOR, MAPK/ERK/c-Fos and Bcl2/Bax pathways were analysed to clarify the mechanisms involved. PMID:27082640

  4. Synergistic Induction of Potential Warburg Effect in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes

    PubMed Central

    Li, Zhen; Zheng, Weiling; Li, Hankun; Li, Caixia; Gong, Zhiyuan

    2015-01-01

    Previously we have generated inducible liver tumor models by transgenic expression of Myc or xmrk (activated EGFR homolog) oncogenes in zebrafish. To investigate the interaction of the two oncogenes, we crossed the two transgenic lines and observed more severe and faster hepatocarcinogenesis in Myc/xmrk double transgenic zebrafish than either single transgenic fish. RNA-Seq analyses revealed distinct changes in many molecular pathways among the three types of liver tumors. In particular, we found dramatic alteration of cancer metabolism based on the uniquely enriched pathways in the Myc/xmrk tumors. Critical glycolytic genes including hk2, pkm and ldha were significantly up-regulated in Myc/xmrk tumors but not in either single oncogene-induced tumors, suggesting a potential Warburg effect. In RT-qPCR analyses, the specific pkm2 isoformin Warburg effect was found to be highly enriched in the Myc/xmrk tumors but not in Myc or xmrk tumors, consistent with the observations in many human cancers with Warburg effect. Moreover, the splicing factor genes (hnrnpa1, ptbp1a, ptbp1b and sfrs3b) responsible for generating the pkm isoform were also greatly up-regulated in the Myc/xmrk tumors. As Pkm2 isoform is generally inactive and causes incomplete glycolysis to favor anabolism and tumor growth, by treatment with a Pkm2-specific activator, TEPP-46, we further demonstrated that activation of Pkm2 suppressed the growth of oncogenic liver as well as proliferation of liver cells. Collectively, our Myc/xmrk zebrafish model suggests synergetic effect of EGFR and MYC in triggering Warburg effect in the HCC formation and may provide a promising in vivo model for Warburg effect. PMID:26147004

  5. Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway.

    PubMed

    Wu, Xu; Walker, John; Zhang, Jie; Ding, Sheng; Schultz, Peter G

    2004-09-01

    Previously, a small molecule, purmorphamine, was identified that selectively induces osteogenesis in multipotent mesenchymal progenitor cells. In order to gain insights into the mechanism of action of purmorphamine, high-density oligonucleotide microarrays were used to profile gene expression in multipotent mesenchymal progenitor cells treated with either purmorphamine or bone morphogenetic protein-4 (BMP-4). In contrast to BMP-4 treatment, purmorphamine activates the Hedgehog (Hh) signaling pathway, resulting in the up- and downregulation of its downstream target genes, including Gli1 and Patched. Moreover, the known Hh signaling antagonists, cyclopamine and forskolin, completely block the osteogenesis and Glimediated transcription induced by purmorphamine. These results demonstrate that purmorphamine is a small molecule agonist of Hedgehog signaling, and it may ultimately be useful in the treatment of bone-related disease and neurodegenerative disease. PMID:15380183

  6. Hedgehog-Gli pathway activation during kidney fibrosis.

    PubMed

    Fabian, Steven L; Penchev, Radostin R; St-Jacques, Benoit; Rao, Anjali N; Sipilä, Petra; West, Kip A; McMahon, Andrew P; Humphreys, Benjamin D

    2012-04-01

    The Hedgehog (Hh) signaling pathway regulates tissue patterning during development, including patterning and growth of limbs and face, but whether Hh signaling plays a role in adult kidney remains undefined. In this study, using a panel of hedgehog-reporter mice, we show that the two Hh ligands (Indian hedgehog and sonic hedgehog ligands) are expressed in tubular epithelial cells. We report that the Hh effectors (Gli1 and Gli2) are expressed exclusively in adjacent platelet-derived growth factor receptor-β-positive interstitial pericytes and perivascular fibroblasts, suggesting a paracrine signaling loop. In two models of renal fibrosis, Indian Hh ligand was upregulated with a dramatic activation of downstream Gli effector expression. Hh-responsive Gli1-positive interstitial cells underwent 11-fold proliferative expansion during fibrosis, and both Gli1- and Gli2-positive cells differentiated into α-smooth muscle actin-positive myofibroblasts. In the pericyte-like cell line 10T1/2, hedgehog ligand triggered cell proliferation, suggesting a possible role for this pathway in the regulation of cell cycle progression of myofibroblast progenitors during the development of renal fibrosis. The hedgehog antagonist IPI-926 abolished Gli1 induction in vivo but did not decrease kidney fibrosis. However, the transcriptional induction of Gli2 was unaffected by IPI-926, suggesting the existence of smoothened-independent Gli activation in this model. This study is the first detailed description of paracrine hedgehog signaling in adult kidney, which indicates a possible role for hedgehog-Gli signaling in fibrotic chronic kidney disease. PMID:22342522

  7. Hedgehog-Gli Pathway Activation during Kidney Fibrosis

    PubMed Central

    Fabian, Steven L.; Penchev, Radostin R.; St-Jacques, Benoit; Rao, Anjali N.; Sipilä, Petra; West, Kip A.; McMahon, Andrew P.; Humphreys, Benjamin D.

    2012-01-01

    The Hedgehog (Hh) signaling pathway regulates tissue patterning during development, including patterning and growth of limbs and face, but whether Hh signaling plays a role in adult kidney remains undefined. In this study, using a panel of hedgehog-reporter mice, we show that the two Hh ligands (Indian hedgehog and sonic hedgehog ligands) are expressed in tubular epithelial cells. We report that the Hh effectors (Gli1 and Gli2) are expressed exclusively in adjacent platelet-derived growth factor receptor-β-positive interstitial pericytes and perivascular fibroblasts, suggesting a paracrine signaling loop. In two models of renal fibrosis, Indian Hh ligand was upregulated with a dramatic activation of downstream Gli effector expression. Hh-responsive Gli1-positive interstitial cells underwent 11-fold proliferative expansion during fibrosis, and both Gli1- and Gli2-positive cells differentiated into α-smooth muscle actin-positive myofibroblasts. In the pericyte-like cell line 10T1/2, hedgehog ligand triggered cell proliferation, suggesting a possible role for this pathway in the regulation of cell cycle progression of myofibroblast progenitors during the development of renal fibrosis. The hedgehog antagonist IPI-926 abolished Gli1 induction in vivo but did not decrease kidney fibrosis. However, the transcriptional induction of Gli2 was unaffected by IPI-926, suggesting the existence of smoothened-independent Gli activation in this model. This study is the first detailed description of paracrine hedgehog signaling in adult kidney, which indicates a possible role for hedgehog-Gli signaling in fibrotic chronic kidney disease. PMID:22342522

  8. Structural activation pathways from dynamic olfactory receptor-odorant interactions.

    PubMed

    Lai, Peter C; Singer, Michael S; Crasto, Chiquito J

    2005-11-01

    We have simulated an odor ligand's dynamic behavior in the binding region of an olfactory receptor (OR). Our short timescale computational studies (up to 200 ps) have helped identify unprecedented postdocking ligand behavior of ligands. From in vacuo molecular dynamics simulations of interactions between models of rat OR I7 and 10 aldehyde ligands, we have identified a dissociative pathway along which the ligand exits and enters the OR-binding pocket--a transit event. The ligand's transit through the receptor's binding region may mark the beginning of a signal transduction cascade leading to odor recognition. We have graphically traced the rotameric changes in key OR amino acid side chains during the transit. Our results have helped substantiate or refute previously held notions of amino acid contribution to ligand stability in the binding pocket. Our observations of ligand activity when compared to those of experimental (electroolfactogram response) OR-activation studies provide a view to predicting the stability of ligands in the binding pocket as a precursor to OR activation by the ligand. PMID:16243965

  9. FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma

    PubMed Central

    Ramsey, Matthew R.; Wilson, Catherine; Ory, Benjamin; Rothenberg, S. Michael; Faquin, William; Mills, Alea A.; Ellisen, Leif W.

    2013-01-01

    Oncogenic transcription factors drive many human cancers, yet identifying and therapeutically targeting the resulting deregulated pathways has proven difficult. Squamous cell carcinoma (SCC) is a common and lethal human cancer, and relatively little progress has been made in improving outcomes for SCC due to a poor understanding of its underlying molecular pathogenesis. While SCCs typically lack somatic oncogene-activating mutations, they exhibit frequent overexpression of the p53-related transcription factor p63. We developed an in vivo murine tumor model to investigate the function and key transcriptional programs of p63 in SCC. Here, we show that established SCCs are exquisitely dependent on p63, as acute genetic ablation of p63 in advanced, invasive SCC induced rapid and dramatic apoptosis and tumor regression. In vivo genome-wide gene expression analysis identified a tumor-survival program involving p63-regulated FGFR2 signaling that was activated by ligand emanating from abundant tumor-associated stroma. Correspondingly, we demonstrate the therapeutic efficacy of extinguishing this signaling axis in endogenous SCCs using the clinical FGFR2 inhibitor AZD4547. Collectively, these results reveal an unanticipated role for p63-driven paracrine FGFR2 signaling as an addicting pathway in human cancer and suggest a new approach for the treatment of SCC. PMID:23867503

  10. Oncogenic Ras/Src cooperativity in pancreatic neoplasia

    PubMed Central

    Shields, DJ; Murphy, EA; Desgrosellier, JS; Mielgo, A; Lau, SKM; Barnes, LA; Lesperance, J; Huang, M; Schmedt, C; Tarin, D; Lowy, AM; Cheresh, DA

    2011-01-01

    Pancreas cancer is one of the most lethal malignancies and is characterized by activating mutations of Kras, present in 95% of patients. More than 60% of pancreatic cancers also display increased c-Src activity, which is associated with poor prognosis. Although loss of tumor suppressor function (for example, p16, p53, Smad4) combined with oncogenic Kras signaling has been shown to accelerate pancreatic duct carcinogenesis, it is unclear whether elevated Src activity contributes to Kras-dependent tumorigenesis or is simply a biomarker of disease progression. Here, we demonstrate that in the context of oncogenic Kras, activation of c-Src through deletion of C-terminal Src kinase (CSK) results in the development of invasive pancreatic ductal adenocarcinoma (PDA) by 5–8 weeks. In contrast, deletion of CSK alone fails to induce neoplasia, while oncogenic Kras expression yields PDA at low frequency after a latency of 12 months. Analysis of cell lines derived from Ras/Src-induced PDA’s indicates that oncogenic Ras/Src cooperativity may lead to genomic instability, yet Ras/Src-driven tumor cells remain dependent on Src signaling and as such, Src inhibition suppresses growth of Ras/Src-driven tumors. These findings demonstrate that oncogenic Ras/Src cooperate to accelerate PDA onset and support further studies of Src-directed therapies in pancreatic cancer. PMID:21242978

  11. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  12. The PRKCI and SOX2 Oncogenes are Co-amplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma

    PubMed Central

    Justilien, Verline; Walsh, Michael P.; Ali, Syed A.; Thompson, E. Aubrey; Murray, Nicole R.; Fields, Alan P.

    2014-01-01

    SUMMARY We report that two oncogenes co-amplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). PKCι phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog Acyl Transferase (HHAT), which catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT, and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell autonomous Hh signaling axis. PMID:24525231

  13. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer.

    PubMed

    Song, Wei; Li, Wei; Li, Lingyu; Zhang, Shilin; Yan, Xu; Wen, Xue; Zhang, Xiaoying; Tian, Huimin; Li, Ailing; Hu, Ji-Fan; Cui, Jiuwei

    2015-09-15

    Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer. PMID:26156017

  14. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells.

    PubMed

    Li, Yanhong; Qi, Hongxue; Li, Xiaobo; Hou, Xueling; Lu, Xueying; Xiao, Xiangwen

    2015-06-01

    Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies. PMID:25772545

  15. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways.

    PubMed

    Bae, Won-Jung; Auh, Q-Schick; Lim, Hyun-Chang; Kim, Gyu-Tae; Kim, Hyun-Soo; Kim, Eun-Cheol

    2016-10-01

    Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration. PMID:27289556

  16. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  17. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    SciTech Connect

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin; Koster, Jan; Volckmann, Richard; Sluis, Peter van; Ora, Ingrid; Versteeg, Rogier; Geerts, Dirk

    2008-02-15

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.

  18. Mutational patterns in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi M; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2016-06-15

    All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer. PMID:27284061

  19. Impacts of Activation of the Mitogen-Activated Protein Kinase Pathway in Pancreatic Cancer

    PubMed Central

    Furukawa, Toru

    2015-01-01

    Pancreatic cancer is characterized by constitutive activation of the mitogen-activated protein kinase (MAPK) pathway. Mutations of KRAS or BRAF and epigenetic abrogation of DUSP6 contribute synergistically to the constitutive activation of MAPK. Active MAPK induces the expression of a variety of genes that are thought to play roles in malignant phenotypes of pancreatic cancer. By blocking the functions of such induced genes, it is possible to attenuate the malignant phenotypes. The development of drugs targeting genes downstream of MAPK may provide a novel therapeutic option for pancreatic cancer. PMID:25699241

  20. Neem Limonoids as Anticancer Agents: Modulation of Cancer Hallmarks and Oncogenic Signaling.

    PubMed

    Nagini, Siddavaram

    2014-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile medicinal plants, widely distributed in the Indian subcontinent. Neem is a rich source of limonoids that are endowed with potent medicinal properties predominantly antioxidant, anti-inflammatory, and anticancer activities. Azadirachtin, gedunin, and nimbolide are more extensively investigated relative to other neem limonoids. Accumulating evidence indicates that the anticancer effects of neem limonoids are mediated through the inhibition of hallmark capabilities of cancer such as cell proliferation, apoptosis evasion, inflammation, invasion, and angiogenesis. The neem limonoids have been demonstrated to target oncogenic signaling kinases and transcription factors chiefly, NF-κB, Wnt/β-catenin, PI3K/Akt, MAPK, and JAK/STAT signaling pathways. Neem limonoids that target multiple pathways that are aberrant in cancer are ideal candidates for cancer chemoprevention and therapy. PMID:27102702

  1. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer

    PubMed Central

    Ming, Mei; Han, Weinong; Zhao, Baozhong; Sundaresan, Nagalingam R.; Deng, Chu-Xia; Gupta, Mahesh; He, Yu-Ying

    2014-01-01

    SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted expression of COX-2 by repressing AMPK signaling, thereby increasing cell proliferation and survival and in the skin epidermis. SIRT6 expression in skin keratinocytes was increased by exposure to UVB light through activation of the AKT pathway. Clinically, we found that SIRT6 was upregulated in human skin squamous cell carcinoma. Taken together, our results provide evidence that SIRT6 functions an oncogene in the epidermis and suggest greater complexity to its role in epithelial carcinogenesis. PMID:25320180

  2. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer.

    PubMed

    Vasudevan, Krishna M; Barbie, David A; Davies, Michael A; Rabinovsky, Rosalia; McNear, Chontelle J; Kim, Jessica J; Hennessy, Bryan T; Tseng, Hsiuyi; Pochanard, Panisa; Kim, So Young; Dunn, Ian F; Schinzel, Anna C; Sandy, Peter; Hoersch, Sebastian; Sheng, Qing; Gupta, Piyush B; Boehm, Jesse S; Reiling, Jan H; Silver, Serena; Lu, Yiling; Stemke-Hale, Katherine; Dutta, Bhaskar; Joy, Corwin; Sahin, Aysegul A; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Rameh, Lucia E; Jacks, Tyler; Root, David E; Lander, Eric S; Mills, Gordon B; Hahn, William C; Sellers, William R; Garraway, Levi A

    2009-07-01

    Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations. PMID:19573809

  3. IL-17/Th17 Pathway Is Activated in Acne Lesions

    PubMed Central

    Kelhälä, Hanna-Leena; Palatsi, Riitta; Fyhrquist, Nanna; Lehtimäki, Sari; Väyrynen, Juha P.; Kallioinen, Matti; Kubin, Minna E.; Greco, Dario; Tasanen, Kaisa; Alenius, Harri; Bertino, Beatrice; Carlavan, Isabelle; Mehul, Bruno; Déret, Sophie; Reiniche, Pascale; Martel, Philippe; Marty, Carine; Blume-Peytavi, Ulrike; Voegel, Johannes J.; Lauerma, Antti

    2014-01-01

    The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy. PMID:25153527

  4. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells.

    PubMed

    Sun, Yanrui; Yang, Xi; Liu, Min; Tang, Hua

    2016-06-01

    β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer. PMID:26987623

  5. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells.

    PubMed

    Özcan, Zeynep; Gül, Gizem; Yaman, Ibrahim

    2015-08-01

    Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells. PMID:25002221

  6. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.

    PubMed

    Kim, Hyunsoo; Huang, Wei; Jiang, Xiuli; Pennicooke, Brenton; Park, Peter J; Johnson, Mark D

    2010-02-01

    Using a multidimensional genomic data set on glioblastoma from The Cancer Genome Atlas, we identified hsa-miR-26a as a cooperating component of a frequently occurring amplicon that also contains CDK4 and CENTG1, two oncogenes that regulate the RB1 and PI3 kinase/AKT pathways, respectively. By integrating DNA copy number, mRNA, microRNA, and DNA methylation data, we identified functionally relevant targets of miR-26a in glioblastoma, including PTEN, RB1, and MAP3K2/MEKK2. We demonstrate that miR-26a alone can transform cells and it promotes glioblastoma cell growth in vitro and in the mouse brain by decreasing PTEN, RB1, and MAP3K2/MEKK2 protein expression, thereby increasing AKT activation, promoting proliferation, and decreasing c-JUN N-terminal kinase-dependent apoptosis. Overexpression of miR-26a in PTEN-competent and PTEN-deficient glioblastoma cells promoted tumor growth in vivo, and it further increased growth in cells overexpressing CDK4 or CENTG1. Importantly, glioblastoma patients harboring this amplification displayed markedly decreased survival. Thus, hsa-miR-26a, CDK4, and CENTG1 comprise a functionally integrated oncomir/oncogene DNA cluster that promotes aggressiveness in human cancers by cooperatively targeting the RB1, PI3K/AKT, and JNK pathways. PMID:20080666

  7. Atypical Protein Kinase Cι as a human oncogene and therapeutic target

    PubMed Central

    Parker, Peter J.; Justilien, Verline; Riou, Philippe; Linch, Mark; Fields, Alan P.

    2014-01-01

    Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family.The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions.11 Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer. PMID:24231509

  8. Tribbles breaking bad: TRIB2 suppresses FOXO and acts as an oncogenic protein in melanoma.

    PubMed

    Link, Wolfgang

    2015-10-01

    TRIB2 (tribbles homolog 2) encodes one of three members of the tribbles family in mammals. These members share a Trb (tribbles) domain, which is homologous to protein serine-threonine kinases, but lack the active site lysine. The tribbles proteins interact and modulate the activity of signal transduction pathways in a number of physiological and pathological processes. TRIB2 has been identified as an oncogene that inactivates the transcription factor CCAAT/enhancer-binding protein α (C/EBPα) and causes acute myelogenous leukaemia (AML). Recent research provided compelling evidence that TRIB2 can also act as oncogenic driver in solid tumours, such as lung and liver cancer. In particular, our recent work demonstrated that TRIB2 is dramatically overexpressed in malignant melanomas compared with normal skin and promotes the malignant phenotype of melanoma cells via the down-regulation of FOXO (forkhead box protein O) tumour suppressor activity in vitro and in vivo. TRIB2 was found to be expressed in normal skin, but its expression consistently increased in benign nevi, melanoma and was highest in samples from patients with malignant melanoma. The observation that TRIB2 strongly correlates with the progression of melanocyte-derived malignancies suggests TRIB2 as a meaningful biomarker to both diagnose and stage melanoma. In addition, interfering with TRIB2 activity might be a therapeutic strategy for the treatment of several different tumour types. PMID:26517928

  9. No evidence for TSLP pathway activity in human breast cancer.

    PubMed

    Ghirelli, Cristina; Sadacca, Benjamin; Reyal, Fabien; Zollinger, Raphaël; Michea, Paula; Sirven, Philémon; Pattarini, Lucia; Martínez-Cingolani, Carolina; Guillot-Delost, Maude; Nicolas, André; Scholer-Dahirel, Alix; Soumelis, Vassili

    2016-08-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that primes dendritic cells for Th2 induction. It has been implicated in different types of allergic diseases. Recent work suggested that TSLP could play an important role in the tumor microenvironment and influence tumor progression, in particular in breast cancer. In this study we systematically assessed the production of TSLP at the mRNA and protein levels in several human breast cancer cell lines, large-scale public transcriptomics data sets, and primary human breast tumors. We found that TSLP production was marginal, and concerned less than 10% of the tumors, with very low mRNA and protein levels. In most cases TSLP was undetectable and found to be expressed at lower levels in breast cancer as compared to normal breast tissue. Last, we could not detect any functional TSLP receptor (TSLPR) expression neither on hematopoietic cells nor on stromal cells within the primary tumor microenvironment. We conclude that TSLP-TSLPR pathway activity is not significantly detected within human breast cancer. Taken together, these observations do not support TSLP targeting in breast cancer. PMID:27622057

  10. Angiotensin II activates different calcium signaling pathways in adipocytes.

    PubMed

    Dolgacheva, Lyudmila P; Turovskaya, Maria V; Dynnik, Vladimir V; Zinchenko, Valery P; Goncharov, Nikolay V; Davletov, Bazbek; Turovsky, Egor A

    2016-03-01

    Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades: 1) Ang II → Gq → PLC → IP3 → IP3Rs → Ca(2+) 2) Gβγ → PI3Kγ → PKB 3) PKB → eNOS → NO → PKG 4) CD38 → cADPR → RyRs → Ca(2+) In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2 diabetes. PMID:26850364

  11. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin

    PubMed Central

    Grossmann, Tom N.; Yeh, Johannes T.-H.; Bowman, Brian R.; Chu, Qian; Moellering, Raymond E.; Verdine, Gregory L.

    2012-01-01

    Aberrant activation of signaling by the Wnt pathway is strongly implicated in the onset and progression of numerous types of cancer. Owing to the persistent dependence of these tumors on Wnt signaling for growth and survival, inhibition of this pathway is considered an attractive mechanism-based therapeutic approach. Oncogenic activation of Wnt signaling can ensue from a variety of distinct aberrations in the signaling pathway, but most share the common feature of causing increased cellular levels of β-catenin by interfering with its constitutive degradation. β-Catenin serves as a central hub in Wnt signaling by engaging in crucial protein–protein interactions with both negative and positive effectors of the pathway. Direct interference with these protein–protein interactions is a biologically compelling approach toward suppression of β-catenin hyperactivity, but such interactions have proven intransigent with respect to small-molecule targeting. Hence β-catenin remains an elusive target for translational cancer therapy. Here we report the discovery of a hydrocarbon-stapled peptide that directly targets β-catenin and interferes with its ability to serve as a transcriptional coactivator for T-cell factor (TCF) proteins, the downstream transcriptional regulators of the Wnt pathway. PMID:23071338

  12. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners.

    PubMed

    Zhang, Yanan; Liu, Jie; Wang, Shibin; Luo, Xiaoli; Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-04-26

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  13. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo.

    PubMed

    Altamura, Gennaro; Corteggio, Annunziata; Pacini, Laura; Conte, Andrea; Pierantoni, Giovanna Maria; Tommasino, Massimo; Accardi, Rosita; Borzacchiello, Giuseppe

    2016-09-01

    Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC. PMID:27236740

  14. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway.

    PubMed

    Adesso, L; Calabretta, S; Barbagallo, F; Capurso, G; Pilozzi, E; Geremia, R; Delle Fave, G; Sette, C

    2013-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive neoplastic disease. Gemcitabine, the currently used chemotherapeutic drug for PDAC, elicits only minor benefits, because of the development of escape pathways leading to chemoresistance. Herein, we aimed at investigating the involvement of the mitogen activating protein kinase interacting kinase (MNK)/eIF4E pathway in the acquired drug resistance of PDAC cells. Screening of a cohort of PDAC patients by immunohistochemistry showed that eIF4E phosphorylation correlated with disease grade, early onset of disease and worse prognosis. In PDAC cell lines, chemotherapeutic drugs induced MNK-dependent phosphorylation of eIF4E. Importantly, pharmacological inhibition of MNK activity synergistically enhanced the cytostatic effect of gemcitabine, by promoting apoptosis. RNA interference (RNAi) experiments indicated that MNK2 is mainly responsible for eIF4E phosphorylation and gemcitabine resistance in PDAC cells. Furthermore, we found that gemcitabine induced the expression of the oncogenic splicing factor SRSF1 and splicing of MNK2b, a splice variant that overrides upstream regulatory pathways and confers increased resistance to the drug. Silencing of SRSF1 by RNAi abolished this splicing event and recapitulated the effects of MNK pharmacological or genetic inhibition on eIF4E phosphorylation and apoptosis in gemcitabine-treated cells. Our results highlight a novel pro-survival pathway triggered by gemcitabine in PDAC cells, which leads to MNK2-dependent phosphorylation of eIF4E, suggesting that the MNK/eIF4E pathway represents an escape route utilized by PDAC cells to withstand chemotherapeutic treatments. PMID:22797067

  15. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  16. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  17. Oncogenic Ras influences the expression of multiple lncRNAs.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Kitagawa, Kyoko; Niida, Hiroyuki; Tsunoda, Toshiyuki; Shirasawa, Senji; Kitagawa, Masatoshi

    2016-08-01

    Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA. PMID:25501747

  18. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  19. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  20. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  1. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling.

    PubMed

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-08-01

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. PMID:27246732

  2. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β

    PubMed Central

    Wiener, Zoltán; Band, Arja M.; Kallio, Pauliina; Högström, Jenny; Hyvönen, Ville; Kaijalainen, Seppo; Ritvos, Olli; Haglund, Caj; Kruuna, Olli; Robine, Sylvie; Louvard, Daniel; Ben-Neriah, Yinon; Alitalo, Kari

    2014-01-01

    In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis. We used mouse and human ex vivo 3D intestinal organoid cultures and in vivo mouse models to study the effect of TGF-β on the Lgr5+ intestinal stem cells and their progeny in intestinal adenomas. We found that the TGF-β–induced apoptosis in Apc-mutant organoids, including the Lgr5+ stem cells, was mediated by up-regulation of the BH3-only proapoptotic protein Bcl-2–like protein 11 (Bim). BH3-mimetic compounds recapitulated the effect of Bim not only in the adenomas but also in human CRC organoids that had lost responsiveness to TGF-β–induced apoptosis. However, wild-type intestinal crypts were markedly less sensitive to TGF-β than Apc-mutant adenomas, whereas the KRas oncogene increased resistance to TGF-β via the activation of the Erk1/2 kinase pathway, leading to Bim down-regulation. Our studies identify Bim as a critical mediator of TGF-β–induced apoptosis in intestinal adenomas and show that the common progression mutations modify Bim levels and sensitivity to TGF-β during intestinal adenoma development. PMID:24825889

  3. Deficient activity of the alternative pathway of complement in beta thalassemia major.

    PubMed

    Corry, J M; Marshall, W C; Guthrie, L A; Peerless, A G; Johnston, R B

    1981-06-01

    Patients with thalassemia major suffer frequent and serious infections, especially after splenectomy. To explore the basis for this susceptibility, we examined activity of the complement system in sera from 24 patients. All sera had normal or increased activity of the classic complement pathway. However, six of the 24 (three with and three without splenectomy) had abnormal alternative pathway function, and mean alternative pathway activity was significantly decreased in both splenectomized and nonsplenectomized patients. Mean concentrations of C3, factor B, properdin, and immunoglobulins were normal. Defective alternative pathway function, especially in conjunction with asplenia, could contribute to the propensity to infection that exists in thalassemia. PMID:6908998

  4. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma

    PubMed Central

    Lefèvre, L; Omeiri, H; Drougat, L; Hantel, C; Giraud, M; Val, P; Rodriguez, S; Perlemoine, K; Blugeon, C; Beuschlein, F; de Reyniès, A; Rizk-Rabin, M; Bertherat, J; Ragazzon, B

    2015-01-01

    Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing. PMID:26214578

  5. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    PubMed

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  6. Antibody-independent activation of the classical pathway of complement by Epstein-Barr virus.

    PubMed

    Martin, H; McConnell, I; Gorick, B; Hughes-Jones, N C

    1987-03-01

    A purified preparation of Epstein-Barr virus (EBV) has been shown to activate the classical complement pathway by direct interaction with the first component of complement, C1, without the intervention of antibody. No evidence was found for activation of the alternative pathway. Following classical pathway activation the specific affinity of EBV for B cells can be presumed to be lost since the virus will become opsonized for clearance by phagocytic cells bearing complement receptors, CR1 and CR3. This activation is further evidence that complement plays a role in defence mechanisms independently of antibody activity. PMID:3038440

  7. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  8. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells.

    PubMed

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-08-22

    Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells. PMID:25086355

  9. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1

    PubMed Central

    Schultheiss, Ute; Püschner, Stephanie; Kremmer, Elisabeth; Mak, Tak W.; Engelmann, Hartmut; Hammerschmidt, Wolfgang; Kieser, Arnd

    2001-01-01

    The oncogenic latent membrane protein 1 (LMP1) of the Epstein–Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-κB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2. PMID:11598011

  10. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein

    PubMed Central

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-01-01

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  11. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein.

    PubMed

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-04-14

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  12. Activation of Janus kinase/signal transducers and activators of transcription pathway involved in megakaryocyte proliferation induced by vanadium resembles some aspects of essential thrombocythemia.

    PubMed

    Gonzalez-Villalva, Adriana; Piñon-Zarate, Gabriela; Falcon-Rodriguez, Carlos; Lopez-Valdez, Nelly; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; Rendon-Huerta, Erika; Colin-Barenque, Laura; Fortoul, Teresa I

    2016-05-01

    Vanadium (V) is an air pollutant released into the atmosphere by burning fossil fuels. Also, it has been recently evaluated for their carcinogenic potential to establish permissible limits of exposure at workplaces. We previously reported an increase in the number and size of platelets and their precursor cells and megakaryocytes in bone marrow and spleen. The aim of this study was to identify the involvement of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway and thrombopoietin (TPO) receptor, and myeloproliferative leukemia virus oncogene (Mpl), in megakaryocyte proliferation induced by this compound. Mice were exposed twice a week to vanadium pentoxide inhalation (0.02 M) and were killed at 4th, 6th, and 8th week of exposure. Phosphorylated JAK2 (JAK2 ph), STAT3 (STAT3 ph), STAT5, and Mpl were identified in mice spleen megakaryocytes by cytofluorometry and immunohistochemistry. An increase in JAK2 ph and STAT3 ph, but a decrease in Mpl at 8-week exposure was identified in our findings. Taking together, we propose that the morphological findings, JAK/STAT activation, and decreased Mpl receptor induced by V leads to a condition comparable to essential thrombocythemia, so the effect on megakaryocytes caused by different mechanisms is similar. We also suggest that the decrease in Mpl is a negative feedback mechanism after the JAK/STAT activation. Since megakaryocytes are platelet precursors, their alteration affects platelet morphology and function, which might have implications in hemostasis as demonstrated previously, so it is important to continue evaluating the effects of toxics and pollutants on megakaryocytes and platelets. PMID:24442345

  13. In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene

    PubMed Central

    Dunn, Gavin P.; Cheung, Hiu Wing; Agarwalla, Pankaj K.; Thomas, Sapana; Zektser, Yulia; Karst, Alison M.; Boehm, Jesse S.; Weir, Barbara A.; Berlin, Aaron M.; Zou, Lihua; Getz, Gad; Liu, Joyce F.; Hirsch, Michelle; Vazquez, Francisca; Root, David E.; Beroukhim, Rameen; Drapkin, Ronny; Hahn, William C.

    2014-01-01

    High-grade serous ovarian cancers are characterized by widespread recurrent copy number alterations. Although some regions of copy number change harbor known oncogenes and tumor suppressor genes, the genes targeted by the majority of amplified or deleted regions in ovarian cancer remain undefined. Here we systematically tested amplified genes for their ability to promote tumor formation using an in vivo multiplexed transformation assay. We identified the GRB2-associated binding protein 2 (GAB2) as a recurrently amplified gene that potently transforms immortalized ovarian and fallopian tube secretory epithelial cells. Cancer cell lines overexpressing GAB2 require GAB2 for survival and show evidence of phosphatidylinositol 3-kinase (PI3K) pathway activation, which was required for GAB2-induced transformation. Cell lines overexpressing GAB2 were as sensitive to PI3K inhibition as cell lines harboring mutant PIK3CA. Together, these observations nominate GAB2 as an ovarian cancer oncogene, identify an alternative mechanism to activate PI3K signaling, and underscore the importance of PI3K signaling in this cancer. PMID:24385586

  14. CT45A1 acts as a new proto-oncogene to trigger tumorigenesis and cancer metastasis

    PubMed Central

    Shang, B; Gao, A; Pan,