Science.gov

Sample records for oneidensis mr-1 exposed

  1. Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation

    PubMed Central

    Brown, Ashley R.; Correa, Elon; Xu, Yun; AlMasoud, Najla; Pimblott, Simon M.; Goodacre, Royston; Lloyd, Jonathan R.

    2015-01-01

    Biogeochemical processes mediated by Fe(III)-reducing bacteria such as Shewanella oneidensis have the potential to influence the post-closure evolution of a geological disposal facility for radioactive wastes and to affect the solubility of some radionuclides. Furthermore, their potential to reduce both Fe(III) and radionuclides can be harnessed for the bioremediation of radionuclide-contaminated land. As some such sites are likely to have significant radiation fluxes, there is a need to characterise the impact of radiation stress on such microorganisms. There have, however, been few global cell analyses on the impact of ionizing radiation on subsurface bacteria, so here we address the metabolic response of S. oneidensis MR-1 to acute doses of X-radiation. UV/Vis spectroscopy and CFU counts showed that although X-radiation decreased initial viability and extended the lag phase of batch cultures, final biomass yields remained unchanged. FT-IR spectroscopy of whole cells indicated an increase in lipid associated vibrations and decreases in vibrations tentatively assigned to nucleic acids, phosphate, saccharides and amines. MALDI-TOF-MS detected an increase in total protein expression in cultures exposed to 12 Gy. At 95 Gy, a decrease in total protein levels was generally observed, although an increase in a putative cold shock protein was observed, which may be related to the radiation stress response of this organism. Multivariate statistical analyses applied to these FT-IR and MALDI-TOF-MS spectral data suggested that an irradiated phenotype developed throughout subsequent generations. This study suggests that significant alteration to the metabolism of S. oneidensis MR-1 is incurred as a result of X-irradiation and that dose dependent changes to specific biomolecules characterise this response. Irradiated S. oneidensis also displayed enhanced levels of poorly crystalline Fe(III) oxide reduction, though the mechanism underpinning this phenomenon is unclear. PMID

  2. Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation.

    PubMed

    Brown, Ashley R; Correa, Elon; Xu, Yun; AlMasoud, Najla; Pimblott, Simon M; Goodacre, Royston; Lloyd, Jonathan R

    2015-01-01

    Biogeochemical processes mediated by Fe(III)-reducing bacteria such as Shewanella oneidensis have the potential to influence the post-closure evolution of a geological disposal facility for radioactive wastes and to affect the solubility of some radionuclides. Furthermore, their potential to reduce both Fe(III) and radionuclides can be harnessed for the bioremediation of radionuclide-contaminated land. As some such sites are likely to have significant radiation fluxes, there is a need to characterise the impact of radiation stress on such microorganisms. There have, however, been few global cell analyses on the impact of ionizing radiation on subsurface bacteria, so here we address the metabolic response of S. oneidensis MR-1 to acute doses of X-radiation. UV/Vis spectroscopy and CFU counts showed that although X-radiation decreased initial viability and extended the lag phase of batch cultures, final biomass yields remained unchanged. FT-IR spectroscopy of whole cells indicated an increase in lipid associated vibrations and decreases in vibrations tentatively assigned to nucleic acids, phosphate, saccharides and amines. MALDI-TOF-MS detected an increase in total protein expression in cultures exposed to 12 Gy. At 95 Gy, a decrease in total protein levels was generally observed, although an increase in a putative cold shock protein was observed, which may be related to the radiation stress response of this organism. Multivariate statistical analyses applied to these FT-IR and MALDI-TOF-MS spectral data suggested that an irradiated phenotype developed throughout subsequent generations. This study suggests that significant alteration to the metabolism of S. oneidensis MR-1 is incurred as a result of X-irradiation and that dose dependent changes to specific biomolecules characterise this response. Irradiated S. oneidensis also displayed enhanced levels of poorly crystalline Fe(III) oxide reduction, though the mechanism underpinning this phenomenon is unclear. PMID

  3. Dosage-Dependent Proteome Response of Shewanella oneidensis MR-1 to Chromate Insult

    SciTech Connect

    Thompson, Melissa R.; VerBerkmoes, Nathan C.; Chourey, Karuna; Brown, Steven D.; Hettich, Robert L.; Thompson, Dorothea K.

    2006-04-05

    Shewanella oneidensis MR-1 is a gram-negative, facultatively anaerobic bacterium originally isolated from a freshwater lake. S. oneidensis MR-1 has the ability to reduce toxic metal ions [e.g., Cr(VI) and U(VI)] found in industrial and governmental waste sites. Cells were grown and exposed to three different metal concentrations in order to probe the dosage response of S. oneidensis MR-1 to Cr(VI) in the form of chromate. Protein fractions were digested with trypsin and analyzed with a multidimensional HPLC-NanoESIMS/MS protocol. The goal of this work is to identify protein components of pathways/mechanisms responsible for both detoxification and reduction of chromate.

  4. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  5. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1.

    PubMed

    Wang, Juan; Wu, Mingyin; Lu, Gan; Si, Youbin

    2016-02-01

    The resistance of Shewanella oneidensis MR-1 to toxic arsenic was investigated by measuring the growth of the bacteria in the presence of As(III) and As(V) in different growth media. The bacteria were shown to biotransform arsenic through the partial methylation of inorganic arsenic into methylated metabolites. This biotransformation of inorganic arsenic by S. oneidensis MR-1 was affected by the methyl donor, the composition of the medium, and the presence of Fe(III). The relative content of methylated arsenic in the medium containing S-adenosyl methionine as the methyl donor was greater than that in the medium containing methylcobalamin. The biotransformation process driven by Fe-reducing bacteria, and occurred in combination with microbially mediated As-Fe reduction in the presence of Fe(III). The results demonstrate that S. oneidensis MR-1 methylates inorganic arsenic into less toxic organoarsenic compounds. This process has potential applications in the bioremediation of environmental arsenic, and the results provide new insights into the control of in situ arsenic pollution. PMID:26692509

  6. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1

    SciTech Connect

    Mclean, Jeffrey S.; Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Bilskis, Christina L.; Zakrajsek, Brian A.; Hill, Eric A.; Saffarini, Daad; Romine, Margaret F.; Gorby, Yuri A.; Fredrickson, Jim K.; Beliaev, Alex S.

    2008-07-01

    In aerobic chemostat cultures maintained at 50% dissolved O2 tension (123.5 µM dissolved O2), Shewanella oneidensis strain MR-1 rapidly aggregated upon addition of 0.68 mM CaCl2 and retained this multi-cellular phenotype at high dilution rates. Confocal microscopy analysis of the extracellular matrix material contributing to the stability of the aggregate structures revealed the presence of extracellular DNA, protein, and glycoconjugates. Upon onset of O2-limited growth (dissolved O2 below detection) however, the Ca2+-supplemented chemostat cultures of strain MR-1 rapidly disaggregated and grew as motile dispersed cells. Global transcriptome analysis comparing aerobic aggregated to O2-limited unaggregated cells identified genes encoding cell-to-cell and cell-to-surface adhesion factors whose transcription increased upon exposure to increased O2 concentrations. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologs of metal reduction genes, including mtrD (SO1782), mtrE (SO1781), and mtrF (SO1780). Our data indicate that mechanisms involved in autoaggregation of MR-1 are dependent on the function of pilD gene which encodes a putative prepilin peptidase. Mutants of S. oneidensis strain MR-1 deficient in PilD and associated pathways, including type IV and Msh pili biogenesis, displayed a moderate increase in sensitivity to H2O2. Taken together, our evidence indicates that aggregate formation in S. oneidensis MR-1 may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.

  7. Hydrogen Metabolism in Shewanella oneidensis MR-1

    PubMed Central

    Meshulam-Simon, Galit; Behrens, Sebastian; Choo, Alexander D.; Spormann, Alfred M.

    2007-01-01

    Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. PMID:17189435

  8. Survival of Shewanella oneidensis MR-1 after UV radiation exposure.

    PubMed

    Qiu, Xiaoyun; Sundin, George W; Chai, Benli; Tiedje, James M

    2004-11-01

    We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m(-2), 568 J of UVB m(-2), 25 kJ of UVA m(-2), and 558 J of solar UVB m(-2), respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10(-5) to 10(-6). Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents. PMID:15528503

  9. The Electrogenic Bacterium Shewanella Oneidensis MR-1 and its Mutants with Increased Reducing Capacity

    NASA Astrophysics Data System (ADS)

    Voeikova, T. A.; Emelyanova, L. K.; Novikova, L. M.; Mordkovich, N. N.; Shakulov, R. S.; Debabov, V. G.

    2013-02-01

    Mutants of Shewanella oneidensis MR-1 resistant to fosfomycin, a toxic analogue of phosphoenolpyruvate, were obtained. The mutants exhibited an increased reducing activity and a higher rate of lactate utilization. A correlation was shown between the rates of metabolism of oxidized substrates and the rate of reduction of methylene blue, a mediator of electron transport. The mutants of S.oneidensis MR-1 will be used in microbial fuel cells (MFC) to enhance energy production from organic compounds. The strain S. oneidensis MR-1 and its mutants with an increased electron production will be used as a good source of bioelectricity in MFC in the experiments on the International Space Station.

  10. Growth Inhibition and Stimulation of Shewanella oneidensis MR-1 by Surfactants and Calcium Polysulfide

    SciTech Connect

    Bailey, Kathryn L.; Tilton, Fred A.; Jansik, Danielle P.; Ergas, Sarina J.; Marshall, Matthew J.; Miracle, Ann L.; Wellman, Dawn M.

    2012-06-14

    Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation of microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 {micro}M were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS>>CPS>>NINOL40-CO>SLES-CAPB. Dose dependent growth decreases (20 to 100 mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45 to 7.25 mM CPS). Both SLES (20 to 100 mM) and SDS at lower concentrations (20 to 500 {micro}M) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface

  11. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1

    PubMed Central

    Shi, Liang; Rosso, Kevin M.; Clarke, Tomas A.; Richardson, David J.; Zachara, John M.; Fredrickson, James K.

    2012-01-01

    In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 and related strains of metal-reducing Shewanella have evolved machinery (i.e., metal-reducing or Mtr pathway) for transferring electrons from the inner-membrane, through the periplasm and across the outer-membrane to the surface of extracellular Fe(III) oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC, and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt) that belongs to the NapC/NrfH family of quinol dehydrogenases. It is proposed that CymA oxidizes the quinol in the inner-membrane and transfers the released electrons to MtrA either directly or indirectly through other periplasmic proteins. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons through the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. MtrC and OmcA are the outer-membrane decaheme c-Cyts that are translocated across the outer-membrane by the bacterial type II secretion system. Functioning as terminal reductases, MtrC and OmcA can bind the surface of Fe(III) oxides and transfer electrons directly to these minerals via their solvent-exposed hemes. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III) oxides. Because of their extracellular location and broad redox potentials, MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III). In addition to Fe(III) oxides, Mtr pathway is also involved in reduction of

  12. Efficiencies of Bio-electrocatalytic Production of Hydrogen from Lactate Using Shewanella oneidensis MR-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shewanella oneidensis MR-1 was grown in a chemostatic, continuously-fed bioelectrochemical cell under slightly aerated conditions. The start-up phase was controlled potentiostatically (0.4 V vs. SHE). When a stable performance was achieved, the reactor was switched to bio-electrocatalytic producti...

  13. Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †

    PubMed Central

    Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.

    2011-01-01

    The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528

  14. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range

    PubMed Central

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 108 cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 102 CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  15. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range.

    PubMed

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 10(8) cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 10(2) CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  16. [Investigation of Protein Translocation Sec-System with Heterologous Gene Expression in Shewanella oneidensis MR-1 Bacterium Cells].

    PubMed

    Mordkovich, N N; Okorokova, N A; Veiko, V P

    2015-01-01

    A comparison of the primary structures of the protein translocation Sec-system proteins in the Shewanella oneidensis MR-1 and Escherichia coli bacteria was carried out. The process of translocation of recombinant pro-enteroxins (SEB and SEH) from Staphylococcus aureus and pro-streptavidin (SAV) from Streptomyces avidinii in the S. oneidensis MR-1 and E. coli cell periplasm was studied. It was demonstrated that these marker proteins are transferred into the periplasmic space of the S. oneidensis MR-1 transformant strain cells. The identity of N-terminal amino acid sequences of mature recombinant SEB, SEH, and SAV proteins (generated during post-translation proteolysis of leader peptide by the Sec-system both in E. coli and S. oneidensis MR-1) was established. PMID:26204774

  17. Invariability of Central Metabolic Flux Distribution in Shewanella oneidensis MR-1 Under Environmental or Genetic Perturbations

    SciTech Connect

    Tang, Yinjie; Martin, Hector Garcia; Deutschbauer, Adam; Feng, Xueyang; Huang, Rick; Llora, Xavier; Arkin, Adam; Keasling, Jay D.

    2009-04-21

    An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time {approx} 3 hrs), salt stressed minimal medium (doubling time {approx} 6 hrs), and minimal medium with amino acid supplementation (doubling time {approx}1.5 hrs). {sup 13}C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, ten transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism.

  18. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention. PMID:23558182

  19. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    NASA Astrophysics Data System (ADS)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  20. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Rosso, Kevin M.; Clarke, Thomas A.; Richardson, David J.; Zachara, John M.; Fredrickson, Jim K.

    2012-02-15

    In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 and related strains of metal-reducing Shewanella have evolved the machinery (i.e., metal-reducing or Mtr pathway) for transferring electrons from the inner-membrane, through the periplasm and across the outer-membrane to the surface of extracellular Fe(III) oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt) that belongs to the NapC/NrfH family of quinol dehydrogenases. It is proposed that CymA oxidizes the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III) oxidation have not been identified, they are believed to relay the electrons in the periplasm to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons through the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. MtrC and OmcA are the outer-membrane decaheme c-Cyts that are translocated across the outer-membrane by the bacterial type II secretion system. Functioning as terminal reductases, MtrC and OmcA can bind the surface of Fe(III) oxides and transfer electrons directly to these minerals via their solvent-exposed hemes. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III) oxides. Because of their extracellular location and broad redox potentials, MtrC and OmcA can

  1. Survival of Shewanella Oneidensis MR-1 to GPa pressures

    NASA Astrophysics Data System (ADS)

    Hazael, Rachael; Foglia, Fabrizia; Leighs, James; Appleby-Thomas, Gareth; Daniel, Isabelle; Eakins, Daniel; Meersman, Filip; McMillian, Paul

    2013-06-01

    Most life on Earth is thought to occupy near-surface environments under relatively mild conditions of temperature, pressure, pH, salinity etc. That view is changing following discovery of extremophile organisms that prefer environments based on high or low T, extreme chemistries, or very high pressures. Over the past three decades, geomicrobiologists have discovered an extensive subsurface biosphere, that may account for between 1/10 to 1/3 of Earth's living biomass. We subjected samples of Shewanella oneidensis to several pressure cycles to examine its survival to static high pressures to above 1.5 GPa. Shewanella forms part of a genus that contains several piezophile species like S. violacea and S. benthica. We have obtained growth curves for populations recovered from high P conditions and cultured in the laboratory, before being subjected to even higher pressures. We have also carried out dynamic shock experiments using a specially designed cell to maintain high-P, low-T conditions during shock-recovery experiments and observe colony formation among the survivors. Colony counts, shape and growth curves allow us to compare the static vs dynamic pressure resistance of wild type vs pressure-adapted strains. Leverhulme

  2. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1

    PubMed Central

    Gödeke, Julia; Paul, Kristina; Lassak, Jürgen; Thormann, Kai M

    2011-01-01

    Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. PMID:20962878

  3. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    SciTech Connect

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.; Blow, Matthew; Korlach, Jonas; Deutschbauer, Adam; Malmstrom, Rex

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  4. Exploring the Roles of DNA Methylation in the Metal-Reducing Bacterium Shewanella oneidensis MR-1

    PubMed Central

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.; Blow, Matthew; Korlach, Jonas; Deutschbauer, Adam

    2013-01-01

    We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication. PMID:23995632

  5. Transcriptome Analysis of Early Surface-Associated Growth of Shewanella oneidensis MR-1

    PubMed Central

    Gödeke, Julia; Binnenkade, Lucas; Thormann, Kai M.

    2012-01-01

    Bacterial biofilm formation starts with single cells attaching to a surface, however, little is known about the initial attachment steps and the adaptation to the surface-associated life style. Here, we describe a hydrodynamic system that allows easy harvest of cells at very early biofilm stages. Using the metal ion-reducing gammaproteobacterium Shewanella oneidensis MR-1 as a model organism, we analyzed the transcriptional changes occurring during surface-associated growth between 15 and 60 minutes after attachment. 230 genes were significantly upregulated and 333 were downregulated by a factor of ≥2. Main functional categories of the corresponding gene products comprise metabolism, uptake and transport, regulation, and hypothetical proteins. Among the genes highly upregulated those implicated in iron uptake are highly overrepresented, strongly indicating that S. oneidensis MR-1 has a high demand for iron during surface attachment and initial biofilm stages. Subsequent microscopic analysis of biofilm formation under hydrodynamic conditions revealed that addition of Fe(II) significantly stimulated biofilm formation of S. oneidensis MR-1 while planktonic growth was not affected. Our approach to harvest cells for transcriptional analysis of early biofilm stages is expected to be easily adapted to other bacterial species. PMID:22860070

  6. Mechanism and Consequences of Anaerobic Respiration of Cobalt by Shewanella oneidensis Strain MR-1

    PubMed Central

    Hau, Heidi H.; Gilbert, Alan; Coursolle, Dan; Gralnick, Jeffrey A.

    2008-01-01

    Bacteria from the genus Shewanella are the most diverse respiratory organisms studied to date and can utilize a variety of metals and metal(loid)s as terminal electron acceptors. These bacteria can potentially be used in bioremediation applications since the redox state of metals often influences both solubility and toxicity. Understanding molecular mechanisms by which metal transformations occur and the consequences of by-products that may be toxic to the organism and thus inhibitory to the overall process is significant to future applications for bioremediation. Here, we examine the ability of Shewanella oneidensis to catalyze the reduction of chelated cobalt. We describe an unexpected ramification of [Co(III)-EDTA]− reduction by S. oneidensis: the formation of a toxic by-product. We found that [Co(II)-EDTA]2−, the product of [Co(III)-EDTA]− respiration, inhibited the growth of S. oneidensis strain MR-1 and that this toxicity was partially abolished by the addition of MgSO4. We demonstrate that [Co(III)-EDTA]− reduction by S. oneidensis requires the Mtr extracellular respiratory pathway and associated pathways required to develop functional Mtr enzymes (the c-type cytochrome maturation pathway) and ensure proper localization (type II secretion). The Mtr pathway is known to be required for a variety of substrates, including some chelated and insoluble metals and organic compounds. Understanding the full substrate range for the Mtr pathway is crucial for developing S. oneidensis strains as a tool for bioremediation. PMID:18836009

  7. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation.

    PubMed

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 -a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment. PMID:27100323

  8. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation

    PubMed Central

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment. PMID:27100323

  9. Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism

    SciTech Connect

    Learman, Deric R.; Yi, Haakrho; Brown, Steven D.; Martin, Stanton L.; Geesey, Gill G.; Stevens, Ann M.; Hochella, Michael F.

    2009-01-05

    The role of LuxS in Shewanella oneidensis MR-1 has been examined by transcriptomic profiling, biochemical, and physiological experiments. The results indicate that a mutation in luxS alters biofilm development, not by altering quorum-sensing abilities but by disrupting the activated methyl cycle (AMC). The S. oneidensis wild type can produce a luminescence response in the AI-2 reporter strain Vibrio harveyi MM32. This luminescence response is abolished upon the deletion of luxS. The deletion of luxS also alters biofilm formations in static and flowthrough conditions. Genetic complementation restores the mutant biofilm defect, but the addition of synthetic AI-2 has no effect. These results suggest that AI-2 is not used as a quorum-sensing signal to regulate biofilm development in S. oneidensis. Growth on various sulfur sources was examined because of the involvement of LuxS in the AMC. A mutation in luxS produced a reduced ability to grow with methionine as the sole sulfur source. Methionine is a key metabolite used in the AMC to produce a methyl source in the cell and to recycle homocysteine. These data suggest that LuxS is important to metabolizing methionine and the AMC in S. oneidensis.

  10. Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor.

    PubMed

    Paulick, Anja; Delalez, Nicolas J; Brenzinger, Susanne; Steel, Bradley C; Berry, Richard M; Armitage, Judith P; Thormann, Kai M

    2015-06-01

    The bacterial flagellar motor is an intricate nanomachine which converts ion gradients into rotational movement. Torque is created by ion-dependent stator complexes which surround the rotor in a ring. Shewanella oneidensis MR-1 expresses two distinct types of stator units: the Na(+)-dependent PomA4 B2 and the H(+)-dependent MotA4 B2. Here, we have explored the stator unit dynamics in the MR-1 flagellar system by using mCherry-labeled PomAB and MotAB units. We observed a total of between 7 and 11 stator units in each flagellar motor. Both types of stator units exchanged between motors and a pool of stator complexes in the membrane, and the exchange rate of MotAB, but not of PomAB, units was dependent on the environmental Na(+)-levels. In 200 mM Na(+), the numbers of PomAB and MotAB units in wild-type motors was determined to be about 7:2 (PomAB:MotAB), shifting to about 6:5 without Na(+). Significantly, the average swimming speed of MR-1 cells at low Na(+) conditions was increased in the presence of MotAB. These data strongly indicate that the S. oneidensis flagellar motors simultaneously use H(+) and Na(+) driven stators in a configuration governed by MotAB incorporation efficiency in response to environmental Na(+) levels. PMID:25727785

  11. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses

    SciTech Connect

    Gao, Haichun; Wang, Xiaohu; Yang, Zamin Koo; Palzkill, Timothy; Zhou, Jizhong

    2008-01-01

    The Arc two-component system is a global regulator controlling many genes involved in aerobic/anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella oneidensis MR-1 contains a gene encoding a putative ArcA homolog with {approx} 81% amino acid sequence identity to the E. coli ArcA protein but not a full-length arcB gene. To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed and subjected to both physiological characterization and microarray analysis. Compared to the wild-type MR-1, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in the absence of O{sub 2}. Microarray analyses on cells grown aerobically and anaerobically on fumarate revealed that expression of 1009 genes was significantly affected (p < 0.05) by the mutation. In contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S. oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight matrix from DNA-binding data and bioinformatics analysis was generated and used to produce an ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli. These results indicate that the Arc system in S. oneidensis differs from that in E. coli substantially in terms of its physiological function and regulon while their binding motif are strikingly similar.

  12. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals previously uncharacterized machinery for lactate utilization

    SciTech Connect

    Pinchuk, Grigoriy E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, J.; Fredrickson, Jim K.; Beliaev, Alex S.

    2009-02-24

    The ability to utilize lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. Using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO1522-SO1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dldD, SO1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by three genes with previously unknown functions (lldEGF, SO1520-19-18). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dldD and lldEFG encode fully functional D-and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is the first described example of a multi-subunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism.

  13. Dosage-Dependent Proteome Response of Shewanella oneidensis MR-1 to Acute Chromate Challenge

    SciTech Connect

    Thompson, Melissa R; Verberkmoes, Nathan C; Chourey, Karuna; Shah, Manesh B; Thompson, Dorothea K; Hettich, Robert {Bob} L

    2007-01-01

    Proteome alterations in the metal-reducing bacterium Shewanella oneidensis MR-1 in response to different acute dose challenges (0.3, 0.5, or 1 mM) of the toxic metal chromate [Cr(VI)] were characterized with multidimensional HPLC-MS/MS on a linear trapping quadrupole MS. A total of 2,406 functionally diverse proteins were identified, with a subset demonstrating dosage-dependent up- and down-regulated expression, such as proteins involved in detoxification and iron binding and transport.

  14. The octaheme SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1

    SciTech Connect

    Shirodkar, Sheetal; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad

    2011-01-01

    Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors that include thiosulfate, polysulfide, and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyzes six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones and c cytochromes but appeared to be independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octaheme c cytochrome with an atypical heme binding site that represents a new class of sulfite reductases. The sirA locus was identified in the genomes of several sequenced Shewanella genomes, and its presence appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.

  15. Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.; Heald, Steve M.; Dohnalkova, Alice; Sybirna, Kateryna; Bottin, Herve; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2011-08-02

    The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couple H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.

  16. Global profiling of Shewanella oneidensis MR-1: Expression of hypothetical genes and improved functional annotations

    SciTech Connect

    Picone, Alex F.; Galperin, Michael Y.; Romine, Margaret; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A; Qiu, Xiaoyun; Babnigg, Gyorgy; Beliaev, Alexander S; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Dr. Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Konstantinos T; Land, Miriam L; Lipton, Mary S.; McCue, Lee Ann; Monroe, Matthew; Pasa-Tolic, Ljiljana; Pinchuk, Grigoriy; Purvine, Samuel; Serres, Margrethe H.; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenguang; Zhou, Jizhong; Larimer, Frank W; Lawrence, Charles E.; Riley, Monica; Collart, Frank; YatesIII, John R.; Smith, Richard D.; Nealson, Kenneth H.; Fredrickson, James K; Tiedje, James M.

    2005-01-01

    The gamma-proteobacterium Shewanella oneidensis strain MR-1 is a metabolically versatile organism that can reduce a wide range of organic compounds, metal ions, and radionuclides. Similar to most other sequenced organisms, approximate to40% of the predicted ORFs in the S. oneidensis genome were annotated as uncharacterized "hypothetical" genes. We implemented an integrative approach by using experimental and computational analyses to provide more detailed insight into gene function. Global expression profiles were determined for cells after UV irradiation and under aerobic and suboxic growth conditions. Transcriptomic and proteomic analyses confidently identified 538 hypothetical genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all predicted hypothetical proteins). Publicly available analysis tools and databases and the expression data were applied to improve the annotation of these genes. The annotation results were scored by using a seven-category schema that ranked both confidence and precision of the functional assignment. We were able to identify homologs for nearly all of these hypothetical proteins (97%), but could confidently assign exact biochemical functions for only 16 proteins (category 1; 3%). Altogether, computational and experimental evidence provided functional assignments or insights for 240 more genes (categories 2-5; 45%). These functional annotations advance our understanding of genes involved in vital cellular processes, including energy conversion, ion transport, secondary metabolism, and signal transduction. We propose that this integrative approach offers a valuable means to undertake the enormous challenge of characterizing the rapidly growing number of hypothetical proteins with each newly sequenced genome.

  17. Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.

    PubMed

    Fitzgerald, Lisa A; Petersen, Emily R; Gross, Benjamin J; Soto, Carissa M; Ringeisen, Bradley R; El-Naggar, Mohamed Y; Biffinger, Justin C

    2012-01-15

    There are several interconnected metabolic pathways in bacteria essential for the conversion of carbon electron sources directly into electrical currents using microbial fuel cells (MFCs). This study establishes a direct exogenous method to increase power output from a Shewanella oneidensis MR-1 containing MFC by adding calcium chloride to the culture medium. The current output from each CaCl(2) concentration tested revealed that the addition of CaCl(2) to 1400 μM increased the current density by >80% (0.95-1.76 μA/cm(2)) using sodium lactate as the sole carbon source. Furthermore, polarization curves showed that the maximum power output could be increased from 157 to 330 μW with the addition of 2080 μM CaCl(2). Since the conductivity of the culture medium did not change after the addition of CaCl(2) (confirmed by EIS and bulk conductivity measurements), this increase in power was primarily biological and not based on ionic effects. Thus, controlling the concentration of CaCl(2) is a pathway to increase the efficiency and performance of S. oneidensis MR-1 MFCs. PMID:22154401

  18. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  19. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1.

    PubMed

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-05-15

    Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H2S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV-vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater. PMID:25698574

  20. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1

    PubMed Central

    Bennett, Brittany D.; Brutinel, Evan D.

    2015-01-01

    Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe3+) results in the production of ferrous iron (Fe2+) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe2+ from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe2+. The export function of FeoE is specific for Fe2+, as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd2+, Co2+, Cu2+, Mn2+, Ni2+, or Zn2+). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd2+/Zn2+ or Fe2+/Zn2+ exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe2+ compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe2+ exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found. PMID:26341213

  1. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1.

    PubMed

    Bennett, Brittany D; Brutinel, Evan D; Gralnick, Jeffrey A

    2015-11-01

    Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe(3+)) results in the production of ferrous iron (Fe(2+)) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe(2+) from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe(2+). The export function of FeoE is specific for Fe(2+), as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), or Zn(2+)). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd(2+)/Zn(2+) or Fe(2+)/Zn(2+) exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe(2+) compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe(2+) exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found. PMID:26341213

  2. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1

    NASA Technical Reports Server (NTRS)

    Ozawa, K.; Tsapin, A. I.; Nealson, K. H.; Cusanovich, M. A.; Akutsu, H.

    2000-01-01

    Cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c(3) gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.

  3. The Role of 4-Hydroxyphenylpyruvate Dioxygenase in Enhancement of Solid-Phase Electron Transfer by Shewanella oneidensis MR-1

    SciTech Connect

    Turick, Charles E.; Beliaev, Alex S.; Zakrajsek, Brian A.; Reardon, Catherine L.; Lowy, Daniel A.; Poppy, Tara E.; Maloney, Andrea; Ekechukwu, Amy A.

    2009-05-01

    ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro- 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.

  4. Identification of Mobile Elements and Pseudogenes in the Shewanella oneidensis MR-1 Genome

    SciTech Connect

    Romine, Margaret F.; Carlson, Timothy; Norbeck, Angela D.; McCue, Lee Ann; Lipton, Mary S.

    2008-05-01

    Shewanella oneidensis MR-1 is the first of 22 different Shewanella spp. whose genomes have been or are being sequenced and thus serves as the model organism for studying the functional repertoire of the Shewanella genus. The original MR-1 genome annotation revealed a large number of transposase genes and pseudogenes, indicating that many of the genome’s functions may be decaying. Comparative analyses of the sequenced Shewanella strains suggest that 209 genes in MR-1 have in-frame stop codons, frameshifts, or interruptions and/or are truncated and that 65 of the original pseudogene predictions were erroneous. Among the decaying functions are that of one of three chemotaxis clusters, type I pilus production, starch utilization, and nitrite respiration. Many of the mutations could be attributed to members of 41 different types of insertion sequence (IS) elements and three types of miniature inverted-repeat transposable elements identified here for the first time. The high copy numbers of individual mobile elements (up to 71) are expected to promote large-scale genome recombination events, as evidenced by the displacement of the algA promoter. The ability of MR-1 to acquire foreign genes via reactions catalyzed by both the integron integrase and the ISSod25-encoded integrases is suggested by the presence of attC sites and genes whose sequences are characteristic of other species downstream of each site. This large number of mobile elements and multiple potential sites for integrasemediated acquisition of foreign DNA indicate that the MR-1 genome is exceptionally dynamic, with many functions and regulatory control points in the process of decay or reinvention.

  5. Redox and pH Microenvironments within Shewanella oneidensis MR-1 Biofilms Reveal an Electron Transfer Mechanism

    PubMed Central

    Babauta, Jerome T.; Nguyen, Hung Duc; Beyenal, Haluk

    2011-01-01

    The goal of this research was to quantify the variations in redox potential and pH in Shewanella oneidensis MR-1 biofilms respiring on electrodes. We grew S. oneidensis MR-1 on a graphite electrode, which was used to accept electrons for microbial respiration. We modified well-known redox and pH microelectrodes with a built-in reference electrode so that they could operate near polarized surfaces and quantified the redox potential and pH profiles in these biofilms. In addition, we used a ferri-/ferrocyanide redox system in which electrons were only transferred by mediated electron transfer to explain the observed redox potential profiles in biofilms. We found that regardless of the polarization potential of the biofilm electrode, the redox potential decreased toward the bottom of the biofilm. In a fully redox-mediated control system (ferri-/ferrocyanide redox system), the redox potential increased toward the bottom when the electrode was the electron acceptor. The opposite behavior of redox profiles in biofilms and the redox-controlled system is explained by S. oneidensis MR-1 biofilms not being redox-controlled when they respire on electrodes. The lack of a significant variation in pH implies that there is no proton transfer limitation in S. oneidensis MR-1 biofilms and that redox potential profiles are not caused by pH. PMID:21648431

  6. Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1 ▿†‡

    PubMed Central

    Jiao, Yongqin; Qian, Fang; Li, Yat; Wang, Gongming; Saltikov, Chad W.; Gralnick, Jeffrey A.

    2011-01-01

    We determined that graphene oxide reduction by Shewanella oneidensis MR-1 requires the Mtr respiratory pathway by analyzing a range of mutants lacking these proteins. Electron shuttling compounds increased the graphene oxide reduction rate 3- to 5-fold. These results may help facilitate the use of bacteria for large-scale graphene production. PMID:21602337

  7. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    SciTech Connect

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  8. Mutants Shewanella Oneidensis MR-1 Effective in Generating Bioelectricity in Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Voeikova, T. A.; Emelyanova, L. K.; Novikova, L. M.; Shakulov, R. S.; Sidoruk, K. V.; Smirnov, I. A.; Ilyin, V. K.; Soldatov, P. E.; Tyurin-Kuz'min, A. Y.; Smolenskaya, T. S.; Debabov, V. G.

    2013-02-01

    The capability of Shewanella oneidensis MR-1 mutants FRS1 and FRB1, characterized by a high reducing activity, to generate electricity was measured in microbial fuel cells (MFC) of different types. The reducing activity of these mutants was previously identified with respect to the rate of discoloration (reduction) of methylene blueё, a dye that served as an electron transfer mediator. The present study demonstrated that the rate of MB discoloration was in direct correlation with the level of voltage in MFC of the above strains. In case when the mutants were used, the parameter in MFC proved to be 30-40% greater than in the case of the parent strain. In the course of this investigation MFC characteristics were identified, optimal electrode materials and ion-selective membranes selected, and MFC laboratory mockups manufactured.

  9. Shewregdb: Database and visualization environment for experimental and predicted regulatory information in Shewanella oneidensis mr-1

    SciTech Connect

    Syed, Mustafa; Karpinets, Tatiana V.; Leuze, Mike; Kora, Guruprasad; Romine, Margaret F.; Uberbacher, Edward

    2009-10-15

    Shewanella oneidensis MR-1 is an important model organism for environmental research as it has an exceptional metabolic and respiratory versatility regulated by a complex regulatory network. We have developed a database to collect experimental and computational data relating to regulation of gene and protein expression and a visualization environment that enables integration of these data types. The regulatory information in the database was collected from the published literature and different Internet resources. It includes predictions of DNA regulator binding sites, sigma factor binding sites, transcription units, operons, promoters, and RNA regulators including non-coding RNAs, riboswitches, and different types of terminators. A visualization environment based on GBrowser was developed for accessing the collected information and for its overlaying with experimental data (experimental results from studies employing microarrays, proteomics, and/or gene mutagenesis) and other genome annotations.

  10. Global Molecular and Morphological Effects of 24-Hour Chromium(VI) Exposure on Shewanella oneidensis MR-1

    PubMed Central

    Chourey, Karuna; Thompson, Melissa R.; Morrell-Falvey, Jennifer; VerBerkmoes, Nathan C.; Brown, Steven D.; Shah, Manesh; Zhou, Jizhong; Doktycz, Mitchel; Hettich, Robert L.; Thompson, Dorothea K.

    2006-01-01

    The biological impact of 24-h (“chronic”) chromium(VI) [Cr(VI) or chromate] exposure on Shewanella oneidensis MR-1 was assessed by analyzing cellular morphology as well as genome-wide differential gene and protein expression profiles. Cells challenged aerobically with an initial chromate concentration of 0.3 mM in complex growth medium were compared to untreated control cells grown in the absence of chromate. At the 24-h time point at which cells were harvested for transcriptome and proteome analyses, no residual Cr(VI) was detected in the culture supernatant, thus suggesting the complete uptake and/or reduction of this metal by cells. In contrast to the untreated control cells, Cr(VI)-exposed cells formed apparently aseptate, nonmotile filaments that tended to aggregate. Transcriptome profiling and mass spectrometry-based proteomic characterization revealed that the principal molecular response to 24-h Cr(VI) exposure was the induction of prophage-related genes and their encoded products as well as a number of functionally undefined hypothetical genes that were located within the integrated phage regions of the MR-1 genome. In addition, genes with annotated functions in DNA metabolism, cell division, biosynthesis and degradation of the murein (peptidoglycan) sacculus, membrane response, and general environmental stress protection were upregulated, while genes encoding chemotaxis, motility, and transport/binding proteins were largely repressed under conditions of 24-h chromate treatment. PMID:16957260

  11. The Shewanella oneidensis MR-1 Fluxome under Various OxygenConditions

    SciTech Connect

    Tang, Yinjie J.; Hwang, Judy S.; Wemmer, David E.; Keasling, Jay D.

    2006-03-17

    The central metabolic fluxes of Shewanella oneidensis MR-1were examined under carbon-limited (aerobic) and oxygen-limited(micro-aerobic) chemostat conditions using 13C labeled lactate as thesole carbon source. The carbon labeling patterns of key amino acids inbiomass were probed using both GC-MS and 13C-NMR. Based on the genomeannotation, a metabolic pathway model was constructed to quantify thecentral metabolic flux distributions. The model showed that thetricarboxylic acid (TCA) cycle is the major carbon metabolism route underboth conditions. The Entner-Doudoroff and pentose phosphate pathways weremainly utilized for biomass synthesis (flux below 5 percent of thelactate uptake rate). The anapleurotic reactions (pyruvate to malate andoxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt wereactive. Under carbon-limited conditions, a substantial amount of carbonwas oxidized via the highly reversible serine metabolic pathway. Fluxesthrough the TCA cycle were less whereas acetate production was more underoxygen limitation than under carbon limitation. Although fluxdistributions under aerobic, micro-aerobic, and shake-flask cultureconditions were dramatically different, the relative flux ratios of thecentral metabolic reactions did not vary significantly. Hence, S.oneidensis metabolism appears to be quite robust to environmentalchanges. Our study also demonstrates the merit of coupling GC-MS with 13CNMR for metabolic flux analysis to reduce the use of 13C labeledsubstrates and to obtain more accurate flux values.

  12. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1.

    PubMed

    Bogachev, Alexander V; Bertsova, Yulia V; Bloch, Dmitry A; Verkhovsky, Michael I

    2012-12-01

    Interpretation of the constantly expanding body of genomic information requires that the function of each gene be established. Here we report the genomic analysis and structural modelling of a previously uncharacterized redox-metabolism protein UrdA (SO_4620) of Shewanella oneidensis MR-1, which led to a discovery of the novel enzymatic activity, urocanate reductase. Further cloning and expression of urdA, as well as purification and biochemical study of the gene's product UrdA and redox titration of its prosthetic groups confirmed that the latter is indeed a flavin-containing enzyme catalysing the unidirectional reaction of two-electron reduction of urocanic acid to deamino-histidine, an activity not reported earlier. UrdA exhibits both high substrate affinity and high turnover rate (K(m)  < 10 μM, k(cat)  = 360 s(-1) ) and strong specificity in favour of urocanic acid. UrdA homologues are present in various bacterial genera, such as Shewanella, Fusobacterium and Clostridium, the latter including the human pathogen Clostridium tetani. The UrdA activity in S. oneidensis is induced by its substrate under anaerobic conditions and it enables anaerobic growth with urocanic acid as a sole terminal electron acceptor. The latter capability can provide the cells of UrdA-containing bacteria with a niche where no other bacteria can compete and survive. PMID:23078170

  13. Global Profiling of Shewanella oneidensis MR-1: Expression of Hypothetical Genes and Improved functional annotations

    SciTech Connect

    Kolker, Eugene; Picone, Alessandro F.; Galperin, Michael Y.; Romine, Margaret F.; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A.; Qiu, Xiaoyun; Auberry, Kenneth J.; Babnigg, Gyorgy; Beliaev, Alex S.; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Kostas; Land, Miriam L.; Lipton, Mary S.; McCue, Lee-Ann; Monroe, Matthew E.; Pasa-Tolic, Liljiana; Pinchuk, Grigoriy E.; Purvine, Samuel O.; Serres, Margaret; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenhong; Zhou, Jizhong; Larimer, Frank; Lawrence, Charles; Riley, Monica; Collart, Frank R.; Yates, III, John R.; Smith, Richard D.; Giometti, Carol S.; Nealson, Kenneth; Fredrickson, Jim K.; Tiedje, James M.

    2005-02-08

    The y-proteobacterium Shewanella oneidensis strain MR-1 is a respiratory versatile organism that can reduce a wide range of organics, metals, and radionuclides. Similar to most other sequenced organisms, approximately 40% of the predicted ORFs in the MR-1 genome were annotated as uncharacterized ''hypothetical'' genes. We implemented an integrative approach using experimental and computational analyses to provide more detailed insight into their function. Global expression studies were conducted using RNA and protein expression profiling of cells cultivated under aerobic, suboxic, and fumarate reducing conditions, phosphate limitation and UV irradiation. transcriptomic and proteomic analyses confidently identified 538 ''hypothetical'' genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all ''hypothetical'' proteins). Publicly available analysis tools and databases and our own expression data were applied to improve the annotation of these genes. The annotation results were scored using a seven-category schema that ranked both confidence and precision of the functional assignment. We identified homologs for nearly all of these ''hypothetical'' proteins (96%), thus allowing us to minimally classify them as ''conserved proteins''. Computational and/or experimental evidence provided more precise functional assignments for 297 genes (categories 1-4; 55%). These improved functional annotations will significantly widen our understanding of vital cellular processes including signal transduction, ion transport, secondary metabolism, and transcription, as well as structural elements, such as cellular membranes. We propose that this integrative approach offers a viable means to undertake the enormous challenge of characterizing the rapidly growing number of ''hypothetical'' proteins with each newly sequenced genome.

  14. Adhesion of Shewanella oneidensis MR-1 to Goethite: A Two-Dimensional Correlation Spectroscopic Study.

    PubMed

    Yan, Wei; Wang, Hongbo; Jing, Chuanyong

    2016-04-19

    Bacterial adhesion to mineral surfaces is an important but underappreciated process. To decipher the molecular level process and mechanism, the adhesion of Shewanella oneidensis MR-1 cells to goethite was investigated using flow-cell attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy coupled with two-dimensional correlation spectroscopy (2D-COS) analysis. The FTIR results indicate that bacterial phosphate-moieties play an important role in the formation of mono- and bidentate inner-sphere complexes, whereas carboxylic groups on cell surface only have a minor contribution to its adhesion. The 2D-COS analysis in short-term (0-120 min) and long-term (2-18 h) stages reveal that the adhesion process was in the following sequence: change in H-bonds of proteins on cell surfaces > formation of monodentate inner-sphere surface complexes > formation of outer-sphere surface complexes > transformation of protein secondary structure on cell surfaces > formation of additional bridging bidentate surface complexes. In addition, the adhesion of MR-1 cells on goethite was pH dependent due to pH impacts on the cell structure and the interface charge. The in situ ATR-FTIR integrated with 2D-COS analysis highlights its great potential in exploring complex surface reactions with microbes involved. These results improve our understanding of microbe-mineral interactions at the molecular level and have significant implications for a series of biogeochemical processes. PMID:27029565

  15. Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge

    SciTech Connect

    Chourey, Karuna; Wei, Wei; Wan, Xiu-Feng; Thompson, Dorothea K.

    2008-01-01

    Shewanella oneidensis MR-1 exhibits diverse metal ion-reducing capabilities and thus is of potential utility as a bioremediation agent. Knowledge of the molecular components and regulatory mechanisms dictating cellular responses to heavy metal stress, however, remains incomplete. In a previous work, the S. oneidensis so2426 gene, annotated as a DNA-binding response regulator, was demonstrated to be specifically responsive at both the transcript and protein levels to acute chromate [Cr(VI)] challenge. To delineate the cellular function of SO2426 and its contribution to metal stress response, we integrated genetic and physiological approaches with a genome-wide screen for target gene candidates comprising the SO2426 regulon.

  16. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Turick, Charles E; Beliaev, Alex S; Zakrajsek, Brian A; Reardon, Catherine L; Lowy, Daniel A; Poppy, Tara E; Maloney, Andrea; Ekechukwu, Amy A

    2009-05-01

    We hypothesized that Shewanella oneidensis MR-1, a model dissimilatory metal-reducing bacterium, could utilize environmentally relevant concentrations of tyrosine to produce pyomelanin for enhanced Fe(III) oxide reduction. Because homogentisate is an intermediate of the tyrosine degradation pathway, and a precursor of a redox-cycling metabolite, pyomelanin, we evaluated the process of homogentisate production by S. oneidensis MR-1, in order to identify the key steps involved in pyomelanin production. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. We used genetic analysis and physiological characterization of MR-1 strains either deficient in or displaying substantially increased pyomelanin production. The relative significance imparted by pyomelanin on solid-phase electron transfer was also addressed using electrochemical techniques, which allowed us to extend the genetic and physiological findings to biogeochemical cycling of metals. Based on our findings, environmental production of pyomelanin from available organic precursors could contribute to the survival of S. oneidensis MR-1 when dissolved oxygen concentrations become low, by providing an increased capacity for solid-phase metal reduction. This study demonstrates the role of organic precursors and their concentrations in pyomelanin production, solid phase metal reduction and biogeochemical cycling of iron. PMID:19573203

  17. Integrated Analysis of Protein Complexes and Regulatory Networks Involved in Anaerobic Energy Metabolism of Shewanella Oneidensis MR-1

    SciTech Connect

    Tiedje, James M.

    2005-06-01

    Anaerobic Nitrate Reduction. Nitrate is an extensive co-contaminant at some DOE sites making metal and radionuclide reduction problematic. Hence, we sought to better understand the nitrate reduction pathway and its control in S. oneidensis MR-1. It is not known whether the nitrate reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, we proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, we identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant, indicating that NapA is the only nitrate reductase present. The anaerobic expression of napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO3. This indicates that these genes are not repressed by increasing concentrations of nitrate. The reduction of nitrate can generate intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose. The role of EtrA, a homolog of Fnr (global anaerobic regulator in E. coli) was examined using an etrA deletion mutant we constructed, S. oneidensis EtrA7-1.

  18. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1

    SciTech Connect

    Marritt, Sophie; McMillan, Duncan G.; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Richardson, David J.; Jeuken, Lars J.; Butt, Julea N.

    2012-12-01

    Shewanella species are isolated from the oxic/anoxic regions of seawater and aquatic sediments where redox conditions fluctuate in time and space. Colonization of these environments is by virtue of flexible respiratory chains, many of which are notable for the ability to reduce extracellular substrates including the Fe(III) and Mn(IV) contained in oxide and phyllosilicate minerals. Shewanella oneidensis MR-1 serves as a model organism to consider the biochemical basis of this flexibility. In the present paper, we summarize the various systems that serve to branch the respiratory chain of S. oneidensis MR-1 in order that electrons from quinol oxidation can be delivered the various terminal electron acceptors able to support aerobic and anaerobic growth. This serves to highlight several unanswered questions relating to the regulation of respiratory electron transport in Shewanella and the central role(s) of the tetrahaem-containing quinol dehydrogenase CymA in that process.

  19. Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1

    PubMed Central

    Clark, Iain C.; Melnyk, Ryan A.; Youngblut, Matthew D.; Carlson, Hans K.; Iavarone, Anthony T.

    2015-01-01

    ABSTRACT Despite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth. PMID:25991681

  20. Investigations of Structure and Metabolism within Shewanella oneidensis MR-1 Biofilms

    SciTech Connect

    Mclean, Jeffrey S.; Majors, Paul D.; Reardon, Catherine L.; Bilskis, Christina L.; Reed, Samantha B.; Romine, Margaret F.; Fredrickson, Jim K.

    2008-07-01

    Biofilms are known to possess spatially and temporally varying metabolite concentration profiles at the macroscopic and microscopic scales. This results in varying growth environments within that may ultimately drive species diversity, determine biofilm structure and also the spatial arrangement of the community members. Using noninvasive nuclear magnetic resonance (NMR) microscopic imaging/spectroscopy and confocal imaging, we investigated anaerobic reduction kinetics, structural variation, and the stratification of metabolism within live biofilms of the facultative anaerobic dissimilatory metal-reducing Shewanella oneidensis strain MR-1. Biofilms were pregrown using a defined minimal media in a homebuilt constant depth film fermenter and subsequently transferred to an in-magnet sample chamber under laminar flow for NMR measurements. The sample was subjected to various, rapidly switched substrate/ anaerobic electron acceptor combinations (fumarate, dimethyl sulfoxide, and nitrate electron acceptors). Localized NMR spectroscopy was used to non-invasively monitored the spectra of hydrogen-containing metabolites at high temporal resolution (4.5 min) under oxygen-limited conditions. Anaerobic reduction was immediately observed upon switching feed solutions indicate that no gene induction (transcriptional response) was needed for MR-1 to switch between fumarate, dimethyl sulfoxide (DMSO) and nitrate electron acceptors. In parallel experiments, confocal microscopy was used with constitutively expressed fluorescent reporters to independently investigate structural changes in response to the availability of electron acceptor and also the outcome of metabolic competition under oxygen-limited conditions. A clearer understanding of the metabolic diversity and plasticity of the biofilm mode of growth as well as how this possibly translates to the environmental fitness is made possible through the use of non-invasive and non-destructive techniques such as described here.

  1. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.

    PubMed

    Bao, Han; Zheng, Zhanwang; Yang, Bin; Liu, Ding; Li, Feifang; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2016-06-01

    Much attention has been focused on electrochemically active bacteria (EAB) in the application of bioelectrochemical systems (BESs). Studying the EAB biofilm growth mechanism as well as electron transfer mechanism provides a route to upgrade BES performance. But an effective bacterial growth monitoring method on the biofilm scale is still absent in this field. In this work, electrode-attached bacterial biofilms formed by Shewanella oneidensis MR-1 were dynamically monitored through a microelectrode method. For S. oneidensis MR-1, a respiratory electron transport chain is associated with the secretion of riboflavin, severing as the cofactor to the outer membrane c-type cytochromes. The biofilm growth was monitored through adopting riboflavin as an electrochemical probe during the approach of the microelectrode to the biofilm external surface. This method allows in vivo and in situ biofilm monitoring at different growth stages without destructive manipulation. Furthermore, the biofilm growth monitoring results have been proved to be relatively accurate through observation under confocal laser scanning microscopy. We further applied this method to investigate the effects of four environmental factors (the concentrations of dissolved oxygen, sodium lactate, riboflavin as well as the electrode potential) on S. oneidensis MR-1 biofilm development. PMID:26850925

  2. Validation of Shewanella oneidensis MR-1 Small Proteins by AMT Tag-based Proteome Analysis

    SciTech Connect

    Romine, Margaret F.; Elias, Dwayne A.; Monroe, Matthew E.; Auberry, Kenneth J.; Fang, Ruihua; Fredrickson, Jim K.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-09-01

    Using stringent criteria for protein identification by accurate mass and time (AMT) tag mass spectrometric methodology, we detected 36 proteins <101 amino acids in length, including 10 that were annotated as hypothetical proteins, in 172 global tryptic digests of Shewanella oneidensis MR-1 proteins analyzed. Peptides that map to the conserved, but functionally uncharacterized proteins SO4134 and SO2787, were the most frequently detected small proteins in these samples, while hypotheticals SO2669 and SO2063, conserved hypotheticals SO0335 and SO2176, and the SlyX protein (SO1063) were observed at frequencies similar to small expected abundant ribosomal proteins and translation initiation factor IF-1 and consequently, likely to encode important cellular functions. In addition, 30 proteins including three of the small proteins that map to genes predicted to encode frameshifts, point mutations, or recoding signals were detected. Of these 30 genes, peptides that map to positions beyond internal stop codons were detected in 13 genes (SO0101, SO0419, SO0590, SO0738, SO1113, SO1211, SO3079, SO3130, SO3240, SO4231, SO4328, SO4422, and SO4657). While expression of the full-length formate dehydrogenase encoded by SO0101 can be explained by incorporation of selenocysteine at the internal stop codon, the mechanism of translating downstream sequences in the remaining genes remains unknown.

  3. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    SciTech Connect

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2014-11-05

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

  4. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization

    NASA Astrophysics Data System (ADS)

    Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang

    2014-01-01

    Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.

  5. Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms.

    PubMed

    Saville, Renée M; Dieckmann, Nele; Spormann, Alfred M

    2010-07-01

    Type IV pili and a putative EPS biosynthetic gene cluster (mxdABCD) have been implicated previously in biofilm formation in Shewanella oneidensis MR-1. Here, we report that the mannose-sensitive hemagglutinin (MSHA) pilus mediates a reversible, d-mannose-sensitive association of cells to the substratum surface or to other cells that is critical within the first 5 microm of the biofilm from the substratum. The presence of the MSHA pilus alone is insufficient to confer biofilm-forming capacity; its activity, as mediated by the putative pilus retraction motor protein, PilT, is also required. Deletion of pilD, encoding the type IV pili prepilin peptidase, revealed that additional PilD substrate(s) may be involved in biofilm formation beyond the major structural pilin of the MSHA pilus. We also present data showing that the MSHA pilus and mxd genes encode for a complementary set of molecular machineries that constitute the dominant mechanisms enabling biofilm formation in this microorganism under hydrodynamic conditions. PMID:20487019

  6. Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1

    SciTech Connect

    Schofield, Eleanor J.; Veeramani, Harish; Sharp, Jonathan; Suvorova, Elena; Bernier-Latmani, Rizlan; Mehta, Apurva; STAHLMAN, JONATHAN O.; Webb, Samuel M.; Clark, David L.; Conradson, Steven D.; Ilton, Eugene S.; Bargar, John R.

    2008-11-01

    The stability of biogenic uraninite with respect to oxidation is seminal to the success of in-situ bioreduction strategies for remediation of subsurface U(VI) contamination. The properties and hence stability of uraninite are dependent on its size, structure and composition. In this study, the local-, intermediate-, and long-range molecular-scale structure of nanoscale uraninite produced by Shewanella oneidensis strain MR-1 was investigated using EXAFS, SR-based powder diffraction and TEM. The uraninite products were found to be structurally homologous with stoichiometric UO2 under all conditions considered. Significantly, there was no evidence for lattice strain of the biogenic uraninite nanoparticles. The fresh nanoparticles were found to exhibit a well-ordered interior core of diameter ca 1 nm and an outer region of thickness ca ~ 1 nm in which the structure is locally distorted. The lack of nanoparticle strain and structural homology with stoichiometric UO2 suggests that established thermodynamic parameters for the latter material are an appropriate starting point to model the behavior of nano-biogenic uraninite. The detailed structural analysis in this study provides an essential foundation for subsequent investigations of more environmentally relevant samples.

  7. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  8. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities.

    PubMed

    Breuer, Marian; Rosso, Kevin M; Blumberger, Jochen; Butt, Julea N

    2015-01-01

    Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. PMID:25411412

  9. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities

    PubMed Central

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2015-01-01

    Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. PMID:25411412

  10. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    SciTech Connect

    Cruz-Garza, Claribel; Murray, Alison E.; Rodrigues, Jorge L.M.; Gralnick, Jeffrey A.; McCue, Lee Ann; Romine, Margaret F.; Loffler, F. E.; Tiedje, James M.

    2011-03-30

    EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is not well understood. The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down regulated at least 2-fold and the EtrA7-1 mutant grew poorly with fumarate and dimethyl sulfoxide (DMSO), suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down regulation of genes implicated in aerobic metabolism. In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and confers physiological advantages to strain MR-1 under certain growth conditions. In conjunction with other regulators, EtrA fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1.

  11. Cu-doped TiO(2) nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet light (UV) exposure.

    PubMed

    Wu, Bing; Zhuang, Wei-Qin; Sahu, Manoranjan; Biswas, Pratim; Tang, Yinjie J

    2011-10-01

    It has been shown that photocatalytic TiO(2) nanoparticles (NPs) can be used as an efficient anti-microbial agent under UV light due to generation of reactive oxygen species (ROS), while Shewanella oneidensis MR-1 is a metal-reducing bacterium highly susceptible to UV radiation. Interestingly, we found that the presence of Cu-doped TiO(2) NPs in the cultural medium dramatically increased the survival rates (based on colony-forming unit) of strain MR-1 by over 10,000-fold (incubation without shaking) and ~200 fold (incubation with shaking) after a 2-h exposure to UV light. Gene expression results (via qPCR measurement) indicated that the DNA repair gene recA in MR-1 was significantly induced by UV exposure (indicating cellular damage under UV stress), but the influence of NPs on recA expression was not statistically evident. Plausible explanations to NP attenuation of UV stresses are: 1. TiO(2) based NPs are capable of scattering and absorbing UV light and thus create a shading effect to protect MR-1 from UV radiation; 2. more importantly, Cu-doped TiO(2) NPs can co-agglomerate with MR-1 to form large flocs that improves cells' survival against the environmental stresses. This study improves our understanding of NP ecological impacts under natural solar radiation and provides useful insights to application of photocatalytic-NPs for bacterial disinfection. PMID:21855961

  12. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  13. Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: a Tool for Data Analysis and Hypothesis Generation

    SciTech Connect

    Pinchuk, Grigoriy E.; Hill, Eric A.; Geydebrekht, Oleg V.; De Ingeniis, Jessica; Zhang, Xiaolin; Osterman, Andrei; Scott, James H.; Reed, Samantha B.; Romine, Margaret F.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.; Reed, Jennifer L.

    2010-06-24

    Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and flexibility of the electron transfer networks as well as central and peripheral carbon metabolism pathways. To understand the factors contributing to the ecophysiological success of Shewanellae, the metabolic network of S. oneidensis MR-1 was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify futile cycles, (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism

  14. Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation

    PubMed Central

    Hill, Eric A.; Geydebrekht, Oleg V.; De Ingeniis, Jessica; Zhang, Xiaolin; Osterman, Andrei; Scott, James H.; Reed, Samantha B.; Romine, Margaret F.; Konopka, Allan E.; Beliaev, Alexander S.; Fredrickson, Jim K.

    2010-01-01

    Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems

  15. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.

    PubMed

    Xafenias, Nikolaos; Zhang, Yue; Banks, Charles J

    2013-05-01

    Biocathodes for the reduction of the highly toxic hexavalent chromium (Cr(VI)) were investigated using Shewanella oneidensis MR-1 (MR-1) as a biocatalyst and performance was assessed in terms of current production and Cr(VI) reduction. Potentiostatically controlled experiments (-500 mV vs Ag/AgCl) showed that a mediatorless MR-1 biocathode started up under aerated conditions in the presence of lactate, received 5.5 and 1.7 times more electrons for Cr(VI) reduction over a 4 h operating period than controls without lactate and with lactate but without MR-1, respectively. Cr(VI) reduction was also enhanced, with a decrease in concentration over the 4 h operating period of 9 mg/L Cr(VI), compared to only 1 and 3 mg/L, respectively, in the controls. Riboflavin, an electron shuttle mediator naturally produced by MR-1, was also found to have a positive impact in potentiostatically controlled cathodes. Additionally, a microbial fuel cell (MFC) with MR-1 and lactate present in both anode and cathode produced a maximum current density of 32.5 mA/m(2) (1000 Ω external load) after receiving a 10 mg/L Cr(VI) addition in the cathode, and cathodic efficiency increased steadily over an 8 day operation period with successive Cr(VI) additions. In conclusion, effective and continuous Cr(VI) reduction with associated current production were achieved when MR-1 and lactate were both present in the biocathodes. PMID:23517384

  16. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    SciTech Connect

    Ruebush,S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  17. In vitro enzymatic reduction kinetics of mineral oxides by membrane fractions from Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Ruebush, Shane S.; Icopini, Gary A.; Brantley, Susan L.; Tien, Ming

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  18. Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1.

    PubMed

    Yang, Yuyi; Lu, Liling; Gao, Fen; Zhao, Yuhua

    2013-05-01

    The acyl carrier protein (ACP) phosphodiesterase gene (SO 4396) of Shewanella oneidensis MR-1 which was analyzed to have azoreductase activity was heterologously expressed in Escherichia coli. The ACP phosphodiesterase was found to reach maximum enzyme velocity 220.59 U/mg, named azoreductase in this study. The azoreductase had highest specific activity (153.16 U/mg) at pH 6.5, which showed a preference for nicotinamide adenine dinucleotide (NADH) as electron donor. The phylogenetic tree analysis indicated that the azoreductase had preference for NADH and dependence for flavin mononucleotide (FMN). However, the azoreductase from S. oneidensis MR-1 still had high enzyme activity in the absence of FMN. The Mg(2+) had a positive influence on the enzyme activity with 25 mM concentration, whereas Cr(3+), Cd(2+) usually had significantly negative effect on enzyme activity. The purified azoreductase retained nearly 100 % activity after incubating in 30 % dimethyl sulfoxide (DMSO), 30 % acetone, 30 % methanol, 20 % ethanol, 20 % isopropanol, and 10 % propanol. PMID:23089953

  19. Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1.

    PubMed

    Icopini, Gary A; Lack, Joe G; Hersman, Larry E; Neu, Mary P; Boukhalfa, Hakim

    2009-06-01

    We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

  20. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1.

    PubMed

    Boukhalfa, Hakim; Icopini, Gary A; Reilly, Sean D; Neu, Mary P

    2007-09-01

    The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species. PMID:17644643

  1. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1.

    PubMed

    Jahnke, Justin P; Cornejo, Jose A; Sumner, James J; Schuler, Andrew J; Atanassov, Plamen; Ista, Linnea K

    2016-03-01

    The bacterial cell envelope forms the interface between the interior of the cell and the outer world and is, thus, the means of communication with the environment. In particular, the outer cell surface mediates the adhesion of bacteria to the surface, the first step in biofilm formation. While a number of ligand-based interactions are known for the attachment process in commensal organisms and, as a result, opportunistic pathogens, the process of nonspecific attachment is thought to be mediated by colloidal, physiochemical, interactions. It is becoming clear, however, that colloidal models ignore the heterogeneity of the bacterial surface, and that the so-called nonspecific attachment may be mediated by specific regions of the cell surface, whether or not the relevant interaction is ligand-mediate. The authors introduce surface functionalized gold nanoparticles to probe the surface chemistry of Shewanella oneidensis MR-1 as it relates to surface attachment to ω-substituted alkanethiolates self-assembled monolayers (SAMs). A linear relationship between the attachment of S. oneidensis to SAM modified planar substrates and the number of similarly modified nanoparticles attached to the bacterial surfaces was demonstrated. In addition, the authors demonstrate that carboxylic acid-terminated nanoparticles attach preferentially to the subpolar region of the S. oneidensis and obliteration of that binding preference corresponds in loss of attachment to carboxylic acid terminated SAMs. Moreover, this region corresponds to suspected functional regions of the S. oneidensis surface. Because this method can be employed over large numbers of cells, this method is expected to be generally applicable for understanding cell surface organization across populations. PMID:26746161

  2. Effects of the Anaerobic Respiration of Shewanella oneidensis MR-1 on the Stability of Extracellular U(VI) Nanofibers

    PubMed Central

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO3·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes. PMID:23719584

  3. Effects of the anaerobic respiration of Shewanella oneidensis MR-1 on the stability of extracellular U(VI) nanofibers.

    PubMed

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO(3)·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes. PMID:23719584

  4. Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1.

    PubMed

    Perreault, Nancy N; Crocker, Fiona H; Indest, Karl J; Hawari, Jalal

    2012-02-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1. PMID:22260206

  5. Recombinant engineering of Shewanella oneidensis MR-1 c-type cytochromes in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shewanella oneidensis is known to respire with extracellular solid metal oxides (i.e., iron, manganese, uranium) as a terminal electron acceptor. It has become the focus of intensive research not only due to its important bioremediation features, but also as a potential organism for biological elec...

  6. The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY

    PubMed Central

    2013-01-01

    Background S. oneidensis MR-1 is a dissimilatory metal-reducing bacterium. Under anoxic conditions S. oneidensis MR-1 attaches to and uses insoluble minerals such as Fe(III) and Mn(IV) oxides as electron acceptors. In the laboratory, S. oneidensis MR-1 forms biofilms under hydrodynamic flow conditions on a borosilicate glass surface; formation of biofilms was previously found to be dependent on the mxd gene cluster (mxdABCD). Results This study revealed environmental and genetic factors regulating expression of the mxd genes in S. oneidensis MR-1. Physiological experiments conducted with a S. oneidensis MR-1 strain carrying a transcriptional lacZ fusion to the mxd promoter identified electron donor starvation as a key factor inducing mxd gene expression. Tn5 mutagenesis identified the ArcS/ArcA two-component signaling system as a repressor of mxd expression in S. oneidensis MR-1 under planktonic conditions. Biofilms of ∆arcS and ∆arcA strains carrying a transcriptional gfp -reporter fused to the mxd promoter revealed a reduced mxd expression, suggesting that ArcS/ArcA are necessary for activation of mxd expression under biofilm conditions. Biofilms of ∆arcS and ∆arcA mutants were unable to form a compact three-dimensional structure consistent with a low level of mxd expression. In addition, BarA/UvrY was identified as a major regulator of mxd expression under planktonic conditions. Interestingly, biofilms of ∆barA and ∆uvrY mutants were able to form three-dimensional structures that were, however, less compact compared to wild type biofilms. Conclusions We have shown here that the mxd genes in S. oneidensis MR-1 are controlled transcriptionally in response to carbon starvation and by the ArcS/ArcA and the BarA/UvrY signaling system. BarA might function as a sensor to assess the metabolic state of the cell, including carbon starvation, leading to expression of the mxd operon and therefore control biofilm formation. PMID:23705927

  7. Roles of 3,3′,4′,5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1

    PubMed Central

    Wang, Yong-Peng; Yu, Sheng-Song; Zhang, Hai-Ling; Li, Wen-Wei; Cheng, Yuan-Yuan; Yu, Han-Qing

    2015-01-01

    Microbial extracellular electron transfer (EET) is critically involved in many pollutant conversion processes in both natural environment and engineered bioelectrochemical systems (BES), but typically with limited efficiency and poor controllability. In this study, we discover an important role of uncouplers in affecting the microbial energy metabolism and EET. Dose of lower-concentration 3,3′,4′,5-tetrachlorosalicylanilide (TCS) in the anolyte promoted the current generation and substrate degradation of an MFC inoculated with Shewanella oneidensis MR-1. However, higher TCS dosage caused obvious microbial inhibition. Our results suggest a previously unknown role of uncouplers in regulating the microbial EET. In addition, the underlying mechanisms of such processes are investigated. This work broadens our view about the EET behaviors of microorganisms in real water environment where uncouplers are usually present, and suggests a possible new approach to regulate microbial EET in BES. PMID:25612888

  8. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1.

    PubMed

    Wang, Yong-Peng; Yu, Sheng-Song; Zhang, Hai-Ling; Li, Wen-Wei; Cheng, Yuan-Yuan; Yu, Han-Qing

    2015-01-01

    Microbial extracellular electron transfer (EET) is critically involved in many pollutant conversion processes in both natural environment and engineered bioelectrochemical systems (BES), but typically with limited efficiency and poor controllability. In this study, we discover an important role of uncouplers in affecting the microbial energy metabolism and EET. Dose of lower-concentration 3,3',4',5-tetrachlorosalicylanilide (TCS) in the anolyte promoted the current generation and substrate degradation of an MFC inoculated with Shewanella oneidensis MR-1. However, higher TCS dosage caused obvious microbial inhibition. Our results suggest a previously unknown role of uncouplers in regulating the microbial EET. In addition, the underlying mechanisms of such processes are investigated. This work broadens our view about the EET behaviors of microorganisms in real water environment where uncouplers are usually present, and suggests a possible new approach to regulate microbial EET in BES. PMID:25612888

  9. The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer

    SciTech Connect

    Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.; Shirodkar, Sheetal; Brockman, K. L.; Ray, Ricky; Wu, Peter; Johnson, Brandy J.; Biddle, E. M.; Marshall, Matthew J.; Fitzgerald, Lisa A.; Little, Brenda; Fredrickson, Jim K.; Beliaev, Alex S.; Ringeisen, Bradley R.; Saffarini, Daad

    2010-04-20

    Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that may function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.

  10. Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge

    PubMed Central

    Chourey, Karuna; Wei, Wei; Wan, Xiu-Feng; Thompson, Dorothea K

    2008-01-01

    Background Shewanella oneidensis MR-1 exhibits diverse metal ion-reducing capabilities and thus is of potential utility as a bioremediation agent. Knowledge of the molecular components and regulatory mechanisms dictating cellular responses to heavy metal stress, however, remains incomplete. In a previous work, the S. oneidensis so2426 gene, annotated as a DNA-binding response regulator, was demonstrated to be specifically responsive at both the transcript and protein levels to acute chromate [Cr(VI)] challenge. To delineate the cellular function of SO2426 and its contribution to metal stress response, we integrated genetic and physiological approaches with a genome-wide screen for target gene candidates comprising the SO2426 regulon. Results Inactivation of so2426 by an in-frame deletion resulted in enhanced chromate sensitivity and a reduced capacity to remove extracellular Cr(VI) relative to the parental strain. Time-resolved microarray analysis was used to compare transcriptomic profiles of wild-type and SO2426-deficient mutant S. oneidensis under conditions of chromate exposure. In total, 841 genes (18% of the arrayed genome) were up- or downregulated at least twofold in the Δso2426 mutant for at least one of six time-point conditions. Hierarchical cluster analysis of temporal transcriptional profiles identified a distinct cluster (n = 46) comprised of co-ordinately regulated genes exhibiting significant downregulated expression (p < 0.05) over time. Thirteen of these genes encoded proteins associated with transport and binding functions, particularly those involved in Fe transport and homeostasis (e.g., siderophore biosynthetic enzymes, TonB-dependent receptors, and the iron-storage protein ferritin). A conserved hypothetical operon (so1188-so1189-so1190), previously identified as a potential target of Fur-mediated repression, as well as a putative bicyclomycin resistance gene (so2280) and cation efflux family protein gene (so2045) also were repressed in the

  11. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    SciTech Connect

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  12. Evaluation of the effects of various culture condition on Cr (VI)reduction by Shewanella oneidensis MR-1 in a novel high-throughputmini-bioreactor

    SciTech Connect

    Tang, Yinjie J.; Laidlaw, David; Gani, Kishen; Keasling, Jay D.

    2006-03-16

    The growth and Cr(VI) reduction by Shewanella oneidensisMR-1 was examined using a mini-bioreactor system that independentlymonitors and controls pH, dissolved oxygen, and temperature for each ofits 24, 10-mL reactors. Independent monitoring and control of eachreactor in the cassette allows the exploration of a matrix ofenvironmental conditions known to influence S. oneidensis chromiumreduction. S. oneidensis MR-1 grew in minimal medium without amino acidor vitamin supplementation under aerobic conditions but required serineand glycine supplementation under anaerobic conditions. Growth wasinhibited by dissolved oxygen concentrations>80 percent. Lactatetransformation to acetate was enhanced by low concentration of dissolvedoxygen during the logarithmic growth phase. Between 11 and 35oC, thegrowth rate obeyed the Arrhenius reaction rate-temperature relationship,with a maximum growth rate occurring at 35oC. S. oneidensis MR-1 was ableto grow over a wide range of pH (6-9). At neutral pH and temperaturesranging from 30-35oC, S. oneidensis MR-1 reduced 100 mu M Cr(VI) toCr(III) within 20 minutes in the exponential growth phase, and the growthrate was not affected by the addition of chromate; it reduced chromateeven faster at temperatures between 35 and 39oC. At low temperatures(<25oC), acidic (pH<6.5), or alkaline (pH>8.5) conditions, 100mu M Cr(VI) strongly inhibited growth and chromate reduction. Themini-bioreactor system enabled the rapid determination of theseparameters reproducibly and easily by performing very few experiments.Besides its use for examining parameters of interest to environmentalremediation, the device will also allow one to quickly assess parametersfor optimal production of recombinant proteins or secondarymetabolites

  13. Trace Element Speciation and Distribution Study at Shewanella oneidensis MR-1 Biofilm/Mineral/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Gelabert, A.; Wang, Y.; Gescher, J.; Ha, J.; Cordova, C. D.; Singer, D. M.; Spormann, A. M.; Trainor, T. P.; Eng, P. J.; Brown, G. E.

    2006-12-01

    Fe- and Al-(oxyhydr)oxides are among the most reactive mineral surfaces contacted by surface and ground waters, and thus they constitute important sorbents for heavy metal and metalloid ions. As microbial biofilms may be present as coatings on these minerals, they are likely to induce major changes in surface charges and sorption capacities for metal(loid) ions compared to biofilm-free mineral surfaces. In addition, the micro- environments in biofilms can be quite different from those in bulk solutions, which can enhance (or inhibit) metal adsorption on mineral surfaces and produce biominerals that are not predicted by equilibrium thermodynamics based on the bulk solution values. In order to provide a more quantitative understanding of these effects, we have carried out a study of the interaction of Zn(II), Pb(II), and As(V) with Shewanella oneidensis (wild type, EPS-deficient mutant, and ppx- and ppk-deficient mutants) grown on highly polished and oriented single crystal surfaces of α-Al2O3 (1-102) and α-Fe2O3 (0001). This gram-negative bacterium commonly found in soil and sediments can use a wide range of electron donors and terminal electron acceptors including Fe(III) and Mn(IV) oxides under anaerobic conditions. In-situ ATR-FTIR analyses and potentiometric titrations of S. oneidensis biofilm collected from a glass bead-filled column inoculated with S. oneidensis were conducted in order to determine the nature of functional groups present on the bacterial surfaces, to quantify the site densities and protonation constants for these groups, and to determine the electrostatic parameters for S. oneidensis surfaces. GI-XAFS analyses performed on BL 11-2 at SSRL, together with macroscopic metal adsorption experiments as a function of pH (2 to 6.5), metal concentration (10-3 to 10-7 M), and ionic strength (10-1 to 10-3 M), were used to determine ion speciation and local coordination environments in the biofilm and to develop a surface complexation model describing

  14. Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1

    PubMed Central

    Belchik, Sara M.; Kennedy, David W.; Dohnalkova, Alice C.; Wang, Yuanmin; Sevinc, Papatya C.; Wu, Hong; Lin, Yuehe; Lu, H. Peter; Fredrickson, James K.; Shi, Liang

    2011-01-01

    To characterize the roles of cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 in Cr(VI) reduction, the effects of deleting the mtrC and/or omcA gene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion of mtrC decreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion of omcA or both mtrC and omcA lowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion of mtrC and omcA diminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparent kcat values of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s−1 and Km values of 34.1 ± 4.5 and 41.3 ± 7.9 μM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used by S. oneidensis MR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase. PMID:21498755

  15. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  16. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  17. Genes That Enhance the Ecological Fitness of Shewanella oneidensis MR-1 in Sediments Reveal the Value of Antibiotic Resistance▿ †

    PubMed Central

    Groh, Jennifer L.; Luo, Qingwei; Ballard, Jimmy D.; Krumholz, Lee R.

    2007-01-01

    Environmental bacteria persist in various habitats, yet little is known about the genes that contribute to growth and survival in their respective ecological niches. Signature-tagged mutagenesis (STM) of Shewanella oneidensis MR-1 coupled with a screen involving incubations of mutant strains in anoxic aquifer sediments allowed us to identify 47 genes that enhance fitness in sediments. Gene functions inferred from annotations provide us with insight into physiological and ecological processes that environmental bacteria use while growing in sediment ecosystems. Identification of the mexF gene and other potential membrane efflux components by STM demonstrated that homologues of multidrug resistance genes present in pathogens are required for sediment fitness of nonpathogenic bacteria. Further studies with a mexF deletion mutant demonstrated that the multidrug resistance pump encoded by mexF is required for resistance to antibiotics, including chloramphenicol and tetracycline. Chloramphenicol-adapted cultures exhibited mutations in the gene encoding a TetR family regulatory protein, indicating a role for this protein in regulating expression of the mexEF operon. The relative importance of mexF for sediment fitness suggests that antibiotic efflux may be a required process for bacteria living in sediment systems. PMID:17114320

  18. Ferrous Phosphate Surface Precipitates Resulting from the Reduction of Intragrain 6-line Ferrihydrite by Shewanella oneidensis MR-1

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Kennedy, David W.; Fredrickson, Jim K.; Arey, Bruce W.; McKinley, James P.; Wang, Chong M.; Dohnalkova, Alice; Xia, Yuanxian

    2010-07-01

    The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3) and phosphate (P) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behaviour with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L-1 Fe(III)T]. In the intragrain ferrihydrite suspensions, 200-300 µmol L-1 dissolved Fe(III) was released during the initial stages of incubation; no Fe(III)aq was detected in the free ferrihydrite suspensions. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Distinctive surface precipitates of Fe(II) phosphates with spherical morphology were observed on porous silica when P was present. These precipitates were well colonized by microorganisms and fragments of extracellular materials at the end of incubation.

  19. Control of Formation and Cellular Detachment from Shewanella oneidensis MR-1 Biofilms by Cyclic di-GMP

    SciTech Connect

    Thormann, Kai M.; Duttler, Stefanie; Saville, Renee; Hyodo, Mamoru; Shukla, Soni; Hayakawa, Yoshihiro; Spormann, Alfred M.

    2006-04-01

    Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral -reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a Delta mxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.

  20. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  1. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1.

    PubMed

    Li, Chenchen; Yi, Xiaoyun; Dang, Zhi; Yu, Hui; Zeng, Tao; Wei, Chaohai; Feng, Chunhua

    2016-02-01

    Polyferric sulphate has been widely used for emergent control on incidental release of heavy metals such as Cd to surface water, causing precipitation of Cd-loaded polyferric flocs to the sediment. To date, little is known about whether the dissolution of the flocs in the presence of dissimilatory iron reducing bacteria (DIRB) can occur and how the dissolution influences the fate of Fe and Cd in the sediment. Here, we demonstrated that Shewanella oneidensis MR-1, as representative DIRB, has the ability to reduce the flocs, resulting in the release of Fe(2+) and Cd(2+) to the solution. Batch experiment results showed that the concentrations of Fe(2+) and Cd(2+)reached the maximum values at 48 h and then decreased over the remaining incubation time. The characterizations on the solid phase by the scanning electron microscopy coupled with energy dispersive spectrometer, X-ray diffraction, and X-ray photoelectron spectroscopy technologies revealed the formation of iron minerals such as goethite and magnetite as a consequence of microbial Fe(III) reduction. The newly formed iron minerals played a significant role in re-immobilizing Cd by sorption. These results imply that microbial reduction of polyferric flocs is an important contributor to the transport and transformation of metals in the sediment-water interface. PMID:26583288

  2. Expression of Shewanella oneidensis MR-1 [FeFe]-Hydrogenase Genes in Anabaena sp. Strain PCC 7120

    PubMed Central

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J.; Wolk, C. Peter

    2012-01-01

    H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2. PMID:23023750

  3. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  4. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation and detachment during respiration on hematite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to an...

  5. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1

    PubMed Central

    Alves, Mónica N.; Neto, Sónia E.; Alves, Alexandra S.; Fonseca, Bruno M.; Carrêlo, Afonso; Pacheco, Isabel; Paquete, Catarina M.; Soares, Cláudio M.; Louro, Ricardo O.

    2015-01-01

    The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC) emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR), but not with cytochrome c nitrite reductase (ccNiR). In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA), the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB–OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC. PMID:26175726

  6. Ferrous phosphate surface precipitates resulting from the reduction of intragrain 6-line ferrihydrite by Shewanella oneidensis MR-1

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Kennedy, David W.; Fredrickson, Jim K.; Arey, Bruce W.; McKinley, James P.; Wang, Chong M.; Dohnalkova, Alice; Xia, Yuanxian

    2010-07-01

    The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behaviour with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L-1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.

  7. Iron Triggers λSo Prophage Induction and Release of Extracellular DNA in Shewanella oneidensis MR-1 Biofilms

    PubMed Central

    Binnenkade, Lucas; Teichmann, Laura

    2014-01-01

    Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA. PMID:24951794

  8. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Dorothea K. Thompson; Steven D. Brown; Robert L. Hettich; Nathan VerBerkmoes; Jizhong Zhou

    2004-03-17

    The mediation of metal reduction by microorganisms has been investigated intensively from physiological and biochemical perspectives; however, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform or immobilize a wide array of heavy metals contaminating DOE field sites. Chromium(VI), for example, is one of several risk-driving contaminants at DOE sites and has been targeted by the DOE for bioremediation research. The bacterium Shewanella oneidensis MR-1 can potentially be used to immobilize chromium, a toxic and mutagenic metal, by reducing soluble Cr(VI) to the insoluble and less bioavailable form of Cr(III), thus facilitating its removal from contained-storage and natural sites. The overall goal of this study is to integrate targeted biochemical and proteomic analyses with genome-wide gene expression profiling to examine the molecular basis and regulation of chromium(VI) reduction by Shewanella oneidensis MR-1. Towards this goal, we will (1) isolate and identify the terminal chromium(VI) reductase and the gene(s) encoding this activity using whole-genome sequence information for MR-1 and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with conventional protein purification and characterization techniques; (2) verify the function of the gene(s) encoding the terminal Cr(VI) reductase and compare whole transcriptome data with whole proteome data in order to understand the regulation of chromium reduction; and (3) investigate the molecular stress response and adaptation of S. oneidensis to toxic levels of soluble Cr(VI) and other heavy metals. This research will provide important information on the functional components and regulatory mechanisms of microbial metal reduction, which should prove valuable in developing effective assessment strategies for in situ bioremediation and genetically engineering desired bacteria for enhanced bioremediation.

  9. Role of Outer-Membrane Cytochromes MtrC and OmcA in the Biomineralization of Ferrihydrite by Shewanella oneidensis MR-1.

    SciTech Connect

    Reardon, Catherine L.; Dohnalkova, Alice; Nachimuthu, Ponnusamy; Kennedy, David W.; Saffarini, Daad; Arey, Bruce W.; Shi, Liang; Wang, Zheming; Moore, Dean A.; Mclean, Jeffrey S.; Moyles, Dianne M.; Marshall, Matthew J.; Zachara, John M.; Fredrickson, Jim K.; Beliaev, Alex S.

    2010-01-01

    In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer membrane cytochrome genes mtrC, omcA, or both, were characterized for the ability to reduce metal oxides using a suite of microscopic, spectroscopic, and biochemicalr techniques. The results indicate that neither MtrC nor OmcA are essential for the reduction of soluble, complexed Fe(III)-citrate or Fe(III)-NTA; however, at least one of these outer membrane cytochromes is required for the reduction of Fe(III)- and Mn(III/IV)- oxides. In vitro analysis of purified, recombinant protein demonstrated that both cytochromes transfer electrons directly to metal-oxides; however, MtrC transfers electrons at a faster rate than OmcA. Immunolocalization of MtrC and OmcA reveal that both cytochromes are surface-exposed on the cell outer-membrane and co-localize with insoluble iron precipitates when respiring ferrihydrite or cultured aerobically with Fe(III)-citrate. Additionally, during prolonged incubation, wild-type cells promoted biotransformation of ferrihydrite to vivianite [Fe3(PO4)2•8H2O] while the double cytochrome mutant was unable to form any secondary mineral phases. Collectively, our results support a role for direct electron transfer from OMCs to metal oxides by establishing their in vitro electron transfer activities, confirming the requirement of either MtrC or OmcA for in vivo reductive biomineralization of ferrihydrite, and localizing the cytochromes to the cell exterior where they can directly contact mineral substrates.

  10. Global Molecular and Morphological Effects of 24-Hour Chromium(VI)Exposure on Shewanella oneidensis MR-1

    SciTech Connect

    Chourey, Karuna; Thompson, Melissa R; Morrell-Falvey, Jennifer L; Verberkmoes, Nathan C; Brown, Steven D; Shah, Manesh B; Zhou, Jizhong; Doktycz, Mitchel John; Hettich, Robert {Bob} L; Thompson, Dorothea K

    2006-01-01

    The biological impact of 24-h ("chronic") chromium(VI) [Cr(VI) or chromate] exposure on ShewanellaoneidensisMR-1 was assessed by analyzing cellular morphology as well as genome-wide differential gene and protein expression profiles. Cells challenged aerobically with an initial chromate concentration of 0.3 mM in complex growth medium were compared to untreated control cells grown in the absence of chromate. At the 24-h time point at which cells were harvested for transcriptome and proteome analyses, no residual Cr(VI) was detected in the culture supernatant, thus suggesting the complete uptake and/or reduction of this metal by cells. In contrast to the untreated control cells, Cr(VI)-exposed cells formed apparently aseptate, nonmotile filaments that tended to aggregate. Transcriptome profiling and mass spectrometry-based proteomic charac terization revealed that the principal molecular response to 24-h Cr(VI) exposure was the induction of prophage-related genes and their encoded products as well as a number of functionally undefined hypothetical genes that were located within the integrated phage regions of the MR-1 genome. In addition, genes with annotated functions in DNA metabolism, cell division, biosynthesis and degradation of the murein (pepti doglycan) sacculus, membrane response, and general environmental stress protection were upregulated, while genes encoding chemotaxis, motility, and transport/binding proteins were largely repressed under conditions of 24-h chromate treatment.

  11. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic and Proteomic Approaches

    SciTech Connect

    Dorothea K. Thompson; Robert Hettich

    2007-02-06

    Shewanella oneidensis MR-1 is a model environmental organism that possesses diverse respiratory capacities, including the ability to reduce soluble Cr(VI) to sparingly soluble, less toxic Cr(III). Chromate is a serious anthropogenic pollutant found in subsurface sediment and groundwater environments due to its widespread use in defense and industrial applications. Effective bioremediation of chromate-contaminated sites requires knowledge of the molecular mechanisms and regulation of heavy metal resistance and biotransformation by dissimilatory metal-reducing bacteria. Towards this goal, our ERSP-funded work was focused on the identification and functional analysis of genes/proteins comprising the response pathways for chromate detoxification and/or reduction. Our work utilized temporal transcriptomic profiling and whole-cell proteomic analyses to characterize the dynamic molecular response of MR-1 to an acute chromate shock (up to 90 min) as well as to a 24-h, low-dose exposure. In addition, we have examined the transcriptome of MR-1 cells actively engaged in chromate reduction. These studies implicated the involvement of a functionally undefined DNA-binding response regulator (SO2426) and a putative azoreductase (SO3585) in the chromate stress response of MR-1.

  12. Global Transcriptome Analysis of the Cold Shock Response ofShewanella oneidensis MR-1 and Mutational Analysis of Its Classical ColdShock Proteins.

    SciTech Connect

    Gao, H.; Thompson, D.K.; Zhou, J.-Z.

    2006-04-01

    This study presents a global transcriptional analysis of thecold shock response of Shewanella oneidensis MR-1 after a temperaturedownshift from 30oC to 8 or 15oC based on time series microarrayexperiments. More than 700 genes were found to be significantly affected(P<0.05) upon cold shock challenge, especially at 8oC. The temporalgene expression patterns of the classical cold shock genes varied, andonly some of them, most notably So1648 and So2787, were differentiallyregulated in response to a temperature downshift. The global response ofS. oneidensis to cold shock was also characterized by the up-regulationof genes encoding membraneproteins, DNA metabolism and translationapparatus components, metabolic proteins, regulatory proteins, andhypothetical proteins. Most of the metabolic proteins affected areinvolved in catalytic processes that generate NADH or NADPH. Mutationalanalyses confirmed that the small cold shock proteins, So1648 and So2787,are involved in the cold shock response of S. oneidensis. The analysesalso indicated that So1648 may function only at very lowtemperatures.

  13. 13C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells

    PubMed Central

    Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen

    2016-01-01

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848

  14. (13)C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.

    PubMed

    Luo, Shuai; Guo, Weihua; H Nealson, Kenneth; Feng, Xueyang; He, Zhen

    2016-01-01

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848

  15. Comparative Temporal Proteomics of a Response Regulator (SO2426)-Deficient Strain and Wild-Type Shewanella oneidensis MR-1 During Chromate Transformation

    SciTech Connect

    Chourey, Karuna; Thompson, Melissa R; Shah, Manesh B; Zhang, Bing; Verberkmoes, Nathan C; Thompson, Dorothea K.; Hettich, Robert {Bob} L

    2009-01-01

    Predicted orphan response regulators encoded in the Shewanella oneidensis MR-1 genome are poorly understood from a cellular function perspective. Our previous transcriptomic and proteomic analyses demonstrated that an annotated DNA-binding response regulator, SO2426, was significantly up-regulated in wild-type S. oneidensis cells at both themRNAand protein levels in response to acute chromate [Cr(VI)] challenge, suggesting a potential regulatory role for this protein in metal stress pathways. To investigate the impact of SO2426 activity on chromate stress response at a genome-wide scale, we describe here comparative and temporal proteome characterizations using multidimensional HPLC-MS/MS and statistical analysis to identify differentially expressed proteins in biological replicates of wild-type S. oneidensis MR-1 and a so2426 deletion ( so2426) strain, which exhibited an impaired Cr(VI) transformation rate compared to that of the parental strain. Global protein profiles were examined at different time intervals (0, 1, 3, 4 h) following exogenous chromate challenge. Results indicated that deletion of the so2426 gene negatively affected expression of a small protein subset (27 proteins) including those with annotated functions in siderophore biosynthesis (SO3032), Fe uptake (SO4743), intracellular Fe storage (Bfr1), and other transport processes. Cr(VI) exposure and subsequent ransformation dramatically increased the number of differentially expressed proteins detected,with up-regulated bundance patterns observed largely for proteins involved in general stress protection and detoxification trategies, cell motility, and protein fate. In addition, the proteome data sets were mined for amino acids with otential post-translational modifications (PTMs) indicative of a level of gene expression regulation extending eyond the transcriptional control imposed by SO2426.

  16. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes

    SciTech Connect

    Meitl, Leisa A.; Eggleston, Carrick M.; Colberg, Patricia J.; Khare, Nidhi; Reardon, Catherine L.; Shi, Liang

    2009-09-15

    Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (-201 mV and -163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (ΔomcA), MtrC (ΔmtrC), and both OmcA and MtrC (ΔmtrC-ΔomcA) were also studied; voltammograms for ΔmtrC-ΔomcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., ΔomcA consistent with MtrC and ΔmtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer ket varies from 0.025 s-1 in the absence of a barrier to 63.5 s-1 with a 0.2 eV barrier.

  17. Crystallization and preliminary X-ray crystallographic studies of the outer membrane cytochrome OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Tomanicek, S.J.; Johs, A.; Sawhney, M.S.; Shi, L.; Liang, L.

    2012-05-24

    The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 {angstrom}, = 90, {beta} = 97.8, {gamma} = 90{sup o}. X-ray diffraction data were collected to a maximum resolution of 3.25 {angstrom}.

  18. Crystallization and preliminary X-ray crystallographic studies of the outer membrane cytochrome OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Tomanicek, S. J.; Johs, Alexander; Sawhney, M. S.; Shi, Liang; Liang, L.

    2012-01-01

    The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P21, with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 A ° , * = 90, * = 97.8, * = 90*. X-ray diffraction data were collected to a maximum resolution of 3.25 A ° .

  19. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions.

    PubMed

    Deutschbauer, Adam; Price, Morgan N; Wetmore, Kelly M; Shao, Wenjun; Baumohl, Jason K; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W; Arkin, Adam P

    2011-11-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  20. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface. 

  1. Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Baumohl, Jason K.; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W.; Arkin, Adam P.

    2011-01-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  2. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1.

    PubMed

    Lower, Brian H; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C; McCready, David E; Lower, Steven K

    2007-07-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface. PMID:17468239

  3. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    PubMed Central

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; McCready, David E.; Lower, Steven K.

    2007-01-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 μm) expresses ∼104 cytochromes on its outer surface. PMID:17468239

  4. Identifying the role of cytochromes upon the attachment, growth and detachment of Shewanella oneidensis MR-1 on hematite during dissimilatory iron reduction under natural- flow conditions

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Geesey, G. G.

    2006-12-01

    Current understanding of bacterial respiration by dissimilatory iron (Fe) reduction is based primarily on studies of closed systems using soluble Fe(III). However, natural environments likely to support Fe reduction are typically open systems and contain Fe(III) primarily in the form of crystalline (hydr)oxides. Mechanisms by which electrons are transported between bacteria and mineral terminal electron acceptors (TEAs) under open system conditions are still poorly understood. However, a number of cytochromes have been identified as potentially playing a critical role in the electron transport system of some Fe reducing bacteria. Experiments were performed using (i) omcA, (ii) mtrC, or (iii) omcA and mtrC cytochrome deficient mutants of the Fe-reducing bacteria, Shewanella oneidensis MR-1, in transparent-window flow- reactors containing hematite as the only TEA. These were operated under defined hydrodynamic and anaerobic conditions. Cells expressed green fluorescent protein (gfp), allowing real time measurement of cells at the mineral surface by epifluorescence microscopy. Cytochromes which play a critical role in the anaerobic growth of S. Oneidensis by Fe reduction under open system natural-flow conditions could then be identified. Differences in the accumulation, maximum density, detachment and total production of surface-associated cells growing on hematite surfaces were apparent between the mutants, and between the mutants and the wild-type. Mutants deficient in cytochromes grew to a lower max density by up to 2 orders of magnitude than the wild-type, and exhibited no reduced Fe in the reactor effluent or at the surface of the hematite at the conclusion of the experiment, as revealed by X-Ray photoelectron spectroscopy (XPS). Therefore omcA and / or mtrC cytochromes appear critical for electron shuttling and anaerobic growth of S. Oneidensis on hematite under natural-flow conditions.

  5. Chromate/Nitrite Interactions in Shewanella Oneidensis MR-1: Evidence for Multiple Cr(VI) Reduction Mechanisms Dependent on Physiological Growth Conditions

    SciTech Connect

    Apel, William Arnold; Viamajala, S.; Peyton, Brent Michael; Petersen, J. N.

    2002-06-01

    Inhibition of hexavalent chromium [Cr(VI)] reduction due to nitrate and nitrite was observed during tests with Shewanella oneidensis MR-1 (previously named Shewanella putrefaciens MR-1 and henceforth referred to as MR-1). Initial Cr(VI) reduction rates were measured at various nitrite concentrations, and a mixed inhibition kinetic model was used to determine the kinetic parameters-maximum Cr(VI) reduction rate and inhibition constant [V(max,Cr(VI)) and K(i,Cr(VI))]. Values of V(max,Cr(VI)) and K(i,Cr(VI)) obtained with MR-1 cultures grown under denitrifying conditions were observed to be significantly different from the values obtained when the cultures were grown with fumarate as the terminal electron acceptor. It was also observed that a single V(max,Cr(VI)) and K(i,Cr(VI)) did not adequately describe the inhibition kinetics of either nitrate-grown or fumarate-grown cultures. The inhibition patterns indicate that Cr(VI) reduction in MR-1 is likely not limited to a single pathway, but occurs via different mechanisms some of which are dependent on growth conditions. Inhibition of nitrite reduction due to the presence of Cr(VI) was also studied, and the kinetic parameters V(max,NO2) and K(i,NO2) were determined. It was observed that these coefficients also differed significantly between MR-1 grown under denitrifying conditions and fumarate reducing conditions. The inhibition studies suggest the involvement of nitrite reductase in Cr(VI) reduction. Because nitrite reduction is part of the anaerobic respiration process, inhibition due to Cr(VI) might be a result of interaction with the components of the anaerobic respiration pathway such as nitrite reductase. Also, differences in the degree of inhibition of nitrite reduction activity by chromate at different growth conditions suggest that the toxicity mechanism of Cr(VI) might also be dependent on the conditions of growth. Cr(VI) reduction has been shown to occur via different pathways, but to our knowledge, multiple

  6. The surface properties of Shewanella putrefaciens 200 and S. oneidensis MR-1: the effect of pH and terminal electron acceptors

    PubMed Central

    2013-01-01

    Background We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. Results The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. Conclusions The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft

  7. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1

    PubMed Central

    Maier, Tamara M; Myers, Charles R

    2004-01-01

    Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III) and manganese(IV) oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM). Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35) in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1) was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III). Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe(III), fumarate, and

  8. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    SciTech Connect

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, Jim K.; Bigelow, Diana J.; Squier, Thomas C.

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent

  9. Targeted protein degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 measured using biarsenical probe CrAsH-EDT(2).

    PubMed

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, James K; Bigelow, Diana J; Squier, Thomas C

    2011-11-15

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic Gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC (MtrC*) which is dependent on the presence of a functional type 2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC* undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 h(-1) that is insensitive to O(2) concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 h(-1)) that are

  10. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1

    SciTech Connect

    Qian, Yufeng; Shi, Liang; Tien, Ming

    2011-09-30

    Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (ΔSO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ΔSO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 μM. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

  11. Identification of a Small Tetraheme Cytochrome c and a Flavocytochrome c as Two of the Principal Soluble Cytochromes c in Shewanella oneidensis Strain MR1

    PubMed Central

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; Van Beeumen, J. J.

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c3 but define a new folding motif for small multiheme cytochromes c. PMID:11425747

  12. Deciphering the aggregation mechanism of bacteria (Shewanella oneidensis MR1) in the presence of polyethyleneimine: Effects of the exopolymeric superstructure and polymer molecular weight.

    PubMed

    Krapf, Marie-Eve M; Lartiges, Bruno; Merlin, Christophe; Francius, Grégory; Ghanbaja, Jaafar; Duval, Jérôme F L

    2016-03-01

    Aggregation tests between bacteria and Polyethyleneimine (PEI) of low (600g/mol) and high (750,000g/mol) molecular weight were performed in order to address the physico-chemical mechanisms underlying the interactions between cationic polymer and bacterial membranes. The selected strain, Schewanella oneidensis MR-1, produces a lipopolysaccharide (LPS) of various lengths depending on the growth conditions. Optical density, bioaggregate size, electrophoretic mobility measurements, TEM and AFM observations, and cell lysis tests (crystal violet release), were collected to describe the PEI-mediated aggregation of LPS-O-antigen-free and LPS-O-antigen-decorated bacteria. The results show that PEI of low molecular weight (600g/mol) fails to aggregate bacteria, whereas PEIs of higher molecular weight (60,000 and 750,000g/mol) lead to flocculation at low polymer concentrations. In addition, the LPS-O antigen bacterial superstructure is shown to act as a protective barrier, thus delaying the harmful effects of the cationic polymer. Despite this protection, the interaction of bacterial membranes with increasing concentrations of PEI leads to a series of deleterious processes including biosurface modification (peeling, membrane permeabilization and/or lysis), aggregation of bacterial cells, and complexation of PEI with both released biosurface fragments and cytoplasmic residues issued from lysis. PMID:26774052

  13. Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; Van Beeumen, J. J.

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c(3) but define a new folding motif for small multiheme cytochromes c.

  14. Enrichment of Functional Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(III)-reducing Candidate Proteins in Shewanella oneidensis MR-1.

    SciTech Connect

    Elias, Dwayne A.; Yang, Feng; Mottaz, Heather M.; Beliaev, Alex S.; Lipton, Mary S.

    2007-02-01

    Identification of the proteins directly involved in microbial metal-reduction is important to understanding the biochemistry involved in heavy metal reduction/immobilization and the ultimate cleanup of DOE contaminated sites. Although previous strategies for the identification of these proteins have traditionally required laborious protein purification/characterization of metal-reducing capability, activity is often lost before the final purification step, thus creating a significant knowledge gap. In the current study, subcellular fractions of S. oneidensis MR-1 were enriched for Fe(III)-NTA reducing proteins in a single step using several orthogonal column matrices. The protein content of eluted fractions that demonstrated activity were determined by ultra high pressure liquid chromatography coupled with tandem mass spectrometry (LCMS/ MS). A comparison of the proteins identified from active fractions in all separations produced 30 proteins that may act as the terminal electron-accepting protein for Fe(III)-reduction. These include MtrA, MtrB, MtrC and OmcA as well as a number of other proteins not previously associated with Fe(III)-reduction. This is the first report of such an approach where the laborious procedures for protein purification are not required for identification of metal-reducing proteins. Such work provides the basis for a similar approach with other cultured organisms as well as analysis of sediment and groundwater samples from biostimulation efforts at contaminated sites.

  15. Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics.

    PubMed

    Sheng, Ling; Fein, Jeremy B

    2014-04-01

    It is crucial to determine the controls on the kinetics of U(VI) bioreduction in order to understand and model the fate and mobility of U in groundwater systems and also to enhance the effectiveness of U bioremediation strategies. In this study, we measured the rate of U(VI) reduction by Shewanella oneidensis strain MR-1 as function of NaHCO3 concentration. The experiments demonstrate that increasing concentrations of NaHCO3 in the system lead to slower U(VI) reduction kinetics. The NaHCO3 concentration also strongly affects the speciation of U(VI) on the bacterial cell envelope. We used a thermodynamic surface complexation modeling approach to determine the speciation and concentration of U(VI) adsorbed onto the bacteria as a function of the NaHCO3 concentration in the experimental systems. We observed a strong positive correlation between the measured U(VI) reduction rates and the calculated total concentration of U(VI) surface complexes formed on the bacterial cell envelope. This positive correlation indicates that the speciation and concentration of U(VI) adsorbed on the bacterial cell envelope control the kinetics of U(VI) bioreduction under the experimental conditions. The results of this study serve as a basis for developing speciation-based kinetic rate laws for enzymatic reduction of U(VI) by bacteria. PMID:24576101

  16. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidised metal electron acceptors

    SciTech Connect

    Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna; Hettich, Robert {Bob} L; Wagner, Darlene D; Pffifner, Susan; Loeffler, Frank E

    2012-01-01

    The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grown with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.

  17. Effects of Incubation Conditions on Cr(VI) Reduction by c-type Cytochromes in Intact Shewanella oneidensis MR-1 Cells

    PubMed Central

    Han, Rui; Li, Fangbai; Liu, Tongxu; Li, Xiaomin; Wu, Yundang; Wang, Ying; Chen, Dandan

    2016-01-01

    It is widely recognized that the outer membrane c-type cytochromes (OM c-Cyts) of metal-reducing bacteria play a key role in microbial metal reduction processes. However, the in situ redox status of OM c-Cyts during microbial metal reduction processes remain poorly understood. In this study, diffuse-transmission UV/Vis spectroscopy is used to investigate the in situ spectral reaction of Cr(VI) reduction by c-Cyts in intact Shewanella oneidensis MR-1 cells under different incubation conditions. The reduced c-Cyts decreased transiently at the beginning and then recovered gradually over time. The Cr(VI) reduction rates decreased with increasing initial Cr(VI) concentrations, and Cr(III) was identified as a reduced product. The presence of Cr(III) substantially inhibited Cr(VI) reduction and the recovery of reduced c-Cyts, indicating that Cr(III) might inhibit cell growth. Cr(VI) reduction rates increased with increasing cell density. The highest Cr(VI) reduction rate and fastest recovery of c-Cyts were obtained at pH 7.0 and 30°C, with sodium lactate serving as an electron donor. The presence of O2 strongly inhibited Cr(VI) reduction, suggesting that O2 might compete with Cr(VI) as an electron acceptor in cells. This study provides a case of directly examining in vivo reaction properties of an outer-membrane enzyme during microbial metal reduction processes under non-invasive physiological conditions. PMID:27242759

  18. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1

    PubMed Central

    Jeffery, Hannah C.; van Wilgenburg, Bonnie; Kurioka, Ayako; Parekh, Krishan; Stirling, Kathryn; Roberts, Sheree; Dutton, Emma E.; Hunter, Stuart; Geh, Daniel; Braitch, Manjit K.; Rajanayagam, Jeremy; Iqbal, Tariq; Pinkney, Thomas; Brown, Rachel; Withers, David R.; Adams, David H.; Klenerman, Paul; Oo, Ye H.

    2016-01-01

    Background & Aims Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells characterised by the invariant TCR-chain, Vα7.2-Jα33, and are restricted by MR1, which presents bacterial vitamin B metabolites. They are important for antibacterial immunity at mucosal sites; however, detailed characteristics of liver-infiltrating MAIT (LI-MAIT) and their role in biliary immune surveillance remain unexplored. Methods The phenotype and intrahepatic localisation of human LI-MAIT cells was examined in diseased and normal livers. MAIT cell activation in response to E. coli-exposed macrophages, biliary epithelial cells (BEC) and liver B cells was assessed with/without anti-MR1. Results Intrahepatic MAIT cells predominantly localised to bile ducts in the portal tracts. Consistent with this distribution, they expressed biliary tropic chemokine receptors CCR6, CXCR6, and integrin αEβ7. LI-MAIT cells were also present in the hepatic sinusoids and possessed tissue-homing chemokine receptor CXCR3 and integrins LFA-1 and VLA-4, suggesting their recruitment via hepatic sinusoids. LI-MAIT cells were enriched in the parenchyma of acute liver failure livers compared to chronic diseased livers. LI-MAIT cells had an activated, effector memory phenotype, expressed α4β7 and receptors for IL-12, IL-18, and IL-23. Importantly, in response to E. coli-exposed macrophages, liver B cells and BEC, MAIT cells upregulated IFN-γ and CD40 Ligand and degranulated in an MR1-dependent, cytokine-independent manner. In addition, diseased liver MAIT cells expressed T-bet and RORγt and the cytokines IFN-γ, TNF-α, and IL-17. Conclusions Our findings provide the first evidence of an immune surveillance effector response for MAIT cells towards BEC in human liver; thus they could be manipulated for treatment of biliary disease in the future. PMID:26743076

  19. Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c-type Cytochromes of Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Chen, Baowei; Wang, Zheming; Elias, Dwayne A.; Mayer, M. Uljana; Gorby, Yuri A.; Ni, Shuisong; Lower, Brian H.; Kennedy, David W.; Wunschel, David S.; Mottaz, Heather M.; Marshall, Matthew J.; Hill, Eric A.; Beliaev, Alex S.; Zachara, John M.; Fredrickson, Jim K.; Squier, Thomas C.

    2006-07-01

    SUMMARY Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium that is capable of using insoluble oxidized metals, such as manganese [Mn(III, IV)] and iron [Fe(III)] oxides and oxyhydroxides, as terminal electron acceptors during anaerobic respiration. The ability of S. oneidensis MR-1 to reduce oxidized Mn and/or Fe has previously been linked to OmcA and MtrC: two decaheme c-type cytochromes that are localized to the outer membrane. To investigate how the electron transport proteins OmcA and MtrC are organized, we expressed and purified recombinant OmcA and MtrC from wild type S. oneidensis MR-1 as well as a mutant that lacked OmcA and MtrC (ΔomcA/mtrC). After purification to the nearly electrophoretic homogeneity from the ΔomcA/mtrC mutant, the recombinant OmcA and MtrC exhibited the characteristics of c-type cytochromes, and each of their polypeptides was confirmed to contain 10 hemes. When purified from wild type cells, endogenous MtrC or OmcA was always co-purified with recombinant OmcA or MtrC, respectively. Fluorescence polarization experiment showed that recombinant OmcA bound to the FlAsH-labeled MtrC with a dissociation constant of 7 ×10-7 M. The purified recombinant OmcA or MtrC alone displayed intrinsic ferric reductase activity with NADH used as an electron donor. Ferric reductase specific activity increased by 35 to 41% when nearly equimolar concentrations of OmcA and MtrC were assayed relative to the two proteins assayed independently. These results demonstrate that OmcA and MtrC directly interact with each other to form a stable complex with high ferric reductase activity.

  20. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Shewanella oneidensis is a target of extensive research efforts in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially in regards to the respiration with extracellular electron acceptors. Here, we took a global approach ...

  1. Global Molecular Characterization of the Chromate Stress Response in Shewanella oneidensis MR-1: Identification of a Putative DNA-Binding Response Regulator and Azoreductase Involved in Cr(VI) Detoxification

    SciTech Connect

    Chourey, Karuna; Thompson, Melissa R.; Brown, Steven D.; VerBerkmoes, Nathan C.; Hettich, Robert L.; Thompson, Dorothea K.

    2006-04-05

    Shewanella oneidensis MR-1 is a model environmental organism that possesses diverse respiratory capacities, including the ability to reduce soluble Cr(VI) to sparingly soluble, less toxic Cr(III). Effective bioremediation of Cr-contaminated sites requires knowledge of the molecular mechanisms and regulation of heavy metal resistance and biotransformation by dissimilatory metal-reducing bacteria. Towards this goal, our ERSP-funded work is focused on the identification and functional analysis of genes/proteins comprising the response pathways for chromate detoxification and/or reduction. Previous transcriptomic profiling and whole-cell proteomic analyses implicated the involvement of a functionally undefined DNA-binding response regulator (SO2426) and a putative azoreductase (SO3585) in the chromate stress response of MR-1. Here we describe a detailed functional analysis of SO2426 and SO3585 in order to begin to understand the role of these proteins in the cellular response to chromate. The protein products encoded by genes so2426 and so3585 were expressed and detected only in chromate-shocked samples as determined by multidimensional high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Both genes were also highly induced (>46-fold) in MR-1 cells actively reducing chromate based on whole-genome microarray analysis. We have created in-frame deletions of the so2426 and so3585 loci in the MR-1 chromosome and have characterized the phenotype of the resulting mutants in the presence of varying concentrations of Cr, Cu, Co, Sr, and H{sub 2}O{sub 2} under aerobic respiratory conditions. Growth studies indicated that the so2426 deletion mutant was more sensitive to heavy metals compared to the WT reference, and chromate reduction by the so2426 mutant was impaired significantly. The growth response of the mutant to H{sub 2}O{sub 2} was similar to that of MR-1. To gain insight into the regulon of this response regulator, MR-1 microarrays were used to

  2. Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification

    SciTech Connect

    Brown, Roslyn N.; Romine, Margaret F.; Schepmoes, Athena A.; Smith, Richard D.; Lipton, Mary S.

    2010-07-19

    A simple and effective subcellular proteomic method for fractionation and analysis of gram-negative bacterial cytoplasm, periplasm, inner, and outer membranes was applied to Shewanella oneidensis to gain insight into its subcellular architecture. A combination of differential centrifugation, Sarkosyl solubilization, and osmotic lysis was used to prepare subcellular fractions. Global differences in protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution LC-MS/MS. Compared to crude cell lysates, the fractionation method achieved a significant enrichment (average ~2-fold) in proteins predicted to be localized to each subcellular fraction. Compared to other detergent, organic solvent, and density-based methods previously reported, Sarkosyl most effectively facilitated separation of the inner and outer membranes and was amenable to mass spectrometry, making this procedure ideal for probing the subcellular proteome of gram-negative bacteria via LC-MS/MS. With 40% of the observable proteome represented, this study has provided extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other gram-negative bacteria.

  3. Shewanella oneidensis MR-1 Uses Overlapping Pathways for Iron Reduction at a Distance and by Direct Contact under Conditions Relevant for Biofilms

    PubMed Central

    Lies, Douglas P.; Hernandez, Maria E.; Kappler, Andreas; Mielke, Randall E.; Gralnick, Jeffrey A.; Newman, Dianne K.

    2005-01-01

    We developed a new method to measure iron reduction at a distance based on depositing Fe(III) (hydr)oxide within nanoporous glass beads. In this “Fe-bead” system, Shewanella oneidensis reduces at least 86.5% of the iron in the absence of direct contact. Biofilm formation accompanies Fe-bead reduction and is observable both macro- and microscopically. Fe-bead reduction is catalyzed by live cells adapted to anaerobic conditions, and maximal reduction rates require sustained protein synthesis. The amount of reactive ferric iron in the Fe-bead system is available in excess such that the rate of Fe-bead reduction is directly proportional to cell density; i.e., it is diffusion limited. Addition of either lysates prepared from anaerobic cells or exogenous electron shuttles stimulates Fe-bead reduction by S. oneidensis, but iron chelators or additional Fe(II) do not. Neither dissolved Fe(III) nor electron shuttling activity was detected in culture supernatants, implying that the mediator is retained within the biofilm matrix. Strains with mutations in omcB or mtrB show about 50% of the wild-type levels of reduction, while a cymA mutant shows less than 20% of the wild-type levels of reduction and a menF mutant shows insignificant reduction. The Fe-bead reduction defect of the menF mutant can be restored by addition of menaquinone, but menaquinone itself cannot stimulate Fe-bead reduction. Because the menF gene encodes the first committed step of menaquinone biosynthesis, no intermediates of the menaquinone biosynthetic pathway are used as diffusible mediators by this organism to promote iron reduction at a distance. CymA and menaquinone are required for both direct and indirect mineral reduction, whereas MtrB and OmcB contribute to but are not absolutely required for iron reduction at a distance. PMID:16085832

  4. In Vivo Identification of the Outer Membrane Protein OmcA-MtrC Interaction Network in Shewanella oneidensis MR-1 Cells Using Novel Hydrophobic Chemical Cross-Linkers

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Zakharova, Natalia L.; Yang, Li; Zheng, Chunxiang; Wolff, Meagan A.; Tolic, Nikola; Anderson, Gordon A.; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Bruce, James E.

    2008-04-01

    Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.

  5. High-syn conformation of uridine and asymmetry of the hexameric molecule revealed in the high-resolution structures of Shewanella oneidensis MR-1 uridine phosphorylase in the free form and in complex with uridine.

    PubMed

    Safonova, Tatyana N; Mikhailov, Sergey N; Veiko, Vladimir P; Mordkovich, Nadezhda N; Manuvera, Valentin A; Alekseev, Cyril S; Kovalchuk, Mikhail V; Popov, Vladimir O; Polyakov, Konstantin M

    2014-12-01

    Uridine phosphorylase (UP; EC 2.4.2.3), a key enzyme in the pyrimidine-salvage pathway, catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Expression of UP from Shewanella oneidensis MR-1 (SoUP) was performed in Escherichia coli. The high-resolution X-ray structure of SoUP was solved in the free form and in complex with uridine. A crystal of SoUP in the free form was grown under microgravity and diffracted to ultrahigh resolution. Both forms of SoUP contained sulfate instead of phosphate in the active site owing to the presence of ammonium sulfate in the crystallization solution. The latter can be considered as a good mimic of phosphate. In the complex, uridine adopts a high-syn conformation with a nearly planar ribose ring and is present only in one subunit of the hexamer. A comparison of the structures of SoUP in the free form and in complex with the natural substrate uridine showed that the subunits of the hexamer are not identical, with the active sites having either an open or a closed conformation. In the monomers with the closed conformation, the active sites in which uridine is absent contain a glycerol molecule mimicking the ribose moiety of uridine. PMID:25478848

  6. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2

    SciTech Connect

    Kreuzer, Helen W.; Hill, Eric A.; Moran, James J.; Bartholomew, Rachel A.; Hui, Yang; Hegg, Eric L.

    2014-03-01

    Shewanella oneidensis MR-1 encodes both a [NiFe]- and an [FeFe]-hydrogenase. While the output of these proteins has been characterized in mutant strains expressing only one of the enzymes, the contribution of each to H2 synthesis in the wild-type organism is not clear. Here we use stable isotope analysis of H2 in the culture headspace, along with transcription data and measurements of the concentrations of gases in the headspace, to characterize H2 production in the wild-type strain. After most of the O2 in the headspace had been consumed, H2 was produced and then consumed by the bidirectional [NiFe]-hydrogenase. Once the cultures were completely anaerobic, a new burst of H2 synthesis catalyzed by both enzymes took place. Our data is consistent with the hypothesis that at this point in the culture cycle, a pool of electrons is shunted toward both hydrogenases in the wild-type organism, but that in the absence of one of the hydrogenases, the flux is redirected to the available enzyme. To our knowledge, this is the first use of stable isotope analysis of a metabolic product to elucidate substrate flux through two alternative enzymes in the same cellular system.

  7. Role of Outer Membrane C-Type Cytochromes MtrC and OmcA in Shewanella Oneidensis MR-1 Cell Production, Accumulation, and Detachment During Respiration on Hematite

    SciTech Connect

    Mitchell, Andrew C.; Peterson, L.; Reardon, Catherine L.; Reed, Samantha B.; Culley, David E.; Romine, Margaret F.; Geesey, Gill G.

    2012-07-01

    Solid phase iron oxides are considered to be important terminal electron acceptors for microbial respiration in many anoxic environments. Besides the knowledge that cells attach to and reduce these substrates, other aspects of surface-associated cell behavior and the related cell surface components that influence cell-mineral interactions are not well understood. In the present study, wild-type cells of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 formed thin biofilms one-to-two cell layers in thickness when respiring on natural specular hematite under flow conditions similar to those which exist in aquatic sediments and subsurface environments. The distribution of cells within the biofilm indicated that direct contact was not required for electron transfer from cells to the mineral surface. Detached biomass in the form of single cells represented >99% of the surface-associated wild-type cell production from respiration on hematite over the biofilm life cycle. A mutant deficient in the outer membrane c35 type cytochrome OmcA, while still able to respire and replicate on hematite, established a lower steady-state cell density on the mineral surface than that of the wild-type strain. A mutant deficient in MtrC, another outer membrane c-type cytochrome, and a mutant deficient in both cytochromes were unable to reduce sufficient amounts of hematite to support detectable growth on the mineral surface. When considered in the context of previous work, the results support a growing body of evidence that the relative importance of OmcA and MtrC to cell respiration and replication depends on the form of iron oxide available as terminal electron acceptor.

  8. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.

    PubMed

    Yang, Yun; Ding, Yuanzhao; Hu, Yidan; Cao, Bin; Rice, Scott A; Kjelleberg, Staffan; Song, Hao

    2015-07-17

    Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)). PMID:25621739

  9. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    SciTech Connect

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  10. Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1.

    PubMed

    Cherkouk, Andrea; Law, Gareth T W; Rizoulis, Athanasios; Law, Katie; Renshaw, Joanna C; Morris, Katherine; Livens, Francis R; Lloyd, Jonathan R

    2016-03-28

    Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 μM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments. PMID:26632613

  11. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  12. Effects of Bio-Au Nanoparticles on Electrochemical Activity of Shewanella oneidensis Wild Type and ΔomcA/mtrC Mutant

    NASA Astrophysics Data System (ADS)

    Wu, Ranran; Cui, Li; Chen, Lixiang; Wang, Chao; Cao, Changli; Sheng, Guoping; Yu, Hanqing; Zhao, Feng

    2013-11-01

    Both Shewanella oneidensis MR-1 wild type and its mutant ΔomcA/mtrC are capable of transforming AuIII into Au nanoparticles (AuNPs). Cyclic voltammetry reveals a decrease in redox current after the wild type is exposed to AuIII but an increase in oxidation current for the mutant. The peak current of the wild type is much higher than that of the mutant before the exposure of AuIII, but lower than that of the mutant after the formation of AuNPs. This suggests that damage to the electron transfer chain in the mutant could be repaired by AuNPs to a certain extent. Spectroscopy and SDS-PAGE analysis indicate a decrease in cell protein content after the formation of AuNPs, which provides a convenient way to detect intracellular information on cells.

  13. Effects of Bio-Au Nanoparticles on Electrochemical Activity of Shewanella oneidensis Wild Type and ΔomcA/mtrC Mutant

    PubMed Central

    Wu, Ranran; Cui, Li; Chen, Lixiang; Wang, Chao; Cao, Changli; Sheng, Guoping; Yu, Hanqing; Zhao, Feng

    2013-01-01

    Both Shewanella oneidensis MR-1 wild type and its mutant ΔomcA/mtrC are capable of transforming AuIII into Au nanoparticles (AuNPs). Cyclic voltammetry reveals a decrease in redox current after the wild type is exposed to AuIII but an increase in oxidation current for the mutant. The peak current of the wild type is much higher than that of the mutant before the exposure of AuIII, but lower than that of the mutant after the formation of AuNPs. This suggests that damage to the electron transfer chain in the mutant could be repaired by AuNPs to a certain extent. Spectroscopy and SDS-PAGE analysis indicate a decrease in cell protein content after the formation of AuNPs, which provides a convenient way to detect intracellular information on cells. PMID:24264440

  14. Synthesis and Structure-Activity Correlation Studies of Metal Complexes of α-N-heterocyclic Carboxaldehyde Thiosemicarbazones in Shewanella oneidensis

    PubMed Central

    Wilson, Barbara A.; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-01-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changes and metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 × 108 ± 4.3 × 107 SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 × 108 ± 6.4 × 107 SD) under comparable aerobic conditions (p=0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p= 0.425) or the thiosemicarbazone ligand (p=0.313). Growth of MR-1 in the presence of diphenyl Sn- thiosemicarbazone was significantly different among treatment groups (p=0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among diphenyl Sn

  15. Synthesis and structure-activity correlation studies of metal complexes of alpha-N-heterocyclic carboxaldehyde thiosemicarbazones in Shewanella oneidensis.

    PubMed

    Wilson, Barbara A; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-04-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changesand metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 X 10(8) +/- 4.3 X 10(7) SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 x 10(8) +/- 6.4 X 10(7) SD) under comparable aerobic conditions (p = 0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p = 0.425) or the thiosemicarbazone ligand (p = 0.313). Growth of MR-1 in the presence of diphenyl Sn-thiosemicarbazone was significantly different among treatment groups (p = 0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among

  16. Promotion of Iron Oxide Reduction and Extracellular Electron Transfer in Shewanella oneidensis by DMSO

    PubMed Central

    Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing

    2013-01-01

    The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312

  17. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  18. Final Summary of "Interdisciplinary Study of Shewanella oneidensis MR-1's Metabolism & Metal Reduction"

    SciTech Connect

    Kolker, Eugene

    2007-06-26

    Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.

  19. Early detection of oxidized surfaces using Shewanella oneidensis MR-1 as a tool.

    PubMed

    Waters, M S; Salas, E C; Goodman, S D; Udwadia, F E; Nealson, K H

    2009-01-01

    Corrosion is a natural global problem of immense importance. Oxidation of iron and steel not only compromises the structural stability of a widely used and versatile material but it also creates an abrasive compound (iron oxide) that can score the surfaces of metals, rendering them useless for the purpose for which they were designed. Clearly, the identification of corrosion in its nascent stages is a high priority for reasons that range from aesthetics to economics. Many bacteria in the facultatively aerobic genus Shewanella have the capacity to respire some metal oxides, such as iron oxide, by way of a variety of oxide-binding proteins lodged in their outer membrane. In this study, a rapid, cost-effective system for the specific early detection of a variety of oxidized steel surfaces is described, taking advantage of bacteria with natural affinities for iron oxides, to identify the sites of nascent corrosion. PMID:19165644

  20. Molecular Dynamics of the Shewanella oneidensis Response toChromate Stress

    SciTech Connect

    Brown, S.D.; Thompson, M.R.; VerBerkmoes, N.C.; Chourey, K.; Shah, M.; Zhou, J.-Z.; Hettich, R.L.; Thompson, D.K.

    2007-09-21

    Temporal genomic profiling and whole-cell proteomic analyseswere performed to characterize the dynamic molecular response of themetal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromateshock. The complex dynamics of cellular processes demand the integrationof methodologies that describe biological systems at the levels ofregulation, gene and protein expression, and metabolite production.Genomic microarray analysis of the transcriptome dynamics ofmidexponential phase cells subjected to 1 mM potassium chromate (K2CrO4)at exposure time intervals of 5, 30, 60, and 90 min revealed 910 genesthat were differentially expressed at one or more time points. Stronglyinduced genes included those encoding components of a TonB1 irontransport system (tonB1-exbB1-exbD1), hemin ATP-binding cassettetransporters (hmuTUV), TonB-dependent receptors as well as sulfatetransporters (cysP, cysW-2, and cysA-2), and enzymes involved inassimilative sulfur metabolism (cysC, cysN, cysD, cysH, cysI, and cysJ).Transcript levels for genes with annotated functions in DNA repair (lexA,recX, recA, recN, dinP, and umuD), cellular detoxification (so1756,so3585, and so3586), and two-component signal transduction systems(so2426) were also significantly up-regulated (p<0.05) inCr(VI)-exposed cells relative to untreated cells. By contrast, genes withfunctions linked to energy metabolism, particularly electron transport(e.g. so0902-03-04, mtrA, omcA, and omcB), showed dramatic temporalalterations in expression with the majority exhibiting repression.Differential proteomics based on multidimensional HPLC-MS/MS was used tocomplement the transcriptome data, resulting in comparable induction andrepression patterns for a subset of corresponding proteins. In total,expression of 2,370 proteins were confidently verified with 624 (26percent) of these annotated as hypothetical or conserved hypotheticalproteins. The initial response of S. oneidensis to chromate shock appearsto require a combination of

  1. AMT Tag Approach to Proteomic Characterization of Deinococcus Radiodurans and Shewanella Oneidensis

    SciTech Connect

    Lipton, Mary S.; Romine, Margaret F.; Monroe, Matthew E.; Elias, Dwayne A.; Pasa-Tolic, Liljiana; Anderson, Gordon A.; Anderson, David J.; Fredrickson, Jim K.; Hixson, Kim K.; Masselon, Christophe D.; Mottaz, Heather M.; Tolic, Nikola; Smith, Richard D.

    2006-09-01

    Biology is transitioning from a largely qualitative, mostly descriptive science to a quantitative and ultimately predictive science. Advances in high throughput DNA sequencing have made increasing numbers of genome sequences available and enabled a “systems” level analysis of complex biological organisms. The ability to quantitatively measure the array of proteins, also termed the proteome, in prokaryotic cells and communities of cells is key to understanding microbial systems. This chapter focuses on the utility of the AMT tag mass spectrometric approach used to characterize the proteomes of two microbes, Deinococcus radiodurans and Shewanella oneidensis MR-1.

  2. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  3. Physiological and Transcriptomic Analyses to Characterize the Function of Fur and Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Wu, Liyou; Parsons, Andrea; Palumbo, Anthony Vito; Zhou, Jizhong

    2008-01-01

    Maintaining iron homeostasis is a key metabolic challenge for most organisms. In many bacterial species, regulation of iron homeostasis is carried out by the global transcriptional regulator Fur. Physiological examination showed that Shewanella oneidensis harboring a fur deletion mutation had deficiencies in both growth and acid tolerance response. However, the fur mutant better tolerated iron-limited environments than the wild-type strain MR-1. Transcriptomic studies comparing the fur mutant and MR-1 confirmed previous findings that iron acquisition systems were highly induced by Fur inactivation. In addition, the temporal gene expression profiling of the fur mutant in response to iron depletion and repletion suggested that a number of genes involved in energy transport were iron-responsive but Fur-independent. Further identification of Fur-independent genes was obtained by generating a gene co-expression network from temporal gene expression profiles. A group of genes is involved in heat shock and has an rpoH-binding site at their promoters, and genes related to anaerobic energy transport has a highly conserved Crp binding site at the promoters. Together, this work provides useful information for the characterization of the function of Fur and the iron response in S. oneidensis.

  4. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel

    PubMed Central

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M.; Monty, Chelsea N.

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms. PMID:26824529

  5. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    PubMed

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M; Monty, Chelsea N

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms. PMID:26824529

  6. Reannotation of Shewanella oneidensis genome.

    PubMed

    Daraselia, N; Dernovoy, D; Tian, Y; Borodovsky, M; Tatusov, R; Tatusova, T

    2003-01-01

    As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation. PMID:14506846

  7. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization.

    PubMed

    Ding, Yuanzhao; Peng, Ni; Du, Yonghua; Ji, Lianghui; Cao, Bin

    2014-02-01

    Although biofilm-based bioprocesses have been increasingly used in various applications, the long-term robust and efficient biofilm performance remains one of the main bottlenecks. In this study, we demonstrated that biofilm cohesiveness and performance of Shewanella oneidensis can be enhanced through disrupting putrescine biosynthesis. Through random transposon mutagenesis library screening, one hyperadherent mutant strain, CP2-1-S1, exhibiting an enhanced capability in biofilm formation, was obtained. Comparative analysis of the performance of biofilms formed by S. oneidensis MR-1 wild type (WT) and CP2-1-S1 in removing dichromate (Cr2O7(2-)), i.e., Cr(VI), from the aqueous phase showed that, compared with the WT biofilms, CP2-1-S1 biofilms displayed a substantially lower rate of cell detachment upon exposure to Cr(VI), suggesting a higher cohesiveness of the mutant biofilms. In addition, the amount of Cr(III) immobilized by CP2-1-S1 biofilms was much larger, indicating an enhanced performance in Cr(VI) bioremediation. We further showed that speF, a putrescine biosynthesis gene, was disrupted in CP2-1-S1 and that the biofilm phenotypes could be restored by both genetic and chemical complementations. Our results also demonstrated an important role of putrescine in mediating matrix disassembly in S. oneidensis biofilms. PMID:24362428

  8. Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces

    PubMed Central

    Neal, Andrew L; Bank, Tracy L; Hochella, Michael F; Rosso, Kevin M

    2005-01-01

    The results of experiments designed to test the hypothesis that near-surface molecular structure of iron oxide minerals influences adhesion of dissimilatory iron reducing bacteria are presented. These experiments involved the measurement, using atomic force microscopy, of interaction forces generated between Shewanella oneidensis MR-1 cells and single crystal growth faces of iron oxide minerals. Significantly different adhesive force was measured between cells and the (001) face of hematite, and the (100) and (111) faces of magnetite. A role for electrostatic interactions is apparent. The trend in relative forces of adhesion generated at the mineral surfaces is in agreement with predicted ferric site densities published previously. These results suggest that near-surface structure does indeed influence initial cell attachment to iron oxide surfaces; whether this is mediated via specific cell surface-mineral surface interactions or by more general interfacial phenomena remains untested.

  9. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  10. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium, Shewanella oneidensis

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Broich, Michael L; Moon, Ji Won; Gu, Baohua; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2011-01-01

    Nanocrystallites have garnered substantial interest due to their varying applications including catalysis. Consequently important aspects related to control of shape/size and syntheses through economical and non-hazardous means are desirable. Highly efficient bioreduction based natural fabrication approaches that utilize microbes and or -plant extracts are poised to meet these needs. Here we show that the gamma- proteobacterium, Shewanella oneidensis MR-1, can reduce tetrachloro aurate (III) ions, producing discrete extracellular spherical gold nanocrystallites. The particles were homogeneous with multiple size distributions and produced under ambient conditions at high yield, 88% of theoretical maximum. Further characterization revealed that the particles consist of spheres in the size range of 2-50 nm, with an average of 12 5 nm. The nanoparticles were hydrophilic, biocompatible, and resisted aggregation even after several months. The particles are likely capped by a detachable protein/peptide coat. UV-vis and Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectra and transmission electron microscopy measurements confirmed the formation as well the crystalline nature of the nanoparticles. The antibacterial activity of these gold nanoparticles was assessed using Gram-negative (E. coli and S. oneidensis) and Gram-positive (B. subtilis) bacteria. Toxicity assessments divulged that the particles were neither toxic nor inhibitory to any of these bacteria.

  11. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    SciTech Connect

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  12. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression

    PubMed Central

    2014-01-01

    Background Shewanella oneidensis MR-1 exhibits extracellular electron transfer (EET) activity that is influenced by various cellular components, including outer-membrane cytochromes, cell-surface polysaccharides (CPS), and regulatory proteins. Here, a random transposon-insertion mutant library of S. oneidensis MR-1 was screened after extended cultivation in electrochemical cells (ECs) with a working electrode poised at +0.2 V (vs. Ag/AgCl) to isolate mutants that adapted to electrode-respiring conditions and identify as-yet-unknown EET-related factors. Results Several mutants isolated from the enrichment culture exhibited rough morphology and extraordinarily large colonies on agar plates compared to wild-type MR-1. One of the isolated mutants, designated strain EC-2, produced 90% higher electric current than wild-type MR-1 in ECs and was found to have a transposon inserted in the SO_1860 (uvrY) gene, which encodes a DNA-binding response regulator of the BarA/UvrY two-component regulatory system. However, an in-frame deletion mutant of SO_1860 (∆SO_1860) did not exhibit a similar level of current generation as that of EC-2, suggesting that the enhanced current-generating capability of EC-2 was not simply due to the disruption of SO_1860. In both EC-2 and ∆SO_1860, the transcription of genes related to CPS synthesis was decreased compared to wild-type MR-1, suggesting that CPS negatively affects current generation. In addition, transcriptome analyses revealed that a number of genes, including those involved in biofilm formation, were differentially expressed in EC-2 compared to those in ∆SO_1860. Conclusions The present results indicate that the altered expression of the genes related to CPS biosynthesis and biofilm formation is associated with the distinct morphotype and high current-generating capability of strain EC-2, suggesting an important role of these genes in determining the EET activity of S. oneidensis. PMID:25028134

  13. Adoptive T Cell Therapy Targeting CD1 and MR1

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Hirano, Naoto

    2015-01-01

    Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential. PMID:26052329

  14. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  15. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase

    PubMed Central

    Le Laz, Sébastien; kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  16. Magnetite biomineralization induced by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Teresa; Jimenez-Lopez, Concepcion; Neal, Andrew L.; Rull-Perez, Fernando; Rodriguez-Navarro, Alejandro; Fernandez-Vivas, Antonia; Iañez-Pareja, Enrique

    2010-02-01

    Shewanella oneidensis is a dissimilatory iron reducing bacterium capable of inducing the extracellular precipitation of magnetite. This precipitation requires a combination of passive and active mechanisms. Precipitation occurs as a consequence of active production of Fe 2+(aq) when bacteria utilize ferrihydrite as a terminal electron acceptor, and the pH rise probably due to the bacterial metabolism of amino acids. As for passive mechanisms, the localized concentration of Fe 2+(aq) and Fe 3+(aq) at the net negatively charged cell wall, cell structures and/or cell debris induces a local rise of supersaturation of the system with respect to magnetite, triggering the precipitation of such a phase. These biologically induced magnetites are morphologically identical to those formed inorganically in free-drift experiments (closed system; 25 °C, 1 atm total pressure), both from aqueous solutions containing Fe(ClO 4) 2, FeCl 3, NaHCO 3, NaCO 3 and NaOH, and also from sterile culture medium added with FeCl 2. However, organic material becomes incorporated in substantial amounts into the crystal structure of S. oneidensis-induced magnetites, modifying such a structure compared to that of inorganic magnetites. This structural change and the presence of organic matter are detected by Raman and FT-IR spectroscopic analyses and may be used as a biomarker to recognize the biogenic origin of natural magnetites.

  17. Surface-Enhanced Raman Imaging of Intracellular Bioreduction of Chromate in Shewanella oneidensis

    PubMed Central

    Ravindranath, Sandeep P.; Henne, Kristene L.; Thompson, Dorothea K.; Irudayaraj, Joseph

    2011-01-01

    This proposed research aims to use novel nanoparticle sensors and spectroscopic tools constituting surface-enhanced Raman spectroscopy (SERS) and Fluorescence Lifetime imaging (FLIM) to study intracellular chemical activities within single bioremediating microorganism. The grand challenge is to develop a mechanistic understanding of chromate reduction and localization by the remediating bacterium Shewanella oneidensis MR-1 by chemical and lifetime imaging. MR-1 has attracted wide interest from the research community because of its potential in reducing multiple chemical and metallic electron acceptors. While several biomolecular approaches to decode microbial reduction mechanisms exist, there is a considerable gap in the availability of sensor platforms to advance research from population-based studies to the single cell level. This study is one of the first attempts to incorporate SERS imaging to address this gap. First, we demonstrate that chromate-decorated nanoparticles can be taken up by cells using TEM and Fluorescence Lifetime imaging to confirm the internalization of gold nanoprobes. Second, we demonstrate the utility of a Raman chemical imaging platform to monitor chromate reduction and localization within single cells. Distinctive differences in Raman signatures of Cr(VI) and Cr(III) enabled their spatial identification within single cells from the Raman images. A comprehensive evaluation of toxicity and cellular interference experiments conducted revealed the inert nature of these probes and that they are non-toxic. Our results strongly suggest the existence of internal reductive machinery and that reduction occurs at specific sites within cells instead of at disperse reductive sites throughout the cell as previously reported. While chromate-decorated gold nanosensors used in this study provide an improved means for the tracking of specific chromate interactions within the cell and on the cell surface, we expect our single cell imaging tools to be

  18. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    SciTech Connect

    Marshall, Matthew J.; Beliaev, Alex S.; Dohnalkova, Alice; Kennedy, David W.; Shi, Liang; Wang, Zheming; Boyanov, Maxim I.; Lai, Barry; Kemner, Kenneth M.; Mclean, Jeffrey S.; Reed, Samantha B.; Culley, David E.; Bailey, Vanessa L.; Simonson, Cody J.; Saffarini, Daad; Romine, Margaret F.; Zachara, John M.; Fredrickson, Jim K.

    2006-08-08

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal reducing bacterium, Shewanella oneidensis MR-1 are essential for the reduction of U(VI) and formation of extracelluar UO2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC, previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild type MR-1. Similar to the wild type, the mutants accumulated UO2 nanoparticles extracellularly to high densities in association with an exopolymeric substance (EPS). In wild type cells, this UO2-EPS matrix exhibited glycocalyx-like properties, contained multiple elements of the OM, polysaccharide, and heme containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO2 nanoparticles with MtrC and OmcA. This is the first study to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO2 nanoparticles. In the environment, such association of UO2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O2 or transport in soils and sediments.

  19. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    PubMed Central

    Marshall, Matthew J; Dohnalkova, Alice C; Kennedy, David W; Shi, Liang; Wang, Zheming; Boyanov, Maxim I; Lai, Barry; Kemner, Kenneth M; McLean, Jeffrey S; Reed, Samantha B; Culley, David E; Bailey, Vanessa L; Simonson, Cody J; Saffarini, Daad A; Romine, Margaret F; Zachara, John M

    2006-01-01

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments. PMID:16875436

  20. The Influence of Cultivation Methods on Shewanella oneidensis Physiology and Proteome Expression

    SciTech Connect

    Elias, Dwayne A.; Tollaksen, Sandra L.; Kennedy, David W.; Mottaz, Heather M.; Giometti, Carol S.; Mclean, Jeffrey S.; Hill, Eric A.; Pinchuk, Grigoriy E.; Lipton, Mary S.; Fredrickson, Jim K.; Gorby, Yuri A.

    2008-04-01

    High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell metabolic variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.

  1. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis

    PubMed Central

    Jin, Miao; Fu, Huihui; Yin, Jianhua; Yuan, Jie; Gao, Haichun

    2016-01-01

    Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass. PMID:27493647

  2. Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin Koo; Gao, Haichun; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong

    2009-01-01

    It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

  3. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.

    PubMed

    Kane, Aunica L; Bond, Daniel R; Gralnick, Jeffrey A

    2013-02-15

    Growth in three-electrode electrochemical cells allows quantitative analysis of mechanisms involved in electron flow from dissimilatory metal reducing bacteria to insoluble electron acceptors. In these systems, gold electrodes are a desirable surface to study the electrophysiology of extracellular respiration, yet previous research has shown that certain Shewanella species are unable to form productive biofilms on gold electrodes. To engineer attachment of Shewanella oneidensis to gold, five repeating units of a synthetic gold-binding peptide (5rGBP) were integrated within an Escherichia coli outer membrane protein, LamB, and displayed on the outer surface of S. oneidensis. Expression of LamB-5rGBP increased cellular attachment of S. oneidensis to unpoised gold surfaces but was also associated with the loss of certain outer membrane proteins required for extracellular respiration. Loss of these outer membrane proteins during expression of LamB-5rGBP decreased the rate at which S. oneidensis was able to reduce insoluble iron, riboflavin, and electrodes. Moreover, poising the gold electrode resulted in repulsion of the engineered cells. This study provides a strategy to specifically immobilize bacteria to electrodes while also outlining challenges involved in merging synthetic biology approaches with native cellular pathways and cell surface charge. PMID:23656372

  4. Microbial Reduction and Precipitation of Vanadium by Shewanella oneidensis

    PubMed Central

    Carpentier, W.; Sandra, K.; De Smet, I.; Brigé, A.; De Smet, L.; Van Beeumen, J.

    2003-01-01

    Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid. PMID:12788772

  5. Systematic Assessment of the Benefits and Caveats in Mining Microbial Post-Translational Modifications from Shotgun Proteomic Data; Response of Shewanella oneidensis to Chromate Exposure

    SciTech Connect

    Thompson, Melissa R; Thompson, Dorothea K; Hettich, Robert {Bob} L

    2008-01-01

    Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations; whereas oxidations have been implicated as an indicator for stress. Shewanella oneidensis MR-1 is a gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The dataset used in this study consisted of tandem mass spectra derived from mid-log phase aerobic cultures of S. oneidensis shocked either with or without 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a sub-database first from a non-modification search was evaluated with DBDigger. The use of higher scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total dataset using the DBDigger algorithm. However, the FDR climbs to about 50% when considering PTM peptides only. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate (~25%) for the searched spectra. InsPecT was found to have a lower FDR (~9%) than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.

  6. Single-Molecule Methods for the Large-Scale Characterization of Expression Levels and Protein-Protein Interactions in Shewanella Oneidensis MR-1

    SciTech Connect

    Weiss, Shimon; Michalet, Xavier

    2008-10-01

    This project has demonstrated a new approach to localize binding sites of proteins regulating gene expression (also known as transcription factors) on the genome of bacteria. Knowledge of the precise binding site(s) of a specific transcription factor helps determining its role in the cell cycle and by extension provides further understanding of the mechanisms at play in the organism. The approach entails labeling transcription factors (or any other DNA-binding protein of interest) with quantum dots, a new class of very bright fluorescent probes, which allow detection of individual molecules with a simple microscope. Detection is then followed with very accurate localization of the probe (with nanometer resolution) with respect to specific parts of the DNA or other proteins bound to the DNA. We have confirmed the precision of our measurement using another technique based on atomic force microscopy, which provides a nanometer-resolution topographic picture of a sample. Quantum dots and DNA are readily observable (and distinguishable) in the atomic force microscope, and can be simultaneously observed by fluorescence microscopy, allowing a direct comparison of the two methods. Precise nanometer-localization of protein binding sites using fluorescent quantum dots is thus a direct and visual method for physical mapping of transcription factor binding sites on whole genomes.

  7. Impacts of Nitrate and Nitrite on Physiology of Shewanella oneidensis

    PubMed Central

    Zhang, Haiyan; Fu, Huihui; Wang, Jixuan; Sun, Linlin; Jiang, Yaoming; Zhang, Lili; Gao, Haichun

    2013-01-01

    Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na+) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO). PMID:23626841

  8. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations.

    PubMed

    Hong, Gongyi; Pachter, Ruth

    2016-06-30

    Flavins are known to enhance extracellular electron transfer (EET) in Shewanella oneidensis MR-1 bacteria, which reduce electron acceptors through outer-membrane (OM) cytochromes c. Free-shuttle and bound-redox cofactor mechanisms were proposed to explain this enhancement, but recent electrochemical reports favor a flavin-bound model, proposing two one-electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at the multiheme OM cytochrome OmcA, we explored binding configurations at hemes 2, 5, 7, and 10. Subsequently, on the basis of molecular dynamics (MD) simulations, binding free energies and redox potential shifts upon RF binding for the Ox/Sq and Sq/Hq reductions were analyzed. Our results demonstrated an upshift in the Ox/Sq and a downshift in the Sq/Hq redox potentials, consistent with a bound RF-OmcA model. Furthermore, binding free energy MD simulations indicated an RF binding preference at heme 7. MD simulations of the OmcA-MtrC complex interfacing at hemes 5 revealed a small interprotein redox potential difference with an electron transfer rate of 10(7)-10(8)/s. PMID:27266856

  9. Integrative analysis of transcriptomic and proteomic data of Shewanella oneidensis: missing value imputation using temporal datasets

    SciTech Connect

    Torres-García, Wandaliz; Brown, Steven D; Johnson, Roger; Zhang, Weiwen; Runger, George; Meldrum, Deirdre

    2011-01-01

    Despite significant improvements in recent years, proteomic datasets currently available still suffer large number of missing values. Integrative analyses based upon incomplete proteomic and transcriptomic da-tasets could seriously bias the biological interpretation. In this study, we applied a non-linear data-driven stochastic gradient boosted trees (GBT) model to impute missing proteomic values for proteins experi-mentally undetected, using a temporal transcriptomic and proteomic dataset of Shewanella oneidensis. In this dataset, genes expression was measured after the cells were exposed to 1 mM potassium chromate for 5-, 30-, 60-, and 90-min, while protein abundance was measured only for 45- and 90-min samples. With the goal of elucidating the relationship between temporal gene expression and protein abundance data, and then using it to impute missing proteomic values for samples of 45-min (which does not have cognate transcriptomic data) and 90-min, we initially used nonlinear Smoothing Splines Curve Fitting (SSCF) to identify temporal relationships among transcriptomic data at different time points and then imputed missing gene expression measurements for the sample at 45-min. After the imputation was validated by biological constrains (i.e. operons), we used a data-driven Gradient Boosted Trees (GBT) model to uncover possible non-linear relationships between temporal transcriptomic and proteomic data, and to impute protein abundance for the proteins experimentally undetected in the 45- and 90-min sam-ples, based on relevant predictors such as temporal mRNA gene expression data, cellular roles, molecular weight, sequence length, protein length, guanine-cytosine (GC) content and triple codon counts. The imputed protein values were validated using biological constraints such as operon, regulon and pathway information. Finally, we demonstrated that such missing value imputation improved characterization of the temporal response of S. oneidensis to chromate.

  10. Aerated Shewanella oneidensis in Continuously-fed Bioelectrochemical Systems for Power and Hydrogen Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, iron(III) reduction, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell. The potentiostatic performance of aerated S. oneidensis was considerab...

  11. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells.

    PubMed

    Franciszkiewicz, Katarzyna; Salou, Marion; Legoux, Francois; Zhou, Qian; Cui, Yue; Bessoles, Stéphanie; Lantz, Olivier

    2016-07-01

    The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells. PMID:27319347

  12. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor

    PubMed Central

    Reantragoon, Rangsima; Kjer-Nielsen, Lars; Patel, Onisha; Chen, Zhenjun; Illing, Patricia T.; Bhati, Mugdha; Kostenko, Lyudmila; Bharadwaj, Mandvi; Meehan, Bronwyn; Hansen, Ted H.; Godfrey, Dale I.

    2012-01-01

    Mucosal-associated invariant T (MAIT) cells express a semiinvariant αβ T cell receptor (TCR) that binds MHC class I–like molecule (MR1). However, the molecular basis for MAIT TCR recognition by MR1 is unknown. In this study, we present the crystal structure of a human Vα7.2Jα33-Vβ2 MAIT TCR. Mutagenesis revealed highly conserved requirements for the MAIT TCR–MR1 interaction across different human MAIT TCRs stimulated by distinct microbial sources. Individual residues within the MAIT TCR β chain were dispensable for the interaction with MR1, whereas the invariant MAIT TCR α chain controlled specificity through a small number of residues, which are conserved across species and located within the Vα-Jα regions. Mutagenesis of MR1 showed that only two residues, which were centrally positioned and on opposing sides of the antigen-binding cleft of MR1, were essential for MAIT cell activation. The mutagenesis data are consistent with a centrally located MAIT TCR–MR1 docking that was dominated by the α chain of the MAIT TCR. This candidate docking mode contrasts with that of the NKT TCR–CD1d-antigen interaction, in which both the α and β chain of the NKT TCR is required for ligation above the F′-pocket of CD1d. PMID:22412157

  13. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    SciTech Connect

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-15

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-{kappa}B signaling pathway, and nuclear transcription factor (NF)-{kappa}B and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-{kappa}B and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-{alpha}, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-{kappa}B and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-{alpha}, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-{kappa}B and AP-1 signaling pathway.

  14. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1.

    PubMed

    McWilliam, Hamish E G; Eckle, Sidonia B G; Theodossis, Alex; Liu, Ligong; Chen, Zhenjun; Wubben, Jacinta M; Fairlie, David P; Strugnell, Richard A; Mintern, Justine D; McCluskey, James; Rossjohn, Jamie; Villadangos, Jose A

    2016-05-01

    The antigen-presenting molecule MR1 presents vitamin B-related antigens (VitB antigens) to mucosal-associated invariant T (MAIT) cells through an uncharacterized pathway. We show that MR1, unlike other antigen-presenting molecules, does not constitutively present self-ligands. In the steady state it accumulates in a ligand-receptive conformation within the endoplasmic reticulum. VitB antigens reach this location and form a Schiff base with MR1, triggering a 'molecular switch' that allows MR1-VitB antigen complexes to traffic to the plasma membrane. These complexes are endocytosed with kinetics independent of the affinity of the MR1-ligand interaction and are degraded intracellularly, although some MR1 molecules acquire new ligands during passage through endosomes and recycle back to the surface. MR1 antigen presentation is characterized by a rapid 'off-on-off' mechanism that is strictly dependent on antigen availability. PMID:27043408

  15. Biochemical Analyses of Dissimilatory Iron Reduction by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Ruebush, S. S.; Tien, M.; Icopini, G. A.; Brantley, S. L.

    2002-12-01

    Shewanella oneidensis demonstrates respiratory flexibility by the transfer of electrons to Fe (III) and Mn (IV) oxides under anaerobic conditions. Researchers postulate that the bacterium utilizes surface proteins to facilitate the respiratory mechanism for dissimilatory iron(III) reduction. Previous genetic and biochemical studies has shown that iron reduction is associated with the outer membrane of the cell. The identity of the terminal reductase is not yet known. S. oneidensis has been shown to use soluble extra-cellular compounds to facilitate iron(III) reduction as well as expression of novel proteins on the cell surface when interacting with iron(III) oxides. Our results show that the outer membrane fraction possess enzymatic activity for converting Fe(III) to Fe(II) as measured by ferrozine complexation. AQDS, extra-cellular organic extracts, and iron(III) both soluble and solid have been assayed for activity with outer membrane fractions. Zymograms of the membrane fractions separated by isoelectric focusing and native PAGE electrophoresis stained using ferrozine have implicated proteins that are directly involved in the Fe(III) reduction process. A proteomics analysis of outer membrane proteins has also been implemented to identify different expression patterns under Fe(III) reducing conditions. Proteins that are unique to Fe(III) reduction have been isolated and identified using N-terminal sequence analysis. We will also attempt to examine the effect of enzymatic iron(III) reduction on isotopic partitioning from in vitro assays.

  16. Posttranslational Modification of Flagellin FlaB in Shewanella oneidensis

    PubMed Central

    Sun, Linlin; Jin, Miao; Ding, Wen; Yuan, Jie

    2013-01-01

    Shewanella oneidensis is a highly motile organism by virtue of a polar, glycosylated flagellum composed of flagellins FlaA and FlaB. In this study, the functional flagellin FlaB was isolated and analyzed with nano-liquid chromatography-mass spectrometry (MS) and tandem MS. In combination with the mutational analysis, we propose that the FlaB flagellin protein from S. oneidensis is modified at five serine residues with a series of novel O-linked posttranslational modifications (PTMs) that differ from each other by 14 Da. These PTMs are composed in part of a 274-Da sugar residue that bears a resemblance to the nonulosonic acids. The remainder appears to be composed of a second residue whose mass varies by 14 Da depending on the PTM. Further investigation revealed that synthesis of the glycans initiates with PseB and PseC, the first two enzymes of the Pse pathway. In addition, a number of lysine residues are found to be methylated by SO4160, an analogue of the lysine methyltransferase of Salmonella enterica serovar Typhimurium. PMID:23543712

  17. Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress

    PubMed Central

    Thompson, Dorothea K.; Beliaev, Alexander S.; Giometti, Carol S.; Tollaksen, Sandra L.; Khare, Tripti; Lies, Douglas P.; Nealson, Kenneth H.; Lim, Hanjo; Yates III, John; Brandt, Craig C.; Tiedje, James M.; Zhou, Jizhong

    2002-01-01

    The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems. PMID:11823232

  18. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis

    DOE PAGESBeta

    Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan; Damron, Fredrick; Zhou, Jizhong; Qiu, Dongru

    2015-01-01

    Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essentialmore » for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.« less

  19. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis

    SciTech Connect

    Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan; Damron, Fredrick; Zhou, Jizhong; Qiu, Dongru

    2015-01-01

    Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essential for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.

  20. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells

    PubMed Central

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-01-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1–2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1–2+ MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8+ T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8+ subsets we demonstrated that high expression of CD26 on CD8+ TRAV1–2+ cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161hi was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161dim. Using cell surface expression of CD8, TRAV1–2, and CD26hi in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis. PMID:25752900

  1. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells.

    PubMed

    Laugel, Bruno; Lloyd, Angharad; Meermeier, Erin W; Crowther, Michael D; Connor, Thomas R; Dolton, Garry; Miles, John J; Burrows, Scott R; Gold, Marielle C; Lewinsohn, David M; Sewell, Andrew K

    2016-08-01

    The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells. PMID:27307560

  2. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells

    PubMed Central

    Lloyd, Angharad; Meermeier, Erin W.; Crowther, Michael D.; Connor, Thomas R.; Dolton, Garry; Miles, John J.; Burrows, Scott R.; Gold, Marielle C.; Lewinsohn, David M.

    2016-01-01

    The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1−/− clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1−/− clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells. PMID:27307560

  3. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be

  4. Structure and function of the non-classical major histocompatibility complex molecule MR1.

    PubMed

    Krovi, S Harsha; Gapin, Laurent

    2016-08-01

    Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these "classical" MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other "non-classical" MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells. PMID:27448212

  5. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    SciTech Connect

    Hartshorne, Robert S.; Jepson, Brian N.; Clarke, Thomas A.; Field, Sarah J.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Butt, Julea N.; Richardson, David

    2007-09-04

    Abstract MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately *500 mV (vs. the standard hydrogen electrode). Across this potential window the UV– vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled lowspin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate.

  6. Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells.

    PubMed

    Harriff, Melanie J; Karamooz, Elham; Burr, Ansen; Grant, Wilmon F; Canfield, Elizabeth T; Sorensen, Michelle L; Moita, Luis F; Lewinsohn, David M

    2016-03-01

    Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment. PMID:27031111

  7. Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells

    PubMed Central

    Burr, Ansen; Grant, Wilmon F.; Canfield, Elizabeth T.; Sorensen, Michelle L.; Moita, Luis F.; Lewinsohn, David M.

    2016-01-01

    Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment. PMID:27031111

  8. Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil.

    PubMed

    Pawitwar, Shashank S; Utturkar, Sagar M; Brown, Steven D; Yoshinaga, Masafumi; Rosen, Barry P

    2015-01-01

    To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1. PMID:26044439

  9. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis

    PubMed Central

    Gold, Marielle C.; Napier, Ruth J.; Lewinsohn, David M.

    2014-01-01

    Summary The intracellular pathogen Mycobacterium tuberculosis (Mtb) and its human host have long co-evolved. Although the host cellular immune response is critical to the control of the bacterium information on the specific contribution of different immune cell subsets in humans is incomplete. Mucosal associated invariant T (MAIT) cells are a prevalent and unique T-cell population in humans with the capacity to detect intracellular infection with bacteria including Mtb. MAIT cells detect bacterially derived metabolites presented by the evolutionarily conserved major histocompatibility complex-like molecule MR1. Here we review recent advances in our understanding of this T-cell subset and address the potential roles for MR1-restricted T cells in the control, diagnosis, and therapy of tuberculosis. PMID:25703558

  10. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea; Feng, Sheng; Zhou, Jizhong

    2010-01-01

    Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the g-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other g-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis.

  11. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.

    PubMed

    Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell (MFC). The potentiostatic performance of aerated S. oneidensis was considerably enhanced to a maximum current density of 0.45 A/m(2) or 80.3 A/m(3) (mean: 0.34 A/m(2), 57.2 A/m(3)) compared to anaerobically grown cultures. Biocatalyzed hydrogen production rates with aerated S. oneidensis were studied within the applied potential range of 0.3-0.9 V and were highest at 0.9 V with 0.3 m(3) H(2)/m(3) day, which has been reported for mixed cultures, but is approximately 10 times higher than reported for an anaerobic culture of S. oneidensis. Aerated MFC experiments produced a maximum power density of 3.56 W/m(3) at a 200-Omega external resistor. The main reasons for enhanced electrochemical performance are higher levels of active biomass and more efficient substrate utilization under aerobic conditions. Coulombic efficiencies, however, were greatly reduced due to losses of reducing equivalents to aerobic respiration in the anode chamber. The next challenge will be to optimize the aeration rate of the bacterial culture to balance between maximization of bacterial activation and minimization of aerobic respiration in the culture. PMID:19998276

  12. The luxS mutation causes loosely-bound biofilms in Shewanella oneidensis

    PubMed Central

    2011-01-01

    Background The luxS gene in Shewanella oneidensis was shown to encode an autoinducer-2 (AI-2)-like molecule, the postulated universal bacterial signal, but the impaired biofilm growth of a luxS deficient mutant could not be restored by AI-2, indicating it might not have a signalling role in this organism. Findings Here, we provide further evidence regarding the metabolic role of a luxS mutation in S. oneidensis. We constructed a luxS mutant and compared its phenotype to a wild type control with respect to its ability to remove AI-2 from the medium, expression of secreted proteins and biofilm formation. We show that S. oneidensis has a cell-dependent mechanism by which AI-2 is depleted from the medium by uptake or degradation at the end of the exponential growth phase. As AI-2 depletion is equally active in the luxS mutant and thus does not require AI-2 as an inducer, it appears to be an unspecific mechanism suggesting that AI-2 for S. oneidensis is a metabolite which is imported under nutrient limitation. Secreted proteins were studied by iTraq labelling and liquid chromatography mass spectrometry (LC-MS) detection. Differences between wild type and mutant were small. Proteins related to flagellar and twitching motility were slightly up-regulated in the luxS mutant, in accordance with its loose biofilm structure. An enzyme related to cysteine metabolism was also up-regulated, probably compensating for the lack of the LuxS enzyme. The luxS mutant developed an undifferentiated, loosely-connected biofilm which covered the glass surface more homogenously than the wild type control, which formed compact aggregates with large voids in between. Conclusions The data confirm the role of the LuxS enzyme for biofilm growth in S. oneidensis and make it unlikely that AI-2 has a signalling role in this organism. PMID:21663678

  13. The Immunology of CD1- and MR1-Restricted T Cells.

    PubMed

    Mori, Lucia; Lepore, Marco; De Libero, Gennaro

    2016-05-20

    CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases. PMID:26927205

  14. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  15. Direct Involvement of Type II Secretion System in Extracellular Translocation of Shewanella Oneidensis Outer Membrane Cytochromes MtrC and OmcA

    SciTech Connect

    Shi, Liang; Deng, Shuang; Marshall, Matthew J.; Wang, Zheming; Kennedy, David W.; Dohnalkova, Alice; Mottaz, Heather M.; Hill, Eric A.; Gorby, Yuri A.; Beliaev, Alex S.; Richardson, David J.; Zachara, John M.; Fredrickson, Jim K.

    2008-08-01

    Outer membrane decaheme c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 are extracellular lipoproteins important for dissimilatory reduction of solid metal (hydr)oxides during anaerobic respiration. To investigate the roles of type II secretion system (T2S) in translocation of MtrC and OmcA across outer membrane, we measured the effects of deleting two T2S genes, gspD and gspG, on the secretion of MtrC and OmcA when cells were grown under anaerobic conditions. Deletion of gspD or gspG resulted in slightly yellowish supernatants, different from the pink supernatant of wild type (wt). Comparative proteomic analyses revealed that, although MtrC, OmcA and NrfA, a periplasmic nitrite reductase, were present the supernatants of wt and ΔgspD mutant, their peptides counts were much lower in ΔgspD than in wt. Subsequent analyses with heme-staining and Western blot not only confirmed that deletion of gspD or gspG reduced the abundances of MtrC and OmcA in the supernatants, but also revealed that the deletions consequently increased their abundances inside the cells. Complementation of ΔgspG mutant with functional GspG could reverse the effects of deleting gspG on the colors of the supernatants and the abundances of MtrC and OmcA. In contrast, Western results showed that the abundance of NrfA was reduced in the supernatant and the cells of ΔgspD mutant, suggesting that reduced NrfA in the periplasm, where MtrC and OmcA were accumulated, contributed to its reduction in the supernatant. Thus, our results demonstrate at the first time that T2S facilitates translocation of MtrC and OmcA across outer membrane.

  16. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study

    NASA Astrophysics Data System (ADS)

    Ha, Juyoung; Gélabert, Alexandre; Spormann, Alfred M.; Brown, Gordon E., Jr.

    2010-01-01

    The effect of cell wall-associated extracellular polymeric substances (EPS) of the Gram-negative bacterium Shewanella oneidensis strain MR-1 on proton, Zn(II), and Pb(II) adsorption was investigated using a combination of titration/batch uptake studies, surface complexation modeling, attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy, and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. Both unmodified (wild-type (WT) strain) and genetically modified cells with inhibited production of EPS (ΔEPS strain) were used. Three major types of functional groups (carboxyl, phosphoryl, and amide groups) were identified in both strains using ATR-FITR spectroscopy. Potentiometric titration data were fit using a constant capacitance model (FITEQL) that included these three functional groups. The fit results indicate less interaction of Zn(II) and Pb(II) with carboxyl and amide groups and a greater interaction with phosphoryl groups in the ΔEPS strain than in the WT strain. Results from Zn(II) and Pb(II) batch adsorption studies and surface complexation modeling, assuming carboxyl and phosphoryl functional groups, also indicate significantly lower Zn(II) and Pb(II) uptake and binding affinities for the ΔEPS strain. Results from Zn K-edge EXAFS spectroscopy show that Zn(II) bonds to phosphoryl and carboxyl ligands in both strains. Based on batch uptake and modeling results and EXAFS spectral analysis, we conclude that the greater amount of EPS in the WT strain enhances Zn(II) and Pb(II) uptake and hinders diffusion of Zn(II) to the cell walls relative to the ΔEPS strain.

  17. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    SciTech Connect

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A; Moon, Ji Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are compared to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.

  18. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.

    PubMed

    Gescher, Johannes S; Cordova, Carmen D; Spormann, Alfred M

    2008-05-01

    Over geological time scales, microbial reduction of chelated Fe(III) or Fe(III) minerals has profoundly affected today's composition of our bio- and geosphere. However, the electron transfer reactions that are specific and defining for dissimilatory iron(III)-reducing (DIR) bacteria are not well understood. Using a synthetic biology approach involving the reconstruction of the putative electron transport chain of the DIR bacterium Shewanella oneidensis MR-1 in Escherichia coli, we showed that expression of cymA was necessary and sufficient to convert E. coli into a DIR bacterium. In intact cells, the Fe(III)-reducing activity was limited to Fe(III) NTA as electron acceptor. In vitro biochemical analysis indicated that CymA, which is a cytoplasmic membrane-associated tetrahaem c-type cytochrome, carries reductase activity towards Fe(III) NTA, Fe(III) citrate, as well as to AQDS, a humic acid analogue. The in vitro specific activities of Fe(III) citrate reductase and AQDS reductase of E. coli spheroplasts were 10x and 30x higher, respectively, relative to the specific rates observed in intact cells, suggesting that access of chelated and insoluble forms of Fe(III) and AQDS is restricted in whole cells. Interestingly, the E. coli CymA orthologue NapC also carried ferric reductase activity. Our data support the argument that the biochemical mechanism of Fe(III) reduction per se was not the key innovation leading to environmental relevant DIR bacteria. Rather, the evolution of an extension of the electron transfer pathway from the Fe(III) reductase CymA to the cell surface via a system of periplasmic and outer membrane cytochrome proteins enabled access to diffusion-impaired electron acceptors. PMID:18394146

  19. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions

    PubMed Central

    Nakagawa, Gen; Kouzuma, Atsushi; Hirose, Atsumi; Kasai, Takuya; Yoshida, Gen; Watanabe, Kazuya

    2015-01-01

    In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor. PMID:26394222

  20. A Crp-Dependent Two-Component System Regulates Nitrate and Nitrite Respiration in Shewanella oneidensis

    PubMed Central

    Dong, Yangyang; Wang, Jixuan; Fu, Huihui; Zhou, Guangqi; Shi, Miaomiao; Gao, Haichun

    2012-01-01

    We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA. PMID:23240049

  1. Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (⩾10-5 M), more than 99% of these ions partitioned into the biofilms at S. oneidensis/α-Al2O3 (1 -1 0 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Thus, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (⩽10-6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) substantially (∼52% to ∼13% at 10-7 M, and ∼23% to ∼5% at 10-6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al2O3 (1 -1 0 2) surfaces (∼15% to ∼28% at 10-7 M, and ∼1% to ∼7% at 10-6 M). The higher observed partitioning of Zn(II) (∼28%) at the α-Al2O3 (1 -1 0 2) surfaces compared to Pb(II) (∼13%) in the mixed-metal-ion systems at the lowest concentration (10-7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al2O3 (1 -1 0 2) surfaces under our experimental conditions. Competitive sorption of Pb(II) and Zn(II) at S. oneidensis/α-Fe2O3 (0 0 0 1)/water interfaces at equi-molar metal-ion concentrations of ⩽10-6 M showed that the presence of Pb(II) ions decreased Zn(II) partitioning onto α-Fe2O3 (0 0 0 1) significantly (∼45% to <1% at 10

  2. Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus MR-1 and their characterization

    NASA Astrophysics Data System (ADS)

    Gou, Yujun; Zhou, Rongying; Ye, Xiujuan; Gao, Shanshan; Li, Xiangqian

    2015-02-01

    Silver nanoparticles (AgNPs) have been widely used in diverse fields due to their superior properties. Currently the biosynthesis of AgNPs is in the limelight of modern nanotechnology because of its green properties. However, relatively low yield and inefficiency diminish the prospect of applying these biosynthesized AgNPs. In this work, a rapid mass AgNP biosynthesis method using the cell-free extract of a novel bacterial strain, Lysinibacillus sphaericus MR-1, which has been isolated from a chemical fertilizer plant, is reported. In addition, the optimum synthesis conditions of AgNPs were investigated. The optimum pH, temperature, dosage, and reaction time were 12, 70 °C, 20 mM AgNO3, and 75 min, respectively. Finally, AgNPs were characterized by optical absorption spectroscopy, zeta potential and size distribution analysis, x-ray diffraction, electron microscopy, and energy-dispersive x-ray spectroscopy. The results revealed that these biosynthesized AgNPs were bimolecular covered, stable, well-dispersed face centered cubic (fcc) spherical crystalline particles with diameters in the range 5-20 nm. The advantages of this approach are its simplicity, high efficiency, and eco-friendly and cost-effective features.

  3. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1.

    PubMed Central

    Myers, C R; Myers, J M

    1992-01-01

    In gram-negative bacteria, numerous cell functions, including respiration-linked electron transport, have been ascribed to the cytoplasmic membrane. Gram-negative bacteria which use solid substrates (e.g., oxidized manganese or iron) as terminal electron acceptors for anaerobic respiration are presented with a unique problem: they must somehow establish an electron transport link across the outer membrane between large particulate metal oxides and the electron transport chain in the cytoplasmic membrane. When the metal-reducing bacterium Shewanella putrefaciens MR-1 is grown under anaerobic conditions and membrane fractions are purified from cells lysed by an EDTA-lysozyme-polyoxyethylene cetyl ether (Brij 58) protocol, approximately 80% of its membrane-bound cytochromes are localized in its outer membrane. These outer membrane cytochromes could not be dislodged by treatment with chaotropic agents or by increased concentrations of the nonionic detergent Brij 58, suggesting that they are integral membrane proteins. Cytochrome distribution in cells lysed by a French press protocol confirm the localization of cytochromes to the outer membrane of anaerobically grown cells. This novel cytochrome distribution could play a key role in the anaerobic respiratory capabilities of this bacterium, especially in its ability to mediate manganese and iron reduction. Images PMID:1592800

  4. Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens

    PubMed Central

    Meermeier, Erin W.; Laugel, Bruno F.; Sewell, Andrew K.; Corbett, Alexandra J.; Rossjohn, Jamie; McCluskey, James; Harriff, Melanie J.; Franks, Tamera; Gold, Marielle C.; Lewinsohn, David M.

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are thought to detect microbial antigens presented by the HLA-Ib molecule MR1 through the exclusive use of a TRAV1-2-containing TCRα. Here we use MR1 tetramer staining and ex vivo analysis with mycobacteria-infected MR1-deficient cells to demonstrate the presence of functional human MR1-restricted T cells that lack TRAV1-2. We characterize an MR1-restricted clone that expresses the TRAV12-2 TCRα, which lacks residues previously shown to be critical for MR1-antigen recognition. In contrast to TRAV1-2+ MAIT cells, this TRAV12-2-expressing clone displays a distinct pattern of microbial recognition by detecting infection with the riboflavin auxotroph Streptococcus pyogenes. As known MAIT antigens are derived from riboflavin metabolites, this suggests that TRAV12-2+ clone recognizes unique antigens. Thus, MR1-restricted T cells can discriminate between microbes in a TCR-dependent manner. We postulate that additional MR1-restricted T-cell subsets may play a unique role in defence against infection by broadening the recognition of microbial metabolites. PMID:27527800

  5. Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens.

    PubMed

    Meermeier, Erin W; Laugel, Bruno F; Sewell, Andrew K; Corbett, Alexandra J; Rossjohn, Jamie; McCluskey, James; Harriff, Melanie J; Franks, Tamera; Gold, Marielle C; Lewinsohn, David M

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are thought to detect microbial antigens presented by the HLA-Ib molecule MR1 through the exclusive use of a TRAV1-2-containing TCRα. Here we use MR1 tetramer staining and ex vivo analysis with mycobacteria-infected MR1-deficient cells to demonstrate the presence of functional human MR1-restricted T cells that lack TRAV1-2. We characterize an MR1-restricted clone that expresses the TRAV12-2 TCRα, which lacks residues previously shown to be critical for MR1-antigen recognition. In contrast to TRAV1-2(+) MAIT cells, this TRAV12-2-expressing clone displays a distinct pattern of microbial recognition by detecting infection with the riboflavin auxotroph Streptococcus pyogenes. As known MAIT antigens are derived from riboflavin metabolites, this suggests that TRAV12-2(+) clone recognizes unique antigens. Thus, MR1-restricted T cells can discriminate between microbes in a TCR-dependent manner. We postulate that additional MR1-restricted T-cell subsets may play a unique role in defence against infection by broadening the recognition of microbial metabolites. PMID:27527800

  6. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  7. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    NASA Astrophysics Data System (ADS)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-04-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  8. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    PubMed Central

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-01-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration. PMID:23538304

  9. Identification and characterization of a HEPN-MNT family type II toxin–antitoxin in Shewanella oneidensis

    PubMed Central

    Yao, Jianyun; Guo, Yunxue; Zeng, Zhenshun; Liu, Xiaoxiao; Shi, Fei; Wang, Xiaoxue

    2015-01-01

    Toxin–antitoxin (TA) systems are prevalent in bacteria and archaea. However, related studies in the ecologically and bioelectrochemically important strain Shewanella oneidensis are limited. Here, we show that SO_3166, a member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) superfamily, strongly inhibited cell growth in S. oneidensis and Escherichia coli. SO_3165, a putative minimal nucleotidyltransferase (MNT), neutralized the toxicity of SO_3166. Gene SO_3165 lies upstream of SO_3166, and they are co-transcribed. Moreover, the SO_3165 and SO_3166 proteins interact with each other directly in vivo, and antitoxin SO_3165 bound to the promoter of the TA operon and repressed its activity. Finally, the conserved Rx4-6H domain in HEPN family was identified in SO_3166. Mutating either the R or H abolished SO_3166 toxicity, confirming that Rx4-6H domain is critical for SO_3166 activity. Taken together, these results demonstrate that SO_3166 and SO_3165 in S. oneidensis form a typical type II TA pair. This TA pair plays a critical role in regulating bacterial functions because its disruption led to impaired cell motility in S. oneidensis. Thus, we demonstrated for the first time that HEPN-MNT can function as a TA system, thereby providing important insights into the understanding of the function and regulation of HEPNs and MNTs in prokaryotes. PMID:26112399

  10. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    NASA Astrophysics Data System (ADS)

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-06-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms.

  11. Expression of blaA Underlies Unexpected Ampicillin-Induced Cell Lysis of Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Sun, Linlin; Dong, Yangyang; Chi, Xun; Zhu, Weiming; Qi, Shu-hua; Gao, Haichun

    2013-01-01

    Shewanella oneidensis is a facultative anaerobic γ-proteobacterium possessing remarkably diverse respiratory capacities for reducing various organic and inorganic substrates. As a veteran research model for investigating redox transformations of environmental contaminants the bacterium is well known to be a naturally ampicillin-resistant microorganism. However, in this study we discovered that ampicillin has a significant impact on growth of S. oneidensis. Particularly, cell lysis occurred only with ampicillin at levels ranging from 0.49 to 6.25 µg/ml but not at 50 µg/ml. This phenotype is attributable to insufficient expression of the β-lactamase BlaA. The subsequent analysis revealed that the blaA gene is strongly induced by ampicillin at high (50 µg/ml), but not at low levels (2.5 µg/ml). In addition, we demonstrated that penicillin binding protein 5 (PBP5), the most abundant low molecular weight PBP (LMW PBP), is the only one relevant to β-lactam resistance under the tested conditions. This nonessential PBP, largely resembling its Escherichia coli counterpart in functionality, mediates expression of the blaA gene. PMID:23555975

  12. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    PubMed Central

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-01-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms. PMID:24898751

  13. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea B.; Feng, Sheng; Zhou, Jizhong

    2010-10-26

    It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. In this study, we showed that a fur deletion mutant of the γ-proteobacterium S. oneidensis could utilize TCA compounds. In addition, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and demonstrated its expression experimentally. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. This work delineates an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other γ-proteobacteria.

  14. Exoprotein Production Correlates with Morphotype Changes of Nonmotile Shewanella oneidensis Mutants

    PubMed Central

    Shi, Miaomiao; Wu, Lin; Xia, Yu; Chen, Haijiang; Luo, Qixia; Sun, Linlin

    2013-01-01

    We report a previously undescribed mechanism for the rugose morphotype in Shewanella oneidensis, a research model for investigating redox transformations of environmental contaminants. Bacteria may form smooth or rugose colonies on agar plates. In general, conversion from the smooth to rugose colony morphotype is attributed to increased production of exopolysaccharide (EPS). In this work, we discovered that aflagellate S. oneidensis mutants grew into rugose colonies, whereas those with nonfunctional flagellar filaments remained smooth. EPS production was not altered in either case, but mutants with the rugose morphotype showed significantly reduced exoprotein secretion. The idea that exoproteins at a reduced level correlate with rugosity gained support from smooth suppressor strains of an aflagellate rugose fliD (encoding the capping protein) mutant, which restored the exoprotein level to the levels of the wild-type and mutant strains with a smooth morphotype. Further analyses revealed that SO1072 (a putative GlcNAc-binding protein) was one of the highly upregulated exoproteins in these suppressor strains. Most intriguingly, this study identified a compensatory mechanism of SO1072 to flagellins possibly mediated by bis-(3′-5′)-cyclic dimeric GMP. PMID:23335418

  15. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov

    NASA Technical Reports Server (NTRS)

    Venkateswaran, K.; Moser, D. P.; Dollhopf, M. E.; Lies, D. P.; Saffarini, D. A.; MacGregor, B. J.; Ringelberg, D. B.; White, D. C.; Nishijima, M.; Sano, H.; Burghardt, J.; Stackebrandt, E.; Nealson, K. H.

    1999-01-01

    The genus Shewanella has been studied since 1931 with regard to a variety of topics of relevance to both applied and environmental microbiology. Recent years have seen the introduction of a large number of new Shewanella-like isolates, necessitating a coordinated review of the genus. In this work, the phylogenetic relationships among known shewanellae were examined using a battery of morphological, physiological, molecular and chemotaxonomic characterizations. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them into a consensus classification. Based on information generated from this study and obtained from the literature, a scheme for the identification of Shewanella species has been compiled. Key phenotypic characteristics were sulfur reduction and halophilicity. Fatty acid and quinone profiling were used to impart an additional layer of information. Molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in some cases. As a result, DNA-DNA hybridization and sequence analyses of a more rapidly evolving molecule (gyrB gene) were performed. Species-specific PCR probes were designed for the gyrB gene and used for the rapid screening of closely related strains. With this polyphasic approach, in addition to the ten described Shewanella species, two new species, Shewanella oneidensis and 'Shewanella pealeana', were recognized; Shewanella oneidensis sp. nov. is described here for the first time.

  16. How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress

    SciTech Connect

    Ghosal, D; Omelchenko, M V.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Venkateswaran, Amudhan; Zhai, M; Kostandarithes, Heather M.; Brim, Hassan; Makarova, Kira S.; Wackett, L. P.; Fredrickson, Jim K.; Daly, Michael J.

    2005-04-01

    The radiation resistant bacterium Deinococcus radiodurans accumulates very high intracellular manganese and relatively low iron levels compared to the dissimilatory metal-reducing bacterium Shewanella oneidensis which is extremely sensitive. For Fe-rich, Mn-poor cells, death at low doses might be caused by the release of Fe(II) from proteins during irradiation, followed by Fe(II)-dependent reduction of hydrogen peroxide produced by metabolism after irradiation. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport, and metal reduction, which together with Mn(II) transport represent potential new targets to control cell recovery from radiation injury.

  17. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, Shewanella oneidensis

    SciTech Connect

    Doktycz, Mitchel John; Moon, Ji Won; Meyer III, Harry M; Hensley, Dale K; Phelps, Tommy Joe; Pelletier, Dale A

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size- and shape-dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs has become a priority. In the present article we report for the first time on the efficient generation of extracellular silver sulfide (Ag{sub 2}S) nanoparticles by the metal-reducing bacterium Shewanella oneidensis. The particles are reasonably monodispersed and homogeneously shaped. They are produced under ambient temperatures and pressures at high yield, 85% theoretical maximum. UV-visible and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical and surface properties, purity and crystallinity of the synthesized particles. Further characterization revealed that the particles consist of spheres with a mean diameter of 9 {+-} 3.5 nm, and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these biogenic Ag{sub 2}S nanoparticles on Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial systems, as well as eukaryotic cell lines including mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells, showed that the particles were non-inhibitory and non-cytotoxic to any of these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag{sub 2}S nanoparticles. These particles are dispersible and biocompatible, thus providing excellent potential for use in optical imaging, electronic devices and solar cell applications.

  18. Role of the Tetraheme Cytochrome CymA in Anaerobic Electron Transport in Cells of Shewanella putrefaciens MR-1 with Normal Levels of Menaquinone

    PubMed Central

    Myers, Judith M.; Myers, Charles R.

    2000-01-01

    Shewanella putrefaciens MR-1 possesses a complex electron transport system which facilitates its ability to use a diverse array of compounds as terminal electron acceptors for anaerobic respiration. A previous report described a mutant strain (CMTn-1) deficient in CymA, a tetraheme cytochrome c. However, the interpretation of the electron transport role of CymA was complicated by the fact that CMTn-1 was also markedly deficient in menaquinones. This report demonstrates that the depressed menaquinone levels were the result of the rifampin resistance phenotype of the parent of CMTn-1 and not the interruption of the cymA gene. This is the first report of rifampin resistance leading to decreased menaquinone levels, indicating that rifampin-resistant strains should be used with caution when analyzing electron transport processes. A site-directed gene replacement approach was used to isolate a cymA knockout strain (MR1-CYMA) directly from MR-1. While MR1-CYMA retained menaquinone levels comparable to those of MR-1, it lost the ability to reduce iron(III), manganese(IV), and nitrate and to grow by using fumarate as an electron acceptor. All of these functions were restored to wild-type efficacy, and the presence of the cymA transcript and CymA protein was also restored, by complementation of MR1-CYMA with the cymA gene. The requirement for CymA in anaerobic electron transport to iron(III), fumarate, nitrate, and manganese(IV) is therefore not dependent on the levels of menaquinone in these cells. This represents the first successful use of a suicide vector for directed gene replacement in MR-1. PMID:10613864

  19. Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System

    PubMed Central

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-01-01

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein). PMID:22382353

  20. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system

    SciTech Connect

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-09-11

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein 'small tetraheme c' replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-{angstrom}-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).

  1. Real-Time Gene Expression Profiling of Live Shewanella Oneidensis Cells

    SciTech Connect

    Xiaoliang Sunney Xie

    2009-03-30

    The overall objective of this proposal is to make real-time observations of gene expression in live Shewanella oneidensis cells with high sensitivity and high throughput. Gene expression, a central process to all life, is stochastic because most genes often exist in one or two copies per cell. Although the central dogma of molecular biology has been proven beyond doubt, due to insufficient sensitivity, stochastic protein production has not been visualized in real time in an individual cell at the single-molecule level. We report the first direct observation of single protein molecules as they are generated, one at a time in a single live E. coli cell, yielding quantitative information about gene expression [Science 2006; 311: 1600-1603]. We demonstrated a general strategy for live-cell single-molecule measurements: detection by localization. It is difficult to detect single fluorescence protein molecules inside cytoplasm - their fluorescence is spread by fast diffusion to the entire cell and overwhelmed by the strong autofluorescence. We achieved single-molecule sensitivity by immobilizing the fluorescence protein on the cell membrane, where the diffusion is much slowed. We learned that under the repressed condition protein molecules are produced in bursts, with each burst originating from a stochastically-transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. We also simultaneously published a paper reporting a different method using β-glactosidase as a reporter [Nature 440, 358 (2006)]. Many important proteins are expressed at low levels, inaccessible by previous proteomic techniques. Both papers allowed quantification of protein expression with unprecedented sensitivity and received overwhelming acclaim from the scientific community. The Nature paper has been identified as one of the most-cited papers in the past year [http://esi-topics.com/]. We have also an analytical framework describing the

  2. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers.

    PubMed

    Rahimpour, Azad; Koay, Hui Fern; Enders, Anselm; Clanchy, Rhiannon; Eckle, Sidonia B G; Meehan, Bronwyn; Chen, Zhenjun; Whittle, Belinda; Liu, Ligong; Fairlie, David P; Goodnow, Chris C; McCluskey, James; Rossjohn, Jamie; Uldrich, Adam P; Pellicci, Daniel G; Godfrey, Dale I

    2015-06-29

    Studies on the biology of mucosal-associated invariant T cells (MAIT cells) in mice have been hampered by a lack of specific reagents. Using MR1-antigen (Ag) tetramers that specifically bind to the MR1-restricted MAIT T cell receptors (TCRs), we demonstrate that MAIT cells are detectable in a broad range of tissues in C57BL/6 and BALB/c mice. These cells include CD4(-)CD8(-), CD4(-)CD8(+), and CD4(+)CD8(-) subsets, and their frequency varies in a tissue- and strain-specific manner. Mouse MAIT cells have a CD44(hi)CD62L(lo) memory phenotype and produce high levels of IL-17A, whereas other cytokines, including IFN-γ, IL-4, IL-10, IL-13, and GM-CSF, are produced at low to moderate levels. Consistent with high IL-17A production, most MAIT cells express high levels of retinoic acid-related orphan receptor γt (RORγt), whereas RORγt(lo) MAIT cells predominantly express T-bet and produce IFN-γ. Most MAIT cells express the promyelocytic leukemia zinc finger (PLZF) transcription factor, and their development is largely PLZF dependent. These observations contrast with previous reports that MAIT cells from Vα19 TCR transgenic mice are PLZF(-) and express a naive CD44(lo) phenotype. Accordingly, MAIT cells from normal mice more closely resemble human MAIT cells than previously appreciated, and this provides the foundation for further investigations of these cells in health and disease. PMID:26101265

  3. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    PubMed Central

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2008-01-01

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. PMID:17997579

  4. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide.

    PubMed

    Myers, J M; Myers, C R

    2001-01-01

    Shewanella putrefaciens MR-1 can use a wide variety of terminal electron acceptors for anaerobic respiration, including certain insoluble manganese and iron oxides. To examine whether the outer membrane (OM) cytochromes of MR-1 play a role in Mn(IV) and Fe(III) reduction, mutants lacking the OM cytochrome OmcA or OmcB were isolated by gene replacement. Southern blotting and PCR confirmed replacement of the omcA and omcB genes, respectively, and reverse transcription-PCR analysis demonstrated loss of the respective mRNAs, whereas mRNAs for upstream and downstream genes were retained. The omcA mutant (OMCA1) resembled MR-1 in its growth on trimethylamine N-oxide (TMAO), dimethyl sulfoxide, nitrate, fumarate, thiosulfate, and tetrathionate and its reduction of nitrate, nitrite, ferric citrate, FeOOH, and anthraquinone-2,6-disulfonic acid. Similarly, the omcB mutant (OMCB1) grew on fumarate, nitrate, TMAO, and thiosulfate and reduced ferric citrate and FeOOH. However, OMCA1 and OMCB1 were 45 and 75% slower than MR-1, respectively, at reducing MnO(2). OMCA1 lacked only OmcA. While OMCB1 lacked OmcB, other OM cytochromes were also missing or markedly depressed. The total cytochrome content of the OM of OMCB1 was less than 15% of that of MR-1. Western blots demonstrated that OMCB1 still synthesized OmcA, but most of it was localized in the cytoplasmic membrane and soluble fractions rather than in the OM. OMCB1 had therefore lost the ability to properly localize multiple OM cytochromes to the OM. Together, the results suggest that the OM cytochromes of MR-1 participate in the reduction of Mn(IV) but are not required for the reduction of Fe(III) or other electron acceptors. PMID:11133454

  5. Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide

    PubMed Central

    Myers, Judith M.; Myers, Charles R.

    2001-01-01

    Shewanella putrefaciens MR-1 can use a wide variety of terminal electron acceptors for anaerobic respiration, including certain insoluble manganese and iron oxides. To examine whether the outer membrane (OM) cytochromes of MR-1 play a role in Mn(IV) and Fe(III) reduction, mutants lacking the OM cytochrome OmcA or OmcB were isolated by gene replacement. Southern blotting and PCR confirmed replacement of the omcA and omcB genes, respectively, and reverse transcription-PCR analysis demonstrated loss of the respective mRNAs, whereas mRNAs for upstream and downstream genes were retained. The omcA mutant (OMCA1) resembled MR-1 in its growth on trimethylamine N-oxide (TMAO), dimethyl sulfoxide, nitrate, fumarate, thiosulfate, and tetrathionate and its reduction of nitrate, nitrite, ferric citrate, FeOOH, and anthraquinone-2,6-disulfonic acid. Similarly, the omcB mutant (OMCB1) grew on fumarate, nitrate, TMAO, and thiosulfate and reduced ferric citrate and FeOOH. However, OMCA1 and OMCB1 were 45 and 75% slower than MR-1, respectively, at reducing MnO2. OMCA1 lacked only OmcA. While OMCB1 lacked OmcB, other OM cytochromes were also missing or markedly depressed. The total cytochrome content of the OM of OMCB1 was less than 15% of that of MR-1. Western blots demonstrated that OMCB1 still synthesized OmcA, but most of it was localized in the cytoplasmic membrane and soluble fractions rather than in the OM. OMCB1 had therefore lost the ability to properly localize multiple OM cytochromes to the OM. Together, the results suggest that the OM cytochromes of MR-1 participate in the reduction of Mn(IV) but are not required for the reduction of Fe(III) or other electron acceptors. PMID:11133454

  6. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    PubMed Central

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å−1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  7. Electron tunneling properties of outer-membrane decaheme cytochromes from Shewanella oneidensis

    SciTech Connect

    Wigginton, Nicholas S; Rosso, Kevin M; Lower, Brian H; Shi, Liang; Hochella, Michael F

    2007-02-01

    In this report, we describe the characterization of two outer-membrane decaheme cytochromes OmcA and MtrC purified from the metal-reducing bacterium Shewanella oneidensis using scanning tunneling microscopy (STM) and tunneling spectroscopy (TS). OmcA and MtrC were solubilized with a common detergent and irreversibly bound to Au (111) substrates as self-assembled cytochrome films. X-ray photoelectron spectroscopy (XPS) verified that OmcA and MtrC were covalently bound to the Au surface via thiol bonds to cysteine residues. Initial STM images show that a layer of detergent covers and protects the cytochrome films. Temporary application of high bias voltage causes the detergent film to reorganize around the tip, opening a window for direct STM imaging of the cytochrome layer underneath. The STM apparent sizes of both OmcA and MtrC are 58 nanometers in diameter consistent with expectations from their molecular masses. Current-voltage TS over individual cytochromes showed that OmcA and MtrC have different abilities to mediate the tunneling current, reflecting differences in their electronic structures. The data suggest that the two cytochromes could have different roles in the electron transport chain during metal reduction.

  8. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  9. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering.

    PubMed

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  10. Distinct Roles of Major Peptidoglycan Recycling Enzymes in β-Lactamase Production in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Mao, Yinting; Ju, Lili; Jin, Miao; Sun, Yiyang; Jin, Shouguang

    2014-01-01

    β-Lactam antibiotics were the earliest discovered and are the most widely used group of antibiotics that work by inactivating penicillin-binding proteins to inhibit peptidoglycan biosynthesis. As one of the most efficient defense strategies, many bacteria produce β-lactam-degrading enzymes, β-lactamases, whose biochemical functions and regulation have been extensively studied. A signal transduction pathway for β-lactamase induction by β-lactam antibiotics, consisting of the major peptidoglycan recycling enzymes and the LysR-type transcriptional regulator, AmpR, has been recently unveiled in some bacteria. Because inactivation of some of these proteins, especially the permease AmpG and the β-hexosaminidase NagZ, results in substantially elevated susceptibility to the antibiotics, these have been recognized as potential therapeutic targets. Here, we show a contrasting scenario in Shewanella oneidensis, in which the homologue of AmpR is absent. Loss of AmpG or NagZ enhances β-lactam resistance drastically, whereas other identified major peptidoglycan recycling enzymes are dispensable. Moreover, our data indicate that there exists a parallel signal transduction pathway for β-lactamase induction, which is independent of either AmpG or NagZ. PMID:25136029

  11. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å-1 corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  12. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun

    2015-01-01

    Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854

  13. Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy.

    PubMed

    Wen, Junlin; Zhou, Shungui; Yuan, Yong

    2014-02-15

    The genus Shewanella is ubiquitous in environment and has been extensively studied for their applications in bioremediation. A novel immunoassay for ultrasensitive detection of Shewanella oneidensis was presented based on graphene oxide (GO) as nanogold carrier with silver enhancement strategy. The enhanced sensitivity was achieved by employing conjugate-featuring gold nanoparticles (AuNPs) and antibodies (Ab) assembled on bovine serum albumin (BSA)-modified GO (Ab/AuNPs/BSA/GO). After a sandwich-type antigen-antibody reaction, Ab/AuNPs/BSA/GO conjugate binding on the target analyte produced an enhanced immune-recognition response by the reduction of silver ion in the present of hydroquinone. The deposited silver metal was dissolved with nitric acid and subsequently quantified by anodic stripping voltammetry. The high AuNPs loading capacity of GO and the obvious signal amplification by gold-catalyzed silver deposition offer an excellent detection method with a wide range of linear relationship between 7.0 × 10(1) and 7.0 × 10(7)cfu/mL. Furthermore, the immunoassay developed in this work exhibited high sensitivity, acceptable stability and reproducibility. This simple and sensitive assay method has promising application in various fields for rapid detection of bacteria, protein and DNA. PMID:24016538

  14. 77 FR 68757 - Clean River Power MR-1, LLC; Clean River Power MR-2, LLC; Clean River Power MR-3, LLC; Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. P-13404-002, P-13405-002, P-13406-002, P-13407-002, P- 13408-002, P-13411-002, and P-13412-002] Clean River Power MR-1, LLC; Clean River Power MR-2, LLC;...

  15. 78 FR 33406 - Clean River Power MR-1, LLC, Clean River Power MR-2, LLC, Clean River Power MR-3, LLC, Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. P-13404-002, P-13405-002, P-13406-002, P-13407-002, P- 13408-002, and P-13411-002] Clean River Power MR-1, LLC, Clean River Power MR-2, LLC, Clean River Power...

  16. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function

    PubMed Central

    Brigé, Ann; Van Den Hemel, Debbie; Carpentier, Wesley; De Smet, Lina; Van Beeumen, Jozef J.

    2005-01-01

    Shewanella oneidensis contains four genes that encode proteins that have high sequence identity with yeast OYE (Old Yellow Enzyme, an NADPH oxidoreductase), the well-studied archetype of the OYE protein family. The present paper describes the first comparative study of OYEs that are present in a single bacterial species, performed to gain insight into their biochemical properties and physiological importance. The four proteins [named SYE1–SYE4 (Shewanella Yellow Enzyme 1–4)] were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The yield of SYE2, however, was too low for further characterization, even after expression attempts in S. oneidensis. The SYE1, SYE3 and SYE4 proteins were found to have characteristics similar to those of other OYE family members. They were identified as flavoproteins that catalyse the reduction of different α,β-unsaturated carbonyl compounds and form charge transfer complexes with a range of phenolic compounds. Whereas the properties of SYE1 and SYE3 were very similar, those of SYE4 were clearly different in terms of ligand binding, catalytic efficiency and substrate specificity. Also, the activity of SYE4 was found to be NADPH-dependent, whereas SYE1 and SYE3 had a preference for NADH. It has been suggested that yeast OYE protects the actin cytoskeleton from oxidative stress. There are indications that bacterial OYEs are also involved in the oxidative stress response, but their exact role is unclear. Induction studies in S. oneidensis revealed that yeast and bacterial OYEs may share a common physiological role, i.e. the protection of cellular components against oxidative damage. As only SYE4 was induced under oxidative stress conditions, however, a functional divergence between bacterial OYEs is likely to exist. PMID:16293111

  17. Control of Proteobacterial Central Carbon Metabolism by the HexR Transcriptional Regulator. A Case Study in Shewanella oneidensis

    SciTech Connect

    Leyn, Semen; Li, Xiaoqing; Zheng, Qijing; Novichkov, Pavel; Reed, Samantha B.; Romine, Margaret F.; Fredrickson, Jim K.; Yang, Chen; Osterman, Andrei L.; Rodionov, Dmitry A.

    2011-08-17

    Bacteria exploit multiple mechanisms for controlling central carbon metabolism (CCM). Thus, a bioinformatic analysis together with some experimental data implicated HexR transcriptional factor as a global CCM regulator in some lineages of Gammaproteobacteria operating as a functional replacement of Cra regulator characteristic of Enterobacteriales. In this study we combined a large-scale comparative genomic reconstruction of HexRcontrolled regulons in 87 species of Proteobacteria with the detailed experimental analysis of HexR regulatory network in Shewanella oneidensis model system. Although nearly all of the HexR-controlled genes are associated with CCM, remarkable variations were revealed in the scale (from 1-2 target operons in Enterobacteriales up to 20 operons in Aeromonadales) and gene content of HexR regulons between 11 compared lineages. A predicted 17-bp pseudo-palindrome with a consensus tTGTAATwwwATTACa, was confirmed as HexR-binding motif for 15 target operons (comprising 30 genes) by in vitro binding assays. The negative effect of the key CCM intermediate, 2-keto-3-deoxy-6- phosphogluconate, on the DNA-regulator complex formation was verified. A dual mode of HexR action on various target promoters, repression of genes involved in catabolic pathways and activation of gluconeogenic genes, was for the first time predicted by the bioinformatc analysis and experimentally verified by changed gene expression pattern in S. oneidensis AhexR mutant. Phenotypic profiling revealed the inability of this mutant to grow on lactate or pyruvate as a single carbon source. A comparative metabolic flux analysis of wild-type and mutant strains of S. oneidensis using 13Clactate labeling and GC-MS analysis confirmed the hypothesized HexR role as a master regulator of gluconeogenic flux from pyruvate via the transcriptional activation of phosphoenolpyruvate synthase (PpsA).

  18. Sequence and Genetic Characterization of etrA, an fnr Analog that Regulates Anaerobic Respiration in Shewanella putrefaciens MR-1

    NASA Technical Reports Server (NTRS)

    Saffarini, Daad A.; Nelson, Kenneth H.

    1993-01-01

    An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.

  19. The diheme cytochrome c peroxidase from Shewanella oneidensis requires reductive activation†

    PubMed Central

    Pulcu, Gökçe Su; Frato, Katherine E.; Gupta, Rupal; Hsu, Hao-Ru; Levine, George A.; Hendrich, Michael P.; Elliott, Sean J.

    2012-01-01

    We report the characterization of the diheme cytochrome c peroxidase (CcP) from Shewanella oneidensis (So) using UV/Visible absorbance, Electron Paramagnetic Resonance Spectroscopy, and Michaelis-Menten kinetics. While sequence alignment with other bacterial diheme cytochrome c peroxidases suggests that So CcP may be active in the as-isolated state, we find that So CcP requires reductive activation for full activity, similar to the canonical Pseudomonas-type of bacterial CcP enzyme. Peroxide turnover initiated with oxidized So CcP shows a distinct lag-phase, which we interpret as reductive activation in situ. A simple kinetic model is sufficient to recapitulate the lag-phase behavior of the progress curves and separate the contributions of reductive activation and peroxide turnover. The rates of catalysis and activation differ between MBP-fusion and tag-free So CcP, and also depend on the identity of the electron donor. Combined with Michaelis-Menten analysis these data suggest that So CcP can accommodate electron donor binding in several possible orientations, and that the presence of the MBP tag affects the availability of certain binding sites. To further investigate the structural basis of reductive activation in So CcP we introduced mutations into two different regions of the protein that have been suggested to be important for reductive activation in homologous bacterial CcPs. Mutations in a flexible loop region neighboring the low-potential heme significantly increased the activation rate, confirming the importance of flexible loop regions of the protein in converting the inactive, as-isolated enzyme into the activated form. PMID:22239664

  20. Direct electrochemistry of Shewanella oneidensis cytochrome c nitrite reductase: evidence for interactions across the dimeric interface

    PubMed Central

    Judd, Evan T.; Youngblut, Matthew; Pacheco, A. Andrew; Elliott, Sean J.

    2013-01-01

    Shewanella oneidensis cytochrome c nitrite reductase (soNrfA), a dimeric enzyme that houses five c-type hemes per protomer, carries out the six-electron reduction of nitrite and the two-electron reduction of hydroxylamine. Protein film voltammetry (PFV) has been used to study the cytochrome c nitrite reductase from Escherichia coli (ecNrfA) previously, revealing catalytic reduction of both nitrite and hydroxylamine substrates by ecNrfA adsorbed to a graphite electrode that is characterized by ‘boosts’ and attenuations in activity depending on the applied potential. Here, we use PFV to investigate the catalytic properties of soNrfA during both nitrite and hydroxylamine turnover and compare those properties to ecNrfA. Distinct differences in both the electrochemical and kinetic characteristics of soNrfA are observed, e.g., all detected electron transfer steps are one-electron in nature, contrary to what has been observed in ecNrfA (Angove, H. C., Cole, J. A., Richardson, D. J., and Butt, J. N. (2002) Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase, J Biol Chem 277, 23374-23381). Additionally, we find evidence of substrate inhibition during nitrite turnover and negative cooperativity during hydroxylamine turnover, neither of which have previously been observed in any cytochrome c nitrite reductase. Collectively these data provide evidence that during catalysis, potential pathways of communication exist between the individual soNrfA monomers comprising the native homodimer. PMID:23210513

  1. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    SciTech Connect

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2007-11-11

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate the impact of gene fusion on the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme and a genetically engineered MsrB protein. We report that MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin; in comparison only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. MsrBA has a twenty-fold enhanced rate of repair for MetSO in proteins in comparison with the individual MsrA or MsrB enzymes alone and respective 14- and 50-fold increases in catalytic efficiency (i.e., kcat/KM). In comparison, MsrBA and MsrA have similar catalytic efficiencies when free MetSO is used as a substrate. These results indicate that the individual domains within bifunctional MsrBA work cooperatively to selectively recognize and reduce MetSO in highly oxidized proteins. The enhanced catalytic activity of MsrBA against oxidized proteins and its common expression in bacterial pathogens is consistent with an important role for this enzyme activity in promoting bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.

  2. Polyphasic Taxonomy of the GenusShewanellaand Description ofShewanellaoneidensis sp. nov.

    SciTech Connect

    Venkateswaran, K.

    1999-01-01

    The genus Shewanella has been studied since 1931 with regard to a variety of topics of relevance to both applied and environmental microbiology. Recent years have seen the introduction of a large number of new Shewanella-like isolates, necessitating a coordinated review of the genus. In this work, the phylogenetic relationships among known shewanellae were examined using a battery of morphological, physiological, molecular and chemotaxonomic characterizations. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them into a consensus classification. Based on information generated from this study and obtained from the literature, a scheme for the identification of Shewanella species has been compiled. Key phenotypic characteristics were sulfur reduction and halophilicity. Fatty acid and quinone profiling were used to impart an additional layer of information. Molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in some cases. As a result, DNA--DNA hybridization and sequence analyses of a more rapidly evolving molecule (gyrB gene) were performed. Species-specific PCR probes were designed for the gyrB gene and used for the rapid screening of closely related strains. With this polyphasic approach, in addition to the ten described Shewanella species, two new species, Shewanella oneidensis and 'Shewanella pealeana', were recognized; Shewanella oneidensis sp. nov. is described here for the first time.

  3. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    PubMed Central

    Elegheert, Jonathan; van den Hemel, Debbie; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2010-01-01

    Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteo­bacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the ortho­rhombic space group P212121 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex. PMID:20057079

  4. Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP

    PubMed Central

    Luo, Qixia; Li, Meng; Fu, Huihui; Meng, Qiu; Gao, Haichun

    2016-01-01

    It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental. PMID:27014246

  5. Protection from Oxidative Stress Relies Mainly on Derepression of OxyR-Dependent KatB and Dps in Shewanella oneidensis

    PubMed Central

    Jiang, Yaoming; Dong, Yangyang; Luo, Qixia; Li, Ning; Wu, Genfu

    2014-01-01

    Shewanella thrives in redox-stratified environments where accumulation of H2O2 becomes inevitable because of the chemical oxidation of reduced metals, sulfur species, or organic molecules. As a research model, the representative species Shewanella oneidensis has been extensively studied for its response to various stresses. However, little progress has been made toward an understanding of the physiological and genetic responses of this bacterium to oxidative stress, which is critically relevant to its application as a dissimilatory metal-reducing bacterium. In this study, we systematically investigated the mechanism underlying the response to H2O2 at cellular, genomic, and molecular levels. Using transcriptional profiling, we found that S. oneidensis is hypersensitive to H2O2 in comparison with Escherichia coli, and well-conserved defense genes such as ahpCF, katB, katG, and dps appear to form the first line of defense, whereas iron-sulfur-protecting proteins may not play a significant role. Subsequent identification and characterization of an analogue of the E. coli oxyR gene revealed that S. oneidensis OxyR is the master regulator that mediates the bacterial response to H2O2-induced oxidative stress by directly repressing or activating the defense genes. The sensitivity of S. oneidensis to H2O2 is likely attributable to the lack of an inducible manganese import mechanism during stress. To cope with stress, major strategies that S. oneidensis adopts include rapid removal of the oxidant and restriction of intracellular iron concentrations, both of which are achieved predominantly by derepression of the katB and dps genes. PMID:24214945

  6. The Burden of Oral Disease among Perinatally HIV-Infected and HIV-Exposed Uninfected Youth

    PubMed Central

    Yao, Tzy-Jyun; Ryder, Mark I.; Russell, Jonathan S.; Dominy, Stephen S.; Patel, Kunjal; McKenna, Matt; Van Dyke, Russell B.; Seage, George R.; Hazra, Rohan

    2016-01-01

    Objective To compare oral health parameters in perinatally HIV-infected (PHIV) and perinatally HIV-exposed but uninfected youth (PHEU). Methods In a cross-sectional substudy within the Pediatric HIV/AIDS Cohort Study, participants were examined for number of decayed teeth (DT), Decayed, Missing, and Filled Teeth (DMFT), oral mucosal disease, and periodontal disease (PD). Covariates for oral health parameters were examined using zero-inflated negative binomial regression and ordinal logistic regression models. Results Eleven sites enrolled 209 PHIV and 126 PHEU. Higher DT scores were observed in participants who were PHIV [Adjusted Mean Ratio (aMR) = 1.7 (95% CI 1.2–2.5)], female [aMR = 1.4 (1.0–1.9)], had no source of regular dental care [aMR = 2.3 (1.5–3.4)], and had a high frequency of meals/snacks [≥5 /day vs 0–3, aMR = 1.9 (1.1–3.1)] and juice/soda [≥5 /day vs 0–3, aMR = 1.6 (1.1–2.4)]. Higher DMFT scores were observed in participants who were older [≥19, aMR = 1.9 (1.2–2.9)], had biological parent as caregiver [aMR = 1.2 (1.0–1.3)], had a high frequency of juice/soda [≥5 /day vs 0–3, aMR = 1.4 (1.1–1.7)] and a low saliva flow rate [mL/min, aMR = 0.8 per unit higher (0.6–1.0)]. Eighty percent had PD; no differences were seen by HIV status using the patient-based classifications of health, gingivitis or mild, moderate, or severe periodontitis. No associations were observed of CD4 count and viral load with oral health outcomes after adjustment. Conclusions Oral health was poor in PHIV and PHEU youth. This was dismaying since most HIV infected children in the U.S. are carefully followed at medical health care clinics. This data underscore the need for regular dental care. As PHIV youth were at higher risk for cavities, it will be important to better understand this relationship in order to develop targeted interventions. PMID:27299992

  7. A Matter of Timing: Contrasting Effects of Hydrogen Sulfide on Oxidative Stress Response in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Wan, Fen; Fu, Huihui; Li, Ning

    2015-01-01

    ABSTRACT Hydrogen sulfide (H2S), well known for its toxic properties, has recently become a research focus in bacteria, in part because it has been found to prevent oxidative stress caused by treatment with some antibiotics. H2S has the ability to scavenge reactive oxygen species (ROS), thus preventing oxidative stress, but it is also toxic, leading to conflicting reports of its effects in different organisms. Here, with Shewanella oneidensis as a model, we report that the effects of H2S on the response to oxidative stress are time dependent. When added simultaneously with H2O2, H2S promoted H2O2 toxicity by inactivating catalase, KatB, a heme-containing enzyme involved in H2O2 degradation. Such an inhibitory effect may apply to other heme-containing proteins, such as cytochrome cbb3 oxidase. When H2O2 was supplied 20 min or later after the addition of H2S, the oxidative-stress-responding regulator OxyR was activated, resulting in increased resistance to H2O2. The activation of OxyR was likely triggered by the influx of iron, a response to lowered intracellular iron due to the iron-sequestering property of H2S. Given that Shewanella bacteria thrive in redox-stratified environments that have abundant sulfur and iron species, our results imply that H2S is more important for bacterial survival in such environmental niches than previously believed. IMPORTANCE Previous studies have demonstrated that H2S is either detrimental or beneficial to bacterial cells. While it can act as a growth-inhibiting molecule by damaging DNA and denaturing proteins, it helps cells to combat oxidative stress. Here we report that H2S indeed has these contrasting biological functions and that its effects are time dependent. Immediately after H2S treatment, there is growth inhibition due to damage of heme-containing proteins, at least to catalase and cytochrome c oxidase. In contrast, when added a certain time later, H2S confers an enhanced ability to combat oxidative stress by activating the

  8. Window contamination on Expose-R

    NASA Astrophysics Data System (ADS)

    Demets, R.; Bertrand, M.; Bolkhovitinov, A.; Bryson, K.; Colas, C.; Cottin, H.; Dettmann, J.; Ehrenfreund, P.; Elsaesser, A.; Jaramillo, E.; Lebert, M.; van Papendrecht, G.; Pereira, C.; Rohr, T.; Saiagh, K.

    2015-01-01

    Expose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions - in particular Expose-R2, the direct successor of Expose-R.

  9. Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis

    SciTech Connect

    Suresh, Anil K; Doktycz, Mitchel John; Wang, Wei; Moon, Ji Won; Gu, Baohua; Meyer III, Harry M; Hensley, Dale K; Retterer, Scott T; Allison, David P; Phelps, Tommy Joe; Pelletier, Dale A

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

  10. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.

    SciTech Connect

    Beliaev, A. S.; Thompson, D. K.; Khare, T.; Lim, H.; Brandt, C. C.; Li, G.; Murray, A. E.; Heidelberg, J. F.; Giometti, C. S.; Yates, J., III; Nealson, K. H.; Tiedje, J. M.; Zhou, J.; Biosciences Division; ORNL; Scripps Research Inst.; Michigan State Univ.; The Inst. for Genomic Research; Jet Propulsion Laboratory; California Inst. of Tech.

    2002-01-01

    Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c{sub 552}, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.

  11. Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor

    PubMed Central

    Wang, Victor Bochuan; Sivakumar, Krishnakumar; Yang, Liang; Zhang, Qichun; Kjelleberg, Staffan; Loo, Say Chye Joachim; Cao, Bin

    2015-01-01

    Mutualistic interactions in planktonic microbial communities have been extensively studied. However, our understanding on mutualistic communities consisting of co-existing planktonic cells and biofilms is limited. Here, we report a planktonic cells-biofilm mutualistic system established by the fermentative bacterium Escherichia coli and the dissimilatory metal-reducing bacterium Shewanella oneidensis in a bioelectrochemical device, where planktonic cells in the anode media interact with the biofilms on the electrode. Our results show that the transfer of formate is the key mechanism in this mutualistic system. More importantly, we demonstrate that the relative distribution of E. coli and S. oneidensis in the liquid media and biofilm is likely driven by their metabolic functions towards an optimum communal metabolism in the bioelectrochemical device. RNA sequencing-based transcriptomic analyses of the interacting organisms in the mutualistic system potentially reveal differential expression of genes involved in extracellular electron transfer pathways in both species in the planktonic cultures and biofilms. PMID:26061569

  12. EXPOSE-R cosmic radiation time profile

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Horneck, Gerda; Häder, Donat-Peter; Schuster, Martin

    2015-01-01

    The aim of the paper is to present the time profile of cosmic radiation exposure obtained by the radiation risks radiometer-dosimeter (R3DR) during the ESA exposition facility for EXPOSE-R mission (EXPOSE-R) in the EXPOSE-R facility outside the Russian Zvezda module of the International Space Station (ISS). Another aim is to make the obtained results available to other EXPOSE-R teams for use in their data analysis. R3DR is a low mass and small dimensions automated device, which measures solar radiation in four channels and in addition cosmic ionizing radiation. The main results of cosmic ionizing radiation measurements are: three different radiation sources were detected and quantified: galactic cosmic rays (GCR), energetic protons from the inner radiation belt (IRB) in the region of the South Atlantic anomaly and energetic electrons from the outer radiation belt (ORB). The highest daily averaged absorbed dose rate of 506 μGy day-1 came from IRB protons; GCR delivered much smaller daily absorbed dose rates of 81.4 μGy day-1 on average, and ORB source delivered on average a dose rate of 89 μGy day-1. The IRB and ORB daily averaged absorbed dose rates were higher than those observed during the ESA exposition facility for EXPOSE-E mission (EXPOSE-E), whereas the GCR rate was smaller than that measured during the EXPOSE-E mission. The reason for this difference is much less surrounding constructions shielding of the R3DR instrument in comparison with the R3DE instrument.

  13. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Xiaohu; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-01-01

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  14. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules?

    PubMed

    Mondot, Stanislas; Boudinot, Pierre; Lantz, Olivier

    2016-08-01

    MAIT cells express an invariant TCR that recognizes non-peptidic microbial antigens presented by the non-polymorphic MHCI-like molecule, MR1. We briefly describe how the antigens recognized by MAIT cells are generated from an unstable precursor of the riboflavin (Vitamin B2) biosynthesis pathway, as well as the main features of MAIT cells in comparison with other related T cell subsets. In silico analysis of bacterial genomes shows that the riboflavin biosynthesis pathway is highly prevalent in all groups of Prokaryotes with, however, notable exceptions. We discuss the putative functions and the evolution of the MAIT/MR1 couple: it appeared in the ancestors of mammals and is highly conserved across this group, but was independently lost in three orders. We describe the four instances of known invariant TCR and MHC-I-like molecules encountered in Vertebrates. Both T cells bearing semi-invariant TCR and the associated, evolutionarily conserved MHC-I related molecules have been found in mammals or in amphibians, which suggests that other MHC1-like/invariant TCR couples might be present in other classes of Vertebrates to detect generic microbial compounds. This allows us to discuss how the recognition of riboflavin precursor derivatives by the MAIT TCR may be a way to detect invasive microbes in specific organs, and may epitomize other invariant T cell systems across vertebrates. PMID:27393664

  15. Depositional style of mass-flow lobes in Ulleung Basin (East Sea, Korea) interpreted from MR1 sonar image, chirp profiles, and piston cores

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Jung, W.; Bahk, J.; Gardner, J. M.

    2011-12-01

    A detailed analysis of MR1 sonar and chirp (2-7 kHz) seismic data with 5 (2.9-9.4 m long) piston cores and 17 AMS 14C ages reveals spatial and temporal variations in depositional style of mass-flow lobes in the Ulleung Basin. On MR1 sonar image, eight mass-flow lobes are identified in the western basin plain (>2100 m). They are covered by ca. 2-m thick Holocene pelagic sediments, and show the northward flow direction. Lobes 1-4 have large dimensions (>27 km long and 15-25 km wide) and occupy in the lower stratigraphic position. On the other hand, lobes 5-8, deposited in the more proximal area, have small dimensions (8.8-31.5 km long and 1.2-12 km wide) and occur in the upper stratigraphic position. Lobes 1-4 deposited retrogressively. Lobes 1 and 2 are characterized by relatively strong back-scattering intensity with smooth surfaces on MR1 image, and show flat, sharp bottom echo and several distinct to diffuse internal reflectors in chirp profiles. Sediments near their edges consist of fine-grained turbidites (laminated sand/mud and homogeneous mud) with minor massive clay-rich sand. However, they change to mud-matrix disorganized gravel and massive sand with the overlying fine-grained turbidites toward the proximal part. Lobes 1 and 2 deposited between ca. 20 and 18 cal. ka B.P. Lobes 3 and 4, overlying lobe 2, show weak to medium back-scattering intensity on MR1 image with slightly irregular to hummocky surfaces corresponding to small-scale (<100 m wide and <5 m high) hyperbolic bottom echoes in chirp profiles. Upper surfaces of the lobes are nearly flat to convex-up in cross section. Lobes 5-8 deposited on the upper surfaces of lobes 3 and 4. Their widths abruptly decrease to the proximal part, forming a bottle-neck morphology. They generally show weak to medium back-scattering intensity with relatively strong back-scattering intensity along the margins on MR1 image. They exhibit convex-up upper surfaces with distinct lateral margins in chirp profiles as their

  16. High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Mishra, Bhoopesh; Boyanov, Maxim; Bunker, Bruce A.; Kelly, Shelly D.; Kemner, Kenneth M.; Fein, Jeremy B.

    2010-08-01

    Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with p Ka values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10 -5, 1.3(±0.2) × 10 -4, 5.9(±3.3) × 10 -5, and 1.1(±0.6) × 10 -4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high

  17. Impact of ArcA loss in Shewanella oneidensis revealed by comparative proteomics under aerobic and anaerobic conditions

    SciTech Connect

    Yuan, Jie; Wei, Buyun; Lipton, Mary S.; Gao, Haichun

    2012-06-01

    Shewanella inhabit a wide variety of niches in nature and can utilize a broad spectrum of electron acceptors under anaerobic conditions. How they modulate their gene expression to adapt is poorly understood. ArcA, homologue of a global regulator controlling hundreds of genes involved in aerobic and anaerobic respiration in E. coli, was shown to be important in aerobiosis/anaerobiosis of S. oneidensis as well. Loss of ArcA, in addition to altering transcription of many genes, resulted in impaired growth under aerobic condition, which was not observed in E. coli. To further characterize the impact of ArcA loss on gene expression on the level of proteome under aerobic and anaerobic conditions, liquid-chromatography-mass-spectrometry (LC-MS) based proteomic approach was employed. Results show that ArcA loss led to globally altered gene expression, generally consistent with that observed with transcripts. Comparison of transcriptomic and proteomic data permitted identification of 17 high-confidence ArcA targets. Moreover, our data indicate that ArcA is required for regulation of cytochrome c proteins, and the menaquinone level may play a role in regulating ArcA as in E. coli. Proteomic-data-guided growth assay revealed that the aerobic growth defect of ArcA mutant is presumably due to impaired peptide utilization.

  18. Positive regulation of the Shewanella oneidensis OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur

    PubMed Central

    Gao, Tong; Ju, Lili; Yin, Jianhua; Gao, Haichun

    2015-01-01

    Major porins are among the most abundant proteins embedded in the outer membrane (OM) of Gram-negative bacteria, playing crucial roles in maintenance of membrane structural integrity and OM permeability. Although many OM proteins (especially c-type cytochromes) in Shewanella oneidensis, a research model for respiratory versatility, have been extensively studied, physiological significance of major porins remains largely unexplored. In this study, we show that OmpS38 and OmpA are two major porins, neither of which is responsive to changes in osmolarity or contributes to the intrinsic resistance to β-lactam antibiotics. However, OmpS38 but not OmpA is largely involved in respiration of non-oxygen electron acceptors. We then provide evidence that expression of ompS38 is transcribed from two promoters, the major of which is favored under anaerobic conditions while the other appears constitutive. The major promoter is under the direct control of Crp, the master regulator dictating respiration. As a result, the increase in the level of OmpS38 correlates with an elevated activity in Crp under anaerobic conditions. In addition, we show that the activity of the major promoter is also affected by Fur, presumably indirectly, the transcription factor for iron-dependent gene expression. PMID:26381456

  19. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Meng, Qiu; Fu, Huihui; Gao, Haichun

    2016-01-01

    Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited. PMID:27076065

  20. Impaired cell envelope resulting from arcA mutation largely accounts for enhanced sensitivity to hydrogen peroxide in Shewanella oneidensis

    PubMed Central

    Wan, Fen; Mao, Yinting; Dong, Yangyang; Ju, Lili; Wu, Genfu; Gao, Haichun

    2015-01-01

    Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before. PMID:25975178

  1. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis

    PubMed Central

    Beg, Qasim K.; Zampieri, Mattia; Klitgord, Niels; Collins, Sara B.; Altafini, Claudio; Serres, Margrethe H.; Segrè, Daniel

    2012-01-01

    The capacity of microorganisms to respond to variable external conditions requires a coordination of environment-sensing mechanisms and decision-making regulatory circuits. Here, we seek to understand the interplay between these two processes by combining high-throughput measurement of time-dependent mRNA profiles with a novel computational approach that searches for key genetic triggers of transcriptional changes. Our approach helped us understand the regulatory strategies of a respiratorily versatile bacterium with promising bioenergy and bioremediation applications, Shewanella oneidensis, in minimal and rich media. By comparing expression profiles across these two conditions, we unveiled components of the transcriptional program that depend mainly on the growth phase. Conversely, by integrating our time-dependent data with a previously available large compendium of static perturbation responses, we identified transcriptional changes that cannot be explained solely by internal network dynamics, but are rather triggered by specific genes acting as key mediators of an environment-dependent response. These transcriptional triggers include known and novel regulators that respond to carbon, nitrogen and oxygen limitation. Our analysis suggests a sequence of physiological responses, including a coupling between nitrogen depletion and glycogen storage, partially recapitulated through dynamic flux balance analysis, and experimentally confirmed by metabolite measurements. Our approach is broadly applicable to other systems. PMID:22638572

  2. Mutation Analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative Paroxysmal Kinesigenic Dyskinesia Patients

    PubMed Central

    Wang, Hong-Xia; Li, Hong-Fu; Liu, Gong-Lu; Wen, Xiao-Dan; Wu, Zhi-Ying

    2016-01-01

    Background: Paroxysmal kinesigenic dyskinesia (PKD) is the most common subtype of paroxysmal dyskinesias and is caused by mutations in PRRT2 gene. The majority of familial PKD was identified to harbor PRRT2 mutations. However, over two-third of sporadic PKD patients did not carry any PRRT2 mutation, suggesting an existence of additional genetic mutations or possible misdiagnosis due to clinical overlap. Methods: A cohort of 28 Chinese patients clinically diagnosed with sporadic PKD and excluded PRRT2 mutations were recruited. Clinical features were evaluated, and all subjects were screened for MR-1, SLC2A1, and CLCN1 genes, which are the causative genes of paroxysmal nonkinesigenic dyskinesia (PNKD), paroxysmal exertion-induced dyskinesia, and myotonia congenita (MC), respectively. In addition, 200 genetically matched healthy individuals were recruited as controls. Results: A total of 16 genetic variants including 4 in MR-1 gene, 8 in SLC2A1 gene, and 4 in CLCN1 gene were detected. Among them, SLC2A1 c.363G>A mutation was detected in one case, and CLCN1 c.1205C>T mutation was detected in other two cases. Neither of them was found in 200 controls as well as 1000 Genomes database and ExAC database. Both mutations were predicted to be pathogenic by SIFT and PolyPhen2. The SLC2A1 c.363G>A mutation was novel. Conclusions: The phenotypic overlap may lead to the difficulty in distinguishing PKD from PNKD and MC. For those PRRT2- negative PKD cases, screening of SLC2A1 and CLCN1 genes are useful in confirming the diagnosis. PMID:27098784

  3. The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-mineral interface

    SciTech Connect

    Edwards, Marcus; Baiden, Nanakow; Johs, Alexander; Tomanicek, Stephen J.; Liang, Liyuan; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Gates, Andrew J.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2014-05-21

    The x-ray crystal structure of Shewanella oneidensis OmcA, an extracellular decaheme cytochrome involved in mineral reduction, was solved to a resolution of 2.7 Å. The four OmcA molecules in the asymmetric unit were arranged so the distance between heme-5 on adjacent OmcA monomers was less than 1 nm, indicative of a transient OmcA dimer capable of intermolecular electron transfer. A previously identified hematite binding motif was identified near heme 10, forming a hydroxylated surface that would bring a heme-10 electron egress site to ~ 1 nm of mineral surface.

  4. Reduction of Nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA

    SciTech Connect

    Gao, Haichun; Yang, Zamin; Barua, Soumitra; Reed, Samantha B.; Romine, Margaret F.; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Zhou, Jizhong

    2009-04-23

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  5. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    SciTech Connect

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding; Min, Guangwei; Kim, Chul; Murkhejee, Bipasha; Larabell, Carolyn; Keasling, Jay D.; Chen,Fanqing Frank

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resulting metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7

  6. [Vaccines and exposed occupations].

    PubMed

    Gendrel, Dominique

    2007-04-01

    The use of safe and efficacious vaccines in occupational settings to protect workers from diseases to which they may be exposed is obvious and has been included in the employment law. Healthcare workers are particular exposed. Immunization has two purposes : protect the worker from contracting a disease, but also prevent him from disseminating the disease to weakened patients. It is important not only to take into account existing recommendations for immunization, but also to envisage their extension to teachers and staff of nurseries and primary schools. Routine vaccination against whooping cough, varicella, measles and hepatitis A is particularly warranted in these categories. Recommendations should also extend to medical students who are too often poorly protected and insufficiently warned against potential occupational exposure to pathogens and dissemination to their patients. PMID:17433233

  7. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    SciTech Connect

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice; Marshall, Matthew J.; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2013-04-16

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system that contains methyl viologen as an internalised electron carrier has been used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally-located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, direct electron transfer from the interior through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The observed rates of conduction through the protein complex were 2 to 3 orders of magnitude higher than that observed in whole cells, demonstrating that direct electron exchange between MtrCAB and Fe(III) oxides is efficient enough to support in-vivo, anaerobic, solid phase iron respiration.

  8. High-and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis.

    SciTech Connect

    Mishra, B.; Boyanov, M.; Bunker, B. A.; Kelly, S. D.; Kemner, K. M.; Fein, J. B.; Biosciences Division; Univ. of Notre Dame

    2010-08-01

    Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pK{sub a} values of 3.3 {+-} 0.2, 4.8 {+-} 0.2, 6.7 {+-} 0.4, and 9.4 {+-} 0.5, and site concentrations of 8.9({+-}2.6) x 10{sup -5}, 1.3({+-}0.2) x 10{sup -4}, 5.9({+-}3.3) x 10{sup -5}, and 1.1({+-}0.6) x 10{sup -4} moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low

  9. Digital Image Processing Techniques for Enhancement and Classification of MR1 Side Scan Sonar Imagery and Preliminary Results of Manganese Nodule Occurrence between the Clarion and Clipperton Fracture Zones, NE Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Kim, H.; Park, C.; Park, J.; Kim, K.

    2004-12-01

    The recent growth in the production rate of digital side scan sonar images, coupled with the rapid expansion of systematic seafloor exploration programs, has created a need for fast and quantitative means of processing seafloor imagery. A number of numerical techniques used to enhance and classify imagery produced by long range side scan sonar (MR1) in the Clarion and Clippertion Fracture Zones, NE equatorial Pacific. Side scan sonar imagery is traditionally interpreted visually and qualitatively by experts. Textural Analysis enables a more objective approach, supplementing the interpreter with reliable quantitative results. Grey-level co-occurrence matrices describe numerically textual information and detect subtle details invisible to the human eyes. The area between the Clarion and Clipperton fracture zones (NE equatorial Pacific) is one of the highest manganese nodule abundance in the world oceans. A detailed analysis of MR1 sonar images and ground truth - free-fall grab (FFG) data in the area, reveals a close relationship between sonar characters of seafloor and manganese nodule occurrence. The close relationship between distribution of sonar imagery and manganese nodule abundance implies that seafloor topography and sediment thickness are important controlling factors for occurrence of manganese nodules.

  10. EXPOSE-R on Mission on the ISS

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Kloss, Maria; Reitz, Guenther

    Currently EXPOSE-R is on mission! This astrobiological exposure facility was accommodated at the universal workplace URM-D Zenith payload site, located outside the Russian Svezda Module of the International Space Station (ISS) by extravehicular activity (EVA) on March 10th 2009. It contains 3 trays accommodating 12 sample compartments with sample carriers in three levels either open to space vacuum or kept in a defined gas environment. In its 8 experiments of biological and chemical content, more than 1200 individual samples are exposed to solar ultraviolet (UV) radiations, vacuum, cosmic rays or extreme temperature variations. In their different experiments the involved scientists are studying the question of life's origin on Earth and the results of their experiments are contributing to different aspects of the evolution and distribution of life in the Universe. Additionally integrated into the EXPOSE-R facility are several dosimeters monitoring the ionising and the solar UV-radiation during the mission to deliver useful information to complement the sample analysis. In close cooperation with the DLR and the Technical University Munich (TUM), the Rheinisch -Westfülische Technischen Hochschule Aachen (RWTH Aachen) operates the experiment "Spores". a This is one of the 6 astrobiological experiments of the ROSE-Consortium" (Response of Or-ganisms to Space Environment) of the EXPOSE-R mission. In these experiments spores of bacteria, fungi and ferns are being over layered or mixed with meteorite material. The analysis of the effect of the space parameters on different biological endpoints of the spores of the mi-croorganism Bacillus subtilis will be performed after the retrieval of the experiment scheduled for the end of 2010. Parallel to the space mission an identical set of samples was accommodated into EXPOSE-R trays identical in construction to perform the Mission Ground Reference (MGR) Test. Currently this MGR Test is carried out in the Planetary and Space

  11. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  12. Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes

    PubMed Central

    Wang, Shuo; Zhao, Cong; Liu, Zhuguo; Wang, Xuesong; Liu, Na; Du, Weihong; Dai, Qiuyun

    2015-01-01

    In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes. PMID:26023835

  13. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    PubMed Central

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes. PMID:23249294

  14. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    SciTech Connect

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim K.; Shi, Liang; Lu, H. Peter

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.

  15. Brucellosis in Occupationally Exposed Groups

    PubMed Central

    Sajjan, Annapurna G.; Mohite, Shivajirao T.; Gajul, Shivali

    2016-01-01

    Introduction In India, high incidence of human brucellosis may be expected, as the conditions conducive for human brucellosis exist. Limited studies have been undertaken on human brucellosis especially in occupationally-exposed groups. Aim To estimate prevalence of anti-brucellar antibodies, evaluate the clinical manifestations, risk factors and Knowledge, Attitude and Practices (KAP) levels about brucellosis among occupationally exposed groups. Materials and Methods Blood samples were collected from 2337 occupationally exposed individuals. The serum samples were screened for the presence of anti-brucellar antibodies by Rose Bengal Plate Test (RBPT), Serum Agglutination Test (SAT) and 2-Mercaptoethanol test (2-ME). Clinical manifestations, risk factors and KAP levels were evaluated by personal interview using a structured questionnaire. Results Seroprevalence of brucellosis by RBPT, SAT and 2-ME test was 9.46%, 4.45% and 3.64 % respectively. Clinical symptoms resembling brucellosis were seen in 91 subjects. The major risk factors were animal exposure in veterinarians and abattoirs, both animal exposure and raw milk ingestion in farmers and shepherds, exposure to raw milk and its ingestion in dairy workers and exposure to Brucella culture in laboratory workers. Except laboratory workers, few veterinarians and dairy workers none had heard about brucellosis. KAP levels regarding brucellosis were too poor in all the groups except laboratory workers. Conclusion Brucellosis most of the times was missed or misdiagnosed. Regular screenings for brucellosis and awareness programmes to increase KAP levels are necessary to control brucellosis in occupationally exposed groups. PMID:27190804

  16. Structures of KdnB and KdnA from Shewanella oneidensis: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-d-Manno-Octulosonic Acid.

    PubMed

    Zachman-Brockmeyer, Trevor R; Thoden, James B; Holden, Hazel M

    2016-08-16

    8-Amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N) is a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella. Although its biological function is still unclear, it is thought that the sugar is important for the integrity of the bacterial cell outer membrane. A three-gene cluster required for the biosynthesis of Kdo8N was first identified in Shewanella oneidensis. Here we describe the three-dimensional structures of two of the enzymes required for Kdo8N biosynthesis in S. oneidensis, namely, KdnB and KdnA. The structure of KdnB was solved to 1.85-Å resolution, and its overall three-dimensional architecture places it into the Group III alcohol dehydrogenase superfamily. A previous study suggested that KdnB did not require NAD(P) for activity. Strikingly, although the protein was crystallized in the absence of any cofactors, the electron density map clearly revealed the presence of a tightly bound NAD(H). In addition, a bound metal was observed, which was shown via X-ray fluorescence to be a zinc ion. Unlike other members of the Group III alcohol dehydrogenases, the dinucleotide cofactor in KdnB is tightly bound and cannot be removed without leading to protein precipitation. With respect to KdnA, it is a pyridoxal 5'-phosphate or (PLP)-dependent aminotransferase. For this analysis, the structure of KdnA, trapped in the presence of the external aldimine with PLP and glutamate, was determined to 2.15-Å resolution. The model of KdnA represents the first structure of a sugar aminotransferase that functions on an 8-oxo sugar. Taken together the results reported herein provide new molecular insight into the biosynthesis of Kdo8N. PMID:27275764

  17. Advances in treating exposed fractures☆

    PubMed Central

    Nogueira Giglio, Pedro; Fogaça Cristante, Alexandre; Ricardo Pécora, José; Partezani Helito, Camilo; Lei Munhoz Lima, Ana Lucia; dos Santos Silva, Jorge

    2015-01-01

    The management of exposed fractures has been discussed since ancient times and remains of great interest to present-day orthopedics and traumatology. These injuries are still a challenge. Infection and nonunion are feared complications. Aspects of the diagnosis, classification and initial management are discussed here. Early administration of antibiotics, surgical cleaning and meticulous debridement are essential. The systemic conditions of patients with multiple trauma and the local conditions of the limb affected need to be taken into consideration. Early skeletal stabilization is necessary. Definitive fixation should be considered when possible and provisional fixation methods should be used when necessary. Early closure should be the aim, and flaps can be used for this purpose. PMID:26229904

  18. [Drug Exposed Infants and Their Families.

    ERIC Educational Resources Information Center

    Fenichel, Emily, Ed.

    1992-01-01

    This bulletin issue addresses the theme of drug-exposed infants and the services required by these infants and their families. "Cocaine-Exposed Infants: Myths and Misunderstandings" (Barbara J. Myers and others) comments on the negative accounts of drug-exposed babies presented by mass media and reviews the mix of positive and negative findings…

  19. Integrated genome based studies of Shewanella ecophysiology

    SciTech Connect

    Saffarini, Daad A

    2013-03-07

    Progress is reported in these areas: Regulation of anaerobic respiration by cAMP receptor protein and role of adenylate cyclases; Identification of an octaheme c cytochrome as the terminal sulfite reductase in S. oneidensis MR-1; Identification and analysis of components of the electron transport chains that lead to reduction of thiosulfate, tetrathionate, and elemental sulfur in MR-1; Involvement of pili and flagella in metal reduction by S. oneidensis MR-1; and work suggesting that HemN1 is the major enzyme that is involved in heme biosynthesis under anaerobic conditions.

  20. Functional Analysis of Shewanella, a cross genome comparison.

    SciTech Connect

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  1. Silent Victims: Children Exposed to Family Violence

    ERIC Educational Resources Information Center

    Kolar, Kathryn R.; Davey, Debrynda

    2007-01-01

    Annually an estimated 3 million or more children are exposed to acts of domestic violence between adults in their homes. These children are at risk for abuse themselves as well as other immediate and long-term problems, especially if they have been exposed to repeated episodes of domestic violence. Multiple behavioral manifestations, including…

  2. 3 EXPOSE Missions - overview and lessons learned

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.

    2011-10-01

    The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook

  3. Eryptosis in lead-exposed workers

    SciTech Connect

    Aguilar-Dorado, Itzel-Citlalli; Hernández, Gerardo; Quintanar-Escorza, Martha-Angelica; Maldonado-Vega, María; Rosas-Flores, Margarita; Calderón-Salinas, José-Víctor

    2014-12-01

    Eryptosis is a physiological phenomenon in which old and damaged erythrocytes are removed from circulation. Erythrocytes incubated with lead have exhibited major eryptosis. In the present work we found evidence of high levels of eryptosis in lead exposed workers possibly via oxidation. Blood samples were taken from 40 male workers exposed to lead (mean blood lead concentration 64.8 μg/dl) and non-exposed workers (4.2 μg/dl). The exposure to lead produced an intoxication characterized by 88.3% less δ-aminolevulinic acid dehydratase (δALAD) activity in lead exposed workers with respect to non-lead exposed workers. An increment of oxidation in lead exposed workers was characterized by 2.4 times higher thiobarbituric acid-reactive substance (TBARS) concentration and 32.8% lower reduced/oxidized glutathione (GSH/GSSG) ratio. Oxidative stress in erythrocytes of lead exposed workers is expressed in 192% higher free calcium concentration [Ca{sup 2+}]{sub i} and 1.6 times higher μ-calpain activity with respect to non-lead exposed workers. The adenosine triphosphate (ATP) concentration was not significantly different between the two worker groups. No externalization of phosphatidylserine (PS) was found in non-lead exposed workers (< 0.1%), but lead exposed workers showed 2.82% externalization. Lead intoxication induces eryptosis possibly through a molecular pathway that includes oxidation, depletion of reduced glutathione (GSH), increment of [Ca{sup 2+}], μ-calpain activation and externalization of PS in erythrocytes. Identifying molecular signals that induce eryptosis in lead intoxication is necessary to understand its physiopathology and chronic complications. - Graphical abstract: Fig. 1. (A) Blood lead concentration (PbB) and (B) phosphatidylserine externalization on erythrocyte membranes of non-lead exposed (□) and lead exposed workers (■). Values are mean ± SD. *Significantly different (P < 0.001). - Highlights: • Erythrocytes of lead exposed workers

  4. TREATMENT OF LEAD EXPOSED CHILDREN TRIAL

    EPA Science Inventory

    The Treatment of Lead-exposed Children (TLC) clinical trial compared the effect of lead chelation with succimer to placebo therapy. Outcomes included IQ, neuropsychological function, behavior, physical growth and blood pressure three years after initiation of treatment. Residenti...

  5. Helping Children Exposed to Domestic Violence

    MedlinePlus

    ... withdrawal Depression or anxiety Loss of interest in school, friends or other things they enjoyed in the past Children and adolescents exposed to domestic violence should be evaluated by a trained mental health ...

  6. The astrobiological mission EXPOSE-R on board of the International Space Station

    NASA Astrophysics Data System (ADS)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan

    2015-01-01

    EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.

  7. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  8. Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children.

    PubMed

    Mayes, Linda C; Cicchetti, Domenic; Acharyya, Suddhasatta; Zhang, Heping

    2003-10-01

    Few data are available concerning the trajectories of mental and motor development across time for cocaine-exposed children compared with others. Findings are presented from individual group curve analyses of the mental and motor development measured by the Bayley Scales of Infant Development-II (BSID-II) on repeated visits from 3 through 36 months of a group of prenatally cocaine-and-other-drug-exposed children (n = 265) compared with those exposed to no drugs (n = 129) or no-cocaine-but-other-drugs (n = 66), including alcohol and/or tobacco. Across time, there was a general decline in motor performance but cocaine-exposed-infants showed a trend toward a greater decrease than children in the other two comparison groups. For mental performance, there was also a decline across age but only through 24 months and no differences in the trajectory of the cocaine-exposed group compared to the other two. And, across all assessment ages, cocaine-exposed-infants showed lower BSID-II mental performance compared to both non-drug and non-cocaine-exposed children. Results suggest that prenatally cocaine-exposed children show delayed developmental indices, particularly in their mental performance, but their trajectories across time are similar to those from impoverished, non-cocaine-exposed groups. PMID:14578693

  9. Anesthetic gases and occupationally exposed workers.

    PubMed

    Casale, Teodorico; Caciari, Tiziana; Rosati, Maria Valeria; Gioffrè, Pier Agostino; Schifano, Maria Pia; Capozzella, Assunta; Pimpinella, Benedetta; Tomei, Gianfranco; Tomei, Francesco

    2014-01-01

    The aim of this study is to estimate whether the occupational exposure to low dose anesthetic gases could cause alterations of blood parameters in health care workers. 119 exposed subjects and 184 not exposed controls were included in the study. Each worker underwent the complete blood count test (CBC), proteinaemia, leukocyte count, serum lipids, liver and kidney blood markers. The liver blood markers show statistically significant differences in health care workers compared with controls (p<0.05), a statistically significant decrease in neutrophils and an increase of lymphocytes in health care workers compared with controls (p<0.05). The prevalence of values outside the range for GPT, GGT, total bilirubin, lymphocytes and neutrophils was statistically significant in health care workers compared with controls (p<0.05). The results suggest that occupational exposure to low dose anesthetic gases could influence some haematochemical hepatic and hematopoietic parameters in exposed health care workers. PMID:24374387

  10. The Expose-R2 mission: astrobiology and astrochemistry in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Demets, René

    EXPOSE is an exposure platform developed by ESA which permits scientists to install test samples for 1 to 2 years at the outer surface of the ISS. In that way, the impact of the open space environment on biological and biochemical sample materials can be explored. This environment, featuring full-spectrum solar light, near-vacuum, cosmic radiation, wide temperature variations and near-weightlessness, is impossible to reproduce in its entirety in the lab. As such, EXPOSE offers astrochemists and astrobiologists a chance to acquire novel scientific data. Astrochemists are interested in Low Earth Orbit conditions due to the fact that photochemistry in space is quite different from photochemistry on Earth, where the high-energy UV compounds of the solar spectrum are filtered away by our atmosphere. As for the astro biologists, EXPOSE offers an attractive opportunity to expand earlier results obtained during short-duration LEO flights, which have shown that particular microbes and, amazingly, even some multi-cellular macroscopic organisms were able to cope with a two-week exposure to space. The open space environment, often described as harsh and hostile, can apparently be tolerated by some robust inhabitants of our Earth - unprotected, in the absence of a space suit! The first mission of EXPOSE, as an external payload on the European Columbus module, happened during 2008-2009 with the test samples provided by five separate research teams. Three additional teams were involved in the monitoring of space environment. The results were published collectively in 2012 in a special issue of the monthly journal Astrobiology. Several organisms survived, having spent 1.5 years in space. The second mission was called EXPOSE-R, the R referring to ‘Russian segment’, the location where the EXPOSE instrument was installed this time. The EXPOSE-R mission took place in 2009-2011, ten science teams were involved. The publication of the results, again as a collection, is currently in

  11. Cosmic radiation exposure of biological test systems during the EXPOSE-R mission

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Hajek, Michael; Bilski, Pawel

    2015-01-01

    In the frame of the EXPOSE-R mission outside the Russian Zvezda Module of the International Space Station (ISS) passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located beneath the sample carriers to determine the dose levels for maximum shielding. The dose measured beneath the sample carriers varied between 317 +/- 10 and 230 +/- 2 mGy, which amount to an average dose rate of 381 +/- 12 and 276 +/- 2 μGy d-1. These values are close to those assessed for the interior of the ISS and reflect the high shielding of the biological experiments within the EXPOSE-R facility. As a consequence of the high shielding (several g cm-2), the biological samples were predominantly exposed to galactic cosmic heavy ions and trapped protons in the Earth's radiation belts, whereas the trapped electrons did not reach the samples.

  12. Rural Canadian Youth Exposed to Physical Violence

    ERIC Educational Resources Information Center

    Laye, Adele M.; Mykota, David B.

    2014-01-01

    Exposure to physical violence is an unfortunate reality for many Canadian youth as it is associated with numerous negative psychosocial effects. The study aims to assist in understanding resilience in rural Canadian youth exposed to physical violence. This is accomplished by identifying the importance of protective factors, as measured by the…

  13. Electroencephalographic findings in workers exposed to benzene.

    PubMed

    Kellerová, V

    1985-01-01

    Preventive EEG examination was carried out in 40 workers significantly exposed to benzene. The EEG findings were compared with those of a control group of 48 healthy persons, a group of 110 workers significantly exposed to toluene and xylene and a group of 236 workers exposed to vinyl chloride. The individuals exposed to benzene exhibited 22.5% of abnormal and 45% threshold findings, the abnormalities being episodic, diffuse or a combination of the two. The effect of benzene entailed a frequent (32.5%) occurrence of a characteristic frequency lability. Sleep phenomena were found in a total of 60% cases (37.5% cases reached stage 1 B3 while 15% reached stage 2 according to Roth [14]). The rapid onset of deeper sleep stages (in 30% cases) is considered typical for benzene exposure. The photic driving response often had an extended frequency range (a total of 61.1%, to beta frequencies only in 30.55%, to both beta and theta frequencies also in 30.55% of cases). The different EEG features characteristic of the neurotoxic action of various types of organic solvents make possible a more efficient diagnostics of the effects of these chemicals on the CNS. PMID:4086812

  14. CYTOGENETIC ANALYSES OF MICE EXPOSED TO DICHLOROMETHANE

    EPA Science Inventory

    Chromosome damage was studied in female B6C3F1 mice exposed to dichloromethane (DCM) by subcutaneous or inhalation treatments. o increase in either the frequencies of sister chromatid exchanges (SCEs) or chromosome aberrations (CAs) in bone marrow cells was observed after a singl...

  15. Exposing the Mathematical Wizard: Approximating Trigonometric Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2011-01-01

    For almost all students, what happens when they push buttons on their calculators is essentially magic, and the techniques used are seemingly pure wizardry. In this article, the author draws back the curtain to expose some of the mathematics behind computational wizardry and introduces some fundamental ideas that are accessible to precalculus…

  16. Interphase cytogenetics of workers exposed to benzene

    SciTech Connect

    Zhang, L.; Wang, Yunxia; Venkatesh, P.

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  17. Exposing New Academics through Action Research?

    ERIC Educational Resources Information Center

    Smith, Karen; Fernie, Scott

    2010-01-01

    While collaborative action research is an empowering approach to developing academic practice, it also presents a number of challenges regarding the purpose, nature and consequences of academic development. This research note raises questions and issues concerning how action research exposes new academics to the conflicts and tensions of the…

  18. Interviews with Children Exposed to Violence

    ERIC Educational Resources Information Center

    Eriksson, Maria; Nasman, Elisabet

    2012-01-01

    The aim of this article is to show how research practices may simultaneously follow principles of children's citizenship rights to participation and principles of protection and support when children exposed to violence are informants. The article focuses upon organisation of interview processes and interactions between adult researchers and child…

  19. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  20. Cocaine Babies: Florida's Substance-Exposed Youth.

    ERIC Educational Resources Information Center

    Harpring, Jayme

    This report is designed to provide Florida's school personnel with assistance in working with students prenatally exposed to cocaine or other toxic substances. The report offers background data, practical strategies for teaching and learning, and resources for networking. The first chapter outlines statistics on the incidence of the problem of…

  1. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench.

    PubMed

    Kasahara, Ryota; Sato, Takako; Tamegai, Hideyuki; Kato, Chiaki

    2009-11-01

    3-isopropylmalate dehydrogenase (IPMDH)-encoding leuB genes were obtained from the obligate piezophile Shewanella benthica DB21MT-2 and non-piezophile Shewanella oneidensis MR-1. The genes were expressed in Escherichia coli and the proteins were purified using His-tag. The estimated kinetic parameters of these enzymes indicated that IPMDH of S. benthica DB21MT-2 is more tolerant of high pressure than that of S. oneidensis MR-1. Thus such an adaptation is one of the mechanisms bacteria utilize for survival at high pressures. PMID:19897891

  2. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was

  3. Bion M1. Peculiarities of life activities of microbes in 30-day spaceflight

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Korshunov, Denis; Morozova, Julia; Voeikova, Tatiana; Tyaglov, Boris; Novikova, Liudmila; Krestyanova, Irina; Emelyanova, Lydia

    The aim of this work was to analyze the influence of space flight factors ( SFF) to microorganism strains , exposed inside unmanned spacecraft Bion M-1 during the 30- day space flight. Objectives of the work - the study of the influence of the SFF exchange chromosomal DNA in crosses microorganisms of the genus Streptomyces; the level of spontaneous phage induction of lysogenic strains fS31 from Streptomyces lividans 66 and Streptomyces coelicolor A3 ( 2 ) on the biosynthesis of the antibiotic tylosin strain of Streptomyces fradiae; survival electrogenic bacteria Shewanella oneidensis MR- 1 is used in the microbial fuel cell As a result of this work it was found that the SFF affect the exchange of chromosomal DNA by crossing strains of Streptomyces. Was detected polarity crossing , expressed in an advantageous contribution chromosome fragment of one of the parent strains in recombinant offspring. This fact may indicate a more prolonged exposure of cells in microgravity and , as a consequence, the transfer of longer fragments of chromosomal DNA This feature is the transfer of genetic material in microgravity could lead to wider dissemination and horizontal transfer of chromosomal and plasmid DNA of symbiotic microflora astronauts and other strains present in the spacecraft. It was shown no effect on the frequency of recombination PCF and the level of mutation model reversion of auxotrophic markers to prototrophy It was demonstrated that PCF increase the level of induction of cell actinophage fS31 lysogenic strain of S. lividans 66, but did not affect the level of induction of this phage cells S. coelicolor A3 ( 2). It is shown that the lower the level of synthesis PCF antibiotic aktinorodina (actinorhodin) in lysogenic strain S. coelicolor A3 ( 2). 66 Strains of S. lividans and S. coelicolor A3 ( 2 ) can be used as a biosensor for studying the effect on microorganisms PCF It is shown that the effect of the PCF reduces synthesis of tylosin and desmicosyn S. fradiae at

  4. Silent victims: children exposed to family violence.

    PubMed

    Kolar, Kathryn R; Davey, Debrynda

    2007-04-01

    Annually an estimated 3 million or more children are exposed to acts of domestic violence between adults in their homes. These children are at risk for abuse themselves as well as other immediate and long-term problems, especially if they have been exposed to repeated episodes of domestic violence. Multiple behavioral manifestations, including anxiety, depression, and posttraumatic stress disorder, may be associated with violence exposure, and it is imperative that school nurses recognize these. All children should be screened for domestic violence exposure at regular intervals, and those who are at risk should have a more thorough health assessment. Planning for the safety of the child, nonoffending caregiver, and siblings and the school nurse involved in the situation is of utmost importance. PMID:17394377

  5. Hearing parameters in noise exposed industrial workers.

    PubMed

    Celik, O; Yalçin, S; Oztürk, A

    1998-12-01

    This paper presents the results of a study carried out in a group of noise-exposed workers in a hydro-electric power plant. Thus, the main focus of the study is on 130 industrial workers who were exposed to high level of noise. The control group was consisted of 33 subjects with normal hearing. Hearing and acoustic reflex thresholds were obtained from all subjects and the results from age-matched subgroups were compared. The sensorineural hearing loss which were detected in 71 workers were bilateral, symmetrical and affected mainly frequencies of 4-6 kHz. In essence, the hearing losses were developed within the first 10 years of noise exposure and associated with slight progress in the following years. When acoustic reflex thresholds derived from the study and control groups were compared, statistically significant difference was determined only for the thresholds obtained at 4 kHz (p < 0.0005). PMID:9853659

  6. Biochemical markers in butadiene-exposed workers

    SciTech Connect

    Bechtold, W.E.; Hayes, R.B.; Thornton-Manning, J.R.; Henderson, R.F.

    1994-11-01

    1,3-Butadiene (BD) is used to manufacture a wide range of polymers and copolymers including styrene-butadiene rubber, polybutadiene, and acrylonitrile-butadiene-syrene resins. The carcinogenicity of BD has been determined in life-span inhalation studies in both Sprague-Dawley rats and B6C3F{sub 1} mice. Results suggest a marked species difference in the carcinogenic effects of BD. For example, female mice exposed to as low as 6.25 ppm BD exhibited increased alveolar/bronchiolar neoplasms. In contrast, BD was only a weak carcinogen in Sprague-Dawley rats. Rats were observed to have an increase only in mammary tumors after exposure to 1000 ppm. A biochemical study of highly exposed BD workers and unexposed controls is providing valuable information on BD metabolism in humans, and how this relates to the development of intermediate biologic effects. A group of heavily exposed workers were identified in a BD production facility in China. The purpose of this paper is to report the initial results from the sampling trip in the first quarter of 1994.

  7. Genetic Alterations in Pesticide Exposed Bolivian Farmers

    PubMed Central

    Jørs, Erik; Gonzáles, Ana Rosa; Ascarrunz, Maria Eugenia; Tirado, Noemi; Takahashi, Catharina; Lafuente, Erika; Dos Santos, Raquel A; Bailon, Natalia; Cervantes, Rafael; O, Huici; Bælum, Jesper; Lander., Flemming

    2007-01-01

    Background Pesticides are of concern in Bolivia because of increasing use. Frequent intoxications have been demonstrated due to use of very toxic pesticides, insufficient control of distribution and sale and little knowledge among farmers of protective measures and hygienic procedures. Method Questionnaires were applied and blood tests taken from 81 volunteers from La Paz County, of whom 48 were pesticide exposed farmers and 33 non-exposed controls. Sixty males and 21 females participated with a mean age of 37.3 years (range 17–76). Data of exposure and possible genetic damage were collected and evaluated by well known statistical methods, controlling for relevant confounders. To measure genetic damage chromosomal aberrations and the comet assay analysis were performed. Results Pesticide exposed farmers had a higher degree of genetic damage compared to the control group. The number of chromosomal aberrations increased with the intensity of pesticide exposure. Females had a lower number of chromosomal aberrations than males, and people living at altitudes above 2500 metres seemed to exhibit more DNA damage measured by the comet assay. Conclusions Bolivian farmers showed signs of genotoxic damage, probably related to exposure to pesticides. Due to the potentially negative long term health effects of genetic damage on reproduction and the development of cancer, preventive measures are recommended. Effective control with imports and sales, banning of the most toxic pesticides, education and information are possible measures, which could help preventing the negative effects of pesticides on human health and the environment. PMID:19662224

  8. Fibrosis biomarkers in workers exposed to MWCNTs.

    PubMed

    Fatkhutdinova, Liliya M; Khaliullin, Timur O; Vasil'yeva, Olga L; Zalyalov, Ramil R; Mustafin, Ilshat G; Kisin, Elena R; Birch, M Eileen; Yanamala, Naveena; Shvedova, Anna A

    2016-05-15

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. PMID:26902652

  9. Physical examinations of workers exposed to trichlorotrifluoroethane.

    NASA Technical Reports Server (NTRS)

    Imbus, H. R.; Adkins, C.

    1972-01-01

    A group of 50 workers, exposed for an average of 2.77 years in an environment, samples of which contained from 46 to 4700 ppm of trichlorotrifluoroethane (Freon 113), was examined. There were no subjective complaints, other than one case of dryness of the skin, referable to this occupational exposure. At this time, it is our opinion that there is no evidence of adverse effects from exposure to trichlorotrifluoroethane under the conditions encountered by these personnel. We believe that continued, periodic, follow-up examinations of these workers will be helpful in further evaluating any possible long-range effects of this material.

  10. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  11. Rescue of fish exposed to a lethal dose of pathogen, by signals from sublethally exposed survivors.

    PubMed

    Mothersill, Carmel; Austin, Dawn; Fernandez-Palomo, Cristian; Seymour, Colin; Auchinachie, Niall; Austin, Brian

    2015-03-01

    Rainbow trout (Oncorhynchus mykiss, Walbaum) were challenged intraperitoneally with a sublethal dose of Vibrio anguillarum VIB1 and allowed to recover. Then, after 7 days, naïve fish, (designated as 'bystander' fish) which had never been exposed to the pathogen, were introduced to the same tank. These swam with the adapted (recovered) fish for 7 days before both groups and a control (never exposed directly to the pathogen or to recovered fish) group were exposed to a lethal dose of VIB1. Mortality records were 100% in the control group within 3 days, 47% in the adapted group and 60% in the unchallenged bystander group, which swam with the adapted group. In both the latter groups, the time to death of the non-surviving fish was attenuated. This inter-animal communication of signals has previously been documented for animals exposed to ionizing radiation. Assays of tissues from control, challenged and 'bystander fish exposed to the pathogen showed that a signal as yet unidentified but similar to that seen in bystanders to irradiated fish was being produced. This signal caused a sharp and transient increase in intracellular calcium and a decrease in clonogenicity in a well-characterized reporter assay. PMID:25757731

  12. Erythrocyte survival in sheep exposed to ozone

    SciTech Connect

    Moore, G.S.; Calabrese, E.J.; Labato, F.J.

    1981-07-01

    Erythrocyte survival studies in the Dorset ewe using chromium 51 were performed. The purpose of the study was to determine if ozone exposure produces decreased cell survival which may be the result of premature erythrocyte aging. This strain of sheep has an erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity that is very low, being comparable to human A-variants with G6PD deficiency. Ozone exposure may produce hemolytic effects in G6PD deficients more readily than in erythrocytes with normal activity. A decrease in hematocrit was observed in the ozone exposed groups. With respect to red cell destruction, ozone does not appear to act immediately, but rather there appears to be a delayed effect. At 0.25 ppM ozone, the group reached the 50% remaining level an average of 1 day sooner than the control group. There was no significant difference between control and exposed groups at the 0.50 ppM and 0.70 ppM levels. Also, the results demonstrate a net decrease in hematocrit which is greater for 0.25 ppM ozone than any other exposure level. (RJC)

  13. Behavioral changes in fish exposed to phytoestrogens.

    PubMed

    Clotfelter, Ethan D; Rodriguez, Alison C

    2006-12-01

    We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, beta-sitosterol, and the positive control 17beta-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17beta-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes. PMID:16584819

  14. Axon reflexes in human cold exposed fingers.

    PubMed

    Daanen, H A; Ducharme, M B

    2000-02-01

    Exposure of fingers to severe cold induces cold induced vasodilatation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in water at either 5 degrees C or 35 degrees C. Axon reflexes were pronounced in the middle finger of the hand in warm water, but absent from the hand in cold water, even though the stimulation was rated as "rather painful" to "painful". These results showed that axon reflexes do not occur in a cold-exposed hand and thus are unlikely to explain the CIVD phenomenon. PMID:10638384

  15. Arousal Modulation in Cocaine-Exposed Infants

    PubMed Central

    Bendersky, Margaret; Lewis, Michael

    2006-01-01

    The ability to modulate arousal is a critical skill with wide-ranging implications for development. In this study, the authors examined arousal regulation as a function of levels of prenatal cocaine exposure in 107 infants at 4 months of age using a “still-face” procedure. Facial expressions were coded. A greater percentage of heavily cocaine-exposed infants, compared with those who were unexposed to cocaine, showed less enjoyment during en face play with their mothers and continued to show negative expressions during the resumption of play following a period when the interaction was interrupted. This finding was independent of other substance exposure, neonatal medical condition, environmental risk, maternal contingent responsivity, and concurrent maternal sensitivity and vocalizations. PMID:9597364

  16. Plasma prolactin concentrations in lead exposed workers.

    PubMed

    Govoni, S; Battaini, F; Fernicola, C; Castelletti, L; Trabucchi, M

    1987-01-01

    Plasma Prolactin (Prl) Zinc protoporphyrin (Zpp) and blood lead concentrations (PbB) were measured in 76 exposed male workers. All of them were employed in small (not more than 30 persons) pewter factories and were randomly selected from those regularly controlled by the National Health Service, Occupational Health Unit of Brescia (USSL 41). Although all plasma Prl values were within the normal range, the mean value of the subgroup having Zpp and PbB higher than 40 micrograms/dl was significantly higher (+47%) than that observed in the group of workers having Zpp and PbB less than 40 micrograms/dl. The data indicate the possibility of a lead-induced Prl secretion dysfunction, probably mediated by a decrease in dopaminergic inhibitory control. PMID:3598878

  17. Dust release from surfaces exposed to plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2006-12-15

    Micrometer-sized particles adhered to a surface can be released when exposed to plasma. In an experiment with a glass surface coated with lunar-simulant dust, it was found that particle release requires exposure to both plasma and an electron beam. The dust release rate diminishes almost exponentially in time, which is consistent with a random process. As proposed here, charges of particles adhered to the surface fluctuate. These charges experience a fluctuating electric force that occasionally overcomes the adhesive van der Waals force, causing particle release. The release rate increases with plasma density, so that plasma cleaning is feasible at high plasma densities. Applications of this cleaning include controlling particulate contamination in semiconductor manufacturing, dust mitigation in the exploration of the moon and Mars, and dusty plasmas.

  18. Mortality of aerospace workers exposed to trichloroethylene.

    PubMed

    Morgan, R W; Kelsh, M A; Zhao, K; Heringer, S

    1998-07-01

    We measured mortality rates in a cohort of 20,508 aerospace workers who were followed up over the period 1950-1993. A total of 4,733 workers had occupational exposure to trichloroethylene. In addition, trichloroethylene was present in some of the washing and drinking water used at the work site. We developed a job-exposure matrix to classify all jobs by trichloroethylene exposure levels into four categories ranging from "none" to "high" exposure. We calculated standardized mortality ratios for the entire cohort and the trichloroethylene exposed subcohort. In the standardized mortality ratio analyses, we observed a consistent elevation for nonmalignant respiratory disease, which we attribute primarily to the higher background rates of respiratory disease in this region. We also compared trichloroethylene-exposed workers with workers in the "low" and "none" exposure categories. Mortality rate ratios for nonmalignant respiratory disease were near or less than 1.00 for trichloroethylene exposure groups. We observed elevated rare ratios for ovarian cancer among those with peak exposure at medium and high levels] relative risk (RR) = 2.74; 95% confidence interval (CI) = 0.84-8.99] and among women with high cumulative exposure (RR = 7.09; 95% CI = 2.14-23.54). Among those with peak exposures at medium and high levels, we observed slightly elevated rate ratios for cancers of the kidney (RR = 1.89; 95% CI = 0.85-4.23), bladder (RR = 1.41; 95% CI = 0.52-3.81), and prostate (RR = 1.47; 95% CI = 0.85-2.55). Our findings do not indicate an association between trichloroethylene exposure and respiratory cancer, liver cancer, leukemia or lymphoma, or all cancers combined. PMID:9647907

  19. First results of the ORGANIC experiment on EXPOSE-R on the ISS

    NASA Astrophysics Data System (ADS)

    Bryson, K. L.; Salama, F.; Elsaesser, A.; Peeters, Z.; Ricco, A. J.; Foing, B. H.

    2015-01-01

    The ORGANIC experiment on EXPOSE-R spent 682 days outside the International Space Station, providing continuous exposure to the cosmic-, solar- and trapped-particle radiation background for fourteen samples: 11 polycyclic aromatic hydrocarbons (PAHs) and three fullerenes. The thin films of the ORGANIC experiment received, during space exposure, an irradiation dose of the order of 14 000 MJ m-2 over 2900 h of unshadowed solar illumination. Extensive analyses were performed on the returned samples and the results compared to ground control measurements. Analytical studies of the returned samples included spectral measurements from the vacuum ultraviolet to the infrared range and time-of-flight secondary ion mass spectrometry. Limited spectral changes were observed in most cases pointing to the stability of PAHs and fullerenes under space exposure conditions. Furthermore, the results of these experiments confirm the known trend in the stability of PAH species according to molecular structure: compact PAHs are more stable than non-compact PAHs, which are themselves more stable than PAHs containing heteroatoms, the last category being the most prone to degradation in the space environment. We estimate a depletion rate of the order of 85 +/- 5% over the 17 equivalent weeks of continuous unshadowed solar exposure in the most extreme case tetracene (smallest, non-compact PAH sample). The insignificant spectral changes (below 10%) measured for solid films of large or compact PAHs and fullerenes indicate a high stability under the range of space exposure conditions investigated on EXPOSE-R.

  20. 9 CFR 78.8 - Brucellosis exposed cattle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Brucellosis exposed cattle. 78.8... Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.8 Brucellosis exposed cattle. Brucellosis exposed cattle may be moved interstate only as follows: (a) Movement to recognized...

  1. 9 CFR 78.23 - Brucellosis exposed bison.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Brucellosis exposed bison. 78.23... Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed bison. Brucellosis exposed bison may be moved interstate only as follows: (a) Movement to recognized...

  2. 9 CFR 78.23 - Brucellosis exposed bison.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Brucellosis exposed bison. 78.23... Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed bison. Brucellosis exposed bison may be moved interstate only as follows: (a) Movement to recognized...

  3. 9 CFR 78.23 - Brucellosis exposed bison.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Brucellosis exposed bison. 78.23... Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed bison. Brucellosis exposed bison may be moved interstate only as follows: (a) Movement to recognized...

  4. 9 CFR 78.32 - Brucellosis exposed swine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed swine. 78.32... Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a) Brucellosis exposed swine may be moved interstate only if accompanied by a permit and only for...

  5. 9 CFR 78.32 - Brucellosis exposed swine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Brucellosis exposed swine. 78.32... Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a) Brucellosis exposed swine may be moved interstate only if accompanied by a permit and only for...

  6. 9 CFR 78.32 - Brucellosis exposed swine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Brucellosis exposed swine. 78.32... Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a) Brucellosis exposed swine may be moved interstate only if accompanied by a permit and only for...

  7. 9 CFR 78.32 - Brucellosis exposed swine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Brucellosis exposed swine. 78.32... Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a) Brucellosis exposed swine may be moved interstate only if accompanied by a permit and only for...

  8. 9 CFR 78.32 - Brucellosis exposed swine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Brucellosis exposed swine. 78.32... Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a) Brucellosis exposed swine may be moved interstate only if accompanied by a permit and only for...

  9. 46 CFR 116.960 - Guards for exposed hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards for exposed hazards. 116.960 Section 116.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.960 Guards for exposed hazards. An exposed hazard, such as gears...

  10. 46 CFR 177.960 - Guards for exposed hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards for exposed hazards. 177.960 Section 177.960... TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.960 Guards for exposed hazards. An exposed hazard, such as gears or rotating machinery, must be properly protected by a cover, guard, or rail....

  11. Over-expression of Multi-heme C-type Cytochromes

    SciTech Connect

    Shi, Liang; Lin, Chiann Tso; Markillie, Lye Meng; Squier, Thomas C.; Hooker, Brian S.

    2005-02-01

    ABSTRACT-Because they contain covalently attached hemes, c-type cytochromes, especially those with multi-heme, are difficult to over-express. The gram negative bacterium Shewanella oneidensis MR-1 has been successfully used for over-expression of multi-heme c-type cytochromes...

  12. Bioremediation of nanomaterials

    DOEpatents

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  13. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    SciTech Connect

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobactersulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1-and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  14. Thyroid hormones in chronic heat exposed men

    NASA Astrophysics Data System (ADS)

    Gertner, A.; Israeli, R.; Lev, A.; Cassuto, Y.

    1983-03-01

    Previous reports have indicated that thyroid gland activity, is depressed in the heat. Total thyroxine (T4) and triiodothyronine (T3) serum levels in 17 workers of the metal work shop at a plant near the Dead Sea and 8 workers in Beer Sheva, Israel were examined. The metal workshop of the plant near the Dead Sea is part of a large chemical plant. The one in Beer Sheva is part of a large construction company. Maintenance work, as well as metal work projects are performed in both workshops. During the work shifts, the workers of the Dead Sea plant were exposed to temperatures ranging from 30 36°C (May Oct.) and 14 21°C (Dec. Feb). In Beer Sheva the range was 25 32°C (June Sept.) and 10 17°C (Dec. Feb.). Total T4 was measured by competitive protein binding and total T3 by radioimmunoassay in blood drawn before work (0700) in July and January. In summer. T4 was higher and T3 was lower for both groups than in winter. The observed summer T3 decrease may result from depressed extrathyroidal conversion of T4 to T3. We conclude that the regulation of energy metabolism in hot climates may be related to extrathyroidal conversion of T4 to T3.

  15. Neurotoxicity of Acrylamide in Exposed Workers

    PubMed Central

    Pennisi, Manuela; Malaguarnera, Giulia; Puglisi, Valentina; Vinciguerra, Luisa; Vacante, Marco; Malaguarnera, Mariano

    2013-01-01

    Acrylamide (ACR) is a water-soluble chemical used in different industrial and laboratory processes. ACR monomer is neurotoxic in humans and laboratory animals. Subchronic exposure to this chemical causes neuropathies, hands and feet numbness, gait abnormalities, muscle weakness, ataxia, skin and in some cases, cerebellar alterations. ACR neurotoxicity involves mostly the peripheral but also the central nervous system, because of damage to the nerve terminal through membrane fusion mechanisms and tubulovescicular alterations. Nevertheless, the exact action mechanism is not completely elucidated. In this paper we have reviewed the current literature on its neurotoxicity connected to work-related ACR exposure. We have analyzed not only the different pathogenetic hypotheses focusing on possible neuropathological targets, but also the critical behavior of ACR poisoning. In addition we have evaluated the ACR-exposed workers case studies. Despite all the amount of work which have being carried out on this topic more studies are necessary to fully understand the pathogenetic mechanisms, in order to propose suitable therapies. PMID:23985770

  16. Post-exposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Miller, Gary A.

    This thesis explains the development and characterization of a novel technique to fabricate weak fiber Bragg gratings for highly specific multi-element sensor arrays. This method, termed the "rescan technique," involves re-exposing a local region of a grating to fringeless ultraviolet light to "trim" unwanted portions of the reflection spectrum. The spectral effects that result from a rescan can only be adequately described by inventing the concept of a three-dimensional index growth surface, where induced index is a function of both the writing intensity and the exposure time. Using this information, it is possible to predict the spectral response of a rescanned grating using a numerical model. For our model, we have modified the piecewise-uniform approach to include coefficients within the coupled-mode formulism that imitate the same scattering properties as the actual grating. By taking high accuracy measurements of the refractive index change in germanosilicate fiber, we have created the necessary 3D map of photoinduced index to accurately model gratings and their post-exposure spectra. We will also demonstrate that optical fiber exhibits what we call "exposure history"; the final index change in a region depends on the previous exposures conditions.

  17. The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra; Moeller, Ralf; Cadet, Jean; Douki, Thierry

    2015-01-01

    The experiment SPORES `Spores in artificial meteorites' was part of European Space Agency's EXPOSE-R mission, which exposed chemical and biological samples for nearly 2 years (March 10, 2009 to February 21, 2011) to outer space, when attached to the outside of the Russian Zvezda module of the International Space Station. The overall objective of the SPORES experiment was to address the question whether the meteorite material offers enough protection against the harsh environment of space for spores to survive a long-term journey in space by experimentally mimicking the hypothetical scenario of Lithopanspermia, which assumes interplanetary transfer of life via impact-ejected rocks. For this purpose, spores of Bacillus subtilis 168 were exposed to selected parameters of outer space (solar ultraviolet (UV) radiation at λ>110 or >200 nm, space vacuum, galactic cosmic radiation and temperature fluctuations) either as a pure spore monolayer or mixed with different concentrations of artificial meteorite powder. Total fluence of solar UV radiation (100-400 nm) during the mission was 859 MJ m-2. After retrieval the viability of the samples was analysed. A Mission Ground Reference program was performed in parallel to the flight experiment. The results of SPORES demonstrate the high inactivating potential of extraterrestrial UV radiation as one of the most harmful factors of space, especially UV at λ>110 nm. The UV-induced inactivation is mainly caused by photodamaging of the DNA, as documented by the identification of the spore photoproduct 5,6-dihydro-5(α-thyminyl)thymine. The data disclose the limits of Lithopanspermia for spores located in the upper layers of impact-ejected rocks due to access of harmful extraterrestrial solar UV radiation.

  18. Prolonged grief among traumatically bereaved relatives exposed and not exposed to a tsunami.

    PubMed

    Johannesson, Kerstin Bergh; Lundin, Tom; Hultman, Christina M; Fröjd, Thomas; Michel, Per-Olof

    2011-08-01

    Numerous studies on the mental health consequences of traumatic exposure to a disaster compare those exposed to those not exposed. Relatively few focus on the effect of the death of a close relative caused by the disaster-suffering a traumatic bereavement. This study compared the impact on 345 participants who lost a close relative in the 2004 Indian Ocean tsunami, but who were themselves not present, to 141 who not only lost a relative, but also were themselves exposed to the tsunami. The focus was on psychological distress assessed during the second year after the sudden bereavement. Findings were that exposure to the tsunami was associated with prolonged grief (B = 3.81) and posttraumatic stress reactions (B = 6.65), and doubled the risk for impaired mental health. Loss of children increased the risk for psychological distress (prolonged grief: B = 6.92; The Impact of Event Scale-Revised: B = 6.10; General Health Questionnaire-12: OR = 2.34). Women had a higher frequency of prolonged grief. For men, loss of children presented a higher risk for prolonged grief in relation to other types of bereavement (B = 6.36 vs. loss of partner). Further long-term follow-up could deepen the understanding of how recovery after traumatic loss is facilitated. PMID:21818785

  19. Comparative Toxicological Study between Exposed and Non-Exposed Farmers to Organophosphorus Pesticides

    PubMed Central

    Taghavian, Fariba; Vaezi, Gholamhassan; Abdollahi, Mohammad; Malekirad, Ali Akbar

    2016-01-01

    Objective The purpose of this work was to compare DNA damage, acetylcholinesterase (AChE) activity, inflammatory markers and clinical symptoms in farmers exposed to organophosphorus pesticides to individuals that had no pesticide exposure. Materials and Methods We conducted a cross-sectional survey with a total of 134 people. The subject group consisted of 67 farmers who were exposed to organophosphorus pesticides. The control group consisted of 67 people without any contact with pesticides matched with the subject group in terms of age, gender, and didactics. Oxidative DNA damage, the activities of AChE, interleukin-6 (IL6), IL10 and C-reactive protein (CRP) in serum were measured and clinical examinations conducted in order to register all clinical signs. Results Compared with the control group, substantial gains were observed in the farmers’ levels of oxidative DNA damage, IL10 and CRP. There was significantly less AChE activity in farmers exposed to organophosphorus pesticides. The levels of IL6 in both groups did not significantly differ. Conclusion The outcomes show that exposure to organophosphorus pesticides may cause DNA oxidative damage, inhibit AChE activity and increase the serum levels of inflammatory markers. Using biological materials instead of chemical pesticides and encouraging the use of safety equipment by farmers are some solutions to the adverse effects of exposure to organophosphorous pesticides. PMID:27054123

  20. Comparative genomic hybridization study of arsenic-exposed and non-arsenic-exposed urinary transitional cell carcinoma

    SciTech Connect

    Hsu, L.-I; Chiu, Allen W.; Pu, Y.-S.; Wang, Y.-H.; Huan, Steven K.; Hsiao, C.-H.; Hsieh, F.-I; Chen, C.-J.

    2008-03-01

    To compare the differences in DNA aberrations between arsenic-exposed and non-arsenic-exposed transitional cell carcinoma (TCC), we analyzed 19 arsenic-exposed and 29 non-arsenic-exposed urinary TCCs from Chi-Mei Hospital using comparative genomic hybridization. DNA aberrations were detected in 42 TCCs including 19 arsenic-exposed and 23 non-arsenic-exposed TCCs. Arsenic-exposed TCCs had more changes than unexposed TCCs (mean {+-} SD, 6.6 {+-} 2.9 vs. 2.9 {+-} 2.2). Arsenic exposure was significantly associated with the number of DNA aberrations after adjustment for tumor stage, tumor grade and cigarette smoking in multiple regression analysis. The most frequent DNA gains, which were strikingly different between arsenic-exposed and non-arsenic-exposed TCCs, included those at 1p, 4p, 4q and 8q. A much higher frequency of DNA losses in arsenic-exposed TCCs compared with non-arsenic-exposed TCCs was observed in 10q, 11p and 17p. Chromosomal loss in 17p13 was associated not only with arsenic exposure, but also with tumor stage and grade. The p53 immunohistochemistry staining showed that chromosome 17p13 loss was associated with either p53 no expression (25%) or p53 overexpression (75%). The findings suggest that long-term arsenic exposure may increase the chromosome abnormality in TCC, and 17p loss plays an important role in arsenic-induced urinary carcinogenesis.

  1. Degradation of HEPA filters exposed to DMSO

    SciTech Connect

    Bergman, W.; Wilson, K.; Larsen, G.

    1995-02-01

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cmf HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased form 1.15 inches to 2,85 inches, and the efficiency for 0.3 {mu}m dioctyl sebacate (DOS) aerosols decreased form 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cmf air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3 {mu}m particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater.

  2. Degradation of HEPA filters exposed to DMSO

    SciTech Connect

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.; LeMay, J.

    1994-07-11

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cfm HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased from 1.15 inches to 2.85 inches, and the efficiency for 0.3 {mu}m dioctyl sebacate (DOS) aerosols decreased from 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cfm air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3{mu}m particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater.

  3. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  4. Ecophysiological tolerance of duckweeds exposed to copper.

    PubMed

    Kanoun-Boulé, Myriam; Vicente, Joaquim A F; Nabais, Cristina; Prasad, M N V; Freitas, Helena

    2009-01-18

    Although essential for plants, copper can be toxic when present in supra-optimal concentrations. Metal polluted sites, due to their extreme conditions, can harbour tolerant species and/or ecotypes. In this work we aimed to compare the physiological responses to copper exposure and the uptake capacities of two species of duckweed, Lemna minor (Lm(EC1)) and Spirodela polyrrhiza (SP), from an abandoned uranium mine with an ecotype of L. minor (Lm(EC2)) from a non-contaminated pond. From the lowest Cu concentration exposure (25microM) to the highest (100microM), Lm(EC2) accumulated higher amounts of copper than Lm(EC1) and SP. Dose-response curves showed that Cu content accumulated by Lm(EC2) increases linearly with Cu treatment concentrations (r(2)=0.998) whereas quadratic models were more suitable for Lm(EC1) and SP (r(2)=0.999 and r(2)=0.998 for Lm(EC1) and SP, respectively). A significant concentration-dependent decline of chlorophyll a (chl a) and carotenoid occurred as a consequence of Cu exposure. These declines were significant for Lm(EC2) exposed to the lowest Cu concentration (25microM) whereas for Lm(EC1) and SP a significant decrease in chl a and carotenoids was observed only at 50 and 100microM-Cu. Electric conductivity (EC) and malondialdehyde (MDA) content increased after Cu exposure, indicating oxidative stress. Significant increase of EC was observed in Lm(EC2) for all Cu concentrations whereas the increase for Lm(EC1) and SP became significant only after an exposure to 50microM-Cu. On the contrary, for Lm(EC1), SP, and Lm(EC2), MDA content significantly increased even at the lowest concentration. Protein content and catalase (CAT) activity showed a decrease with an increase in Cu concentration. For the species Lm(EC1) and SP, a significant effect of copper on CAT activity was observed only at the highest concentration (100microM-Cu) whereas, for Lm(EC2), this effect started to be significant after an exposure to 50microM-Cu. Superoxide dismutase (SOD

  5. 31. VIEW OF ROOM 212 LOOKING NORTHWEST TOWARDS EXPOSED STUD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF ROOM 212 LOOKING NORTHWEST TOWARDS EXPOSED STUD WALL THAT SERVES AS DIVIDER TO ROOM 211. EXPOSED TRUSSWORK VISIBLE THROUGH TO NEXT ROOM. WOOD PANELED WALLS ARE PAINTED; FLOORS ARE WOOD. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  6. 9 CFR 78.23 - Brucellosis exposed bison.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Brucellosis exposed bison. 78.23... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed...

  7. 9 CFR 78.8 - Brucellosis exposed cattle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed cattle. 78.8... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.8 Brucellosis exposed...

  8. 9 CFR 78.23 - Brucellosis exposed bison.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed bison. 78.23... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed...

  9. 9 CFR 78.8 - Brucellosis exposed cattle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Brucellosis exposed cattle. 78.8... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.8 Brucellosis exposed...

  10. CEREBELLAR HISTOGENESIS IN RATS EXPOSED TO 2450 MHZ MICROWAVE RADIATION

    EPA Science Inventory

    Pregnant rats were either exposed or sham exposed from day 13 of gestation until birth to 2450 MHz linearly polarized microwaves at 10 mW/sq cm. A third matching group served as cage control. After birth, the pups were kept with their mothers for 21 days without any treatment, an...

  11. Reactivity and Regulation in Children Prenatally Exposed to Cocaine

    ERIC Educational Resources Information Center

    Dennis, Tracy; Bendersky, Margaret; Ramsay, Douglas; Lewis, Michael

    2006-01-01

    Children prenatally exposed to cocaine may be at elevated risk for adjustment problems in early development because of greater reactivity and reduced regulation during challenging tasks. Few studies have examined whether cocaine-exposed children show such difficulties during the preschool years, a period marked by increased social and cognitive…

  12. The Psychobiology of Children Exposed to Marital Violence

    ERIC Educational Resources Information Center

    Saltzman, Kasey M.; Holden, George W.; Holahan, Charles J.

    2005-01-01

    We examined the psychological and physiological functioning of a community sample of children exposed to marital violence, comparing them to a clinical comparison group without marital violence exposure. Results replicated past findings of elevated levels of trauma symptomatology in this population. Further, children exposed to marital violence…

  13. Animal Cruelty by Children Exposed to Domestic Violence

    ERIC Educational Resources Information Center

    Currie, Cheryl L.

    2006-01-01

    Objective: The first objective of this study was to determine if children exposed to domestic violence were significantly more likely to be cruel to animals than children not exposed to violence. The second was to determine if there were significant age and gender differences between children who were and were not cruel to animals. Method: A…

  14. 46 CFR 28.215 - Guards for exposed hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Guards for exposed hazards. 28.215 Section 28.215 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL....215 Guards for exposed hazards. (a) Each space on board a vessel must meet the requirements of...

  15. The AMINO experiment: RNA stability under solar radiation studied on the EXPOSE-R facility of the International Space Station

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Cottin, Hervé; da Silva, Laura; Brack, André; Chaput, Didier

    2015-01-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the RNA world hypothesis as a crucial step of the origins and early life evolution. Small functional RNAs were exposed from 10 March 2009 to 21 January 2011 to space conditions on board the International Space Station in the EXPOSE-R mission. The aim of this study was to investigate the preservation or modification properties such as integrity of RNAs after space exposition. The exposition to the solar radiation has a strong degradation effect on the size distribution of RNA. Moreover, the comparison between the in-flight samples, exposed to the Sun and not exposed, indicates that the solar radiation degrades RNA bases.

  16. Non-disjunction mutations in Drosophila exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Levengood, W. C.

    1987-09-01

    The frequency of XO mutations in Drosophila melanogaster was significantly higher than normal in magnetic field exposed, immature males, than in exposed, mature males. Mutation levels increased with magnetic field strength. Intercellular rings of black magnetic particles were formed in the high magnetic flux region of dorsally exposed, early stage pupae and to a lesser degree in the abdomen of young adult females. Orientation of minute, chromosome associated, magnetic domains within the microenvironment of the developing organism was believed to alter oxidative processes within maturing X+ sperm which during fertilization were incompatible with and destructive to an Xw chromosome in the zygote.

  17. Ventilatory function in workers exposed to tea and wood dust.

    PubMed Central

    Al Zuhair, Y S; Whitaker, C J; Cinkotai, F F

    1981-01-01

    Changes in ventilatory capacity during the work shift were studied in workers exposed to tea dust in tea-packing plants, wood dust in two furniture factories, and virtually no dust in an inoperational power station. The FEV1 and FVC in workers exposed to dust were found to decline during the work shift by a small but significant volume. The MMFR, Vmax 50% and Vmax 75% were to variable to display any trend. No dose-response relationship could be discerned between the fall in workers' ventilatory capacity and the concentrations of airborne dust or microbes to which they were exposed. Bronchodilators could reverse the fall in FEV1. PMID:7317296

  18. Aluminium in the blood and urine of industrially exposed workers.

    PubMed Central

    Sjögren, B; Lundberg, I; Lidums, V

    1983-01-01

    Blood and urine aluminium concentrations were studied in industrially exposed workers using electrothermal atomic absorption spectrometry. Welders and workers making aluminium powder and aluminium sulphate had higher concentrations in blood and urine than non-exposed referents. Workers in the electrolytic production of aluminium had higher urine but not blood concentrations than the referents. Thus aluminium was found to be absorbed by all industrially exposed workers. Blood concentrations were lower than those presumably associated with aluminium induced encephalopathy in patients receiving dialysis. PMID:6871119

  19. 3. VAL CAMERA STATION, DETAIL OF ROOF OVERHANG AND EXPOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA STATION, DETAIL OF ROOF OVERHANG AND EXPOSED CONCRETE SURFACES. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  20. 13. DETAIL SHOWING EXPOSED VERTICAL LOG CONSTRUCTION WITH MEASURING TAPE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL SHOWING EXPOSED VERTICAL LOG CONSTRUCTION WITH MEASURING TAPE, WEST ROOM AT REAR OF HOUSE, FIRST FLOOR - Pierre Delassus DeLuziereHouse, U.S. Route 61, Sainte Genevieve, Ste. Genevieve County, MO

  1. 20. DETAIL OF INTERIOR WALL WITH PLASTER REMOVED TO EXPOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF INTERIOR WALL WITH PLASTER REMOVED TO EXPOSE STUDS AND BRICKWORK A. C. Eschete, photographer, July 7, 1977 - Bagatelle Plantation, East River Road (moved to Iberville Parish), Donaldsonville, Ascension Parish, LA

  2. Detail view of the exposed polychromatic aggregate ceiling designed and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the exposed polychromatic aggregate ceiling designed and cast by John Joseph Earley for the vehicular entrance portals to the courtyard - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  3. Middle Schoolers Exposed to Alcohol Ads Every Day

    MedlinePlus

    ... html Middle Schoolers Exposed to Alcohol Ads Every Day: Study Researchers say billboards, signs and TV ads ... kids typically saw two to four ads a day. Hispanic and black kids saw more ads, an ...

  4. 6. Interior view of unoccupied space looking up at exposed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior view of unoccupied space looking up at exposed roof structure; showing HVAC duct work and wood structure; near center of building; view to northeast. - Ellsworth Air Force Base, Warehouse, 789 Twining Street, Blackhawk, Meade County, SD

  5. 98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST SIDE OF 4TH TEE, LOOKING WEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  6. Cancer in People Exposed to Nuclear Weapons Testing

    MedlinePlus

    ... payment of $100,000. Onsite participants People (including military personnel) who were present onsite during above-ground nuclear ... be entitled to a payment of $75,000. (Military personnel exposed to radiation at Hiroshima or Nagasaki are ...

  7. 7. FOUNDATIONS OF FLUME NO. 8, EXPOSED. SCE negative no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. FOUNDATIONS OF FLUME NO. 8, EXPOSED. SCE negative no. 3077, January 26, 1916. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  8. 18. VIEW, LOOKING SOUTHWEST, SHOWING EXPOSED STEEL FRAMING OF WATERFRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW, LOOKING SOUTHWEST, SHOWING EXPOSED STEEL FRAMING OF WATERFRONT ELEVATION - Central Railroad of New Jersey, Jersey City Ferry Terminal, Johnson Avenue at Hudson River, Jersey City, Hudson County, NJ

  9. TERATOGENESIS, TOXICITY, AND BIOCONCENTRATION IN FROGS EXPOSED TO DIELDRIN

    EPA Science Inventory

    Teratogenesis, acute and chronic toxicity, and bioconcentration were investigated in various like stages of African clawed frogs (Xenopus laevis), bullfrogs (Rana catesbeiana) and leopard frogs (Rana pipiens) exposed to aqueous dieldrin in static-renewal and continuous-flow tests...

  10. Detail of upper portion of southeast corner showing exposed rafters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of upper portion of southeast corner showing exposed rafters at eaves; camera facing northwest. - Mare Island Naval Shipyard, Supply Building, Walnut Avenue, southeast corner of Walnut Avenue & Fifth Street, Vallejo, Solano County, CA

  11. 11. Southwest view interior, grounds room 18 showing exposed concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Southwest view interior, grounds room 18 showing exposed concrete ceiling - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  12. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  13. Data on the gene expression of cardiomyocyte exposed to hypothermia.

    PubMed

    Zhang, Jian; Xue, Xiaodong; Xu, Yinli; Zhang, Yuji; Li, Zhi; Wang, Huishan

    2016-09-01

    Hypothermia is widely used in neurosurgery and cardiac surgeries. However, little is known about the underlying molecular mechanisms. We previously reported that the transcriptome responses of cardiomyocyte exposed to hypothermia, "The transcriptome responses of cardiomyocyte exposed to hypothermia" [4]. Herein, we provide the hypothermia inhibited proliferation of cardiomyocyte cells in vitro and the details of transcription factors in regulation of differentially expressed genes. PMID:27274530

  14. Risk and resilience factors of persons exposed to accidents

    PubMed Central

    HERTA, DANA – CRISTINA; BRÎNDAS, PAULA; TRIFU, RALUCA; COZMAN, DOINA

    2016-01-01

    Background and aims Resilience encompasses factors promoting effective functioning in the context of adversity. Data regarding resilience in the wake of accidental trauma is still scarce. The aim of the current study is to comparatively assess adaptive, life – promoting factors in persons exposed to motor vehicle accidents (MVA) vs. persons exposed to other types of accidents, and to identify psychological factors of resilience and vulnerability in this context of trauma exposure. Methods We assessed 93 participants exposed to accidents out of 305 eligible patients from the Clinical Rehabilitation Hospital and Cluj County Emergency Hospital. The study used Reasons for Living Inventory (RFL) and Life Events Checklist. Scores were comparatively assessed for RFL items, RFL scale and subscales in participants exposed to motor vehicle accidents (MVA) vs. participants exposed to other life – threatening accidents. Results Participants exposed to MVA and those exposed to other accidents had significantly different scores in 7 RFL items. Scores were high in 4 out of 6 RFL subscales for both samples and in most items comprising these subscales, while in the other 2 subscales and in some items comprising them scores were low. Conclusions Low fear of death, physical suffering and social disapproval emerge as risk factors in persons exposed to life – threatening accidents. Love of life, courage in life and hope for the future are important resilience factors after exposure to various types of life – threatening accidents. Survival and active coping beliefs promote resilience especially after motor vehicle accidents. Coping with uncertainty are more likely to foster resilience after other types of life – threatening accidents. Attachment of the accident victim to family promotes resilience mostly after MVA, while perceived attachment of family members to the victim promotes resilience after other types of accidents. PMID:27152078

  15. Integrated Investigation on the Production and Fate of Organo-Cr(III) Complexes from Microbial Reduction of Chromate

    SciTech Connect

    Xun, Luying

    2004-06-01

    The screening of different genera of bacteria for production of soluble Cr(III) complexes has been completed. A total of eight organisms were screened for production of soluble Cr(III); three were Gram positive and five were Gram negative. The Gram positive bacteria were Cellulomonas sp. ES 6, Rhodococcus sp., and Leafsonia sp., while Shewanella. oneidensis MR 1, Desulfovibrio desulfuricans G20, D. vulgaris Hildenborough, Pseudomonas putida MK 1 and Ps. aeruginosa PAO 1 were Gram negative. S. oneidensis MR 1 and Cellulomonas sp ES 6 were grown in minimal media, GWM (Ground Water Medium with lactate/fumarate) and SGM (Simulated Groundwater Medium with sucrose), respectively. Other bacteria were screened under non-growth conditions with sucrose, lactate, or glycerol as electron donor. All experiments were carried out for a period of 15-30 days, with different organisms reaching a maximum soluble Cr(III) concentrations at different times: S. oneidensis, 2d; Cellulomonas sp., 8d; Leafsonia, 6d; Rhodococcus, 9d; Ps. putida MK 1, 6d, Ps. aeruginosa PAO 1, 3d; D. vulgaris Hildenborough, 3d; and D. desulfuricans G20, 21d. Initial characterization indicates that the soluble Cr(III) fraction produced by both S. oneidensis MR 1 and Cellulomonas sp. ES 6 passes through a 1-Kd cut off filter.

  16. The AMINO experiment: methane photolysis under Solar VUV irradiation on the EXPOSE-R facility of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Cottin, Hervé; Cloix, Mégane; Jérome, Murielle; Bénilan, Yves; Coll, Patrice; Gazeau, Marie-Claire; Raulin, François; Saiagh, Kafila; Chaput, Didier

    2015-01-01

    The scientific aim of the present campaign is to study the whole chain of methane photo-degradation, as initiated by Solar vacuum-ultraviolet irradiation in Titan's atmosphere. For this purpose, the AMINO experiment on the EXPOSE-R mission has loaded closed cells for gas-phase photochemistry in space conditions. Two different gas mixtures have been exposed, named Titan 1 and Titan 2, involving both N2-CH4 gas mixtures, without and with CO2, respectively. CO2 is added as a source of reactive oxygen in the cells. The cell contents were analysed thanks to infrared absorption spectroscopy, gas chromatography and mass spectrometry. Methane consumption leads to the formation of saturated hydrocarbons, with no detectable influence of CO2. This successful campaign provides a first benchmark for characterizing the whole methane photochemical system in space conditions. A thin film of tholin-like compounds appears to form on the cell walls of the exposed cells.

  17. Neurodevelopmental outcomes in HIV-exposed-uninfected children versus those not exposed to HIV

    PubMed Central

    Kerr, Stephen J.; Puthanakit, Thanyawee; Vibol, Ung; Aurpibul, Linda; Vonthanak, Sophan; Kosalaraksa, Pope; Kanjanavanit, Suparat; Hansudewechakul, Rawiwan; Wongsawat, Jurai; Luesomboon, Wicharn; Ratanadilok, Kattiya; Prasitsuebsai, Wasana; Pruksakaew, Kanchana; van der Lugt, Jasper; Paul, Robert; Ananworanich, Jintanat; Valcour, Victor

    2014-01-01

    Human immunodeficiency virus (HIV)-negative children born to HIV-infected mothers may exhibit differences in neurodevelopment (ND) compared to age- and gender-matched controls whose lives have not been affected by HIV. This could occur due to exposure to HIV and antiretroviral agents in utero and perinatally, or differences in the environment in which they grow up. This study assessed neurodevelopmental outcomes in HIV-exposed uninfected (HEU) and HIV-unexposed uninfected (HUU) children enrolled as controls in a multicenter ND study from Thailand and Cambodia. One hundred sixty HEU and 167 HUU children completed a neurodevelopmental assessment using the Beery Visual Motor Integration (VMI) test, Color Trails, Perdue Pegboard, and Child Behavior Checklist (CBCL). Thai children (n = 202) also completed the Wechsler Intelligence Scale (IQ) and Stanford-Binet II memory tests. In analyses adjusted for caregiver education, parent as caregiver, household income, age, and ethnicity, statistically significant lower scores were seen on verbal IQ (VIQ), full-scale IQ (FSIQ), and Binet Bead Memory among HEU compared to HUU. The mean (95% CI) differences were −6.13 (−10.3 to −1.96), p = 0.004; −4.57 (−8.80 to −0.35), p = 0.03; and −3.72 (−6.57 to −0.88), p = 0.01 for VIQ, FSIQ, and Binet Bead Memory, respectively. We observed no significant differences in performance IQ, other Binet memory domains, Color Trail, Perdue Pegboard, Beery VMI, or CBCL test scores. We conclude that HEU children evidence reductions in some neurodevelopmental outcomes compared to HUU; however, these differences are small and it remains unclear to what extent they have immediate and long-term clinical significance. PMID:24878112

  18. Whole DNA methylome profiling in mice exposed to secondhand smoke

    PubMed Central

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-01-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858

  19. Cardiovascular effects in viscose rayon workers exposed to carbon disulfide.

    PubMed

    Kotseva, K; Braeckman, L; De Bacquer, D; Bulat, P; Vanhoorne, M

    2001-01-01

    The objectives of this study were to investigate the cardiovascular effects in workers currently exposed to carbon disulfide (CS2) below the threshold limit value (TLV) of 31 mg/m3 and to determine the prevalence of coronary heart disease (CHD) after long-term exposure. 172 men (91 workers exposed to CS2 in a viscose rayon factory and 81 referent workers) were examined using a medical and job history questionnaire, Rose's questionnaire, and electrocardiography at rest, and by measuring blood pressure and serum lipids and lipoproteins. Personal exposures were monitored simultaneously with active sampling and findings were analyzed according to the NIOSH 1600 method. As a result of technical and organizational improvements, personal CS2 exposures were well below the TLV (5.4-13.02 mg/m3). No significant effect of CS2 on blood pressure or lipids (total cholesterol, HDL and LDL cholesterol, triglycerides, and apolipoproteins AI and B) was found, even after allowance for confounding factors. The prevalence of CHD (ECG abnormalities and chest pain) was higher in the viscose rayon workers than in the workers with no exposure but reached statistical significance for men with exposure histories often years and more only (cumulative CS9 index > or = 150 mg/m3, the most highly exposed group). The findings suggest that the coronary risk is increased in workers previously exposed to high CS2 concentrations but not in those exposed to CS2 levels below the current TLV. PMID:11210016

  20. Effects on LDEF exposed copper film and bulk

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Gregory, John C.; Christl, Ligia C.; Raikar, Ganesh N.

    1991-01-01

    Two forms of copper were exposed to the Long Duration Exposure Facility (LDEF) Mission 1 environment: a copper film, initially 74.2 plus or minus 1.1 nm thick sputter coated on a fused silica flat and a bulk piece of oxygen-free, high conductivity (OFHC) copper. The optical density of the copper film changed from 1.33 to 0.70 where exposed, and the film thickness increased to 106.7 plus or minus 0.5 nm where exposed. The exposed area appears purple by reflection and green by transmission for the thin film and maroon color for the bulk copper piece. The exposed areas increased in thickness, but only increase in the thickness of the thin film sample could be readily measured. The increase in film thickness is consistent with the density changes occurring during conversion of copper to an oxide. However, we have not been able to confirm appreciable conversion to an oxide by x-ray diffraction studies. We have not yet subjected the sample to e-beams or more abusive investigations out of concern that the film might be modified.

  1. A cytogenetic study of papaya workers exposed to ethylene dibromide.

    PubMed

    Steenland, K; Carrano, A; Ratcliffe, J; Clapp, D; Ashworth, L; Meinhardt, T

    1986-06-01

    Ethylene dibromide (EDB) has been shown to be carcinogenic in animal studies and mutagenic in vitro. One cytogenetic study of workers exposed to low levels of EDB for short durations was negative. To test whether exposure to low levels of EDB over long periods caused cytogenetic changes, we have assessed the frequencies of sister-chromatid exchanges (SCE) and chromosomal aberrations (CA) in the peripheral blood lymphocytes of 60 men occupationally exposed to EDB. These men worked in papaya-packing plants where EDB was used to fumigate the fruit after harvest to kill fruit-fly larvae. 42 other men who worked at a nearby sugar mill served as controls. The average duration of exposure of the papaya workers was 5 years. 82 full shift personal breathing-zone air samples indicated that the papaya workers were exposed to a geometric mean of 88 ppb of EDB, as an 8-h time weighted average (TWA). Peaks up to 262 ppb were measured. The proposed OSHA 8-h TWA for EDB is 100 ppb, while NIOSH recommends 45 ppb. No differences in SCE levels were found between exposed and nonexposed workers. No differences were found in the total CA frequency between exposed and nonexposed workers. SCE levels were significantly increased in men who smoked cigarettes (p = 0.0001) and in men who smoked marijuana (p = 0.01). CA levels showed a significant increasing trend with age (p = 0.03). PMID:3520305

  2. Semen quality in workers exposed to 2-ethoxyethanol.

    PubMed

    Ratcliffe, J M; Schrader, S M; Clapp, D E; Halperin, W E; Turner, T W; Hornung, R W

    1989-06-01

    To evaluate whether long term exposure to 2-ethoxyethanol (2EE) may affect semen quality, a cross sectional study was conducted among men exposed to 2EE used as a binder slurry in a metal castings process. Full shift breathing zone exposures to 2EE ranged from non-detectable to 24 ppm (geometric mean 6.6 ppm). Because of the potential for substantial absorption of 2EE through skin exposure, urine measurements of the metabolite of 2EE, 2-ethoxyacetic acid (2EAA) were conducted, showing levels of 2EAA ranging from non-detectable to 163 mg 2EAA/g creatinine. Only 37 exposed men (50% participation) and 39 non-exposed comparison (26% participation) from elsewhere in the plant provided a sperm sample. A questionnaire to determine personal habits, and medical and work histories, and a physical examination of the urogenital tract were also administered. The average sperm count per ejaculate among the workers exposed to 2EE was significantly lower than that of the unexposed group (113 v 154 million sperm per ejaculate respectively; p = 0.05) after consideration of abstinence, sample age, subjects' age, tobacco, alcohol and caffeine use, urogenital disorders, fever, and other illnesses. The mean sperm concentrations of the exposed and unexposed groups did not significantly differ from each other (44 and 53 million/ml respectively). No effect of exposure to 2EE on semen volume, sperm viability, motility, velocity, and normal morphology or testicular volume was detected, although some differences in the proportion of abnormal sperm shapes were observed. These data suggest that there may be an effect of 2EE on sperm count among these workers, although the possibility that other factors may be affecting the semen quality in both exposed and unexposed men in this population or that the results reflect bias introduced by the low participation rates cannot be excluded. PMID:2818974

  3. Neurodevelopment of adopted children exposed in utero to cocaine.

    PubMed Central

    Nulman, I; Rovet, J; Altmann, D; Bradley, C; Einarson, T; Koren, G

    1994-01-01

    OBJECTIVE: To assess the neurodevelopment of adopted children who had been exposed in utero to cocaine. DESIGN: A case-control observational study. PARTICIPANTS: Twenty-three children aged 14 months to 6.5 years exposed in utero to cocaine and their adoptive mothers, and 23 age-matched control children not exposed to cocaine and their mothers, matched with the adoptive mothers for IQ and socioeconomic status. SETTING: The Motherisk Programme at The Hospital for Sick Children, Toronto, a consultation service for chemical exposure during pregnancy. MAIN OUTCOME MEASURES: Height, weight and head circumference at birth and at follow-up, and achievement on standard tests of cognitive and language development. RESULTS: Compared with the control group, children exposed in utero to cocaine had an 8-fold increased risk for microcephaly (95% confidence interval 1.5 to 42.3); they also had a lower mean birth weight (p = 0.005) and a lower gestational age (p = 0.002). In follow-up the cocaine-exposed children caught up with the control subjects in weight and stature but not in head circumference (mean 31st percentile v. 63rd percentile) (p = 0.001). Although there were no significant differences between the two groups in global IQ, the cocaine-exposed children had significantly lower scores than the control subjects on the Reynell language test for both verbal comprehension (p = 0.003) and expressive language (p = 0.001). CONCLUSIONS: This is the first study to document that intrauterine exposure to cocaine is associated with measurable and clinically significant toxic neurologic effects, independent of postnatal home and environmental confounders. Because women who use cocaine during pregnancy almost invariably smoke cigarettes and often use alcohol, it is impossible to attribute the measured toxic effects to cocaine alone. PMID:7954158

  4. Quantifying bank retreat rates with exposed tree roots

    NASA Astrophysics Data System (ADS)

    Stotts, S. N.; O'Neal, M. A.; Pizzuto, J. E.

    2013-12-01

    In this study we use a biometric approach based on anatomical changes in the wood of exposed tree roots to quantify riverbank erosion along South River, Va, a site where commonly applied techniques for determining bank erosion rates are either not appropriate due to the required spatial scale of analysis (i.e., erosion pins, traditional surveys, LiDAR analysis) or have failed to detect obvious erosion (i.e. photogrammetric techniques). We sampled 78 exposed roots from 24 study reaches and processed them both macroscopically (2 to 20 times magnification) and microscopically (20 to 100 times magnification), comparing the estimated erosion rates between levels of magnification and to those obtained with photogrammetric techniques. We found no statistical differences between the output of macroscopic and microscopic analyses (t-test, alpha =0.01) but encountered difficulty in identifying the year of root exhumation in some samples. Therefore, we suggest analyzing roots at both levels of magnification to increase confidence and obtain erosion rate estimates from every sample. When comparing exposed root analysis to photogrammetric techniques, the results indicate that the exposed root approach is a feasible and effective method for estimating decadal to centennial scale bank erosion. In addition to producing erosion rates statistically indistinguishable from photogrammetric techniques (t-test, alpha = 0.01), exposed root analysis demonstrated more consistent detection of erosion. The results of this study indicate that exposed tree root analysis is a robust tool that provides insights into decadal scale erosion where other commonly applied techniques may not be appropriate or easily applied.

  5. The EXPOSE-E Mission on the ISS

    NASA Astrophysics Data System (ADS)

    Rabbow, Elke; Rettberg, Petra; Panitz, Corinna; Reitz, Guenther

    The International Space Station ISS provides a variety of external research platforms for ex-periments aiming at the utilization of space parameters like vacuum, temperature oscillation, extraterrestrial UV and ionizing radiation. For 1.5 years the astrobiological experimental ESA facility EXPOSE-E was accommodated on the EuTEF Platform on one of the external balconies of the Columbus Module with 5 exobio-logical and 3 radiation experiments, exposing the chemical, biological and dosimetric samples to the harsh space environment. The main interest of the experiments was to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigated resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens and plant seeds to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biologi-cal specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation were regularly recorded and down linked by telemetry. The exposure facility EXPOSE-E itself and the accommodated experiments and samples are introduced. A complete Mission overview of this recent long term astrobiological experiment is presented: from the sample preparation and launch to the landing and sample retrieval. Mission data and an assessment of the impacting space parameters during the mission are given. After EXPOSE-E, the sister facility EXPOSE-R was launched and still is in space. A short status information and outlook on this second astrobiological Mission will be included.

  6. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  7. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  8. Lung cancer in rats exposed to fibrogenic dusts

    SciTech Connect

    Holland, L.M.; Wilson, J.S.; Tillery, M.I.; Smith, D.M.

    1984-01-01

    Fischer-344 rats were exposed to quartz dusts and to quartz-bearing oil shale dusts in long-term inhalation studies. Aerosol concentrations of 12 mg/m/sup 3/ and 152-176 mg/m/sup 3/ for quartz and shale dusts, respectively, were used in exposure regimens lasting up to two years. Pulmonary fibrosis was observed in most animals surviving beyond 400 days. Adenocarcinomas and epidermoid carcinomas of the lung were observed in animals from all exposure groups, including those exposed to quartz alone. The pulmonary tumors were a late effect, with the earliest lung tumor being observed after 651 days. 13 references, 10 figures, 4 tables.

  9. Organic samples produced by ion bombardment of ices for the EXPOSE-R2 mission on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baratta, G.; Chaput, D.; Cottin, H.; Fernandez Cascales, L.; Palumbo, M.; Strazzulla, G.

    2014-07-01

    We describe the preparation and characterization (by UV-Vis-IR spectroscopy) of a set of organic samples, stable at room temperature and above, that are part of the experiment "Photochemistry on the Space Station (PSS)" planned to be enclosed in the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS). The organic materials are prepared in the Catania laboratory after 200 keV He+ irradiation of icy mixtures, namely N_2:CH_4:CO deposited at 16 K on MgF_2 windows furnished by European Space Agency. It is widely accepted that such kind of materials produced by energetic processing are representative of organic material in astrophysical environments such as, e.g., comets. Once expelled from comets these materials are exposed to solar radiation during their interplanetary journey before they eventually land on the Earth and other planetary objects where they might give a contribution to the chemical and pre-biotical evolution. In particular our residues contain different chemical groups, including triple CN bonds that are considered relevant to pre-biotic chemistry (e.g. Palumbo et al., 2000). Therefore the samples will be exposed, for several months, to the solar ultraviolet photons that are a major source of energy to initiate chemical evolution in the Solar System. This will allow analysis of their destruction and evaluation of their lifetime in the interplanetary medium. The samples have three different thicknesses (about 200, 130, 65 nm) that will allow the estimation of the depth profile of destruction (e.g., Baratta et al., 2002). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters.

  10. Organic samples produced by ion bombardment of ices for the EXPOSE-R2 mission on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Chaput, D.; Cottin, H.; Fernandez Cascales, L.; Palumbo, M. E.; Strazzulla, G.

    2015-12-01

    We describe the preparation and characterization (by UV-vis-IR spectroscopy) of a set of organic samples, stable at room temperature and above, that are part of the experiment "Photochemistry on the Space Station (PSS)" planned to be enclosed in the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility. The core facility is placed outside the International Space Station (ISS) on the Universal Platform D (URM-D platform) of the Russian module Zvezda. The organic materials are prepared in the Catania laboratory after 200 keV He+ irradiation of icy mixtures, namely N2:CH4:CO deposited at 16 K on MgF2 windows furnished by the European Space Agency. It is widely accepted that such a kind of materials produced by energetic processing are representative of organic material in some astrophysical environments as comets. Once expelled from comets these materials are exposed to solar radiation during their interplanetary journey before they eventually land on Earth and other planetary objects where they might give a contribution to the chemical and pre-biotical evolution. In particular our residues contain different chemical groups, including triple CN bonds that are considered relevant to pre-biotic chemistry. Therefore the samples will be exposed, for several months, to the solar ultraviolet photons that are a major source of energy to initiate chemical evolution in the solar system. This will allow analysis of their destruction or modification and evaluation of their lifetime in the interplanetary medium. The samples have three different thicknesses that will allow estimation of the depth profile of destruction. This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters.

  11. Criteria for Placement Decisions with Cocaine-Exposed Infants.

    ERIC Educational Resources Information Center

    Wightman, Monica J.

    1991-01-01

    Explored the criteria for placement decisions used by child protection workers in three suburban Chicago counties with regard to infants who have been exposed to cocaine. Content analyses uncovered a complex decision-making process that demonstrated consistency across geographic regions. Several primary factors influenced decisions for in-home or…

  12. Detail, oblique view to northeast atop building 935 showing exposed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, oblique view to northeast atop building 935 showing exposed roof sections of buildings 934 (center) and 933 (left), 90 mm lens. - Travis Air Force Base, Nuclear Weapons Assembly Plant 3, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  13. RESPIRATORY DAMAGE IN CHILDREN EXPOSED TO URBAN POLLUTION

    EPA Science Inventory


    Southwest Metropolitan Mexico City (SWMMC) children are chronically exposed to complex mixtures of air pollutants. In a cross-sectional arm of our study, we investigated the association between exposure to SWMMC atmosphere and nasal abnormalities, hyperinflation, and intersti...

  14. 46 CFR 108.223 - Guards on exposed equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards on exposed equipment. 108.223 Section 108.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... contact by personnel. Helicopter Facilities...

  15. Profiles of Reactivity in Cocaine-Exposed Children

    ERIC Educational Resources Information Center

    Schuetze, Pamela; Molnar, Danielle S.; Eiden, Rina D.

    2012-01-01

    This study explored the possibility that specific, theoretically consistent profiles of reactivity could be identified in a sample of cocaine-exposed infants and whether these profiles were associated with a range of infant and/or maternal characteristics. Cluster analysis was used to identify distinct groups of infants based on physiological,…

  16. Genetic Predisposition for Dermal Problems in Hexavalent Chromium Exposed Population

    PubMed Central

    Sharma, Priti; Bihari, Vipin; Agarwal, Sudhir K.; Goel, Sudhir K.

    2012-01-01

    We studied the effect of genetic susceptibility on hexavalent chromium induced dermal adversities. The health status of population was examined from the areas of Kanpur (India) having the elevated hexavalent chromium levels in groundwater. Blood samples were collected for DNA isolation to conduct polymorphic determination of genes, namely: NQO1 (C609T), hOGG1 (C1245G), GSTT1, and GSTM1 (deletion). Symptomatic exposed subjects (n = 38) were compared with asymptomatic exposed subjects (n = 108) along with asymptomatic controls (n = 148) from a non contaminated reference community. Exposed symptomatic group consisted of 36.8% subjects who were GSTM1 null genotyped as compared to asymptomatic where only 19.4% subjects were null. The exposed subjects with GSTM1 null genotype were more susceptible to dermal adversities in comparison with wild genotyped subjects (OR = 2.42; 95% CI = 1.071–5.451). Age, smoking, gender or duration of residence were not found to have any confounding effect towards this association. Association with other genes was not statistically significant, nonetheless, possible contribution by these genes cannot be ruled out. In conclusion, variation in the polymorphic status of GSTM1 gene may influence dermal outcomes among residents from Cr(VI) contaminated areas. Further studies are therefore, needed to examine these observations among different population groups. PMID:22919465

  17. 15. A CLOSE UP VIEW OF ONE OF THE EXPOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. A CLOSE UP VIEW OF ONE OF THE EXPOSED AGGREGATE LAMP STANDARDS, ITS BRONZE DECORATED FERRULE AND BRONZE LENS RECEIVER. - County Line Bridge, Spanning St. Joseph River at State Route 219, 0.6 mile south of U.S. Route 20, Osceola, St. Joseph County, IN

  18. Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite

    EPA Science Inventory

    Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...

  19. Behavioral responses of neonatal chicks exposed to low environmental temperature.

    PubMed

    Mujahid, A; Furuse, M

    2009-05-01

    Research has shown that on exposure to low environmental temperature, neonatal chicks (Gallus gallus) show hypothermia and absence of gene transcript enhancement of putative thermogenic proteins, mitochondrial fatty acid transport, and oxidation enzymes. Various behavioral abnormalities may also decrease the thermogenic capacity of low-temperature-exposed neonatal chicks. Therefore, to investigate behavioral irregularities in low-temperature-exposed (20 degrees C) neonatal chicks, we studied behavioral responses when compared with the control kept at thermoneutral temperature (30 degrees C). Two-day-old chicks (n = 5) were exposed to either low or thermoneutral temperature for 3 h and were then immediately placed in an acrylic monitoring cage (40 x 30 x 20 cm). The monitoring cage was fitted with a 3-dimensional mirror (to prevent isolation-induced stress) and maintained either at 20 or 30 degrees C. Behavioral responses were monitored for 10 min. Behavioral observations revealed that low-temperature exposure decreased distress vocalizations and spontaneous activity. Low-temperature exposure induced sleep-like behavior in neonatal chicks; active wakefulness was decreased while standing or sitting motionless with eyes closed or open and sleeping posture was significantly increased. In conclusion, there is evidence that on exposure to low-temperature, neonatal chicks decrease behavioral activity. Increased sleep-like behavior and decreased activity may reduce heat production in low-temperature-exposed neonatal chicks and could potentiate the sensitivity to cold exposure. PMID:19359677

  20. Cardiovascular response of rats exposed to 60-Hz electric fields

    SciTech Connect

    Hilton, D.I.; Phillips, R.D.

    1980-01-01

    Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 to 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of (1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; (2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and (3) minimizing electric-field-induced vibration of the electrodes and animal cages.

  1. VIEW OF STATION LEARY FACING NORTH SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION LEARY FACING NORTH SHOWING EXPOSED EXTERIOR FRONT OF THE CONCRETE CONCEALMENT INCLUDING POST 1920 DOORWAY ALTERATIONS, SANDSTONE FLANK-WALLS ARE VISIBLE AT REAR SIDES - White's Point Reservation, Base End Stations, B"3, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  2. VIEW OF STATION LEARY FACING NORTHWEST, SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION LEARY FACING NORTHWEST, SHOWING EXPOSED EXTERIOR FRONT AND LEFT SIDE OF THE CONCRETE CONCEALMENT, SANDSTONE FLANKWALL IS VISIBLE AT LEFT REAR - White's Point Reservation, Base End Stations, B"3, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  3. 2. VIEW OF STATION FARLEY FACING NORTH SHOWING EXPOSED EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF STATION FARLEY FACING NORTH SHOWING EXPOSED EXTERIOR FRONT OF THE CONCRETE CONCEALMENT, SANDSTONE FLANK-WALLS ARE VISIBLE AT REAR SIDES. - White's Point Reservation, Base End Stations, B"6, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  4. VIEW OF STATION BARLOW FACING NORTH SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION BARLOW FACING NORTH SHOWING EXPOSED EXTERIOR FRONT OF THE CONCRETE CONCEALMENT, SANDSTONE FLANK-WALL FRAGMENT VISIBLE AT LEFT REAR - White's Point Reservation, Base End Stations, B"1, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  5. 3. VIEW OF STATION PARLEY FACING NORTHWEST, SHOWING EXPOSED EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF STATION PARLEY FACING NORTHWEST, SHOWING EXPOSED EXTERIOR FRONT AND LEFT SIDE OF THE CONCRETE CONCEALMENT, SANDSTONE FLANKWALL IS VISIBLE AT LEFT REAR. - White's Point Reservation, Base End Stations, B"6, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  6. VIEW OF STATION SAXTON FACING NORTH SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION SAXTON FACING NORTH SHOWING EXPOSED EXTERIOR FRONT OF THE CONCRETE CONCEALMENT, SANDSTONE FLANK-WALLS ARE VISIBLE AT REAR SIDES - White's Point Reservation, Base End Stations, B"2, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  7. VIEW OF STATION BARLOW SHOWING EXPOSED EXTERIOR FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION BARLOW SHOWING EXPOSED EXTERIOR FRONT AND LEFT SIDE OF THE CONCRETE CONCEALMENT WITH SANDSTONE FLANK-WALL FRAGMENT, FACING NORTHWEST - White's Point Reservation, Base End Stations, B"1, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  8. EXPOSED BEAM AND VINYL VENTED SOFFIT MATERIAL IN THE CARPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXPOSED BEAM AND VINYL VENTED SOFFIT MATERIAL IN THE CARPORT ON THE SOUTHEAST SIDE OF THE UNIT - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Single-Family Type 6, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  9. PAPILLOMAS ON FISH EXPOSED TO CHLORINATED WASTEWATER EFFLUENT

    EPA Science Inventory

    The presence of carcinogenic and mutagenic chemical(s) in the effluent of a wastewater treatment plant was indicated by papillomas developing on caged black bullheads (Ictaluraus melas), hepatic enzyme induction in exposed fish, and Ames test mutagenicity of organic extracts of t...

  10. Semen study of papaya workers exposed to ethylene dibromide

    SciTech Connect

    Ratcliffe, J.M.; Schrader, S.M.; Steenland, K.; Clapp, D.; Turner, T.

    1984-01-01

    A cross sectional semen and cytogenetic study was performed on male workers exposed to ethylene-dibromide (EDB) in the papaya fumigation industry in Hawaii. Semen analyses were conducted on 46 men in six fumigation facilities with an average length of employment of 5 years and airborne exposures to EDB ranging from 16 to 213 parts per billion. Statistically significant decreases in sperm count per ejaculate and the percentage of viable and motile sperm and increases in the proportion of specific morphological abnormalities were observed among exposed men when compared with controls. Semen volume and sperm concentration were also lower in the exposed group. No effect of exposure to EDB on sperm velocity, the overall proportion of sperm with normal morphology or YFF bodies was noted. The authors conclude that based on the decreases in sperm count, viability and motility and increases in certain types of morphological abnormalities among workers exposed to EDB, EDB may increase the risk of reproductive impairment in workers at exposure levels near the NIOSH recommended limit of 45 parts per billion and far below the current OSHA standard of 20 parts per million.

  11. Youth Exposed to Violence: The Role of Protective Factors

    ERIC Educational Resources Information Center

    Howard, Kimberly A. S.; Budge, Stephanie L.; McKay, Kevin M.

    2010-01-01

    Using a sample of 174 inner-city urban high school students, this study examined the degree to which family and peer support would moderate the negative impact of exposure to violence on academic performance, symptoms of distress, and persistence intentions. Over 94% of the students reported having been exposed to at least one form of community…

  12. How Permanent Is Permanent Placement for Substance-Exposed Infants?

    ERIC Educational Resources Information Center

    Twomey, Jean E.; Lester, Barry M.

    2007-01-01

    The authors describe a study of families in the Family Drug Treatment Court (FTDC), an effort to promote permanent placement for substance-exposed infants within time requirements mandated by the 1997 Adoption and Safe Families Act (ASFA). The purpose of the study was to evaluate parent functioning after FTDC involvement, infant developmental…

  13. VIEW OF STATION OSGOOD FACING NORTHWEST, SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION OSGOOD FACING NORTHWEST, SHOWING EXPOSED EXTERIOR FRONT AND LEFT SIDE OF THE CONCRETE CONCEALMENT, SANDSTONE FLANKWALL IS VISIBLE AT LEFT REAR - White's Point Reservation, Base End Stations, B"5, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  14. VIEW OF STATION OSGOOD FACING NORTH SHOWING EXPOSED EXTERIOR FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STATION OSGOOD FACING NORTH SHOWING EXPOSED EXTERIOR FRONT OF THE CONCRETE CONCEALMENT INCLUDING POST 1920 DOORWAY ALTERATIONS, SANDSTONE FLANK-WALLS ARE VISIBLE AT REAR SIDES - White's Point Reservation, Base End Stations, B"5, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  15. Urologic cancer risks for veterans exposed to Agent Orange.

    PubMed

    Hoenemeyer, Lori A

    2013-01-01

    Agent Orange, an herbicide widely used during the Vietnam War, has been linked to various health risks, including urologic malignancy. Exposed veterans are at risk for prostate cancer and may be entitled to compensation if diagnosed with prostate cancer. Current research studies are aimed at mitigating prostate dysplasia and prostate cancer PMID:23734554

  16. Estimating the Number of Substance-Exposed Infants.

    ERIC Educational Resources Information Center

    Gomby, Deanna S.; Shiono, Patricia H.

    1991-01-01

    Estimates the number of infants exposed to legal and illegal substances before birth, drawing on 27 published reports and National Institute on Drug Abuse data. The following are estimated exposure levels: (1) cocaine, 2-3 percent; (2) marijuana, 3-12 percent; (3) cigarettes, 38 percent; and (4) alcohol, 73 percent. (SLD)

  17. 18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF LOWER PULLEYS OF LEFT-HAND MILL. LOWER LEFT IS BAND SAW PULLEY. UPPER LEFT IS TENSION WHEEL. LARGE PULLEY ON RIGHT IS DRIVE WHEEL FROM POWER SOURCE. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  18. BEHAVIORAL AND AUTONOMIC THERMOREGULATION IN MICE EXPOSED TO MICROWAVE RADIATION

    EPA Science Inventory

    Preferred ambient temperature (T) and breathing rate were measured in free-moving mice exposed to 2,450-MHz microwaves. A waveguide-exposure system was imposed with a longitudinal temperature gradient that permitted mice to select their preferred T. Breathing rate was determined ...

  19. LINER MATERIALS EXPOSED TO TOXIC AND HAZARDOUS WASTES

    EPA Science Inventory

    This exploratory experimental research project was conducted (1975-1983) to assess the relative effectiveness and durability of a wide variety of liner materials when exposed to hazardous wastes under conditions that simulate different aspects of service in on-land waste storage ...

  20. LINER MATERIALS EXPOSED TO HAZARDOUS AND TOXIC WASTES

    EPA Science Inventory

    This exploratory experimental research project was conducted (1975-1983) to assess the relative effectiveness and durability of a wide variety of liner materials when exposed to hazardous wastes under conditions that simulate different aspects of service in on-land waste storage ...

  1. CUTICULAR LESIONS INDUCED IN GRASS SHRIMP EXPOSED TO HEXAVALENT CHROMIUM

    EPA Science Inventory

    Adult grass shrimp were exposed to four concentrations (0.5, 1.0, 2.0 and 4.0 ppm) of hexavalent chromium for 38 days. At the end of the exposure period, over 50% of the surviving shrimp possessed cuticular lesions that had many of the gross characteristics of 'shell disease.' Th...

  2. RESPONSE OF BUSH BEAN EXPOSED TO ACID MIST

    EPA Science Inventory

    Bush bean plants (Phaseolus vulgaris L. cv. Contender) were treated once a week for six weeks with simulated acid mist at five pH ranging from 5.5 to 2.0. Leaf injury developed on plants exposed to acid concentrations below pH 3 and many leaves developed a flecking symptom simila...

  3. The ROSE experiments on the EXPOSE facility of the ISS

    NASA Astrophysics Data System (ADS)

    Panitz, C.; Rettberg, P.; Rabbow, E.; Horneck, G.

    2001-08-01

    EXPOSE is a multi-user facility to be mounted outside of the International Space Station (ISS). The tray-like structure will accomodate among others 6 biological PI-experiments or experiment systems of the ROSE (Responses of Organisms to the Space Environment) consortium. EXPOSE will support long-term in situ studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches, such as endolithic and evaporitic ecosystems. Each compartment is either vented, i.e. open to space vacuum, or sealed and then provided with a defined gas environment. The experiment pockets will be covered by an optical filter system to control intensity and spectral range of solar UV irradiation. To achieve maximum insolation, EXPOSE is mounted on a coarse pointing device. Control of sun exposure will be achieved by use of shutters. EXPOSE has been selected for the Early Utilisation Period of the ISS and will stay in space for 1.5 years. The results will contribute to our understanding of photobiological processes in simulated radiation climates of planets (e.g. early Earth, early and present Mars, and the role of the ozone layer in protecting the biosphere from harmful UV-B radiation), as well as studies of the probabilities and limitations for life to be distributed beyond its planet of origin.

  4. WATER RELATIONS OF DIFFERENTIALLY IRRIGATED COTTON EXPOSED TO OZONE

    EPA Science Inventory

    This field study was conducted to test the hypothesis that plants chronically exposed to be sore susceptible to drought because typically inhibits root growth and increases shoot-root ratios implants. otton was grown in open-top chambers on Hanford coarse sandy loam in Riverside,...

  5. 26. ROOM 210, VIEW TO THE SOUTHEAST. EXPOSED TIE BEAMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. ROOM 210, VIEW TO THE SOUTHEAST. EXPOSED TIE BEAMS AT CEILING ARE BOXED IN PLYWOOD. WAINSCOTING IS PLYWOOD PANELING. CEILING AND UPPER WALL TREATMENT IS GYPSUM BOARD. CLERESTORY WINDOWS LINE BOTH LONG SIDES OF ROOM. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  6. 24. VIEW OF NORTHWEST WALL IN ROOM 209, RESTROOM. EXPOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF NORTHWEST WALL IN ROOM 209, RESTROOM. EXPOSED BEAM RUNS ALONG NORTHWEST WALL. 3X3 LITE WINDOW IS IN THE NORTHEAST WALL. FLOOR TREATMENT IS WOOD, WALLS ARE GYPSUM BOARD. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  7. A pill to treat people exposed to radioactive materials

    SciTech Connect

    Abergel, Rebecca

    2013-10-31

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  8. Embryo- and fetotoxicity of chromium in pregestationally exposed mice

    SciTech Connect

    Junaid, M.; Murthy, R.C.; Saxena, D.K.

    1996-10-01

    Chromium, an essential element in the human body required for proper carbohydrate, protein, and fat metabolism, is reported to impair gestational development of offspring of workers chronically exposed to this metal in the work place. Workers in chromium based industries can be exposed to concentrations two orders of magnitude higher than the general population. Among the general population, residents living near chromate production sites may be exposed to high levels of chromium (VI) in air or to elevated levels (40 - 50,000 ppm) of chromium in effluents. Shmitova reported afterbirth and puerperal hemorrhages in women industrially exposed to this metal and observed high chromium levels in blood and urine of pregnant women and in fetal and cord blood. Chromium readily passes the placental barrier and reaches the growing fetus. Exposure of mice to chromium during various gestational periods resulted in embryo and fetotoxic effects. This study looks at the role of body chromium accumulated pregestationally on embryo and fetal development and its subsequent transfer to feto-placental sites. 25 refs., 3 tabs.

  9. 12. A LONG RUN OF EXPOSED TOP SURFACE, NORTH TRAINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. A LONG RUN OF EXPOSED TOP SURFACE, NORTH TRAINING WALL, ABOUT 1,500 FEET EAST OF THE FEDERAL CHANNEL MOUTH. VIEW TO WEST, TOWARD SAN FRANCISCO. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  10. REPRODUCTIVE DEVELOPMENT IN MALE DEER MICE EXPOSED TO AGGRESSIVE BEHAVIOR

    EPA Science Inventory

    Male deer mice (Peromyscus maniculatus bairdii) were reared in a long photoperiod and housed individually from 3 weeks of age until they were killed 2, 4, or 6 weeks later. Males that were exposed to aggressive females for 2 min, three times per week, were of normal body weight a...

  11. 18. INTERIOR OF ROOM 106 LOOKING SOUTHEAST. EXPOSED BEAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR OF ROOM 106 LOOKING SOUTHEAST. EXPOSED BEAM AT CEILING IS PAINTED. FLOOR IS VINYL COMPOSITION TILE. WALLS AND CEILING ARE PAINTED GYPSUM BOARD. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  12. Testing the flammability of materials exposed to arcs

    NASA Technical Reports Server (NTRS)

    Hamlett, B. J.; Krupski, A. L.

    1969-01-01

    Apparatus tests flammability and ignition characteristics of materials in close proximity to incandescent metal fragments or spalls ejected from intermittent short circuit arcs in air or oxygen rich atmospheres. It simulates a situation where an exposed live wire makes contact with a grounded member in areas containing organic matter.

  13. CHEMICAL CONTAMINANTS IN NONOCCUPATIONALLY EXPOSED U.S. RESIDENTS

    EPA Science Inventory

    The report reviews the manner in which chemical contaminants found in nonoccupationally exposed U.S. residents enter the environment and subsequently human tissue. Approximately 100 contaminants are treated. Sources of literature used in the survey covered a 30-year period, the b...

  14. Charging time for dust grain on surface exposed to plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2013-04-01

    We consider the charging of a dust grain sitting on a surface exposed to plasma. The stochastic model of Sheridan and Hayes [Appl. Phys. Lett. 98, 091501 (2011)] is solved analytically for the charging time, which is found to be directly proportional to the square root of the electron temperature and inversely proportional to both the grain radius and plasma density.

  15. Diversity, Value and Technology: Exposing Value Pluralism in Institutional Strategy

    ERIC Educational Resources Information Center

    Johnson, Mark; Smyth, Keith

    2011-01-01

    Purpose: The purpose of the paper is to explore ways in which value pluralism in institutional learning-technology strategy can be exposed and managed with the use of learning activities involving stakeholder groups across and between educational institutions. Design/methodology/approach: The case-study of a series of national workshops on…

  16. A pill to treat people exposed to radioactive materials

    ScienceCinema

    Abergel, Rebecca

    2014-06-24

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  17. A Care Coordination Program for Substance-Exposed Newborns

    ERIC Educational Resources Information Center

    Twomey, Jean E.; Caldwell, Donna; Soave, Rosemary; Fontaine, Lynne Andreozzi; Lester, Barry M.

    2011-01-01

    The Vulnerable Infants Program of Rhode Island (VIP-RI) was established as a care coordination program to promote permanency for substance-exposed newborns in the child welfare system. Goals of VIP-RI were to optimize parents' opportunities for reunification and increase the efficacy of social service systems involved with families affected by…

  18. Preventing Alcohol-Exposed Pregnancy among American-Indian Youth

    ERIC Educational Resources Information Center

    Jensen, Jamie; Kenyon, DenYelle Baete; Hanson, Jessica D.

    2016-01-01

    Research has determined that the prevention of alcohol-exposed pregnancies (AEP) must occur preconceptually, either by reducing alcohol intake in women planning pregnancy or at risk for becoming pregnant, or by preventing pregnancy in women drinking at risky levels. One such AEP prevention programme with non-pregnant American-Indian (AI) women is…

  19. 29. VIEW WEST TOWARDS KALAWAO OF PIPELINE, EXPOSED AT LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW WEST TOWARDS KALAWAO OF PIPELINE, EXPOSED AT LOWER LEFT. CAT TRACKS, MADE BY THE CONSTRUCTION/MAINTENANCE VEHICLES, CAN BE SEEN ALONG BOULDER BEACH - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  20. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  1. Elevation, looking SE. Concrete and steel bridge with exposed steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation, looking SE. Concrete and steel bridge with exposed steel frame is the central of three bridges crossing Brush Street between east Baltimore and Piquette. The bridge links Old Lake Shore and Michigan Central Main Line on the western side to a New York Central siding on the eastern side - Railroad Overpass, East Milwaukee & Hastings Avenues, Detroit, MI

  2. Obstetric Outcomes of Mothers Previously Exposed to Sexual Violence

    PubMed Central

    Gisladottir, Agnes; Luque-Fernandez, Miguel Angel; Harlow, Bernard L.; Gudmundsdottir, Berglind; Jonsdottir, Eyrun; Bjarnadottir, Ragnheidur I.; Hauksdottir, Arna; Aspelund, Thor; Cnattingius, Sven; Valdimarsdottir, Unnur A.

    2016-01-01

    Background There is a scarcity of data on the association of sexual violence and women's subsequent obstetric outcomes. Our aim was to investigate whether women exposed to sexual violence as teenagers (12–19 years of age) or adults present with different obstetric outcomes than women with no record of such violence. Methods We linked detailed prospectively collected information on women attending a Rape Trauma Service (RTS) to the Icelandic Medical Birth Registry (IBR). Women who attended the RTS in 1993–2010 and delivered (on average 5.8 years later) at least one singleton infant in Iceland through 2012 formed our exposed cohort (n = 1068). For each exposed woman's delivery, nine deliveries by women with no RTS attendance were randomly selected from the IBR (n = 9126) matched on age, parity, and year and season of delivery. Information on smoking and Body mass index (BMI) was available for a sub-sample (n = 792 exposed and n = 1416 non-exposed women). Poisson regression models were used to estimate Relative Risks (RR) with 95% confidence intervals (CI). Results Compared with non-exposed women, exposed women presented with increased risks of maternal distress during labor and delivery (RR 1.68, 95% CI 1.01–2.79), prolonged first stage of labor (RR 1.40, 95% CI 1.03–1.88), antepartum bleeding (RR 1.95, 95% CI 1.22–3.07) and emergency instrumental delivery (RR 1.16, 95% CI 1.00–1.34). Slightly higher risks were seen for women assaulted as teenagers. Overall, we did not observe differences between the groups regarding the risk of elective cesarean section (RR 0.86, 95% CI 0.61–1.21), except for a reduced risk among those assaulted as teenagers (RR 0.56, 95% CI 0.34–0.93). Adjusting for maternal smoking and BMI in a sub-sample did not substantially affect point estimates. Conclusion Our prospective data suggest that women with a history of sexual assault, particularly as teenagers, are at increased risks of some adverse obstetric outcomes. PMID:27007230

  3. Exposed Ice in the Northern Mid-Latitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2007-01-01

    Ice-Rich Layer: Polygonal features with dimensions of approximately 100 meters, bounded by cracks, are commonly observed on the martian northern plains. These features are generally attributed to thermal cracking of ice-rich sediments, in direct analogy to polygons in terrestrial polar regions. We mapped polygons in the northern mid-latitudes (30 to 65 N) using MOC and HiRISE images. Polygons are scattered across the northern plains, with a particular concentration in western Utopia Planitia. This region largely overlaps the Late Amazonian Astapus Colles unit, characterized by polygonal terrain and nested pits consistent with periglacial and thermokarst origins. Bright and Dark Polygonal Cracks: An examination of all MOC images (1997 through 2003) covering the study area demonstrated that, at latitudes of 55 to 65 N, most of the imaged polygons show bright bounding cracks. We interpret these bright cracks as exposed ice. Between 40 and 55 N, most of the imaged polygons show dark bounding cracks. These are interpreted as polygons from which the exposed ice has been removed by sublimation. The long-term stability limit for exposed ice, even in deep cracks, apparently lies near 55 N. Bright and Dark Spots: Many HiRISE and MOC frames showing polygons in the northern plains also show small numbers of bright and dark spots, particularly in western Utopia Planitia. Many of the spots are closely associated with collapse features suggestive of thermokarst. The spots range from tens to approximately 100 meters in diameter. The bright spots are interpreted as exposed ice, due to their prevalence on terrain mapped as ice rich. The dark spots are interpreted as former bright spots, which have darkened as the exposed ice is lost by sublimation. The bright spots may be the martian equivalents of pingos, ice-cored mounds found in periglacial regions on Earth. Terrestrial pingos from which the ice core has melted often collapse to form depressions similar to the martian dark spots

  4. Behavioural evaluation of workers exposed to mixtures of organic solvents.

    PubMed Central

    Maizlish, N A; Langolf, G D; Whitehead, L W; Fine, L J; Albers, J W; Goldberg, J; Smith, P

    1985-01-01

    Reports from Scandinavia have suggested behavioural impairment among long term workers exposed to solvents below regulatory standards. A cross sectional study of behavioural performance was conducted among printers and spray painters exposed to mixtures of organic solvents to replicate the Scandinavian studies and to examine dose-response relationships. Eligible subjects consisted of 640 hourly workers from four midwestern United States companies. Of these, 269 responded to requests to participate and 240 were selected for study based on restrictions for age, sex, education, and other potentially confounding variables. The subjects tested had been employed on average for six years. Each subject completed an occupational history, underwent a medical examination, and completed a battery of behavioural tests. These included the Fitts law psychomotor task, the Stroop colour-word test, the Sternberg short term memory scanning test, the short term memory span test, and the continuous recognition memory test. Solvent exposure for each subject was defined as an exposed or non-exposed category based on a plant industrial hygiene walk-through and the concentration of solvents based on an analysis of full shift personal air samples by gas chromatography. The first definition was used to maintain consistency with Scandinavian studies, but the second was considered to be more accurate. The average full shift solvent concentration was 302 ppm for the printing plant workers and 6-13 ppm for the workers at other plants. Isopropanol and hexane were the major components, compared with toluene in Scandinavian studies. Performance on behavioural tests was analysed using multiple linear regression with solvent concentration as an independent variable. Other relevant demographic variables were also considered for inclusion. No significant (p greater than 0.05) relation between solvent concentration and impairment on any of the 10 behavioural variables was observed after controlling for

  5. Newborn Hearing Screening in Neonates Exposed to Psychoactive Drugs

    PubMed Central

    Rocha, Bruna Salazar Castro da; Machado, Márcia Salgado; Zanini, Cláudia Fernandes Costa; Paniz, Tatiana de Carvalho; Menegotto, Isabela Hoffmeister

    2013-01-01

    Introduction In pregnancy, the mother and fetus share body structures based on the maternal organism. Exposure to psychoactive drugs in this period may have repercussions on the baby's hearing. Therefore, it is necessary to investigate this association. Aim Analyze the results of newborn hearing screening (NHS), the occurrence of associated risk factors, and the incidence of hearing loss in newborn exposed to psychoactive drugs during pregnancy. Methods This is an observational retrospective study done from a database analysis. From this database, records were selected about the use of psychoactive drugs by mothers during pregnancy, then the neonates were divide into two groups: the study group (146 babies exposed to drugs) and the control group (500 babies not exposed to drugs). The NHS failure rate, the presence of risk factors for hearing loss, and need for audiological diagnosis were analyzed in both groups. From these variables, absolute frequency and prevalence rates were calculated and the results compared between groups. Results There was no statistically significant difference in the comparison of NHS failure rates between the groups (p = 0.267). The occurrence of risk factors for hearing loss was greater in babies exposed to drugs (p < 0.0001). There was only one diagnosis of hearing loss, which occurred in the control group (p = 0.667). Conclusion The use of psychoactive drugs by mothers during pregnancy did not affect the NHS failure rate of this sample. However, the occurrence of significant risk factors in the study group showed a possible sensitivity of babies exposed to psychoactive drugs during pregnancy. PMID:25992062

  6. Measurement of DNA repair deficiency in workers exposed to benzene

    SciTech Connect

    Hallberg, L.M.; Au, W.W.; El Zein, R.; Grossman, L.

    1996-05-01

    We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m{sup 2} UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m{sup 2} and 350 J/m{sup 2} were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (<0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay. 26 refs., 4 figs., 2 tabs.

  7. Measurement of DNA repair deficiency in workers exposed to benzene.

    PubMed Central

    Hallberg, L M; el Zein, R; Grossman, L; Au, W W

    1996-01-01

    We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m2 UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m2 and 350 J/m2 were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (< 0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay. PMID:8781377

  8. Exposed tibial bone after burns: Flap reconstruction versus dermal substitute.

    PubMed

    Verbelen, Jozef; Hoeksema, Henk; Pirayesh, Ali; Van Landuyt, Koenraad; Monstrey, Stan

    2016-03-01

    A 44 years old male patient had suffered extensive 3rd degree burns on both legs, undergoing thorough surgical debridement, resulting in both tibias being exposed. Approximately 5 months after the incident he was referred to the Department of Plastic and Reconstructive Surgery of the University Hospital Gent, Belgium, to undergo flap reconstruction. Free flap surgery was performed twice on both lower legs but failed on all four occasions. In between flap surgery, a dermal substitute (Integra(®)) was applied, attempting to cover the exposed tibias with a layer of soft tissue, but also without success. In order to promote the development of granulation tissue over the exposed bone, small holes were drilled in both tibias with removal of the outer layer of the anterior cortex causing the bone to bleed and subsequently negative pressure wound therapy (NPWT) was applied. The limited granulation tissue resulting from this procedure was then covered with a dermal substitute (Glyaderm(®)), consisting of acellular human dermis with an average thickness of 0.25mm. This dermal substitute was combined with a NPWT-dressing, and then served as an extracellular matrix (ECM), guiding the distribution of granulation tissue over the remaining areas of exposed tibial bone. Four days after initial application of Glyaderm(®) combined with NPWT both tibias were almost completely covered with a thin coating of soft tissue. In order to increase the thickness of this soft tissue cover two additional layers of Glyaderm(®) were applied at intervals of approximately 1 week. One week after the last Glyaderm(®) application both wounds were autografted. The combination of an acellular dermal substitute (Glyaderm(®)) with negative pressure wound therapy and skin grafting proved to be an efficient technique to cover a wider area of exposed tibial bone in a patient who was not a candidate for free flap surgery. An overview is also provided of newer and simpler techniques for coverage of

  9. Profiles of Reactivity in Cocaine-Exposed Children

    PubMed Central

    Schuetze, Pamela; Molnar, Danielle S.; Eiden, Rina D.

    2012-01-01

    This study explored the possibility that specific, theoretically consistent profiles of reactivity could be identified in a sample of cocaine-exposed infants and whether these profiles were associated with a range of infant and/or maternal characteristics. Cluster analysis was used to identify distinct groups of infants based on physiological, behavioral and maternal reported measures of reactivity. Five replicable clusters were identified which corresponded to 1) Dysregulated/High Maternal Report Reactors, 2) Low Behavioral Reactors, 3) High Reactors, 4) Optimal Reactors and 5) Dysregulated/Low Maternal Report Reactors. These clusters were associated with differences in prenatal cocaine exposure status, birthweight, maternal depressive symptoms, and maternal negative affect during mother-infant interactions. These results support the presence of distinct reactivity profiles among high risk infants recruited on the basis of prenatal cocaine exposure and demographically similar control group infants not exposed to cocaine. PMID:23204615

  10. Radiation effects on ETFE polymer exposed to glow discharge

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Abidzina, Volha; de Almeida, Adelaide; Budak, Satilmis; Tereshko, I.; Elkin, I.; Ila, Daryush

    2007-08-01

    The polymer ethylenetetrafluoroethylene (ETFE) is composed of alternating ethylene and tetrafluoroethylene segments. Because it has applications in areas such as medical physics and industrial coatings, there is a great interest in surface modification studies of ETFE polymer. When this material is exposed to ionizing radiation it suffers damage that depends on the type, energy and intensity of the irradiation. In order to determine the radiation damage mechanism from exposure to low voltage plasma, ETFE films were exposed to residual gas plasma in glow discharge regime to a fluence of 2 × 1017 ions/cm2. Irradiated films were analyzed with optical absorption photospectrometry, Fourier transform infrared (FTIR) and Raman spectroscopy to determine the chemical nature of the structural changes caused by low energy glow discharge.

  11. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  12. Immunoglobulin levels and cellular immune function in lead exposed workers.

    PubMed

    Queiroz, M L; Perlingeiro, R C; Bincoletto, C; Almeida, M; Cardoso, M P; Dantas, D C

    1994-02-01

    The immunological status of lead acid battery workers with blood lead levels and urinary delta-aminolevulinic acid (ALA-U) concentrations ranging from safe to toxic levels has been examined and compared with those of non-exposed, age and sex matched controls. No differences in the serum concentrations of IgG, IgA and IgM between the populations were observed and there existed no correlation between blood lead level or ALA-U concentrations and serum immunoglobulin levels. In addition assessment was made of the capacity of peripheral blood mononuclear cells to respond to the mitogen phytohaemagglutinin (PHA), a correlate of T cell function. As before, there was no difference between exposed and control populations and no correlation between reactivity and blood lead concentration. Our data suggest that chronic exposure to lead fail to compromise lymphocyte function in man. PMID:8169320

  13. Personality and psychopathological profiles in individuals exposed to mobbing.

    PubMed

    Girardi, Paolo; Monaco, Edoardo; Prestigiacomo, Claudio; Talamo, Alessandra; Ruberto, Amedeo; Tatarelli, Roberto

    2007-01-01

    Increasingly, mental health and medical professionals have been asked to assess claims of psychological harm arising from harassment at the workplace, or "mobbing." This study assessed the personality and psychopathological profiles of 146 individuals exposed to mobbing using validity, clinical, and content scales of the Minnesota Multiphasic Personality Inventory 2. Profiles and factor analyses were obtained. Two major dimensions emerged among those exposed to mobbing: (a) depressed mood, difficulty in making decisions, change-related anguish, and passive-aggressive traits (b) somatic symptoms, and need for attention and affection. This cross-sectional pilot study provides evidence that personality profiles of mobbing victims and psychological damage resulting from mobbing may be evaluated using standardized assessments, though a longitudinal study is needed to delineate cause-and-effect relationships. PMID:17479554

  14. Temperature increase in the fetus exposed to UHF RFID readers.

    PubMed

    Fiocchi, Serena; Parazzini, Marta; Liorni, Ilaria; Samaras, Theodoros; Ravazzani, Paolo

    2014-07-01

    Exposure to electromagnetic fields (EMFs) has prominently increased during the last decades due to the rapid development of new technologies. Among the various devices emitting EMFs, those based on Radio-frequency identification (RFID) technologies are used in all aspects of everyday life, and expose people unselectively. This scenario could pose a potential risk for some groups of the general population, such as pregnant women, who are expected to be possibly more sensitive to the thermal effects produced by EMF exposure. This is the first paper that addresses the estimation of temperature rise in two pregnant women models exposed to ultrahigh frequency RFID by computational techniques. Results show that the maximum temperature increase of the fetus and of the pregnancy-related tissues is relatively high (even about 0.7 °C), not too far from the known threshold of biological effects. However, this increase is confined to a small volume in the tissues. PMID:24956619

  15. Skin friction measurement with partially exposed polymer dispersed liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Partially exposed polymer dispersed liquid crystal thin film (10-25 microns) deposited on a flat glass substrate has been used for the first time to measure skin friction. Utilizing the shear-stress-induced director reorientation in the partially exposed liquid-crystal droplets, optical transmission under crossed polarization has been measured as a function of the air flow differential pressure. Direct measurement of the skin friction with a skin friction drag balance, under the same aerodynamic conditions, lets us correlate the skin friction with optical transmission. This provides a unique technique for the direct measurement of skin friction from the transmitted light intensity. The results are in excellent agreement with the model suggested in this paper.

  16. Immunogenicity of Hepatitis B Vaccine in HIV Exposed Uninfected Infants.

    PubMed

    Singh, Dharmendra K; Kumar, Rajnish; Rai, Ruchi; Maurya, Manisha; Bhargava, Anudita

    2016-02-01

    There is paucity of knowledge about the immunogenicity of vaccines in infants who have been exposed to HIV in-utero but have remained uninfected. The authors studied the immunogenicity of 3 doses of recombinant hepatitis B vaccine at 6,10,14 wk of age in HIV exposed but uninfected (HEU) infants. After 3 mo of last dose of the vaccine, out of 26 infants, 23 (89.5 %) infants were found to be responders (Anti HBs IgG titres ≥ 10 mIU/ml) and 3 (11.5 %) babies remained non responders (Anti HBs IgG titres < 10 mIU/ml). The proportion of babies who were non responders were higher when compared to similar studies done on unexposed and uninfected infants, suggesting a poorer immunogenicity of hepatitis B vaccine in these infants. PMID:26452493

  17. Mechanisms of gas precipitation in plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Kolasinski, R. D.; Cowgill, D. F.; Donovan, D. C.; Shimada, M.; Wampler, W. R.

    2013-07-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  18. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  19. Hierarchical structures of rutile exposing high-index facets

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Kato, Hideki; Kobayashi, Makoto; Kakihana, Masato

    2015-05-01

    Recently, shape-controlled synthesis of crystals exposing high-index facets has attracted much research interest due to their importance for both fundamental studies and technological applications. Herein, crystals of rutile-type TiO2 with hierarchical structures exposing high-index facets have been synthesized by a facile hydrothermal method using water-soluble titanium complex as a precursor and picolinic acid as structure-directing and shape-controlling agents. The synthesized particles were composed of several branches of pyramidal crystals with relatively smooth surface. On the basis of investigation results, it was speculated that the mutual π-stacking and selective adsorption of picolinic acid on specific {111} facets resulted in the formation of rutile crystals bound by high-index surfaces such as {331}.

  20. Pseudohyphal variations of yeasts exposed to specific space flight parameters.

    PubMed

    Volz, P A; Hunter, R L

    1998-01-01

    Phenotypes of Saccharomyces cerevisiae and Rhodotorula rubra exposed to specific parameters of space flight, which were measured both quantitatively and qualitatively, produced variations in pseudohyphal formation. Both the length of the parent and branch psuedohyphal filaments varied according to specific wavelengths and energy levels of UV light exposures when phenotypic isolates were compared with the parent or ground control isolate of each yeast species. PMID:9881461

  1. Toxicity of lunar dust assessed in inhalation-exposed rats.

    PubMed

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats. PMID:24102467

  2. Occupational hypersensitivity pneumonitis in a smelter exposed to zinc fumes

    SciTech Connect

    Ameille, J.; Brechot, J.M.; Brochard, P.; Capron, F.; Dore, M.F. )

    1992-03-01

    A smelter exposed to zinc fumes reported severe recurrent episodes of cough, dyspnea and fever. Bronchoalveolar lavage showed a marked increase in lymphocytes count with predominance of CD8 T-lymphocytes. Presence of zinc in alveolar macrophages was assessed by analytic transmission electron microscopy. This is the first case of recurrent bronchoalveolitis related to zinc exposure in which the clinical picture and BAL results indicate a probable hypersensitivity pneumonitis.

  3. Potential contribution of exposed resin to ecosystem emissions of monoterpenes

    NASA Astrophysics Data System (ADS)

    Eller, Allyson S. D.; Harley, Peter; Monson, Russell K.

    2013-10-01

    Conifers, especially pines, produce and store under pressure monoterpene-laden resin in canals located throughout the plant. When the plants are damaged and resin canals punctured, the resin is exuded and the monoterpenes are released into the atmosphere, a process that has been shown to influence ecosystem-level monoterpene emissions. Less attention has been paid to the small amounts of resin that are exuded from branches, expanding needles, developing pollen cones, and terminal buds in the absence of any damage. The goal of this study was to provide the first estimate of the potential of this naturally-exposed resin to influence emissions of monoterpenes from ponderosa pine (Pinus ponderosa) ecosystems. When resin is first exuded as small spherical beads from undamaged tissues it emits monoterpenes to the atmosphere at a rate that is four orders of magnitude greater than needle tissue with an equivalent exposed surface area and the emissions from exuded beads decline exponentially as the resin dries. We made measurements of resin beads on the branches of ponderosa pine trees in the middle of the growing season and found, on average, 0.15 cm2 of exposed resin bead surface area and 1250 cm2 of total needle surface area per branch tip. If the resin emerged over the course of 10 days, resin emissions would make up 10% of the ecosystem emissions each day. Since we only accounted for exposed resin at a single point in time, this is probably an underestimate of how much total resin is exuded from undamaged pine tissues over the course of a growing season. Our observations, however, reveal the importance of this previously unrecognized source of monoterpenes emitted from pine forests and its potential to influence regional atmospheric chemistry dynamics.

  4. 16. INTERIOR OF ROOM 105 LOOKING TOWARD SOUTHEAST WALL. EXPOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF ROOM 105 LOOKING TOWARD SOUTHEAST WALL. EXPOSED POST EXISTS IN MIDDLE OF ROOM. A SMALL OPENING HAS BEEN CUT INTO THE UPPER PORTION OF THE SOUTHEAST WALL THROUGH TO THE ADJOINING ROOM (106). GYPSUM BOARD ON WALLS WITH WOOD TRIM, FLUORESCENT LIGHTING, AND VINYL COMPOSITION TILE ON FLOORS ARE ALL LATER ADDITIONS. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  5. Bile and liver metallothionein behavior in copper-exposed fish.

    PubMed

    Hauser-Davis, Rachel A; Bastos, Frederico F; Tuton, Bernardo; Chávez Rocha, Rafael; Saint' Pierre, Tatiana; Ziolli, Roberta L; Arruda, Marco A Z

    2014-01-01

    The present study analyzed metallothionein (MT) excretion from liver to bile in Nile Tilapia (Oreochromis niloticus) exposed to sub-lethal copper concentrations (2mgL(-1)) in a laboratory setting. MTs in liver and bile were quantified by spectrophotometry after thermal incubation and MT metal-binding profiles were characterized by size exclusion high performance liquid chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS). Results show that liver MT is present in approximately 250-fold higher concentrations than bile MT in non-exposed fish. Differences between the MT profiles from the control and exposed group were observed for both matrices, indicating differential metal-binding behavior when comparing liver and bile MT. This is novel data regarding intra-organ MT comparisons, since differences between organs are usually present only with regard to quantification, not metal-binding behavior. Bile MT showed statistically significant differences between the control and exposed group, while the same did not occur with liver MT. This indicates that MTs synthesized in the liver accumulate more slowly than MTs excreted from liver to bile, since the same fish presented significantly higher MT levels in liver when compared to bile. We postulate that bile, although excreted in the intestine and partially reabsorbed by the same returning to the liver, may also release MT-bound metals more rapidly and efficiently, which may indicate an efficient detoxification route. Thus, we propose that the analysis of bile MTs to observe recent metal exposure may be more adequate than the analysis of liver MTs, since organism responses to metals are more quickly observed in bile, although further studies are necessary. PMID:24210855

  6. Toxicity of lunar dust assessed in inhalation-exposed rats

    PubMed Central

    Lam, Chiu-wing; Scully, Robert R.; Zhang, Ye; Renne, Roger A.; Hunter, Robert L.; McCluskey, Richard A.; Chen, Bean T.; Castranova, Vincent; Driscoll, Kevin E.; Gardner, Donald E.; McClellan, Roger O.; Cooper, Bonnie L.; McKay, David S.; Marshall, Linda; James, John T.

    2015-01-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m3 of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m3. This 4-week exposure study in rats showed that 6.8 mg/m3 was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats. PMID:24102467

  7. Erythrocytes from ozone-exposed mice exhibit decreased deformability

    SciTech Connect

    Morgan, D.L.; Dorsey, A.F.; Menzel, D.B.

    1985-02-01

    Injury from short-term exposure to ozone (O/sub 3/) was detected by a simple test of red blood cell (RBC) filterability. This test measures changes in the ability of the RBC to deform--as occurs during passage through small capillaries. Male CD-1 mice were exposed to 1.0, 0.7, or 0.3 ppm O/sub 3/ for 4 hr, and blood samples were obtained by heart puncture. RBCs were suspended in Tris-HCl buffer, pH 7.4, containing 10 mg/dl glucose. After incubation in air for up to 6 hr, the time required for 2 ml RBC suspension to pass through a 3-micron-pore-size polycarbonate filter was determined. A significant increase in the 6-hr filtration time for O/sub 3/-exposed (1.0 ppm) mice over unexposed mice and a lack of protection by vitamin E were shown. The increases in RBC filtration times for O/sub 3/-exposed mice appeared to be dose related. Ozone exposure (1.0 ppm) caused a significant increase in the hematocrit of both vitamin E-deficient and -supplemented mice. Vitamin E supplementation appeared to partially prevent this increase in hematocrit. Measurement of lipid peroxidation by the thiobarbituric acid (TBA) test revealed no detectable levels of TBA-reactive material in RBC from O/sub 3/-exposed mice. These results suggest that measurement of RBC filterability may be feasible as a clinical test for short-term injury from exposure to oxidant gases.

  8. Maize pollen is an important allergen in occupationally exposed workers

    PubMed Central

    2011-01-01

    Background The work- or environmental-related type I sensitization to maize pollen is hardly investigated. We sought to determine the prevalence of sensitization to maize pollen among exposed workers and to identify the eliciting allergens. Methods In July 2010, 8 out of 11 subjects were examined who were repeatedly exposed to maize pollen by pollinating maize during their work in a biological research department. All 8 filled in a questionnaire and underwent skin prick testing (SPT) and immune-specific analyses. Results 5 out of the 8 exposed subjects had repeatedly suffered for at least several weeks from rhinitis, 4 from conjunctivitis, 4 from urticaria, and 2 from shortness of breath upon occupational exposure to maize pollen. All symptomatic workers had specific IgE antibodies against maize pollen (CAP class ≥ 1). Interestingly, 4 of the 5 maize pollen-allergic subjects, but none of the 3 asymptomatic exposed workers had IgE antibodies specific for grass pollen. All but one of the maize pollen-allergic subjects had suffered from allergic grass pollen-related symptoms for 6 to 11 years before job-related exposure to maize pollen. Lung function testing was normal in all cases. In immunoblot analyses, the allergenic components could be identified as Zea m 1 and Zea m 13. The reactivity is mostly caused by cross-reactivity to the homologous allergens in temperate grass pollen. Two sera responded to Zea m 3, but interestingly not to the corresponding timothy allergen indicating maize-specific IgE reactivity. Conclusion The present data suggest that subjects pollinating maize are at high risk of developing an allergy to maize pollen as a so far underestimated source of occupational allergens. For the screening of patients with suspected maize pollen sensitization, the determination of IgE antibodies specific for maize pollen is suitable. PMID:22165847

  9. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  10. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  11. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  12. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  13. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  14. Outcomes for Drug-Exposed Children Four Years Post-Adoption.

    ERIC Educational Resources Information Center

    Barth, Richard P.; Needell, Barbara

    1996-01-01

    Prenatally drug-exposed and not drug-exposed children adopted as infants and older children were compared four years after adoption on a range of outcome indicators. Drug-exposed and not drug-exposed children were alike on most outcome indicators, and parental satisfaction with the adoption was high and equivalent for parents of both groups. (TJQ)

  15. Reproduction success of American kestrels exposed to dietary polychlorinated biphenyls.

    PubMed

    Fernie, K J; Smits, J E; Bortolotti, G R; Bird, D M

    2001-04-01

    While reproduction of wild birds is adversely affected by multiple environmental contaminants, we determined that polychlorinated biphenyls (PCBs) alone alter reproduction. Captive American kestrels (Falco sparverius), fed PCB-spiked (Aroclor 1248:1254:1260) food (7 mg/kg body weight/d) prior to and during the first breeding season only (100 d) laid eggs with environmentally relevant levels of total PCBs (34.0 microg/g whole egg wet wt vs 0 microg/g for controls). Reproduction changed during, not after, PCB exposure in this two-year study. The PCB-exposed pairs laid smaller clutches later in the season and laid more totally infertile clutches. Hatching success was reduced in PCB-exposed pairs, and 50% of PCB nestlings died within 3 d of hatching. Nearly 60% of PCB-exposed pairs with hatchlings failed to produce fledglings. Higher levels of total PCB residues and congeners were associated with later clutch initiation and fewer fertile eggs, hatchlings, and fledglings. We suggest that nonpersistent PCB congeners have a greater influence on reproduction than do persistent congeners. PMID:11345453

  16. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects.

    PubMed

    Sabanero, Myrna; Azorín-Vega, Juan Carlos; Flores-Villavicencio, Lérida Liss; Castruita-Dominguez, J Pedro; Vallejo, Miguel Angel; Barbosa-Sabanero, Gloria; Cordova-Fraga, Teodoro; Sosa-Aquino, Modesto

    2016-02-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 μM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. PMID:26656429

  17. Genetic damage in subjects exposed to radiofrequency radiation.

    PubMed

    Verschaeve, Luc

    2009-01-01

    Despite many research efforts and public debate there is still great concern about the possible adverse effects of radiofrequency (RF) radiation on human health. This is especially due to the enormous increase of wireless mobile telephones and other telecommunication devices throughout the world. The possible genetic effects of mobile phone radiation and other sources of radiofrequencies constitute one of the major points of concern. In the past several review papers were published on laboratory investigations that were devoted to in vitro and in vivo animal (cyto)genetic studies. However, it may be assumed that some of the most important observations are those obtained from studies with individuals that were exposed to relatively high levels of radiofrequency radiation, either as a result of their occupational activity or as frequent users of radiofrequency emitting tools. In this paper the cytogenetic biomonitoring studies of RF-exposed humans are reviewed. A majority of these studies do show that RF-exposed individuals have increased frequencies of genetic damage (e.g., chromosomal aberrations) in their lymphocytes or exfoliated buccal cells. However, most of the studies, if not all, have a number of shortcomings that actually prevents any firm conclusion. Radiation dosimetry was lacking in all papers, but some of the investigations were flawed by much more severe imperfections. Large well-coordinated multidisciplinary investigations are needed in order to reach any robust conclusion. PMID:19073278

  18. Improving antenatal risk assessment in women exposed to high risks.

    PubMed

    Perry, Natasha; Newman, Louise K; Hunter, Mick; Dunlop, Adrian

    2015-01-01

    Antenatal substance use and related psychosocial risk factors are known to increase the likelihood of child protection involvement; less is known about the predictive nature of maternal reflective functioning (RF) in this population. This preliminary study assessed psychosocial and psychological risk factors for a group of substance dependent women exposed to high risks in pregnancy, and their impact on child protection involvement. Pregnant women on opiate substitution treatment (n = 11) and a comparison group (n = 15) were recruited during their third trimester to complete measures of RF (Pregnancy Interview), childhood trauma, mental health and psychosocial assessments. At postnatal follow-up, RF was reassessed (Parent Development Interview - Revised Short Version) and mother-infant dyads were videotaped to assess emotional availability (EA). Child protection services were contacted to determine if any concerns had been raised for infant safety. Significant between-group differences were observed for demographics, psychosocial factors, trauma and mental health symptoms. Unexpectedly, no significant differences were found for RF or EA between groups. Eight women in the 'exposed to high risks' group became involved with child protection services. Reflective functioning was not significantly associated with psychosocial risk factors, and therefore did not mediate the outcome of child protection involvement. Women 'exposed to high risks' were equally able to generate a model of their own and their infants' mental states and should not be seen within a deficit perspective. Further research is required to better understand the range of risk factors that predict child protection involvement in high risk groups. PMID:23982989

  19. Ethanol emission from loose corn silage and exposed silage particles

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  20. Expose : procedure and results of the joint experiment verification tests

    NASA Astrophysics Data System (ADS)

    Panitz, C.; Rettberg, P.; Horneck, G.; Rabbow, E.; Baglioni, P.

    The International Space Station will carry the EXPOSE facility accommodated at the universal workplace URM-D located outside the Russian Service Module. The launch will be affected in 2005 and it is planned to stay in space for 1.5 years. The tray like structure will accomodate 2 chemical and 6 biological PI-experiments or experiment systems of the ROSE (Response of Organisms to Space Environment) consortium. EXPOSE will support long-term in situ studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches, such as endolithic and evaporitic ecosystems. The either vented or sealed experiment pockets will be covered by an optical filter system to control intensity and spectral range of solar UV irradiation. Control of sun exposure will be achieved by the use of individual shutters. To test the compatibility of the different biological systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. The procedure and first results of this joint Experiment Verification Tests (EVT) will be presented. The results will be essential for the success of the EXPOSE mission and have been done in parallel with the development and construction of the final hardware design of the facility. The results of the mission will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.