Science.gov

Sample records for online cone beam

  1. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    SciTech Connect

    Held, M; Morin, O; Pouliot, J

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  2. Dosimetric Impact of Online Correction via Cone-Beam CT-Based Image Guidance for Stereotactic Lung Radiotherapy

    SciTech Connect

    Galerani, Ana Paula; Grills, Inga; Hugo, Geoffrey; Kestin, Larry; Mohammed, Nasiruddin; Chao, K. Kenneth; Suen, Andrew; Martinez, Alvaro; Yan, Di

    2010-12-01

    Purpose: To evaluate the dosimetric impact of online cone-beam computed tomography (CBCT) guided correction in lung stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty planning and 162 CBCT images from 20 patients undergoing lung SBRT were analyzed. The precorrection CBCT (CBCT after patient setup, no couch correction) was registered to planning CT using soft tissue; couch shift was applied, with a second CBCT for verification (postcorrection CBCT). Targets and normal structures were delineated on CBCTs: gross tumor volume (GTV), clinical target volume (CTV), cord, esophagus, lung, proximal bronchial tree, and aorta. Dose distributions on all organs manifested on each CBCT were compared with those planned on the CT. Results: Without CBCT guided target position correction, target dose reduced with respect to treatment plan. Mean and standard deviation of treatment dose discrepancy from the plan were -3.2% (4.9%), -2.1% (4.4%), -6.1% (10.7%), and -3.5% (7%) for GTV D{sub 99%}, GTV D{sub 95%}, CTV D{sub 99%}, and CTV D{sub 95%}, respectively. With CBCT correction, the results were -0.4% (2.6%), 0.1% (1.7%), -0.3% (4.2%), and 0.5% (3%). Mean and standard deviation of the difference in normal organ maximum dose were 2.2% (6.5%) before correction and 2.4% (5.9%) after correction for esophagus; 6.1% (14.1%) and 3.8% (8.1%) for cord; 3.1% (17.5%) and 6.2% (9.8%) for proximal bronchial tree; and 17.7% (19.5%) and 14.1% (17%) for aorta. Conclusion: Online CBCT guidance improves the accuracy of target dose delivery for lung SBRT. However, treatment dose to normal tissue can vary regardless of the correction. Normal tissues should be considered during target registration, according to target proximity.

  3. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    SciTech Connect

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between TrueBeam

  4. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  5. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  6. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    SciTech Connect

    Worm, Esben S.; Hoyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  7. Cone-Beam Computed Tomography for On-Line Image Guidance of Lung Stereotactic Radiotherapy: Localization, Verification, and Intrafraction Tumor Position

    SciTech Connect

    Purdie, Thomas G. . E-mail: Tom.Purdie@rmp.uhn.on.ca; Bissonnette, Jean-Pierre; Franks, Kevin; Bezjak, Andrea; Payne, David; Sie, Fanny; Sharpe, Michael B.; Jaffray, David A.

    2007-05-01

    Purpose: Cone-beam computed tomography (CBCT) in-room imaging allows accurate inter- and intrafraction target localization in stereotactic body radiotherapy of lung tumors. Methods and Materials: Image-guided stereotactic body radiotherapy was performed in 28 patients (89 fractions) with medically inoperable Stage T1-T2 non-small-cell lung carcinoma. The targets from the CBCT and planning data set (helical or four-dimensional CT) were matched on-line to determine the couch shift required for target localization. Matching based on the bony anatomy was also performed retrospectively. Verification of target localization was done using either megavoltage portal imaging or CBCT imaging; repeat CBCT imaging was used to assess the intrafraction tumor position. Results: The mean three-dimensional tumor motion for patients with upper lesions (n = 21) and mid-lobe or lower lobe lesions (n = 7) was 4.2 and 6.7 mm, respectively. The mean difference between the target and bony anatomy matching using CBCT was 6.8 mm (SD, 4.9, maximum, 30.3); the difference exceeded 13.9 mm in 10% of the treatment fractions. The mean residual error after target localization using CBCT imaging was 1.9 mm (SD, 1.1, maximum, 4.4). The mean intrafraction tumor deviation was significantly greater (5.3 mm vs. 2.2 mm) when the interval between localization and repeat CBCT imaging (n = 8) exceeded 34 min. Conclusion: In-room volumetric imaging, such as CBCT, is essential for target localization accuracy in lung stereotactic body radiotherapy. Imaging that relies on bony anatomy as a surrogate of the target may provide erroneous results in both localization and verification.

  8. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J.

    2013-06-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  9. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    PubMed

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  10. Comparison of Localization Performance with Implanted Fiducial Markers and Cone-Beam Computed Tomography for On-line Image-Guided Radiotherapy of the Prostate

    PubMed Central

    Moseley, Douglas J; White, Elizabeth A; Wiltshire, Kirsty L; Rosewall, Tara; Sharpe, Michael B; Siewerdsen, Jeffrey H; Bissonnette, Jean-Pierre; Gospodarowicz, Mary; Warde, Padraig; Catton, Charles N; Jaffray, David A

    2007-01-01

    Purpose To assess the accuracy of kV cone-beam CT (CBCT) based setup corrections as compared to orthogonal MV portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Method and Materials Daily cone-beam CT volumetric images were acquired after setup for patients with three intra-prostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs kV was (R2 = 0.95, 0.84, 0.81) in the L/R, A/P and S/I directions respectively. The correlation using soft-tissue matching was ((R2 = 0.90, 0.49, 0.51) in the L/R, A/P and S/I directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a +/−3mm tolerance (the clinical action level) was (99.7, 95.5, 91.3) for fiducial marker matching and (99.5, 70.3, 78.4) for soft-tissue matching. Conclusions Cone-beam CT is an accurate and precise tool for image-guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research. PMID:17293243

  11. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  12. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for

  13. Scatter corrections for cone beam optical CT

    NASA Astrophysics Data System (ADS)

    Olding, Tim; Holmes, Oliver; Schreiner, L. John

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  14. Cone-beam CT: applications in orthodontics.

    PubMed

    Hechler, Steven L

    2008-10-01

    Radiographic images have always been an important part of orthodontic diagnosis and treatment planning. We have been limited by the two-dimensional nature of these radiographs as we pursue tooth movement in a three-dimensional fashion. This article shows the current and future uses and advantages of cone-beam CT in the practice of orthodontics. The use of this technology in the near future will change the way records are taken and treatment is rendered. With this added diagnostic knowledge, orthodontic treatment will assuredly become not only more high tech but also higher quality. PMID:18805230

  15. Endodontic applications of cone beam computed tomography.

    PubMed

    McClammy, Thomas V

    2014-07-01

    Cone-beam CT (CBCT) has made a dramatic contribution and has been quickly adopted in endodontics. It is a game changer in research and clinical applications. Although CBCT and its application in implantology is well known, the surgical placement of implants is now a factor in endodontics. This article illustrates unique applications of CBCT in implantology in a specialty endodontic facility. Endodontics creates the foundation for restorative dentistry for a healthy tooth, a well-treated endodontically treated tooth, or a well-placed dental implant. CBCT helps make this possible and predictable. PMID:24993923

  16. Cone Beam Computed Tomography - Know its Secrets

    PubMed Central

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article describes the basic technique, difference in CBCT from CT and main clinical applications of CBCT. PMID:25859112

  17. Accuracy of Ultrasound-Based (BAT) Prostate-Repositioning: A Three-Dimensional On-Line Fiducial-Based Assessment With Cone-Beam Computed Tomography

    SciTech Connect

    Boda-Heggemann, Judit Koehler, Frederick Marc; Kuepper, Beate; Wolff, Dirk; Wertz, Hansjoerg; Mai, Sabine; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2008-03-15

    Purpose: To assess the accuracy of ultrasound-based repositioning (BAT) before prostate radiation with fiducial-based three-dimensional matching with cone-beam computed tomography (CBCT). Patients and Methods: Fifty-four positionings in 8 patients with {sup 125}I seeds/intraprostatic calcifications as fiducials were evaluated. Patients were initially positioned according to skin marks and after this according to bony structures based on CBCT. Prostate position correction was then performed with BAT. Residual error after repositioning based on skin marks, bony anatomy, and BAT was estimated by a second CBCT based on user-independent automatic fiducial registration. Results: Overall mean value (MV {+-} SD) residual error after BAT based on fiducial registration by CBCT was 0.7 {+-} 1.7 mm in x (group systematic error [M] = 0.5 mm; SD of systematic error [{sigma}] = 0.8 mm; SD of random error [{sigma}] = 1.4 mm), 0.9 {+-} 3.3 mm in y (M = 0.5 mm, {sigma} = 2.2 mm, {sigma} = 2.8 mm), and -1.7 {+-} 3.4 mm in z (M = -1.7 mm, {sigma} = 2.3 mm, {sigma} = 3.0 mm) directions, whereas residual error relative to positioning based on skin marks was 2.1 {+-} 4.6 mm in x (M = 2.6 mm, {sigma} = 3.3 mm, {sigma} = 3.9 mm), -4.8 {+-} 8.5 mm in y (M = -4.4 mm, {sigma} = 3.7 mm, {sigma} = 6.7 mm), and -5.2 {+-} 3.6 mm in z (M = -4.8 mm, {sigma} = 1.7 mm, {sigma} = 3.5mm) directions and relative to positioning based on bony anatomy was 0 {+-} 1.8 mm in x (M = 0.2 mm, {sigma} = 0.9 mm, {sigma} = 1.1 mm), -3.5 {+-} 6.8 mm in y (M = -3.0 mm, {sigma} = 1.8 mm, {sigma} = 3.7 mm), and -1.9 {+-} 5.2 mm in z (M = -2.0 mm, {sigma} = 1.3 mm, {sigma} = 4.0 mm) directions. Conclusions: BAT improved the daily repositioning accuracy over skin marks or even bony anatomy. The results obtained with BAT are within the precision of extracranial stereotactic procedures and represent values that can be achieved with several users with different education levels. If sonographic visibility is insufficient

  18. Accuracy of Ultrasound-Based Image Guidance for Daily Positioning of the Upper Abdomen: An Online Comparison With Cone Beam CT

    SciTech Connect

    Boda-Heggemann, Judit Mennemeyer, Philipp; Wertz, Hansjoerg; Riesenacker, Nadja; Kuepper, Beate; Lohr, Frank; Wenz, Frederik

    2009-07-01

    Purpose: Image-guided intensity-modulated radiotherapy can improve protection of organs at risk when large abdominal target volumes are irradiated. We estimated the daily positioning accuracy of ultrasound-based image guidance for abdominal target volumes by a direct comparison of daily imaging obtained with cone beam computed tomography (CBCT). Methods and Materials: Daily positioning (n = 83 positionings) of 15 patients was completed by using ultrasound guidance after an initial CBCT was obtained. Residual error after ultrasound was estimated by comparison with a second CBCT. Ultrasound image quality was visually rated using a scale of 1 to 4. Results: Of 15 patients, 7 patients had good sonographic imaging quality, 5 patients had satisfactory sonographic quality, and 3 patients were excluded because of unsatisfactory sonographic quality. When image quality was good, residual errors after ultrasound were -0.1 {+-} 3.11 mm in the x direction (left-right; group systematic error M = -0.09 mm; standard deviation [SD] of systematic error, {sigma} = 1.37 mm; SD of the random error, {sigma} = 2.99 mm), 0.93 {+-} 4.31 mm in the y direction (superior-inferior, M = 1.12 mm; {sigma} = 2.96 mm; {sigma} = 3.39 mm), and 0.71 {+-} 3.15 mm in the z direction (anteroposterior; M = 1.01 mm; {sigma} = 2.46 mm; {sigma} = 2.24 mm). For patients with satisfactory image quality, residual error after ultrasound was -0.6 {+-} 5.26 mm in the x (M = 0.07 mm; {sigma} = 5.67 mm; {sigma} = 4.86 mm), 1.76 {+-} 4.92 mm in the y (M = 3.54 mm; {sigma} = 4.1 mm; {sigma} = 5.29 mm), and 1.19 {+-} 4.75 mm in the z (M = 0.82 mm; {sigma} = 2.86 mm; {sigma} = 3.05 mm) directions. Conclusions: In patients from whom good sonographic image quality could be obtained, ultrasound improved daily positioning accuracy. In the case of satisfactory image quality, ultrasound guidance improved accuracy compared to that of skin marks only minimally. If sonographic image quality was unsatisfactory, daily CBCT

  19. Coherent backscattering cone shape depends on the beam size.

    PubMed

    Bi, Renzhe; Dong, Jing; Lee, Kijoon

    2012-09-10

    Coherent backscattering (CBS) is a beautiful physical phenomenon that takes place in a highly scattering medium, which has potential application in noninvasive optical property measurement. The current model that explains the CBS cone shape, however, assumes the incoming beam diameter is infinitely large compared to the transport length. In this paper, we evaluate the effect of a finite scalar light illumination area on the CBS cone, both theoretically and experimentally. The quantitative relationship between laser beam size and the CBS cone shape is established by using two different finite beam models (uniform top hat and Gaussian distribution). A series of experimental data with varying beam diameters is obtained for comparison with the theory. Our study shows the CBS cone shape begins to show distortion when beam size becomes submillimeter, and this effect should not be ignored in general. In biological tissue where a normal large beam CBS cone is too narrow for detection, this small beam CBS may be more advantageous for more accurate and higher resolution tissue characterization. PMID:22968267

  20. Skeletal dosimetry in cone beam computed tomography.

    PubMed

    Walters, B R B; Ding, G X; Kramer, R; Kawrakow, I

    2009-07-01

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12 x 0.12 x 0.12 cm3, with 17 x 17 x 17 microm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/ MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (approximately 8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only approximately 50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment. PMID:19673190

  1. Skeletal dosimetry in cone beam computed tomography

    SciTech Connect

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I.

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  2. Expectation maximization reconstruction for circular orbit cone-beam CT

    NASA Astrophysics Data System (ADS)

    Dong, Baoyu

    2008-03-01

    Cone-beam computed tomography (CBCT) is a technique for imaging cross-sections of an object using a series of X-ray measurements taken from different angles around the object. It has been widely applied in diagnostic medicine and industrial non-destructive testing. Traditional CT reconstructions are limited by many kinds of artifacts, and they give dissatisfactory image. To reduce image noise and artifacts, we propose a statistical iterative approach for cone-beam CT reconstruction. First the theory of maximum likelihood estimation is extended to X-ray scan, and an expectation-maximization (EM) formula is deduced for direct reconstruction of circular orbit cone-beam CT. Then the EM formula is implemented in cone-beam geometry for artifact reduction. EM algorithm is a feasible iterative method, which is based on the statistical properties of Poisson distribution. It can provide good quality reconstructions after a few iterations for cone-beam CT. In the end, experimental results with computer simulated data and real CT data are presented to verify our method is effective.

  3. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  4. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT

    NASA Astrophysics Data System (ADS)

    Tang, Qiulin; Zeng, Gengsheng L.; Gullberg, Grant T.

    2005-07-01

    In this paper, we developed an analytical fan-beam reconstruction algorithm that compensates for uniform attenuation in SPECT. The new fan-beam algorithm is in the form of backprojection first, then filtering, and is mathematically exact. The algorithm is based on three components. The first one is the established generalized central-slice theorem, which relates the 1D Fourier transform of a set of arbitrary data and the 2D Fourier transform of the backprojected image. The second one is the fact that the backprojection of the fan-beam measurements is identical to the backprojection of the parallel measurements of the same object with the same attenuator. The third one is the stable analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan. The fan-beam algorithm is then extended into a cone-beam reconstruction algorithm, where the orbit of the focal point of the cone-beam imaging geometry is a circle. This orbit geometry does not satisfy Tuy's condition and the obtained cone-beam algorithm is an approximation. In the cone-beam algorithm, the cone-beam data are first backprojected into the 3D image volume; then a slice-by-slice filtering is performed. This slice-by-slice filtering procedure is identical to that of the fan-beam algorithm. Both the fan-beam and cone-beam algorithms are efficient, and computer simulations are presented. The new cone-beam algorithm is compared with Bronnikov's cone-beam algorithm, and it is shown to have better performance with noisy projections.

  5. Comparison of cone beam artifacts reduction: two pass algorithm vs TV-based CS algorithm

    NASA Astrophysics Data System (ADS)

    Choi, Shinkook; Baek, Jongduk

    2015-03-01

    In a cone beam computed tomography (CBCT), the severity of the cone beam artifacts is increased as the cone angle increases. To reduce the cone beam artifacts, several modified FDK algorithms and compressed sensing based iterative algorithms have been proposed. In this paper, we used two pass algorithm and Gradient-Projection-Barzilai-Borwein (GPBB) algorithm to reduce the cone beam artifacts, and compared their performance using structural similarity (SSIM) index. In two pass algorithm, it is assumed that the cone beam artifacts are mainly caused by extreme-density(ED) objects, and therefore the algorithm reproduces the cone beam artifacts(i.e., error image) produced by ED objects, and then subtract it from the original image. GPBB algorithm is a compressed sensing based iterative algorithm which minimizes an energy function for calculating the gradient projection with the step size determined by the Barzilai- Borwein formulation, therefore it can estimate missing data caused by the cone beam artifacts. To evaluate the performance of two algorithms, we used testing objects consisting of 7 ellipsoids separated along the z direction and cone beam artifacts were generated using 30 degree cone angle. Even though the FDK algorithm produced severe cone beam artifacts with a large cone angle, two pass algorithm reduced the cone beam artifacts with small residual errors caused by inaccuracy of ED objects. In contrast, GPBB algorithm completely removed the cone beam artifacts and restored the original shape of the objects.

  6. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    SciTech Connect

    Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W

    2014-06-15

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)

  7. Cardiac cone-beam CT volume reconstruction using ART

    SciTech Connect

    Nielsen, T.; Manzke, R.; Proksa, R.; Grass, M.

    2005-04-01

    Modern computed tomography systems allow volume imaging of the heart. Up to now, approximately two-dimensional (2D) and 3D algorithms based on filtered backprojection are used for the reconstruction. These algorithms become more sensitive to artifacts when the cone angle of the x-ray beam increases as it is the current trend of computed tomography (CT) technology. In this paper, we investigate the potential of iterative reconstruction based on the algebraic reconstruction technique (ART) for helical cardiac cone-beam CT. Iterative reconstruction has the advantages that it takes the cone angle into account exactly and that it can be combined with retrospective cardiac gating fairly easily. We introduce a modified ART algorithm for cardiac CT reconstruction. We apply it to clinical cardiac data from a 16-slice CT scanner and compare the images to those obtained with a current analytical reconstruction method. In a second part, we investigate the potential of iterative reconstruction for a large area detector with 256 slices. For the clinical cases, iterative reconstruction produces excellent images of diagnostic quality. For the large area detector, iterative reconstruction produces images superior to analytical reconstruction in terms of cone-beam artifacts.

  8. Legal considerations in the use of cone beam computer tomography imaging.

    PubMed

    Zinman, Edwin J; White, Stuart C; Tetradis, Sotirios

    2010-01-01

    Cone beam computed tomography imaging represents a paradigm shift for enhancing diagnosis and treatment planning. Questions regarding cone beam computed tomography's associated legal responsibility are addressed, including cone beam computed tomography necessity, recognition of pathosis in the scan's entire volume, adequate training, informed consent and/or refusal and current court status of cone beam computed tomography. Judicious selection and prudent use of cone beam computed tomography technology to protect and promote patient safety and efficacious treatment complies with the standard of care. PMID:20178227

  9. Analytically derived weighting factors for transmission tomography cone beam projections

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Leszczynski, Konrad

    2009-02-01

    Weighting factors, which define the contributions of individual voxels of a 3D object to individual projection elements (pixels) on the detector, are the basic elements required in iterative tomographic reconstructions from transmission projections. Exact or as accurate as possible values for weighting factors are required in high-resolution reconstructions. Geometric complexity of the problem, however, makes it difficult to obtain exact weighting factor values. In this work, we derive an analytical expression for the weighting factors in cone beam projection geometry. The resulting formula is validated and applied to reconstruction from mega and kilovoltage x-ray cone beam projections. The reconstruction speed and accuracy are significantly improved by using the weighting factor values.

  10. Cone Beam Computed Tomography for the Dental Implant Patient.

    PubMed

    Klokkevold, Perry R

    2015-09-01

    Cone beam computed tomography offers many advantages over 2-D imaging for the evaluation of potential implant sites. With the use of CBCT scans becoming more commonplace, it is important for clinicians to be knowledgeable and to use this new technology appropriately and judiciously. The purpose of this article is to describe the advantages and limitations of CBCT imaging for the presurgical and postsurgical evaluations of implant treatment and assessment of implant-related complications. PMID:26820009

  11. Coherent Cone-Beam X-ray Microscopy

    SciTech Connect

    Harder, R.; Xiao, X.

    2011-09-09

    A novel full-field imaging method using the (111) Bragg diffraction of a sub-micron gold crystal as the divergent cone-beam for sample illumination is reported. The divergence of the illumination allows for very high magnification, limited only by the achievable ratio of the crystal-to-sample and sample-to-detector distances. In this case an x-ray magnification of approximately 115 was achieved.

  12. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  13. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. PMID:24697513

  14. Orthogonal-rotating tetrahedral scanning for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ye, Ivan B.; Wang, Ge

    2012-10-01

    In this article, a cone-beam CT scanning mode is designed assuming four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite to each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. Several scanning schemes are proposed which consist of two rotations about orthogonal axes, such that each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. Similar scanning schemes based on other regular or irregular polyhedra and various rotation speeds are also discussed.

  15. Exact helical reconstruction using native cone-beam geometries

    NASA Astrophysics Data System (ADS)

    Noo, Frédéric; Pack, Jed; Heuscher, Dominic

    2003-12-01

    This paper is about helical cone-beam reconstruction using the exact filtered backprojection formula recently suggested by Katsevich (2002a Phys. Med. Biol. 47 2583-97). We investigate how to efficiently and accurately implement Katsevich's formula for direct reconstruction from helical cone-beam data measured in two native geometries. The first geometry is the curved detector geometry of third-generation multi-slice CT scanners, and the second geometry is the flat detector geometry of C-arms systems and of most industrial cone-beam CT scanners. For each of these two geometries, we determine processing steps to be applied to the measured data such that the final outcome is an implementation of the Katsevich formula. These steps are first described using continuous-form equations, disregarding the finite detector resolution and the source position sampling. Next, techniques are presented for implementation of these steps with finite data sampling. The performance of these techniques is illustrated for the curved detector geometry of third-generation CT scanners, with 32, 64 and 128 detector rows. In each case, resolution and noise measurements are given along with reconstructions of the FORBILD thorax phantom.

  16. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    SciTech Connect

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam CT

  17. Fundamentals of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s) and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  18. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  19. Half-cone beam collimation for triple-camera SPECT systems

    SciTech Connect

    Li, Jianying; Jaszczak, R.J.; Van Mullekom, A. |

    1996-03-01

    Cone-beam collimators provide increased sensitivity at similar resolution compared to other collimators. The use of cone-beam collimators for brain imaging with triple-camera SPECT systems, however, results in truncation of the base of the brain because of clearance of the shoulders. A half-cone beam collimator does not have the problem of truncation. The objective of this study was to compare the performance characteristics of half-cone beam with parallel-beam and fan-beam collimators with similar resolution characteristics for SPECT imaging of the brain. A half-cone beam collimator with the focal point located towards the base of the brain was built for a triple-camera SPECT system. Spatial resolutions and sensitivities of three collimators were measured. When 10-cm from the collimator surface, the planar spatial resolutions FWHM in mm (point source sensitivities in cps-MBq) for half-cone beam, fan-beam and parallel-beam collimators were 5.2 (85.6), 5.1 (55.6) and 5.9 (39.7), respectively. Image quality was evaluated using a three-dimensional Hoffman brain phantom and patient data. The deeper gray matter were more clearly visualized in the half-cone beam scans. Half-cone beam collimation provides higher sensitivity and offers the potential for improved brain imaging compared with parallel-beam and fan-beam collimation when used with a triple-camera SPECT system. 23 refs., 9 figs., 1 tab.

  20. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    PubMed

    Alaei, Parham; Spezi, Emiliano

    2012-01-01

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance. PMID:23149789

  1. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  2. Helical cone beam CT with an asymmetrical detector

    SciTech Connect

    Zamyatin, Alexander A.; Taguchi, Katsuyuki; Silver, Michael D.

    2005-10-15

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  3. Superior performance of cone beam tomography in detecting a calcaneus fracture

    PubMed Central

    Lohse, Christian; Catala-Lehnen, Philip; Regier, Marc; Heiland, Max

    2015-01-01

    Cone beam computed tomography is a state-of-the-art imaging tool, initially developed for dental and maxillofacial application. With its high resolution and low radiation dose, cone beam tomography has been expanding its application fields, for example, to diagnosis of traumata and fractures in the head and neck area. In this study, we demonstrate superior and satisfactory performance of cone beam tomography for the imaging of a calcaneus fracture in comparison to conventional X-ray and computed tomography. PMID:26605132

  4. Application of cone-beam CT in the office setting.

    PubMed

    Thomas, Steven L

    2008-10-01

    The decision to incorporate cone-beam CT (CBCT) into a dental practice is one that requires serious consideration and careful planning. In the early days of the technology, fewer sources of information existed and a community of users often shared ideas and prompted the advancement of the products. Office-based CBCT has advanced significantly since that time. It has often been described as the "gold standard" for imaging the oral and maxillofacial area and will become a part of the everyday life of most practices in the coming decades. PMID:18805227

  5. Characteristics of megavoltage cone-beam digital tomosynthesis

    SciTech Connect

    Descovich, M.; Morin, O.; Aubry, J. F.; Aubin, M.; Chen, J.; Bani-Hashemi, A; Pouliot, J.

    2008-04-15

    This article reports on the image characteristics of megavoltage cone-beam digital tomosynthesis (MVCB DT). MVCB DT is an in-room imaging technique, which enables the reconstruction of several two-dimensional slices from a set of projection images acquired over an arc of 20 deg. - 40 deg. The limited angular range reduces the acquisition time and the dose delivered to the patient, but affects the image quality of the reconstructed tomograms. Image characteristics (slice thickness, shape distortion, and contrast-to-noise ratio) are studied as a function of the angular range. Potential clinical applications include patient setup and the development of breath holding techniques for gated imaging.

  6. Auto calibration of a cone-beam-CT

    SciTech Connect

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to

  7. Algorithm for hyperfast cone-beam spiral backprojection.

    PubMed

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2010-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the X-ray cone is a complex function of the voxel position. The weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of 10(9) to 10(11) floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit CPUs to store large amounts of precomputed weights. Using the spiral symmetry in this way allows to exploit data-level parallelism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 24.6 Giga voxel updates per second (GUPS) on our systems that are equipped with two standard Intel X5570 quad core CPUs (Intel Xeon 5500 platform, 2.93 GHz, Intel Corporation). This equals the reconstruction of 410 images per second assuming each slice consists of 512 x 512 pixels, receiving contributions from 512 projections. PMID:19765852

  8. A geometric calibration method for cone beam CT systems

    SciTech Connect

    Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M.

    2006-06-15

    Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

  9. Development of a 3D CT scanner using cone beam

    NASA Astrophysics Data System (ADS)

    Endo, Masahiro; Kamagata, Nozomu; Sato, Kazumasa; Hattori, Yuichi; Kobayashi, Shigeo; Mizuno, Shinichi; Jimbo, Masao; Kusakabe, Masahiro

    1995-05-01

    In order to acquire 3D data of high contrast objects such as bone, lung and vessels enhanced by contrast media for use in 3D image processing, we have developed a 3D CT-scanner using cone beam x ray. The 3D CT-scanner consists of a gantry and a patient couch. The gantry consists of an x-ray tube designed for cone beam CT and a large area two-dimensional detector mounted on a single frame and rotated around an object in 12 seconds. The large area detector consists of a fluorescent plate and a charge coupled device video camera. The size of detection area was 600 mm X 450 mm capable of covering the total chest. While an x-ray tube was rotated around an object, pulsed x ray was exposed 30 times a second and 360 projected images were collected in a 12 second scan. A 256 X 256 X 256 matrix image (1.25 mm X 1.25 mm X 1.25 mm voxel) was reconstructed by a high-speed reconstruction engine. Reconstruction time was approximately 6 minutes. Cylindrical water phantoms, anesthetized rabbits with or without contrast media, and a Japanese macaque were scanned with the 3D CT-scanner. The results seem promising because they show high spatial resolution in three directions, though there existed several point to be improved. Possible improvements are discussed.

  10. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    PubMed

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account. PMID:26457404

  11. Clinical utility of dental cone-beam computed tomography: current perspectives

    PubMed Central

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis. PMID:24729729

  12. Applications of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420

  13. Exact fan-beam and 4{pi}-acquisition cone-beam SPECT algorithms with uniform attenuation correction

    SciTech Connect

    Tang Qiulin; Zeng, Gengsheng L.; Wu Jiansheng; Gullberg, Grant T.

    2005-11-15

    This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4{pi} solid angle geometry. The cone-beam algorithm is also an exact algorithm.

  14. Fossa navicularis magna detection on cone-beam computed tomography.

    PubMed

    Syed, Ali Z; Mupparapu, Mel

    2016-03-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  15. Cone beam CT: a current overview of devices

    PubMed Central

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers’ official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region. PMID:23818529

  16. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    PubMed Central

    AlJehani, Yousef A.

    2014-01-01

    Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT) in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014), PubMed (using medical subject headings), and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Conclusions. Bony defects, caters, and furcation involvements seem to be better depicted on CBCT, whereas bone quality and periodontal ligament space scored better on conventional intraoral radiography. CBCT does not offer a significant advantage over conventional radiography for assessing the periodontal bone levels. PMID:24803932

  17. Fossa navicularis magna detection on cone-beam computed tomography

    PubMed Central

    Mupparapu, Mel

    2016-01-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  18. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  19. Dual resolution cone beam breast CT: A feasibility study

    PubMed Central

    Chen, Lingyun; Shen, Youtao; Lai, Chao-Jen; Han, Tao; Zhong, Yuncheng; Ge, Shuaiping; Liu, Xinming; Wang, Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp–Davis–Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI. PMID:19810473

  20. Beam characteristics and radiation output of a kilovoltage cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Coffey, Charles W.

    2010-09-01

    This study presents beam characteristics of five recently available x-ray beams produced by an on-board imager (OBI 1.4) for acquiring kilovoltage cone-beam computed tomography (kV-CBCT) and investigates suitable methods for the beam radiation output determination resulting from an image acquisition. Both are essential for commissioning an x-ray beam in a radiotherapy treatment planning system. The BEAM/DOSXYZnrc Monte Carlo codes were used in the investigation. The simulated beam data were benchmarked against measurements. Three different commercially available plastic phantom materials are investigated as liquid water substitutes in the beam radiation output determination. Ionization chambers are used for the measurements. Five kV-CBCT beam characteristics including photon fluence, average beam energy and photon spectra are generated from Monte Carlo simulations. The Monte Carlo calculated dose profiles are validated by measurements. The fluence of kV-CBCT beams is strongly dependent on the geometry of added filters as well as X and Y beam collimations. The potential errors of determining the beam output of a kV-CBCT beam in Solid Water and PMMA phantoms may approach 8% and 20%, respectively, for use in a conventional treatment planning system, whereas using the Plastic Water low-energy range (PW-LR) phantom results in errors within 2%. The Monte Carlo simulation is essential in providing the parameters of an x-ray beam which are needed for the commissioning of a kV-CBCT beam in a radiotherapy treatment planning system. The PW-LR phantom is a suitable liquid water substitute in the beam output determination resulting from a kV-CBCT acquisition.

  1. Filtered region of interest cone-beam rotational angiography

    SciTech Connect

    Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R.

    2010-02-15

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with the desired

  2. Upright cone beam CT imaging using the onboard imager

    SciTech Connect

    Fave, Xenia Martin, Rachael; Yang, Jinzhong; Balter, Peter; Court, Laurence; Carvalho, Luis; Pan, Tinsu

    2014-06-15

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0°, and the couch was rotated to 270°. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270° to 90°. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  3. TH-A-18C-06: A Scatter Elimination Scheme for Cone Beam CT Using An Oscillating Narrow Beam

    SciTech Connect

    Yan, H; Folkerts, M; Jia, X; Jiang, S; Xu, Y

    2014-06-15

    Purpose: While cone beam CT (CBCT) has been widely used in image guided radiation therapy, its low image quality, primarily caused by scattered x-rays, hinders advanced clinical applications, e.g., CBCT based on-line adaptive re-planning. We propose in this abstract a new scheme called oscillating narrow beam CBCT (ONB-CBCT) to eliminate scatter signals. Methods: ONB-CBCT consists of two major components. 1) Oscillating narrow beam (ONB) scan and 2) partitioned flat panel containing multiple individual detector strips and their own readouts. Both the beam oscillation and detector partition are along the superior-inferior (SI) direction. During data acquisition, at a given projection, the narrow beam sweep through the detector region, and different portions of the detector acquires projection data in synchrony with the narrow beam. ONB can be generated by a rotating slit collimator design with conventional tube with single focal spot, or by directly using a new source with multiple focal spots. A proof-of-principle study via Monte Carlo simulation is conducted to demonstrate the feasibility of ONB-CBCT. Results: As the beam becomes narrower, more and more scatter signals are eliminated. For the case with a bowtie filter and using 15 ONBs, the maximum and the average intensity error due to scatter are below 20 and 10 HU, respectively. Conclusion: ONB yields a narrowed exposure field at each snapshot and hence an inherently negligible scatter effect. Meanwhile, the individualized detector units guarantee high frame rate detection and hence a same large volume coverage as that in conventional CBCT. In summary, ONB-CBCT is a promising design to achieve high-quality CBCT imaging. This study is supported in part by NIH (1R01CA154747-01)

  4. A phenomenological kV beam model for cone-beam imaging

    NASA Astrophysics Data System (ADS)

    Bhagwat, Mandar S.; Blessing, Manuel; Lyatskaya, Yulia; Zygmanski, Piotr

    2010-10-01

    A phenomenological kV beam model was developed to address attenuation and scatter in radiographic images for the purpose of cone-beam imaging. Characterization of a kV beam in terms of the minimal number of parameters and calculation of attenuation and scatter in radiographs of scanned objects are the main applications of this model. Model parameters are derived from radiographs of homogeneous solid water phantoms for various depths and field sizes. The response of the cone-beam detector to kV beams is factorized into different contributions such as output factor, tissue-air ratio and off-axis ratio, with each contribution having an analytical representation. The formulas which are used to characterize the beam model in uniform phantoms are then extended to arbitrary objects using the concept of the water-equivalent pathlength. A weighted sum of three Gaussians in each direction models the dose deposition kernel. Detector response arising from the first Gaussian term can be interpreted as the primary signal while the second and third Gaussians constitute short- and long-range scatter. The model is then applied to predict the primary and scatter signals for arbitrary objects. A technique of scatter removal from the measured radiographs is investigated. The model accurately predicts detector response of varying-thickness phantoms such as multi-step and cylindrical phantoms. The scatter contributes over 90% to the total signal for 20 cm thick phantoms. The calculated scatter-to-primary ratio as a function of spatial coordinates agrees with Monte Carlo studies reported in the literature. Water-equivalent thickness related to primary and scatter contributions calculated from an analysis of radiographs results in an improved calibration technique suitable for CB-CT reconstruction. The kV beam model and the associated theoretical formulations can be utilized to characterize any kV beam line; however, for the specific study the OBI™ system (Varian) was used to obtain

  5. GPU-based cone-beam reconstruction using wavelet denoising

    NASA Astrophysics Data System (ADS)

    Jin, Kyungchan; Park, Jungbyung; Park, Jongchul

    2012-03-01

    The scattering noise artifact resulted in low-dose projection in repetitive cone-beam CT (CBCT) scans decreases the image quality and lessens the accuracy of the diagnosis. To improve the image quality of low-dose CT imaging, the statistical filtering is more effective in noise reduction. However, image filtering and enhancement during the entire reconstruction process exactly may be challenging due to high performance computing. The general reconstruction algorithm for CBCT data is the filtered back-projection, which for a volume of 512×512×512 takes up to a few minutes on a standard system. To speed up reconstruction, massively parallel architecture of current graphical processing unit (GPU) is a platform suitable for acceleration of mathematical calculation. In this paper, we focus on accelerating wavelet denoising and Feldkamp-Davis-Kress (FDK) back-projection using parallel processing on GPU, utilize compute unified device architecture (CUDA) platform and implement CBCT reconstruction based on CUDA technique. Finally, we evaluate our implementation on clinical tooth data sets. Resulting implementation of wavelet denoising is able to process a 1024×1024 image within 2 ms, except data loading process, and our GPU-based CBCT implementation reconstructs a 512×512×512 volume from 400 projection data in less than 1 minute.

  6. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. PMID:25816279

  7. Cone Beam Computed Tomographic Assessment of Bifid Mandibular Condyle

    PubMed Central

    Khojastepour, Leila; Kolahi, Shirin; Panahi, Nazi

    2015-01-01

    Objectives: Differential diagnosis of bifid mandibular condyle (BMC) is important, since it may play a role in temporomandibular joint (TMJ) dysfunctions and joint symptoms. In addition, radiographic appearance of BMC may mimic tumors and/or fractures. The aim of this study was to evaluate the prevalence and orientation of BMC based on cone beam computed tomography (CBCT) scans. Materials and Methods: This cross-sectional study was performed on CBCT scans of paranasal sinuses of 425 patients. In a designated NNT station, all CBCT scans were evaluated in the axial, coronal and sagittal planes to find the frequency of BMC. The condylar head horizontal angulations were also determined in the transverse plane. T-test was used to compare the frequency of BMC between the left and right sides and between males and females. Results: Totally, 309 patients with acceptable visibility of condyles on CBCT scans were entered in the study consisting of 170 (55%) females and 139 (45%) males with a mean age of 39.43±9.7 years. The BMC was detected in 14 cases (4.53%). Differences between males and females, sides and horizontal angulations of condyle of normal and BMC cases were not significant. Conclusion: The prevalence of BMC in the studied population was 4.53%. No significant difference was observed between males and females, sides or horizontal angulations of the involved and uninvolved condyles.

  8. Characterization of scatter radiation in cone beam CT mammography

    NASA Astrophysics Data System (ADS)

    Liu, Bob; Glick, Stephen J.; Groiselle, Corinne

    2005-04-01

    Cone beam CT mammography (CBCTM) is an emerging breast imaging technology and is currently under intensive investigation [1-3]. One of the major challenges in CBCTM is to understand the characteristics of scatter radiation and to find ways to reduce or correct its degrading effects. Since the breast shape, geometry and image formation process are significantly different from conventional mammography, all system components and parameters such as target/filter combination, kVp range, source to image distance, detector design etc. should be examined and optimized. In optimizing CBCTM systems, it is important to have knowledge of how different imaging parameters affect the recorded scatter within the image. In this study, a GEANT4 based Monte Carlo simulation package (GATE) was used to investigate the scatter magnitude and its" distribution in CBCTM. The influences of different air gaps, kVp settings, breast sizes and breast composition on the scatter primary ratio (SPR) and scatter profiles were examined. In general, the scatter to primary ratio (SPR) is strongly dependent on the breast size and air gap, and is only moderately dependent on the kVp setting and breast composition. These results may be used for optimization of CBCTM systems, as well as for developing scatter correction methods.

  9. Streak artifact reduction in cardiac cone beam CT

    NASA Astrophysics Data System (ADS)

    Shechter, Gilad; Naveh, Galit; Lessick, Jonathan; Altman, Ami

    2005-04-01

    Cone beam reconstructed cardiac CT images suffer from characteristic streak artifacts that affect the quality of coronary artery imaging. These artifacts arise from inhomogeneous distribution of noise. While in non-tagged reconstruction inhomogeneity of noise distribution is mainly due to anisotropy of the attenuation of the scanned object (e.g. shoulders), in cardiac imaging it is largely influenced by the non-uniform distribution of the acquired data used for reconstructing the heart at a given phase. We use a cardiac adaptive filter to reduce these streaks. In difference to previous methods of adaptive filtering that locally smooth data points on the basis of their attenuation values, our filter is applied as a function of the noise distribution of the data as it is used in the phase selective reconstruction. We have reconstructed trans-axial images without adaptive filtering, with a regular adaptive filter and with the cardiac adaptive filter. With the cardiac adaptive filter significant reduction of streaks is achieved, and thus image quality is improved. The coronary vessel is much more pronounced in the cardiac adaptive filtered images, in slab MIP the main coronary artery branches are more visible, and non-calcified plaque is better differentiated from vessel wall. This improvement is accomplished without altering significantly the border definition of calcified plaques.

  10. Cone-beam computed tomography findings of impacted upper canines

    PubMed Central

    Bastos, Luana Costa; Oliveira-Santos, Christiano; da Silva, Silvio José Albergaria; Neves, Frederico Sampaio; Campos, Paulo Sérgio Flores

    2014-01-01

    Purpose To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Materials and Methods Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Results Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Conclusion Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth. PMID:25473636

  11. FFT and cone-beam CT reconstruction on graphics hardware

    NASA Astrophysics Data System (ADS)

    Després, Philippe; Sun, Mingshan; Hasegawa, Bruce H.; Prevrhal, Sven

    2007-03-01

    Graphics processing units (GPUs) are increasingly used for general purpose calculations. Their pipelined architecture can be exploited to accelerate various parallelizable algorithms. Medical imaging applications are inherently well suited to benefit from the development of GPU-based computational platforms. We evaluate in this work the potential of GPUs to improve the execution speed of two common medical imaging tasks, namely Fourier transforms and tomographic reconstructions. A two-dimensional fast Fourier transform (FFT) algorithm was GPU-implemented and compared, in terms of execution speed, to two popular CPU-based FFT routines. Similarly, the Feldkamp, David and Kress (FDK) algorithm for cone-beam tomographic reconstruction was implemented on the GPU and its performance compared to a CPU version. Different reconstruction strategies were employed to assess the performance of various GPU memory layouts. For the specific hardware used, GPU implementations of the FFT were up to 20 times faster than their CPU counterparts, but slower than highly optimized CPU versions of the algorithm. Tomographic reconstructions were faster on the GPU by a factor up to 30, allowing 256 3 voxel reconstructions of 256 projections in about 20 seconds. Overall, GPUs are an attractive alternative to other imaging-dedicated computing hardware like application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) in terms of cost, simplicity and versatility. With the development of simpler language extensions and programming interfaces, GPUs are likely to become essential tools in medical imaging.

  12. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  13. Effective dose span of ten different cone beam CT devices

    PubMed Central

    Rottke, D; Patzelt, S; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: Evaluation and reduction of dose are important issues. Since cone beam CT (CBCT) has been established now not just in dentistry, the number of acquired examinations continues to rise. Unfortunately, it is very difficult to compare the doses of available devices on the market owing to different exposition parameters, volumes and geometries. The aim of this study was to evaluate the spans of effective doses (EDs) of ten different CBCT devices. Methods: 48 thermoluminescent dosemeters were placed in 24 sites in a RANDO® head phantom. Protocols with lowest exposition parameters and protocols with highest exposition parameters were performed for each of the ten devices. The ED was calculated from the measured energy doses according to the International Commission on Radiological Protection 2007 recommendations for each protocol and device, and the statistical values were evaluated afterwards. Results: The calculation of the ED resulted in values between 17.2 µSv and 396 µSv for the ten devices. The mean values for protocols with lowest and highest exposition parameters were 31.6 µSv and 209 µSv, respectively. Conclusions: It was not the aim of this study to evaluate the image quality depending on different exposition parameters but to define the spans of EDs in which different CBCT devices work. There is a wide span of ED for different CBCT devices depending on the selected exposition parameters, required spatial resolution and many other factors. PMID:23584925

  14. Application of cone beam volumetric tomography in endodontics.

    PubMed

    Tyndall, D A; Kohltfarber, H

    2012-11-01

    In a 2008 article on cone beam volumetric tomography (CBVT) and dentoalveolar applications, Tyndall and Rathore wrote: "It is in the area of endodontic applications that the literature has proved most fruitful to date." This statement is even truer today than in 2008. A review of the literature has demonstrated that, in many cases, CBVT is more efficacious than traditional forms of 2-D imaging. Endodontic applications of CBVT include the diagnosis of periapical lesions due to pulpal inflammation, identification, and localization of internal and external resorption, the detection of vertical root fractures, the visualization of accessory canals, and elucidation of the causes of non-healing endodontically treated teeth. Prior to 2008, most published articles on CBVT applications in endodontics were either case reports or in vitro studies. Since that time more well designed clinically related scholarly activity has been published. This article attempts to survey the field of CBVT applications in endodontics and provide the readers with an overview of what has been found. The authors hope that this knowledge will form a foundation for appropriate clinical decision making with specific reference to selection criteria for the endodontic applications of CBVT. PMID:23487892

  15. Application of cone beam volumetric tomography in endodontics.

    PubMed

    Tyndall, Donald A; Kohltfarber, H

    2012-03-01

    In a 2008 article on cone beam volumetric tomography (CBVT) and dentoalveolar applications, Tyndall and Rathore wrote: 'It is in the area of endodontic applications that the literature has proved most fruitful to date.' This statement is even truer today than in 2008. A review of the literature has demonstrated that, in many cases, CBVT is more efficacious than traditional forms of 2-D imaging. Endodontic applications of CBVT include the diagnosis of periapical lesions due to pulpal inflammation, identification and localization of internal and external resorption, the detection of vertical root fractures, the visualization of accessory canals, and elucidation of the causes of non-healing endodontically treated teeth. Prior to 2008, most published articles on CBVT applications in endodontics were either case reports or in vitro studies. Since that time more well designed clinically related scholarly activity has been published. This article attempts to survey the field of CBVT applications in endodontics and provide the readers with an overview of what has been found. The authors hope that this knowledge will form a foundation for appropriate clinical decision making with specific reference to selection criteria for the endodontic applications of CBVT. PMID:22376099

  16. Dynamic Bowtie Filter for Cone-Beam/Multi-Slice CT

    PubMed Central

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator (“bowtie filter” or “bowtie”) is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  17. Full data consistency conditions for cone-beam projections with sources on a plane.

    PubMed

    Clackdoyle, Rolf; Desbat, Laurent

    2013-12-01

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. PMID:24240245

  18. Cone beam computed tomography: Development of system characterization metrics and applications

    NASA Astrophysics Data System (ADS)

    Betancourt Benitez, Jose Ricardo

    Cone beam computed tomography has emerged as a promising medical imaging tool due to its short scanning time, large volume coverage and its isotropic spatial resolution in three dimensions among other characteristics. However, due to its inherent three-dimensionality, it is important to understand and characterize its physical characteristics to be able to improve its performance and extends its applications in medical imaging. One of the main components of a Cone beam computed tomography system is its flat panel detector. Its physical characteristics were evaluated in terms of spatial resolution, linearity, image lag, noise power spectrum and detective quantum efficiency. After evaluating the physical performance of the flat panel detector, metrics to evaluate the image quality of the system were developed and used to evaluate the systems image quality. Especially, the modulation transfer function and the noise power spectrum were characterized and evaluated for a PaxScan 4030CB FPD-based cone beam computed tomography system. Finally, novel applications using cone beam computed tomography images were suggested and evaluated for its practical application. For example, the characterization of breast density was evaluated and further studies were suggested that could impact the health system related to breast cancer. Another novel application was the utilization of cone beam computed tomography for orthopedic imaging. In this thesis, an initial assessment of its practical application was perform. Overall, three cone beam computed tomography systems were evaluated and utilized for different novel applications that would advance the field of medical imaging.

  19. Volumetric cone-beam CT system based on a 41x41 cm2 flat-panel imager

    NASA Astrophysics Data System (ADS)

    Jaffray, David A.; Siewerdsen, Jeffrey H.

    2001-06-01

    Cone-beam computed tomography (CBCT) based upon large-area flat-panel imager (FPI) technology is a flexible and adaptable technology that offers large field-of-view (FOV), high spatial resolution, and soft-tissue imaging. The imaging performance of FPI-based cone-beam CT has been evaluated on a computer-controlled bench-top system using an early prototype FPI with a small FOV (20.5 X 20.5 cm2). These investigations demonstrate the potential of this exciting technology. In this report, imaging performance is evaluated using a production grade large-area FPI (41 X 41 cm2) for which the manufacturer has achieved a significant reduction in additive noise. This reduction in additive noise results in a substantial improvement in detective quantum efficiency (DQE) at low exposures. The spatial resolution over the increased FOV of the cone-beam CT system is evaluated by imaging a fine steel wire placed at various locations within the volume of reconstruction. The measured modulation transfer function (MTF) of the system demonstrates spatial frequency pass beyond 1 mm-1 (10% modulation) with a slight degradation at points off the source plane. In addition to investigations of imaging performance, progress has also been made in the integration of this technology with a medical linear accelerator for on-line image-guided radiation therapy. Unlike the bench-top system, this implementation must contend with significant geometric non-idealities caused by gravity-induced flex of the x-ray tube and FPI support assemblies. A method of characterizing and correcting these non-idealities has been developed. Images of an anthropomorphic head phantom qualitatively demonstrate the excellent spatial resolution and large FOV achievable with the cone-beam approach in the clinical implementation.

  20. Task-driven imaging in cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Stayman, J. W.; Ouadah, S.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. Methods: The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered back-projection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Results: Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. Conclusions: This work demonstrated the potential of a task

  1. Clinical Experience with Cone Beam CT Navigation for Tumor Ablation

    PubMed Central

    Abi-Jaoudeh, Nadine; Venkatesan, Aradhana M.; Van der Sterren, William; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2015-01-01

    Purpose To describe clinical use and potential benefits of Cone Beam Computed Tomography (CBCT) navigation to perform image guided percutaneous tumor ablations. Materials and Methods All ablations performed between February 2011 and February 2013 using CBCT navigation, were included. Sixteen patients underwent 20 ablations for 29 lesions. CBCT ablation planning capabilities include multimodality image fusion and tumor segmentation for visualization, depiction of the predicted ablation zones for intra-procedural planning and segmentation of the ablated area for immediate post-treatment verification. Number and purpose of CBCT were examined. The initial ablation plan defined as number of probes and duration of energy delivery was recorded for 20/29 lesions. Technical success and local recurrences were recorded. Primary and secondary effectiveness rates were calculated. Results Image fusion was utilized for 16 lesions and intra-procedural ultrasound for 4. Of the 20/29 lesions, where the ablation plans were recorded, there was no deviation from the plan in 14. In the remaining 6/20, iterative planning was needed for complete tumor coverage. An average of 8.7 ± 3.2 CBCT were performed per procedure, including 1.3 ± 0.5 for tumor segmentation and planning, 1.7 ± 0.7 for probe position confirmation, 3.9 ± 2 to ensure complete coverage. Mean follow-up was 18.6 ± 6.5 months. 28/29 ablations were technically successful (96.5%). Of ablations performed with curative intent, technical effectiveness at one-month was 25/26 (96.1%) and 22/26 (84.6%) at last follow-up. Local tumor progression was observed in 11.5% (3/26). Conclusion CBCT navigation may add information to assist and improve ablation guidance and monitoring. PMID:25645409

  2. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    SciTech Connect

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-04-15

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  3. Automatic segmentation of maxillofacial cysts in cone beam CT images.

    PubMed

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2016-05-01

    Accurate segmentation of cysts and tumors is an essential step for diagnosis, monitoring and planning therapeutic intervention. This task is usually done manually, however manual identification and segmentation is tedious. In this paper, an automatic method based on asymmetry analysis is proposed which is general enough to segment various types of jaw cysts. The key observation underlying this approach is that normal head and face structure is roughly symmetric with respect to midsagittal plane: the left part and the right part can be divided equally by an axis of symmetry. Cysts and tumors typically disturb this symmetry. The proposed approach consists of three main steps as follows: At first, diffusion filtering is used for preprocessing and symmetric axis is detected. Then, each image is divided into two parts. In the second stage, free form deformation (FFD) is used to correct slight displacement of corresponding pixels of the left part and a reflected copy of the right part. In the final stage, intensity differences are analyzed and a number of constraints are enforced to remove false positive regions. The proposed method has been validated on 97 Cone Beam Computed Tomography (CBCT) sets containing various jaw cysts which were collected from various image acquisition centers. Validation is performed using three similarity indicators (Jaccard index, Dice's coefficient and Hausdorff distance). The mean Dice's coefficient of 0.83, 0.87 and 0.80 is achieved for Radicular, Dentigerous and KCOT classes, respectively. For most of the experiments done, we achieved high true positive (TP). This means that a large number of cyst pixels are correctly classified. Quantitative results of automatic segmentation show that the proposed method is more effective than one of the recent methods in the literature. PMID:27035862

  4. Assessment of liver ablation using cone beam computed tomography

    PubMed Central

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-01

    AIM: To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. METHODS: Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. RESULTS: Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm3 (range: 4-95 cm3) and 30 cm3 (range: 4-124 cm3), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. CONCLUSION: Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone. PMID:25593467

  5. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    SciTech Connect

    Sailer, Anna M.; Schurink, Geert Willem H.; Wildberger, Joachim E. Graaf, Rick de Zwam, Willem H. van Haan, Michiel W. de Kemerink, Gerrit J. Jeukens, Cécile R. L. P. N.

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  6. Task-driven imaging in cone-beam computed tomography

    PubMed Central

    Gang, G. J.; Stayman, J. W.; Ouadah, S.; Ehtiati, T.; Siewerdsen, J. H.

    2015-01-01

    Purpose Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. Methods The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Results Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. Conclusions This work demonstrated the potential of a task

  7. A virtual source model for Kilo-voltage cone beam CT: Source characteristics and model validation

    SciTech Connect

    Spezi, E.; Volken, W.; Frei, D.; Fix, M. K.

    2011-09-15

    Purpose: The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. Methods: We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. Results: We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( {+-} 2%, one standard deviation) in all cases studied. Conclusions: The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model

  8. Rotational artifacts in on-board cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Ali, E. S. M.; Webb, R.; Nyiri, B. J.

    2015-02-01

    Rotational artifacts in image guidance systems lead to registration errors that affect non-isocentric treatments and dose to off-axis organs-at-risk. This study investigates a rotational artifact in the images acquired with the on-board cone beam computed tomography system XVI (Elekta, Stockholm, Sweden). The goals of the study are to identify the cause of the artifact, to characterize its dependence on other quantities, and to investigate possible solutions. A 30 cm diameter cylindrical phantom is used to acquire clockwise and counterclockwise scans at five speeds (120 to 360 deg min-1) on six Elekta linear accelerators from three generations (MLCi, MLCi2 and Agility). Additional scans are acquired with different pulse widths and focal spot sizes for the same mAs. Image quality is evaluated using a common phantom with an in-house three dimensional contrast transfer function attachment. A robust, operator-independent analysis is developed which quantifies rotational artifacts with 0.02° accuracy and imaging system delays with 3 ms accuracy. Results show that the artifact is caused by mislabelling of the projections with a lagging angle due to various imaging system delays. For the most clinically used scan speed (360 deg min-1), the artifact is ˜0.5°, which corresponds to ˜0.25° error per scan direction with the standard Elekta procedure for angle calibration. This leads to a 0.5 mm registration error at 11 cm off-center. The artifact increases linearly with scan speed, indicating that the system delay is independent of scan speed. For the most commonly used pulse width of 40 ms, this delay is 34 ± 1 ms, part of which is half the pulse width. Results are consistent among the three linac generations. A software solution that corrects the angles of individual projections is shown to eliminate the rotational error for all scan speeds and directions. Until such a solution is available from the manufacturer, three clinical solutions are presented, which reduce the

  9. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  10. Ring artifact corrections in flat-panel detector based cone beam CT

    NASA Astrophysics Data System (ADS)

    Anas, Emran Mohammad Abu; Kim, Jaegon; Lee, Soo Yeol; Hasan, Md. Kamrul

    2011-03-01

    The use of flat-panel detectors (FPDs) is becoming increasingly popular in the cone beam volume and multi-slice CT imaging. But due to the deficient semiconductor array processing, the diagnostic quality of the FPD-based CT images in both CT systems is degraded by different types of artifacts known as the ring and radiant artifacts. Several techniques have been already published in eliminating the stripe artifacts from the projection data of the multi-slice CT system or in other words, from the sinogram image with a view to suppress the ring and radiant artifacts from the 2-D reconstructed CT images. On the other hand, till now a few articles have been reported to remove the artifacts from the cone beam CT images. In this paper, an effective approach is presented to eliminate the artifacts from the cone beam projection data using the sinogram based stripe artifact removal methods. The improvement in the required diagnostic quality is achieved by applying them both in horizontal and vertical sinograms constituted sequentially from the stacked cone beam projections. Finally, some real CT images have been used to demonstrate the effectiveness of the proposed technique in eliminating the ring and radiant artifacts from the cone beam volume CT images. A comparative study with the conventional sinogram based approaches is also presented to see the effectiveness of the proposed technique.

  11. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation - A Phantom Study

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Banckwitz, Rosemarie; Zarogoulidis, Paul; Vogl, Thomas; Darwiche, Kaid; Goldberg, Eugene; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Freitag, Lutz; Turner, J Francis; Pivert, Patrick Le; Yarmus, Lonny; Zarogoulidis, Konstantinos; Brachmann, Johannes

    2014-01-01

    Rationale: Cone Beam Computed Tomography imaging has become increasingly important in many fields of interventional therapies. Objective: Lung navigation study which is an uncommon soft tissue approach. Methods: As no effective organ radiation dose levels were available for this kind of Cone Beam Computed Tomography application we simulated in our DynaCT (Siemens AG, Forchheim, Germany) suite 2 measurements including 3D acquisition and again for 3D acquisition and 4 endobronchial navigation maneuvers under fluoroscopy towards a nodule after the 8th segmentation in the right upper lobe over a total period of 20 minutes (min). These figures reflect the average complexity and time in our experience. We hereby describe the first time the exact protocol of lung navigation by a Cone Beam Computed Tomography approach. Measurement: The hereby first time measured body radiation doses in that approach showed very promising numbers between 0,98-1,15mSv giving specific lung radiation doses of 0,42-0,38 mSv. Main results: These figures are comparable or even better to other lung navigation systems. Cone Beam Computed Tomography offers some unique features for lung interventionists as a realtime 1-step navigation system in an open structure feasible for endobronchial and transcutaneous approach. Conclusions: Due to this low level of radiation exposure Cone Beam Computed Tomography is expected to attract interventionists interested in using and guiding endobronchial or transcutaneous ablative procedures to peripheral endobronchial and other lung lesions. PMID:24563674

  12. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    PubMed Central

    Crotty, D J; McKinley, R L; Tornai, M P

    2010-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient’s pendant breast. This study evaluated stationary-tilt angles for the CT subsystem that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source–detector configuration demonstrates minimally distorted patient images. PMID:19478374

  13. Asymptomatic radiopaque lesions of the jaws: a radiographic study using cone-beam computed tomography.

    PubMed

    Araki, Masao; Matsumoto, Naoyuki; Matsumoto, Kunihito; Ohnishi, Masaaki; Honda, Kazuya; Komiyama, Kazuo

    2011-12-01

    Panoramic radiography and cone-beam computed tomography (CT) were used to analyze asymptomatic radiopaque lesions in the jaw bones and determine the diagnostic relevance of the lesions based on their relationships to teeth and site of origin. One hundred radiopaque lesions detected between 1998 and 2002 were examined by both panoramic radiography and cone-beam CT. On the basis of panoramic radiographs, the region was classified as periapical, body, or edentulous, and the site was classified as molar or premolar. Follow-up data from medical records were available for only 36 of these cases. The study protocol for simultaneous use of cone-beam CT was approved by the ethics review board of our institution. A large majority of radiopaque lesions were observed in premolar and molar sites of the mandible; 60% of lesions were periapical, 24% were in the body, and 16% were in the edentulous region. An interesting type of radiopaque lesion, which we named a pearl shell structure (PSS), was observed on cone-beam CT in 34 of the 100 lesions. The PSS is a distinctive structure, and this finding on cone-beam CT likely represents the start of bone formation before bone sclerosis. PMID:22167028

  14. Hollow circular-truncated cone resonator and its hollow variable biconical laser beam

    NASA Astrophysics Data System (ADS)

    Liu, Jinglun; Chen, Mei; Wang, Qionghua; Sun, Nianchun

    2014-05-01

    To obtain a hollow variable biconical laser beam (HVBLB), a CO2 laser having a hollow circular-truncated cone resonator (HCTCR) is presented. This HCTCR comprises a rotationally symmetric total-reflecting concave mirror at the bottom, a rotationally symmetric part-reflecting convex mirror at the top, and a hollow circular-truncated cone discharge tube at the middle. The cross section of this generated biconical laser beam changes from annulus to circular to annulus and the size of this cross section from big to small to large as the propagation distance increases. So, a kind of laser beam with variable center intensity from zero to peak value to zero is obtained and is known as HVBLB. Due to the inclusion of part of the hollow laser beam (HLB) and solid laser beam, this HVBLB requires no additional beam-shaping element and has broad applications such as optical trapping and commercial manufacturing.

  15. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  16. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography

    PubMed Central

    Ye, Ivan B.; Wang, Ge

    2013-01-01

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22′, while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. PMID:24058220

  17. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  18. Cone beam filtered backprojection (CB-FBP) image reconstruction by tracking re-sampled projection data

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Nilsen, Roy A.; Mcolash, Scott M.

    2006-08-01

    The tomographic images reconstructed from cone beam projection data with a slice thickness larger than the nominal detector row width (namely thick image) is of practical importance in clinical CT imaging, such as neuro- and trauma- applications as well as applications for treatment planning in image guided radiation therapy. To get a balance optimization between image quality and computational efficiency, a cone beam filtered backprojection (CB-FBP) algorithm to reconstruct a thick image by tracking adaptively up-sampled cone beam projection of virtual reconstruction planes is proposed in this paper. Theoretically, a thick image is a weighted summation of a number of images with slice thickness corresponding to the nominal detector row width (namely thin image), and each thin image corresponds to a virtual reconstruction plane. To obtain the most achievable computational efficiency, the weighted summation has to be carried out in projection domain. However, it has been experimentally found that, to obtain a thick image with the reconstruction accuracy comparable to that of a thin image, the CB-FBP reconstruction algorithm has to be applied by tracking adaptively up-sampled cone beam projection data, which is the novelty of the proposed algorithm. The tracking process is carried out by making use of the cone beam projection data corresponding to the involved virtual reconstruction planes only, while the adaptive up-sampling process is implemented by interpolation along the z-direction at an adequate up-sampling rate. By using a helical body phantom, the performance of the proposed cone beam reconstruction algorithm, particularly its capability of suppressing artifacts, are experimentally evaluated and verified.

  19. Effects of scattered radiation and beam quality on low contrast performance in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Altunbas, M. Cem; Shaw, Chris; Chen, Lingyun; Wang, Tianpeng; Tu, Shuju

    2006-03-01

    In this work, we investigated the effects of scattered radiation and beam quality on the low contrast performance relevant to cone beam breast CT imaging. For experiments, we used our benchtop conebeam CT system and constructed a phantom consisting of simulated fat and soft tissues. We varied the field of view (FOV) along the z direction to observe its effect on scattered radiation. The beam quality was altered by varying the tube voltage from 50 to 100 kV. We computed the contrast-to-noise ratio (CNR) from reconstructed images and normalized it to the square root of dose measured at the center of the phantom. The results were used as the figure of merit (FOM). The effect of the beam quality on the scatter to primary ratio (SPR) had minimal impact and the SPR was primarily dominated by the FOV. In the central section of the phantom, increasing the FOV from 4 to 16 cm resulted in drop of CNR in the order of 15-20% at any given kVp setting. For a given FOV, the beam quality had insignificant effect on the FOM in the central section of the phantom. In the peripheral section, a 10 % drop in FOM was observed when the kVp setting was increased from 50 to 100. At lower kVp values, the primary x-ray transmission through the thicker parts of the phantom was severely reduced. Under such circumstances, ring artifacts were observed due to imperfect flat field correction at very low signal intensities. Higher kVp settings and higher SPRs helped to increase the signal intensity in highly attenuating regions and suppressed the ring artifacts.

  20. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer

    PubMed Central

    Tacher, Vania; Radaelli, Alessandro; Lin, MingDe

    2015-01-01

    Cone-beam computed tomography (CBCT) is an imaging technique that provides computed tomographic (CT) images from a rotational scan acquired with a C-arm equipped with a flat panel detector. Utilizing CBCT images during interventional procedures bridges the gap between the world of diagnostic imaging (typically three-dimensional imaging but performed separately from the procedure) and that of interventional radiology (typically two-dimensional imaging). CBCT is capable of providing more information than standard two-dimensional angiography in localizing and/or visualizing liver tumors (“seeing” the tumor) and targeting tumors though precise microcatheter placement in close proximity to the tumors (“reaching” the tumor). It can also be useful in evaluating treatment success at the time of procedure (“assessing” treatment success). CBCT technology is rapidly evolving along with the development of various contrast material injection protocols and multiphasic CBCT techniques. The purpose of this article is to provide a review of the principles of CBCT imaging, including purpose and clinical evidence of the different techniques, and to introduce a decision-making algorithm as a guide for the routine utilization of CBCT during transarterial chemoembolization of liver cancer. © RSNA, 2015 Online supplemental material is available for this article. PMID:25625741

  1. Segmentation of cone-beam CT using a hidden Markov random field with informative priors

    NASA Astrophysics Data System (ADS)

    Moores, M.; Hargrave, C.; Harden, F.; Mengersen, K.

    2014-03-01

    Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

  2. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  3. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  4. Optimizing Cone Beam Computed Tomography (CBCT) System for Image Guided Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Park, Chun Joo

    Cone Beam Computed Tomography (CBCT) system is the most widely used imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric image of patient can be reconstructed to identify and correct position setup errors prior to the radiation treatment. This CBCT system can significantly improve precision of on-line setup errors of patient position and tumor target localization prior to the treatment. However, there are still a number of issues that needs to be investigated with CBCT system such as 1) progressively increasing defective pixels in imaging detectors by its frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) degradation of image quality due to patients' respiratory motion when CBCT is acquired and 4) unknown knowledge of certain anatomical features such as liver, due to lack of soft-tissue contrast which makes tumor motion verification challenging. In this dissertation, we explore on optimizing the use of cone beam computed tomography (CBCT) system under such circumstances. We begin by introducing general concept of IGRT. We then present the development of automated defective pixel detection algorithm for X-ray imagers that is used for CBCT imaging using wavelet analysis. We next investigate on developing fast and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient approaches that could reduce the degradation of CBCT images from respiratory motion. First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory signal extracted from fiducial markers implanted in liver. Second, novel motion-map constrained image reconstruction (MCIR) is proposed that allows reconstruction of high quality and high phase

  5. Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction

    SciTech Connect

    Blessing, Manuel; Stsepankou, Dzmitry; Wertz, Hansjoerg; Arns, Anna; Lohr, Frank; Hesser, Juergen; Wenz, Frederik

    2010-11-15

    Purpose: Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials: An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90{sup o} within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 x 512 x 512 volume within 6 s. Results: The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2-3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180{sup o}-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was <6 mGy. Conclusion: The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV-MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.

  6. Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2001-06-01

    We developed and tested reconstruction software packages for different algorithms: fan-beam, cone-beam (Feldkamp) and spiral (helical) scans. All algorithms were applied to different simulations as well as to the real datasets from the commercial micro-CT instruments. From the results of testing a number of strong and weak points at different approaches was found. Several examples from the different application areas (bone microstructure, industrial applications) show typical reconstruction artifacts with different algorithms.

  7. A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography

    PubMed Central

    Schuster, T.; Theis, D.; Louis, A. K.

    2008-01-01

    3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391

  8. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  9. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    PubMed

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation. PMID:23389391

  10. Cone-beam computed tomography: An inevitable investigation in cleidocranial dysplasia

    PubMed Central

    Gupta, Nandita S.; Gogri, Ajas A.; Kajale, Manasi M.; Kadam, Sonali G.

    2015-01-01

    Cleidocranial dysplasia is a heritable skeletal dysplasia and one of the most common features of this syndrome is multiple impacted supernumerary teeth. Cone-beam computed tomography, the most recent advancement in maxillofacial imaging, provides the clinician to view the morphology of the skull and the dentition in all three dimensions and help in treatment planning for the patient. PMID:26097368

  11. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  12. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Purdie, Thomas G.; Norrlinger, Bernhard D.; Alasti, Hamideh; Moseley, Douglas J.; Sharpe, Michael B.; Siewerdsen, Jeffrey H.; Jaffray, David A.

    2006-06-15

    Kilovoltage cone-beam computerized tomography (kV-CBCT) systems integrated into the gantry of linear accelerators can be used to acquire high-resolution volumetric images of the patient in the treatment position. Using on-line software and hardware, patient position can be determined accurately with a high degree of precision and, subsequently, set-up parameters can be adjusted to deliver the intended treatment. While the patient dose due to a single volumetric imaging acquisition is small compared to the therapy dose, repeated and daily image guidance procedures can lead to substantial dose to normal tissue. The dosimetric properties of a clinical CBCT system have been studied on an Elekta linear accelerator (Synergy[reg] RP, XVI system) and additional measurements performed on a laboratory system with identical geometry. Dose measurements were performed with an ion chamber and MOSFET detectors at the center, periphery, and surface of 30 and 16-cm-diam cylindrical shaped water phantoms, as a function of x-ray energy and longitudinal field-of-view (FOV) settings of 5,10,15, and 26 cm. The measurements were performed for full 360 deg.CBCT acquisition as well as for half-rotation scans for 120 kVp beams using the 30-cm-diam phantom. The dose at the center and surface of the body phantom were determined to be 1.6 and 2.3 cGy for a typical imaging protocol, using full rotation scan, with a technique setting of 120 kVp and 660 mAs. The results of our measurements have been presented in terms of a dose conversion factor f{sub CBCT}, expressed in cGy/R. These factors depend on beam quality and phantom size as well as on scan geometry and can be utilized to estimate dose for any arbitrary mAs setting and reference exposure rate of the x-ray tube at standard distance. The results demonstrate the opportunity to manipulate the scanning parameters to reduce the dose to the patient by employing lower energy (kVp) beams, smaller FOV, or by using half-rotation scan.

  13. Regularized iterative weighted filtered backprojection for helical cone-beam CT.

    PubMed

    Sunnegårdh, Johan; Danielsson, Per-Erik

    2008-09-01

    Contemporary reconstruction methods employed for clinical helical cone-beam computed tomography (CT) are analytical (noniterative) but mathematically nonexact, i.e., the reconstructed image contains so called cone-beam artifacts, especially for higher cone angles. Besides cone artifacts, these methods also suffer from windmill artifacts: alternating dark and bright regions creating spiral-like patterns occurring in the vicinity of high z-direction derivatives. In this article, the authors examine the possibility to suppress cone and windmill artifacts by means of iterative application of nonexact three-dimensional filtered backprojection, where the analytical part of the reconstruction brings about accelerated convergence. Specifically, they base their investigations on the weighted filtered backprojection method [Stierstorfer et al., Phys. Med. Biol. 49, 2209-2218 (2004)]. Enhancement of high frequencies and amplification of noise is a common but unwanted side effect in many acceleration attempts. They have employed linear regularization to avoid these effects and to improve the convergence properties of the iterative scheme. Artifacts and noise, as well as spatial resolution in terms of modulation transfer functions and slice sensitivity profiles have been measured. The results show that for cone angles up to +/-2.78 degrees, cone artifacts are suppressed and windmill artifacts are alleviated within three iterations. Furthermore, regularization parameters controlling spatial resolution can be tuned so that image quality in terms of spatial resolution and noise is preserved. Simulations with higher number of iterations and long objects (exceeding the measured region) verify that the size of the reconstructible region is not reduced, and that the regularization greatly improves the convergence properties of the iterative scheme. Taking these results into account, and the possibilities to extend the proposed method with more accurate modeling of the acquisition

  14. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  15. Effectiveness of limited cone-beam computed tomography in the detection of horizontal root fracture.

    PubMed

    Kamburoğlu, Kivanç; Ilker Cebeci, A R; Gröndahl, Hans Göran

    2009-06-01

    To compare the diagnostic accuracy of conventional film radiography, charge coupled device (CCD) and photostimulable phosphor plate (PSP) digital images and limited cone-beam computed tomography in detecting simulated horizontal root fracture. Root fractures were created in the horizontal plane in 18 teeth by a mechanical force and fragments were relocated. Another 18 intact teeth with no horizontal root fracture served as a control group. Thirty-six teeth were placed in the respective empty maxillary anterior sockets of a human dry skull in groups three by three. Intraoral radiographs were obtained in three different vertical views by utilizing Eastman Kodak E-speed film, CCD sensor, RVG 5.0 Trophy and a PSP sensor Digora, Optime. Cone beam CT images were taken with a unit (3D Accuitomo; J Morita MFG. Corp, Kyoto, Japan). Three dental radiologists separately examined the intraoral film, PSP, CCD and cone beam CT images for the presence of horizontal root fracture. Specificity and sensitivity for each radiographic technique were calculated. Kappa statistics was used for assessing the agreement between observers. Chi-square statistics was used to determine whether there were differences between the systems. Results were considered significant at P < 0.05. Cone beam CT images revealed significantly higher sensitivities (P < 0.05) than the intraoral systems between which no significant differences were found. Specificities did not show any statistically significant differences between any of the four systems. The kappa values for inter-observer agreement between observers (four pairs) ranged between 0.82-0.90 for the 3DX evaluations and between 0.63-0.71 for the different types of intraoral images. Limited cone beam CT, outperformed the two-dimensional intraoral, conventional as well as digital, radiographic methods in detecting simulated horizontal root fracture. PMID:19583573

  16. Comparison of Swedish and Norwegian Use of Cone-Beam Computed Tomography: a Questionnaire Study

    PubMed Central

    Strindberg, Jerker Edén; Hol, Caroline; Torgersen, Gerald; Møystad, Anne; Nilsson, Mats; Hellén-Halme, Kristina

    2015-01-01

    ABSTRACT Objectives Cone-beam computed tomography in dentistry can be used in some countries by other dentists than specialists in radiology. The frequency of buying cone-beam computed tomography to examine patients is rapidly growing, thus knowledge of how to use it is very important. The aim was to compare the outcome of an investigation on the use of cone-beam computed tomography in Sweden with a previous Norwegian study, regarding specifically technical aspects. Material and Methods The questionnaire contained 45 questions, including 35 comparable questions to Norwegian clinics one year previous. Results were based on inter-comparison of the outcome from each of the two questionnaire studies. Results Responses rate was 71% in Sweden. There, most of cone-beam computed tomography (CBCT) examinations performed by dental nurses, while in Norway by specialists. More than two-thirds of the CBCT units had a scout image function, regularly used in both Sweden (79%) and Norway (75%). In Sweden 4% and in Norway 41% of the respondents did not wait for the report from the radiographic specialist before initiating treatment. Conclusions The bilateral comparison showed an overall similarity between the two countries. The survey gave explicit and important knowledge of the need for education and training of the whole team, since radiation dose to the patient could vary a lot for the same kind of radiographic examination. It is essential to establish quality assurance protocols with defined responsibilities in the team in order to maintain high diagnostic accuracy for all examinations when using cone-beam computed tomography for patient examinations. PMID:26904179

  17. Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy

    SciTech Connect

    Hawkins, Maria A.; Brock, Kristy K.; Eccles, Cynthia; Moseley, Douglas; Jaffray, David; Dawson, Laura A. . E-mail: laura.dawson@rmp.uhn.on.ca

    2006-10-01

    Purpose: To evaluate the residual error in liver position using breath-hold kilovoltage (kV) cone-beam computed tomography (CT) following on-line orthogonal megavoltage (MV) image-guided breath-hold liver cancer conformal radiotherapy. Methods and Materials: Thirteen patients with liver cancer treated with 6-fraction breath-hold conformal radiotherapy were investigated. Before each fraction, orthogonal MV images were obtained during exhale breath-hold, with repositioning for offsets >3 mm, using the diaphragm for cranio-caudal (CC) alignment and vertebral bodies for medial-lateral (ML) and anterior posterior (AP) alignment. After repositioning, repeat orthogonal MV images, orthogonal kV fluoroscopic movies, and kV cone-beam CTs were obtained in exhale breath-hold. The cone-beam CT livers were registered to the planning CT liver to obtain the residual setup error in liver position. Results: After repositioning, 78 orthogonal MV image pairs, 61 orthogonal kV image pairs, and 72 kV cone-beam CT scans were obtained. Population random setup errors ({sigma}) in liver position were 2.7 mm (CC), 2.3 mm (ML), and 3.0 mm (AP), and systematic errors ({sigma}) were 1.1 mm, 1.9 mm, and 1.3 mm in the superior, medial, and posterior directions. Liver offsets >5 mm were observed in 33% of cases; offsets >10 mm and liver deformation >5 mm were observed in a minority of patients. Conclusions: Liver position after radiation therapy guided with MV orthogonal imaging was within 5 mm of planned position in the majority of patients. kV cone-beam CT image guidance should improve accuracy with reduced dose compared with orthogonal MV image guidance for liver cancer radiation therapy.

  18. Feasibility of a Modified cone-Beam cT rotation Trajectory to improve liver Periphery Visualization during Transarterial chemoembolization

    PubMed Central

    Schernthaner, Rüdiger E.; Chapiro, Julius; Sahu, Sonia; Withagen, Paul; Duran, Rafael; Sohn, Jae Ho; Radaelli, Alessandro; van der Bom, Imramsjah Martin; Geschwind, Jean-François H.; Lin, MingDe

    2015-01-01

    Purpose To compare liver coverage and tumor detectability by using preprocedural magnetic resonance (MR) images as a reference, as well as radiation exposure of cone-beam computed tomography (CT) with different rotational trajectories. Materials and Methods Fifteen patients (nine men and six women; mean age ± standard deviation, 65 years ± 5) with primary or secondary liver cancer were retrospectively included in this institutional review board–approved study. A modified conebeam CT protocol was used in which the C-arm rotates from +55° to –185° (open arc cone-beam CT) instead of –120° to +120° (closed arc cone-beam CT). Each patient underwent two sessions of transarterial chemoembolization between February 2013 and March 2014 with closed arc and open arc cone-beam CT (during the first and second transarterial chemoembolization sessions, respectively, as part of the institutional transarterial chemoembolization protocol). For each cone-beam CT examination, liver volume and tumor detectability were assessed by using MR images as the reference. Radiation exposure was compared by means of a phantom study. For statistical analysis, paired t tests and a Wilcoxon signed rank test were performed. Results Mean liver volume imaged was 1695 cm3 ± 542 and 1857 cm3 ± 571 at closed arc and open arc cone-beam CT, respectively. The coverage of open arc cone-beam CT was significantly higher compared with closed arc cone-beam CT (97% vs 86% of the MR imaging liver volume, P = .002). In eight patients (53%), tumors were partially or completely outside the closed arc cone-beam CT field of view. All tumors were within the open arc cone-beam CT field of view. The open arc cone-beam CT radiation exposure by means of weighted CT index was slightly lower compared with that of closed arc cone-beam CT (–5.1%). Conclusion Open arc cone-beam CT allowed for a significantly improved intraprocedural depiction of peripheral hepatic tumors while achieving a slight radiation

  19. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  20. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements. PMID:26988107

  1. Single-slice rebinning method for helical cone-beam CT.

    PubMed

    Noo, F; Defrise, M; Clackdoyle, R

    1999-02-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. PMID:10070801

  2. Cone-beam differential phase-contrast laminography with x-ray tube source

    NASA Astrophysics Data System (ADS)

    Fu, J.; Biernath, T.; Willner, M.; Amberger, M.; Meiser, J.; Kunka, D.; Mohr, J.; Herzen, J.; Bech, M.; Pfeiffer, F.

    2014-06-01

    We report on an x-ray cone-beam differential phase-contrast computed laminography (DPC-CL) method for tomographic reconstruction of thin and lamellar objects. We describe the specific scan geometry of DPC-CL, which consists of a Talbot-Lau grating interferometer and a lab-based x-ray tube source, and derive a filtered back-projection (FBP) reconstruction algorithm. The experimental results of a flat sphere phantom and a piece of ham demonstrate the validity of the proposed technique. The existing DPC-CL methods are based on synchrotron sources and the parallel-beam geometry. In contrast, our approach adopts a more accessible x-ray tube source and a cone-beam geometry. Therefore it significantly widens the application range of phase-contrast laminography, particularly in practical laboratory settings, beyond applications at large-scale synchrotron facilities.

  3. An intracavitary cone system for electron beam therapy using a Therac 20 linear accelerator.

    PubMed

    Wilson, D L; Sharma, S C; Jose, B

    1986-06-01

    The Therac 20 is an AECL medical linear accelerator that produces electron and photon beams. Electron fields are produced by a scanned beam; collimation is provided by two sets of primary collimators and further collimated by external electron trimmers located 11 cm above the plane of isocenter (100 cm). These collimators are not suitable for intracavitary treatment. To overcome this limitation, we have designed an intracavitary cone system that attaches to the electron trimmers. Since the trimmers do not have to be removed while this system is in use, there is no need to bypass the associated interlock system. The apparatus consists of a platform which slides onto the lower set of trimmers, onto which a lead insert is attached. Dosimetry measurements for 9, 13, and 17 MeV electron beams are reported for three different treatment cones. PMID:3721928

  4. Cone-Beam Computed Tomography: Imaging Dose during CBCT Scan Acquisition and Accuracy of CBCT Based Dose Calculations

    NASA Astrophysics Data System (ADS)

    Giles, David Matthew

    Cone beam computed tomography (CBCT) is a recent development in radiotherapy for use in image guidance. Image guided radiotherapy using CBCT allows visualization of soft tissue targets and critical structures prior to treatment. Dose escalation is made possible by accurately localizing the target volume while reducing normal tissue toxicity. The kilovoltage x-rays of the cone beam imaging system contribute additional dose to the patient. In this study a 2D reference radiochromic film dosimetry method employing GAFCHROMIC(TM) model XR-QA film is used to measure point skin doses and dose profiles from the Elekta XVI CBCT system integrated onto the Synergy linac. The soft tissue contrast of the daily CBCT images makes adaptive radiotherapy possible in the clinic. In order to track dose to the patient or utilize on-line replanning for adaptive radiotherapy the CBCT images must be used to calculate dose. A Hounsfield unit calibration method for scatter correction is investigated for heterogeneity corrected dose calculation in CBCT images. Three Hounsfield unit to density calibration tables are used for each of four cases including patients and an anthropomorphic phantom, and the calculated dose from each is compared to results from the clinical standard fan beam CT. The dose from the scan acquisition is reported and the effect of scan geometry and total output of the x-ray tube on dose magnitude and distribution is shown. The ability to calculate dose with CBCT is shown to improve with the use of patient specific density tables for scatter correction, and for high beam energies the calculated dose agreement is within 1%.

  5. Evaluation of an in situ, on-line purging system for the cone penetrometer

    SciTech Connect

    Doskey, P.V.; Aldstadt, J.H.; Kuo, J.M.; Costanza, M.S.

    1996-11-01

    Materials that will be used to construct an in situ, on-line purging system for the cone penetrometer were evaluated. Transfer efficiencies for volatile organic compounds (VOCs) through stainless steel, nickel, aluminum, and Teflon tubings were determined using a gas-phase mixture of VOCs containing trichloromethane, tetrachloromethane, 1,1,1-trichloroethene, tetrachloroethene, hexane, benzene, toluene, and 1,2-dimethylbenzene. The water content of the gas stream had an insignificant effect on the quantitative transfer of VOCs through Teflon tubing but was critical to efficiently transfer the compounds through metal tubing, particularly nickel. Transfer efficiencies for all eight analytes in moist gas streams through stainless steel were greater than 95%. Toluene, tetrachloroethene, and 1,2-dimethybenzene were transferred with 93%, 81%, and 80% efficiency, respectively, when they were drawn through Teflon PFA (perfluoroalkoxy) tubing. In general, the retention of the VOCs by Teflon increases with decreasing aqueous solubility of the analyte. The efficiencies at which VOCs were purged from aqueous standards in Teflon PFA, Type 304 stainless steel, and glass vessels were similar. Stainless steel was superior to nickel, aluminum, and the Teflon polymers as a material for an in situ, on-line purging system for the cone penetrometer. 12 refs., 2 tabs.

  6. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    SciTech Connect

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  7. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    PubMed Central

    Ding, Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-01-01

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of −11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis. PMID:23718593

  8. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  9. X-Ray cone-beam phase tomography formulas based on phase-attenuation duality.

    PubMed

    Wu, Xizeng; Liu, Hong

    2005-08-01

    We present a detailed derivation of the phase-retrieval formula based on the phase-attenuation duality that we recently proposed in previous brief communication. We have incorporated the effects of x-ray source coherence and detector resolution into the phase-retrieval formula as well. Since only a single image is needed for performing the phase retrieval by means of this new approach, we point out the great advantages of this new approach for implementation of phase tomography. We combine our phase-retrieval formula with the Feldkamp-Davis-Kresss (FDK) cone-beam reconstruction algorithm to provide a three-dimensional phase tomography formula for soft tissue objects of relatively small sizes, such as small animals or human breast. For large objects we briefly show how to apply Katsevich's cone-beam reconstruction formula to the helical phase tomography as well. PMID:19498608

  10. Comparative study of mandibular linear measurements obtained by cone beam computed tomography and digital calipers

    PubMed Central

    Tarazona-Álvarez, Pablo; Romero-Millán, Javier; Peñarrocha-Oltra, David; Fuster-Torres, María Á.; Tarazona, Beatriz

    2014-01-01

    Objectives: Cone beam computed tomography (CBCT) is an innovative dental of imaging system characterized by rapid volumetric imaging with patient exposure to a single dose of radiation. The present study was carried out to compare the linear measurements obtained with CBCT and digital caliper in 20 mandibles from human cadavers. Study design: A total of 4800 linear measurements were measured between different mandibular anatomical points with CBCT and digital caliper. The real measurements were defined as those obtained with the digital caliper. Posteriorly, the mandibles were scanned to obtain the CBCT images, with software-based measurements of the distances. Results: The measurements obtained with the digital caliper were greater. The CBCT technique underestimated distances greater than 100 mm. Conclusions: CBCT allows to obtain linear mandibular anatomical measurements equivalent to those obtained with digital caliper. The differences existing between both methods were clinically acceptable. Key words:Computed tomography, cone beam CT, accuracy, reliability, digital caliper. PMID:25136429

  11. Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    PubMed Central

    Silva, Luiz Antonio F.; Barriviera, Mauricio; Januário, Alessandro L.; Bezerra, Ana Cristina B.; Fioravanti, Maria Clorinda S.

    2011-01-01

    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures. PMID:22122905

  12. Cracked Tooth: A Report of Two Cases and Role of Cone Beam Computed Tomography in Diagnosis

    PubMed Central

    Kalyan Chakravarthy, Pishipati Vinayak; Telang, Lahari Ajay; Nerali, Jayashri; Telang, Ajay

    2012-01-01

    Cracked tooth is a distinct type of longitudinal tooth fracture which occurs very commonly and its diagnosis can be challenging. This type of fracture tends to grow and change over time. Clinical diagnosis is difficult because the signs and symptoms are variable or nonspecific and may even resemble post-treatment disease following root canal treatment or periodontal disease. This variety and unpredictability make the cracked tooth a challenging diagnostic entity. The use of cone beam computed tomography (CBCT) in diagnosis of complex endodontic cases has been well documented in the literature. In this paper we present two cases of cracked tooth and emphasise on the timely use of cone beam computed tomography as an aid in diagnosis and as a prognostic determinant. PMID:23198164

  13. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography

    PubMed Central

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  14. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications

    PubMed Central

    Floridi, Chiara; Radaelli, Alessandro; Abi-Jaoudeh, Nadine; Grass, Micheal; Lin, Ming De; Chiaradia, Melanie; Geschwind, Jean-Francois; Kobeiter, Hishman; Squillaci, Ettore; Maleux, Geert; Giovagnoni, Andrea; Brunese, Luca; Wood, Bradford; Carrafiello, Gianpaolo; Rotondo, Antonio

    2014-01-01

    C-arm cone-beam computed tomography (CBCT) is a new imaging technology integrated in modern angiographic systems. Due to its ability to obtain cross-sectional imaging and the possibility to use dedicated planning and navigation software, it provides an informed platform for interventional oncology procedures. In this paper, we highlight the technical aspects and clinical applications of CBCT imaging and navigation in the most common loco-regional oncological treatments. PMID:25012472

  15. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    PubMed

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015. PMID:26672697

  16. Dental Cone-Beam Scans: Important Anatomic Views for the Contemporary Implant Surgeon.

    PubMed

    Greenstein, Gary; Carpentieri, Joseph R; Cavallaro, John

    2015-01-01

    Intraoral cone-beam computed tomography (CBCT), otherwise known as volume imaging CT scan, provides 3-dimensional images of mandibular and maxillary structures. These images offer highly accurate and valuable diagnostic information to facilitate treatment planning for implant cases. This article serves as a primer on how to read and interpret CBCT cross sectional views. It identifies anatomic structures of interest and discusses their clinical relevance. PMID:26625166

  17. Evidence and Professional Guidelines for Appropriate Use of Cone Beam Computed Tomography.

    PubMed

    Mallya, Sanjay M

    2015-09-01

    Cone beam computed tomography (CBCT) has applications in several aspects of dentistry. To appropriately use this technology, clinicians should be able to identify those situations where the information from CBCT is likely to provide useful information, and where this additional information translates into enhanced diagnoses, treatment plans and treatment outcomes. This article summarizes current evidence and recommendations from professional societies that guide safe and effective use of this technology for enhanced patient care. PMID:26820008

  18. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography.

    PubMed

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  19. Evaluation of the Upper Airway Morphology: The Role of Cone Beam Computed Tomography.

    PubMed

    White, Susan M; Huang, Chien-Jung; Huang, Shao-Ching; Sun, Zhengzheng; Eldredge, Jeff D; Mallya, Sanjay M

    2015-09-01

    Cone beam computed tomography (CBCT) has several applications in dentomaxillofacial diagnosis. Frequently, the imaged volume encompasses the upper airway. This article provides a systematic approach to airway analysis and the implications of the anatomic and pathologic alterations. It discusses the role of CBCT in management of obstructive sleep apnea (OSA) patients. This paper also highlights technological advances that combine CBCT imaging with computational modeling of the airway and the potential clinical applications of such technologies. PMID:26820010

  20. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    PubMed Central

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2015-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804

  1. Virtual alignment of x-ray cone-beam tomography system using two calibration aperture measurements

    NASA Astrophysics Data System (ADS)

    Bronnikov, Andrei V.

    1999-02-01

    In cone-beam tomography, relatively small misalignment of the imaging system is geometrically magnified and may cause severe distortion of the reconstructed image. We describe a method for alignment of a cone-beam tomography system built on an x-ray microfocus tube, an image intensifier, and a high-resolution CCD camera. To obtain geometrical parameters of system misalignment, we suggest measuring two 180-deg- opposed cone-beam radiographs of a specially manufactured calibration aperture. An advantage of the aperture over other calibration objects is that we can easily restore its idealized picture by applying a certain threshold to the measured data. The method permits the lateral displacement vector and lateral tilt angle to be accurately found. Unlike other alignment methods, our approach enables virtual system alignment by using mathematical processing of the measured data, rather than moving the parts of the system. The virtually aligned system data are used for 3D image reconstruction by a standard filtered backprojection algorithm. Experimental results demonstrate considerable improvement of the image quality after applying the alignment method suggested.

  2. Estimation of organ and effective doses resulting from cone beam CT imaging for radiotherapy treatment planning.

    PubMed

    Sawyer, L J; Whittle, S A; Matthews, E S; Starritt, H C; Jupp, T P

    2009-07-01

    In this study, organ doses were measured for various kilovoltage cone beam CT exposures on the Varian Acuity simulator and an alternative method of dose estimation was also assessed. Organ doses were measured by distributing thermoluminescent dosimeters (TLDs) throughout an anthropomorphic phantom, and effective doses were calculated using International Commission on Radiological Protection (ICRP) 60 and ICRP 103 tissue-weighting factors. The ImPACT CT patient dosimetry calculator was also used to estimate doses for comparison with the TLD results. Effective doses of 15.3 mSv (19.4 mSv), 14.3 mSv (9.7 mSv) and 2.8 mSv (3.2 mSv) were calculated from the TLD measurements and ICRP 60 (ICRP 103) weighting factors for breast, pelvis and head acquisitions, respectively. When a 10 cm pencil ionisation chamber was used to measure the CT dose index, the ImPACT calculator was found to provide an adequate estimation of dose when compared with the TLD results. However, the doses for half-fan exposures were found to be overestimated, with the extent of overestimation depending on the radiosensitive organs irradiated. The organ and effective doses reported provide information for justification and optimisation of cone beam CT procedures, and are compared with doses delivered by other imaging devices. The ImPACT calculator may be used to estimate doses from cone beam CT procedures, if the potential for overestimation is acknowledged. PMID:19255115

  3. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits

    PubMed Central

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    Purpose: This article presents a new reconstruction method for 3D imaging using a multiple 360° circular orbit cone beam CT system, specifically a way to combine 3D volumes reconstructed with each orbit. The main goal is to improve the noise performance in the combined image while avoiding cone beam artifacts. Methods: The cone beam projection data of each orbit are reconstructed using the FDK algorithm. When at least a portion of the total volume can be reconstructed by more than one source, the proposed combination method combines these overlap regions using weighted averaging in frequency space. The local exactness and the noise performance of the combination method were tested with computer simulations of a Defrise phantom, a FORBILD head phantom, and uniform noise in the raw data. Results: A noiseless simulation showed that the local exactness of the reconstructed volume from the source with the smallest tilt angle was preserved in the combined image. A noise simulation demonstrated that the combination method improved the noise performance compared to a single orbit reconstruction. Conclusions: In CT systems which have overlap volumes that can be reconstructed with data from more than one orbit and in which the spatial frequency content of each reconstruction can be calculated, the proposed method offers improved noise performance while keeping the local exactness of data from the source with the smallest tilt angle. PMID:21089770

  4. CoBRA: Cone beam Computed Tomography (CT) reconstruction code in Interactive Data Language (IDL)

    SciTech Connect

    Sheats, M.J.; Stupin, D.M.

    1997-10-01

    In support of stockpile stewardship and other important missions, Los Alamos is continually looking for fast and effective ways of inspecting and evaluating industrial parts. Thus, Los Alamos is continually striving to improve our radiography and computed tomography (CT) capabilities. Cormack and Hounsfield received the Nobel Prize in 1979 for their pioneering work in computed tomography that led to the development of medical scanners. Copley et al. provides a good history of the development of industrial CT systems. The early systems collect data via a single detector or linear detector array. While CT offers greatly increased spatial resolutions over radiography, CT inspections with a linear array are slow and costly. To improve the viability of CT for NDT applications, Feldkamp, Davis, and Kress reported a cone beam reconstruction technique that speeds up the CT process by using image data rather than data collected by a linear array. Because it potentially offers processing speeds up to 10 times faster than CT systems that use a linear array, we are building a cone beam CT for use with our 20 MV x-ray source and Los Alamos Neutron Science Center (LANSCE) neutron sources. Our software, called CoBRA, is a portable cone beam reconstruction code for CT applications that efficiently and rapidly reconstructs large data sets. CoBRA applications include both x-ray and neutron inspections using x-ray phosphor screens coupled to either a CCD camera or flat-panel amorphous silicon arrays. Photographs of two amorphous silicon arrays.

  5. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    NASA Astrophysics Data System (ADS)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  6. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization

    PubMed Central

    Sidky, Emil Y.; Pan, Xiaochuan

    2009-01-01

    An iterative algorithm, based on recent work in compressive sensing, is developed for volume image reconstruction from a circular cone-beam scan. The algorithm minimizes the total-variation (TV) of the image subject to the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. The constraints are enforced by use of projection onto convex sets (POCS) and the TV objective is minimized by steepest descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS (ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented in the context of circular cone-beam image reconstruction, it can also be applied to scanning geometries involving other x-ray source trajectories. PMID:18701771

  7. X-ray cone-beam computed tomography: principles, applications, challenges and solutions

    NASA Astrophysics Data System (ADS)

    Noo, Frederic

    2010-03-01

    In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.

  8. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    NASA Astrophysics Data System (ADS)

    Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan

    2013-04-01

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination.

  9. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    SciTech Connect

    Gullberg, Grant T; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-12-18

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising.

  10. Comparison of two detector systems for cone beam CT small animal imaging - a preliminary study

    PubMed Central

    Meng, Yang; Shaw, Chris C.; Liu, Xinming; Altunbas, Mustafa C.; Wang, Tianpeng; Chen, Lingyun; Tu, Shu-Ju; Kappadath, S. Cheenu; Lai, Chao-Jen

    2007-01-01

    Purpose To compare two detector systems - one based on the charge-coupled device (CCD) and image amplifier, the other based on a-Si/CsI flat panel, for cone beam computed-tomography (CT) imaging of small animals. A high resolution, high framing rate detector system for the cone beam CT imaging of small animals was developed. The system consists of a 2048×3072×12 bit CCD optically coupled to an image amplifier and an x-ray phosphor screen. The CCD has an intrinsic pixel size of 12 μm but the effective pixel size can be adjusted through the magnification adjustment of the optical coupling systems. The system is used in conjunction with an x-ray source and a rotating stage for holding and rotating the scanned object in the cone beam CT imaging experiments. The advantages of the system include but are not limited to the ability to adjust the effective pixel size and to achieve extremely high spatial resolution and temporal resolution. However, the need to use optical coupling compromises the detective quanta efficiency (DQE) of the system. In this paper, the imaging characteristics of the system were presented and compared with those of an a-Si/CsI flat-panel detector system. PMID:18160972

  11. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  12. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning.

    PubMed

    Thomas, T Hannah Mary; Devakumar, D; Purnima, S; Ravindran, B Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0 degrees and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between +/-6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible. PMID:19287087

  13. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  14. Technical Note: Suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy

    SciTech Connect

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M.

    2012-03-15

    Purpose: Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. Methods: The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). Results: The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. Conclusions: The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  15. SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams

    SciTech Connect

    Jeong, K; Goddard, L; Savacool, M; Mynampati, D; Godoy Scripes, P; Tome', W; Kuo, H; Basavatia, A; Hong, L; Yaparpalvi, R; Kalnicki, S

    2014-06-01

    Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm{sup 2} open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm{sup 2} MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality.

  16. Modeling the measurement of ultrasonic beams transmitted through a penetrable acoustic cone.

    PubMed

    Huthwaite, Peter; Simonetti, Francesco

    2012-10-01

    The interaction of ultrasonic beams with conical scatterers is governed by a combination of diffraction effects occurring at the aperture of the acoustic source/receiver and refraction through the cone. Accordingly, the outcome of a transmission experiment is dependent upon the many physical parameters characterizing the transducers and the cone. We develop a simplified model which describes the deflection caused by refraction through the cone using ray theory, then uses Huygens' summation to calculate the transducer response from this deflection. The model's accuracy is verified by comparison to simulated data. The model shows that transmission occurs in two different regimes, depending on the parameters of the particular problem. In the first regime, the cone alters the spatial phase distribution of the incident field along the receiver's aperture, whereas its amplitude remains almost unchanged. Because the receiver integrates the field over the aperture, the phasing affects the measurements via constructive and destructive interference. In the second regime, the phase alteration is accompanied by large amplitude variations around an average value that is significantly smaller than the amplitude observed in the first regime. The approximation will aid the design of ultrasound tomography arrays, such as those being developed for breast cancer detection. PMID:23143578

  17. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.

    PubMed

    Cho, Youngbin; Moseley, Douglas J; Siewerdsen, Jeffrey H; Jaffray, David A

    2005-04-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 degrees (around beam direction) to 0.3 degrees (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0

  18. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  19. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    NASA Astrophysics Data System (ADS)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  20. 3D In Vivo Dosimetry Using Megavoltage Cone-Beam CT and EPID Dosimetry

    SciTech Connect

    Elmpt, Wouter van Nijsten, Sebastiaan; Petit, Steven; Mijnheer, Ben; Lambin, Philippe; Dekker, Andre

    2009-04-01

    Purpose: To develop a method that reconstructs, independently of previous (planning) information, the dose delivered to patients by combining in-room imaging with transit dose measurements during treatment. Methods and Materials: A megavoltage cone-beam CT scan of the patient anatomy was acquired with the patient in treatment position. During treatment, delivered fields were measured behind the patient with an electronic portal imaging device. The dose information in these images was back-projected through the cone-beam CT scan and used for Monte Carlo simulation of the dose distribution inside the cone-beam CT scan. Validation was performed using various phantoms for conformal and IMRT plans. Clinical applicability is shown for a head-and-neck cancer patient treated with IMRT. Results: For single IMRT beams and a seven-field IMRT step-and-shoot plan, the dose distribution was reconstructed within 3%/3mm compared with the measured or planned dose. A three-dimensional conformal plan, verified using eight point-dose measurements, resulted in a difference of 1.3 {+-} 3.3% (1 SD) compared with the reconstructed dose. For the patient case, planned and reconstructed dose distribution was within 3%/3mm for about 95% of the points within the 20% isodose line. Reconstructed mean dose values, obtained from dose-volume histograms, were within 3% of prescribed values for target volumes and normal tissues. Conclusions: We present a new method that verifies the dose delivered to a patient by combining in-room imaging with the transit dose measured during treatment. This verification procedure opens possibilities for offline adaptive radiotherapy and dose-guided radiotherapy strategies taking into account the dose distribution delivered during treatment sessions.

  1. Direct determination of geometric alignment parameters for cone-beam scanners.

    PubMed

    Mennessier, C; Clackdoyle, R; Noo, F

    2009-03-21

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049

  2. Direct determination of geometric alignment parameters for cone-beam scanners

    PubMed Central

    Mennessier, C; Clackdoyle, R; Noo, F

    2009-01-01

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049

  3. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  4. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2007-03-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  5. Scattering-compensated cone beam x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Rong, Junyan; Pu, Huangsheng; Liu, Wenlei; Liao, Qimei; Lu, Hongbing

    2016-04-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with x-ray. It is a dual modality imaging technique based on the principle that some nanophosphors can emit near-infrared (NIR) light when excited by x-rays. The x-ray scattering effect is a great issue in both CT and XLCT reconstruction. It has been shown that if the scattering effect compensated, the reconstruction average relative error can be reduced from 40% to 12% in the in the pencil beam XLCT. However, the scattering effect in the cone beam XLCT has not been proved. To verify and reduce the scattering effect, we proposed scattering-compensated cone beam x-ray luminescence computed tomography using an added leading to prevent the spare x-ray outside the irradiated phantom in order to decrease the scattering effect. Phantom experiments of two tubes filled with Y2O3:Eu3+ indicated that the proposed method could reduce the scattering by a degree of 30% and can reduce the location error from 1.8mm to 1.2mm. Hence, the proposed method was feasible to the general case and actual experiments and it is easy to implement.

  6. Comparative study of a low-Z cone-beam computed tomography system

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Hansen, V. N.; Thompson, M. G.; Poludniowski, G.; Niven, A.; Seco, J.; Evans, P. M.

    2011-07-01

    Computed tomography images have been acquired using an experimental (low atomic number (Z) insert) megavoltage cone-beam imaging system. These images have been compared with standard megavoltage and kilovoltage imaging systems. The experimental system requires a simple modification to the 4 MeV electron beam from an Elekta Precise linac. Low-energy photons are produced in the standard medium-Z electron window and a low-Z carbon electron absorber located after the window. The carbon electron absorber produces photons as well as ensuring that all remaining electrons from the source are removed. A detector sensitive to diagnostic x-ray energies is also employed. Quantitative assessment of cone-beam computed tomography (CBCT) contrast shows that the low-Z imaging system is an order of magnitude or more superior to a standard 6 MV imaging system. CBCT data with the same contrast-to-noise ratio as a kilovoltage imaging system (0.15 cGy) can be obtained in doses of 11 and 244 cGy for the experimental and standard 6 MV systems, respectively. Whilst these doses are high for everyday imaging, qualitative images indicate that kilovoltage like images suitable for patient positioning can be acquired in radiation doses of 1-8 cGy with the experimental low-Z system.

  7. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  8. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    SciTech Connect

    Matenine, Dmitri; Goussard, Yves

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.

  9. WE-G-18A-06: Sinogram Restoration in Helical Cone-Beam CT

    SciTech Connect

    Little, K; Riviere, P La

    2014-06-15

    Purpose: To extend CT sinogram restoration, which has been shown in 2D to reduce noise and to correct for geometric effects and other degradations at a low computational cost, from 2D to a 3D helical cone-beam geometry. Methods: A method for calculating sinogram degradation coefficients for a helical cone-beam geometry was proposed. These values were used to perform penalized-likelihood sinogram restoration on simulated data that were generated from the FORBILD thorax phantom. Sinogram restorations were performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods were used to obtain reconstructions. Resolution-variance trade-offs were investigated for several locations within the reconstructions for the purpose of comparing sinogram restoration to no restoration. In order to compare potential differences, reconstructions were performed using different groups of neighbors in the penalty, two analytical reconstruction methods (Katsevich and single-slice rebinning), and differing helical pitches. Results: The resolution-variance properties of reconstructions restored using sinogram restoration with a Huber penalty outperformed those of reconstructions with no restoration. However, the use of a quadratic sinogram restoration penalty did not lead to an improvement over performing no restoration at the outer regions of the phantom. Application of the Huber penalty to neighbors both within a view and across views did not perform as well as only applying the penalty to neighbors within a view. General improvements in resolution-variance properties using sinogram restoration with the Huber penalty were not dependent on the reconstruction method used or the magnitude of the helical pitch. Conclusion: Sinogram restoration for noise and degradation effects for helical cone-beam CT is feasible and should be able to be applied to clinical data. When applied with the edge-preserving Huber penalty

  10. Karyotype, Pedigree and cone-beam computerized tomography analysis of a case of nonsyndromic pandental anomalies

    PubMed Central

    Dharmani, Umesh; Jadhav, Ganesh Ranganath; Kaur Dharmani, Charan Kamal; Rajput, Akhil; Mittal, Priya; Abraham, Sathish; Soni, Vinay

    2015-01-01

    This case report presented a karyotype and pedigree analysis of a case with unusual combination of dental anomalies: Generalized short roots, talon cusps, dens invagination, low alveolar bone heights, very prominent cusp of carabelli and protostylid on first permanent molars, taurodontism of second permanent molars, rotated, missing and impacted teeth. None of the anomalies alone are rare. However, until date, nonsyndromic pandental anomalies that are affecting entire dentition with detailed karyotype, pedigree and cone-beam computerized tomography analysis have not been reported. The occurrence of these anomalies is probably incidental as the conditions are etiologically unrelated. PMID:26283856

  11. Cone-beam reconstruction for the two-circles-plus-one-line trajectory

    NASA Astrophysics Data System (ADS)

    Lu, Yanbin; Yang, Jiansheng; Emerson, John W.; Mao, Heng; Zhou, Tie; Si, Yuanzheng; Jiang, Ming

    2012-05-01

    The Kodak Image Station In-Vivo FX has an x-ray module with cone-beam configuration for radiographic imaging but lacks the functionality of tomography. To introduce x-ray tomography into the system, we choose the two-circles-plus-one-line trajectory by mounting one translation motor and one rotation motor. We establish a reconstruction algorithm by applying the M-line reconstruction method. Numerical studies and preliminary physical phantom experiment demonstrate the feasibility of the proposed design and reconstruction algorithm.

  12. What is cone-beam CT and how does it work?

    PubMed

    Scarfe, William C; Farman, Allan G

    2008-10-01

    This article on x-ray cone-beam CT (CBCT) acquisition provides an overview of the fundamental principles of operation of this technology and the influence of geometric and software parameters on image quality and patient radiation dose. Advantages of the CBCT system and a summary of the uses and limitations of the images produced are discussed. All current generations of CBCT systems provide useful diagnostic images. Future enhancements most likely will be directed toward reducing scan time; providing multimodal imaging; improving image fidelity, including soft tissue contrast; and incorporating task-specific protocols to minimize patient dose. PMID:18805225

  13. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    SciTech Connect

    Ruschin, Mark; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Komljenovic, Philip T.; Ansell, Steve; Menard, Cynthia; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of

  14. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.

    PubMed

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835

  15. A multiscale filter for noise reduction of low-dose cone beam projections.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels. PMID:26247344

  16. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography

    PubMed Central

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835

  17. Cone beam computed tomography aided diagnosis and treatment of endodontic cases: Critical analysis

    PubMed Central

    Yılmaz, Funda; Kamburoglu, Kıvanç; Yeta, Naz Yakar; Öztan, Meltem Dartar

    2016-01-01

    Although intraoral radiographs still remain the imaging method of choice for the evaluation of endodontic patients, in recent years, the utilization of cone beam computed tomography (CBCT) in endodontics showed a significant jump. This case series presentation shows the importance of CBCT aided diagnosis and treatment of complex endodontic cases such as; root resorption, missed extra canal, fusion, oblique root fracture, non-diagnosed periapical pathology and horizontal root fracture. CBCT may be a useful diagnostic method in several endodontic cases where intraoral radiography and clinical examination alone are unable to provide sufficient information. PMID:27551342

  18. Cone-beam computed tomography: Time to move from ALARA to ALADA

    PubMed Central

    Jaju, Sushma P.

    2015-01-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA). PMID:26730375

  19. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    NASA Astrophysics Data System (ADS)

    Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.

    2008-07-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  20. Use of cone-beam computed tomography in early detection of implant failure.

    PubMed

    Yepes, Juan F; Al-Sabbagh, Mohanad

    2015-01-01

    Preimplant planning with complex imaging techniques has long been a recommended practice for assessing the quality and quantity of alveolar bone before dental implant placement. When maxillofacial imaging is necessary, static film or digital images lack the depth and dimension offered by computed tomography. Cone-beam computed tomography (CBCT) offers the dentist not only a radiographic volumetric view of alveolar bone but also a 3-dimensional reconstruction. This article reviews the use of CBCT for assessing implant placement and early detection of failure, and compares the performance of CBCT with that of other imaging modalities in the early detection of implant failure. PMID:25434558

  1. Cone-beam computed tomography: Time to move from ALARA to ALADA.

    PubMed

    Jaju, Prashant P; Jaju, Sushma P

    2015-12-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA). PMID:26730375

  2. Cone beam computed tomography aided diagnosis and treatment of endodontic cases: Critical analysis.

    PubMed

    Yılmaz, Funda; Kamburoglu, Kıvanç; Yeta, Naz Yakar; Öztan, Meltem Dartar

    2016-07-28

    Although intraoral radiographs still remain the imaging method of choice for the evaluation of endodontic patients, in recent years, the utilization of cone beam computed tomography (CBCT) in endodontics showed a significant jump. This case series presentation shows the importance of CBCT aided diagnosis and treatment of complex endodontic cases such as; root resorption, missed extra canal, fusion, oblique root fracture, non-diagnosed periapical pathology and horizontal root fracture. CBCT may be a useful diagnostic method in several endodontic cases where intraoral radiography and clinical examination alone are unable to provide sufficient information. PMID:27551342

  3. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  4. Reproducibilty test of ferrous xylenol orange gel dose response with optical cone beam CT scanning

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Battista, J.

    2004-01-01

    Our previous studies of ferrous xylenol orange gelatin gel have revealed a spatial dependence to the dose response of samples contained in 10 cm diameter cylinders. Dose response is defined as change in optical attenuation coefficient divided by the dose (units cm-1 Gy-1). This set of experiments was conducted to determine the reproducibility of our preparation, irradiation and full 3D optical cone beam CT scanning. The data provided an internal check of a larger storage time-dose response dependence study.

  5. Iterative reconstruction optimisations for high angle cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Recur, B.; Fauconneau, M.; Kingston, A.; Myers, G.; Sheppard, A.

    2014-09-01

    We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 20483 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases re- quired reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.

  6. Contrast-to-noise ratio improvement in volume-of-interest cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Shen, Youtao; Liu, Xinming; Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; You, Zhicheng; Wang, Tianpeng; Shaw, Chris C.

    2012-03-01

    In this study, we demonstrated the contrast-to-noise ratio (CNR) improvement in breast cone beam CT (CBCT) using the volume-of-interest (VOI) scanning technique. In VOI breast CBCT, the breast is first scanned at a low exposure level. A pre-selected VOI is then scanned at a higher exposure level with collimated x-rays. The two image sets are combined together to reconstruct high quality 3-D images of the VOI. A flat panel detector based system was built to demonstrate and investigate the CNR improvement in VOI breast CBCT. The CNRs of the 8 plastic cones (Teflon, Delrin, polycarbonate, Lucite, solid water, high density polystyrene, nylon and polystyrene) in a breast phantom were measured in images obtained with the VOI CBCT technique and compared to those measured in standard full field CBCT images. CNRs in VOI CBCT images were found to be higher than those in regular CBCT images in all plastic cones. The mean glandular doses (MGDs) from the combination of a high exposure VOI scan and a low exposure full-field scan was estimated to be similar to that from regular full-field scan at standard exposure level. The VOI CBCT technique allows a VOI to be imaged with enhanced image quality with an MGD similar to that from regular CBCT technique.

  7. Brain SPECT with short focal-length cone-beam collimation

    SciTech Connect

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-07-15

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR{sub CRB}) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR{sub CRB}, compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR{sub CRB} increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR{sub CRB} were relatively

  8. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.

    PubMed

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications. PMID:22398591

  9. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  10. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    SciTech Connect

    Huang, Yimei Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J.

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  11. A novel extension of the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections.

    PubMed

    Chen, Guang-Hong; Leng, Shuai; Mistretta, Charles A

    2005-03-01

    The general goal of this paper is to extend the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections without rebinning the divergent fan-beam and cone-beam projections into parallel-beam projections directly. The basic idea is to establish a novel link between the local Fourier transform of the projection data and the Fourier transform of the image object. Analogous to the two- and three-dimensional parallel-beam cases, the measured projection data are backprojected along the projection direction and then a local Fourier transform is taken for the backprojected data array. However, due to the loss of the shift invariance of the image object in a single view of the divergent-beam projections, the measured projection data is weighted by a distance dependent weight w(r) before the local Fourier transform is performed. The variable r in the weighting function w(r) is the distance from the backprojected point to the x-ray source position. It is shown that a special choice of the weighting function, w(r)=1/r, will facilitate the calculations and a simple relation can be established between the Fourier transform of the image function and the local Fourier transform of the 1/r-weighted backprojection data array. Unlike the parallel-beam cases, a one-to-one correspondence does not exist for a local Fourier transform of the backprojected data array and a single line in the two-dimensional (2D) case or a single slice in the 3D case of the Fourier transform of the image function. However, the Fourier space of the image object can be built up after the local Fourier transforms of the 1/r-weighted backprojection data arrays are shifted and then summed in a laboratory frame. Thus the established relations Eq. (27) and Eq. (29) between the Fourier space of the image object and the Fourier transforms of the backprojected data arrays can be viewed as a generalized projection-slice theorem for divergent fan-beam and cone-beam projections. Once the

  12. CCD detectors for fast neutron radiography and tomography with a cone beam

    NASA Astrophysics Data System (ADS)

    Bogolubov, E.; Bugaenko, O.; Kuzin, S.; Mikerov, V.; Monitch, E.; Monitch, A.; Pertsov, A.

    2005-04-01

    Two new types of luminescent CCD-detectors intended for fast neutron radiography and tomography with a cone neutron beam are described in the paper. A 6 cm thick luminescent screen made of polystyrene is used in the first one to convert fast neutrons. A special optics has been developed to transfer the optical image from the screen to the CCD-matrix. The optics design helps not to loose spatial resolution due to the beam divergence and screen thickness. The second detector is based on the use of a fiber optical screen made of luminescent fibers in the form of a rectangular truncated pyramid. Principles of the detectors operation have been experimentally proved. The obtained results show that the detectors provide a spatial resolution of about 2 mm.

  13. The sensitivity and accuracy of a cone beam CT in detecting the chorda tympani.

    PubMed

    Hiraumi, Harukazu; Suzuki, Ryo; Yamamoto, Norio; Sakamoto, Tatsunori; Ito, Juichi

    2016-04-01

    The facial recess approach through posterior tympanotomy is the standard approach in cochlear implantation surgery. The size of the facial recess is highly variable, depending on the course of the chorda tympani. Despite their clinical importance, little is known about the sensitivity and accuracy of imaging studies in the detection of the chorda tympani. A total of 13 human temporal bones were included in this study. All of the temporal bones were submitted to a cone beam CT (Accuitomo, Morita, Japan). The multi-planar reconstruction images were rotated around the mastoid portion of the facial nerve to locate the branches of the facial nerve. A branch was diagnosed as the chorda tympani when it entered the tympanic cavity near the notch of Rivinus. The distance between the bifurcation and the tip of the short crus of the incus was measured. In all temporal bones, the canal of the chorda tympani or the posterior canaliculus was detected. In the CT-based evaluation, the average distance from the bifurcation to the incus short crus was 12.6 mm (8.3-15.8 mm). The actual distance after dissection was 12.4 mm (8.2-16.4 mm). The largest difference between the distances evaluated with the two procedures was 1.1 mm. Cone beam CT is very useful in detecting the course of the chorda tympani within the temporal bone. The measured distance is accurate. PMID:25956616

  14. Planar cone-beam computed tomography with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Youn, H.; Kim, D.; Kam, S.; Jeon, H.; Kim, H. K.

    2015-12-01

    For a dedicated x-ray inspection of printed-circuit boards (PCBs), a bench-top planar cone-beam computed tomography (pCT) system with a flat-panel detector has been built in the laboratory. The system adopts the tomosynthesis technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range. For the optimal operation of the system and further improvement in the next design, we have evaluated imaging performances, such as modulation-transfer function, noise-power spectrum, and noise-equivalent number of quanta. The performances are comparatively evaluated with the coventional cone-beam CT (CBCT) acquisition for various scanning angular ranges, applied tube voltages, and geometrical magnification factors. The pCT scan shows a poorer noise performance than the conventional CBCT scan because of less number of projection views used for reconstruction. However, the pCT shows a better spatial-resolution performance than the CBCT. Because the image noise can be compensated by an elevated exposure level during scanning, the pCT can be a useful modality for the PCB inspection that requires higher spatial-resolution performance.

  15. In Vitro Detection of Dental Root Fractures with Cone Beam Computed Tomography (CBCT)

    PubMed Central

    Fisekcioglu, Erdogan; Dolekoglu, Semanur; Ilguy, Mehmet; Ersan, Nilufer; Ilguy, Dilhan

    2014-01-01

    Background: Since the diagnosis of non-displaced longitudinal fractures present difficulties for the dentist, three-dimensional evaluation is necessary. Objectives: The aim of this study is to demonstrate the accuracy of cone beam computed tomography (CBCT) in detecting dental root fractures in vitro. Materials and Methods: An in vitro model consisting of 210 recently extracted human mandibular teeth was used. Root fractures were created by mechanical force. The teeth were placed randomly in the empty dental alveoli of a dry human mandible and 15 different dental arcs were created. Images were taken with a unit Iluma ultra cone-beam CT scanner (Imtec Corporation, Germany). Three dental radiologists separately evaluated the images. Results: According to the fracture types and fracture presence, there was an overall statistically significant agreement between the key and readings. Kappa values for intra observer agreement ranged between 0.705 and 0.804 indicating that each observer gave acceptable ratings for the type and presence of fractures. Conclusions: Detailed information about root fractures may be obtained using CBCT. PMID:24693295

  16. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2008-06-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in the safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:18503893

  17. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2009-07-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:19560037

  18. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    PubMed

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  19. Augmented reality and cone beam CT guidance for transoral robotic surgery.

    PubMed

    Liu, Wen P; Richmon, Jeremy D; Sorger, Jonathan M; Azizian, Mahdi; Taylor, Russell H

    2015-09-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods. PMID:26531203

  20. Cone beam CT evaluation of the presence of anatomic accessory canals in the jaws

    PubMed Central

    Eshak, M; Brooks, S; Abdel-Wahed, N

    2014-01-01

    Objectives: To assess the prevalence, location and anatomical course of accessory canals of the jaws using cone beam CT. Methods: A retrospective analysis of 4200 successive cone beam CT scans, for patients of both genders and ages ranging from 7 to 88 years, was performed. They were exposed at the School of Dentistry, University of Michigan, Ann Arbor, MI. After applying the exclusion criteria (the presence of severe ridge resorption, pre-existing implants, a previously reported history of craniofacial malformations or syndromes, a previous history of trauma or surgery, inadequate image quality and subsequent scans from the same individuals), 4051 scans were ultimately included in this study. Results: Of the 4051 scans (2306 females and 1745 males) that qualified for inclusion in this study, accessory canals were identified in 1737 cases (42.9%; 1004 females and 733 males). 532 scans were in the maxilla (13.1%; 296 females and 236 males) and 1205 in the mandible (29.8%; 708 females and 497 males). Conclusions: A network of accessory canals bringing into communication the inner and outer cortical plates of the jaws was identified. In light of these findings, clinicians should carefully assess for the presence of accessory canals prior to any surgical intervention to decrease the risk for complications. PMID:24670010

  1. Does cone beam CT actually ameliorate stab wound analysis in bone?

    PubMed

    Gaudio, D; Di Giancamillo, M; Gibelli, D; Galassi, A; Cerutti, E; Cattaneo, C

    2014-01-01

    This study aims at verifying the potential of a recent radiological technology, cone beam CT (CBCT), for the reproduction of digital 3D models which may allow the user to verify the inner morphology of sharp force wounds within the bone tissue. Several sharp force wounds were produced by both single and double cutting edge weapons on cancellous and cortical bone, and then acquired by cone beam CT scan. The lesions were analysed by different software (a DICOM file viewer and reverse engineering software). Results verified the limited performances of such technology for lesions made on cortical bone, whereas on cancellous bone reliable models were obtained, and the precise morphology within the bone tissues was visible. On the basis of such results, a method for differential diagnosis between cutmarks by sharp tools with a single and two cutting edges can be proposed. On the other hand, the metrical computerised analysis of lesions highlights a clear increase of error range for measurements under 3 mm. Metric data taken by different operators shows a strong dispersion (% relative standard deviation). This pilot study shows that the use of CBCT technology can improve the investigation of morphological stab wounds on cancellous bone. Conversely metric analysis of the lesions as well as morphological analysis of wound dimension under 3 mm do not seem to be reliable. PMID:23392761

  2. Accuracy of cone-beam computerized tomography in determining the thickness of palatal masticatory mucosa

    PubMed Central

    Gupta, Prabhati; Jan, Suhail Majid; Behal, Roobal; Mir, Reyaz Ahmad; Shafi, Munaza

    2015-01-01

    Background: The palatal masticatory mucosa is the main donor area of soft tissue and connective tissue grafts used for increasing the keratinized mucosa around teeth and implants, covering exposed roots and increasing localized alveolar ridge thickness. The aim of this study was to compare the thickness of the palatal masticatory mucosa as determined on a cone-beam computerized tomography scan versus thickness determined via bone-sounding. Materials and Methods: A total of 20 patients requiring palatal surgery participated. Thickness of the palatal tissue was measured at various points radiographically and clinically. The two techniques were compared to determine the agreement of the two measurement modalities. Results: Statistical analysis determined that there was no significant difference between the two methods. Moreover, the tissue thickness was shown to increase as the distance from the gingival margin increased, and the tissue over the premolars was thicker than the other teeth. Conclusion: Cone-beam computerized tomography can be used as a noninvasive method to accurately and consistently determine the soft tissue thickness of the palatal masticatory mucosa with minimal bias at different locations on the palate. PMID:26392687

  3. Iterative image reconstruction for limited-angle inverse helical cone-beam computed tomography.

    PubMed

    Yu, Wei; Zeng, Li

    2016-01-01

    Helical trajectory satisfying the condition of exact reconstruction, has been widely utilized in the commercial computed tomography (CT). While limited by the scanning environment in some practical applications, the conventional helical cone-beam CT imaging is hard to complete, thus, developing an imaging system suited for long-object may be valuable. Three-dimensional C-arm CT is an innovative imaging technique which has been greatly concerned. Since there is a high degree of freedom of C-arm, more flexible image acquisition trajectories for 3D imaging can be achieved. In this work, a fast iterative reconstruction algorithm based on total variation minimization is developed for a trajectory of limited-angle inverse helical cone-beam CT, which can be applied to detect long-object without slip-ring technology. The experimental results show that the developed algorithm can yield reconstructed images of low noise level and high image quality. SCANNING 38:4-13, 2016. © 2015 Wiley Periodicals, Inc. PMID:26130367

  4. Ring artifacts removal via spatial sparse representation in cone beam CT

    NASA Astrophysics Data System (ADS)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  5. Patient dose and image quality from mega-voltage cone beam computed tomography imaging

    SciTech Connect

    Gayou, Olivier; Parda, David S.; Johnson, Mark; Miften, Moyed

    2007-02-15

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  6. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    SciTech Connect

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2015-10-15

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.

  7. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2015-10-01

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>1019 W/cm2) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.

  8. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    SciTech Connect

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  9. Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    PubMed Central

    Guerrero, Maria Eugenia; Noriega, Jorge; Castro, Carmen

    2014-01-01

    Purpose The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. Materials and Methods One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. Results All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Conclusion Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone. PMID:24944961

  10. The value of cone beam CT in assessing and managing a dilated odontome of a maxillary canine.

    PubMed

    Wall, Aoibheann; Ng, Suk; Djemal, Serpil

    2015-03-01

    A case of an unusual anomaly in a maxillary canine is described. A deep enamel invagination resulted in pulpal necrosis, longstanding infection and development of an associated radicular cyst. Diagnostic X-ray imaging was invaluable in demonstrating the complex root anatomy of the dilated odontome. In particular, a cone beam CT scan helped in the formulation of an appropriate treatment plan. Clinical Relevance: Three-dimensional imaging using cone beam CT was valuable in this case to demonstrate the complicated anatomy of a rare dental anomaly, and to help plan treatment. PMID:26058225

  11. Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans

    SciTech Connect

    Alaei, Parham; Ding, George; Guan Huaiqun

    2010-01-15

    Purpose: Cone beam CT is increasingly being used for daily patient positioning verification during radiation therapy treatments. The daily use of CBCT could lead to accumulated patient doses higher than the older technique of weekly portal imaging. There have been several studies focusing on measurement or calculation of the patient dose from CBCT recently. Methods: This study investigates the feasibility of configuring a kV x-ray source in a commercial treatment planning system to calculate the dose to patient resulting from an IGRT procedure. The method proposed in this article can be used to calculate dose from CBCT imaging procedure and include that in the patient treatment plans. Results: The kilovoltage beam generated by the CBCT imager has been modeled using the planning system. The modeled profiles agree with the measured ones to within 5%. The modeled beam was used to calculate dose to phantom in the pelvic region and the calculations were compared to TLD measurements. The agreement between calculated and measured doses ranges from 0% to 19% in soft tissue with larger variations observed near and within the bone. Conclusions: The modeling of the beam produces reasonable results and the dose calculation comparisons indicate the potential for computing kilovoltage CBCT doses using a treatment planning system. Further improvements in the dose calculation algorithm are necessary, especially for dose calculations in and near the bone.

  12. Development of an optimization concept for arc-modulated cone beam therapy.

    PubMed

    Ulrich, Silke; Nill, Simeon; Oelfke, Uwe

    2007-07-21

    In this paper, we propose an optimization concept for a rotation therapy technique which is referred to as arc-modulated cone beam therapy (AMCBT). The aim is a reduction of the treatment time while achieving a treatment plan quality equal to or better than that of IMRT. Therefore, the complete dose is delivered in one single gantry rotation and the beam is modulated by a multileaf collimator. The degrees of freedom are the field shapes and weights for a predefined number of beam directions. In the new optimization loop, the beam weights are determined by a gradient algorithm and the field shapes by a tabu search algorithm. We present treatment plans for AMCBT for two clinical cases. In comparison to step-and-shoot IMRT treatment plans, it was possible by AMCBT to achieve dose distributions with a better dose conformity to the target and a lower mean dose for the most relevant organ at risk. Furthermore, the number of applied monitor units was reduced for AMCBT in comparison to IMRT treatment plans. PMID:17664597

  13. 3D view weighted cone-beam backprojection reconstruction for digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Avinash, Gopal; Claus, Bernhard; Metz, Stephen

    2007-03-01

    Cone-beam filtered backprojection (CB-FBP) is one of the major reconstruction algorithms for digital tomosynthesis. In conventional FBP, the photon fluxes in projections are evenly distributed along the X-ray beam. Due to the limited view angles and finite detector dimensions, this uniform weighting causes non-uniformity in the recon images and leads to cone-beam artifact. In this paper, we propose a 3-D view weighting technique in combination with FBP to combat this artifact. An anthropomorphic chest phantom was placed at supine position to enable the imaging of chest PA view. During a linear sweep of X-ray source, 41 X-ray images at different projection angles were acquired with the following protocol: 120kVp, 160mA, and 0.64mAs/exposure. To create the worst scenario for testing, we chose 60 degrees as the sweep angle in this exam. The data set was reconstructed with conventional CB-FBP and proposed algorithm under the same parameters: FOV = 40x40 cm^2, and slice thickness = 4mm. 3 recon slices were randomly selected for review with slice height = 10.5/14.5/17.5cm. Results were assessed qualitatively by human observers and quantitatively through ROI measurement. In each slice, three pre-defined ROIs (50x50 pixels)--ROI A and B are in artifact more pronounced area, and ROI C is in relatively artifact-free area--are extracted and measured. The non-uniformity error was defined as the ratio of MEAN(AVG(C-A), AVG(C-B)) / AVG(C). The average non-uniformity error over the three test images was 0.428 for without view weighting and only 0.041 for with view weighting.

  14. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT.

    PubMed

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation. PMID:26183058

  15. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  16. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    PubMed Central

    Olding, Timothy; Holmes, Oliver; DeJean, Paul; McAuley, Kim B.; Nkongchu, Ken; Santyr, Giles; Schreiner, L. John

    2011-01-01

    This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM)-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI). For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low's gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery). When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low's gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a) from the same gel batch and (b) from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration. PMID:21430853

  17. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2016-03-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), as well as beam hardening, resulting in image artifacts, contrast reduction, and lack of CT number accuracy. Meanwhile the x-ray radiation dose is also non-ignorable. Considerable scatter or beam hardening correction methods have been developed, independently, and rarely combined with low-dose CT reconstruction. In this paper, we combine scatter suppression with beam hardening correction for sparse-view CT reconstruction to improve CT image quality and reduce CT radiation. Firstly, scatter was measured, estimated, and removed using measurement-based methods, assuming that signal in the lead blocker shadow is only attributable to x-ray scatter. Secondly, beam hardening was modeled by estimating an equivalent attenuation coefficient at the effective energy, which was integrated into the forward projector of the algebraic reconstruction technique (ART). Finally, the compressed sensing (CS) iterative reconstruction is carried out for sparse-view CT reconstruction to reduce the CT radiation. Preliminary Monte Carlo simulated experiments indicate that with only about 25% of conventional dose, our method reduces the magnitude of cupping artifact by a factor of 6.1, increases the contrast by a factor of 1.4 and the CNR by a factor of 15. The proposed method could provide good reconstructed image from a few view projections, with effective suppression of artifacts caused by scatter and beam hardening, as well as reducing the radiation dose. With this proposed framework and modeling, it may provide a new way for low-dose CT imaging.

  18. Cone Beam CT Image Guidance for Intracranial Stereotactic Treatments: Comparison With a Frame Guided Set-Up

    SciTech Connect

    Masi, Laura Casamassima, Franco; Polli, Caterina; Menichelli, Claudia; Bonucci, Ivano; Cavedon, Carlo

    2008-07-01

    Purpose: An analysis is performed of the setup errors measured by a kV cone beam computed tomography (CBCT) for intracranial stereotactic radiotherapy (SRT) patients immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. We evaluated the overall positioning precision and accuracy of the immobilizing and localizing systems. The potential of image-guided radiotherapy to replace stereotactic methods is discussed. Methods and Materials: Fifty-seven patients received brain SRT. After a frame-guided setup, before each fraction (131 fractions), a CBCT was acquired and the detected displacements corrected online. Translational and rotational errors were analyzed calculating overall mean and standard deviation. A separate analysis was performed for bite-block (in conjunction with mask) and for simple thermoplastic mask. Interobserver variability for CBCT three-dimensional registration was assessed. The residual error after correction and intrafractional motion were calculated. Results: The mean module of the three-dimensional displacement vector was 3.0 {+-} 1.4 mm. Setup errors for bite block and mask were smaller (2.9 {+-} 1.3 mm) than those for thermoplastic mask alone (3.2 {+-} 1.5 mm), but statistical significance was not reached (p = 0.15). Interobserver variability was negligible. The maximum margin calculated for residual errors and intra fraction motion was small but not negligible (1.57 mm). Conclusions: Considering the detected setup errors, daily image guidance is essential for the efficacy of SRT treatments when mask immobilization is used, and even when a bite-block is used in conjunction. The frame setup is still used as a starting point for the opportunity of rotational corrections. Residual margins after on-line corrections must be evaluated.

  19. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  20. A local shift-variant Fourier model and experimental validation of circular cone-beam computed tomography artifacts.

    PubMed

    Bartolac, Steven; Clackdoyle, Roll; Noo, Frederic; Siewerdsen, Jeff; Moseley, Douglas; Jaffray, David

    2009-02-01

    Large field of view cone-beam computed tomography (CBCT) is being achieved using circular source and detector trajectories. These circular trajectories are known to collect insufficient data for accurate image reconstruction. Although various descriptions of the missing information exist, the manifestation of this lack of data in reconstructed images is generally nonintuitive. One model predicts that the missing information corresponds to a shift-variant cone of missing frequency components. This description implies that artifacts depend on the imaging geometry, as well as the frequency content of the imaged object. In particular, objects with a large proportion of energy distributed over frequency bands that coincide with the missing cone will be most compromised. These predictions were experimentally verified by imaging small, localized objects (acrylic spheres, stacked disks) at varying positions in the object space and observing the frequency spectrums of the reconstructions. Measurements of the internal angle of the missing cone agreed well with theory, indicating a right circular cone for points on the rotation axis, and an oblique, circular cone elsewhere. In the former case, the largest internal angle with respect to the vertical axis corresponds to the (half) cone angle of the CBCT system (typically approximately 5 degrees - 7.5 degrees in IGRT). Object recovery was also found to be strongly dependent on the distribution of the object's frequency spectrum relative to the missing cone, as expected. The observed artifacts were also reproducible via removal of local frequency components, further supporting the theoretical model. Larger objects with differing internal structures (cellular polyurethane, solid acrylic) were also imaged and interpreted with respect to the previous results. Finally, small animal data obtained using a clinical CBCT scanner were observed for evidence of the missing cone. This study provides insight into the influence of incomplete

  1. A local shift-variant Fourier model and experimental validation of circular cone-beam computed tomography artifacts

    PubMed Central

    Bartolac, Steven; Clackdoyle, Rolf; Noo, Frederic; Siewerdsen, Jeff; Moseley, Douglas; Jaffray, David

    2009-01-01

    Large field of view cone-beam computed tomography (CBCT) is being achieved using circular source and detector trajectories. These circular trajectories are known to collect insufficient data for accurate image reconstruction. Although various descriptions of the missing information exist, the manifestation of this lack of data in reconstructed images is generally nonintuitive. One model predicts that the missing information corresponds to a shift-variant cone of missing frequency components. This description implies that artifacts depend on the imaging geometry, as well as the frequency content of the imaged object. In particular, objects with a large proportion of energy distributed over frequency bands that coincide with the missing cone will be most compromised. These predictions were experimentally verified by imaging small, localized objects (acrylic spheres, stacked disks) at varying positions in the object space and observing the frequency spectrums of the reconstructions. Measurements of the internal angle of the missing cone agreed well with theory, indicating a right circular cone for points on the rotation axis, and an oblique, circular cone elsewhere. In the former case, the largest internal angle with respect to the vertical axis corresponds to the (half) cone angle of the CBCT system (typically ∼5°–7.5° in IGRT). Object recovery was also found to be strongly dependent on the distribution of the object’s frequency spectrum relative to the missing cone, as expected. The observed artifacts were also reproducible via removal of local frequency components, further supporting the theoretical model. Larger objects with differing internal structures (cellular polyurethane, solid acrylic) were also imaged and interpreted with respect to the previous results. Finally, small animal data obtained using a clinical CBCT scanner were observed for evidence of the missing cone. This study provides insight into the influence of incomplete data collection on the

  2. Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography.

    PubMed

    Noo, F; Clackdoyle, R; Mennessier, C; White, T A; Roney, T J

    2000-11-01

    This paper is about calibration of cone-beam (CB) scanners for both x-ray computed tomography and single-photon emission computed tomography. Scanner calibration refers here to the estimation of a set of parameters which fully describe the geometry of data acquisition. Such parameters are needed for the tomographic reconstruction step. The discussion is limited to the usual case where the cone vertex and planar detector move along a circular path relative to the object. It is also assumed that the detector does not have spatial distortions. We propose a new method which requires a small set of measurements of a simple calibration object consisting of two spherical objects, that can be considered as 'point' objects. This object traces two ellipses on the detector and from the parametric description of these ellipses, the calibration geometry can be determined analytically using explicit formulae. The method is robust and easy to implement. However, it is not fully general as it is assumed that the detector is parallel to the rotation axis of the scanner. Implementation details are given for an experimental x-ray CB scanner. PMID:11098919

  3. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons. PMID:23410447

  4. Excitation-resolved cone-beam x-ray luminescence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  5. Patient radiation dose and protection from cone-beam computed tomography

    PubMed Central

    2013-01-01

    After over one decade development, cone beam computed tomography (CBCT) has been widely accepted for clinical application in almost every field of dentistry. Meanwhile, the radiation dose of CBCT to patient has also caused broad concern. According to the literature, the effective radiation doses of CBCTs in nowadays market fall into a considerably wide range that is from 19 µSv to 1073 µSv and closely related to the imaging detector, field of view, and voxel sizes used for scanning. To deeply understand the potential risk from CBCT, this report also reviewed the effective doses from literatures on intra-oral radiograph, panoramic radiograph, lateral and posteroanterior cephalometric radiograph, multi-slice CT, and so on. The protection effect of thyroid collar and leaded glasses were also reviewed. PMID:23807928

  6. Computer aided breast calcification auto-detection in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Ning, Ruola; Liu, Jiangkun

    2010-03-01

    In Cone Beam Breast CT (CBBCT), breast calcifications have higher intensities than the surrounding tissues. Without the superposition of breast structures, the three-dimensional distribution of the calcifications can be revealed. In this research, based on the fact that calcifications have higher contrast, a local thresholding and a histogram thresholding were used to select candidate calcification areas. Six features were extracted from each candidate calcification: average foreground CT number value, foreground CT number standard deviation, average background CT number value, background CT number standard deviation, foreground-background contrast, and average edge gradient. To reduce the false positive candidate calcifications, a feed-forward back propagation artificial neural network was designed. The artificial neural network was trained with the radiologists confirmed calcifications and used as classifier in the calcification auto-detection task. In the preliminary experiments, 90% of the calcifications in the testing data sets were detected correctly with an average of 10 false positives per data set.

  7. Multiple idiopathic external and internal resorption: Case report with cone-beam computed tomography findings

    PubMed Central

    Uzuntas, Ceren Feriha; Kurt, Hakan

    2014-01-01

    Root resorption is loss of dental hard tissue as a result of clastic activities. The dental hard tissue of permanent teeth does not normally undergo resorption, except in cases of inflammation or trauma. However, there are rare cases of tooth resorption of an unknown cause, known as "idiopathic root resorption." This report would discuss a rare case of multiple idiopathic resorption in the permanent maxillary and mandibular teeth of an otherwise healthy 36-year-old male patient. In addition to a clinical examination, the patient was imaged using conventional radiography and cone-beam computed tomography (CBCT). The examinations revealed multiple external and internal resorption of the teeth in all four quadrants of the jaws with an unknown cause. Multiple root resorption is a rare clinical phenomenon that should be examined using different radiographic modalities. Cross-sectional CBCT is useful in the diagnosis and examination of such lesions. PMID:25473640

  8. Cone Beam Computed Tomographic Evaluation and Diagnosis of Mandibular First Molar with 6 Canals

    PubMed Central

    Pasha, Shiraz; Chaitanya, Bathula Vimala; Somisetty, Kusum Valli

    2016-01-01

    Root canal treatment of tooth with aberrant root canal morphology is very challenging. So thorough knowledge of both the external and internal anatomy of teeth is an important aspect of root canal treatment. With the advancement in technology it is imperative to use modern diagnostic tools such as magnification devices, CBCT, microscopes, and RVG to confirm the presence of these aberrant configurations. However, in everyday endodontic practice, clinicians have to treat teeth with atypical configurations for root canal treatment to be successful. This case report presents the management of a mandibular first molar with six root canals, four in mesial and two in distal root, and also emphasizes the use and importance of Cone Beam Computed Tomography (CBCT) as a diagnostic tool in endodontics. PMID:26904310

  9. Role of C-Arm Cone-Beam CT in Chemoembolization for Hepatocellular Carcinoma

    PubMed Central

    2015-01-01

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future. PMID:25598679

  10. Rare Root Canal Configuration of Bilateral Maxillary Second Molar Using Cone-beam Computed Tomographic Scanning.

    PubMed

    Zeng, Chang; Shen, Ya; Guan, Xiaoyue; Wang, Xin; Fan, Mingwen; Li, Yuhong

    2016-04-01

    The aim of this article was to present a right maxillary second molar with an unusual root canal morphology of 4 roots and 5 canals as confirmed by cone-beam computed tomographic (CBCT) imaging. The tooth had a C-shaped mesiobuccal root (CBCT imaging revealed that the root was closer to the palate than the buccal side) with 2 canals, 2 fused distobuccal roots with 2 separate canals, and 1 normal bulky palatal root with 1 canal. After thoroughly examining the rare anatomy, root canal treatment was applied on the tooth. This article shows the complexity of maxillary second molar variation and shows the significance of CBCT imaging in the confirmation of the 3-dimensional anatomy of teeth and endodontic treatment. PMID:26920931

  11. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver.

    PubMed

    Bapst, Blanche; Lagadec, Matthieu; Breguet, Romain; Vilgrain, Valérie; Ronot, Maxime

    2016-01-01

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures. PMID:26178776

  12. Unilateral Fusion of Maxillary Lateral Incisor: Diagnosis Using Cone Beam Computed Tomography

    PubMed Central

    Castro, Iury Oliveira; Estrela, Carlos; Souza, Vinícius Rezende; Lopes, Lawrence Gonzaga; de Souza, João Batista

    2014-01-01

    Objective. The objective of this paper is to report a dental fusion case focusing on clinical and radiographic features for the diagnosis. Method. To report a case of right maxillary lateral incisor fusion and a supernumerary tooth, the anatomy of the root canal and dental united portion were assessed by cone beam computed tomography (CBCT). Results. The clinical examination showed dental juxtaposition with the absence of interdental papilla and esthetic impairment in the right maxillary lateral incisor region. The periapical radiography did not provide enough information for the differential diagnosis due to the inherent limitations of this technique. CBCT confirmed the presence of tooth fusion. Conclusion. CBCT examination supports the diagnosis and provides both the identification of changes in tooth development and the visualization of their extent and limits. PMID:25587463

  13. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT.

    PubMed

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  14. A Diagnosis of Maxillary Sinus Fracture with Cone-Beam CT: Case Report and Literature Review

    PubMed Central

    Yilmaz, Selmi Yardimci; Misirlioglu, Melda; Adisen, Mehmet Zahit

    2014-01-01

    The purpose of this article is to present the case of maxillofacial trauma patient with maxillary sinus fracture diagnosed with cone-beam computed tomography (CBCT) and to explore the applications of this technique in evaluating the maxillofacial region. A 23-year-old male patient attempted to our clinic who had an injury at midface with complaints of swelling, numbness. The patient was examined before in emergency center but any diagnosis was made about the maxillofacial trauma. The patient re-examined clinically and radiographically. A fracture on the frontal wall of maxillary sinus is determined with the aid of CBCT. The patient consulted with the department of maxillofacial surgery and it is decided that any surgical treatment was not necessary. The emerging technique CBCT would not be the primary choice of imaging maxillofacial trauma. Nevertheless, when advantages considered this imaging procedure could be the modality of choice according to the case. PMID:25045417

  15. Practical geometric calibration for helical cone-beam industrial computed tomography.

    PubMed

    Zhang, Feng; Yan, Bin; Li, Lei; Xi, Xiaoqi; Jiang, Hua

    2014-01-01

    In helical cone-beam industrial computed tomography (ICT), the reconstructed images may be interfered by geometry artifacts due to the presence of mechanical misalignments. To obtain artifact-free reconstruction images, a practical geometric calibration method for helical scan is investigated based on Noo's analytic geometric calibration method for circular scan. The presented method is implemented by first dividing the whole ascending path of helical scan into several pieces, then acquiring the projections of a dedicated calibration phantom in circular scan at each section point, of which geometry parameters are calculated using Noo's analytic method. At last, the geometry parameters of each projection in a piece can be calculated by those of the two end points of the piece. We performed numerical simulations and real data experiments to study the performance of the presented method. The experimental results indicated that the method can obtain high-precision geometry parameters of helical scan and give satisfactory reconstruction images. PMID:24463383

  16. Cone Beam Computed Tomography Findings in Calcifying Cystic Odontogenic Tumor Associated with Odontome: A Case Report

    PubMed Central

    Phulambrikar, Tushar; Vilas Kant, Sanchita; Kode, Manasi; Magar, Shaliputra

    2015-01-01

    The calcifying cystic odontogenic tumor (CCOT) is a rare cystic odontogenic neoplasm frequently found in association with odontome. This report documents a case of CCOT associated with an odontome arising in the anterior maxilla in a 28-year-old man. Conventional radiographs showed internal calcification within the lesion but were unable to visualize its relation with the adjacent structures and its accurate extent. In this case cone beam computed tomography (CBCT) could accurately reveal the extent and the internal structure of the lesion which aided the presumptive diagnosis of the lesion as CCOT. This advanced imaging technique proved to be extremely useful in the radiographic assessment and management of this neoplasm of the maxilla. PMID:26636128

  17. Phase Contrast Cone Beam Tomography with an X-Ray Grating Interferometer

    NASA Astrophysics Data System (ADS)

    Jerjen, I.; Revol, V.; Kottler, C.; Luethi, Th.; Sennhauser, U.; Kaufmann, R.; Urban, C.

    2010-04-01

    We report on our recent developments of reconstruction algorithms for Differential Phase Contrast X-ray Computed Tomography (DPC CT). DPC images provide information about the real and imaginary part of the refractive index which is an advantage when objects with poor absorption but good phase contrast are inspected. In order to promote DPC CT for industrial applications we developed an adapted Feldkamp algorithm which allows reconstructing the three-dimensional image of the refractive index of an object from the DPC projections obtained with our large field of view, high energy grating interferometer set up in a cone beam geometry. We present slice images of a test object and show different ways of visualization of the phase and absorption information.

  18. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    PubMed Central

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  19. Endodontic management of mandibular first molar with seven canals using cone-beam computed tomography

    PubMed Central

    Banode, Ankur Mahesh; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar

    2016-01-01

    The endodontic treatment of a mandibular molar with aberrant canal configuration can be diagnostically and clinically challenging. Successful endodontic therapy thus depends on the clinician's ability to anticipate and look for these aberrant variations. A mandibular first molar with seven canals represents a rare anatomical variant, particularly when four canals are found in distal root. Based on in vitro studies, its incidence is reported to be between 0.2% and 3%. With the advent of cone-beam computed tomography (CBCT) as an adjunctive diagnostic aid, the determination of root canal anatomy in teeth with complex canal configurations has become more precise. The present case report discusses successful nonsurgical management of radix entomolaris along with middle mesial canal and middle distal canal in mandibular first molar with seven canals (four canals in distal and three in mesial) employing CBCT as an adjunctive diagnostic aid to conventional radiography. PMID:27307680

  20. Responsible use of cone beam computed tomography: minimising medico-legal risks.

    PubMed

    Noffke, C E E; Farman, A G; Van der Linde, A; Nel, S

    2013-07-01

    This communication highlights some of the ethical and possible legal responsibilities which pertain to the taking, reading, reporting, and communication of findings from cone-beam computed tomography (CBCT) scans. The importance of knowledge of head and neck anatomy and pathology to reduce the likelihood of incorrect interpretation is emphasised. Failure to detect critical findings in any diagnostic image can potentially result in medico-legal consequences. CBCT is no exception to this rule. Dental schools are advised to include CBCT imaging as a diagnostic tool in their under- and postgraduate curricula thereby equipping graduates to use 3D imaging in general and CBCT in particular. Existing dental practitioners are advised to seek continuing education on 3D imaging as part of their required lifelong learning. PMID:23971277

  1. Cone-beam computed tomography exploration and surgical management of palatal, inverted, and impacted mesiodens

    PubMed Central

    Omami, Mounir; Chokri, Abdellatif; Hentati, Hajer; Selmi, Jamil

    2015-01-01

    Supernumerary teeth are extra teeth or toothlike structures which may have either erupted or unerupted in addition to the 20 deciduous teeth and the 32 permanent teeth. Mesiodens is one of these located in the midline between the two central incisors. Their presence may give rise to a variety of clinical problems. This paper describes a rare case of palatal placed, inverted and impacted mesiodens associated to two supernumerary teeth which were detected during a radiographic examination for delayed eruption of permanent central incisors in the case of a healthy 8-year-old girl monitored at the oral surgery service while discussing the usefulness of cone beam computed tomography for accurate diagnosis and management. PMID:26604591

  2. Endodontic management of mandibular first molar with seven canals using cone-beam computed tomography.

    PubMed

    Banode, Ankur Mahesh; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar

    2016-01-01

    The endodontic treatment of a mandibular molar with aberrant canal configuration can be diagnostically and clinically challenging. Successful endodontic therapy thus depends on the clinician's ability to anticipate and look for these aberrant variations. A mandibular first molar with seven canals represents a rare anatomical variant, particularly when four canals are found in distal root. Based on in vitro studies, its incidence is reported to be between 0.2% and 3%. With the advent of cone-beam computed tomography (CBCT) as an adjunctive diagnostic aid, the determination of root canal anatomy in teeth with complex canal configurations has become more precise. The present case report discusses successful nonsurgical management of radix entomolaris along with middle mesial canal and middle distal canal in mandibular first molar with seven canals (four canals in distal and three in mesial) employing CBCT as an adjunctive diagnostic aid to conventional radiography. PMID:27307680

  3. Rare appearance of an odontogenic myxoma in cone-beam computed tomography: a case report

    PubMed Central

    Dabbaghi, Arash; Nikkerdar, Nafiseh; Bayati, Soheyla; Golshah, Amin

    2016-01-01

    Odontogenic myxoma (OM) is an infiltrative benign bone tumor that occurs almost exclusively in the facial skeleton. The radiographic characteristics of odontogenic myxoma may produce several patterns, making diagnosis difficult. Cone-beam computed tomography (CBCT) may prove extremely useful in clarifying the intraosseous extent of the tumor and its effects on surrounding structures. Here, we report a case of odontogenic myxoma of the mandible in a 27-year-old female. The patient exhibited a slight swelling in the left mandible. Surgical resection was performed. No recurrence was noted. In the CBCT sections, we observed perforation of the cortical plate and radiopaque line that extended from the periosteum, resembling "sunray" appearance—a rare feature of OM—which could not be assessed by panoramic radiography. PMID:27092217

  4. Rare appearance of an odontogenic myxoma in cone-beam computed tomography: a case report.

    PubMed

    Dabbaghi, Arash; Nikkerdar, Nafiseh; Bayati, Soheyla; Golshah, Amin

    2016-01-01

    Odontogenic myxoma (OM) is an infiltrative benign bone tumor that occurs almost exclusively in the facial skeleton. The radiographic characteristics of odontogenic myxoma may produce several patterns, making diagnosis difficult. Cone-beam computed tomography (CBCT) may prove extremely useful in clarifying the intraosseous extent of the tumor and its effects on surrounding structures. Here, we report a case of odontogenic myxoma of the mandible in a 27-year-old female. The patient exhibited a slight swelling in the left mandible. Surgical resection was performed. No recurrence was noted. In the CBCT sections, we observed perforation of the cortical plate and radiopaque line that extended from the periosteum, resembling "sunray" appearance-a rare feature of OM-which could not be assessed by panoramic radiography. PMID:27092217

  5. Fully-deformable patient motion models from cone-beam CT for radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Martin, J.; McClelland, J.; Yip, C.; Thomas, C.; Hartill, C.; Ahmad, S.; Meir, I.; Landau, D.; Hawkes, D.

    2014-03-01

    We propose a method to build a fully deformable motion model directly from cone-beam CT (CBCT) projections. This allows inter-fraction variations in the respiratory motion to be accounted for. It is envisaged that the model be used to track the tumour, and monitor organs at risk (OAR), during gated or tracked radiotherapy (RT) treatment of lung cancer. The method is tested on CBCT projections from a simulated phantom in two cases. The simulations are generated from a patient respiratory trace and associated CBCT scanner geometry. Without and with motion correction, l2 norm maximum errors were reduced from 24.5 to 0.698 mm in case 1, and 20.0 to 0.101 mm in case 2, respectively.

  6. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  7. Case History Report: Cone Beam Computed Tomography for Implant Insertion Guidance in the Presence of a Dense Bone Island.

    PubMed

    Li, Ze-jian; Lai, Ren-fa; Feng, Zhi-qiang

    2016-01-01

    This article describes the use of cone beam computed tomography (CBCT) to diagnose a dense bone island (DBI) to facilitate implant insertion guidance in a patient followed up for 4 years. Suitable image-directed preplanning and periodic review by CBCT scanning is recommended when a jaw DBI is encountered in treatment planning for implant placement. PMID:26929962

  8. Detection of cavitated approximal surfaces using cone beam CT and intraoral receptors

    PubMed Central

    Wenzel, A; Hirsch, E; Christensen, J; Matzen, L H; Scaf, G; Frydenberg, M

    2013-01-01

    Objectives The aim of this study was to compare cone beam CT (CBCT) in a small field of view (FOV) with a solid-state sensor and a photostimulable phosphor plate system for detection of cavitated approximal surfaces. Methods 257 non-filled approximal surfaces from human permanent premolars and molars were recorded by two intraoral digital receptors, a storage phosphor plate (Digora Optime, Soredex) and a solid-state CMOS sensor (Digora Toto, Soredex), and scanned in a cone beam CT unit (3D Accuitomo FPD80, Morita) with a FOV of 4 cm and a voxel size of 0.08 mm. Image sections were carried out in the axial and mesiodistal tooth planes. Six observers recorded surface cavitation in all images. Validation of the true absence or presence of surface cavitation was performed by inspecting the surfaces under strong light with the naked eye. Differences in sensitivity, specificity and agreement were estimated by analysing the binary data in a generalized linear model using an identity link function. Results : A significantly higher sensitivity was obtained by all observers with CBCT (p < 0.001), which was not compromised by a lower specificity. Therefore, a significantly higher overall agreement was obtained with CBCT (p < 0.001). There were no significant differences between the Digora Optime phosphor plate system and the Digora Toto CMOS sensor for any parameter. Conclusions CBCT was much more accurate in the detection of surface cavitation in approximal surfaces than intraoral receptors. The differences are interpreted as clinically significant. A CBCT examination performed for other reasons should also be assessed for approximal surface cavities in teeth without restorations.

  9. Evaluation of Radiation Dose and Image Quality for the Varian Cone Beam Computed Tomography System

    SciTech Connect

    Cheng, Harry C.Y.; Wu, Vincent W.C.; Liu, Eva S.F.; Kwong, Dora L.W.

    2011-05-01

    Purpose: To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as 'new' and 'old' protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. Methods and Materials: A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms with diameter of 16 cm (head phantom) and 32 cm (body phantom) were used to measure the weighted cone-beam computed tomography dose index (CBCTDIw) of the Varian CBCT system. The absorbed dose of different organs was measured in a female anthropomorphic phantom with thermoluminescent dosimeters (TLD) and the total effective dose was estimated according to International Commission on Radiological Protection (ICRP) Publication 103. The dose measurement and image quality were studied for head-and-neck and pelvic regions, and comparison was made between the new and old protocols. Results: The values of the new CBCTDIw head-and-neck and pelvic protocols were 36.6 and 29.4 mGy, respectively. The total effective doses from the new head-and-neck and pelvic protocols were 1.7 and 8.2 mSv, respectively. The absorbed doses of lens for the new 200{sup o} and old 360{sup o} head-and-neck protocols were 3.8 and 59.4 mGy, respectively. The additional secondary cancer risk from daily CBCT might be up to 2.8%. Conclusions: The new Varian CBCT provided volumetric information for image guidance with acceptable image quality and lower radiation dose. This imaging tool gave a better standard for patient daily setup verification.

  10. Anatomical and Morphological Characterization of the Nasopalatine Canal: A Cone-Beam Computed Tomography Study.

    PubMed

    Rodricks, D; Gupta, A; Phulambrikar, T; Singh, S K; Sharma, B K; Agrawal, P

    2016-04-01

    The anterior maxilla, also called pre-maxilla, is an area frequently requiring surgical interventions. Rehabilitation of this area remains a complex restorative challenge. The most prominent anatomical structure within the anterior maxilla is the Nasopalatine Canal. Thorough knowledge about this anatomical structure plays an important role in the successful outcomes of surgical procedures. This retrospective study was done to evaluate the anatomy and morphology of the Nasopalatine Canal using cone-beam computed tomography (CBCT). The study included 125 subjects aged between 15 and 78 years who were divided into the following 5 groups: i) 15-30 years, ii) 30-45 years, iii) 45-60 years, iv) 60-75 years, v) ≥75 years in the Department of Oral Medicine & Radiology, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India from January 2012 to January 2015. Cone-beam computed tomography (CBCT) was performed using a standard exposure and patient positioning protocol. The data of the CBCT images were sliced in three dimensions. Image planes on the three axes (X, Y, and Z) were sequentially analyzed for the location, morphology and dimensions of the Nasopalatine Canal. The correlation of age and gender with all the variables were evaluated. ANOVA and Z-test was used. P value <0.05 was considered statistically significant. Males and females showed significant differences in the length of the canal and anterior bone width in the sagittal sections. Inverted L was identified as a new dimension to the morphological shape of Nasopalatine Canal in central Madhya Pradesh population. The present study highlighted important variability observed in the anatomy and morphology of the Nasopalatine Canal. PMID:27277370

  11. Post-acquisition small-animal respiratory gated imaging using micro cone-beam CT

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.

    2004-04-01

    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function.

  12. Cone-beam reconstruction using the backprojection of locally filtered projections.

    PubMed

    Pack, Jed D; Noo, Frédéric; Clackdoyle, Rolf

    2005-01-01

    This paper describes a flexible new methodology for accurate cone beam reconstruction with source positions on a curve (or set of curves). The inversion formulas employed by this methodology are based on first backprojecting a simple derivative in the projection space and then applying a Hilbert transform inversion in the image space. The local nature of the projection space filtering distinguishes this approach from conventional filtered-backprojection methods. This characteristic together with a degree of flexibility in choosing the direction of the Hilbert transform used for inversion offers two important features for the design of data acquisition geometries and reconstruction algorithms. First, the size of the detector necessary to acquire sufficient data for accurate reconstruction of a given region is often smaller than that required by previously documented approaches. In other words, more data truncation is allowed. Second, redundant data can be incorporated for the purpose of noise reduction. The validity of the inversion formulas along with the application of these two properties are illustrated with reconstructions from computer simulated data. In particular, in the helical cone beam geometry, it is shown that 1) intermittent transaxial truncation has no effect on the reconstruction in a central region which means that wider patients can be accommodated on existing scanners, and more importantly that radiation exposure can be reduced for region of interest imaging and 2) at maximum pitch the data outside the Tam-Danielsson window can be used to reduce image noise and thereby improve dose utilization. Furthermore, the degree of axial truncation tolerated by our approach for saddle trajectories is shown to be larger than that of previous methods. PMID:15638187

  13. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    NASA Astrophysics Data System (ADS)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  14. Nonlinear dual-spectral image fusion for improving cone-beam-CT-based breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola; Conover, David; Willison, Kathleen

    2006-03-01

    Cone-beam breast computed tomography (CB Breast CT) can easily detect micro-calcifications and distinguish fat and glandular tissues from normal breast tissue. However, it may be a challenging task for CB Breast CT to distinguish benign from malignant tumors because of the subtle difference in x-ray attenuation. Due to the use of polyenergetic x-ray source, the x-ray and tissue interaction exhibits energy-dependent attenuation behavior, a phenomenon that, to date, has not been used for breast tissue characterization. We will exploit this spectral nature by equipping our CB Breast CT with dual-spectral imaging. The dual-spectral cone-beam scanning produces two spectral image datasets, from which we propose a nonlinear dual-spectral image fusion scheme to combine them into a single dataset, thereby incorporating the spectral information. In implementation, we will perform dual-spectral image fusion through a bi-variable polynomial that can be established by applying dual-spectral imaging to a reference material (with eight different thicknesses). From the fused dataset, we can reconstruct a volume, called a reference-equivalent volume or a fusion volume. By selecting the benign tissue as a reference material, we obtain a benign-equivalent volume. Likewise, we obtain a malignant-equivalent volume as well. In the pursuit of the discrimination of benign versus malignant tissues in a breast image, we perform intra-image as well as inter-image processing. The intra-image processing is an intensity transformation imposed only to a tomographic breast image itself, while the inter-image processing is exerted on two tomographic images extracted from two volumes. The nonlinear fusion scheme possesses these properties: 1) no noise magnification; 2) no feature dimensionality problem, and 3) drastic enhancement among specific features offered by nonlinear mapping. Its disadvantage lies in the possible misinterpretation resulting from nonlinear mapping.

  15. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    SciTech Connect

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J.

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  16. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    SciTech Connect

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measured OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.

  17. High performance cone-beam spiral backprojection with voxel-specific weighting

    NASA Astrophysics Data System (ADS)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  18. High performance cone-beam spiral backprojection with voxel-specific weighting.

    PubMed

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2009-06-21

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, alpha) prior to adding a projection from angle alpha to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 10(12) floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 x 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version

  19. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect

    Ma, Y. Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  20. Single-scan scatter correction for cone-beam CT using a stationary beam blocker: a preliminary study

    NASA Astrophysics Data System (ADS)

    Niu, Tianye; Zhu, Lei

    2011-03-01

    The performance of cone-beam CT (CBCT) is greatly limited by scatter artifacts. The existing measurement-based methods have promising advantages as a standard scatter correction solution, except that they currently require multiple scans or moving the beam blocker during data acquisition to compensate for the missing primary data. These approaches are therefore unpractical in clinical applications. In this work, we propose a new measurement-based scatter correction method to achieve accurate reconstruction with one single scan and a stationary beam blocker, two seemingly incompatible features which enable simple and effective scatter correction without increase of scan time or patient dose. Based on CT reconstruction theory, we distribute the blocked areas over one projection where primary signals are considered to be redundant in a full scan. The CT image quality is not degraded even with primary loss. Scatter is accurately estimated by interpolation and scatter-corrected CT images are obtained using an FDK-based reconstruction. In a Monte Carlo simulation study, we first optimize the beam blocker geometry using projections on the Shepp-Logan phantom and then carry out a complete simulation of a CBCT scan on a water phantom. With the scatter-to-primary ratio around 1.0, our method reduces the CT number error from 293 to 2.9 Hounsfield unit (HU) around the phantom center. The proposed approach is further evaluated on a CBCT tabletop system. On the Catphan©600 phantom, the reconstruction error is reduced from 202 to 10 HU in the selected region of interest after the proposed correction.

  1. IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging

    SciTech Connect

    Miften, Moyed; Gayou, Olivier; Reitz, Bodo; Fuhrer, Russell; Leicher, Brian; Parda, David S.

    2007-10-15

    The technology of online mega-voltage cone-beam (CB) computed tomography (MV-CBCT) imaging is currently used in many institutions to generate a 3D anatomical dataset of a patient in treatment position. It utilizes an accelerator therapy beam, delivered with 200 deg. gantry rotation, and captured by an electronic portal imager to account for organ motion and setup variations. Although the patient dose exposure from a single volumetric MV-CBCT imaging procedure is comparable to that from standard double-exposure orthogonal portal images, daily image localization procedures can result in a significant dose increase to healthy tissue. A technique to incorporate the daily dose, from a MV-CBCT imaging procedure, in the IMRT treatment planning optimization process was developed. A composite IMRT plan incorporating the total dose from the CB was optimized with the objective of ensuring uniform target coverage while sparing the surrounding normal tissue. One head and neck cancer patient and four prostate cancer patients were planned and treated using this technique. Dosimetric results from the prostate IMRT plans optimized with or without CB showed similar target coverage and comparable sparing of bladder and rectum volumes. Average mean doses were higher by 1.6{+-}1.0 Gy for the bladder and comparable for the rectum (-0.3{+-}1.4 Gy). In addition, an average mean dose increase of 1.9{+-}0.8 Gy in the femoral heads and 1.7{+-}0.6 Gy in irradiated tissue was observed. However, the V{sub 65} and V{sub 70} values for bladder and rectum were lower by 2.3{+-}1.5% and 2.4{+-}2.1% indicating better volume sparing at high doses with the optimized plans incorporating CB. For the head and neck case, identical target coverage was achieved, while a comparable sparing of the brain stem, optic chiasm, and optic nerves was observed. The technique of optimized planning incorporating doses from daily online MV-CBCT procedures provides an alternative method for imaging IMRT patients. It

  2. Performance characteristics of a novel megavoltage cone-beam-computed tomography device.

    PubMed

    Fast, M F; Koenig, T; Oelfke, U; Nill, S

    2012-02-01

    In this work, the image quality of a novel megavoltage cone-beam-computed tomography (CBCT) scanner is compared to three other image-guided radiation therapy devices by analysing images of different-sized quality assurance phantoms. The following devices are compared in terms of image uniformity, signal-to-noise ratio, contrast-to-noise ratio (CNR), electron density to HU conversion, presampling modulation transfer function (MTF(pre)) and combined spatial resolution and noise (Q-factor): (i) the Siemens Artiste kilovoltage (kV) (121 kV) CBCT device, (ii) the Artiste treatment beam line (TBL), 6 MV, (iii) the Tomotherapy (3.5 MV) fan-beam CT and (iv) Siemens' novel approach using a carbon target for a dedicated imaging beam line (IBL), 4.2 MV. Machine settings were selected to produce the same imaging dose for all devices. For a head phantom, IBL scans display CNR values 2.6 ± 0.3 times higher than for the TBL at the same dose level (for a CT-number range of -200 to -60 HU). kV CBCT, on the other hand, displays CNR values 7.9 ± 0.3 times higher than the IBL. There was no significant deviation in spatial resolution between IBL, TBL and Tomotherapy in terms of 50% and 10% MTF(pre). For kV CBCT, the MTF(pre) was significantly higher than those for other devices. In our Q-factor analysis, the IBL (14.6) scores higher than the TBL (7.9) and Tomotherapy (9.7) due to its lower noise level. The linearity of electron density to HU conversion is demonstrated for different-sized phantoms. Employing the IBL instead of the TBL significantly reduces the imaging dose by up to a factor of 5 at a constant image quality level, providing an immediate benefit for the patient. PMID:22251668

  3. SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures

    SciTech Connect

    Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V; Lliso-Valverde, F; Candela-Juan, C; Perez-Calatayud, J; Pujades, M; Ballester, F

    2014-06-01

    Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dose that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.

  4. A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

  5. Online optimization of storage ring nonlinear beam dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  6. Feasibility of using respiratory correlated mega voltage cone beam computed tomography to measure tumor motion.

    PubMed

    Chen, Mingqing; Siochi, R Alfredo

    2011-01-01

    The purpose of this study was to test the feasibility of using respiratory correlated mega voltage cone-beam computed tomography (MVCBCT), taken during patient localization, to quantify the size and motion of lung tumors. An imaging phantom was constructed of a basswood frame embedded with six different-sized spherical pieces of paraffin wax. The Quasar respiratory motion phantom was programmed to move the imaging phantom using typical respiratory motion. The moving imaging phantom was scanned using various MVCBCT imaging parameters, including two beam line types, two protocols with different ranges of rotation and different imaging doses. A static phantom was also imaged as a control. For all the 3D volumetric images, the contours of the six spherical inserts were measured manually. Compared with the nominal sphere diameter, the average relative error in the size of the respiratory correlated MVCBCT spheres ranged from 5.3% to 12.6% for the four largest spheres, ranging in size from 3.6 cc to 29 cc. Larger errors were recorded for the two smallest inserts. The average relative error in motion was 5.1% smaller than the programmed amplitude of 3.0 cm. We are able to conclude that it is feasible to use respiratory correlated MVCBCT to quantify tumor motion for lung cancer patients. PMID:21587196

  7. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    SciTech Connect

    Huang, Tzung-Chi; Chou, Kuei-Ting; Yang, Shih-Neng; Chang, Chih-Kai; Liang, Ji-An; Zhang, Geoffrey

    2015-10-01

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.

  8. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    PubMed Central

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S.; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  9. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    PubMed Central

    Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510

  10. Monte Carlo simulation of an x-ray volume imaging cone beam CT unit

    SciTech Connect

    Spezi, Emiliano; Downes, Patrick; Radu, Emil; Jarvis, Richard

    2009-01-15

    In this work the authors characterized the radiation field produced by a kilovolt cone beam computed tomography (CBCT) unit integrated in the Elekta Synergy linear accelerator. The x-ray volume imaging (XVI) radiation unit was modeled in detail using the BEAMNRC Monte Carlo (MC) code system. The simulations of eight collimator cassettes and the neutral filter F0 were successfully carried out. MC calculations from the EGSNRC code DOSXYZNRC were benchmarked against measurements in water. A large set of depth dose and lateral profiles was acquired with the ionization chamber in water, with the x-ray tube in a stationary position, and with the beam energy set to 120 kV. Measurements for all the available collimator cassettes were compared with calculations, showing very good agreement (<2% in most cases). Furthermore, half value layer measurements were carried out and used to validate the MC model of the XVI unit. In this case dose calculations were performed with the EGSNRC code cavity and these showed excellent agreement. In this manuscript the authors also report on the optimization work of the relevant parameters that influenced the development of the MC model. The dosimetric part of this work was very useful in characterizing the XVI radiation output for the energy of interest. The detailed simulation part of the work is the first step toward an accurate MC based assessment of the dose delivered to patients during routine CBCT scans for image and dose guided radiotherapy.

  11. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  12. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  13. X-ray scatter correction for cone-beam CT using moving blocker array

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2005-04-01

    Scatter correction is an active research topic in cone beam computed tomography (CBCT) because CBCT (especially flat-panel detector (FPD) based) systems have large scatter-to-primary ratios. Scatter produces artifact and contrast reduction, and is difficult to model accurately. Direct measurement using a beam blocker array provides accurate scatter estimates. However, since the blocker array also blocks primary radiation, imaging requires a second (or subsequent) scan without the blocker array in place. This approach is inefficient in terms of scanning time and patient dose. To combine accurate scatter estimation and reconstruction into one single scan, a new approach based on an array of moving blockers has been developed. The blocker array moves from projection to projection, such that every detector pixel is not consecutively blocked during the data acquisition, and the missing primary data in the blocker shadows are estimated by interpolation. Using different blocker array trajectories, the algorithm has been evaluated through software phantom studies using Monte Carlo simulations and image processing techniques. Results show that this approach is able to greatly reduce the effect of scatter in the reconstruction. By properly choosing blocker distance and primary data interpolation method, the mean square error of the reconstructed image decreases from 32.3% to 1.13%, and the induced visual artifacts are significantly reduced when a raster-scanning blocker array trajectory is used. Further analysis also shows that artifact arises mostly due to inaccurate scatter estimates, rather than due to interpolation of the primary data.

  14. Soft tissue visualization using a highly efficient megavoltage cone beam CT imaging system

    NASA Astrophysics Data System (ADS)

    Ghelmansarai, Farhad A.; Bani-Hashemi, Ali; Pouliot, Jean; Calderon, Ed; Hernandez, Paco; Mitschke, Matthias; Aubin, Michelle; Bucci, Kara

    2005-04-01

    Recent developments in two-dimensional x-ray detector technology have made volumetric Cone Beam CT (CBCT) a feasible approach for integration with conventional medical linear accelerators. The requirements of a robust image guidance system for radiation therapy include the challenging combination of soft tissue sensitivity with clinically reasonable doses. The low contrast objects may not be perceptible with MV energies due to the relatively poor signal to noise ratio (SNR) performance. We have developed an imaging system that is optimized for MV and can acquire Megavoltage CBCT images containing soft tissue contrast using a 6MV x-ray beam. This system is capable of resolving relative electron density as low as 1% with clinically acceptable radiation doses. There are many factors such as image noise, x-ray scatter, improper calibration and acquisitions that have a profound effect on the imaging performance of CBCT and in this study attempts were made to optimize these factors in order to maximize the SNR. A QC-3V phantom was used to determine the contrast to noise ratio (CNR) and f50 of a single 2-D projection. The computed f50 was 0.43 lp/mm and the CNR for a radiation dose of 0.02cGy was 43. Clinical Megavoltage CBCT images acquired with this system demonstrate that anatomical structures such as the prostate in a relatively large size patient are visible using radiation doses in range of 6 to 8cGy.

  15. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    SciTech Connect

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-02-15

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A {beta}-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction.

  16. NPS characterization and evaluation of a cone beam CT breast imaging system.

    PubMed

    Benítez, Ricardo Betancourt; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-01-01

    The Noise Power Spectrum (NPS) is a function that yields information about the spatial frequency composition of noise in images obtained by a system. It is evaluated by calculating the absolute value squared of the noise image and normalizing it with respect to the voxel and matrix sizes. Consequently, the NPS has been one of the physical characteristics that is commonly used to quantitatively measure the physical performance of a system. In this article, we evaluated the NPS of a Cone Beam CT Breast Imaging system by considering the following factors. First, we evaluated its symmetry around the x- and y-axis along with the influence of the cone angle and the matrix size on the NPS. Then, an analytical curve was suggested to best represent the NPS. Second, we analyzed the influence on the NPS of a set of seven parameters, namely the pixel size, exposure level, kVp value, number of projections acquired, voxel size, back projection filter, and the reconstruction algorithm employed. In addition, since the breast induced scattering in the image, we investigated the effect of the scattering-correction algorithm used in this system. Finally, we evaluated the uniformity of the NPS as a function of z with the matrix center located at {r = 0 mm}. The results demonstrate that the proposed curve is an ideal candidate that best represents the NPS. Hence, two parameters, the amplitude (A) and the width (sigma), can be used to characterize the curve. The results also demonstrate that the voxel size and the cone angle are the only two parameters investigated in this study that do not affect the NPS. On the other hand, the matrix and pixel sizes, the back-projection filter and the reconstruction algorithm, the exposure level and the scattering correction, all influence the NPS. Finally, the results of the last part of this investigation suggest that this imaging system does not have a 3D isotropic noise distribution along the z-axis; yielding less noisy images at around z = 0.00 m

  17. Interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme

    NASA Astrophysics Data System (ADS)

    Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.

    2016-06-01

    In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.

  18. An FDK-like cone-beam SPECT reconstruction algorithm for non-uniform attenuated projections acquired using a circular trajectory

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Zeng, G. L.; You, J.; Gullberg, G. T.

    2005-05-01

    In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections.

  19. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  20. Lipiodol: A Potential Direct Surrogate for Cone-Beam Computed Tomography Image Guidance in Radiotherapy of Liver Tumor

    SciTech Connect

    Yue Jinbo; Sun Xindong; Cai Jing; Yin Fangfang; Yin Yong; Zhu Jian; Lu Jie; Liu Tonghai; Yu Jinming; Shi Xuetao; Song Jinlong

    2012-02-01

    Purpose: To investigate the feasibility of using lipiodol as a direct surrogate for target localization using cone-beam CT (CBCT) image guidance in radiotherapy (RT) of patients with unresectable liver tumors after transarterial chemoembolization. Methods and Materials: Forty-six patients with an unresectable solitary liver tumor were enrolled for RT using active breathing control (ABC) and CBCT image guidance after transarterial chemoembolization. Each patient had pre- and posttreatment CBCT in the first 10 fractions of treatment. Lipiodol retention was evaluated using daily CBCT scans, and volume of lipiodol retention in the liver was calculated and compared between planning CT and post-RT CT. Influence of lipiodol on dosimetry was evaluated by measuring doses using an ion chamber with and without the presence of lipiodol. Margin analysis was performed on the basis of both inter- and intrafractional target localization errors. Results: Twenty-eight patients successfully completed the study. The shape and size of lipiodol retention did not vary substantially during the course of treatment. The mean Dice similarity coefficient for the lipiodol volume in pretreatment CT and that in posttreatment CT was 0.836 (range, 0.817-0.885). The maximum change (ratio of the lipiodol volume in pretreatment CT to that in posttreatment CT) was 1.045. The mean dose changes with the presence of <10 mL lipiodol were -1.44% and 0.13% for 6 MV and 15 MV, respectively. With ABC and online CBCT image guidance, clinical target volume-planning target volume margins were determined to be 2.5 mm in the mediolateral direction, 2.9 mm in the anteroposterior direction, and 4.0 mm in the craniocaudal direction. Conclusions: Lipiodol could be used as a direct surrogate for CBCT image guidance to improve the localization accuracy for RT of liver tumors. Combination of ABC and CBCT image guidance with lipiodol can potentially reduce the clinical target volume-planning target volume margin.

  1. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  2. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  3. Lung tumor tracking, trajectory reconstruction, and motion artifact removal using rotational cone-beam projections

    NASA Astrophysics Data System (ADS)

    Lewis, John Henry

    Management of lung tumor motion is a challenging and important problem for modern, highly conformal radiotherapy. Poorly managed tumor motion can lead to imaging artifacts, poor target coverage, and unnecessarily high dose to normal tissues. The goals of this dissertation are to develop a real-time localization algorithm that is applicable to rotational cone-beam projections acquired during regular (˜60 seconds) cone-beam computed tomography (CBCT) scans, and to use these tracking results to reconstruct a tumor's trajectory, shape and size immediately prior to treatment. Direct tumor tracking is performed via a multiple template matching algorithm where templates are derived from digitally reconstructed radiographs (DRRs) generated from four-dimensional computed tomography (4DCT). Three-dimensional (3D) tumor trajectories are reconstructed by binning twodimensional (2D) tracking results according to their corresponding respiratory phases. Within each phase bin a point is calculated approximating the 3D tumor position, resulting in a 3D phase-binned trajectory. These 3D trajectories are used to construct motion blurring functions which are in turn used to remove motion blurring artifacts from reconstructed CBCT volumes with a deconvolution algorithm. Finally, the initial direct tracking algorithm is combined with diaphragm-based tracking to develop a more robust "combined" tracking algorithm. Respiratory motion phantoms (digital and physical), and example patient cases were used to test each technique. Direct tumor tracking performed well for both phantom cases, with sub-millimeter root mean square error (e rms) in the axial and tangential imager dimensions. In patient studies the algorithm performed well for many angles, but exhibited large errors for some projections. Accurate 3D trajectories were successfully reconstructed for patients and phantoms. Errors in reconstructed trajectories were smaller than the errors in the direct tracking results in all cases. The

  4. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing.

    PubMed

    O'Brien, Ricky T; Cooper, Benjamin J; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-02-01

    Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient's respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s(2), a velocity up to 100°/s and the acquisition of 80 projections per second

  5. Imaging doses from the Elekta Synergy X-ray cone beam CT system.

    PubMed

    Amer, A; Marchant, T; Sykes, J; Czajka, J; Moore, C

    2007-06-01

    The Elekta Synergy is a radiotherapy treatment machine with integrated kilovoltage (kV) X-ray imaging system capable of producing cone beam CT (CBCT) images of the patient in the treatment position. The aim of this study is to assess the additional imaging dose. Cone beam CT dose index (CBDI) is introduced and measured inside standard CTDI phantoms for several sites (head: 100 kV, 38 mAs, lung: 120 kV, 152 mAs and pelvis: 130 kV, 456 mAs). The measured weighted doses were compared with thermoluminescent dosimeter (TLD) measurements at various locations in a Rando phantom and at patients' surfaces. The measured CBDIs in-air at the isocentre were 9.2 mGy 100 mAs(-1), 7.3 mGy 100 mAs(-1) and 5.3 mGy 100 mAs(-1) for 130 kV, 120 kV and 100 kV, respectively. The body phantom weighted CBDI were 5.5 mGy 100 mAs(-1) and 3.8 mGy 100 mAs(-1 )for 130 kV and 120 kV. The head phantom weighted CBDI was 4.3 mGy 100 mAs(-1) for 100 kV. The weighted doses for the Christie Hospital CBCT imaging techniques were 1.6 mGy, 6 mGy and 22 mGy for the head, lung and pelvis. The measured CBDIs were used to estimate the total effective dose for the Synergy system using the ImPACT CT Patient Dosimetry Calculator. Measured CBCT doses using the Christie Hospital protocols are low for head and lung scans whether compared with electronic portal imaging (EPI), commonly used for treatment verification, or single and multiple slice CT. For the pelvis, doses are similar to EPI but higher than CT. Repeated use of CBCT for treatment verification is likely and hence the total patient dose needs to be carefully considered. It is important to consider further development of low dose CBCT techniques to keep additional doses as low as reasonably practicable. PMID:17684077

  6. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    SciTech Connect

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms

  7. Task-driven image acquisition and reconstruction in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Gang, Grace J.; Webster Stayman, J.; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-04-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d‧) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d‧ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d‧ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  8. Centers and centroids of the cone-beam projection of a ball.

    PubMed

    Clackdoyle, R; Mennessier, C

    2011-12-01

    In geometric calibration of cone-beam (CB) scanners, point-like marker objects such as small balls are imaged to obtain positioning information from which the unknown geometric parameters are extracted. The procedure is sensitive to errors in the positioning information, and one source of error is a small bias which can occur in estimating the detector locations of the CB projections of the centers of the balls. We call these detector locations the center projections. In general, the CB projection of a ball of uniform density onto a flat detector forms an ellipse. Inside the ellipse lie the center projection M, the ellipse center C and the centroid G of the intensity values inside the ellipse. The center projection is invariably estimated from C or G which are much easier to extract directly from the data. In this work, we quantify the errors incurred in using C or G to estimate M. We prove mathematically that the points C, G, M and O are always distinct and lie on the major axis of the ellipse, where O is the detector origin, defined as the orthogonal projection of the cone vertex onto the detector. (The ellipse can only degenerate to a circle if the ball is along the direct line of sight to O, and in this case all four points coincide.) The points always lie in the same order: O, M, G, C which establishes that the centroid has less geometric bias than the ellipse center for estimating M. However, our numerical studies indicate that the centroid bias is only 20% less than the ellipse center bias so the benefit in using centroid estimates is not substantial. For the purposes of quantifying the bias in practice, we show that the ellipse center bias ||CM|| can be conveniently estimated by eA/(π ƒ(≈) where A is the area of the elliptical projection, e is the eccentricity of the ellipse and ƒ(≈) is an estimate of the focal length of the system. Finally, we discuss how these results are affected by physical factors such as beam hardening, and indicate extensions

  9. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hyer, Daniel Ellis

    Advances in radiation treatment delivery, such as intensity modulated radiation therapy (IMRT), have made it possible to deliver large doses of radiation with a high degree of conformity. While highly conformal treatments offers the advantage of sparing surrounding normal tissue, this benefit can only be realized if the patient is accurately positioned during each treatment fraction. The need to accurately position the patient has led to the development and use of gantry mounted kilovoltage cone-beam computed tomography (kV-CBCT) systems. These systems are used to acquire high resolution volumetric images of the patient which are then digitally registered with the planning CT dataset to confirm alignment of the patient on the treatment table. While kV-CBCT is a very useful tool for aligning the patient prior to treatment, daily use in a high fraction therapy regimen results in a substantial radiation dose. In order to quantify the radiation dose associated with CBCT imaging, an anthropomorphic phantom representing a 50th percentile adult male and a fiber-optic coupled (FOC) dosimetry system were both constructed as part of this dissertation. These tools were then used to directly measure organ doses incurred during clinical protocols for the head, chest, and pelvis. For completeness, the dose delivered from both the X-ray Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) and the On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) were investigated. While this study provided a direct measure of organ doses for estimating risk to the patient, a practical method for estimating organ doses that could be performed with phantoms and dosimeters currently available at most clinics was also desired. To accomplish this goal, a 100 mm pencil ion chamber was used to measure the "cone beam dose index" (CBDI) inside standard CT dose index (CTDI) acrylic phantoms. A weighted CBDI (CBDIw), similar to the weighted CT dose index (CTDIw), was then calculated to

  10. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    PubMed

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-01

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  11. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  12. Task-driven image acquisition and reconstruction in cone-beam CT

    PubMed Central

    Gang, Grace J.; Stayman, J. Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters and in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e., the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  13. Patient-Specific Three-Dimensional Concomitant Dose From Cone Beam Computed Tomography Exposure in Image-Guided Radiotherapy

    SciTech Connect

    Spezi, Emiliano; Downes, Patrick; Jarvis, Richard; Radu, Emil; Staffurth, John

    2012-05-01

    Purpose: The purpose of the present study was to quantify the concomitant dose received by patients undergoing cone beam computed tomography (CBCT) scanning in different clinical scenarios as a part of image-guided radiotherapy (IGRT) procedures. Methods and Materials: We calculated the three-dimensional concomitant dose received as a result of CBCT scans in 6 patients representing different clinical scenarios: two pelvis, two head and neck, and two chest. We assessed the effect that a daily on-line IGRT strategy would have on the patient dose distribution, assuming 40 CBCT scans throughout the treatment course. The additional dose to the planning target volume margin region was also estimated. Results: In the pelvis, a single CBCT scan delivered a mean dose to the femoral heads of 2-6 cGy and the rectum of 1-2 cGy. An additional dose to the planning target volume was within 1-3 cGy. In the chest, the mean dose to the planning target volume varied from 2.5 to 5 cGy. The lung and spinal cord planning organ at risk volume received {<=}4 cGy and {<=}5 cGy, respectively. In the head and neck, a single CBCT scan delivered a mean dose of 0.3 cGy, with bony structures receiving 0.5-0.8 cGy. The femoral heads received an additional dose of 1.5-2.5 Gy. A reduction of 20-30% in the mean dose to the organs at risk was achieved using bowtie filtration. In the head and neck, the dose to the eyes and brainstem was eliminated by decreasing the craniocaudal field size. Conclusions: The additional dose from on-line IGRT procedures can be clinically relevant. The organ dose can be significantly reduced with the use of appropriate patient-specific settings. The concomitant dose from CBCT should be accounted for and the acquisition settings optimized for optimal IGRT strategies on a patient basis.

  14. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    NASA Astrophysics Data System (ADS)

    Yang, Min; Jin, Xu-Ling; Li, Bao-Lei

    2010-10-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress (FDK) algorithm, we propose a simple yet feasible method to accurately measure the projected coordinate origin. This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse. We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography (DR) projections of a group of spherical objects. Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections. Based on the experimental results, this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  15. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review

    PubMed Central

    Srinivasan, Kavitha; Mohammadi, Mohammad; Shepherd, Justin

    2014-01-01

    Summary The use of Cone-beam Computed Tomography (CBCT) in radiotherapy is increasing due to the widespread implementation of kilovoltage systems on the currently available linear accelerators. Cone beam CT acts as an effective Image-Guided Radiotherapy (IGRT) tool for the verification of patient position. It also opens up the possibility of real-time re-optimization of treatment plans for Adaptive Radiotherapy (ART). This paper reviews the most prominent applications of CBCT (linac-mounted) in radiation therapy, focusing on CBCT-based planning and dose calculation studies. This is followed by a concise review of the main issues associated with CBCT, such as imaging artifacts, dose and image quality. It explores how medical physicists and oncologists can best apply CBCT for therapeutic applications. PMID:25006356

  16. [Implementation of cone beam CT-guided volumetric modulated arc therapy and establishment of related institutional quality assurance protocols].

    PubMed

    Valastyánné, Julianna Nagy; Jánváry, Levente Zsolt; Balogh, István; Horváth, Zsolt

    2015-06-01

    We intend to present the process of implementation of kilovoltage CT-guided volumetric modulated arc therapy (VMAT), and related quality assurance (QA). An Elekta Synergy™ linear accelerator has been installed recently in our institution, equipped with Agility© head, kilovoltage cone-beam CT image guidance and ability of arc therapy. The major steps of the implementation of these techniques and the background of physics QA will be described. Specific dynamic tests have been performed to verify intensity-modulated radiation delivery and the accuracy of on board imaging. Systematic daily, weekly and monthly physics QA protocols have been worked out and applied in the clinical practice. As a result, cone beam CT based image-guided radiotherapy (IGRT) and volumetric modulated arc therapy was introduced in our institution. PMID:26035160

  17. A Monte Carlo investigation of cumulative dose measurements for cone beam computed tomography (CBCT) dosimetry

    NASA Astrophysics Data System (ADS)

    Abuhaimed, Abdullah; Martin, Colin J.; Sankaralingam, Marimuthu; Gentle, David J.

    2015-02-01

    Many studies have shown that the computed tomography dose index (CTDI100) which is considered as a main dose descriptor for CT dosimetry fails to provide a realistic reflection of the dose involved in cone beam computed tomography (CBCT) scans. Several practical approaches have been proposed to overcome drawbacks of the CTDI100. One of these is the cumulative dose concept. The purpose of this study was to investigate four different approaches based on the cumulative dose concept: the cumulative dose (1) f(0,150) and (2) f(0,∞) with a small ionization chamber 20 mm long, and the cumulative dose (3) f100(150) and (4) f100(∞) with a standard 100 mm pencil ionization chamber. The study also aimed to investigate the influence of using the 20 and 100 mm chambers and the standard and the infinitely long phantoms on cumulative dose measurements. Monte Carlo EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc codes were used to simulate a kV imaging system integrated with a TrueBeam linear accelerator and to calculate doses within cylindrical head and body PMMA phantoms with diameters of 16 cm and 32 cm, respectively, and lengths of 150, 600, 900 mm. f(0,150) and f100(150) approaches were studied within the standard PMMA phantoms (150 mm), while the other approaches f(0,∞) and f100(∞) were within infinitely long head (600 mm) and body (900 mm) phantoms. CTDI∞ values were used as a standard to compare the dose values for the approaches studied at the centre and periphery of the phantoms and for the weighted values. Four scanning protocols and beams of width 20-300 mm were used. It has been shown that the f(0,∞) approach gave the highest dose values which were comparable to CTDI∞ values for wide beams. The differences between the weighted dose values obtained with the 20 and 100 mm chambers were significant for the beam widths <120 mm, but these differences declined with increasing beam widths to be within 4%. The weighted dose values calculated within

  18. Compensation for displacement of the focal point in cone beam single photon emission computed tomography reconstruction.

    PubMed

    Cao, Z; Qian, L

    1997-04-01

    This study examined the effects of focal point displacement on image quality in cone beam single photon emission computed tomography (SPECT). A new image reconstruction algorithm that accounts for the focal point shift was derived and three shift geometries were investigated. The geometries included a lateral shift with a fixed focal length but off-center focusing, a linear axial shift with a variable focal length that depends linearly on the distance between a bin of the detector and the center of the detector, and a random axial shift with a randomly varying focal length. Computer simulation was conducted to evaluate the shift effects with a phantom that was composed of 118 small spherical sources. The results demonstrated that the lateral shift of the focal point was more critical to image quality than was the axial shift. With a 0.64 cm (1 pixel) lateral shift, noticeable artifacts was observed, while an axial shift resulted in minimal changes in image quality until it reached 8 cm (12.5 pixels). The derived reconstruction algorithm eliminated most of the artifacts caused by a fixed lateral shift or a linear axial shift of the focal point, but failed to do so for a random axial shift since the linear distribution assumed in image reconstruction did not match the random shift occurred in acquisition of the data. PMID:9291002

  19. Imaging characteristics of distance-driven method in a prototype cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Seo, Chang-Woo; Kim, Hee-Joung

    2016-03-01

    Cone-beam computed tomography (CBCT) has widely been used and studied in both medical imaging and radiation therapy. The aim of this study was to evaluate our newly developed CBCT system by implementing a distance-driven system modeling technique in order to produce excellent and accurate cross-sectional images. For the purpose of comparing the performance of the distance-driven methods, we also performed pixel-driven and ray-driven techniques when conducting forward- and back-projection schemes. We conducted the Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART) to retrieve a volumetric information of scanned chest phantom. The results indicated that contrast-to-noise (CNR) of the reconstructed images by using FDK and SART showed 8.02 and 15.78 for distance-driven, whereas 4.02 and 5.16 for pixel-driven scheme and 7.81 and 13.01 for ray-driven scheme, respectively. This could demonstrate that distance-driven method described more closely the chest phantom compared to pixel- and ray-driven. However, both elapsed time for modeling a system matrix and reconstruction time took longer time when performing the distance-driven scheme. Therefore, future works will be directed toward reducing computational time to acceptable limits for real applications.

  20. Detection model modeling and application for batch scans of cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Zhang, Dinghua; Li, Mingjun; Wang, Kuyu

    2009-07-01

    Aiming at the artifact corrections for batch scans in Cone-Beam Computed Tomography (CBCT) system, the concept of detection model is proposed. Expressing the prior knowledge of CT system and scanned object properties by the detection model, the rapid artifact corrections are achieved based on the object knowledge, which can save the machine consumption, enhance the detection efficiency and improve the correction effect. Based on the Digital Radiography (DR) imaging conditions remained basically unchanged in the batch scans, the modeling method of detection model is established by getting the relevant information through the detected scanning for one of a batch of parts. Finally, the processing flow of CBCT scans and artifact corrections of a batch of parts based on the detection model is given, and some key problems in the flow are discussed to improve the practical operability of the method. The experimental result shows that the modeling method of detection model is feasible, and the rapid CBCT scans and effective artifact corrections can be realized based on the obtained detection model.

  1. Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis

    NASA Astrophysics Data System (ADS)

    Tward, D. J.; Siewerdsen, J. H.; Fahrig, R. A.; Pineda, A. R.

    2008-03-01

    Crucial to understanding the factors that govern imaging performance is a rigorous analysis of signal and noise transfer characteristics (e.g., MTF, NPS, and NEQ) applied to a task-based performance metric (e.g., detectability index). This paper advances a theoretical framework for calculation of the NPS, NEQ, and DQE of cone-beam CT (CBCT) and tomosynthesis based on cascaded systems analysis. The model considers the 2D projection NPS propagated through a series of reconstruction stages to yield the 3D NPS, revealing a continuum (from 2D projection radiography to limited-angle tomosynthesis and fully 3D CBCT) for which NEQ and detectability index may be investigated as a function of any system parameter. Factors considered in the cascade include: system geometry; angular extent of source-detector orbit; finite number of views; log-scaling; application of ramp, apodization, and interpolation filters; back-projection; and 3D noise aliasing - all of which have a direct impact on the 3D NEQ and DQE. Calculations of the 3D NPS were found to agree with experimental measurements across a broad range of imaging conditions. The model presents a theoretical framework that unifies 3D Fourier-based performance metrology in tomosynthesis and CBCT, providing a guide to optimization that rigorously considers the system configuration, reconstruction parameters, and imaging task.

  2. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  3. Volume-of-interest reconstruction from severely truncated data in dental cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Kusnoto, Budi; Han, Xiao; Sidky, E. Y.; Pan, Xiaochuan

    2015-03-01

    As cone-beam computed tomography (CBCT) has gained popularity rapidly in dental imaging applications in the past two decades, radiation dose in CBCT imaging remains a potential, health concern to the patients. It is a common practice in dental CBCT imaging that only a small volume of interest (VOI) containing the teeth of interest is illuminated, thus substantially lowering imaging radiation dose. However, this would yield data with severe truncations along both transverse and longitudinal directions. Although images within the VOI reconstructed from truncated data can be of some practical utility, they often are compromised significantly by truncation artifacts. In this work, we investigate optimization-based reconstruction algorithms for VOI image reconstruction from CBCT data of dental patients containing severe truncations. In an attempt to further reduce imaging dose, we also investigate optimization-based image reconstruction from severely truncated data collected at projection views substantially fewer than those used in clinical dental applications. Results of our study show that appropriately designed optimization-based reconstruction can yield VOI images with reduced truncation artifacts, and that, when reconstructing from only one half, or even one quarter, of clinical data, it can also produce VOI images comparable to that of clinical images.

  4. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    PubMed Central

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  5. Comparing the Coronal Flaring Efficacy of Five Different Instruments Using Cone-Beam Computed Tomography

    PubMed Central

    Homayoon, Amin; Hamidi, Mahmood Reza; Haddadi, Azam; Madani, Zahra Sadat; Moudi, Ehsan; Bijani, Ali

    2015-01-01

    Introduction: Fearless removal of tooth structure during canal preparation and shaping has negative effects on the prognosis of treatment. On the other hand, sufficient pre-enlargement facilitates exact measurement of the apical size. The present in vitro study aimed to compare the efficacy of Gates-Glidden drills, K3, ProTaper, FlexMaster and RaCe instruments in dentin removal during coronal flaring using cone-beam computed tomography (CBCT). Methods and Materials: A total of 40 mandibular molars were selected and the coronal areas of their mesiobuccal and mesiolingual root canals were randomly prepared with either mentioned instruments. Pre- and post-instrumentation CBCT images were taken and the thickness of canal walls was measured in 1.5- and 3-mm distances from the furcation area. Data were analyzed using the one-way ANOVA. Tukey’s post hoc tests were used for two-by-two comparisons. Results: At 1.5-mm distance, there was no significant difference between different instruments. However, at 3-mm distances, Gates-Glidden drills removed significantly more dentin compared to FlexMaster files (mean=0.18 mm) (P<0.02); however, two-by-two comparisons did not reveal any significant differences between the other groups. Conclusion: All tested instruments can be effectively used in clinical settings for coronal pre-enlargement. PMID:26525955

  6. Accuracy and reliability of stitched cone-beam computed tomography images

    PubMed Central

    Egbert, Nicholas; Cagna, David R.; Wicks, Russell A.

    2015-01-01

    Purpose This study was performed to evaluate the linear distance accuracy and reliability of stitched small field of view (FOV) cone-beam computed tomography (CBCT) reconstructed images for the fabrication of implant surgical guides. Materials and Methods Three gutta percha points were fixed on the inferior border of a cadaveric mandible to serve as control reference points. Ten additional gutta percha points, representing fiduciary markers, were scattered on the buccal and lingual cortices at the level of the proposed complete denture flange. A digital caliper was used to measure the distance between the reference points and fiduciary markers, which represented the anatomic linear dimension. The mandible was scanned using small FOV CBCT, and the images were then reconstructed and stitched using the manufacturer's imaging software. The same measurements were then taken with the CBCT software. Results The anatomic linear dimension measurements and stitched small FOV CBCT measurements were statistically evaluated for linear accuracy. The mean difference between the anatomic linear dimension measurements and the stitched small FOV CBCT measurements was found to be 0.34 mm with a 95% confidence interval of +0.24 - +0.44 mm and a mean standard deviation of 0.30 mm. The difference between the control and the stitched small FOV CBCT measurements was insignificant within the parameters defined by this study. Conclusion The proven accuracy of stitched small FOV CBCT data sets may allow image-guided fabrication of implant surgical stents from such data sets. PMID:25793182

  7. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    NASA Astrophysics Data System (ADS)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  8. Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed

    2014-03-01

    The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.

  9. SADMFR guidelines for the use of Cone-Beam Computed Tomography/ Digital Volume Tomography.

    PubMed

    Dula, Karl; Bornstein, Michael M; Buser, Daniel; Dagassan-Berndt, Dorothea; Ettlin, Dominik A; Filippi, Andreas; Gabioud, François; Katsaros, Christos; Krastl, Gabriel; Lambrecht, J Thomas; Lauber, Roland; Luebbers, Heinz-Theo; Pazera, Pawel; Türp, Jens C

    2014-01-01

    Cone-Beam Computed Tomography (CBCT) has been introduced in 1998. This radiological imaging procedure has been provided for dentistry and is comparable to computed tomography (CT) in medicine. It is expected that CBCT will have the same success in dental diagnostic imaging as computed tomography had in medicine. Just as CT is responsible for a significant rise in radiation dose to the population from medical X-ray diagnostics, CBCT studies will be accompanied by a significant increase of the dose to our patients by dentistry. Because of the growing concern for an uncritical and consequently rapidly increasing use of CBCT the Swiss Society of Dentomaxillofacial Radiology convened a first consensus conference in 2011 to formulate indications for CBCT, which can be used as guidelines. In this meeting, oral and maxillofacial surgery, orthodontics and temporomandibular joint disorders and diseases were treated and the most important and most experienced users of DVT in these areas were asked to participate. In general, a highly restrictive use of CBCT is required. Justifying main criterion for CBCT application is that additional, therapy-relevant information is expected that should lead to a significant benefit in patient care. All users of CBCT should have completed a structured, high-level training, just like that offered by the Swiss Society of Dentomaxillofacial Radiology. PMID:25428284

  10. Evaluation of accuracy of cone beam computed tomography for measurement of periodontal defects: A clinical study

    PubMed Central

    Banodkar, Akshaya Bhupesh; Gaikwad, Rajesh Prabhakar; Gunjikar, Tanay Udayrao; Lobo, Tanya Arthur

    2015-01-01

    Aims: The aim of the present study was to evaluate the accuracy of Cone Beam Computed Tomography (CBCT) measurements of alveolar bone defects caused due to periodontal disease, by comparing it with actual surgical measurements which is the gold standard. Materials and Methods: Hundred periodontal bone defects in fifteen patients suffering from periodontitis and scheduled for flap surgery were included in the study. On the day of surgery prior to anesthesia, CBCT of the quadrant to be operated was taken. After reflection of the flap, clinical measurements of periodontal defect were made using a reamer and digital vernier caliper. The measurements taken during surgery were then compared to the measurements done with CBCT and subjected to statistical analysis using the Pearson's correlation test. Results: Overall there was a very high correlation of 0.988 between the surgical and CBCT measurements. In case of type of defects the correlation was higher in horizontal defects as compared to vertical defects. Conclusions: CBCT is highly accurate in measurement of periodontal defects and proves to be a very useful tool in periodontal diagnosis and treatment assessment. PMID:26229268

  11. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    PubMed Central

    SCHWARTZ, João Paulo; RAVELI, Taísa Boamorte; ALMEIDA, Kélei Cristina de Mathias; SCHWARTZ-FILHO, Humberto Osvaldo; RAVELI, Dirceu Barnabé

    2015-01-01

    Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT). Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years) with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0) and after Herbst treatment (T1). All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%. Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders. Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance. PMID:26537718

  12. Mandibular incisive canal in Han Chinese using cone beam computed tomography.

    PubMed

    Kong, N; Hui, M; Miao, F; Yuan, H; Du, Y; Chen, N

    2016-09-01

    The aim of this study was to provide reference information for implantology and chin bone harvesting in people of Han Chinese ethnicity by studying the mandibular incisive canal (MIC) using cone beam computed tomography (CBCT). Fifty subjects were included in the study. CBCT scans were obtained for all subjects, and 22 also underwent panoramic radiography to evaluate the visibility of the MIC. The CBCT data of the 50 subjects were reconstructed to measure MIC diameter, length, and location within the mandible. A MIC was identified in 38.6% of panoramic radiographs, with good clarity in 13.6%, while a MIC was identified in 100% of CBCT images, with good clarity in 63.6%. The diameter of the MIC decreased from origin to end. The left and right average MIC lengths were 17.84mm and 17.73mm, respectively. The MIC was close to the buccal cortical border and lower margin of the mandible. In conclusion, the MIC is an anatomical structure in the mandible that can be identified reliably with CBCT. On insertion, implants should be inclined slightly towards the lingual aspect of the anterior mandible to protect the MIC. The chin bone harvesting depth should be limited to 4mm; the harvesting site can be adjusted to the region above or below the MIC. PMID:27184354

  13. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  14. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  15. Evaluation of the validity of the Bolton Index using cone-beam computed tomography (CBCT)

    PubMed Central

    Llamas, José M.; Cibrián, Rosa; Gandía, José L.; Paredes, Vanessa

    2012-01-01

    Aims: To evaluate the reliability and reproducibility of calculating the Bolton Index using cone-beam computed tomography (CBCT), and to compare this with measurements obtained using the 2D Digital Method. Material and Methods: Traditional study models were obtained from 50 patients, which were then digitized in order to be able to measure them using the Digital Method. Likewise, CBCTs of those same patients were undertaken using the Dental Picasso Master 3D® and the images obtained were then analysed using the InVivoDental programme. Results: By determining the regression lines for both measurement methods, as well as the difference between both of their values, the two methods are shown to be comparable, despite the fact that the measurements analysed presented statistically significant differences. Conclusions: The three-dimensional models obtained from the CBCT are as accurate and reproducible as the digital models obtained from the plaster study casts for calculating the Bolton Index. The differences existing between both methods were clinically acceptable. Key words:Tooth-size, digital models, bolton index, CBCT. PMID:22549690

  16. Accuracy and reliability of linear measurements using tangential projection and cone beam computed tomography

    PubMed Central

    Sheikhi, Mahnaz; Dakhil-Alian, Mansour; Bahreinian, Zahra

    2015-01-01

    Background: Providing a cross-sectional image is essential for preimplant assessments. Computed tomography (CT) and cone beam CT (CBCT) images are very expensive and provide high radiation dose. Tangential projection is a very simple, available, and low-dose technique that can be used in the anterior portion of mandible. The purpose of this study was to evaluate the accuracy of tangential projection in preimplant measurements in comparison to CBCT. Materials and Methods: Three dry edentulous human mandibles were examined in five points at intercanine region using tangential projection and CBCT. The height and width of the ridge were measured twice by two observers. The mandibles were then cut, and real measurements were obtained. The agreement between real measures and measurements obtained by either technique, and inter- and intra-observer reliability were tested. Results: The measurement error was less than 0.12 for tangential technique and 0.06 for CBCT. The agreement between the real measures and measurements from radiographs were higher than 0.87. Tangential projection slightly overestimated the distances, while there was a slight underestimation in CBCT results. Conclusion: Considering the low cost, low radiation dose, simplicity and availability, tangenital projection would be adequate for preimplant assessment in edentulous patients when limited numbers of implants are required in the anterior mandible. PMID:26005469

  17. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  18. Normal Variations of Sphenoid Sinus and the Adjacent Structures Detected in Cone Beam Computed Tomography

    PubMed Central

    Rahmati, Azadeh; Ghafari, Roshanak; AnjomShoa, Maryam

    2016-01-01

    Statement of the Problem The sphenoid sinus is a common target of paranasal surgery. Functional endoscopic sinus surgery is likely to endanger the anatomic variations of vital structures adjacent to the sphenoid sinus. Purpose The aim of this study was to determine the variations of sphenoid sinus and the related structures by using cone-beam computed tomography (CBCT). Materials and Method In this descriptive-analytic study, CBCT images of 103 patients aged above 20-years were selected (206 sides). Degree of pneumatization of sphenoid sinus, pneumatization of the anterior clinoid process, pterygoid process, protrusion of optic canal, vidian canal, and foramen rotundum, as well as prevalence of sinus septa were recorded. Examinations were performed using On-Demand software (Version 1); data were analyzed by using chi-square test. Results There was a statistically significant correlation between the pterygoid pneumatization and vidian canal protrusion (p< 0.001), and foramen rotundum protrusion (p< 0.001). The optic canal protrusion was found to be significantly associated with the anterior clinoid pneumatization and pterygoid process (p< 0.001). Statistically significant relationship was also observed between the carotid canal protrusion and pterygoid process pneumatization (p< 0.001). Conclusion The anatomical variations of the sphenoid sinus tend to give rise to a complexity of symptoms and potentially serious complications. This variability necessitates a comprehensive understanding of the regional sphenoid sinus anatomy by a detailed CBCT sinus examination. PMID:26966706

  19. How I do it: Cone-beam CT during transarterial chemoembolization for liver cancer.

    PubMed

    Tacher, Vania; Radaelli, Alessandro; Lin, MingDe; Geschwind, Jean-François

    2015-02-01

    Cone-beam computed tomography (CBCT) is an imaging technique that provides computed tomographic (CT) images from a rotational scan acquired with a C-arm equipped with a flat panel detector. Utilizing CBCT images during interventional procedures bridges the gap between the world of diagnostic imaging (typically three-dimensional imaging but performed separately from the procedure) and that of interventional radiology (typically two-dimensional imaging). CBCT is capable of providing more information than standard two-dimensional angiography in localizing and/or visualizing liver tumors ("seeing" the tumor) and targeting tumors though precise microcatheter placement in close proximity to the tumors ("reaching" the tumor). It can also be useful in evaluating treatment success at the time of procedure ("assessing" treatment success). CBCT technology is rapidly evolving along with the development of various contrast material injection protocols and multiphasic CBCT techniques. The purpose of this article is to provide a review of the principles of CBCT imaging, including purpose and clinical evidence of the different techniques, and to introduce a decision-making algorithm as a guide for the routine utilization of CBCT during transarterial chemoembolization of liver cancer. PMID:25625741

  20. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    NASA Astrophysics Data System (ADS)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  1. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  2. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    NASA Astrophysics Data System (ADS)

    Gonzalez, Albin; Bauer, Lisa; Kinney, Vicki; Crooks, Cheryl

    2008-03-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as "Image Guided Radiation Therapy" or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  3. Scatter correction method for cone-beam CT based on interlacing-slit scan

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  4. High-Performance Soft-Tissue Imaging in Extremity Cone-Beam CT

    PubMed Central

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5·106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion The combination of rapid (5–10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging. PMID:25076825

  5. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  6. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    PubMed Central

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons. PMID:23032638

  7. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions

    PubMed Central

    Ganguly, R; Ruprecht, A; Vincent, S; Hellstein, J; Timmons, S; Qian, F

    2011-01-01

    Objectives The aim of this study was to determine the geometric accuracy of cone beam CT (CBCT)-based linear measurements of bone height obtained with the Galileos CBCT (Sirona Dental Systems Inc., Bensheim, Hessen, Germany) in the presence of soft tissues. Methods Six embalmed cadaver heads were imaged with the Galileos CBCT unit subsequent to placement of radiopaque fiduciary markers over the buccal and lingual cortical plates. Electronic linear measurements of bone height were obtained using the Sirona software. Physical measurements were obtained with digital calipers at the same location. This distance was compared on all six specimens bilaterally to determine accuracy of the image measurements. Results The findings showed no statistically significant difference between the imaging and physical measurements (P > 0.05) as determined by a paired sample t-test. The intraclass correlation was used to measure the intrarater reliability of repeated measures and there was no statistically significant difference between measurements performed at the same location (P > 0.05). Conclusions The Galileos CBCT image-based linear measurement between anatomical structures within the mandible in the presence of soft tissues is sufficiently accurate for clinical use. PMID:21697155

  8. CUSTOMISATION OF A MONTE CARLO DOSIMETRY TOOL FOR DENTAL CONE-BEAM CT SYSTEMS.

    PubMed

    Stratis, A; Zhang, G; Lopez-Rendon, X; Jacobs, R; Bogaerts, R; Bosmans, H

    2016-06-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bowtie and non-bowtie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. PMID:26922781

  9. Descriptive study of the bifid mandibular canals and retromolar foramina: cone beam CT vs panoramic radiography

    PubMed Central

    Muinelo-Lorenzo, J; Suárez-Quintanilla, J A; Fernández-Alonso, A; Marsillas-Rascado, S

    2014-01-01

    Objectives: To examine the presence and morphologic characteristics of bifid mandibular canals (BMCs) and retromolar foramens (RFs) using cone beam CT (CBCT) and to determine their visualization on panoramic radiographs (PANs). Methods: A sample of 225 CBCT examinations was analysed for the presence of BMCs, as well as length, height, diameter and angle. The diameter of the RF was also determined. Subsequently, corresponding PANs were analysed to determine whether the BMCs and RFs were visible or not. Results: The BMCs were observed on CBCT in 83 out of the 225 patients (36.8%). With respect to gender, statistically significant differences were found in the number of BMCs. There were also significant differences in anatomical characteristics of the types of BMCs. Only 37.8% of the BMCs and 32.5% of the RFs identified on CBCT were also visible on PANs. The diameter had a significant effect on the capability of PANs to visualize BMCs and RFs (B = 0.791, p = 0.035; B = 1.900, p = 0.017, respectively). Conclusions: PANs are unable to sufficiently identify BMCs and RFs. The diameter of these anatomical landmarks represents a relevant factor for visualization on PANs. Pre-operative images using only PANs may lead to underestimation of the presence of BMCs and to surgical complications and anaesthetic failures, which could have been avoided. For true determination of BMCs, a CBCT device should be considered better than a PAN. PMID:24785820

  10. Developments of metal artifact reduction methods of cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Shih, Kun-Long; Jin, Shih-Chun D.; Chen, Jyh-Cheng

    2014-09-01

    While clinical applications of cone-beam computed tomography (CBCT) have expanded, current CBCT technology has limitations due to the streak artifacts caused by metallic objects. The aim of this work was to develop an efficient and accurate metal data interpolation in sinogram domain to achieve artifact suppression and to improve CT image quality. In this study, we propose three interpolation methods for the metal projection data. Metal objects are segmented in raw data and replacement of the segmented regions by new values is done using three interpolation schemes, (1) replacing the raw data by the simple threshold value (thresholding method), (2) reducing the raw data to half of the value which is over threshold value (modification method), (3) using the inpainting interpolation (inpainting method). Our references are the CBCT images of the phantoms without the metal implants. The performance was evaluated by comparing the differences of root mean square error (RMSE) before and after metal artifact reduction (MAR). All the metal artifacts were reduced effectively. Metal artifacts reduction using method (1) performs the best, which improve the differences of RMSE more than 60%. This study indicates that metal artifacts can be reduced effectively by manipulating metal projection data.

  11. Assessment of Mandibular Distraction Regenerate Using Ultrasonography and Cone Beam Computed Tomography: A Clinical Study.

    PubMed

    Dabas, Jitender; Mohanty, Sujata; Chaudhary, Zainab; Rani, Amita

    2016-03-01

    Distraction osteogenesis (DO) is becoming a popular method of reconstruction for maxillofacial bony deformities or defects secondary to trauma or surgical tumor ablation. However, the technique is very sensitive in terms of the rate and rhythm of distraction. Because of this, there is a need for monitoring of the distraction regenerate during the distraction as well as the consolidation period. The present study was conducted to assess the regenerate using two imaging modalities, namely, ultrasonography (USG) and cone beam computed tomography (CBCT) to determine their relative efficacies and to weigh their clinical usefulness in assessment of DO regenerate. The study was conducted on 12 patients (18 sites) who underwent mandibular distraction for correction of facial deformities. The results showed that overall USG correlated better with the condition of regenerate (r = 0.606) as compared with CBCT (r = 0.476). However, USG was less effective as compared with CBCT in assessing the regenerate once corticomedullary differentiation occurred in the bone. PMID:26889351

  12. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  13. Hardware-accelerated cone-beam reconstruction on a mobile C-arm

    NASA Astrophysics Data System (ADS)

    Churchill, Michael; Pope, Gordon; Penman, Jeffrey; Riabkov, Dmitry; Xue, Xinwei; Cheryauka, Arvi

    2007-03-01

    The three-dimensional image reconstruction process used in interventional CT imaging is computationally demanding. Implementation on general-purpose computational platforms requires a substantial time, which is undesirable during time-critical surgical and minimally invasive procedures. Field Programmable Gate Arrays (FPGA)s and Graphics Processing Units (GPU)s have been studied as a platform to accelerate 3-D imaging. FPGA and GPU devices offer a reprogrammable hardware architecture, configurable for pipelining and high levels of parallel processing to increase computational throughput, as well as the benefits of being off-the-shelf and effective 'performance-to-watt' solutions. The main focus of this paper is on the backprojection step of the image reconstruction process, since it is the most computationally intensive part. Using the popular Feldkamp-Davis-Kress (FDK) cone-beam algorithm, our studies indicate the entire 256 3 image reconstruction process can be accelerated to real or near real-time (i.e. immediately after a finished scan of 15-30 seconds duration) on a mobile X-ray C-arm system using available resources on built-in FPGA board. High resolution 512 3 image backprojection can be also accomplished within the same scanning time on a high-end GPU board comprising up to 128 streaming processors.

  14. Bilateral and pseudobilateral tonsilloliths: Three dimensional imaging with cone-beam computed tomography

    PubMed Central

    Mısırlıoglu, Melda; Nalcaci, Rana; Yardımcı, Selmi

    2013-01-01

    Purpose Tonsilloliths are calcifications found in the crypts of the palatal tonsils and can be detected on routine panoramic examinations. This study was performed to highlight the benefits of cone-beam computed tomography (CBCT) in the diagnosis of tonsilloliths appearing bilaterally on panoramic radiographs. Materials and Methods The sample group consisted of 7 patients who had bilateral radiopaque lesions at the area of the ascending ramus on panoramic radiographs. CBCT images for every patient were obtained from both sides of the jaw to determine the exact locations of the lesions and to rule out other calcifications. The calcifications were evaluated on the CBCT images using Ez3D2009 software. Additionally, the obtained images in DICOM format were transferred to ITK SNAP 2.4.0 pc software for semiautomatic segmentation. Segmentation was performed using contrast differences between the soft tissues and calcifications on grayscale images, and the volume in mm3 of the segmented three dimensional models were obtained. Results CBCT scans revealed that what appeared on panoramic radiographs as bilateral images were in fact unilateral lesions in 2 cases. The total volume of the calcifications ranged from 7.92 to 302.5mm3. The patients with bilaterally multiple and large calcifications were found to be symptomatic. Conclusion The cases provided the evidence that tonsilloliths should be considered in the differential diagnosis of radiopaque masses involving the mandibular ramus, and they highlight the need for a CBCT scan to differentiate pseudo- or ghost images from true bilateral pathologies. PMID:24083209

  15. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients

    PubMed Central

    2012-01-01

    Background Although cone beam computed tomography (CBCT) images of the maxillofacial region allow the inspection of the entire volume of the maxillary sinus (MS), identifying anatomic variations and abnormalities in the image volume, this is frequently neglected by oral radiologists when interpreting images of areas at a distance from the dentoalveolar region, such as the full anatomical aspect of the MS. The aim of this study was to investigate maxillary sinus abnormalities in asymptomatic patients by using CBCT. Methods 1113 CBCT were evaluated by two examiners and identification of abnormalities, the presence of periapical lesions and proximity to the lower sinus wall were recorded. Data were analyzed using descriptive statistics, chi-square tests and Kappa statistics. Results Abnormalities were diagnosed in 68.2% of cases (kappa = 0.83). There was a significant difference between genders (p < 0.001) and there was no difference in age groups. Mucosal thickening was the most prevalent abnormality (66%), followed by retention cysts (10.1%) and opacification (7.8%). No association was observed between the proximity of periapical lesions and the presence and type of inflammatory abnormalities (p = 0.124). Conclusions Abnormalities in maxillary sinus emphasizes how important it is for the dentomaxillofacial radiologist to undertake an interpretation of the whole volume of CBCT images. PMID:22883529

  16. Evaluation of canalis basilaris medianus using cone-beam computed tomography

    PubMed Central

    Zahedpasha, Samir; Rathore, Sonali A.; Mupparapu, Mel

    2016-01-01

    The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications. PMID:27358822

  17. Prevalence and Morphologic Characteristics of Ponticulus Posticus: Analysis Using Cone-Beam Computed Tomography

    PubMed Central

    Sekerci, Ahmet Ercan; Soylu, Emrah; Arikan, Mehtap Payveren; Ozcan, Gozde; Amuk, Mehmet; Kocoglu, Fatma

    2015-01-01

    Objective This study evaluated the prevalence and morphologic characteristics of ponticulus posticus (PP) by using cervical 3-dimensional (3-D) cone-beam computed tomography (CBCT) scan images. Methods This was a retrospective study conducted by selecting cervical 3-D CBCT images of 698 patients, which were examined for the presence and types of PP. Results In 257 patients, 438 PPs, complete or partial, bilateral or unilateral, were identified on the 698 cervical 3-D CBCT scans; therefore, the prevalence was 36.8%. Bilateral complete PP and partial PP were observed in 6.3% and 16.2% of subjects, respectively. There was a significant difference in the prevalence between males and females (P = .001) and between the right and left sides between males and females, but not between age groups. Conclusion Ponticulus posticus is a relatively common anomaly in this Turkish sample, which may have implications for those who perform clinical procedures on the upper cervical spine. PMID:26778928

  18. A review of setup error in supine breast radiotherapy using cone-beam computed tomography.

    PubMed

    Batumalai, Vikneswary; Holloway, Lois; Delaney, Geoff P

    2016-01-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registering CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT. PMID:27311516

  19. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  20. [Motion-compensated compressed sensing four-dimensional cone-beam CT reconstruction].

    PubMed

    Yang, Xuan; Zhang, Hua; He, Ji; Zeng, Dong; Zhang, Xin-Yu; Bian, Zhao-Ying; Zhang, Jing; Ma, Jian-Hua

    2016-06-20

    Restriction by hardware caused the very low projection number at a single phase for 4-dimensional cone beam (4D-CBCT) CT imaging, and reconstruction using conventional reconstruction algorithms is thus constrained by serious streak artifacts and noises. To address this problem, we propose an approach to reconstructing 4D-CBCT images with multi-phase projections based on the assumption that the image at one phase can be viewed as the motion-compensated image at another phase. Specifically, we formulated a cost function using multi-phase projections to construct the fidelity term and the TV regularization method. For fidelity term construction, the projection data of the current phase and those at other phases were jointly used by reformulating the imaging model. The Gradient-Projection-Barzilai-Line search (GPBL) method was used to optimize the complex cost function. Physical phantom and patient data results showed that the proposed approach could effectively reduce the noise and artifacts, and the introduction of additional temporal correlation did not introduce new artifacts or motion blur. PMID:27435778

  1. Evaluation of enamel pearls by cone-beam computed tomography (CBCT)

    PubMed Central

    Akgül, Nilgün; Caglayan, Fatma; Durna, Nurhan; Sümbüllü, Muhammed A.; Akgül, Hayati M.; Durna, Dogan

    2012-01-01

    Objective: The aim of this study was to evaluate the frequency of enamel pearls according to population, sex and tooth groups on Cone-Beam Computed Tomography (CBCT) or Dental Volumetric Tomography (DVT) scans of patients, retrospectively. Study Design: In this study, 15185 teeth belonging to 768 patients, 430 female and 338 male, was performed cross-sectional examination by CBCT. The volumetric Computed Tomography used in the study is Newton FP based on flat-panel. The data were analyzed with Pearson chi-squared test. Results: Enamel pearls were detected in 36 subjects (4.69%). Of these enamel pearls, 19 were detected in male and 17 were in male. There was no statistically a significant association between prevalence of enamel pearls and sex. All of enamel pearls were detected in molar teeth, for prevalence 0.83%. Conclusion: All of enamel pearls are found upper and lower molar teeth, especially the most commonly in maxillary second and third molars. Key words: Enamel pearls, ectopic mineralization, radiography, CBCT, DVT. PMID:22143707

  2. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  3. Rapid maxillary expansion effects: An alternative assessment method by means of cone-beam tomography

    PubMed Central

    Melgaço, Camilo Aquino; Columbano, José; Jurach, Estela Maris; Nojima, Matilde da Cunha Gonçalves; Sant'Anna, Eduardo Franzotti; Nojima, Lincoln Issamu

    2014-01-01

    INTRODUCTION: This study aims to develop a method to assess the changes in palatal and lingual cross-sectional areas in patients submitted to rapid maxillary expansion (RME). METHODS: The sample comprised 31 Class I malocclusion individuals submitted to RME and divided into two groups treated with Haas (17 patients) and Hyrax (14 patients) expanders. Cone-beam computed tomography scans were acquired at T0 (before expansion ) and T1 (six months after screw stabilization). Maxillary and mandibular cross-sectional areas were assessed at first permanent molars and first premolars regions and compared at T0 and T1. Mandibular occlusal area was also analyzed. RESULTS: Maxillary cross-sectional areas increased in 56.18 mm2 and 44.32 mm2 for the posterior and anterior regions. These values were smaller for the mandible, representing augmentation of 40.32 mm2 and 39.91 mm2 for posterior and anterior sections. No differences were found when comparing both expanders. Mandibular occlusal area increased 43.99mm2 and mandibular incisors proclined. Increments of 1.74 mm and 1.7 mm occurred in mandibular intermolar and interpremolar distances. These same distances presented increments of 5.5 mm and 5.57 mm for the maxillary arch. CONCLUSION: Occlusal and cross-sectional areas increased significantly after RME. The method described seems to be reliable and precise to assess intraoral area changes. PMID:25715721

  4. Scatter correction for kilovoltage cone-beam computed tomography (CBCT) images using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jarry, G.; Graham, S. A.; Jaffray, D. A.; Moseley, D. J.; Verhaegen, F.

    2006-03-01

    In this work Monte Carlo (MC) simulations are used to correct kilovoltage (kV) cone-beam computed tomographic (CBCT) projections for scatter radiation. All images were acquired using a kV CBCT bench-top system composed of an x-ray tube, a rotation stage and a flat-panel imager. The EGSnrc MC code was used to model the system. BEAMnrc was used to model the x-ray tube while a modified version of the DOSXYZnrc program was used to transport the particles through various phantoms and score phase space files with identified scattered and primary particles. An analytical program was used to read the phase space files and produce image files. The scatter correction was implemented by subtracting Monte Carlo predicted scatter distribution from measured projection images; these projection images were then reconstructed. Corrected reconstructions showed an important improvement in image quality. Several approaches to reduce the simulation time were tested. To reduce the number of simulated scatter projections, the effect of varying the projection angle on the scatter distribution was evaluated for different geometries. It was found that the scatter distribution does not vary significantly over a 30-degree interval for the geometries tested. It was also established that increasing the size of the voxels in the voxelized phantom does not affect the scatter distribution but reduces the simulation time. Different techniques to smooth the scatter distribution were also investigated.

  5. Assessment of maxillary third molars with panoramic radiography and cone-beam computed tomography

    PubMed Central

    Jung, Yun-Hoa

    2015-01-01

    Purpose This study investigated maxillary third molars and their relation to the maxillary sinus using panoramic radiography and cone-beam computed tomography (CBCT). Materials and Methods A total of 395 maxillary third molars in 234 patients were examined using panoramic radiographs and CBCT images. We examined the eruption level of the maxillary third molars, the available retromolar space, the angulation, the relationship to the second molars, the number of roots, and the relationship between the roots and the sinus. Results Females had a higher frequency of maxillary third molars with occlusal planes apical to the cervical line of the second molar (Level C) than males. All third molars with insufficient retromolar space were Level C. The most common angulation was vertical, followed by buccoangular. Almost all of the Level C molars were in contact with the roots of the second molar. Erupted teeth most commonly had three roots, and completely impacted teeth most commonly had one root. The superimposition of one third of the root and the sinus floor was most commonly associated with the sinus floor being located on the buccal side of the root. Conclusion Eruption levels were differently distributed according to gender. A statistically significant association was found between the eruption level and the available retromolar space. When panoramic radiographs showed a superimposition of the roots and the sinus floor, expansion of the sinus to the buccal side of the root was generally observed in CBCT images. PMID:26730371

  6. Digital panoramic radiography versus cone beam computed tomography in the delineation of maxillomandibular tumors.

    PubMed

    Almeida-Barros, Renata Quirino de; Abilio, Vanessa Maria Freire; Yamamoto, Angela Toshie Araki; Melo, Daniela Pita de; Godoy, Gustavo Pina; Bento, Patricia Meira

    2015-01-01

    This research aimed to compare the efficacy of digital panoramic radiography (DPR) with that of cone beam computed tomography (CBCT) for delineation of odontogenic and nonodontogenic tumors. From November 2009 through March 2011, 23 tumors in the maxillomandibular complex were diagnosed by histopathological examination. All DPRs and CBCTs were obtained and analyzed by a single previously calibrated radiologist, who considered the following radiographic aspects: clarity of the lesion edges, relation with dental elements, involvement of adjacent anatomical structures, cortical bone expansion and disruption, and, if present, type of involved anatomical structures and site of bone expansion and disruption. Of 23 patients, 15 (65.2%) were male and 8 (34.8%) were female. The tumor was classified as odontogenic in 73.9% of patients and nonodontogenic in 26.1% of patients. Analysis revealed that 56.5% of the tumors were located in the mandible, 34.8% in the maxilla, and 8.7% in both arches. For all analyzed variables, CBCTs offered more accurate details than did DPRs. Panoramic radiography should not be the examination of choice to visualize lesions in the maxillomandibular complex. PMID:26545285

  7. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  8. Can cone beam CT predict the hardness of interradicular cortical bone?

    PubMed Central

    2014-01-01

    Objectives Orthodontic mini implants can be inserted at the interradicular site. The bone quality at this site may affect the stability and anchorage of the implant. Bone density is clinically evaluated by Hounsfield units (HU) obtained from cone beam CT (CBCT). The objective of this study was to determine the correlations between HU, microhardness and cortical bone thickness of interradicular site at various segments (anterior/posterior) and aspects (buccal/lingual) of both jaws in a swine model. Materials and methods Eight mandible and maxilla swine bones were scanned by CBCT. The HU and thickness of the above-mentioned sites were determined. Then, a Knoop microhardness test was applied and the Knoop Hardness Number was obtained (KHN). Results The mandible parameters spread over a wider range than the maxilla. The buccal aspect of the maxilla had higher HU and KHN values than the mandible. The lingual aspect of the mandible had higher KHN values than the maxilla. Posterior segments had higher HU and KHN values. The thickness of the alveolar cortical bone was greater in the maxilla than in the mandible. Correlations were found between HU and KHN for 3 of the 4 sites (anterior or posterior, buccal or lingual) of the mandible only. No correlations were found for the maxilla. Upon pooling the HU and KHN data for the whole jaw, correlation was found for the maxilla as well. Conclusions Relying on HU values as a predictor of cortical bone hardness should be considered with caution. PMID:24735746

  9. Variability of dental cone beam CT grey values for density estimations

    PubMed Central

    Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K

    2013-01-01

    Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm−3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537

  10. Metal artefact reduction with cone beam CT: an in vitro study

    PubMed Central

    Bechara, BB; Moore, WS; McMahan, CA; Noujeim, M

    2012-01-01

    Background Metal in a patient's mouth has been shown to cause artefacts that can interfere with the diagnostic quality of cone beam CT. Recently, a manufacturer has made an algorithm and software available which reduces metal streak artefact (Picasso Master 3D® machine; Vatech, Hwaseong, Republic of Korea). Objectives The purpose of this investigation was to determine whether or not the metal artefact reduction algorithm was effective and enhanced the contrast-to-noise ratio. Methods A phantom was constructed incorporating three metallic beads and three epoxy resin-based bone substitutes to simulate bone next to metal. The phantom was placed in the centre of the field of view and at the periphery. 10 data sets were acquired at 50–90 kVp. The images obtained were analysed using a public domain software ImageJ (NIH Image, Bethesda, MD). Profile lines were used to evaluate grey level changes and area histograms were used to evaluate contrast. The contrast-to-noise ratio was calculated. Results The metal artefact reduction option reduced grey value variation and increased the contrast-to-noise ratio. The grey value varied least when the phantom was in the middle of the volume and the metal artefact reduction was activated. The image quality improved as the peak kilovoltage increased. Conclusion Better images of a phantom were obtained when the metal artefact reduction algorithm was used. PMID:22241878

  11. Analysis of Interfraction Prostate Motion Using Megavoltage Cone Beam Computed Tomography

    SciTech Connect

    Bylund, Kevin C. Bayouth, John E.; Smith, Mark C.; Hass, A. Curtis; Bhatia, Sudershan K.; Buatti, John M..

    2008-11-01

    Purpose: Determine the degree of interfraction prostate motion and its components measured by using daily megavoltage (MV) cone beam computed tomography (CBCT) imaging. Methods and Materials: A total of 984 daily MV CBCT images from 24 patients undergoing definitive intensity-modulated radiotherapy for localized prostate cancer were analyzed retrospectively. Pretreatment couch shifts, based on physician registration of MV CBCT to planning CT data sets, were used as a measure of daily interfraction motion. Off-line bony registration was performed to separate bony misalignment from internal organ motion. Interobserver and intraobserver variation studies were performed on 20 MV CBCT images. Results: Mean interfraction prostate motion was 6.7 mm, with the greatest single-axis deviation in the anterior-posterior (AP) direction. The largest positional inaccuracy was accounted for by systematic deviations in bony misalignment, whereas random deviations occurred from bony misalignment and internal prostate motion. In the aggregate, AP motion did not correlate with days elapsed since beginning therapy or on average with rectal size at treatment planning. Interobserver variation was greatest in the AP direction, decreased in experienced observers, and further decreased in intraobserver studies. Mean interfraction motion during the first 6 days of therapy, when used as a subsequent offset, reduced acceptable AP planning target volume margins by 50%. Conclusion: The MV CBCT is a practical direct method of daily localization that shows significant interfraction motion with respect to conventional three-dimensional conformal and intensity-modulated radiotherapy margins, similar to that measured in other modalities.

  12. Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.

    PubMed

    Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott

    2016-09-01

    Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education. PMID:26905076

  13. Building motion models of lung tumours from cone-beam CT for radiotherapy applications.

    PubMed

    Martin, James; McClelland, Jamie; Yip, Connie; Thomas, Christopher; Hartill, Clare; Ahmad, Shahreen; O'Brien, Richard; Meir, Ivan; Landau, David; Hawkes, David

    2013-03-21

    A method is presented to build a surrogate-driven motion model of a lung tumour from a cone-beam CT scan, which does not require markers. By monitoring an external surrogate in real time, it is envisaged that the motion model be used to drive gated or tracked treatments. The motion model would be built immediately before each fraction of treatment and can account for inter-fraction variation. The method could also provide a better assessment of tumour shape and motion prior to delivery of each fraction of stereotactic ablative radiotherapy. The two-step method involves enhancing the tumour region in the projections, and then fitting the surrogate-driven motion model. On simulated data, the mean absolute error was reduced to 1 mm. For patient data, errors were determined by comparing estimated and clinically identified tumour positions in the projections, scaled to mm at the isocentre. Averaged over all used scans, the mean absolute error was under 2.5 mm in superior-inferior and transverse directions. PMID:23442367

  14. A cone beam computed tomography inspection method for fuel rod cladding tubes

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Tan, Renbo; Wang, Qianli; Deng, Jingshan; Liu, Ming

    2012-10-01

    Fuel rods in nuclear power plants consist of UO2 pellets enclosed in Zirconium alloy (Zircaloy) cladding tube, which is composed of a body and a plug. The body is manufactured separately from the plug and, before its use, the plug is welded with the body. It is vitally important for the welding zone to remain free from defects after the fuel pellets are loaded into the cladding tube to prevent the radioactive fission products from leaking. X-ray computed tomography (CT) is in principle a feasible inspection method for the welding zone, but it faces several challenges due to the high attenuation of Zircaloy. In this paper, a cone beam CT method is proposed to address these issues and perform the welding flaw inspection. A Zircaloy compensator is adopted to narrow the signal range, a structure-based background removal technique to reveal the defects, a linear extension technique to determine the reference X-ray intensity signal and FDK algorithm to reconstruct the slice images. A prototype system, based on X-ray tube source and flat panel detector, has been developed and the experiments in this system have demonstrated that the welding void and the incomplete joint penetrations could be detected by this method. This approach may find applications in the quality control of nuclear fuel rods.

  15. 3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation

    PubMed Central

    Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin

    2014-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400

  16. Temporomandibular joint osteoarthritis: cone beam computed tomography findings, clinical features, and correlations.

    PubMed

    Cömert Kiliç, S; Kiliç, N; Sümbüllü, M A

    2015-10-01

    The aim of this study was to determine the prevalence of and associations between clinical signs and symptoms and cone beam computed tomography (CBCT) findings of temporomandibular joint osteoarthritis (TMJ-OA). Seventy-six patients (total 117 TMJ) with osteoarthritis were included in this study. Clinical signs and symptoms and CBCT findings were reviewed retrospectively. A considerable decrease in mandibular motions and mastication efficiency, and considerable increase in joint sounds and general pain complaints were observed. The most frequent condylar bony changes were erosion (110 joints, 94.0%), followed by flattening (108 joints, 92.3%), osteophytes (93 joints, 79.5%), hypoplasia (22 joints, 18.8%), sclerosis (14 joints, 12.0%), and subchondral cyst (four joints, 3.4%). Flattening of the articular eminence and pneumatization were each observed in five joints. Forty-one patients had bilateral degeneration and 35 had unilateral degeneration. Hypermobility was detected in 47 degenerative joints. Masticatory efficiency was negatively correlated with both condylar flattening and sclerosis, and general pain complaints was positively correlated with condylar flattening. Condylar erosion, flattening, osteophytes, pain, joint sounds, reduced jaw movements, and worsened mastication were common findings in TMJ-OA in the present study. Poor correlations were found between osseous changes and clinical signs and symptoms of TMJ-OA. CBCT is a powerful diagnostic tool for the diagnosis of TMJ-OA. PMID:26194774

  17. Accuracy of digital periapical radiography and cone-beam computed tomography in detecting external root resorption

    PubMed Central

    Geha, Hassem; Sankar, Vidya; Teixeira, Fabricio B.; McMahan, Clyde Alex; Noujeim, Marcel

    2015-01-01

    Purpose The purpose of this study was to evaluate and compare the efficacy of cone-beam computed tomography (CBCT) and digital intraoral radiography in diagnosing simulated small external root resorption cavities. Materials and Methods Cavities were drilled in 159 roots using a small spherical bur at different root levels and on all surfaces. The teeth were imaged both with intraoral digital radiography using image plates and with CBCT. Two sets of intraoral images were acquired per tooth: orthogonal (PA) which was the conventional periapical radiograph and mesioangulated (SET). Four readers were asked to rate their confidence level in detecting and locating the lesions. Receiver operating characteristic (ROC) analysis was performed to assess the accuracy of each modality in detecting the presence of lesions, the affected surface, and the affected level. Analysis of variation was used to compare the results and kappa analysis was used to evaluate interobserver agreement. Results A significant difference in the area under the ROC curves was found among the three modalities (P=0.0002), with CBCT (0.81) having a significantly higher value than PA (0.71) or SET (0.71). PA was slightly more accurate than SET, but the difference was not statistically significant. CBCT was also superior in locating the affected surface and level. Conclusion CBCT has already proven its superiority in detecting multiple dental conditions, and this study shows it to likewise be superior in detecting and locating incipient external root resorption. PMID:26389057

  18. The evaluation of palatal bone thickness for implant insertion with cone beam computed tomography.

    PubMed

    Sumer, A P; Caliskan, A; Uzun, C; Karoz, T B; Sumer, M; Cankaya, S

    2016-02-01

    The palate is an alternative anchoring site for orthodontic implants and screws. The use of osseointegrated implants in the intermaxillary suture has recently been described as a fast, effective, and low-cost technique for patients with atrophy of the maxillae. The aim of this study was to use cone beam computed tomography (CBCT) to evaluate the thickness of the bone surrounding the intermaxillary suture in relation to the insertion of osseointegrated implants. CBCT images of 144 patients (72 males, 72 females) aged 35-86 years were evaluated. The vertical bone height of the intermaxillary suture was measured using coronal and sagittal Images 5, 10, 15, 20, and 25 mm posterior to the incisive foramen. The mean bone thicknesses from the anterior to the posterior region were 5.59, 4.38, 3.91, 3.95, and 3.94 mm, respectively. Bone thickness was significantly different among the five anteroposterior areas of the suture, but there were no significant differences between males and females, or among age groups. The highest part of the intermaxillary suture was in the anterior region. Three-dimensional imaging is recommended to accurately identify palate bone thickness for implant placement. PMID:26458537

  19. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    SciTech Connect

    Gonzalez, Albin; Kinney, Vicki; Crooks, Cheryl; Bauer, Lisa

    2008-03-13

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as 'Image Guided Radiation Therapy' or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house.

  20. SADMFR Guidelines for the Use of Cone-Beam Computed Tomography/Digital Volume Tomography.

    PubMed

    Dula, Karl; Benic, Goran I; Bornstein, Michael; Dagassan-Berndt, Dorothea; Filippi, Andreas; Hicklin, Stefan; Kissling-Jeger, Franziska; Luebbers, Heinz-Theo; Sculean, Anton; Sequeira-Byron, Patrick; Walter, Clemens; Zehnder, Matthias

    2015-01-01

    In 2011, the first consensus conference on guidelines for the use of cone-beam computed tomography (CBCT) was convened by the Swiss Society of Dentomaxillofacial Radiology (SGDMFR). This conference covered topics of oral and maxillofacial surgery, temporomandibular joint dysfunctions and disorders, and orthodontics. In 2014, a second consensus conference was convened on guidelines for the use of CBCT in endodontics, periodontology, reconstructive dentistry and pediatric dentistry. The guidelines are intended for all dentists in order to facilitate the decision as to when the use of CBCT is justified. As a rule, the use of CBCT is considered restrictive, since radiation protection reasons do not allow its routine use. CBCT should therefore be reserved for complex cases where its application can be expected to provide further information that is relevant to the choice of therapy. In periodontology, sufficient information is usually available from clinical examination and periapical radiographs; in endodontics alternative methods can often be used instead of CBCT; and for implant patients undergoing reconstructive dentistry, CT is of interest for the workflow from implant planning to the superstructure. For pediatric dentistry no application of CBCT is seen for caries diagnosis. PMID:26399521

  1. Management of Oehler's Type III Dens Invaginatus Using Cone Beam Computed Tomography.

    PubMed

    Ranganathan, Jaya; Rangarajan Sundaresan, Mohan Kumar; Ramasamy, Srinivasan

    2016-01-01

    Dens Invaginatus is a dental malformation that poses diagnostic difficulties in the clinical context. This anomaly may increase the risk of pulp disease and can potentially complicate endodontic procedure due to the aberrant root canal anatomy. Compared to conventional radiographs, three-dimensional images obtained with Cone Beam Computed Tomography (CBCT) are invaluable in the diagnosis of the extent of this anomaly and in the appropriate treatment planning. Oehler's classification (1957) for Dens Invaginatus (DI) into three types depending on the depth of the invagination has been used for treatment planning. Of the three types Type III DI is characterized by infolding of the enamel into the tooth up to the root apex and is considered as the most severe variant of DI and hence the most challenging to treat endodontically, due to the morphological complexities. This report describes a case of Oehler's Type III DI in a necrotic permanent maxillary lateral incisor in which CBCT images played a key role in diagnosis and treatment planning. The case was managed successfully by a combination of nonsurgical and surgical endodontic therapy with orthograde and retrograde thermoplastic gutta percha obturation. PMID:27069697

  2. Diagnostic Accuracy of Cone-Beam Computed Tomography and Periapical Radiography in Internal Root Resorption

    PubMed Central

    Madani, Zahrasadat; Moudi, Ehsan; Bijani, Ali; Mahmoudi, Elham

    2016-01-01

    Introduction: The aim of this study was to compare the diagnostic value of cone-beam computed tomography (CBCT) and periapical (PA) radiography in detecting internal root resorption. Methods and Materials: Eighty single rooted human teeth with visible pulps in PA radiography were split mesiodistally along the coronal plane. Internal resorption like lesions were created in three areas (cervical, middle and apical) in labial wall of the canals in different diameters. PA radiography and CBCT images were taken from each tooth. Two observers examined the radiographs and CBCT images to evaluate the presence of resorption cavities. The data were statistically analyzed and degree of agreement was calculated using Cohen’s kappa (k) values. Results: The mean±SD of agreement coefficient of kappa between the two observers of the CBCT images was calculated to be 0.681±0.047. The coefficients for the direct, mesial and distal PA radiography were 0.405±0.059, 0.421±0.060 and 0.432±0.056, respectively (P=0.001). The differences in the diagnostic accuracy of resorption of different sizes were statistically significant (P<0.05); however, the PA radiography and CBCT, had no statistically significant differences in detection of internal resorption lesions in the cervical, middle and apical regions. Conclusion: Though, CBCT has a higher sensitivity, specificity, positive predictive value and negative predictive value in comparison with conventional radiography, this difference was not significant. PMID:26843878

  3. Cone-beam computed tomography as a surgical guide to impacted anterior teeth

    PubMed Central

    Jeremias, Fabiano; Fragelli, Camila Maria Bullio; Mastrantonio, Simone Di Salvo; dos Santos-Pinto, Lourdes; dos Santos-Pinto, Ary; Pansani, Cyneu Aguiar

    2016-01-01

    Surgical procedure for removal of impacted teeth is a challenge for clinicians as it involves accuracy in the diagnosis and localization of the dental elements. The cone-beam computed tomography (CBCT), compared to the conventional radiography, has a greater potential to provide complementary information because of its three-dimensional (3D) images, reducing the possibility of failures in surgical procedures. Two 10-year-old boys presented with aesthetic issues associated with the juxtaposition of ectopic teeth with the permanent ones. Both two-dimensional and 3D preoperative radiographic diagnostic sets were produced. The occlusal and panoramic radiographs were not enough for proper localization of impacted incisors. Thus, the CBCT was used as a surgical guide. After 2 years of longitudinal following, no lesion was recorded, and the orthodontic treatment has proven successful. In all cases, CBCT contributed to both diagnosis and correct localization of supernumerary teeth, aiding the professional in the treatment planning, and consequently in the clinical success. The surgeries were completely safe, avoiding damage in noble structures, and providing a better recovering of the patients. PMID:26962322

  4. Automatic extraction of mandibular nerve and bone from cone-beam CT data.

    PubMed

    Kainmueller, Dagmar; Lamecker, Hans; Seim, Heiko; Zinser, Max; Zachow, Stefan

    2009-01-01

    The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm. PMID:20426098

  5. Validation of cone-beam computed tomography as a predictor of osteoporosis using the Klemetti classification.

    PubMed

    Alonso, Maria Beatriz Carrazzone Cal; Vasconcelos, Taruska Ventorini; Lopes, Luciana Jácome; Watanabe, Plauto Christopher Aranha; Freitas, Deborah Queiroz

    2016-05-31

    This study aimed at evaluating the validity of cone-beam computed tomography (CBCT) for assessing mandibular bone quality using the Klemetti classification. The morphology of the endosteal mandibular cortex of 30 (60 hemi-mandibles) postmenopausal women between the ages of 45 and 80 years was evaluated based on the Klemetti classification in panoramic radiographs used as reference images. Afterwards, panoramic reconstruction and cross-sectional slices of CBCT examinations of these patients were analyzed and categorized according to the same classification. All the images were assessed by two oral radiologists. The McNemar-Bowker test compared the agreement between the CBCT images and the reference images. No differences were found between the diagnostic results based on panoramic radiography and panoramic reconstruction. However, the mean scores for the cross-sectional evaluation were higher, and the results, statistically different from the others. Based on the disagreement found between the panoramic radiographs and the CBCT cross-sectional slices, the Klemetti classification is not an adequate means of assessing bone quality with CBCT. On the other hand, the higher values found for the cross-sectional slices could be associated with better visibility on the CBCT images. PMID:27253142

  6. Cone-beam computed tomography as a surgical guide to impacted anterior teeth.

    PubMed

    Jeremias, Fabiano; Fragelli, Camila Maria Bullio; Mastrantonio, Simone Di Salvo; Dos Santos-Pinto, Lourdes; Dos Santos-Pinto, Ary; Pansani, Cyneu Aguiar

    2016-01-01

    Surgical procedure for removal of impacted teeth is a challenge for clinicians as it involves accuracy in the diagnosis and localization of the dental elements. The cone-beam computed tomography (CBCT), compared to the conventional radiography, has a greater potential to provide complementary information because of its three-dimensional (3D) images, reducing the possibility of failures in surgical procedures. Two 10-year-old boys presented with aesthetic issues associated with the juxtaposition of ectopic teeth with the permanent ones. Both two-dimensional and 3D preoperative radiographic diagnostic sets were produced. The occlusal and panoramic radiographs were not enough for proper localization of impacted incisors. Thus, the CBCT was used as a surgical guide. After 2 years of longitudinal following, no lesion was recorded, and the orthodontic treatment has proven successful. In all cases, CBCT contributed to both diagnosis and correct localization of supernumerary teeth, aiding the professional in the treatment planning, and consequently in the clinical success. The surgeries were completely safe, avoiding damage in noble structures, and providing a better recovering of the patients. PMID:26962322

  7. Selective doxorubicin drug eluting beads chemoembolization of hypovascular hepatocellular carcinoma using cone beam computed tomography.

    PubMed

    Kalra, Naveen; Mahajan, Divyesh; Chawla, Yogesh; Khandelwal, N

    2012-10-01

    Hepatocellular carcinoma (HCC) of the liver is the third most common cause of cancer-related deaths in the world. Only one-third of patients with HCC are suitable candidates for hepatic resection. Transarterial chemoembolization (TACE) is performed in unresectable HCC. Drug-eluting beads (DEB) TACE is a modification of TACE, in which doxorubicin beads are used as embolizing material. These beads deliver the drug and embolize the vessels; however, it carries the risk of non-target embolization and it is difficult in cases with absent arterial blush on digital subtraction angiography (DSA). This is resolved using C-arm cone-beam computed tomography in the DSA suite. It identifies the tumor-feeding vessels, their area of supply, and differentiates between tumor and normal liver parenchyma. In addition, it is very useful in the embolization of hypovascular HCC. It helps and guides the radiologist in performing TACE effectively and also prevents non-target embolization of normal liver parenchyma. PMID:23833414

  8. Three-dimensional maxillary and mandibular regional superimposition using cone beam computed tomography: a validation study.

    PubMed

    Koerich, L; Burns, D; Weissheimer, A; Claus, J D P

    2016-05-01

    This study aimed to validate a novel method for fast regional superimposition of cone beam computed tomography (CBCT) scans. The method can be used with smaller field of view scans, thereby allowing for a lower radiation dose. This retrospective study used two dry skulls and secondary data from 15 patients who had more than one scan taken using the same machine. Two observers tested two types of regional voxel-based superimposition: maxillary and mandibular. The registration took 10-15s. Three-dimensional surface models of the maxillas and mandibles were generated via standardized threshold segmentation, and the accuracy and reproducibility of the superimpositions were assessed using the iterative closest point technique to measure the root mean square (RMS) distance between the images. Five areas were measured and a RMS≤0.25 was considered successful. Descriptive statistics and the intra-class correlation coefficient (ICC) were used to compare the intra-observer measurement reproducibility. The ICC was ≥0.980 for all of the variables and the highest RMS found was 0.241. The inter-observer reproducibility was assessed case by case and was perfect (RMS 0) for 68% (23 out of 34) of the superimpositions done and not clinically significant (RMS≤0.25) for the other 32%. The method is fast, accurate, and reproducible and is an alternative to cranial base superimposition. PMID:26794399

  9. Cone-beam computed tomography evaluation of Pont's index predictability for Malay population in orthodontics

    PubMed Central

    Alam, Mohammad Khursheed; Shahid, Fazal; Purmal, Kathiravan; Khamis, Mohd Fadhli

    2015-01-01

    Introduction: In orthodontic treatment, three-dimensional (3D) dental casts has a significant role in diagnosis and treatment planning. The aim of this study was to evaluate Pont's index predictability in orthodontics. Materials and Methods: Premolar arch width, molar arch width and mesiodistal width of the maxillary incisors were measured three-dimensionally to assess shape of dental arches. The data source was cone beam computed tomography (CBCT) high volumetric data acquisitions from Malay ethnic background. Arch widths were measured and recorded from 53 subjects (32 male and 21 female with the mean age, 25.81), both the maxillary and mandibular arches, to obtain CBCT high volumetric data. All measurements were obtained through CBCT Planmeca Romexis TM Software 2.3.1.R (Helsinki, Finland). Results: Pont's formula overestimated the upper and lower interpremolar distance, with mean differences of 8.35 ± 3 mm and 12.02 ± 3.20 mm, respectively. Furthermore, the formula overestimated the upper and lower intermolar distance, with mean differences of 7.87 ± 3 mm and 16.14 ± 5.86 mm, respectively. Conclusions: The results indicate that Pont's index is not practical for use with the Malaysian population since the index overestimated interpremolar and intermolar widths. This raises questions whether the index is a true predictor of arch width measurements. PMID:26604597

  10. Management of Oehler's Type III Dens Invaginatus Using Cone Beam Computed Tomography

    PubMed Central

    Ranganathan, Jaya; Rangarajan Sundaresan, Mohan Kumar; Ramasamy, Srinivasan

    2016-01-01

    Dens Invaginatus is a dental malformation that poses diagnostic difficulties in the clinical context. This anomaly may increase the risk of pulp disease and can potentially complicate endodontic procedure due to the aberrant root canal anatomy. Compared to conventional radiographs, three-dimensional images obtained with Cone Beam Computed Tomography (CBCT) are invaluable in the diagnosis of the extent of this anomaly and in the appropriate treatment planning. Oehler's classification (1957) for Dens Invaginatus (DI) into three types depending on the depth of the invagination has been used for treatment planning. Of the three types Type III DI is characterized by infolding of the enamel into the tooth up to the root apex and is considered as the most severe variant of DI and hence the most challenging to treat endodontically, due to the morphological complexities. This report describes a case of Oehler's Type III DI in a necrotic permanent maxillary lateral incisor in which CBCT images played a key role in diagnosis and treatment planning. The case was managed successfully by a combination of nonsurgical and surgical endodontic therapy with orthograde and retrograde thermoplastic gutta percha obturation. PMID:27069697

  11. Implementation of a cone-beam backprojection algorithm on the cell broadband engine processor

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Knaup, Michael; Kachelrieß, Marc

    2007-03-01

    Tomographic image reconstruction is computationally very demanding. In all cases the backprojection represents the performance bottleneck due to the high operational count and due to the high demand put on the memory subsystem. In the past, solving this problem has lead to the implementation of specific architectures, connecting Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) to memory through dedicated high speed busses. More recently, there have also been attempt to use Graphic Processing Units (GPUs) to perform the backprojection step. Originally aimed at the gaming market, IBM, Toshiba and Sony have introduced the Cell Broadband Engine (CBE) processor, often considered as a multicomputer on a chip. Clocked at 3 GHz, the Cell allows for a theoretical performance of 192 GFlops and a peak data transfer rate over the internal bus of 200 GB/s. This performance indeed makes the Cell a very attractive architecture for implementing tomographic image reconstruction algorithms. In this study, we investigate the relative performance of a perspective backprojection algorithm when implemented on a standard PC and on the Cell processor. We compare these results to the performance achievable with FPGAs based boards and high end GPUs. The cone-beam backprojection performance was assessed by backprojecting a full circle scan of 512 projections of 1024x1024 pixels into a volume of size 512x512x512 voxels. It took 3.2 minutes on the PC (single CPU) and is as fast as 13.6 seconds on the Cell.

  12. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    NASA Astrophysics Data System (ADS)

    Marchant, T. E.; Amer, A. M.; Moore, C. J.

    2008-02-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient.

  13. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  14. Deriving Hounsfield units using grey levels in cone beam computed tomography

    PubMed Central

    Mah, P; Reeves, T E; McDavid, W D

    2010-01-01

    Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181

  15. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  16. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    PubMed Central

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  17. The current status of cone beam computed tomography imaging in orthodontics

    PubMed Central

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations. PMID:21159912

  18. Configuration of the inferior alveolar canal as detected by cone beam computed tomography

    PubMed Central

    Nair, Umadevi P; Yazdi, Mehran H; Nayar, Gautam M; Parry, Heath; Katkar, Rujuta A; Nair, Madhu K

    2013-01-01

    Aims: The aim of this study is to evaluate the course of the inferior alveolar canal (IAC) including its frequently seen variations in relation to root apices and the cortices of the mandible at fixed pre-determined anatomic reference points using cone beam volumetric computed tomography (CBVCT). Material and Methods: This retrospective study utilized CBVCT images from 44 patients to obtain quantifiable data to localize the IAC. Measurements to the IAC were made from the buccal and lingual cortical plates (BCP/LCP), inferior border of the mandible and the root apices of the mandibular posterior teeth and canine. Descriptive analysis was used to map out the course of the IAC. Results: IACs were noted to course superiorly toward the root apices from the second molar to the first premolar and closer to the buccal cortical plate anteriorly. The canal was closest to the LCP at the level of the second molar. In 32.95% of the cases, the canal was seen at the level of the canine. Conclusions: This study indicates that caution needs to be exercised during endodontic surgical procedures in the mandible even at the level of the canine. CBVCT seems to provide an optimal, low-dose, 3D imaging modality to help address the complexities in canal configuration. PMID:24347885

  19. Detection of vertical root fracture using cone beam computed tomography: report of two cases.

    PubMed

    Tang, Lu; Zhou, Xue-dong; Wang, Yao; Zhang, Lan; Zheng, Qing-hua; Huang, Ding-ming

    2011-12-01

    Vertical root fractures (VRFs) often occur in endodontically treated teeth and in patients older than 40 years of age. However, VRFs in teeth without endodontic treatment are relatively uncommon. VRFs are difficult to diagnose as the symptoms are non-specific or often delayed. The most common radiographic findings are thickening of the periodontal ligament, deep, localized, vertical bone loss, and localized periradicular bone loss. The explicit feature for detecting VRFs is direct visualization of a radiolucent fracture line on radiographs. However, the fracture line can be difficult to directly visualize in conventional diagnostic methods such as periapical radiographs. If unrecognized, VRFs can lead to frustration and inappropriate endodontic treatment. The two cases reported here demonstrate that the use of cone beam computed tomography (CBCT) successfully diagnoses VRFs on teeth without representative clinical and periapical radiographic findings. The clear fracture line can be discerned from the images of CBCT. Thus, CBCT imaging is useful in rapid diagnosis of VRFs and designing of further treatment. PMID:21752189

  20. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics

    PubMed Central

    Knutsson, K; Flygare, L

    2014-01-01

    Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with current European guidelines. The CBCT examinations were performed using similar equipment and standardized among clinics. After a thorough clinical examination, but before CBCT, the examiner made a preliminary therapy plan which was recorded. After the CBCT examination, the same examiner made a new therapy plan. Therapy plans both before and after the CBCT examination were plotted for 53 patients and 81 teeth. As four patients had incomplete protocols, they were not included in the final analysis. Results: 4% of the patients referred to endodontic clinics during the study period were examined with CBCT. The most frequent reason for referral to CBCT examination was to differentiate pathology from normal anatomy, this was the case in 24 patients (45% of the cases). The primary outcome was therapy plan changes that could be attributed to CBCT examination. There were changes in 28 patients (53%). Conclusions: CBCT has a significant impact on therapeutic decision efficacy in endodontics when used in concordance with the current European Commission guidelines. PMID:24766060

  1. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan.

    PubMed

    Hassan, Bassam; Metska, Maria Elissavet; Ozok, Ahmet Rifat; van der Stelt, Paul; Wesselink, Paul Rudolf

    2009-05-01

    Our aim was to compare the accuracy of cone beam computed tomography (CBCT) scans and periapical radiographs (PRs) in detecting vertical root fractures (VRFs) and to assess the influence of root canal filling (RCF) on fracture visibility. Eighty teeth were endodontically prepared and divided into four groups. The teeth in groups A and B were artificially fractured, and teeth in groups C and D were not. Groups A and C were root filled. Four observers evaluated the CBCT scans and PR images. Sensitivity and specificity for VRF detection of CBCT were 79.4% and 92.5% and for PR were 37.1% and 95%, respectively. The specificity of CBCT was reduced (p = 0.032) by the presence of RCF, but its overall accuracy was not influenced (p = 0.654). Both the sensitivity (p = 0.006) and overall accuracy (p = 0.008) of PRs were reduced by the presence of RCF. The results showed an overall higher accuracy for CBCT (0.86) scans than PRs (0.66) for detecting VRF. PMID:19410091

  2. Influence of scan setting selections on root canal visibility with cone beam CT

    PubMed Central

    Hassan, BA; Payam, J; Juyanda, B; van der Stelt, P; Wesselink, PR

    2012-01-01

    Objectives The aim of this study was to assess the influence of scan setting selection, including field of view (FOV) ranging from small to large, number of projections and scan modes on the visibility of the root canal with cone beam CT (CBCT). Methods One human mandible cadaver was scanned with CBCT (Accuitomo 170; J Morita MPG Corp., Kyoto, Japan) using six different FOVs (4×4 cm, 6×6 cm, 8×8 cm, 10×10 cm, 14×10 cm and 17×12 cm) with either 360 or 180 projections in standard and high resolution. The right canine was selected for evaluation. Ten observers independently assessed the visibility of the canal space and overall image quality on a five-point scale. Results The results indicate that both selections of FOV and number of projections have significant influence on root canal visibility (p = 0.0001), whereas scan mode, whether standard or high resolution, was less relevant (p = 0.34). Conclusions The smallest FOV available should always be used for endodontic applications, and it is not recommended to reduce the number of projections to 180. Using the standard scan mode instead of high resolution does not negatively influence the visibility of the root canal space and is therefore recommended. PMID:23166361

  3. Evaluation of canalis basilaris medianus using cone-beam computed tomography.

    PubMed

    Syed, Ali Z; Zahedpasha, Samir; Rathore, Sonali A; Mupparapu, Mel

    2016-06-01

    The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications. PMID:27358822

  4. Validation of a Monte Carlo simulation for dose assessment in dental cone beam CT examinations.

    PubMed

    Morant, J J; Salvadó, M; Casanovas, R; Hernández-Girón, I; Velasco, E; Calzado, A

    2012-07-01

    A Monte Carlo (MC) simulation for calculating absorbed dose has been developed and applied for dental applications with an i-CAT cone beam CT (CBCT) system. To validate the method a comparison was made between calculated and measured dose values for two different clinical protocols. Measurements with a pencil CT chamber were performed free-in-air and in a CT dose head phantom; measurements were also performed with a transmission ionization chamber. In addition for each protocol a total number of 58 thermoluminescence dosemeters (TLD) were packed in groups and placed at 16 representative anatomical locations of an anthropomorphic phantom (Remab system) to assess absorbed doses. To simulate X-ray exposure, a software application based on the EGS4 package was applied. Dose quantities were calculated for different voxelized models representing the CT ionization and transmission chambers, the TLDs, and the phantoms as well. The dose quantities evaluated in the comparison were the accumulated dose averaged along the rotation axis (D(i)), the volume average dose,D(vol) for the dosimetric phantom, the dose area product (DAP) and the absorbed dose for the TLDs. Absolute differences between measured and simulated outcomes were ≤ 2.1% for free-in-air doses; ≤ 6.2% in the 5 cavities of the CT dose head phantom; ≤ 13% for TLDs inside the primary beam. Such differences were considered acceptable in all cases and confirmed the validity of the MC program for different geometries. In conclusion, the devised MC simulation program can be a robust tool to optimize protocols and estimate patient doses for CBCT units in dental, oral and maxillofacial radiology. PMID:21807542

  5. Bone mineral density in cone beam computed tomography: Only a few shades of gray

    PubMed Central

    Campos, Marcio José da Silva; de Souza, Thainara Salgueiro; Mota Júnior, Sergio Luiz; Fraga, Marcelo Reis; Vitral, Robert Willer Farinazzo

    2014-01-01

    Cone beam computed tomography (CBCT) has often been used to determine the quality of craniofacial bone structures through the determination of mineral density, which is based on gray scales of the images obtained. However, there is no consensus regarding the accuracy of the determination of the gray scales in these exams. This study aims to provide a literature review concerning the reliability of CBCT to determine bone mineral density. The gray values obtained with CBCT show a linear relationship with the attenuation coefficients of the materials, Hounsfield Units values obtained with medical computed tomography, and density values from dual energy X-ray absorciometry. However, errors are expected when CBCT images are used to define the quality of the scanned structures because these images show inconsistencies and arbitrariness in the gray values, particularly when related to abrupt change in the density of the object, X-ray beam hardening effect, scattered radiation, projection data discontinuity-related effect, differences between CBCT devices, changes in the volume of the field of view (FOV), and changes in the relationships of size and position between the FOV and the object evaluated. A few methods of mathematical correction of the gray scales in CBCT have been proposed; however, they do not generate consistent values that are independent of the devices and their configurations or of the scanned objects. Thus, CBCT should not be considered the examination of choice for the determination of bone and soft tissue mineral density at the current stage, particularly when values obtained are to be compared to predetermined standard values. Comparisons between symmetrically positioned structures inside the FOV and in relation to the exomass of the object, as it occurs with the right and left sides of the skull, seem to be viable because the effects on the gray scale in the regions of interest are the same. PMID:25170398

  6. Radiation Dose From Kilovoltage Cone Beam Computed Tomography in an Image-Guided Radiotherapy Procedure

    SciTech Connect

    Ding, George X. Coffey, Charles W.

    2009-02-01

    Purpose: Image-guided radiation therapy has emerged as the new paradigm in radiotherapy. This work is to provide detailed information concerning the additional imaging doses to patients' radiosensitive organs from a kilovoltage cone beam computed tomography (kV CBCT) scan procedure. Methods and Materials: The Vanderbilt-Monte-Carlo-Beam-Calibration (VMCBC; Vanderbilt University, Nashville, TN) algorithm was used to calculate radiation dose to organs resulting from a kV CBCT imaging guidance procedure. Eight patients, including 3 pediatric and 5 adult patients, were investigated. The CBCT scans in both full- and half-fan modes were studied. Results: For a head-and-neck scan in half-fan mode, dose-volume histogram analyses show mean doses of 7 and 8 cGy to the eyes, 5 and 6 cGy to the spinal cord, 5 and 6 cGy to the brain, and 18 and 23 cGy to the cervical vertebrae for an adult and a 29-month-old child, respectively. The dose from a scan in full-fan mode is 10-20% lower than that in half-fan mode. For an abdominal scan, mean doses are 3 and 7 cGy to prostate and 7 and 17 cGy to femoral heads for a large adult patient and a 31-month-old pediatric patient, respectively. Conclusions: Doses to radiosensitive organs can total 300 cGy accrued over an entire treatment course if kV CBCT scans are acquired daily. These findings provide needed data for clinicians to make informed decisions concerning additional imaging doses. The dose to bone is two to four times greater than dose to soft tissue for kV x-rays, which should be considered, especially for pediatric patients.

  7. The influence of bowtie filtration on x-ray photons distribution in cone beam CT

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Feng, Peng; Wei, Biao; He, Peng; Deng, Luzhen; Zhang, Wei

    2015-10-01

    Bowtie filters are used to modulate an incoming x-ray beam as a function of the angle of the x-ray to balance the photon flux on a detector array. Because of their key roles in radiation dose reduction and multi-energy imaging, bowtie filters have attracted a major attention in modern X-ray computed tomography (CT). However, few researches are concerned on the effects of the structure and materials for the bowtie filter in the Cone Beam CT (CBCT). In this study, the influence of bowtie filters' structure and materials on X-ray photons distribution are analyzed using Monte Carlo (MC) simulations by MCNP5 code. In the current model, the phantom was radiated by virtual X-ray source (its' energy spectrum calculated by SpekCalc program) filtered using bowtie, then all photons were collected through array photoncounting detectors. In the process above, two bowtie filters' parameters which include center thickness (B), edge thickness (controlled by A), changed respectively. Two kinds of situation are simulated: 1) A=0.036, B=1, 2, 3, 4, 5, 6mm and the material is aluminum; 2) A=0.016, 0.036, 0.056, 0.076, 0.096, B=2mm and the material is aluminum. All the X-ray photons' distribution are measured through MCNP. The results show that reduction in center thickness and edge thickness can reduce the number of background photons in CBCT. Our preliminary research shows that structure parameters of bowtie filter can influence X-ray photons, furthermore, radiation dose distribution, which provide some evidences in design of bowtie filter for reducing radiation dose in CBCT.

  8. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  9. Radiation Dose From Cone Beam Computed Tomography for Image-Guided Radiation Therapy

    SciTech Connect

    Kan, Monica W.K. Leung, Lucullus H.T.; Wong, Wicger; Lam, Nelson

    2008-01-01

    Purpose: To perform a comprehensive study on organ absorbed doses and effective doses from cone beam computed tomography (CBCT) for three different treatment sites. Methods and Materials: An extensive set of dosimetric measurements were performed using a widely used CBCT system, the On-Board Imager (OBI). Measurements were performed using a female anthropomorphic phantom with thermoluminescent dosimeters (TLD). The effective doses to the body and the absorbed doses to 26 organs were reported using two different technical settings, namely, the standard mode and the low-dose mode. The measurements were repeated for three different scan sites: head and neck, chest, and pelvis. Comparisons of patient doses as well as image quality were performed among the standard mode CBCT, low-dose mode CBCT, and fan beam CT. Results: The mean skin doses from standard mode CBCT to head and neck, chest and pelvis were 6.7, 6.4, and 5.4 cGy per scan, respectively. The effective doses to the body from standard mode CBCT for imaging of head and neck, chest, and pelvis were 10.3, 23.7, and 22.7 mSv per scan, respectively. Patient doses from low-dose mode CBCT were approximately one fifth of those from standard mode CBCT. Conclusions: Patient position verification by standard mode CBCT acquired by OBI on a daily basis could increase the secondary cancer risk by up to 2% to 4%. Therefore lower mAs settings for daily CBCT should be considered, especially when bony anatomy is the main interest.

  10. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography

    PubMed Central

    Yang, Ching-Ching

    2016-01-01

    Purpose Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Methods Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Results Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Conclusions Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice. PMID:26950435

  11. Measurement-based scatter correction for cone-beam CT in radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Xing, Lei

    2009-02-01

    Cone-beam CT (CBCT) is being increasingly used in modern radiation therapy. However, as compared to conventional CT, the degraded image quality of CBCT hampers its applications in radiation therapy. Due to the large volume of x-ray illumination, scatter is considered as one of the fundamental limitations of CBCT image quality. Many scatter correction algorithms have been proposed in the literature, while drawbacks still exist. In this work, we propose a correction algorithm which is particularly useful in radiation therapy. Since the same patient is scanned repetitively during one radiation treatment course, we measure the scatter distribution in one scan, and use the measured scatter distribution to estimate and correct scatter in the following scans. A partially blocked CBCT is used in the scatter measurement scan. The x-ray beam blocker has a strip pattern, such that the whole-field scatter distribution can be estimated from the detected signals in the shadow region and the patient rigid transformation can be determined from the reconstructed image using the illuminated detector projection data. From the derived patient transformation, the measured scatter is then modified accordingly and used for scatter correction in the following regular CBCT scans. The proposed method has been evaluated using Monte Carlo simulations and physical experiments on an anthropomorphic chest phantom. The results show a significant suppression of scatter artifacts using the proposed method. Using the reconstruction in a narrow collimator geometry as a reference, the comparison also shows that the proposed method reduces reconstruction error from 13.2% to 3.8%. The proposed method is attractive in applications where a high CBCT image quality is critical, for example, dose calculation in adaptive radiation therapy.

  12. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Yidong; Armour, Michael; Kang-Hsin Wang, Ken; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  13. Robust primary modulation-based scatter estimation for cone-beam CT

    SciTech Connect

    Ritschl, Ludwig; Fahrig, Rebecca; Knaup, Michael; Maier, Joscha; Kachelrieß, Marc

    2015-01-15

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.

  14. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively

  15. The development and role of megavoltage cone beam computerized tomography in radiation oncology

    NASA Astrophysics Data System (ADS)

    Morin, Olivier

    External beam radiation therapy has now the ability to deliver doses that conform tightly to a tumor volume. The steep dose gradients planned in these treatments make it increasingly important to reproduce the patient position and anatomy at each treatment fraction. For this reason, considerable research now focuses on in-room three-dimensional imaging. This thesis describes the first clinical megavoltage cone beam computed tomography (MVCBCT) system, which utilizes a conventional linear accelerator equipped with an amorphous silicon flat panel detector. The document covers the system development and investigation of its clinical applications over the last 4-5 years. The physical performance of the system was evaluated and optimized for soft-tissue contrast resolution leading to recommendations of imaging protocols to use for specific clinical applications and body sites. MVCBCT images can resolve differences of 5% in electron density for a mean dose of 9 cGy. Hence, the image quality of this system is sufficient to differentiate some soft-tissue structures. The absolute positioning accuracy with MVCBCT is better than 1 mm. The accuracy of isodose lines calculated using MVCBCT images of head and neck patients is within 3% and 3 mm. The system shows excellent stability in image quality, CT# calibration, radiation exposure and absolute positioning over a period of 8 months. A procedure for MVCBCT quality assurance was developed. In our clinic, MVCBCT has been used to detect non rigid spinal cord distortions, to position a patient with a paraspinous tumor close to metallic hardware, to position prostate cancer patients using gold markers or soft-tissue landmarks, to monitor head and neck anatomical changes and their dosimetric consequences, and to complement the convention CT for treatment planning in presence of metallic implants. MVCBCT imaging is changing the clinical practice of our department by increasingly revealing patient-specific errors. New verification

  16. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  17. Identification and Endodontic Management of Middle Mesial Canal in Mandibular Second Molar Using Cone Beam Computed Tomography.

    PubMed

    Paul, Bonny; Dube, Kavita

    2015-01-01

    Endodontic treatments are routinely done with the help of radiographs. However, radiographs represent only a two-dimensional image of an object. Failure to identify aberrant anatomy can lead to endodontic failure. This case report presents the use of three-dimensional imaging with cone beam computed tomography (CBCT) as an adjunct to digital radiography in identification and management of mandibular second molar with three mesial canals. PMID:26664763

  18. Identification and Endodontic Management of Middle Mesial Canal in Mandibular Second Molar Using Cone Beam Computed Tomography

    PubMed Central

    Paul, Bonny; Dube, Kavita

    2015-01-01

    Endodontic treatments are routinely done with the help of radiographs. However, radiographs represent only a two-dimensional image of an object. Failure to identify aberrant anatomy can lead to endodontic failure. This case report presents the use of three-dimensional imaging with cone beam computed tomography (CBCT) as an adjunct to digital radiography in identification and management of mandibular second molar with three mesial canals. PMID:26664763

  19. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    PubMed Central

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2009-01-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level. PMID:19381355

  20. Assessment of the Airway Characteristics in Children with Cleft Lip and Palate using Cone Beam Computed Tomography

    PubMed Central

    Marwah, Nikhil

    2016-01-01

    ABSTRACT Objective: The aim of our study is to use cone beam computed tomography (CBCT) to assess the dimensional changes in the nasopharyngeal soft-tissue characteristics in children of Indian origin with repaired cleft lip and palate (CLP) and to compare the results with patients with ideal occlusion. Materials and methods: A sample of 20 children (10 girls, 10 boys) with repaired CLP was selected. Cone beam computed tomography scans were taken to measure the nasopharyngeal airway changes in terms of linear measurements and sagittal cross-sectional areas. Error analysis was performed to prevent systematic or random errors. Independent means t-tests and Pearson correlation analysis were used to evaluate sex differences and the correlations among the variables. Results: Nasopharyngeal soft-tissue characteristics were different in the control and the study groups. Subjects with repaired CLP had lesser lower aerial width, lower adenoidal width and lower airway width. The upper airway width was also significantly lesser. The retropalatal and the total airway area were significantly greater in the control group. Conclusion: The narrow pharyngeal airway in patients with CLP might result in functional impairment of breathing in patients. Further investigations are necessary to clarify the relationship between pharyngeal structure and airway function in patients with CLP. How to cite this article: Agarwal A, Marwah N. Assessment of the Airway Characteristics in Children with Cleft Lip and Palate using Cone Beam Computed Tomography. Int J Clin Pediatr Dent 2016;9(1):5-9. PMID:27274147

  1. Evaluation of the potential of automatic segmentation of the mandibular canal using cone-beam computed tomography.

    PubMed

    Gerlach, Nicolaas Lucius; Meijer, Gerrit Jacobus; Kroon, Dirk-Jan; Bronkhorst, Ewald Maria; Bergé, Stefaan Jozef; Maal, Thomas Jan Jaap

    2014-11-01

    We aimed to investigate the effectiveness of software for automatically tracing the mandibular canal on data from cone-beam computed tomography (CT). After the data had been collected from one dentate and one edentate fresh cadaver head, both a trained Active Shape Model (ASM) and an Active Appearance Model (AAM) were used to automatically segment the canals from the mandibular to the mental foramen. Semiautomatic segmentation was also evaluated by providing the models with manual annotations of the foramina. To find out if the tracings were in accordance with the actual anatomy, we compared the position of the automatic mandibular canal segmentations, as displayed on cross-sectional cone-beam CT views, with histological sections of exactly the same region. The significance of differences between results were analysed with the help of Fisher's exact test and Pearson's correlation coefficient. When tracings based on AAM and ASM were used, differences between cone-beam CT and histological measurements varied up to 3.45mm and 4.44mm, respectively. Manual marking of the mandibular and mental foramina did not improve the results, and there were no significant differences (p=0.097) among the methods. The accuracy of automatic segmentation of the mandibular canal by the AAM and ASM methods is inadequate for use in clinical practice. PMID:25156043

  2. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  3. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  4. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    PubMed Central

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water. PMID:26133613

  5. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging.

    PubMed

    Deman, P; Atwal, P; Duzenli, C; Thakur, Y; Ford, N L

    2014-06-21

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom. PMID:24862349

  6. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    NASA Astrophysics Data System (ADS)

    Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.

    2014-06-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.

  7. Commissioning experience with cone-beam computed tomography for image-guided radiation therapy.

    PubMed

    Lehmann, Joerg; Perks, Julian; Semon, Sheldon; Harse, Rick; Purdy, James A

    2007-01-01

    This paper reports on the commissioning of an Elekta cone-beam computed tomography (CT) system at one of the first U.S. sites to install a "regular," off-the-shelf Elekta Synergy (Elekta, Stockholm, Sweden) accelerator system. We present the quality assurance (QA) procedure as a guide for other users. The commissioning had six elements: (1) system safety, (2) geometric accuracy (agreement of megavoltage and kilovoltage beam isocenters), (3) image quality, (4) registration and correction accuracy, (5) dose to patient and dosimetric stability, and (6) QA procedures. The system passed the safety tests, and agreement of the isocenters was found to be within 1 mm. Using a precisely moved skull phantom, the reconstruction and alignment algorithm was found to be accurate within 1 mm and 1 degree in each dimension. Of 12 measurement points spanning a 9x9x15-cm volume in a Rando phantom (The Phantom Laboratory, Salem, NY), the average agreement in the x, y, and z coordinates was 0.10 mm, -0.12 mm, and 0.22 mm [standard deviations (SDs): 0.21 mm, 0.55 mm, 0.21 mm; largest deviations: 0.6 mm, 1.0 mm, 0.5 mm] respectively. The larger deviation for the y component can be partly attributed to the CT slice thickness of 1 mm in that direction. Dose to the patient depends on the machine settings and patient geometry. To monitor dose consistency, air kerma (output) and half-value layer (beam quality) are measured for a typical clinical setting. Air kerma was 6.3 cGy (120 kVp, 40 mA, 40 ms per frame, 360-degree scan, S20 field of view); half value layer was 7.1 mm aluminum (120 kV, 40 mA). We suggest performing items 1, 2, and 3 monthly, and 4 and 5 annually. In addition, we devised a daily QA procedure to verify agreement of the megavoltage and kilovoltage isocenters using a simple phantom containing three small steel balls. The frequency of all checks will be reevaluated based on data collected during about 1 year. PMID:17712297

  8. High-fidelity artifact correction for cone-beam CT imaging of the brain

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  9. Low-Dose Megavoltage Cone-Beam CT imaging using Thick, Segmented Scintillators

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-01-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the DQE performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and BGO crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy – a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast-to-noise ratio are presented as a function

  10. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-03-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi4Ge3O12 (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast

  11. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    NASA Astrophysics Data System (ADS)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  12. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    PubMed

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature. PMID:21934193

  13. Issues for Bringing Electron Beam Irradiators On-Line

    SciTech Connect

    Kaye, R.J.; Turman, B.N.

    1999-04-20

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  14. Evaluation of Positioning Accuracy of Four Different Immobilizations Using Cone-Beam CT in Radiotherapy of Non-Small-Cell Lung Cancer

    SciTech Connect

    Wang Jin; Zhong Renming; Bai Sen; Lu You; Xu Qingfeng; Zhou Xiaojuan; Xu Feng

    2010-07-15

    Purpose: To evaluate the positioning accuracy of four different immobilizations by use of cone-beam computed tomography guidance for radiotherapy of non-small-cell lung cancer (NSCLC). Methods and Materials: Sixty-seven patients with NSCLC received conventional or stereotactic body radiotherapy. Of these, 30 were immobilized with a thermoplastic frame (TF), 16 with a thermoplastic frame and active breathing control (TF-ABC), 7 with a stereotactic body frame (SBF), and 14 with a stereotactic body frame and active breathing control (SBF-ABC). Cone-beam computed tomography scans at initial setup and after correction were registered to planning computed tomography. The positional errors in the left-to-right, superior-inferior, and anterior-posterior directions were analyzed. The planning target volume margins were calculated. Results: The precorrection systematic and random errors ranged from 1.9 to 4.2 mm for TF, 1.9 to 4.3 mm for SBF, 1.2 to 5.8 mm for TF-ABC, and 2.3 to 3.9 mm for SBF-ABC. The postcorrection systematic and random errors ranged from 0.3 to 1.9 mm for the four immobilizations. The planning target volume margins (conventional vs. stereotactic body radiotherapy) were 15.6 vs. 13.9 mm (TF), 14.9 vs. 14.8 mm (TF-ABC), 14.4 vs. 13.4 mm (SBF), and 9.9 vs. 9.4 mm (SBF-ABC) before correction and 7.3 vs. 6.9 mm (TF), 4.0 vs. 3.8 mm (TF-ABC), 7.5 vs. 7.1 mm (SBF), and 4.5 vs. 4.2 mm (SBF-ABC) after correction. Conclusions: The positioning accuracies of SBF and TF were similar. Active breathing control increased positioning error but reduced internal margin. Cone-beam computed tomography online correction improved the positioning accuracy of NSCLC patients.

  15. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    PubMed Central

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2011-01-01

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d′) for tasks ranging in contrast and frequency content, and d′ was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M ∼ 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of ∼65–90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results—e.g., ∼0.1–0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to ∼0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for 1

  16. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    SciTech Connect

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for

  17. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    NASA Astrophysics Data System (ADS)

    Stsepankou, D.; Arns, A.; Ng, S. K.; Zygmanski, P.; Hesser, J.

    2012-10-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system.

  18. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization.

    PubMed

    Stsepankou, D; Arns, A; Ng, S K; Zygmanski, P; Hesser, J

    2012-10-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system. PMID:22964760

  19. SU-E-T-416: VMAT Dose Calculations Using Cone Beam CT Images: A Preliminary Study

    SciTech Connect

    Yu, S; Sehgal, V; Kuo, J; Daroui, P; Ramsinghani, N; Al-Ghazi, M

    2014-06-01

    Purpose: Cone beam CT (CBCT) images have been used routinely for patient positioning throughout the treatment course. However, use of CBCT for dose calculation is still investigational. The purpose of this study is to assess the utility of CBCT images for Volumetric Modulated Arc Therapy (VMAT) plan dose calculation. Methods: A CATPHAN 504 phantom (The Phantom Laboratory, Salem, NY) was used to compare the dosimetric and geometric accuracy between conventional CT and CBCT (in both full and half fan modes). Hounsfield units (HU) profiles at different density areas were evaluated. A C shape target that surrounds a central avoidance structure was created and a VMAT plan was generated on the CT images and copied to the CBCT phantom images. Patient studies included three brain patients, and one head and neck (H'N) patient. VMAT plans generated on the patients treatment planning CT was applied to CBCT images obtained during the first treatment. Isodose distributions and dosevolume- histograms (DVHs) were compared. Results: For the phantom study, the HU difference between CT and CBCT is within 100 (maximum 96 HU for Teflon CBCT images in full fan mode). The impact of these differences on the calculated dose distributions was clinically insignificant. In both phantom and patient studies, target DVHs based on CBCT images were in excellent agreement with those based on planning CT images. Mean, Median, near minimum (D98%), and near maximum (D2%) doses agreed within 0-2.5%. A slightly larger discrepancy is observed in the patient studies compared to that seen in the phantom study, (0-1% vs. 0 - 2.5%). Conclusion: CBCT images can be used to accurately predict dosimetric results, without any HU correction. It is feasible to use CBCT to evaluate the actual dose delivered at each fraction. The dosimetric consequences resulting from tumor response and patient geometry changes could be monitored.

  20. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    SciTech Connect

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  1. WE-G-18A-05: Cone-Beam CT Reconstruction with Deformed Prior Image

    SciTech Connect

    Zhang, H; Huang, J; Ma, J; Chen, W; Ouyang, L; Wang, J

    2014-06-15

    Purpose: Prior image can be incorporated into image reconstruction process to improve the quality of on-treatment cone-beam CT (CBCT) from sparseview or low-dose projections. However, the deformation between the prior image and on-treatment CBCT are not considered in current prior image based reconstructions (e.g., prior image constrained compressed sensing (PICCS)). The purpose of this work is to develop a deformed-prior-imagebased- reconstruction strategy (DPIR) to address the mismatch problem between the prior image and target image. Methods: The deformed prior image is obtained by a projection based registration approach. Specifically, the deformation vector fields (DVF) used to deform the prior image is estimated through matching the forward projection of the prior image and the measured on-treatment projection. The deformed prior image is then used as the prior image in the standard PICCS algorithm. Simulation studies on the XCAT phantom was conducted to evaluate the performance of the projection based registration procedure and the proposed DPIR strategy. Results: The deformed prior image matches the geometry of on-treatment CBCT closer as compared to the original prior image. Using the deformed prior image, the quality of the image reconstructed by DPIR from few-view projection data is greatly improved as compared to the standard PICCS algorithm. The relative image reconstruction error is reduced to 11.13% in the proposed DPIR from 17.57% in the original PICCS. Conclusion: The proposed DPIR approach can solve the mismatch problem between the prior image and target image, which overcomes the limitation of the original PICCS algorithm for CBCT reconstruction from sparse-view or low-dose projections.

  2. Few-view cone-beam CT reconstruction with deformed prior image

    SciTech Connect

    Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Chen, Wufan

    2014-12-15

    Purpose: Prior images can be incorporated into the image reconstruction process to improve the quality of subsequent cone-beam CT (CBCT) images from sparse-view or low-dose projections. The purpose of this work is to develop a deformed prior image-based reconstruction (DPIR) strategy to mitigate the deformation between the prior image and the target image. Methods: The deformed prior image is obtained by a projection-based registration approach. Specifically, the deformation vector fields used to deform the prior image are estimated through iteratively matching the forward projection of the deformed prior image and the measured on-treatment projections. The deformed prior image is then used as the prior image in the standard prior image constrained compressed sensing (PICCS) algorithm. A simulation study on an XCAT phantom and a clinical study on a head-and-neck cancer patient were conducted to evaluate the performance of the proposed DPIR strategy. Results: The deformed prior image matches the geometry of the on-treatment CBCT more closely as compared to the original prior image. Consequently, the performance of the DPIR strategy from few-view projections is improved in comparison to the standard PICCS algorithm, based on both visual inspection and quantitative measures. In the XCAT phantom study using 20 projections, the average root mean squared error is reduced from 14% in PICCS to 10% in DPIR, and the average universal quality index increases from 0.88 in PICCS to 0.92 in DPIR. Conclusions: The present DPIR approach provides a practical solution to the mismatch problem between the prior image and target image, which improves the performance of the original PICCS algorithm for CBCT reconstruction from few-view or low-dose projections.

  3. Ex vivo comparison of Galileos cone beam CT and intraoral radiographs in detecting occlusal caries

    PubMed Central

    Rathore, S; Tyndall, D; Wright, JT; Everett, E

    2012-01-01

    Objective The aim of this study was to compare the accuracy of cone beam CT (CBCT) with intraoral radiographs for detection of occlusal caries. Methods A set of 60 extracted teeth were imaged using a Sirona Galileos CBCT system (Sirona Dental Systems, Bensheim, Germany) and an intraoral Planmeca® system (Planmeca OY, Helsinki, Finland). Six observers looked at both modalities and used a five-point confidence scale to evaluate presence or absence of occlusal caries. Histology was used as the gold standard. Receiver operating characteristic analysis and weighted kappa statistics were used for statistical analysis. Differences in the area under the curve (AUC) values between observers and modalities were analysed using analysis of variance (ANOVA). Differences in sensitivity and specificity were analysed using the Wilcoxon test. Interobserver and intraobserver reliability was assessed by weighted kappa scores. Results The mean value and standard deviation of AUC was 0.719 ± 0.038 for CBCT and 0.649 ± 0.062 for the intraoral radiographs. The ANOVA results demonstrated that there was no significant difference between the modalities and the observers. The interobserver kappa for pairs of observers ranged from fair to substantial for bitewings (0.244–0.543) and CBCT (0.152–0.401). Four out of six observers reported higher sensitivity but lower specificity with CBCT. The Wilcoxon exact p-value showed no difference in sensitivity (0.175) or specificity (0.573) between the two modalities. Conclusion Based on the results we conclude that the Sirona CBCT unit cannot be used for the sole purpose of looking at occlusal caries. PMID:22184471

  4. Effect of Field of View on Detection of Condyle Bone Defects Using Cone Beam Computed Tomography.

    PubMed

    Salemi, Fatemeh; Shokri, Abbas; Maleki, Fatemeh Hafez; Farhadian, Maryam; Dashti, Gholamreza; Ostovarrad, Farzane; Ranjzad, Hadi

    2016-05-01

    In maxillofacial imaging, cone beam computed tomography (CBCT) is currently the modality of choice for assessment of bony structures of the temporomandibular joint (TMJ). Factors affecting the quality of CBCT images can change its diagnostic accuracy. This study aimed to assess the effect of field of view (FOV) and defect size on the accuracy of CBCT scans for detection of bone defects of the TMJs. This study was conducted on 12 sound TMJs of 6 human dry skulls. Erosions and osteophytes were artificially induced in 0.5, 1, and 1.5-mm sizes on the anterior-superior part of the condyle; CBCT scans were obtained with 6, 9, and 12-inch FOVs by NewTom 3G CBCT system. Two maxillofacial radiologists evaluated the presence/absence and type of defects on CBCT scans. The Cohen kappa was calculated to assess intra- and interobserver reliability. The Mann-Whitney U test was applied to compare the diagnostic accuracy of different FOVs.In comparison of 6- and 12-inch, 9- and 12-inch FOVs in detection of different sizes of erosive lesions, difference was significant (P <0.05), whereas difference between 6- and 9 inch just in 0.5-mm erosive lesion was significant (P = 0.04). In comparison of 6- and 12-inch FOVs in detection of different sizes of osteophyte lesion, difference was significant (P < 0.05), whereas between 6- and 9-inch FOVs statistically significant difference was not observed (P > 0.05). The highest and the lowest diagnostic accuracy of CBCT scans for condyle defects were obtained with 6-inch and 12-inch FOVs, respectively. Diagnostic accuracy of CBCT scans increased with an increase in size of bone defects. PMID:27092920

  5. Effective dose of cone beam CT (CBCT) of the facial skeleton: a systematic review

    PubMed Central

    Al-Okshi, A; Salé, H; Gunnarsson, M; Rohlin, M

    2015-01-01

    Objective: To estimate effective dose of cone beam CT (CBCT) of the facial skeleton with focus on measurement methods and scanning protocols. Methods: A systematic review, which adhered to the preferred reporting items for systematic reviews (PRISMA) Statement, of the literature up to April 2014 was conducted. Data sources included MEDLINE®, The Cochrane Library and Web of Science. A model was developed to underpin data extraction from 38 included studies. Results: Technical specifications of the CBCT units were insufficiently described. Heterogeneity in measurement methods and scanning protocols between studies made comparisons of effective doses of different CBCT units and scanning protocols difficult. Few studies related doses to image quality. Reported effective dose varied across studies, ranging between 9.7 and 197.0 μSv for field of views (FOVs) with height ≤5 cm, between 3.9 and 674.0 μSv for FOVs of heights 5.1–10.0 cm and between 8.8 and 1073.0 μSv for FOVs >10 cm. There was an inconsistency regarding reported effective dose of studies of the same CBCT unit with the same FOV dimensions. Conclusion: The review reveals a need for studies on radiation dosages related to image quality. Reporting quality of future studies has to be improved to facilitate comparison of effective doses obtained from examinations with different CBCT units and scanning protocols. A model with minimum data set on important parameters based on this observation is proposed. Advances in knowledge: Data important when estimating effective dose were insufficiently reported in most studies. A model with minimum data based on this observation is proposed. Few studies related effective dose to image quality. PMID:25486387

  6. Conversion coefficients for the estimation of effective dose in cone-beam CT

    PubMed Central

    Kim, Dong-Soo; Rashsuren, Oyuntugs

    2014-01-01

    Purpose To determine the conversion coefficients (CCs) from the dose-area product (DAP) value to effective dose in cone-beam CT. Materials and Methods A CBCT scanner with four fields of view (FOV) was used. Using two exposure settings of the adult standard and low dose exposure, DAP values were measured with a DAP meter in C mode (200mm×179 mm), P mode (154 mm×154 mm), I mode (102 mm×102 mm), and D mode (51 mm×51 mm). The effective doses were also investigated at each mode using an adult male head and neck phantom and thermoluminescent chips. Linear regressive analysis of the DAP and effective dose values was used to calculate the CCs for each CBCT examination. Results For the C mode, the P mode at the maxilla, and the P mode at the mandible, the CCs were 0.049 µSv/mGycm2, 0.067 µSv/mGycm2, and 0.064 µSv/mGycm2, respectively. For the I mode, the CCs at the maxilla and mandible were 0.076 µSv/mGycm2 and 0.095 µSv/mGycm2, respectively. For the D mode at the maxillary incisors, molars, and mandibular molars, the CCs were 0.038 µSv/mGycm2, 0.041 µSv/mGycm2, and 0.146 µSv/mGycm2, respectively. Conclusion The CCs in one CBCT device with fixed 80 kV ranged from 0.038 µSv/mGycm2 to 0.146 µSv/mGycm2 according to the imaging modes and irradiated region and were highest for the D mode at the mandibular molar. PMID:24701455

  7. Prostate Localization on Daily Cone-Beam Computed Tomography Images: Accuracy Assessment of Similarity Metrics

    SciTech Connect

    Kim, Jinkoo; Hammoud, Rabih; Pradhan, Deepak; Zhong Hualiang; Jin, Ryan Y.; Movsas, Benjamin; Chetty, Indrin J.

    2010-07-15

    Purpose: To evaluate different similarity metrics (SM) using natural calcifications and observation-based measures to determine the most accurate prostate and seminal vesicle localization on daily cone-beam CT (CBCT) images. Methods and Materials: CBCT images of 29 patients were retrospectively analyzed; 14 patients with prostate calcifications (calcification data set) and 15 patients without calcifications (no-calcification data set). Three groups of test registrations were performed. Test 1: 70 CT/CBCT pairs from calcification dataset were registered using 17 SMs (6,580 registrations) and compared using the calcification mismatch error as an endpoint. Test 2: Using the four best SMs from Test 1, 75 CT/CBCT pairs in the no-calcification data set were registered (300 registrations). Accuracy of contour overlays was ranked visually. Test 3: For the best SM from Tests 1 and 2, accuracy was estimated using 356 CT/CBCT registrations. Additionally, target expansion margins were investigated for generating registration regions of interest. Results: Test 1-Incremental sign correlation (ISC), gradient correlation (GC), gradient difference (GD), and normalized cross correlation (NCC) showed the smallest errors ({mu} {+-} {sigma}: 1.6 {+-} 0.9 {approx} 2.9 {+-} 2.1 mm). Test 2-Two of the three reviewers ranked GC higher. Test 3-Using GC, 96% of registrations showed <3-mm error when calcifications were filtered. Errors were left/right: 0.1 {+-} 0.5mm, anterior/posterior: 0.8 {+-} 1.0mm, and superior/inferior: 0.5 {+-} 1.1 mm. The existence of calcifications increased the success rate to 97%. Expansion margins of 4-10 mm were equally successful. Conclusion: Gradient-based SMs were most accurate. Estimated error was found to be <3 mm (1.1 mm SD) in 96% of the registrations. Results suggest that the contour expansion margin should be no less than 4 mm.

  8. Cone Beam Computed Tomography Number Errors and Consequences for Radiotherapy Planning: An Investigation of Correction Methods

    SciTech Connect

    Poludniowski, Gavin G.; Evans, Philip M.; Webb, Steve

    2012-09-01

    Purpose: The potential of keV cone beam computed tomography (CBCT) for guiding adaptive replanning is well-known. There are impediments to this, one being CBCT number accuracy. The purpose of this study was to investigate CBCT number correction methods and the affect of residual inaccuracies on dose deposition. Four different correction strategies were applied to the same patient data to compare performance and the sophistication of correction-method needed for acceptable dose errors. Methods and Materials: Planning CT and CBCT reconstructions were used for 12 patients (6 brain, 3 prostate, and 3 bladder cancer patients). All patients were treated using Elekta linear accelerators and XVI imaging systems. Two of the CBCT number correction methods investigated were based on an algorithm previously proposed by the authors but only previously applied to phantoms. Two further methods, based on an approach previously suggested in the research literature, were also examined. Dose calculations were performed using scans of a 'worst' subset of patients using the Pinnacle{sup 3} version 9.0 treatment planning system and the patients' clinical plans. Results: All mean errors in CBCT number were <50 HU, and all correction methods performed well or adequately in dose calculations. The worst single dose discrepancy identified for any of the examined methods or patients was 3.0%. Mean errors in the doses to treatment volumes or organs at risk were negatively correlated with the mean error in CT number. That is, a mean CT number that was too large, averaged over the entire CBCT volume, implied an underdosing in a volume-of-interest and vice versa. Conclusions: Results suggest that (1) the correction of CBCT numbers to within a mean error of 50 HU in the scan volume provides acceptable discrepancies in dose (<3%) and (2) this is achievable with even quite unsophisticated correction methods.

  9. Cone Beam Computed Tomography-Derived Adaptive Radiotherapy for Radical Treatment of Esophageal Cancer

    SciTech Connect

    Hawkins, Maria A.; Brooks, Corrinne; Hansen, Vibeke N.; Aitken, Alexandra; Tait, Diana M.

    2010-06-01

    Purpose: To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Methods and materials: Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. Results: A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +- 4% and the PTV2 = 96.8% +- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. Conclusions: A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose.

  10. Cone-beam Computed Tomography-guided Stereotactic Liver Punctures: A Phantom Study

    SciTech Connect

    Toporek, Grzegorz Wallach, Daphne Weber, Stefan; Bale, Reto; Widmann, Gerlig

    2013-12-15

    Purpose: Images from computed tomography (CT), combined with navigation systems, improve the outcomes of local thermal therapies that are dependent on accurate probe placement. Although the usage of CT is desired, its availability for time-consuming radiological interventions is limited. Alternatively, three-dimensional images from C-arm cone-beam CT (CBCT) can be used. The goal of this study was to evaluate the accuracy of navigated CBCT-guided needle punctures, controlled with CT scans. Methods: Five series of five navigated punctures were performed on a nonrigid phantom using a liver specific navigation system and CBCT volumetric dataset for planning and navigation. To mimic targets, five titanium screws were fixed to the phantom. Target positioning accuracy (TPE{sub CBCT}) was computed from control CT scans and divided into lateral and longitudinal components. Additionally, CBCT-CT guidance accuracy was deducted by performing CBCT-to-CT image coregistration and measuring TPE{sub CBCT-CT} from fused datasets. Image coregistration was evaluated using fiducial registration error (FRE{sub CBCT-CT}) and target registration error (TRE{sub CBCT-CT}). Results: Positioning accuracies in lateral directions pertaining to CBCT (TPE{sub CBCT} = 2.1 {+-} 1.0 mm) were found to be better to those achieved from previous study using CT (TPE{sub CT} = 2.3 {+-} 1.3 mm). Image coregistration error was 0.3 {+-} 0.1 mm, resulting in an average TRE of 2.1 {+-} 0.7 mm (N = 5 targets) and average Euclidean TPE{sub CBCT-CT} of 3.1 {+-} 1.3 mm. Conclusions: Stereotactic needle punctures might be planned and performed on volumetric CBCT images and controlled with multidetector CT with positioning accuracy higher or similar to those performed using CT scanners.

  11. Quality and accuracy of cone beam computed tomography gated by active breathing control

    SciTech Connect

    Thompson, Bria P.; Hugo, Geoffrey D.

    2008-12-15

    The purpose of this study was to evaluate the quality and accuracy of cone beam computed tomography (CBCT) gated by active breathing control (ABC), which may be useful for image guidance in the presence of respiration. Comparisons were made between conventional ABC-CBCT (stop and go), fast ABC-CBCT (a method to speed up the acquisition by slowing the gantry instead of stopping during free breathing), and free breathing respiration correlated CBCT. Image quality was assessed in phantom. Accuracy of reconstructed voxel intensity, uniformity, and root mean square error were evaluated. Registration accuracy (bony and soft tissue) was quantified with both an anthropomorphic and a quality assurance phantom. Gantry angle accuracy was measured with respect to gantry speed modulation. Conventional ABC-CBCT scan time ranged from 2.3 to 5.8 min. Fast ABC-CBCT scan time ranged from 1.4 to 1.8 min, and respiratory correlated CBCT scans took 2.1 min to complete. Voxel intensity value for ABC gated scans was accurate relative to a normal clinical scan with all projections. Uniformity and root mean square error performance degraded as the number of projections used in the reconstruction of the fast ABC-CBCT scans decreased (shortest breath hold, longest free breathing segment). Registration accuracy for small, large, and rotational corrections was within 1 mm and 1 degree sign . Gantry angle accuracy was within 1 degree sign for all scans. For high-contrast targets, performance for image-guidance purposes was similar for fast and conventional ABC-CBCT scans and respiration correlated CBCT.

  12. Volume-of-Change Cone-Beam CT for Image-Guided Surgery

    PubMed Central

    Lee, Junghoon; Stayman, J. Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRR) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector (FPD). The VOCs were reconstructed from varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index, and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. PMID:22801026

  13. Design and optimization of a dedicated cone-beam CT system for musculoskeletal extremities imaging

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-03-01

    The design, initial imaging performance, and model-based optimization of a dedicated cone-beam CT (CBCT) scanner for musculoskeletal extremities is presented. The system offers a compact scanner that complements conventional CT and MR by providing sub-mm isotropic spatial resolution, the ability to image weight-bearing extremities, and the capability for integrated real-time fluoroscopy and digital radiography. The scanner employs a flat-panel detector and a fixed anode x-ray source and has a field of view of ~ (20x20x20) cm3. The gantry allows a "standing" configuration for imaging of weight-bearing lower extremities and a "sitting" configuration for imaging of upper extremities and unloaded lower extremities. Cascaded systems analysis guided the selection of x-ray technique (e.g., kVp, filtration, and dose) and system design (e.g., magnification factor), yielding input-quantum-limited performance at detector signal of 100 times the electronic noise, while maintaining patient dose below 5 mGy (a factor of ~2-3 less than conventional CT). A magnification of 1.3 optimized tradeoffs between source and detector blur for a 0.5 mm focal spot. A custom antiscatter grid demonstrated significant reduction of artifacts without loss of contrast-to-noise ratio or increase in dose. Image quality in cadaveric specimens was assessed on a CBCT bench, demonstrating exquisite bone detail, visualization of intra-articular morphology, and soft-tissue visibility approaching that of diagnostic CT. The capability to image loaded extremities and conduct multi-modality CBCT/fluoroscopy with improved workflow compared to whole-body CT could be of value in a broad spectrum of applications, including orthopaedics, rheumatology, surgical planning, and treatment assessment. A clinical prototype has been constructed for deployment in pilot study trials.

  14. Evaluation of juxta-apical radiolucency in cone beam CT images

    PubMed Central

    Harada, N; Araki, K; Sano, T; Goto, T K

    2014-01-01

    Objectives: The aim of this study was to analyse the position and relationship of juxta-apical radiolucency (JAR) to the mandibular canal and buccal and/or lingual cortical plates using cone beam CT (CBCT). Methods: A retrospective study was carried out to analyse the JAR on CBCT for 27 patients. These findings were compared with 27 age- and sex-matched patients without the presence of JAR, which acted as the control group. The CBCT images were analysed according to a checklist, to evaluate the position of the JAR and its relationship to the mandibular canal. Then, any thinning or perforation of either the buccal or lingual cortical plate due to JAR was noted, and a classification to quantify the thinning of cortical plates was proposed. The findings in the two groups were analysed using a paired comparison by McNemar test. Results: A statistical increased thinning of cortical plates was seen in the JAR group compared with the control group, and most of the cases were in the J3 group. None of the patients in either the JAR or the control group showed perforation of the buccal and/or lingual cortical plate on CBCT images. Conclusions: A classification to quantify the thinning of cortical plates was proposed, which may be used for objective evaluation of the thinning of the cortical plates in future studies. The present study gives an insight into the relationship of the juxta-apical area with the mandibular canal and cortical plates in the mandible using CBCT. PMID:24694213

  15. SU-E-QI-08: Fourier Properties of Cone Beam CT Projection

    SciTech Connect

    Bai, T; Yan, H; Jia, X; Jiang, Steve B.; Mou, X

    2014-06-15

    Purpose: To explore the Fourier properties of cone beam CT (CBCT) projections and apply the property to directly estimate noise level of CBCT projections without any prior information. Methods: By utilizing the property of Bessel function, we derivate the Fourier properties of the CBCT projections for an arbitrary point object. It is found that there exists a double-wedge shaped region in the Fourier space where the intensity is approximately zero. We further derivate the Fourier properties of independent noise added to CBCT projections. The expectation of the square of the module in any point of the Fourier space is constant and the value approximately equals to noise energy. We further validate the theory in numerical simulations for both a delta function object and a NCAT phantom with different levels of noise added. Results: Our simulation confirmed the existence of the double-wedge shaped region in Fourier domain for the x-ray projection image. The boundary locations of this region agree well with theoretical predictions. In the experiments of estimating noise level, the mean relative error between the theory estimation and the ground truth values is 2.697%. Conclusion: A novel theory on the Fourier properties of CBCT projections has been discovered. Accurate noise level estimation can be achieved by applying this theory directly to the measured CBCT projections. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011) and China Scholarship Council.

  16. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry.

    PubMed

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith

    2014-07-21

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children. PMID:24957710

  17. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  18. Evaluation of condyle defects using different reconstruction protocols of cone-beam computed tomography.

    PubMed

    Bastos, Luana Costa; Campos, Paulo Sérgio Flores; Ramos-Perez, Flávia Maria de Moraes; Pontual, Andrea dos Anjos; Almeida, Solange Maria

    2013-01-01

    This study was conducted to investigate how well cone-beam computed tomography (CBCT) can detect simulated cavitary defects in condyles, and to test the influence of the reconstruction protocols. Defects were created with spherical diamond burs (numbers 1013, 1016, 3017) in superior and/or posterior surfaces of twenty condyles. The condyles were scanned, and cross-sectional reconstructions were performed with nine different protocols, based on slice thickness (0.2, 0.6, 1.0 mm) and on the filters (original image, Sharpen Mild, S9) used. Two observers evaluated the defects, determining their presence and location. Statistical analysis was carried out using simple Kappa coefficient and McNemar's test to check inter- and intra-rater reliability. The chi-square test was used to compare the rater accuracy. Analysis of variance (Tukey's test) assessed the effect of the protocols used. Kappa values for inter- and intra-rater reliability demonstrate almost perfect agreement. The proportion of correct answers was significantly higher than that of errors for cavitary defects on both condyle surfaces (p < 0.01). Only in identifying the defects located on the posterior surface was it possible to observe the influence of the 1.0 mm protocol thickness and no filter, which showed a significantly lower value. Based on the results of the current study, the technique used was valid for identifying the existence of cavities in the condyle surface. However, the protocol of a 1.0 mm-thick slice and no filter proved to be the worst method for identifying the defects on the posterior surface. PMID:24346048

  19. Analysis of Prostate Bed Motion Using Daily Cone-Beam Computed Tomography During Postprostatectomy Radiotherapy

    SciTech Connect

    Ost, Piet; De Meerleer, Gert; De Gersem, Werner; Impens, Aline; De Neve, Wilfried

    2011-01-01

    Purpose: To report on the interfraction total positioning error of the postoperative prostate bed and to quantify its components (bony misalignment [BM]and prostate bed motion [PBM]) using daily kilovoltage cone-beam computed tomography (CBCT). The role of an adaptive radiotherapy schedule (ART) was investigated. Methods and Materials: A total of 547 daily CBCT images from 15 consecutive patients who had been treated with prostate bed radiotherapy were retrospectively analyzed. The positioning error was measured by rigid co-registration of the daily CBCT with pretreatment CT planning scan. The total positioning error was quantified by co-registration of the CBCT with the CT planning scan to match the anterior rectal wall. Automatic bony pelvis co-registration was performed to separate BM and PBM. The ART was determined by the average total positioning error from the first 5 CBCT images. Results: The systematic error for the total positioning error in the left-right, superoinferior, and anteroposterior direction was 2.69, 2.00, and 2.65 mm with a random error of 1.99, 1.49, and 2.25 mm, resulting in a planning target volume margin of 8, 6, and 8 mm, respectively. ART reduced the margin by 54%, 44%, and 40%, respectively. Systematic errors in the left-right, superoinferior, and anteroposterior direction for BM was 2.66, 1.83, and 2.60 mm and for PBM was 0.44, 0.92, and 2.50 mm with a random error of 1.88, 1.24, and 1.77 mm for BM and 0.99, 1.38, and 2.32 mm for PBM, respectively. Conclusion: Without treatment verifications, 6-8-mm planning target volume margins are required because of PBM and BM. The anteroposterior PBM was significant. An ART protocol can reduce these planning target volume margins.

  20. GPU-based iterative cone-beam CT reconstruction using tight frame regularization

    NASA Astrophysics Data System (ADS)

    Jia, Xun; Dong, Bin; Lou, Yifei; Jiang, Steve B.

    2011-07-01

    The x-ray imaging dose from serial cone-beam computed tomography (CBCT) scans raises a clinical concern in most image-guided radiation therapy procedures. It is the goal of this paper to develop a fast graphic processing unit (GPU)-based algorithm to reconstruct high-quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight-frame (TF)-based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512 × 512 × 70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstruct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of the modulation-transfer function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.

  1. Study between anb angle and wits appraisal in cone beam computed tomography (cbct)

    PubMed Central

    Cibrián, Rosa; Gandia, Jose L.; Paredes, Vanessa

    2013-01-01

    Objectives: To analyse the ANB and Wits values and to study correlations between those two measurements and other measurements in diagnosing the anteroposterior maxilo-mandibular relationship with CBCT. Study Design: Ninety patients who had previously a CBCT (i-CAT®) as a diagnostic register were selected. A 3D cephalometry was designed using one software package, InVivo5®. This cephalometry included 3 planes of reference, 3 angle measurements and 1 linear measurement. The means and standard deviations of the mean of each measurement were assessed. After that, a Pearson´s correlation coefficient has been performed to analyse the significance of each relationship. Results: When classifying the sample according to the anteroposterior relationship, the values obtained of ANB (Class I: 53%; Class II: 37%; Class III: 10%) and Wits (Class I: 35%; Class II: 56%; Class III: 9%) did not coincide, except for the Class III group. However, of the patients classified differently (Class I and Class II patients) by ANB and Wits, a high percentage of individuals (n=22; 49%), had a mesofacial pattern with a mandibular plane angle within normal values. A correlation has been found between ANB and Wits (r=0,262), occlusal plane angle and ANB (r=0,426), and mandibular plane angle and Wits (r=0,242). No correlation was found between either Wits or ANB in relation with the age of the individuals. Conclusions: ANB and Wits must be included in 3D cephalometric analyses as both are necessary to undertake a more accurate diagnosis of the maxillo-mandibular relationship of the patients. Key words:Cone beam computed tomography, ANB, Wits, cephalometrics. PMID:23722136

  2. Cone beam CT guidance provides superior accuracy for complex needle paths compared with CT guidance

    PubMed Central

    Braak, S J; Fütterer, J J; van Strijen, M J L; Hoogeveen, Y L; de Lange, F; Schultze Kool, L J

    2013-01-01

    Objective: To determine the accuracy of cone beam CT (CBCT) guidance and CT guidance in reaching small targets in relation to needle path complexity in a phantom. Methods: CBCT guidance combines three-dimensional CBCT imaging with fluoroscopy overlay and needle planning software to provide real-time needle guidance. The accuracy of needle positioning, quantified as deviation from a target, was assessed for inplane, angulated and double angulated needle paths. Four interventional radiologists reached four targets along the three paths using CBCT and CT guidance. Accuracies were compared between CBCT and CT for each needle path and between the three approaches within both modalities. The effect of user experience in CBCT guidance was also assessed. Results: Accuracies for CBCT were significantly better than CT for the double angulated needle path (2.2 vs 6.7 mm, p<0.001) for all radiologists. CBCT guidance showed no significant differences between the three approaches. For CT, deviations increased with increasing needle path complexity from 3.3 mm for the inplane placements to 4.4 mm (p=0.007) and 6.7 mm (p<0.001) for the angulated and double angulated CT-guided needle placements, respectively. For double angulated needle paths, experienced CBCT users showed consistently higher accuracies than trained users [1.8 mm (range 1.2–2.2) vs 3.3 mm (range 2.1–7.2) deviation from target, respectively; p=0.003]. Conclusion: In terms of accuracy, CBCT is the preferred modality, irrespective of the level of user experience, for more difficult guidance procedures requiring double angulated needle paths as in oncological interventions. Advances in knowledge: Accuracy of CBCT guidance has not been discussed before. CBCT guidance allows accurate needle placement irrespective of needle path complexity. For angulated and double-angulated needle paths, CBCT is more accurate than CT guidance. PMID:23913308

  3. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    NASA Astrophysics Data System (ADS)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  4. Image-Based Motion Compensation for High-Resolution Extremities Cone-Beam CT

    PubMed Central

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-01-01

    Purpose Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1–4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10–15% improvement in SSIM was attained for 2–4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials. PMID:27346909

  5. Volume-of-change cone-beam CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-08-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.

  6. Poster — Thur Eve — 08: Rotational errors with on-board cone beam computed tomography

    SciTech Connect

    Ali, E. S. M.; Webb, R.; Nyiri, B.

    2014-08-15

    The focus of this study is on the Elekta XVI on-board cone beam computed tomography (CBCT) system. A rotational mismatch as large as 0.5° is observed between clockwise (CW) and counter-clockwise (CCW) CBCT scans. The error could affect non-isocentric treatments (e.g., lung SBRT and acoustic neuroma), as well as off-axis organs-at-risk. The error is caused by mislabeling of the projections with a lagging gantry angle, which is caused by the finite image acquisition time and delays in the imaging system. A 30 cm diameter cylindrical phantom with 5 mm diameter holes is used for the scanning. CW and CCW scans are acquired for five gantry speeds (360 to 120 deg./min.) on six linacs from three generations (MLCi, MLCi2, and Agility). Additional scans are acquired with different x-ray pulse widths for the same mAs. In the automated CBCT analysis (using ImageJ), the CW/CCW mismatch in a series of line profiles is identified and used to calculate the rotational error. Results are consistent among all linacs and indicate that the error varies linearly with gantry speed. The finite width of the x-ray pulses is a major but predictable contributor to the delay causing the error. For 40 ms pulses, the delay is 34 ± 1 ms. A simple solution applied in our clinic is adjusting the gantry angle offset to make the CCW one-minute scans correct. A more involved approach we are currently investigating includes adjustments of pulse width and mA, resulting in focal spot changes, with potential impact on image quality.

  7. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    NASA Astrophysics Data System (ADS)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  8. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    PubMed

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  9. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  10. Cone-beam computed tomography with a flat-panel imager: initial performance characterization.

    PubMed

    Jaffray, D A; Siewerdsen, J H

    2000-06-01

    The development and performance of a system for x-ray cone-beam computed tomography (CBCT) using an indirect-detection flat-panel imager (FPI) is presented. Developed as a bench-top prototype for initial investigation of FPI-based CBCT for bone and soft-tissue localization in radiotherapy, the system provides fully three-dimensional volumetric image data from projections acquired during a single rotation. The system employs a 512 x 512 active matrix of a-Si:H thin-film transistors and photodiodes in combination with a luminescent phosphor. Tomographic imaging performance is quantified in terms of response uniformity, response linearity, voxel noise, noise-power spectrum (NPS), and modulation transfer function (MTF), each in comparison to the performance measured on a conventional CT scanner. For the geometry employed and the objects considered, response is uniform to within 2% and linear within 1%. Voxel noise, at a level of approximately 20 HU, is comparable to the conventional CT scanner. NPS and MTF results highlight the frequency-dependent transfer characteristics, confirming that the CBCT system can provide high spatial resolution and does not suffer greatly from additive noise levels. For larger objects and/or low exposures, additive noise levels must be reduced to maintain high performance. Imaging studies of a low-contrast phantom and a small animal (a euthanized rat) qualitatively demonstrate excellent soft-tissue visibility and high spatial resolution. Image quality appears comparable or superior to that of the conventional scanner. These quantitative and qualitative results clearly demonstrate the potential of CBCT systems based upon flat-panel imagers. Advances in FPI technology (e.g., improved x-ray converters and enhanced electronics) are anticipated to allow high-performance FPI-based CBCT for medical imaging. General and specific requirements of kilovoltage CBCT systems are discussed, and the applicability of FPI-based CBCT systems to tomographic

  11. Observation of the pulp horn by swept source optical coherence tomography and cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.

  12. Automated patient setup and gating using cone beam computed tomography projections

    NASA Astrophysics Data System (ADS)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  <  0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  13. A Cone-Beam Computed Tomographic Study on Mandibular First Molars in a Chinese Subpopulation

    PubMed Central

    Ma, Yue; Han, Ting; Chen, Xinyu; Wan, Fang; Lu, Yating; Yan, Songhe; Wang, Yan

    2015-01-01

    The purpose of this study was to conduct a cone-beam computed tomographic (CBCT) investigation on the root and canal configuration of the mandibular first molars, especially the morphology of the disto-lingual (DL) root, in a Chinese subpopulation. A total of 910 CBCT images of the mandibular first molars were collected from 455 patients who underwent CBCT examinations as a preoperative assessment for implants or orthodontic treatment. The following information was analyzed and evaluated: tooth position, gender, root and root canal number per tooth, root canal type of the mesial root(s) and distal root(s), angle of the DL root canal curvature, distance between two distal canal orifices in the teeth with DL root, and angle of disto-buccal canal orifice–disto-lingual canal orifice–mesio-lingual canal orifice (DB-DL-ML). Most of the mandibular first molars (64.9%, n = 591) had two roots with three root canals, and most of the mesial root canals (87.7%, n = 798) were type VI. The prevalence of the DL root was 22.1% (n = 201). The right side had a higher prevalence of DL root than the left side (p<0.05). Additionally, the curvature of the DL root canal were greater in the bucco-lingual (BL) orientation (30.10°±14.02°) than in the mesio-distal (MD) orientation (14.03°± 8.56°) (p<0.05). Overall there was a high prevalence of DL root in the mandibular first molars, and most of the DL roots were curved in different degrees. This study provided detailed information about the root canal morphology of the mandibular first molars in a Chinese subpopulation. PMID:26241480

  14. A suggested technique for the application of the cone beam computed tomography periapical index

    PubMed Central

    Esposito, S; Cardaropoli, M; Cotti, E

    2011-01-01

    Objectives Cone beam CT (CBCT) produces undistorted three-dimensional (3D) images of the maxillofacial region with a radiation dosage lower than conventional CT. The periapical index score (PAI) is commonly used to follow up the lesions in the bone using periapical radiographs. Recently, a new PAI based on CBCT was introduced (CBCT-PAI). The aim of this technical report is to present a modified reproducible method to assess the CBCT-PAI. Methods CBCT was used to evaluate a periapical bone lesion observed in the area of tooth number 13 before treatment and 2 years after treatment. The modified CBCT-PAI was applied to both the examinations to measure the lesion. The dimensional analysis of the lesion was performed in each plane, assessing three fixed and reproducible dimensions: mesiodistal (M-D), buccolingual (B-L) and coronoapical (C-A). The images were evaluated by three mutually independent examiners. Data were collected and reported in a chart. The results were compared with each other and with the PAI score from the periapical radiographs. Results The three observers reported the same measurements of the lesion for each plane. The CBCT-PAI follow-up showed a reduction of the size of the lesion (5D vs 4D) but also an increase in the erosion of the buccal cortical plate. The comparison of CBCT-PAI with classic PAI showed the first method to be more precise. Conclusions This technical report shows how the CBCT-PAI can be applied to the CBCT exam of a periapical lesion in a reproducible way. PMID:22065800

  15. Calculating nasoseptal flap dimensions: a cadaveric study using cone beam computed tomography.

    PubMed

    Ten Dam, Ellen; Korsten-Meijer, Astrid G W; Schepers, Rutger H; van der Meer, Wicher J; Gerrits, Peter O; van der Laan, Bernard F A M; Feijen, Robert A

    2015-09-01

    We hypothesize that three-dimensional imaging using cone beam computed tomography (CBCT) is suitable for calculating nasoseptal flap (NSF) dimensions. To evaluate our hypothesis, we compared CBCT NSF dimensions with anatomical dissections. The NSF reach and vascularity were studied. In an anatomical study (n = 10), CBCT NSF length and surface were calculated and compared with anatomical dissections. The NSF position was evaluated by placing the NSF from the anterior sphenoid sinus wall and from the sella along the skull base towards the frontal sinus. To visualize the NSF vascularity in CBCT, the external carotic arteries were perfused with colored Iomeron. Correlations between CBCT NSFs and anatomical dissections were strongly positive (r > 0.70). The CBCT NSF surface was 19.8 cm(2) [16.6-22.3] and the left and right CBCT NSF lengths were 78.3 mm [73.2-89.5] and 77.7 mm [72.2-88.4] respectively. Covering of the anterior skull base was possible by positioning the NSF anterior to the sphenoid sinus. If the NSF was positioned from the sella along the skull base towards the frontal sinus, the NSF reached partially into the anterior ethmoidal sinuses. CBCT is a valuable technique for calculating NSF dimensions. CBCT to demonstrate septum vascularity in cadavers proved to be less suitable. The NSF reach for covering the anterior skull base depends on positioning. This study encourages preoperative planning of a customized NSF, in an attempt to spare septal mucosa. In the concept of minimal invasive surgery, accompanied by providing customized care, this can benefit the patients' postoperative complaints. PMID:25359192

  16. Radiological Protection in Cone Beam Computed Tomography (CBCT). ICRP Publication 129.

    PubMed

    Rehani, M M; Gupta, R; Bartling, S; Sharp, G C; Pauwels, R; Berris, T; Boone, J M

    2015-07-01

    The objective of this publication is to provide guidance on radiological protection in the new technology of cone beam computed tomography (CBCT). Publications 87 and 102 dealt with patient dose management in computed tomography (CT) and multi-detector CT. The new applications of CBCT and the associated radiological protection issues are substantially different from those of conventional CT. The perception that CBCT involves lower doses was only true in initial applications. CBCT is now used widely by specialists who have little or no training in radiological protection. This publication provides recommendations on radiation dose management directed at different stakeholders, and covers principles of radiological protection, training, and quality assurance aspects. Advice on appropriate use of CBCT needs to be made widely available. Advice on optimisation of protection when using CBCT equipment needs to be strengthened, particularly with respect to the use of newer features of the equipment. Manufacturers should standardise radiation dose displays on CBCT equipment to assist users in optimisation of protection and comparisons of performance. Additional challenges to radiological protection are introduced when CBCT-capable equipment is used for both fluoroscopy and tomography during the same procedure. Standardised methods need to be established for tracking and reporting of patient radiation doses from these procedures. The recommendations provided in this publication may evolve in the future as CBCT equipment and applications evolve. As with previous ICRP publications, the Commission hopes that imaging professionals, medical physicists, and manufacturers will use the guidelines and recommendations provided in this publication for implementation of the Commission's principle of optimisation of protection of patients and medical workers, with the objective of keeping exposures as low as reasonably achievable, taking into account economic and societal factors, and

  17. Quality Assessment of Frameless Fractionated Stereotactic Radiotherapy Using Cone Beam Computed Tomography

    SciTech Connect

    Peng, Lee-Cheng; Kahler, Darren; Samant, Sanjiv; Li, Jonathan; Amdur, Robert; Palta, Jatinder R.; Liu, Chihray

    2010-12-01

    Purpose: A quality assessment of intracranial stereotactic radiotherapy was performed using cone beam computed tomography (CBCT). Setup errors were analyzed for two groups of patients: (1) those who were positioned using a frameless SonArray (FSA) system and immobilized with a bite plate and thermoplastic (TP) mask (the bFSA group); and (2) those who were positioned by room laser and immobilized using a TP mask (the mLAS group). Methods and Materials: A quality assurance phantom was used to study the system differences between FSA and CBCT. The quality assessment was performed using an Elekta Synergy imager (XVI) (Elekta Oncology Systems, Norcross, GA) and an On-Board Imager (OBI) (Varian Medical Systems, Palo Alto, CA) for 25 patients. For the first three fractions, and weekly thereafter, the FSA system was used for patient positioning, after which CBCT was performed to obtain setup errors. Results: (1) Phantom tests: The mean differences in the isocenter displacements for the two systems was 1.2 {+-} 0.7 mm. No significant variances were seen between the XVI and OBI units (p{approx}0.208). (2)Patient tests: The mean of the displacements between FSA and CBCT were independent of the CBCT system used; mean setup errors for the bFSA group were smaller (1.2 mm) than those of the mLAS group (3.2 mm) (p < 0.005). For the mLAS patients, the 90th percentile and the maximum rotational displacements were 3{sup o} and 5{sup o}, respectively. A 4-mm drift in setup accuracy occurred over the treatment course for 1 bFSA patient. Conclusions: System differences of less than 1 mm between CBCT and FSA were seen. Error regression was observed for the bFSA patients, using CBCT (up to 4 mm) during the treatment course. For the mLAS group, daily CBCT imaging was needed to obtain acceptable setup accuracies.

  18. An image-based method to synchronize cone-beam CT and optical surface tracking.

    PubMed

    Fassi, Aurora; Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2015-01-01

    The integration of in-room X-ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X-ray projections and surface data. We present an image-based method for the synchronization of cone-beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X-ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between -3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient-specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PMID:26103183

  19. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    SciTech Connect

    Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  20. Assessment of the Mandibular Incisive Canal by Panoramic Radiograph and Cone-Beam Computed Tomography

    PubMed Central

    Shimura, Elisabeth; Chilvarquer, Israel; Fenyo-Pereira, Marlene

    2014-01-01

    Objectives. The region between mental foramens is considered as a zone of choice for implants. However, complications may arise due to an extension anterior to the mental foramen that forms the mandible incisive canal [MIC]. Our goal is to evaluate identification of MIC by both panoramic radiograph [PAN] and cone-beam computed tomography [CBCT]. Methods. 150 cases with bilateral MIC were analyzed. Images of a radiolucent canal, within the trabecular bone, surrounded by a radiopaque cortical bone representing the canal walls, and extending to the anterior portion beyond the mental foramen, were considered by two independent radiologists as being images of MIC. PAN and CBCT of these cases were evaluated by 2 other radiologists at different times. Agreement between results of examination methods was assessed by the Kappa coefficient. The interexaminer and intramethod rates for detection of MIC were analyzed by the McNemar test. Gender, mandible side, examiner, and type of method were analyzed by the generalized estimating equations [GEE] model. Results. significant difference between examiners [PAN: P = 0.146; CBCT: P = 0.749] was not observed. Analysis by GEE model showed no significant difference between genders [P = 0.411] and examiners [P = 0.183]. However, significant difference was observed for identification in both mandible right side [P = 0.001], where the identification frequency was higher, and CBCT method [P < 0.001]. Conclusions. PAN was not shown to be a safe examination to identify MIC. CBCT should always be used in preoperative planning and to reduce the number of complications in implant surgeries. PMID:25332719

  1. The mandibular incisive canal and its anatomical relationships: A cone beam computed tomography study

    PubMed Central

    Pereira-Maciel, Patrícia; Oliveira-Sales, Marcelo-Augusto

    2015-01-01

    Background To avoid postoperative injuries in the interforaminal region, presence of the Mandibular Incisive Canal (MIC), its extension and canal positioning in relation to the cortical bone and alveolar process were investigated by cone beam computed tomography (CBCT). Material and Methods One hundred CBCT examinations obtained by means of the i-CAT CBCT imaging system were analyzed in multiple-plane views (axial, panoramic and cross-sectional) and three-dimensional representations were performed using iCAT CBCT software. The MIC was evaluated for its presence, measurement and proximity to the buccal and lingual plates, alveolar process and inferior border of the mandible. Results The MIC was visible in all (100%) CBCT images. The mean length of MIC was 9.8 ± 3.8 mm. The distances between the canal and buccal plate, as well as between the canal and lingual plate of the alveolar bone were 4.62 ± 1.41 mm and 6.25 ± 2.03 mm, respectively. The distances from the canal to the alveolar process, and to the inferior border of the mandible were 10.25 ± 2.27 mm and 7.06 ± 2.95 mm, respectively. Conclusions Due to the high prevalence of MIC, its variation in length and distance up to the cortical bone, suggested that preoperative radiographic evaluation of the MIC must be carried out case-by-case using CBCT, which could clearly show the three-dimensional structure and adjacent structure of the MIC. Key words:Diagnosis, anatomy, cross-sectional, tomography. PMID:26449433

  2. Classification of impacted mandibular third molars on cone-beam CT images

    PubMed Central

    Maglione, Michele; Bazzocchi, Gabriele

    2015-01-01

    Background Neurological involvement is a serious complication associated to the surgical removal of impacted mandibular third molars and the radiological investigation is the first mandatory step to assess the risk of a possible post-operative injury to the inferior alveolar nerve (IAN). The aim of this study was to introduce a new radiological classification that could be normally used in clinical practice to assess the relationship between an impacted third molar and mandibular canal on cone beam CT (CBCT) images. Material and Methods CBCT images of 80 patients (133 mandibular third molars) were independently studied by three members of the surgical team to draw a classification that could describe all the possible relationships between third molar and IAN on the cross-sectional images. Subsequently, the study population was subdivided according to this classification. The SPSS software, version 15.0 (SPSS® Inc., Chicago, Illinois, USA) was used for the statistical analysis. Results Eight different classes were proposed (classes 0-7) and six of them (classes 1-6) were subdivided in two subtypes (subtypes A-B). The distribution of classes showed a prevalence of buccal or apical course of the mandibular canal followed by lingual position and inter-radicular one. No differences have resulted in terms of anatomic relationship between males and females apart from a higher risk of real contact without corticalization of the canal when the IAN had a lingual course for female group. Younger patients showed an increased rate of direct contact with a reduced calibre of the canal and/or without corticalization. Conclusions The use of this classification could be a valid support in clinical practice to obtain a common language among operators in order to define the possible relationships between an impacted third molar and the mandibular canal on CBCT images. Key words:CBCT, classification, inferior alveolar nerve, third molars. PMID:26155337

  3. Assessment of the Anterior Loop of the Mental Nerve Using Cone Beam Computerized Tomography Scan.

    PubMed

    Lu, Chun-I; Won, John; Al-Ardah, Aladdin; Santana, Ruben; Rice, Dwight; Lozada, Jaime

    2015-12-01

    The purpose of this study is to use cone-beam computerized tomography (CBCT) scans with oblique-transverse reconstruction modality to measure and compare the anterior loop length (AnLL) of the mental nerve between gender and age groups and to compare the difference between the right and left sides. Sixty-one female and 61 male CBCT scans were randomly selected for each age group: 21-40, 41-60, and 61-80 years. Both right- and left-side AnLLs were measured in each subject using i-CATVision software to measure AnLLs on the oblique transverse plane using multiplanar reconstruction. The anterior loop was identified in 85.2% of cases, with the mean AnLL of the 366 subjects (732 hemimandibles) being 1.46 ± 1.25 mm with no statistically significant difference between right and left sides or between different gender groups. However, the mean AnLL in the 21-40 year group (1.89 ± 1.35 mm) was larger than the AnLL in the 41-60 year group (1.35 ± 1.19 mm) and the 61-80 year group (1.13 ± 1.08 mm). In conclusion, when placing implants in close proximity to mental foramina, caution is recommended to avoid injury to the inferior alveolar nerve. No fixed distance anteriorly from the mental foramen should be considered safe. Using CBCT scans with the oblique-transverse method to accurately identify and measure the AnLL is of utmost importance in avoiding and protecting its integrity. PMID:24552176

  4. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    SciTech Connect

    Jones, Bernard L. Westerly, David; Miften, Moyed

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  5. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    SciTech Connect

    Cazzato, Roberto Luigi Battistuzzi, Jean-Benoit Catena, Vittorio; Grasso, Rosario Francesco Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier Palussiere, Jean

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  6. Progressive cone beam CT dose control in image-guided radiation therapy

    SciTech Connect

    Yan Hao; Cervino, Laura; Jiang, Steve B.; Jia Xun; Zhen Xin

    2013-06-15

    Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction. The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.

  7. A cone beam CT investigation of ponticulus posticus and lateralis in children and adolescents

    PubMed Central

    Geist, S-M R Y; Lin, L-M

    2014-01-01

    Objectives: To determine the prevalence and pathogenesis of ponticulus posticus (PP) and ponticulus lateralis (PL) in children and adolescents. Methods: Cone beam CT scans of 576 patients were examined for PP and PL. The patients were divided into three age groups: 10 years and younger, 11–13 years and 14 years and older. Ponticulus formation was categorized as absent, partial or complete. Gender, race and location (right, left or bilateral) were recorded. Data were analysed with the χ2 test, with significance at p < 0.050. Institutional review board approval was granted. Results: Overall prevalence of PP was 26.2%, with complete lesions in 10.4%. The frequency of PP was greater in patients aged 14 years and older (p ≤ 0.038). The occurrence of complete PP was greater in patients aged 11 years and older (p = 0.028). Lesions were more common in males (p = 0.014) and in blacks compared with other non-white races (p = 0.035). Bilateral PP was more common than right-sided lesions (p = 0.008) and more frequent in the oldest cohort (p = 0.006). Overall prevalence of PL was 6.1% (3.0% complete), with no differences between age groups, genders, races or by location. Conclusions: PP is not uncommon even in the first decade and increases in frequency, completeness of calcification and numbers in mid-adolescence. It appears to be more common in males and in blacks. PP may be a congenital osseous anomaly of the atlas that mineralizes at various times. PL is less frequent with no demographic predilections. PMID:24785819

  8. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction.

    PubMed

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay; Siewerdsen, Jeffrey H

    2014-02-21

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼ 40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2 × over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at d