Sample records for ontologies meet industry

  1. Meeting report: advancing practical applications of biodiversity ontologies

    PubMed Central

    2014-01-01

    We describe the outcomes of three recent workshops aimed at advancing development of the Biological Collections Ontology (BCO), the Population and Community Ontology (PCO), and tools to annotate data using those and other ontologies. The first workshop gathered use cases to help grow the PCO, agreed upon a format for modeling challenging concepts such as ecological niche, and developed ontology design patterns for defining collections of organisms and population-level phenotypes. The second focused on mapping datasets to ontology terms and converting them to Resource Description Framework (RDF), using the BCO. To follow-up, a BCO hackathon was held concurrently with the 16th Genomics Standards Consortium Meeting, during which we converted additional datasets to RDF, developed a Material Sample Core for the Global Biodiversity Information Framework, created a Web Ontology Language (OWL) file for importing Darwin Core classes and properties into BCO, and developed a workflow for converting biodiversity data among formats.

  2. Strategic Industrial Alliances in Paper Industry: XML- vs Ontology-Based Integration Platforms

    ERIC Educational Resources Information Center

    Naumenko, Anton; Nikitin, Sergiy; Terziyan, Vagan; Zharko, Andriy

    2005-01-01

    Purpose: To identify cases related to design of ICT platforms for industrial alliances, where the use of Ontology-driven architectures based on Semantic web standards is more advantageous than application of conventional modeling together with XML standards. Design/methodology/approach: A comparative analysis of the two latest and the most obvious…

  3. A Tailored Ontology Supporting Sensor Implementation for the Maintenance of Industrial Machines.

    PubMed

    Maleki, Elaheh; Belkadi, Farouk; Ritou, Mathieu; Bernard, Alain

    2017-09-08

    The longtime productivity of an industrial machine is improved by condition-based maintenance strategies. To do this, the integration of sensors and other cyber-physical devices is necessary in order to capture and analyze a machine's condition through its lifespan. Thus, choosing the best sensor is a critical step to ensure the efficiency of the maintenance process. Indeed, considering the variety of sensors, and their features and performance, a formal classification of a sensor's domain knowledge is crucial. This classification facilitates the search for and reuse of solutions during the design of a new maintenance service. Following a Knowledge Management methodology, the paper proposes and develops a new sensor ontology that structures the domain knowledge, covering both theoretical and experimental sensor attributes. An industrial case study is conducted to validate the proposed ontology and to demonstrate its utility as a guideline to ease the search of suitable sensors. Based on the ontology, the final solution will be implemented in a shared repository connected to legacy CAD (computer-aided design) systems. The selection of the best sensor is, firstly, obtained by the matching of application requirements and sensor specifications (that are proposed by this sensor repository). Then, it is refined from the experimentation results. The achieved solution is recorded in the sensor repository for future reuse. As a result, the time and cost of the design process of new condition-based maintenance services is reduced.

  4. A Tailored Ontology Supporting Sensor Implementation for the Maintenance of Industrial Machines

    PubMed Central

    Belkadi, Farouk; Bernard, Alain

    2017-01-01

    The longtime productivity of an industrial machine is improved by condition-based maintenance strategies. To do this, the integration of sensors and other cyber-physical devices is necessary in order to capture and analyze a machine’s condition through its lifespan. Thus, choosing the best sensor is a critical step to ensure the efficiency of the maintenance process. Indeed, considering the variety of sensors, and their features and performance, a formal classification of a sensor’s domain knowledge is crucial. This classification facilitates the search for and reuse of solutions during the design of a new maintenance service. Following a Knowledge Management methodology, the paper proposes and develops a new sensor ontology that structures the domain knowledge, covering both theoretical and experimental sensor attributes. An industrial case study is conducted to validate the proposed ontology and to demonstrate its utility as a guideline to ease the search of suitable sensors. Based on the ontology, the final solution will be implemented in a shared repository connected to legacy CAD (computer-aided design) systems. The selection of the best sensor is, firstly, obtained by the matching of application requirements and sensor specifications (that are proposed by this sensor repository). Then, it is refined from the experimentation results. The achieved solution is recorded in the sensor repository for future reuse. As a result, the time and cost of the design process of new condition-based maintenance services is reduced. PMID:28885592

  5. The Development of Ontology from Multiple Databases

    NASA Astrophysics Data System (ADS)

    Kasim, Shahreen; Aswa Omar, Nurul; Fudzee, Mohd Farhan Md; Azhar Ramli, Azizul; Aizi Salamat, Mohamad; Mahdin, Hairulnizam

    2017-08-01

    The area of halal industry is the fastest growing global business across the world. The halal food industry is thus crucial for Muslims all over the world as it serves to ensure them that the food items they consume daily are syariah compliant. Currently, ontology has been widely used in computer sciences area such as web on the heterogeneous information processing, semantic web, and information retrieval. However, ontology has still not been used widely in the halal industry. Today, Muslim community still have problem to verify halal status for products in the market especially foods consisting of E number. This research tried to solve problem in validating the halal status from various halal sources. There are various chemical ontology from multilple databases found to help this ontology development. The E numbers in this chemical ontology are codes for chemicals that can be used as food additives. With this E numbers ontology, Muslim community could identify and verify the halal status effectively for halal products in the market.

  6. Professors and Industry Meet

    ERIC Educational Resources Information Center

    Sheriff, Robert E.

    1974-01-01

    Describes backgrounds of geophysics graduates that are desired for employment by industry. Also listed are areas in which industry could help universities concerning the development of programs to meet the future manpower needs in industry. (BR)

  7. Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy

    PubMed Central

    Alexopoulou, Dimitra; Andreopoulos, Bill; Dietze, Heiko; Doms, Andreas; Gandon, Fabien; Hakenberg, Jörg; Khelif, Khaled; Schroeder, Michael; Wächter, Thomas

    2009-01-01

    Background Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively. Results The 'Closest Sense' method assumes that the ontology defines multiple senses of the term. It computes the shortest path of co-occurring terms in the document to one of these senses. The 'Term Cooc' method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology structure. The 'MetaData' approach trains a classifier on metadata. It does not require any ontology, but requires training data, which the other methods do not. To evaluate these approaches we defined a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The 'MetaData' approach performed best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The 'Term Cooc' approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The 'Closest Sense' approach achieves on average 80% success rate. Conclusion Metadata is valuable for disambiguation, but requires high quality training data. Closest Sense requires no training, but a large, consistently modelled ontology, which are two opposing conditions. Term Cooc achieves greater 90% success given a consistently

  8. An ontology of scientific experiments

    PubMed Central

    Soldatova, Larisa N; King, Ross D

    2006-01-01

    The formal description of experiments for efficient analysis, annotation and sharing of results is a fundamental part of the practice of science. Ontologies are required to achieve this objective. A few subject-specific ontologies of experiments currently exist. However, despite the unity of scientific experimentation, no general ontology of experiments exists. We propose the ontology EXPO to meet this need. EXPO links the SUMO (the Suggested Upper Merged Ontology) with subject-specific ontologies of experiments by formalizing the generic concepts of experimental design, methodology and results representation. EXPO is expressed in the W3C standard ontology language OWL-DL. We demonstrate the utility of EXPO and its ability to describe different experimental domains, by applying it to two experiments: one in high-energy physics and the other in phylogenetics. The use of EXPO made the goals and structure of these experiments more explicit, revealed ambiguities, and highlighted an unexpected similarity. We conclude that, EXPO is of general value in describing experiments and a step towards the formalization of science. PMID:17015305

  9. 49 CFR 95.11 - Meetings; industry advisory committees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Meetings; industry advisory committees. 95.11... Meetings; industry advisory committees. (a) Meetings of an industry advisory committee may be held only at...) No industry advisory committee may receive, compile, or discuss data or reports showing the current...

  10. 49 CFR 95.11 - Meetings; industry advisory committees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Meetings; industry advisory committees. 95.11... Meetings; industry advisory committees. (a) Meetings of an industry advisory committee may be held only at...) No industry advisory committee may receive, compile, or discuss data or reports showing the current...

  11. 49 CFR 95.11 - Meetings; industry advisory committees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Meetings; industry advisory committees. 95.11... Meetings; industry advisory committees. (a) Meetings of an industry advisory committee may be held only at...) No industry advisory committee may receive, compile, or discuss data or reports showing the current...

  12. The ontological turn meets the certainty of death.

    PubMed

    McDonald, Maryon

    2017-08-01

    The 'ontological turn' involves some anthropological points of long standing but the approaches recently coordinated into this turn have been presented as a 'call to arms', as shaking up 'mono-realist singularities' and as inherently political. This fighting talk has no doubt made important contributions to anthropology and insights from the ontological turn can help in anthropological understandings of medical practices. However, this paper contends that this helpfulness is also limited and that a call to arms may be inappropriate. This point is made through an ethnographic understanding of medical concern about the diagnosis of death.

  13. 41 CFR 50-203.16 - Industry panel meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Industry panel meetings... Under the Walsh-Healey Public Contracts Act § 50-203.16 Industry panel meetings. The Secretary of Labor may, within his discretion, invite representatives of employers and employees in an industry to meet...

  14. 41 CFR 50-203.16 - Industry panel meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Industry panel meetings... Under the Walsh-Healey Public Contracts Act § 50-203.16 Industry panel meetings. The Secretary of Labor may, within his discretion, invite representatives of employers and employees in an industry to meet...

  15. 41 CFR 50-203.16 - Industry panel meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Industry panel meetings... Under the Walsh-Healey Public Contracts Act § 50-203.16 Industry panel meetings. The Secretary of Labor may, within his discretion, invite representatives of employers and employees in an industry to meet...

  16. 41 CFR 50-203.16 - Industry panel meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Industry panel meetings... Under the Walsh-Healey Public Contracts Act § 50-203.16 Industry panel meetings. The Secretary of Labor may, within his discretion, invite representatives of employers and employees in an industry to meet...

  17. 41 CFR 50-203.16 - Industry panel meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Industry panel meetings... Under the Walsh-Healey Public Contracts Act § 50-203.16 Industry panel meetings. The Secretary of Labor may, within his discretion, invite representatives of employers and employees in an industry to meet...

  18. An Ontological Solution to Support Interoperability in the Textile Industry

    NASA Astrophysics Data System (ADS)

    Duque, Arantxa; Campos, Cristina; Jiménez-Ruiz, Ernesto; Chalmeta, Ricardo

    Significant developments in information and communication technologies and challenging market conditions have forced enterprises to adapt their way of doing business. In this context, providing mechanisms to guarantee interoperability among heterogeneous organisations has become a critical issue. Even though prolific research has already been conducted in the area of enterprise interoperability, we have found that enterprises still struggle to introduce fully interoperable solutions, especially, in terms of the development and application of ontologies. Thus, the aim of this paper is to introduce basic ontology concepts in a simple manner and to explain the advantages of the use of ontologies to improve interoperability. We will also present a case study showing the implementation of an application ontology for an enterprise in the textile/clothing sector.

  19. Ontology of fractures

    NASA Astrophysics Data System (ADS)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  20. Building a developmental toxicity ontology.

    PubMed

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  1. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  2. Ontology or formal ontology

    NASA Astrophysics Data System (ADS)

    Žáček, Martin

    2017-07-01

    Ontology or formal ontology? Which word is correct? The aim of this article is to introduce correct terms and explain their basis. Ontology describes a particular area of interest (domain) in a formal way - defines the classes of objects that are in that area, and relationships that may exist between them. Meaning of ontology consists mainly in facilitating communication between people, improve collaboration of software systems and in the improvement of systems engineering. Ontology in all these areas offer the possibility of unification of view, maintaining consistency and unambiguity.

  3. 49 CFR 95.9 - Meetings; other than industry advisory committees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Meetings; other than industry advisory committees... Meetings; other than industry advisory committees. (a) Meetings of an advisory committee, other than an industry advisory committee, may be held only at the call, or with the advance approval, of a full-time...

  4. 49 CFR 95.9 - Meetings; other than industry advisory committees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Meetings; other than industry advisory committees... Meetings; other than industry advisory committees. (a) Meetings of an advisory committee, other than an industry advisory committee, may be held only at the call, or with the advance approval, of a full-time...

  5. 49 CFR 95.9 - Meetings; other than industry advisory committees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Meetings; other than industry advisory committees... Meetings; other than industry advisory committees. (a) Meetings of an advisory committee, other than an industry advisory committee, may be held only at the call, or with the advance approval, of a full-time...

  6. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  7. Ontology Sparse Vector Learning Algorithm for Ontology Similarity Measuring and Ontology Mapping via ADAL Technology

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhu, Linli; Wang, Kaiyun

    2015-12-01

    Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.

  8. From Information Society to Knowledge Society: The Ontology Issue

    NASA Astrophysics Data System (ADS)

    Roche, Christophe

    2002-09-01

    Information society, virtual enterprise, e-business rely more and more on communication and knowledge sharing between heterogeneous actors. But, no communication is possible, and all the more so no co-operation or collaboration, if those actors do not share the same or at least a compatible meaning for the terms they use. Ontology, understood as an agreed vocabulary of common terms and meanings, is a solution to that problem. Nevertheless, although there is quite a lot of experience in using ontologies, several barriers remain which stand against a real use of ontology. As a matter of fact, it is very difficult to build, reuse and share ontologies. We claim that the ontology problem requires a multidisciplinary approach based on sound epistemological, logical and linguistic principles. This article presents the Ontological Knowledge Station (OK Station©), a software environment for building and using ontologies which relies on such principles. The OK Station is currently being used in several industrial applications.

  9. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    NASA Astrophysics Data System (ADS)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  10. 75 FR 56158 - Industry Advisory Panel: Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEPARTMENT OF STATE [Public Notice 7107] Industry Advisory Panel: Notice of Open Meeting The Industry Advisory Panel of the Bureau of Overseas Buildings Operations will meet on Thursday, October 14, 2010 from 9:30 a.m. until 3:30 p.m. Eastern Daylight Time. The meeting is open to the public and will...

  11. 76 FR 62892 - Industry Advisory Panel: Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... DEPARTMENT OF STATE [Public Notice: 7598] Industry Advisory Panel: Notice of Open Meeting The Industry Advisory Panel of the Bureau of Overseas Buildings Operations will meet on Tuesday, October 18, 2011 from 9:30 a.m. until 3:30 p.m. Eastern Daylight Time. The meeting is open to the public and will...

  12. 75 FR 13643 - Industry Advisory Panel: Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... DEPARTMENT OF STATE [Public Notice 6909] Industry Advisory Panel: Notice of Open Meeting The Industry Advisory Panel of the Bureau of Overseas Buildings Operations will meet on Wednesday, April 14, 2010 from 9:30 a.m. until 3:30 p.m. Eastern Daylight Time. The meeting is open to the public, as...

  13. Applications of Ontology Design Patterns in Biomedical Ontologies

    PubMed Central

    Mortensen, Jonathan M.; Horridge, Matthew; Musen, Mark A.; Noy, Natalya F.

    2012-01-01

    Ontology design patterns (ODPs) are a proposed solution to facilitate ontology development, and to help users avoid some of the most frequent modeling mistakes. ODPs originate from similar approaches in software engineering, where software design patterns have become a critical aspect of software development. There is little empirical evidence for ODP prevalence or effectiveness thus far. In this work, we determine the use and applicability of ODPs in a case study of biomedical ontologies. We encoded ontology design patterns from two ODP catalogs. We then searched for these patterns in a set of eight ontologies. We found five patterns of the 69 patterns. Two of the eight ontologies contained these patterns. While ontology design patterns provide a vehicle for capturing formally reoccurring models and best practices in ontology design, we show that today their use in a case study of widely used biomedical ontologies is limited. PMID:23304337

  14. 76 FR 19826 - Industry Advisory Panel; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... DEPARTMENT OF STATE [Public Notice: 7330] Industry Advisory Panel; Notice of Open Meeting The Industry Advisory Panel of the Bureau of Overseas Buildings Operations will meet on Tuesday, April 26, 2011 from 9:30 a.m. until 3:30 p.m. Eastern Daylight Time. The meeting is open to the public and will be...

  15. 75 FR 20372 - Commercial Fishing Industry Vessel Safety Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-0276] Commercial Fishing Industry Vessel... Commercial Fishing Industry Vessel Safety Advisory Committee (CFIVSAC) will meet in Oakland, CA, to discuss various issues relating to commercial vessel safety in the fishing industry. This meeting will be open to...

  16. Ontology and Knowledgebase of Fractures and Faults

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Zhong, J.

    2007-12-01

    Fractures and faults are related to many societal and industrial problems including oil and gas exploration and production, CO2 sequestration, and waste isolation. Therefore, an ontology focusing fractures and faults is desirable to facilitate a sound education and communication among this highly diverse community. We developed an ontology for this field. Some high level classes in our ontology include geological structure, deformation mechanism, and property or factor. Throughout our ontology, we emphasis the relationship among the classes, such as structures formed by mechanisms and properties effect the mechanism that will occur. At this stage, there are about 1,000 classes, referencing about 150 articles or textbook and supplemented by about 350 photographs, diagrams, and illustrations. With limited time and resources, we chose a simple application for our ontology - transforming to a knowledgebase made of a series of web pages. Each web page corresponds to one class in the ontology, having discussion, figures, links to subclass and related concepts, as well as references. We believe that our knowledgebase is a valuable resource for finding information about fractures and faults, to both practicing geologists and students who are interested in the related issues either in application or in education and training.

  17. Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    NASA Astrophysics Data System (ADS)

    Petrova, G. G.; Tuzovsky, A. F.; Aksenova, N. V.

    2017-01-01

    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given.

  18. OntologyWidget - a reusable, embeddable widget for easily locating ontology terms.

    PubMed

    Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, J H Pate; Ball, Catherine A; Sherlock, Gavin

    2007-09-13

    Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website 1. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat 2 on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. We have developed OntologyWidget, an easy-to-use ontology search and display

  19. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  20. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  1. 75 FR 14564 - Dairy Industry Advisory Committee; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF AGRICULTURE Farm Service Agency Dairy Industry Advisory Committee; Public Meeting... established Dairy Industry Advisory Committee (Dairy Committee) to review the current state of the dairy industry, discuss current dairy programs of the U.S. Department of Agriculture (USDA) and Federal dairy...

  2. A document-centric approach for developing the tolAPC ontology.

    PubMed

    Blfgeh, Aisha; Warrender, Jennifer; Hilkens, Catharien M U; Lord, Phillip

    2017-11-28

    There are many challenges associated with ontology building, as the process often touches on many different subject areas; it needs knowledge of the problem domain, an understanding of the ontology formalism, software in use and, sometimes, an understanding of the philosophical background. In practice, it is very rare that an ontology can be completed by a single person, as they are unlikely to combine all of these skills. So people with these skills must collaborate. One solution to this is to use face-to-face meetings, but these can be expensive and time-consuming for teams that are not co-located. Remote collaboration is possible, of course, but one difficulty here is that domain specialists use a wide-variety of different "formalisms" to represent and share their data - by the far most common, however, is the "office file" either in the form of a word-processor document or a spreadsheet. Here we describe the development of an ontology of immunological cell types; this was initially developed by domain specialists using an Excel spreadsheet for collaboration. We have transformed this spreadsheet into an ontology using highly-programmatic and pattern-driven ontology development. Critically, the spreadsheet remains part of the source for the ontology; the domain specialists are free to update it, and changes will percolate to the end ontology. We have developed a new ontology describing immunological cell lines built by instantiating ontology design patterns written programmatically, using values from a spreadsheet catalogue. This method employs a spreadsheet that was developed by domain experts. The spreadsheet is unconstrained in its usage and can be freely updated resulting in a new ontology. This provides a general methodology for ontology development using data generated by domain specialists.

  3. OntologyWidget – a reusable, embeddable widget for easily locating ontology terms

    PubMed Central

    Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, JH Pate; Ball, Catherine A; Sherlock, Gavin

    2007-01-01

    Background Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. Results We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website [1]. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat [2] on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. Conclusion We have developed OntologyWidget, an easy

  4. Where to Publish and Find Ontologies? A Survey of Ontology Libraries

    PubMed Central

    d'Aquin, Mathieu; Noy, Natalya F.

    2011-01-01

    One of the key promises of the Semantic Web is its potential to enable and facilitate data interoperability. The ability of data providers and application developers to share and reuse ontologies is a critical component of this data interoperability: if different applications and data sources use the same set of well defined terms for describing their domain and data, it will be much easier for them to “talk” to one another. Ontology libraries are the systems that collect ontologies from different sources and facilitate the tasks of finding, exploring, and using these ontologies. Thus ontology libraries can serve as a link in enabling diverse users and applications to discover, evaluate, use, and publish ontologies. In this paper, we provide a survey of the growing—and surprisingly diverse—landscape of ontology libraries. We highlight how the varying scope and intended use of the libraries a ects their features, content, and potential exploitation in applications. From reviewing eleven ontology libraries, we identify a core set of questions that ontology practitioners and users should consider in choosing an ontology library for finding ontologies or publishing their own. We also discuss the research challenges that emerge from this survey, for the developers of ontology libraries to address. PMID:22408576

  5. NCBO Ontology Recommender 2.0: an enhanced approach for biomedical ontology recommendation.

    PubMed

    Martínez-Romero, Marcos; Jonquet, Clement; O'Connor, Martin J; Graybeal, John; Pazos, Alejandro; Musen, Mark A

    2017-06-07

    Ontologies and controlled terminologies have become increasingly important in biomedical research. Researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability across disparate datasets. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a novel recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four different criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies to use together. It also can be customized to fit the needs of different ontology recommendation scenarios. Ontology Recommender 2.0 suggests relevant ontologies for annotating biomedical text data. It combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability

  6. ontologyX: a suite of R packages for working with ontological data.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2017-04-01

    Ontologies are widely used constructs for encoding and analyzing biomedical data, but the absence of simple and consistent tools has made exploratory and systematic analysis of such data unnecessarily difficult. Here we present three packages which aim to simplify such procedures. The ontologyIndex package enables arbitrary ontologies to be read into R, supports representation of ontological objects by native R types, and provides a parsimonius set of performant functions for querying ontologies. ontologySimilarity and ontologyPlot extend ontologyIndex with functionality for straightforward visualization and semantic similarity calculations, including statistical routines. ontologyIndex , ontologyPlot and ontologySimilarity are all available on the Comprehensive R Archive Network website under https://cran.r-project.org/web/packages/ . Daniel Greene dg333@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Ontological simulation for educational process organisation in a higher educational institution

    NASA Astrophysics Data System (ADS)

    Berestneva, O. G.; Marukhina, O. V.; Bahvalov, S. V.; Fisochenko, O. N.; Berestneva, E. V.

    2017-01-01

    Following the new-generation standards is needed to form a task list connected with planning and organizing of an academic process, structure and content formation of degree programmes. Even when planning the structure and content of an academic process, one meets some problems concerning the necessity to assess the correlation between degree programmes and demands of educational and professional standards and to consider today’s job-market and students demands. The paper presents examples of ontological simulations for solutions of organizing educational process problems in a higher educational institution and gives descriptions of model development. The article presents two examples: ontological simulation when planning an educational process in a higher educational institution and ontological simulation for describing competences of an IT-specialist. The paper sets a conclusion about ontology application perceptiveness for formalization of educational process organization in a higher educational institution.

  8. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  9. The role of architecture and ontology for interoperability.

    PubMed

    Blobel, Bernd; González, Carolina; Oemig, Frank; Lopéz, Diego; Nykänen, Pirkko; Ruotsalainen, Pekka

    2010-01-01

    Turning from organization-centric to process-controlled or even to personalized approaches, advanced healthcare settings have to meet special interoperability challenges. eHealth and pHealth solutions must assure interoperability between actors cooperating to achieve common business objectives. Hereby, the interoperability chain also includes individually tailored technical systems, but also sensors and actuators. For enabling corresponding pervasive computing and even autonomic computing, individualized systems have to be based on an architecture framework covering many domains, scientifically managed by specialized disciplines using their specific ontologies in a formalized way. Therefore, interoperability has to advance from a communication protocol to an architecture-centric approach mastering ontology coordination challenges.

  10. The Proteasix Ontology.

    PubMed

    Arguello Casteleiro, Mercedes; Klein, Julie; Stevens, Robert

    2016-06-04

    The Proteasix Ontology (PxO) is an ontology that supports the Proteasix tool; an open-source peptide-centric tool that can be used to predict automatically and in a large-scale fashion in silico the proteases involved in the generation of proteolytic cleavage fragments (peptides) The PxO re-uses parts of the Protein Ontology, the three Gene Ontology sub-ontologies, the Chemical Entities of Biological Interest Ontology, the Sequence Ontology and bespoke extensions to the PxO in support of a series of roles: 1. To describe the known proteases and their target cleaveage sites. 2. To enable the description of proteolytic cleaveage fragments as the outputs of observed and predicted proteolysis. 3. To use knowledge about the function, species and cellular location of a protease and protein substrate to support the prioritisation of proteases in observed and predicted proteolysis. The PxO is designed to describe the biological underpinnings of the generation of peptides. The peptide-centric PxO seeks to support the Proteasix tool by separating domain knowledge from the operational knowledge used in protease prediction by Proteasix and to support the confirmation of its analyses and results. The Proteasix Ontology may be found at: http://bioportal.bioontology.org/ontologies/PXO . This ontology is free and open for use by everyone.

  11. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    PubMed Central

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  12. Toxicology ontology perspectives.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  13. CSEO – the Cigarette Smoke Exposure Ontology

    PubMed Central

    2014-01-01

    Background In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. Results The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. Conclusions The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science. PMID:25093069

  14. SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

    PubMed Central

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240

  15. SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.

    PubMed

    Youn, Seongwook

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  16. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability.

    PubMed

    Diehl, Alexander D; Meehan, Terrence F; Bradford, Yvonne M; Brush, Matthew H; Dahdul, Wasila M; Dougall, David S; He, Yongqun; Osumi-Sutherland, David; Ruttenberg, Alan; Sarntivijai, Sirarat; Van Slyke, Ceri E; Vasilevsky, Nicole A; Haendel, Melissa A; Blake, Judith A; Mungall, Christopher J

    2016-07-04

    The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the

  17. Alignment of ICNP® 2.0 ontology and a proposed INCP® Brazilian ontology.

    PubMed

    Carvalho, Carina Maris Gaspar; Cubas, Marcia Regina; Malucelli, Andreia; Nóbrega, Maria Miriam Lima da

    2014-01-01

    to align the International Classification for Nursing Practice (ICNP®) Version 2.0 ontology and a proposed INCP® Brazilian Ontology. document-based, exploratory and descriptive study, the empirical basis of which was provided by the ICNP® 2.0 Ontology and the INCP® Brazilian Ontology. The ontology alignment was performed using a computer tool with algorithms to identify correspondences between concepts, which were organized and analyzed according to their presence or absence, their names, and their sibling, parent, and child classes. there were 2,682 concepts present in the ICNP® 2.0 Ontology that were missing in the Brazilian Ontology; 717 concepts present in the Brazilian Ontology were missing in the ICNP® 2.0 Ontology; and there were 215 pairs of matching concepts. it is believed that the correspondences identified in this study might contribute to the interoperability between the representations of nursing practice elements in ICNP®, thus allowing the standardization of nursing records based on this classification system.

  18. 78 FR 17993 - Industry Advisory Panel; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... DEPARTMENT OF STATE [Public Notice 8253] Industry Advisory Panel; Notice of Open Meeting The... meeting is open to the public and will be held in the Loy Henderson Conference Room of the U.S. Department... will meet once annually in a session that will be open to the public. Entry to the building is...

  19. Using a Foundational Ontology for Reengineering a Software Enterprise Ontology

    NASA Astrophysics Data System (ADS)

    Perini Barcellos, Monalessa; de Almeida Falbo, Ricardo

    The knowledge about software organizations is considerably relevant to software engineers. The use of a common vocabulary for representing the useful knowledge about software organizations involved in software projects is important for several reasons, such as to support knowledge reuse and to allow communication and interoperability between tools. Domain ontologies can be used to define a common vocabulary for sharing and reuse of knowledge about some domain. Foundational ontologies can be used for evaluating and re-designing domain ontologies, giving to these real-world semantics. This paper presents an evaluating of a Software Enterprise Ontology that was reengineered using the Unified Foundation Ontology (UFO) as basis.

  20. Developing a semantically rich ontology for the biobank-administration domain

    PubMed Central

    2013-01-01

    with perfect accuracy. In addition, we began development of a mapping from the ontology to pre-existing biobank data structures commonly used in the U.S. Conclusions In conclusion, we created OMIABIS, an ontology of biobank administration. We found that basing its development on pre-existing resources to meet the BBMRI use cases resulted in a biobanking ontology that is re-useable in environments other than BBMRI. Our ontology retrieved all true positives and no false positives when queried according to the competency questions we derived from the BBMRI use cases. Mapping OMIABIS to a data structure used for biospecimen collections in a medical center in Little Rock, AR showed adequate coverage of our ontology. PMID:24103726

  1. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability

    DOE PAGES

    Diehl, Alexander D.; Meehan, Terrence F.; Bradford, Yvonne M.; ...

    2016-07-04

    Background: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. Construction and content: Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologiesmore » in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. Utility and discussion: The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. Conclusions: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the

  2. 75 FR 11225 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting...) Government/Industry Aeronautical Charting Forum (ACF 10-01) to discuss informational content and design of... Aeronautical Charting Forum to be held from April 27 through April 29, 2010 from 8:30 a.m. to 5 p.m. at the Air...

  3. Ontology Research and Development. Part 2 - A Review of Ontology Mapping and Evolving.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Reviews ontology research and development, specifically ontology mapping and evolving. Highlights include an overview of ontology mapping projects; maintaining existing ontologies and extending them as appropriate when new information or knowledge is acquired; and ontology's role and the future of the World Wide Web, or Semantic Web. (Contains 55…

  4. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.

    PubMed

    Cui, Licong

    Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance

  5. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability.

    PubMed

    He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison

    2018-01-12

    Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

  6. Combining machine learning and ontological data handling for multi-source classification of nature conservation areas

    NASA Astrophysics Data System (ADS)

    Moran, Niklas; Nieland, Simon; Tintrup gen. Suntrup, Gregor; Kleinschmit, Birgit

    2017-02-01

    Manual field surveys for nature conservation management are expensive and time-consuming and could be supplemented and streamlined by using Remote Sensing (RS). RS is critical to meet requirements of existing laws such as the EU Habitats Directive (HabDir) and more importantly to meet future challenges. The full potential of RS has yet to be harnessed as different nomenclatures and procedures hinder interoperability, comparison and provenance. Therefore, automated tools are needed to use RS data to produce comparable, empirical data outputs that lend themselves to data discovery and provenance. These issues are addressed by a novel, semi-automatic ontology-based classification method that uses machine learning algorithms and Web Ontology Language (OWL) ontologies that yields traceable, interoperable and observation-based classification outputs. The method was tested on European Union Nature Information System (EUNIS) grasslands in Rheinland-Palatinate, Germany. The developed methodology is a first step in developing observation-based ontologies in the field of nature conservation. The tests show promising results for the determination of the grassland indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity and 76% for wetness.

  7. Ontology Research and Development. Part 1-A Review of Ontology Generation.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Discusses the role of ontology in knowledge representation, including enabling content-based access, interoperability, communications, and new levels of service on the Semantic Web; reviews current ontology generation studies and projects as well as problems facing such research; and discusses ontology mapping, information extraction, natural…

  8. Simple Ontology Format (SOFT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokine, Alexandre

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layout system using customized styles.

  9. Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Rebholz-Schuhmann, Dietrich; Schofield, Paul N; Gkoutos, Georgios V

    2011-01-01

    Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.

  10. Utilizing a structural meta-ontology for family-based quality assurance of the BioPortal ontologies.

    PubMed

    Ochs, Christopher; He, Zhe; Zheng, Ling; Geller, James; Perl, Yehoshua; Hripcsak, George; Musen, Mark A

    2016-06-01

    An Abstraction Network is a compact summary of an ontology's structure and content. In previous research, we showed that Abstraction Networks support quality assurance (QA) of biomedical ontologies. The development of an Abstraction Network and its associated QA methodologies, however, is a labor-intensive process that previously was applicable only to one ontology at a time. To improve the efficiency of the Abstraction-Network-based QA methodology, we introduced a QA framework that uses uniform Abstraction Network derivation techniques and QA methodologies that are applicable to whole families of structurally similar ontologies. For the family-based framework to be successful, it is necessary to develop a method for classifying ontologies into structurally similar families. We now describe a structural meta-ontology that classifies ontologies according to certain structural features that are commonly used in the modeling of ontologies (e.g., object properties) and that are important for Abstraction Network derivation. Each class of the structural meta-ontology represents a family of ontologies with identical structural features, indicating which types of Abstraction Networks and QA methodologies are potentially applicable to all of the ontologies in the family. We derive a collection of 81 families, corresponding to classes of the structural meta-ontology, that enable a flexible, streamlined family-based QA methodology, offering multiple choices for classifying an ontology. The structure of 373 ontologies from the NCBO BioPortal is analyzed and each ontology is classified into multiple families modeled by the structural meta-ontology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. GPCR ontology: development and application of a G protein-coupled receptor pharmacology knowledge framework.

    PubMed

    Przydzial, Magdalena J; Bhhatarai, Barun; Koleti, Amar; Vempati, Uma; Schürer, Stephan C

    2013-12-15

    Novel tools need to be developed to help scientists analyze large amounts of available screening data with the goal to identify entry points for the development of novel chemical probes and drugs. As the largest class of drug targets, G protein-coupled receptors (GPCRs) remain of particular interest and are pursued by numerous academic and industrial research projects. We report the first GPCR ontology to facilitate integration and aggregation of GPCR-targeting drugs and demonstrate its application to classify and analyze a large subset of the PubChem database. The GPCR ontology, based on previously reported BioAssay Ontology, depicts available pharmacological, biochemical and physiological profiles of GPCRs and their ligands. The novelty of the GPCR ontology lies in the use of diverse experimental datasets linked by a model to formally define these concepts. Using a reasoning system, GPCR ontology offers potential for knowledge-based classification of individuals (such as small molecules) as a function of the data. The GPCR ontology is available at http://www.bioassayontology.org/bao_gpcr and the National Center for Biomedical Ontologies Web site.

  12. Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations.

    PubMed

    Agapito, Giuseppe; Milano, Marianna; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-01-01

    Gene Ontology (GO) is a structured repository of concepts (GO Terms) that are associated to one or more gene products through a process referred to as annotation. The analysis of annotated data is an important opportunity for bioinformatics. There are different approaches of analysis, among those, the use of association rules (AR) which provides useful knowledge, discovering biologically relevant associations between terms of GO, not previously known. In a previous work, we introduced GO-WAR (Gene Ontology-based Weighted Association Rules), a methodology for extracting weighted association rules from ontology-based annotated datasets. We here adapt the GO-WAR algorithm to mine cross-ontology association rules, i.e., rules that involve GO terms present in the three sub-ontologies of GO. We conduct a deep performance evaluation of GO-WAR by mining publicly available GO annotated datasets, showing how GO-WAR outperforms current state of the art approaches.

  13. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities

    PubMed Central

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J.; Gómez-Rodríguez, Alma

    2014-01-01

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment. PMID:25494353

  14. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities.

    PubMed

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J; Gómez-Rodríguez, Alma

    2014-12-08

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment.

  15. An open annotation ontology for science on web 3.0.

    PubMed

    Ciccarese, Paolo; Ocana, Marco; Garcia Castro, Leyla Jael; Das, Sudeshna; Clark, Tim

    2011-05-17

    There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables "stand-off" or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO's Google Code page: http://code.google.com/p/annotation-ontology/ . The Annotation Ontology meets critical requirements for

  16. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects.

    PubMed

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A; Noy, Natalya F

    2013-05-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product . In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.

  17. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects

    PubMed Central

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A.; Noy, Natalya F.

    2013-01-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches. PMID:24311994

  18. Biomedical ontologies: toward scientific debate.

    PubMed

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  19. Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Gailly, Frederik; Poels, Geert

    Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.

  20. A top-level ontology of functions and its application in the Open Biomedical Ontologies.

    PubMed

    Burek, Patryk; Hoehndorf, Robert; Loebe, Frank; Visagie, Johann; Herre, Heinrich; Kelso, Janet

    2006-07-15

    A clear understanding of functions in biology is a key component in accurate modelling of molecular, cellular and organismal biology. Using the existing biomedical ontologies it has been impossible to capture the complexity of the community's knowledge about biological functions. We present here a top-level ontological framework for representing knowledge about biological functions. This framework lends greater accuracy, power and expressiveness to biomedical ontologies by providing a means to capture existing functional knowledge in a more formal manner. An initial major application of the ontology of functions is the provision of a principled way in which to curate functional knowledge and annotations in biomedical ontologies. Further potential applications include the facilitation of ontology interoperability and automated reasoning. A major advantage of the proposed implementation is that it is an extension to existing biomedical ontologies, and can be applied without substantial changes to these domain ontologies. The Ontology of Functions (OF) can be downloaded in OWL format from http://onto.eva.mpg.de/. Additionally, a UML profile and supplementary information and guides for using the OF can be accessed from the same website.

  1. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration

    PubMed Central

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-01

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503

  2. The ontology life cycle: Integrated tools for editing, publishing, peer review, and evolution of ontologies

    PubMed Central

    Noy, Natalya; Tudorache, Tania; Nyulas, Csongor; Musen, Mark

    2010-01-01

    Ontologies have become a critical component of many applications in biomedical informatics. However, the landscape of the ontology tools today is largely fragmented, with independent tools for ontology editing, publishing, and peer review: users develop an ontology in an ontology editor, such as Protégé; and publish it on a Web server or in an ontology library, such as BioPortal, in order to share it with the community; they use the tools provided by the library or mailing lists and bug trackers to collect feedback from users. In this paper, we present a set of tools that bring the ontology editing and publishing closer together, in an integrated platform for the entire ontology lifecycle. This integration streamlines the workflow for collaborative development and increases integration between the ontologies themselves through the reuse of terms. PMID:21347039

  3. 78 FR 12251 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework... the notice of public meeting and availability of the Framework Document pertaining to the development of energy conservation standards for commercial and industrial fan and blower equipment published on...

  4. An Ontology for the Discovery of Time-series Data

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Choi, Y.; Piasecki, M.; Zaslavsky, I.; Valentine, D. W.; Whitenack, T.

    2010-12-01

    An ontology was developed to enable a single-dimensional keyword search of time-series data collected at fixed points, such as stream gage records, water quality observations, or repeated biological measurements collected at fixed stations. The hierarchical levels were developed to allow navigation from general concepts to more specific ones, terminating in a leaf concept, which is the specific property measured. For example, the concept “nutrient” has child concepts of “nitrogen”, “phosphorus”, and “carbon”; each of these children concepts are then broken into the actual constituent measured (e.g., “total kjeldahl nitrogen” or “nitrate + nitrite”). In this way, a non-expert user can find all nutrients containing nitrogen without knowing all the species measured, but an expert user can go immediately to the compound of interest. In addition, a property, such as dissolved silica, can appear as a leaf concept under nutrients or weathering products. This flexibility allows users from various disciplines to find properties of interest. The ontology can be viewed at http://water.sdsc.edu/hiscentral/startree.aspx. Properties measured by various data publishers (e.g., universities and government agencies) are tagged with leaf concepts from this ontology. A discovery client, HydroDesktop, creates a search request by defining the spatial and temporal extent of interest and a keyword taken from the discovery ontology. Metadata returned from the catalog describes the time series which meet the specified search criteria. This ontology is considered to be an initial description of physical, chemical and biological properties measured in water and suspended sediment. Future plans call for creating a moderated forum for the scientific community to add to and to modify this ontology. Further information for the Hydrologic Information Systems project, of which this is a part, is available at http://his.cuahsi.org.

  5. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.

    PubMed

    Harrow, Ian; Jiménez-Ruiz, Ernesto; Splendiani, Andrea; Romacker, Martin; Woollard, Peter; Markel, Scott; Alam-Faruque, Yasmin; Koch, Martin; Malone, James; Waaler, Arild

    2017-12-02

    The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.

  6. The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology.

    PubMed

    Thacker, Robert W; Díaz, Maria Cristina; Kerner, Adeline; Vignes-Lebbe, Régine; Segerdell, Erik; Haendel, Melissa A; Mungall, Christopher J

    2014-01-01

    Porifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards. The Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/. By standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.

  7. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration.

    PubMed

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-04

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns.

    PubMed

    Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; He, Yongqun

    2015-01-01

    It is time-consuming to build an ontology with many terms and axioms. Thus it is desired to automate the process of ontology development. Ontology Design Patterns (ODPs) provide a reusable solution to solve a recurrent modeling problem in the context of ontology engineering. Because ontology terms often follow specific ODPs, the Ontology for Biomedical Investigations (OBI) developers proposed a Quick Term Templates (QTTs) process targeted at generating new ontology classes following the same pattern, using term templates in a spreadsheet format. Inspired by the ODPs and QTTs, the Ontorat web application is developed to automatically generate new ontology terms, annotations of terms, and logical axioms based on a specific ODP(s). The inputs of an Ontorat execution include axiom expression settings, an input data file, ID generation settings, and a target ontology (optional). The axiom expression settings can be saved as a predesigned Ontorat setting format text file for reuse. The input data file is generated based on a template file created by a specific ODP (text or Excel format). Ontorat is an efficient tool for ontology expansion. Different use cases are described. For example, Ontorat was applied to automatically generate over 1,000 Japan RIKEN cell line cell terms with both logical axioms and rich annotation axioms in the Cell Line Ontology (CLO). Approximately 800 licensed animal vaccines were represented and annotated in the Vaccine Ontology (VO) by Ontorat. The OBI team used Ontorat to add assay and device terms required by ENCODE project. Ontorat was also used to add missing annotations to all existing Biobank specific terms in the Biobank Ontology. A collection of ODPs and templates with examples are provided on the Ontorat website and can be reused to facilitate ontology development. With ever increasing ontology development and applications, Ontorat provides a timely platform for generating and annotating a large number of ontology terms by following

  9. Food for thought ... A toxicology ontology roadmap.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    Foreign substances can have a dramatic and unpredictable adverse effect on human health. In the development of new therapeutic agents, it is essential that the potential adverse effects of all candidates be identified as early as possible. The field of predictive toxicology strives to profile the potential for adverse effects of novel chemical substances before they occur, both with traditional in vivo experimental approaches and increasingly through the development of in vitro and computational methods which can supplement and reduce the need for animal testing. To be maximally effective, the field needs access to the largest possible knowledge base of previous toxicology findings, and such results need to be made available in such a fashion so as to be interoperable, comparable, and compatible with standard toolkits. This necessitates the development of open, public, computable, and standardized toxicology vocabularies and ontologies so as to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. Such ontology development will support data management, model building, integrated analysis, validation and reporting, including regulatory reporting and alternative testing submission requirements as required by guidelines such as the REACH legislation, leading to new scientific advances in a mechanistically-based predictive toxicology. Numerous existing ontology and standards initiatives can contribute to the creation of a toxicology ontology supporting the needs of predictive toxicology and risk assessment. Additionally, new ontologies are needed to satisfy practical use cases and scenarios where gaps currently exist. Developing and integrating these resources will require a well-coordinated and sustained effort across numerous stakeholders engaged in a public-private partnership. In this communication, we set out a roadmap for the development of an integrated toxicology ontology

  10. Ontology for Structural Geology

    NASA Astrophysics Data System (ADS)

    Zhong, J.; McGuinness, D. L.; Antonellini, M.; Aydin, A.

    2005-12-01

    We present our comprehensive process-based ontology for Structural Geology. This ontology covers major domain concepts, especially those related to geological structure type, properties of these structures, their deformation mechanisms, and the factors that control which deformation mechanisms may operate under certain conditions. The structure class in our ontology extends the planetary structure class of the SWEET ontology by providing additional information required for use in the structural geology domain. The classification followed the architectures of structures, such as structure element, set, zone, and pattern. Our deformation mechanism class does not have a corresponding class in SWEET. In our ontology, it has two subclasses, Macro- and Micro- mechanisms. The property class and the factor class are both subclasses of the physical property class of SWEET. Relationships among those concepts are also included in our ontology. For example, the class structure element has properties associated with the deformation mechanisms, descriptive properties such as geometry and morphology, and physical properties of rocks such as strength, compressibility, seismic velocity, porosity, and permeability. The subject matter expertise was provided by domain experts. Additionally, we surveyed text books and journal articles with the goal of evaluating the completeness and correctness of the domain terms and we used logical reasoners and validators to eliminate logical problems. We propose that our ontology provides a reusable extension to the SWEET ontology that may be of value to scientists and lay people interested in structural geology issues. We have also implemented prototype services that utilize this ontology for search.

  11. An Ontology of Therapies

    NASA Astrophysics Data System (ADS)

    Eccher, Claudio; Ferro, Antonella; Pisanelli, Domenico M.

    Ontologies are the essential glue to build interoperable systems and the talk of the day in the medical community. In this paper we present the ontology of medical therapies developed in the course of the Oncocure project, aimed at building a guideline based decision support integrated with a legacy Electronic Patient Record (EPR). The therapy ontology is based upon the DOLCE top level ontology. It is our opinion that our ontology, besides constituting a model capturing the precise meaning of therapy-related concepts, can serve for several practical purposes: interfacing automatic support systems with a legacy EPR, allowing the automatic data analysis, and controlling possible medical errors made during EPR data input.

  12. An open annotation ontology for science on web 3.0

    PubMed Central

    2011-01-01

    Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors. PMID:21624159

  13. Towards Agile Ontology Maintenance

    NASA Astrophysics Data System (ADS)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  14. Using ontologies to improve semantic interoperability in health data.

    PubMed

    Liyanage, Harshana; Krause, Paul; De Lusignan, Simon

    2015-07-10

    The present-day health data ecosystem comprises a wide array of complex heterogeneous data sources. A wide range of clinical, health care, social and other clinically relevant information are stored in these data sources. These data exist either as structured data or as free-text. These data are generally individual person-based records, but social care data are generally case based and less formal data sources may be shared by groups. The structured data may be organised in a proprietary way or be coded using one-of-many coding, classification or terminologies that have often evolved in isolation and designed to meet the needs of the context that they have been developed. This has resulted in a wide range of semantic interoperability issues that make the integration of data held on these different systems changing. We present semantic interoperability challenges and describe a classification of these. We propose a four-step process and a toolkit for those wishing to work more ontologically, progressing from the identification and specification of concepts to validating a final ontology. The four steps are: (1) the identification and specification of data sources; (2) the conceptualisation of semantic meaning; (3) defining to what extent routine data can be used as a measure of the process or outcome of care required in a particular study or audit and (4) the formalisation and validation of the final ontology. The toolkit is an extension of a previous schema created to formalise the development of ontologies related to chronic disease management. The extensions are focused on facilitating rapid building of ontologies for time-critical research studies.

  15. Benchmarking Ontologies: Bigger or Better?

    PubMed Central

    Yao, Lixia; Divoli, Anna; Mayzus, Ilya; Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2) seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them. PMID:21249231

  16. Assessment Applications of Ontologies.

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Niemi, David; Bewley, William L.

    This paper discusses the use of ontologies and their applications to assessment. An ontology provides a shared and common understanding of a domain that can be communicated among people and computational systems. The ontology captures one or more experts' conceptual representation of a domain expressed in terms of concepts and the relationships…

  17. Survey on Ontology Mapping

    NASA Astrophysics Data System (ADS)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  18. A Method for Evaluating and Standardizing Ontologies

    ERIC Educational Resources Information Center

    Seyed, Ali Patrice

    2012-01-01

    The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…

  19. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications.

    PubMed

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and "partOf" relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba.

  20. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications

    PubMed Central

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and “partOf” relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba PMID

  1. Surreptitious, Evolving and Participative Ontology Development: An End-User Oriented Ontology Development Methodology

    ERIC Educational Resources Information Center

    Bachore, Zelalem

    2012-01-01

    Ontology not only is considered to be the backbone of the semantic web but also plays a significant role in distributed and heterogeneous information systems. However, ontology still faces limited application and adoption to date. One of the major problems is that prevailing engineering-oriented methodologies for building ontologies do not…

  2. Building a drug ontology based on RxNorm and other sources.

    PubMed

    Hanna, Josh; Joseph, Eric; Brochhausen, Mathias; Hogan, William R

    2013-12-18

    We built the Drug Ontology (DrOn) because we required correct and consistent drug information in a format for use in semantic web applications, and no existing resource met this requirement or could be altered to meet it. One of the obstacles we faced when creating DrOn was the difficulty in reusing drug information from existing sources. The primary external source we have used at this stage in DrOn's development is RxNorm, a standard drug terminology curated by the National Library of Medicine (NLM). To build DrOn, we (1) mined data from historical releases of RxNorm and (2) mapped many RxNorm entities to Chemical Entities of Biological Interest (ChEBI) classes, pulling relevant information from ChEBI while doing so. We built DrOn in a modular fashion to facilitate simpler extension and development of the ontology and to allow reasoning and construction to scale. Classes derived from each source are serialized in separate modules. For example, the classes in DrOn that are programmatically derived from RxNorm are stored in a separate module and subsumed by classes in a manually-curated, realist, upper-level module of DrOn with terms such as 'clinical drug role', 'tablet', 'capsule', etc. DrOn is a modular, extensible ontology of drug products, their ingredients, and their biological activity that avoids many of the fundamental flaws found in other, similar artifacts and meets the requirements of our comparative-effectiveness research use-case.

  3. An Ontology for Software Engineering Education

    ERIC Educational Resources Information Center

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  4. Ontology-Oriented Programming for Biomedical Informatics.

    PubMed

    Lamy, Jean-Baptiste

    2016-01-01

    Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.

  5. Ontology for Vector Surveillance and Management

    PubMed Central

    LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage

  6. Ontology for vector surveillance and management.

    PubMed

    Lozano-Fuentes, Saul; Bandyopadhyay, Aritra; Cowell, Lindsay G; Goldfain, Albert; Eisen, Lars

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an "umbrella" for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a "term tree" to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through

  7. The National Center for Biomedical Ontology

    PubMed Central

    Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry

    2011-01-01

    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data. PMID:22081220

  8. Evaluation of research in biomedical ontologies

    PubMed Central

    Dumontier, Michel; Gkoutos, Georgios V.

    2013-01-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research. PMID:22962340

  9. Solar-Terrestrial Ontology Development

    NASA Astrophysics Data System (ADS)

    McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.

    2005-12-01

    The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).

  10. Inferring ontology graph structures using OWL reasoning.

    PubMed

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  11. Modulated evaluation metrics for drug-based ontologies.

    PubMed

    Amith, Muhammad; Tao, Cui

    2017-04-24

    Research for ontology evaluation is scarce. If biomedical ontological datasets and knowledgebases are to be widely used, there needs to be quality control and evaluation for the content and structure of the ontology. This paper introduces how to effectively utilize a semiotic-inspired approach to ontology evaluation, specifically towards drug-related ontologies hosted on the National Center for Biomedical Ontology BioPortal. Using the semiotic-based evaluation framework for drug-based ontologies, we adjusted the quality metrics based on the semiotic features of drug ontologies. Then, we compared the quality scores before and after tailoring. The scores revealed a more precise measurement and a closer distribution compared to the before-tailoring. The results of this study reveal that a tailored semiotic evaluation produced a more meaningful and accurate assessment of drug-based ontologies, lending to the possible usefulness of semiotics in ontology evaluation.

  12. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    PubMed

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully

  13. The Ontology for Biomedical Investigations.

    PubMed

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  14. The Ontology for Biomedical Investigations

    PubMed Central

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  15. Ontology Design Patterns as Interfaces (invited)

    NASA Astrophysics Data System (ADS)

    Janowicz, K.

    2015-12-01

    In recent years ontology design patterns (ODP) have gained popularity among knowledge engineers. ODPs are modular but self-contained building blocks that are reusable and extendible. They minimize the amount of ontological commitments and thereby are easier to integrate than large monolithic ontologies. Typically, patterns are not directly used to annotate data or to model certain domain problems but are combined and extended to form data and purpose-driven local ontologies that serve the needs of specific applications or communities. By relying on a common set of patterns these local ontologies can be aligned to improve interoperability and enable federated queries without enforcing a top-down model of the domain. In previous work, we introduced ontological views as layer on top of ontology design patterns to ease the reuse, combination, and integration of patterns. While the literature distinguishes multiple types of patterns, e.g., content patterns or logical patterns, we propose to use them as interfaces here to guide the development of ontology-driven systems.

  16. Ontology-aided Data Fusion (Invited)

    NASA Astrophysics Data System (ADS)

    Raskin, R.

    2009-12-01

    An ontology provides semantic descriptions that are analogous to those in a dictionary, but are readable by both computers and humans. A data or service is semantically annotated when it is formally associated with elements of an ontology. The ESIP Federation Semantic Web Cluster has developed a set of ontologies to describe datatypes and data services that can be used to support automated data fusion. The service ontology includes descriptors of the service function, its inputs/outputs, and its invocation method. The datatype descriptors resemble typical metadata fields (data format, data model, data structure, originator, etc.) augmented with descriptions of the meaning of the data. These ontologies, in combination with the SWEET science ontology, enable a registered data fusion service to be chained together and implemented that is scientifically meaningful based on machine understanding of the associated data and services. This presentation describes initial results and experiences in automated data fusion.

  17. Geo-Ontologies Are Scale Dependent

    NASA Astrophysics Data System (ADS)

    Frank, A. U.

    2009-04-01

    Philosophers aim at a single ontology that describes "how the world is"; for information systems we aim only at ontologies that describe a conceptualization of reality (Guarino 1995; Gruber 2005). A conceptualization of the world implies a spatial and temporal scale: what are the phenomena, the objects and the speed of their change? Few articles (Reitsma et al. 2003) seem to address that an ontology is scale specific (but many articles indicate that ontologies are scale-free in another sense namely that they are scale free in the link densities between concepts). The scale in the conceptualization can be linked to the observation process. The extent of the support of the physical observation instrument and the sampling theorem indicate what level of detail we find in a dataset. These rules apply for remote sensing or sensor networks alike. An ontology of observations must include scale or level of detail, and concepts derived from observations should carry this relation forward. A simple example: in high resolution remote sensing image agricultural plots and roads between them are shown, at lower resolution, only the plots and not the roads are visible. This gives two ontologies, one with plots and roads, the other with plots only. Note that a neighborhood relation in the two different ontologies also yield different results. References Gruber, T. (2005). "TagOntology - a way to agree on the semantics of tagging data." Retrieved October 29, 2005., from http://tomgruber.org/writing/tagontology-tagcapm-talk.pdf. Guarino, N. (1995). "Formal Ontology, Conceptual Analysis and Knowledge Representation." International Journal of Human and Computer Studies. Special Issue on Formal Ontology, Conceptual Analysis and Knowledge Representation, edited by N. Guarino and R. Poli 43(5/6). Reitsma, F. and T. Bittner (2003). Process, Hierarchy, and Scale. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information ScienceInternational Conference

  18. Evaluation of need for ontologies to manage domain content for the Reportable Conditions Knowledge Management System.

    PubMed

    Eilbeck, Karen L; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J

    2014-01-01

    The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed.

  19. IDOMAL: an ontology for malaria.

    PubMed

    Topalis, Pantelis; Mitraka, Elvira; Bujila, Ioana; Deligianni, Elena; Dialynas, Emmanuel; Siden-Kiamos, Inga; Troye-Blomberg, Marita; Louis, Christos

    2010-08-10

    Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures. The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort. IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.

  20. Predicting the Extension of Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Couto, Francisco M.

    2012-01-01

    Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of the art change capturing methods. In addition we have identified several issues concerning prediction of ontology evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the ontology that need extension. PMID:23028267

  1. Deep learning meets ontologies: experiments to anchor the cardiovascular disease ontology in the biomedical literature.

    PubMed

    Arguello Casteleiro, Mercedes; Demetriou, George; Read, Warren; Fernandez Prieto, Maria Jesus; Maroto, Nava; Maseda Fernandez, Diego; Nenadic, Goran; Klein, Julie; Keane, John; Stevens, Robert

    2018-04-12

    Automatic identification of term variants or acceptable alternative free-text terms for gene and protein names from the millions of biomedical publications is a challenging task. Ontologies, such as the Cardiovascular Disease Ontology (CVDO), capture domain knowledge in a computational form and can provide context for gene/protein names as written in the literature. This study investigates: 1) if word embeddings from Deep Learning algorithms can provide a list of term variants for a given gene/protein of interest; and 2) if biological knowledge from the CVDO can improve such a list without modifying the word embeddings created. We have manually annotated 105 gene/protein names from 25 PubMed titles/abstracts and mapped them to 79 unique UniProtKB entries corresponding to gene and protein classes from the CVDO. Using more than 14 M PubMed articles (titles and available abstracts), word embeddings were generated with CBOW and Skip-gram. We setup two experiments for a synonym detection task, each with four raters, and 3672 pairs of terms (target term and candidate term) from the word embeddings created. For Experiment I, the target terms for 64 UniProtKB entries were those that appear in the titles/abstracts; Experiment II involves 63 UniProtKB entries and the target terms are a combination of terms from PubMed titles/abstracts with terms (i.e. increased context) from the CVDO protein class expressions and labels. In Experiment I, Skip-gram finds term variants (full and/or partial) for 89% of the 64 UniProtKB entries, while CBOW finds term variants for 67%. In Experiment II (with the aid of the CVDO), Skip-gram finds term variants for 95% of the 63 UniProtKB entries, while CBOW finds term variants for 78%. Combining the results of both experiments, Skip-gram finds term variants for 97% of the 79 UniProtKB entries, while CBOW finds term variants for 81%. This study shows performance improvements for both CBOW and Skip-gram on a gene/protein synonym detection task by

  2. Gene Ontology Consortium: going forward

    PubMed Central

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  3. Constructive Ontology Engineering

    ERIC Educational Resources Information Center

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  4. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    PubMed

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  5. Building a drug ontology based on RxNorm and other sources

    PubMed Central

    2013-01-01

    Background We built the Drug Ontology (DrOn) because we required correct and consistent drug information in a format for use in semantic web applications, and no existing resource met this requirement or could be altered to meet it. One of the obstacles we faced when creating DrOn was the difficulty in reusing drug information from existing sources. The primary external source we have used at this stage in DrOn’s development is RxNorm, a standard drug terminology curated by the National Library of Medicine (NLM). To build DrOn, we (1) mined data from historical releases of RxNorm and (2) mapped many RxNorm entities to Chemical Entities of Biological Interest (ChEBI) classes, pulling relevant information from ChEBI while doing so. Results We built DrOn in a modular fashion to facilitate simpler extension and development of the ontology and to allow reasoning and construction to scale. Classes derived from each source are serialized in separate modules. For example, the classes in DrOn that are programmatically derived from RxNorm are stored in a separate module and subsumed by classes in a manually-curated, realist, upper-level module of DrOn with terms such as 'clinical drug role’, 'tablet’, 'capsule’, etc. Conclusions DrOn is a modular, extensible ontology of drug products, their ingredients, and their biological activity that avoids many of the fundamental flaws found in other, similar artifacts and meets the requirements of our comparative-effectiveness research use-case. PMID:24345026

  6. Ontology Mappings to Improve Learning Resource Search

    ERIC Educational Resources Information Center

    Gasevic, Dragan; Hatala, Marek

    2006-01-01

    This paper proposes an ontology mapping-based framework that allows searching for learning resources using multiple ontologies. The present applications of ontologies in e-learning use various ontologies (eg, domain, curriculum, context), but they do not give a solution on how to interoperate e-learning systems based on different ontologies. The…

  7. The Orthology Ontology: development and applications.

    PubMed

    Fernández-Breis, Jesualdo Tomás; Chiba, Hirokazu; Legaz-García, María Del Carmen; Uchiyama, Ikuo

    2016-06-04

    Computational comparative analysis of multiple genomes provides valuable opportunities to biomedical research. In particular, orthology analysis can play a central role in comparative genomics; it guides establishing evolutionary relations among genes of organisms and allows functional inference of gene products. However, the wide variations in current orthology databases necessitate the research toward the shareability of the content that is generated by different tools and stored in different structures. Exchanging the content with other research communities requires making the meaning of the content explicit. The need for a common ontology has led to the creation of the Orthology Ontology (ORTH) following the best practices in ontology construction. Here, we describe our model and major entities of the ontology that is implemented in the Web Ontology Language (OWL), followed by the assessment of the quality of the ontology and the application of the ORTH to existing orthology datasets. This shareable ontology enables the possibility to develop Linked Orthology Datasets and a meta-predictor of orthology through standardization for the representation of orthology databases. The ORTH is freely available in OWL format to all users at http://purl.org/net/orth . The Orthology Ontology can serve as a framework for the semantic standardization of orthology content and it will contribute to a better exploitation of orthology resources in biomedical research. The results demonstrate the feasibility of developing shareable datasets using this ontology. Further applications will maximize the usefulness of this ontology.

  8. Gene Ontology Consortium: going forward.

    PubMed

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. 78 FR 7306 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY: Office of Energy Efficiency and Renewable... and industrial fans and blowers. To inform interested parties and to facilitate this process, DOE has...

  10. 78 FR 7304 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy... industrial pumps. To inform interested parties and to facilitate this process, DOE has prepared a Framework...

  11. Ontologies as integrative tools for plant science

    PubMed Central

    Walls, Ramona L.; Athreya, Balaji; Cooper, Laurel; Elser, Justin; Gandolfo, Maria A.; Jaiswal, Pankaj; Mungall, Christopher J.; Preece, Justin; Rensing, Stefan; Smith, Barry; Stevenson, Dennis W.

    2012-01-01

    Premise of the study Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. Methods This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. Conclusions Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. PMID:22847540

  12. OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4

    PubMed Central

    2012-01-01

    Background Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. Objective We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. Implementation In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. Results The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future

  13. OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4.

    PubMed

    Schober, Daniel; Tudose, Ilinca; Svatek, Vojtech; Boeker, Martin

    2012-09-21

    Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. The OntoCheck plugin facilitates

  14. Evaluation of need for ontologies to manage domain content for the Reportable Conditions Knowledge Management System

    PubMed Central

    Eilbeck, Karen L.; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J.

    2014-01-01

    The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed. PMID:25954354

  15. Development of the system of reactor thermophysical data on the basis of ontological modelling

    NASA Astrophysics Data System (ADS)

    Chusov, I. A.; Kirillov, P. L.; Bogoslovskaya, G. P.; Yunusov, L. K.; Obysov, N. A.; Novikov, G. E.; Pronyaev, V. G.; Erkimbaev, A. O.; Zitserman, V. Yu; Kobzev, G. A.; Trachtengerts, M. S.; Fokin, L. R.

    2017-11-01

    Compilation and processing of the thermophysical data was always an important task for the nuclear industry. The difficulties of the present stage of this activity are explained by sharp increase of the data volume and the number of new materials, as well as by the increased requirements to the reliability of the data used in the nuclear industry. General trend in the fields with predominantly orientation at the work with data (material science, chemistry and others) consists in the transition to a common infrastructure with integration of separate databases, Web-portals and other resources. This infrastructure provides the interoperability, the procedures of the data exchange, storage and dissemination. Key elements of this infrastructure is a domain-specific ontology, which provides a single information model and dictionary for semantic definitions. Formalizing the subject area, the ontology adapts the definitions for the different database schemes and provides the integration of heterogeneous data. The important property to be inherent for ontologies is a possibility of permanent expanding of new definitions, e.g. list of materials and properties. The expansion of the thermophysical data ontology at the reactor materials includes the creation of taxonomic dictionaries for thermophysical properties; the models for data presentation and their uncertainties; the inclusion along with the parameters of the state, some additional factors, such as the material porosity, the burnup rate, the irradiation rate and others; axiomatics of the properties applicable to the given class of materials.

  16. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  17. From Classification to Epilepsy Ontology and Informatics

    PubMed Central

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-01-01

    Summary The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multi-dimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the NIH/NINDS Common Data Elements, the ICD systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multi-modal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  18. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    ERIC Educational Resources Information Center

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  19. A Foundational Approach to Designing Geoscience Ontologies

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-05-01

    E-science systems are increasingly deploying ontologies to aid online geoscience research. Geoscience ontologies are typically constructed independently by isolated individuals or groups who tend to follow few design principles. This limits the usability of the ontologies due to conceptualizations that are vague, conflicting, or narrow. Advances in foundational ontologies and formal engineering approaches offer promising solutions, but these advanced techniques have had limited application in the geosciences. This paper develops a design approach for geoscience ontologies by extending aspects of the DOLCE foundational ontology and the OntoClean method. Geoscience examples will be presented to demonstrate the feasibility of the approach.

  20. Ontologies to improve chronic disease management research and quality improvement studies - a conceptual framework.

    PubMed

    Liyanage, Harshana; Liaw, Siaw-Teng; Kuziemsky, Craig; de Lusignan, Simon

    2013-01-01

    There is a growing burden of chronic non-communicable disease (CNCD). Managing CNCDs requires use of multiple sources of health and social care data, and information about coordination and outcomes. Many people with CNCDs have multimorbidity. Problems with data quality exacerbate challenges in measuring quality and health outcomes especially where there is multimorbidity. We have developed an ontological toolkit to support research and quality improvement studies in CNCDs using heterogeneous data, with diabetes mellitus as an exemplar. International experts held a workshop meeting, with follow up discussions and consensus building exercise. We generated conceptual statements about problems with a CNCD that ontologies might support, and a generic reference model. There were varying degrees of consensus. We propose a set of tools, and a four step method: (1) Identification and specification of data sources; (2) Conceptualisation of semantic meaning; (3) How available routine data can be used as a measure of the process or outcome of care; (4) Formalisation and validation of the final ontology.

  1. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    PubMed

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  2. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    PubMed Central

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers

  3. Evaluating the Good Ontology Design Guideline (GoodOD) with the Ontology Quality Requirements and Evaluation Method and Metrics (OQuaRE)

    PubMed Central

    Duque-Ramos, Astrid; Boeker, Martin; Jansen, Ludger; Schulz, Stefan; Iniesta, Miguela; Fernández-Breis, Jesualdo Tomás

    2014-01-01

    Objective To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively. Background In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies. Methods In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data. Results Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics. Conclusion The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies. PMID:25148262

  4. Evaluating the Good Ontology Design Guideline (GoodOD) with the ontology quality requirements and evaluation method and metrics (OQuaRE).

    PubMed

    Duque-Ramos, Astrid; Boeker, Martin; Jansen, Ludger; Schulz, Stefan; Iniesta, Miguela; Fernández-Breis, Jesualdo Tomás

    2014-01-01

    To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively. In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies. In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data. Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics. The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies.

  5. Ontology and medical diagnosis.

    PubMed

    Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita

    2012-03-01

    Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.

  6. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Biswarup; Tyler, Brett M.; Setubal, Joao

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed amore » website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.« less

  7. A UML profile for the OBO relation ontology

    PubMed Central

    2012-01-01

    Background Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions The use of an established and well-known graphical language in the development of biomedical ontologies provides a more

  8. Proposed actions are no actions: re-modeling an ontology design pattern with a realist top-level ontology.

    PubMed

    Seddig-Raufie, Djamila; Jansen, Ludger; Schober, Daniel; Boeker, Martin; Grewe, Niels; Schulz, Stefan

    2012-09-21

    Ontology Design Patterns (ODPs) are representational artifacts devised to offer solutions for recurring ontology design problems. They promise to enhance the ontology building process in terms of flexibility, re-usability and expansion, and to make the result of ontology engineering more predictable. In this paper, we analyze ODP repositories and investigate their relation with upper-level ontologies. In particular, we compare the BioTop upper ontology to the Action ODP from the NeOn an ODP repository. In view of the differences in the respective approaches, we investigate whether the Action ODP can be embedded into BioTop. We demonstrate that this requires re-interpreting the meaning of classes of the NeOn Action ODP in the light of the precepts of realist ontologies. As a result, the re-design required clarifying the ontological commitment of the ODP classes by assigning them to top-level categories. Thus, ambiguous definitions are avoided. Classes of real entities are clearly distinguished from classes of information artifacts. The proposed approach avoids the commitment to the existence of unclear future entities which underlies the NeOn Action ODP. Our re-design is parsimonious in the sense that existing BioTop content proved to be largely sufficient to define the different types of actions and plans. The proposed model demonstrates that an expressive upper-level ontology provides enough resources and expressivity to represent even complex ODPs, here shown with the different flavors of Action as proposed in the NeOn ODP. The advantage of ODP inclusion into a top-level ontology is the given predetermined dependency of each class, an existing backbone structure and well-defined relations. Our comparison shows that the use of some ODPs is more likely to cause problems for ontology developers, rather than to guide them. Besides the structural properties, the explanation of classification results were particularly hard to grasp for 'self-sufficient' ODPs as

  9. Formal ontologies in biomedical knowledge representation.

    PubMed

    Schulz, S; Jansen, L

    2013-01-01

    Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.

  10. GO(vis), a gene ontology visualization tool based on multi-dimensional values.

    PubMed

    Ning, Zi; Jiang, Zhenran

    2010-05-01

    Most of gene product similarity measurements concentrate on the information content of Gene Ontology (GO) terms or use a path-based similarity between GO terms, which may ignore other important information contained in the structure of the ontology. In our study, we integrate different GO similarity measure approaches to analyze the functional relationship of genes and gene products with a new triangle-based visualization tool called GO(Vis). The purpose of this tool is to demonstrate the effect of three important information factors when measuring the similarity between gene products. One advantage of this tool is that its important ratio can be adjusted to meet different measuring requirements according to the biological knowledge of each factor. The experimental results demonstrate that GO(Vis) can display diagrams of the functional relationship for gene products effectively.

  11. Mapping between the OBO and OWL ontology languages.

    PubMed

    Tirmizi, Syed Hamid; Aitken, Stuart; Moreira, Dilvan A; Mungall, Chris; Sequeda, Juan; Shah, Nigam H; Miranker, Daniel P

    2011-03-07

    Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner.

  12. Mapping between the OBO and OWL ontology languages

    PubMed Central

    2011-01-01

    Background Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. Results We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Conclusions Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner

  13. Vaccine and Drug Ontology Studies (VDOS 2014).

    PubMed

    Tao, Cui; He, Yongqun; Arabandi, Sivaram

    2016-01-01

    The "Vaccine and Drug Ontology Studies" (VDOS) international workshop series focuses on vaccine- and drug-related ontology modeling and applications. Drugs and vaccines have been critical to prevent and treat human and animal diseases. Work in both (drugs and vaccines) areas is closely related - from preclinical research and development to manufacturing, clinical trials, government approval and regulation, and post-licensure usage surveillance and monitoring. Over the last decade, tremendous efforts have been made in the biomedical ontology community to ontologically represent various areas associated with vaccines and drugs - extending existing clinical terminology systems such as SNOMED, RxNorm, NDF-RT, and MedDRA, developing new models such as the Vaccine Ontology (VO) and Ontology of Adverse Events (OAE), vernacular medical terminologies such as the Consumer Health Vocabulary (CHV). The VDOS workshop series provides a platform for discussing innovative solutions as well as the challenges in the development and applications of biomedical ontologies for representing and analyzing drugs and vaccines, their administration, host immune responses, adverse events, and other related topics. The five full-length papers included in this 2014 thematic issue focus on two main themes: (i) General vaccine/drug-related ontology development and exploration, and (ii) Interaction and network-related ontology studies.

  14. Learning Resources Organization Using Ontological Framework

    NASA Astrophysics Data System (ADS)

    Gavrilova, Tatiana; Gorovoy, Vladimir; Petrashen, Elena

    The paper describes the ontological approach to the knowledge structuring for the e-learning portal design as it turns out to be efficient and relevant to current domain conditions. It is primarily based on the visual ontology-based description of the content of the learning materials and this helps to provide productive and personalized access to these materials. The experience of ontology developing for Knowledge Engineering coursetersburg State University is discussed and “OntolingeWiki” tool for creating ontology-based e-learning portals is described.

  15. Impact of ontology evolution on functional analyses.

    PubMed

    Groß, Anika; Hartung, Michael; Prüfer, Kay; Kelso, Janet; Rahm, Erhard

    2012-10-15

    Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. Here, we investigate to what degree modifications of the Gene Ontology (GO) impact these statistical analyses for both experimental and simulated data. The analysis is based on new measures for the stability of result sets and considers different ontology and annotation changes. Our results show that past changes in the GO are non-uniformly distributed over different branches of the ontology. Considering the semantic relatedness of significant categories in analysis results allows a more realistic stability assessment for functional enrichment studies. We observe that the results of term-enrichment analyses tend to be surprisingly stable despite changes in ontology and annotation.

  16. Semi-automated ontology generation within OBO-Edit.

    PubMed

    Wächter, Thomas; Schroeder, Michael

    2010-06-15

    Ontologies and taxonomies have proven highly beneficial for biocuration. The Open Biomedical Ontology (OBO) Foundry alone lists over 90 ontologies mainly built with OBO-Edit. Creating and maintaining such ontologies is a labour-intensive, difficult, manual process. Automating parts of it is of great importance for the further development of ontologies and for biocuration. We have developed the Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG), a system which supports the creation and extension of OBO ontologies by semi-automatically generating terms, definitions and parent-child relations from text in PubMed, the web and PDF repositories. DOG4DAG is seamlessly integrated into OBO-Edit. It generates terms by identifying statistically significant noun phrases in text. For definitions and parent-child relations it employs pattern-based web searches. We systematically evaluate each generation step using manually validated benchmarks. The term generation leads to high-quality terms also found in manually created ontologies. Up to 78% of definitions are valid and up to 54% of child-ancestor relations can be retrieved. There is no other validated system that achieves comparable results. By combining the prediction of high-quality terms, definitions and parent-child relations with the ontology editor OBO-Edit we contribute a thoroughly validated tool for all OBO ontology engineers. DOG4DAG is available within OBO-Edit 2.1 at http://www.oboedit.org. Supplementary data are available at Bioinformatics online.

  17. Ontology-Based Multiple Choice Question Generation

    PubMed Central

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework. PMID:24982937

  18. A Gene Ontology Tutorial in Python.

    PubMed

    Vesztrocy, Alex Warwick; Dessimoz, Christophe

    2017-01-01

    This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .

  19. Tutorial on Protein Ontology Resources

    PubMed Central

    Arighi, Cecilia; Drabkin, Harold; Christie, Karen R.; Ross, Karen; Natale, Darren

    2017-01-01

    The Protein Ontology (PRO) is the reference ontology for proteins in the Open Biomedical Ontologies (OBO) foundry and consists of three sub-ontologies representing protein classes of homologous genes, proteoforms (e.g., splice isoforms, sequence variants, and post-translationally modified forms), and protein complexes. PRO defines classes of proteins and protein complexes, both species-specific and species non-specific, and indicates their relationships in a hierarchical framework, supporting accurate protein annotation at the appropriate level of granularity, analyses of protein conservation across species, and semantic reasoning. In this first section of this chapter, we describe the PRO framework including categories of PRO terms and the relationship of PRO to other ontologies and protein resources. Next, we provide a tutorial about the PRO website (proconsortium.org) where users can browse and search the PRO hierarchy, view reports on individual PRO terms, and visualize relationships among PRO terms in a hierarchical table view, a multiple sequence alignment view, and a Cytoscape network view. Finally, we describe several examples illustrating the unique and rich information available in PRO. PMID:28150233

  20. Research on Extension of Sparql Ontology Query Language Considering the Computation of Indoor Spatial Relations

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.

    2015-05-01

    A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.

  1. Ontology method for 3DGIS modeling

    NASA Astrophysics Data System (ADS)

    Sun, Min; Chen, Jun

    2006-10-01

    Data modeling is a baffling problem in 3DGIS, no satisfied solution has been provided until today, reason come from various sides. In this paper, a new solution named "Ontology method" is proposed. GIS traditional modeling method mainly focus on geometrical modeling, i.e., try to abstract geometry primitives for objects representation, this kind modeling method show it's awkward in 3DGIS modeling process. Ontology method begins modeling from establishing a set of ontology with different levels. The essential difference of this method is to swap the position of 'spatial data' and 'attribute data' in 2DGIS modeling process for 3DGIS modeling. Ontology method has great advantages in many sides, a system based on ontology is easy to realize interoperation for communication and data mining for knowledge deduction, in addition has many other advantages.

  2. Model Driven Engineering with Ontology Technologies

    NASA Astrophysics Data System (ADS)

    Staab, Steffen; Walter, Tobias; Gröner, Gerd; Parreiras, Fernando Silva

    Ontologies constitute formal models of some aspect of the world that may be used for drawing interesting logical conclusions even for large models. Software models capture relevant characteristics of a software artifact to be developed, yet, most often these software models have limited formal semantics, or the underlying (often graphical) software language varies from case to case in a way that makes it hard if not impossible to fix its semantics. In this contribution, we survey the use of ontology technologies for software modeling in order to carry over advantages from ontology technologies to the software modeling domain. It will turn out that ontology-based metamodels constitute a core means for exploiting expressive ontology reasoning in the software modeling domain while remaining flexible enough to accommodate varying needs of software modelers.

  3. A UML profile for the OBO relation ontology.

    PubMed

    Guardia, Gabriela D A; Vêncio, Ricardo Z N; de Farias, Cléver R G

    2012-01-01

    Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain.

  4. Pitfalls of Ontology in Medicine.

    PubMed

    Aldosari, Bakheet; Alanazi, Abdullah; Househ, Mowafa

    2017-01-01

    Much research has been done in the last few decades in clinical research, medicine, life sciences, etc. leading to an exponential increase in the generation of data. Managing this vast information not only requires integration of the data, but also a means to analyze, relate, and retrieve it. Ontology, in the field of medicine, describes the concepts of medical terminologies and the relation between them, thus, enabling the sharing of medical knowledge. Ontology-based analyses are associated with a risk that errors in modeling may deteriorate the results' quality. Identifying flawed practices or anomalies in ontologies is a crucial issue to be addressed by researchers. In this paper, we review the negative sides of ontology in the field of medicine. Our study results show that ontologies are perceived as a mere tool to represent medical knowledge, thus relying more on the computer science-based understanding of medical terms. While this approach may be sufficient for data entry systems, in which the users merely need to browse the hierarchy and select relevant terms, it may not suffice the real-world scenario of dealing with complex patient records, which are not only grammatically complex, but also are sometimes documented in many native languages. In conclusion, more research is required in identifying poor practices and anomalies in the development of ontologies by computer scientists within the field of medicine.

  5. An ontology for major histocompatibility restriction.

    PubMed

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  6. Ontological Modeling for Integrated Spacecraft Analysis

    NASA Technical Reports Server (NTRS)

    Wicks, Erica

    2011-01-01

    Current spacecraft work as a cooperative group of a number of subsystems. Each of these requiresmodeling software for development, testing, and prediction. It is the goal of my team to create anoverarching software architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the discrete subsystems' models. Such a plan has been attempted in the past, and has failed due to the excessive scope of the project. Our goal in this version of ISCA is to use new resources to reduce the scope of the project, including using ontological models to help link the internal interfaces of subsystems' models with the ISCA architecture.I have created an ontology of functions specific to the modeling system of the navigation system of a spacecraft. The resulting ontology not only links, at an architectural level, language specificinstantiations of the modeling system's code, but also is web-viewable and can act as a documentation standard. This ontology is proof of the concept that ontological modeling can aid in the integration necessary for ISCA to work, and can act as the prototype for future ISCA ontologies.

  7. Tackling the challenges of matching biomedical ontologies.

    PubMed

    Faria, Daniel; Pesquita, Catia; Mott, Isabela; Martins, Catarina; Couto, Francisco M; Cruz, Isabel F

    2018-01-15

    Biomedical ontologies pose several challenges to ontology matching due both to the complexity of the biomedical domain and to the characteristics of the ontologies themselves. The biomedical tracks in the Ontology Matching Evaluation Initiative (OAEI) have spurred the development of matching systems able to tackle these challenges, and benchmarked their general performance. In this study, we dissect the strategies employed by matching systems to tackle the challenges of matching biomedical ontologies and gauge the impact of the challenges themselves on matching performance, using the AgreementMakerLight (AML) system as the platform for this study. We demonstrate that the linear complexity of the hash-based searching strategy implemented by most state-of-the-art ontology matching systems is essential for matching large biomedical ontologies efficiently. We show that accounting for all lexical annotations (e.g., labels and synonyms) in biomedical ontologies leads to a substantial improvement in F-measure over using only the primary name, and that accounting for the reliability of different types of annotations generally also leads to a marked improvement. Finally, we show that cross-references are a reliable source of information and that, when using biomedical ontologies as background knowledge, it is generally more reliable to use them as mediators than to perform lexical expansion. We anticipate that translating traditional matching algorithms to the hash-based searching paradigm will be a critical direction for the future development of the field. Improving the evaluation carried out in the biomedical tracks of the OAEI will also be important, as without proper reference alignments there is only so much that can be ascertained about matching systems or strategies. Nevertheless, it is clear that, to tackle the various challenges posed by biomedical ontologies, ontology matching systems must be able to efficiently combine multiple strategies into a mature matching

  8. Semantic similarity between ontologies at different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingpeng; Haglin, David J.

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea viamore » studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.« less

  9. 78 FR 26544 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework... the development of energy conservation standards for commercial and industrial fan and blower equipment published on February 1, 2013, is extended to June 3, 2013. DATES: The comment period for the...

  10. The ACGT Master Ontology and its applications – Towards an ontology-driven cancer research and management system

    PubMed Central

    Brochhausen, Mathias; Spear, Andrew D.; Cocos, Cristian; Weiler, Gabriele; Martín, Luis; Anguita, Alberto; Stenzhorn, Holger; Daskalaki, Evangelia; Schera, Fatima; Schwarz, Ulf; Sfakianakis, Stelios; Kiefer, Stephan; Dörr, Martin; Graf, Norbert; Tsiknakis, Manolis

    2017-01-01

    Objective This paper introduces the objectives, methods and results of ontology development in the EU co-funded project Advancing Clinico-genomic Trials on Cancer – Open Grid Services for Improving Medical Knowledge Discovery (ACGT). While the available data in the life sciences has recently grown both in amount and quality, the full exploitation of it is being hindered by the use of different underlying technologies, coding systems, category schemes and reporting methods on the part of different research groups. The goal of the ACGT project is to contribute to the resolution of these problems by developing an ontology-driven, semantic grid services infrastructure that will enable efficient execution of discovery-driven scientific workflows in the context of multi-centric, post-genomic clinical trials. The focus of the present paper is the ACGT Master Ontology (MO). Methods ACGT project researchers undertook a systematic review of existing domain and upper-level ontologies, as well as of existing ontology design software, implementation methods, and end-user interfaces. This included the careful study of best practices, design principles and evaluation methods for ontology design, maintenance, implementation, and versioning, as well as for use on the part of domain experts and clinicians. Results To date, the results of the ACGT project include (i) the development of a master ontology (the ACGT-MO) based on clearly defined principles of ontology development and evaluation; (ii) the development of a technical infra-structure (the ACGT Platform) that implements the ACGT-MO utilizing independent tools, components and resources that have been developed based on open architectural standards, and which includes an application updating and evolving the ontology efficiently in response to end-user needs; and (iii) the development of an Ontology-based Trial Management Application (ObTiMA) that integrates the ACGT-MO into the design process of clinical trials in order to

  11. Ontology Mapping Neural Network: An Approach to Learning and Inferring Correspondences among Ontologies

    ERIC Educational Resources Information Center

    Peng, Yefei

    2010-01-01

    An ontology mapping neural network (OMNN) is proposed in order to learn and infer correspondences among ontologies. It extends the Identical Elements Neural Network (IENN)'s ability to represent and map complex relationships. The learning dynamics of simultaneous (interlaced) training of similar tasks interact at the shared connections of the…

  12. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.

    PubMed

    Manda, Prashanti; McCarthy, Fiona; Bridges, Susan M

    2013-10-01

    The Gene Ontology (GO), a set of three sub-ontologies, is one of the most popular bio-ontologies used for describing gene product characteristics. GO annotation data containing terms from multiple sub-ontologies and at different levels in the ontologies is an important source of implicit relationships between terms from the three sub-ontologies. Data mining techniques such as association rule mining that are tailored to mine from multiple ontologies at multiple levels of abstraction are required for effective knowledge discovery from GO annotation data. We present a data mining approach, Multi-ontology data mining at All Levels (MOAL) that uses the structure and relationships of the GO to mine multi-ontology multi-level association rules. We introduce two interestingness measures: Multi-ontology Support (MOSupport) and Multi-ontology Confidence (MOConfidence) customized to evaluate multi-ontology multi-level association rules. We also describe a variety of post-processing strategies for pruning uninteresting rules. We use publicly available GO annotation data to demonstrate our methods with respect to two applications (1) the discovery of co-annotation suggestions and (2) the discovery of new cross-ontology relationships. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bio-ontologies: current trends and future directions

    PubMed Central

    Bodenreider, Olivier; Stevens, Robert

    2006-01-01

    In recent years, as a knowledge-based discipline, bioinformatics has been made more computationally amenable. After its beginnings as a technology advocated by computer scientists to overcome problems of heterogeneity, ontology has been taken up by biologists themselves as a means to consistently annotate features from genotype to phenotype. In medical informatics, artifacts called ontologies have been used for a longer period of time to produce controlled lexicons for coding schemes. In this article, we review the current position in ontologies and how they have become institutionalized within biomedicine. As the field has matured, the much older philosophical aspects of ontology have come into play. With this and the institutionalization of ontology has come greater formality. We review this trend and what benefits it might bring to ontologies and their use within biomedicine. PMID:16899495

  14. An Ontological Informatics Framework for Pharmaceutical Product Development: Milling as a Case Study

    ERIC Educational Resources Information Center

    Akkisetty, Venkata Sai Pavan Kumar

    2009-01-01

    Pharmaceutical product development is an expensive, time consuming and information intensive process. Providing the right information at the right time is of great importance in pharmaceutical industry. To achieve this, knowledge management is the approach to deal with the humongous quantity of information. Ontological approach proposed in Venkat…

  15. Scientific Digital Libraries, Interoperability, and Ontologies

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.

    2009-01-01

    Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.

  16. OntoStudyEdit: a new approach for ontology-based representation and management of metadata in clinical and epidemiological research.

    PubMed

    Uciteli, Alexandr; Herre, Heinrich

    2015-01-01

    The specification of metadata in clinical and epidemiological study projects absorbs significant expense. The validity and quality of the collected data depend heavily on the precise and semantical correct representation of their metadata. In various research organizations, which are planning and coordinating studies, the required metadata are specified differently, depending on many conditions, e.g., on the used study management software. The latter does not always meet the needs of a particular research organization, e.g., with respect to the relevant metadata attributes and structuring possibilities. The objective of the research, set forth in this paper, is the development of a new approach for ontology-based representation and management of metadata. The basic features of this approach are demonstrated by the software tool OntoStudyEdit (OSE). The OSE is designed and developed according to the three ontology method. This method for developing software is based on the interactions of three different kinds of ontologies: a task ontology, a domain ontology and a top-level ontology. The OSE can be easily adapted to different requirements, and it supports an ontologically founded representation and efficient management of metadata. The metadata specifications can by imported from various sources; they can be edited with the OSE, and they can be exported in/to several formats, which are used, e.g., by different study management software. Advantages of this approach are the adaptability of the OSE by integrating suitable domain ontologies, the ontological specification of mappings between the import/export formats and the DO, the specification of the study metadata in a uniform manner and its reuse in different research projects, and an intuitive data entry for non-expert users.

  17. BiOSS: A system for biomedical ontology selection.

    PubMed

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. An ontological case base engineering methodology for diabetes management.

    PubMed

    El-Sappagh, Shaker H; El-Masri, Samir; Elmogy, Mohammed; Riad, A M; Saddik, Basema

    2014-08-01

    Ontology engineering covers issues related to ontology development and use. In Case Based Reasoning (CBR) system, ontology plays two main roles; the first as case base and the second as domain ontology. However, the ontology engineering literature does not provide adequate guidance on how to build, evaluate, and maintain ontologies. This paper proposes an ontology engineering methodology to generate case bases in the medical domain. It mainly focuses on the research of case representation in the form of ontology to support the case semantic retrieval and enhance all knowledge intensive CBR processes. A case study on diabetes diagnosis case base will be provided to evaluate the proposed methodology.

  19. The mouse-human anatomy ontology mapping project.

    PubMed

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  20. History Matters: Incremental Ontology Reasoning Using Modules

    NASA Astrophysics Data System (ADS)

    Cuenca Grau, Bernardo; Halaschek-Wiener, Christian; Kazakov, Yevgeny

    The development of ontologies involves continuous but relatively small modifications. Existing ontology reasoners, however, do not take advantage of the similarities between different versions of an ontology. In this paper, we propose a technique for incremental reasoning—that is, reasoning that reuses information obtained from previous versions of an ontology—based on the notion of a module. Our technique does not depend on a particular reasoning calculus and thus can be used in combination with any reasoner. We have applied our results to incremental classification of OWL DL ontologies and found significant improvement over regular classification time on a set of real-world ontologies.

  1. Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study

    PubMed Central

    Dameron, Olivier; Bettembourg, Charles; Le Meur, Nolwenn

    2013-01-01

    Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable. PMID:24146805

  2. Feature-opinion pair identification of product reviews in Chinese: a domain ontology modeling method

    NASA Astrophysics Data System (ADS)

    Yin, Pei; Wang, Hongwei; Guo, Kaiqiang

    2013-03-01

    With the emergence of the new economy based on social media, a great amount of consumer feedback on particular products are conveyed through wide-spreading product online reviews, making opinion mining a growing interest for both academia and industry. According to the characteristic mode of expression in Chinese, this research proposes an ontology-based linguistic model to identify the basic appraisal expression in Chinese product reviews-"feature-opinion pair (FOP)." The product-oriented domain ontology is constructed automatically at first, then algorithms to identify FOP are designed by mapping product features and opinions to the conceptual space of the domain ontology, and finally comparative experiments are conducted to evaluate the model. Experimental results indicate that the performance of the proposed approach in this paper is efficient in obtaining a more accurate result compared to the state-of-art algorithms. Furthermore, through identifying and analyzing FOPs, the unstructured product reviews are converted into structured and machine-sensible expression, which provides valuable information for business application. This paper contributes to the related research in opinion mining by developing a solid foundation for further sentiment analysis at a fine-grained level and proposing a general way for automatic ontology construction.

  3. Use artificial neural network to align biological ontologies.

    PubMed

    Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim

    2008-09-16

    Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.

  4. Exploring biomedical ontology mappings with graph theory methods.

    PubMed

    Kocbek, Simon; Kim, Jin-Dong

    2017-01-01

    In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4.

  5. Pattern of Duplicate Presentations at National Hematology-Oncology Meetings: Influence of the Pharmaceutical Industry.

    PubMed

    Ramchandren, Radhakrishnan; Schiffer, Charles A

    2016-03-01

    The major large US hematology-oncology meetings sponsored by the American Society of Hematology (ASH) and American Society of Clinical Oncology (ASCO) have specific guidelines in place discouraging submission of scientific information presented previously at other meetings. Nonetheless, duplicate submissions are frequent. The incidence and motivations for duplicate hematologic presentations and the influence of the pharmaceutical industry on this process have not been thoroughly analyzed. Therefore, were viewed four consecutive ASH and ASCO meetings to assess the frequency of duplicate abstract presentations. All abstracts presented at ASCO2010 in the area of malignant hematology were compared with abstracts from ASCO and ASH 2009 and ASH 2010, and funding sources were reviewed. More than half (54%) of all abstracts submitted to ASCO 2010 acknowledged pharmaceutical company support. Almost one third (31%) of ASCO 2010 abstracts were resubmitted in the 2-year time period, and it was notable that a high fraction (75%) of these duplicate abstracts had pharmaceutical industry sponsorship, compared with 42% of the abstracts that were submitted only once. Despite current guidelines prohibiting duplicate abstract presentation, a substantial proportion (31%) of abstracts at large international hematology-oncology meetings are duplicative, with potential negative consequences. In addition, a disproportionate percentage of the duplicate abstracts rely on pharmaceutical industry support (75%), suggesting that marketing strategies may be a motivation for some of these repetitive submissions.

  6. An empirical analysis of ontology reuse in BioPortal.

    PubMed

    Ochs, Christopher; Perl, Yehoshua; Geller, James; Arabandi, Sivaram; Tudorache, Tania; Musen, Mark A

    2017-07-01

    Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The SWAN Scientific Discourse Ontology

    PubMed Central

    Ciccarese, Paolo; Wu, Elizabeth; Kinoshita, June; Wong, Gwendolyn T.; Ocana, Marco; Ruttenberg, Alan

    2015-01-01

    SWAN (Semantic Web Application in Neuromedicine) is a project to construct a semantically-organized, community-curated, distributed knowledge base of Theory, Evidence, and Discussion in biomedicine. Unlike Wikipedia and similar approaches, SWAN’s ontology is designed to represent and foreground both harmonizing and contradictory assertions within the total community discourse. Releases of the software, content and ontology will be initially by and for the Alzheimer Disease (AD) research community, with the obvious potential for extension into other disease research areas. The Alzheimer Research Forum, a 4,000-member web community for AD researchers, will host SWAN’s initial public release, currently scheduled for late 2007. This paper presents the current version of SWAN’s ontology of scientific discourse and presents our current thinking about its evolution including extensions and alignment with related communities, projects and ontologies. PMID:18583197

  8. Unintended consequences of existential quantifications in biomedical ontologies

    PubMed Central

    2011-01-01

    Background The Open Biomedical Ontologies (OBO) Foundry is a collection of freely available ontologically structured controlled vocabularies in the biomedical domain. Most of them are disseminated via both the OBO Flatfile Format and the semantic web format Web Ontology Language (OWL), which draws upon formal logic. Based on the interpretations underlying OWL description logics (OWL-DL) semantics, we scrutinize the OWL-DL releases of OBO ontologies to assess whether their logical axioms correspond to the meaning intended by their authors. Results We analyzed ontologies and ontology cross products available via the OBO Foundry site http://www.obofoundry.org for existential restrictions (someValuesFrom), from which we examined a random sample of 2,836 clauses. According to a rating done by four experts, 23% of all existential restrictions in OBO Foundry candidate ontologies are suspicious (Cohens' κ = 0.78). We found a smaller proportion of existential restrictions in OBO Foundry cross products are suspicious, but in this case an accurate quantitative judgment is not possible due to a low inter-rater agreement (κ = 0.07). We identified several typical modeling problems, for which satisfactory ontology design patterns based on OWL-DL were proposed. We further describe several usability issues with OBO ontologies, including the lack of ontological commitment for several common terms, and the proliferation of domain-specific relations. Conclusions The current OWL releases of OBO Foundry (and Foundry candidate) ontologies contain numerous assertions which do not properly describe the underlying biological reality, or are ambiguous and difficult to interpret. The solution is a better anchoring in upper ontologies and a restriction to relatively few, well defined relation types with given domain and range constraints. PMID:22115278

  9. Towards an Ontology for Reef Islands

    NASA Astrophysics Data System (ADS)

    Duce, Stephanie

    Reef islands are complex, dynamic and vulnerable environments with a diverse range of stake holders. Communication and data sharing between these different groups of stake holders is often difficult. An ontology for the reef island domain would improve the understanding of reef island geomorphology and improve communication between stake holders as well as forming a platform from which to move towards interoperability and the application of Information Technology to forecast and monitor these environments. This paper develops a small, prototypical reef island domain ontology, based on informal, natural language relations, aligned to the DOLCE upper-level ontology, for 20 fundamental terms within the domain. A subset of these terms and their relations are discussed in detail. This approach reveals and discusses challenges which must be overcome in the creation of a reef island domain ontology and which could be relevant to other ontologies in dynamic geospatial domains.

  10. Ontological analysis of SNOMED CT.

    PubMed

    Héja, Gergely; Surján, György; Varga, Péter

    2008-10-27

    SNOMED CT is the most comprehensive medical terminology. However, its use for intelligent services based on formal reasoning is questionable. The analysis of the structure of SNOMED CT is based on the formal top-level ontology DOLCE. The analysis revealed several ontological and knowledge-engineering errors, the most important are errors in the hierarchy (mostly from an ontological point of view, but also regarding medical aspects) and the mixing of subsumption relations with other types (mostly 'part of'). The found errors impede formal reasoning. The paper presents a possible way to correct these problems.

  11. Toward a general ontology for digital forensic disciplines.

    PubMed

    Karie, Nickson M; Venter, Hein S

    2014-09-01

    Ontologies are widely used in different disciplines as a technique for representing and reasoning about domain knowledge. However, despite the widespread ontology-related research activities and applications in different disciplines, the development of ontologies and ontology research activities is still wanting in digital forensics. This paper therefore presents the case for establishing an ontology for digital forensic disciplines. Such an ontology would enable better categorization of the digital forensic disciplines, as well as assist in the development of methodologies and specifications that can offer direction in different areas of digital forensics. This includes such areas as professional specialization, certifications, development of digital forensic tools, curricula, and educational materials. In addition, the ontology presented in this paper can be used, for example, to better organize the digital forensic domain knowledge and explicitly describe the discipline's semantics in a common way. Finally, this paper is meant to spark discussions and further research on an internationally agreed ontological distinction of the digital forensic disciplines. Digital forensic disciplines ontology is a novel approach toward organizing the digital forensic domain knowledge and constitutes the main contribution of this paper. © 2014 American Academy of Forensic Sciences.

  12. The MMI Device Ontology: Enabling Sensor Integration

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  13. Agile development of ontologies through conversation

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Bhattal, Amardeep; Preece, Alun D.; de Mel, Geeth

    2016-05-01

    Ontologies and semantic systems are necessarily complex but offer great potential in terms of their ability to fuse information from multiple sources in support of situation awareness. Current approaches do not place the ontologies directly into the hands of the end user in the field but instead hide them away behind traditional applications. We have been experimenting with human-friendly ontologies and conversational interactions to enable non-technical business users to interact with and extend these dynamically. In this paper we outline our approach via a worked example, covering: OWL ontologies, ITA Controlled English, Sensor/mission matching and conversational interactions between human and machine agents.

  14. Matching biomedical ontologies based on formal concept analysis.

    PubMed

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign

  15. Ontological realism: A methodology for coordinated evolution of scientific ontologies.

    PubMed

    Smith, Barry; Ceusters, Werner

    2010-11-15

    Since 2002 we have been testing and refining a methodology for ontology development that is now being used by multiple groups of researchers in different life science domains. Gary Merrill, in a recent paper in this journal, describes some of the reasons why this methodology has been found attractive by researchers in the biological and biomedical sciences. At the same time he assails the methodology on philosophical grounds, focusing specifically on our recommendation that ontologies developed for scientific purposes should be constructed in such a way that their terms are seen as referring to what we call universals or types in reality. As we show, Merrill's critique is of little relevance to the success of our realist project, since it not only reveals no actual errors in our work but also criticizes views on universals that we do not in fact hold. However, it nonetheless provides us with a valuable opportunity to clarify the realist methodology, and to show how some of its principles are being applied, especially within the framework of the OBO (Open Biomedical Ontologies) Foundry initiative.

  16. Ontological realism: A methodology for coordinated evolution of scientific ontologies

    PubMed Central

    Smith, Barry; Ceusters, Werner

    2011-01-01

    Since 2002 we have been testing and refining a methodology for ontology development that is now being used by multiple groups of researchers in different life science domains. Gary Merrill, in a recent paper in this journal, describes some of the reasons why this methodology has been found attractive by researchers in the biological and biomedical sciences. At the same time he assails the methodology on philosophical grounds, focusing specifically on our recommendation that ontologies developed for scientific purposes should be constructed in such a way that their terms are seen as referring to what we call universals or types in reality. As we show, Merrill’s critique is of little relevance to the success of our realist project, since it not only reveals no actual errors in our work but also criticizes views on universals that we do not in fact hold. However, it nonetheless provides us with a valuable opportunity to clarify the realist methodology, and to show how some of its principles are being applied, especially within the framework of the OBO (Open Biomedical Ontologies) Foundry initiative. PMID:21637730

  17. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility

  18. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  19. Ontological engineering versus metaphysics

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  20. Nuclear Nonproliferation Ontology Assessment Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strasburg, Jana D.; Hohimer, Ryan E.

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importancemore » of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.« less

  1. A Knowledge Engineering Approach to Develop Domain Ontology

    ERIC Educational Resources Information Center

    Yun, Hongyan; Xu, Jianliang; Xiong, Jing; Wei, Moji

    2011-01-01

    Ontologies are one of the most popular and widespread means of knowledge representation and reuse. A few research groups have proposed a series of methodologies for developing their own standard ontologies. However, because this ontological construction concerns special fields, there is no standard method to build domain ontology. In this paper,…

  2. XML, Ontologies, and Their Clinical Applications.

    PubMed

    Yu, Chunjiang; Shen, Bairong

    2016-01-01

    The development of information technology has resulted in its penetration into every area of clinical research. Various clinical systems have been developed, which produce increasing volumes of clinical data. However, saving, exchanging, querying, and exploiting these data are challenging issues. The development of Extensible Markup Language (XML) has allowed the generation of flexible information formats to facilitate the electronic sharing of structured data via networks, and it has been used widely for clinical data processing. In particular, XML is very useful in the fields of data standardization, data exchange, and data integration. Moreover, ontologies have been attracting increased attention in various clinical fields in recent years. An ontology is the basic level of a knowledge representation scheme, and various ontology repositories have been developed, such as Gene Ontology and BioPortal. The creation of these standardized repositories greatly facilitates clinical research in related fields. In this chapter, we discuss the basic concepts of XML and ontologies, as well as their clinical applications.

  3. Development of an Ontology for Periodontitis.

    PubMed

    Suzuki, Asami; Takai-Igarashi, Takako; Nakaya, Jun; Tanaka, Hiroshi

    2015-01-01

    In the clinical dentists and periodontal researchers' community, there is an obvious demand for a systems model capable of linking the clinical presentation of periodontitis to underlying molecular knowledge. A computer-readable representation of processes on disease development will give periodontal researchers opportunities to elucidate pathways and mechanisms of periodontitis. An ontology for periodontitis can be a model for integration of large variety of factors relating to a complex disease such as chronic inflammation in different organs accompanied by bone remodeling and immune system disorders, which has recently been referred to as osteoimmunology. Terms characteristic of descriptions related to the onset and progression of periodontitis were manually extracted from 194 review articles and PubMed abstracts by experts in periodontology. We specified all the relations between the extracted terms and constructed them into an ontology for periodontitis. We also investigated matching between classes of our ontology and that of Gene Ontology Biological Process. We developed an ontology for periodontitis called Periodontitis-Ontology (PeriO). The pathological progression of periodontitis is caused by complex, multi-factor interrelationships. PeriO consists of all the required concepts to represent the pathological progression and clinical treatment of periodontitis. The pathological processes were formalized with reference to Basic Formal Ontology and Relation Ontology, which accounts for participants in the processes realized by biological objects such as molecules and cells. We investigated the peculiarity of biological processes observed in pathological progression and medical treatments for the disease in comparison with Gene Ontology Biological Process (GO-BP) annotations. The results indicated that peculiarities of Perio existed in 1) granularity and context dependency of both the conceptualizations, and 2) causality intrinsic to the pathological processes

  4. NanoParticle Ontology for Cancer Nanotechnology Research

    PubMed Central

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  5. FOCIH: Form-Based Ontology Creation and Information Harvesting

    NASA Astrophysics Data System (ADS)

    Tao, Cui; Embley, David W.; Liddle, Stephen W.

    Creating an ontology and populating it with data are both labor-intensive tasks requiring a high degree of expertise. Thus, scaling ontology creation and population to the size of the web in an effort to create a web of data—which some see as Web 3.0—is prohibitive. Can we find ways to streamline these tasks and lower the barrier enough to enable Web 3.0? Toward this end we offer a form-based approach to ontology creation that provides a way to create Web 3.0 ontologies without the need for specialized training. And we offer a way to semi-automatically harvest data from the current web of pages for a Web 3.0 ontology. In addition to harvesting information with respect to an ontology, the approach also annotates web pages and links facts in web pages to ontological concepts, resulting in a web of data superimposed over the web of pages. Experience with our prototype system shows that mappings between conceptual-model-based ontologies and forms are sufficient for creating the kind of ontologies needed for Web 3.0, and experiments with our prototype system show that automatic harvesting, automatic annotation, and automatic superimposition of a web of data over a web of pages work well.

  6. A novel algorithm for fully automated mapping of geospatial ontologies

    NASA Astrophysics Data System (ADS)

    Chaabane, Sana; Jaziri, Wassim

    2018-01-01

    Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.

  7. 76 FR 66040 - Announcement of Meeting To Explore Feasibility of Establishing a NIST/Industry Consortium on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Explore Feasibility of Establishing a NIST/Industry Consortium on ``Concrete Rheology: Enabling Metrology... meeting. SUMMARY: The National Institute of Standards and Technology (NIST) invites interested parties to attend a pre-consortium meeting on November 8, [[Page 66041

  8. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    PubMed

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications.

    PubMed

    Whetzel, Patricia L; Noy, Natalya F; Shah, Nigam H; Alexander, Paul R; Nyulas, Csongor; Tudorache, Tania; Musen, Mark A

    2011-07-01

    The National Center for Biomedical Ontology (NCBO) is one of the National Centers for Biomedical Computing funded under the NIH Roadmap Initiative. Contributing to the national computing infrastructure, NCBO has developed BioPortal, a web portal that provides access to a library of biomedical ontologies and terminologies (http://bioportal.bioontology.org) via the NCBO Web services. BioPortal enables community participation in the evaluation and evolution of ontology content by providing features to add mappings between terms, to add comments linked to specific ontology terms and to provide ontology reviews. The NCBO Web services (http://www.bioontology.org/wiki/index.php/NCBO_REST_services) enable this functionality and provide a uniform mechanism to access ontologies from a variety of knowledge representation formats, such as Web Ontology Language (OWL) and Open Biological and Biomedical Ontologies (OBO) format. The Web services provide multi-layered access to the ontology content, from getting all terms in an ontology to retrieving metadata about a term. Users can easily incorporate the NCBO Web services into software applications to generate semantically aware applications and to facilitate structured data collection.

  10. A Concept Hierarchy Based Ontology Mapping Approach

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Weiru; Bell, David

    Ontology mapping is one of the most important tasks for ontology interoperability and its main aim is to find semantic relationships between entities (i.e. concept, attribute, and relation) of two ontologies. However, most of the current methods only consider one to one (1:1) mappings. In this paper we propose a new approach (CHM: Concept Hierarchy based Mapping approach) which can find simple (1:1) mappings and complex (m:1 or 1:m) mappings simultaneously. First, we propose a new method to represent the concept names of entities. This method is based on the hierarchical structure of an ontology such that each concept name of entity in the ontology is included in a set. The parent-child relationship in the hierarchical structure of an ontology is then extended as a set-inclusion relationship between the sets for the parent and the child. Second, we compute the similarities between entities based on the new representation of entities in ontologies. Third, after generating the mapping candidates, we select the best mapping result for each source entity. We design a new algorithm based on the Apriori algorithm for selecting the mapping results. Finally, we obtain simple (1:1) and complex (m:1 or 1:m) mappings. Our experimental results and comparisons with related work indicate that utilizing this method in dealing with ontology mapping is a promising way to improve the overall mapping results.

  11. The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation.

    PubMed

    Malone, James; Brown, Andy; Lister, Allyson L; Ison, Jon; Hull, Duncan; Parkinson, Helen; Stevens, Robert

    2014-01-01

    Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of the laboratory investigations by which these entities were produced. However, much biological insight is gained from the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit trails, provenance and reproducibility. The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications. The SWO is another element of the biomedical ontology landscape that is necessary for the description of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by investigations in the life sciences can be made in such a way that it covers the important features requested and prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using techniques designed to keep it in line with user's needs. The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the Software Ontology blog can be read at http://softwareontology.wordpress.com.

  12. The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation

    PubMed Central

    2014-01-01

    Motivation Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of the laboratory investigations by which these entities were produced. However, much biological insight is gained from the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit trails, provenance and reproducibility. Results The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications. Conclusion The SWO is another element of the biomedical ontology landscape that is necessary for the description of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by investigations in the life sciences can be made in such a way that it covers the important features requested and prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using techniques designed to keep it in line with user’s needs. Availability The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the Software Ontology blog can be read at http

  13. Classifying orofacial pains: a new proposal of taxonomy based on ontology

    PubMed Central

    NIXDORF, D. R.; DRANGSHOLT, M. T.; ETTLIN, D. A.; GAUL, C.; DE LEEUW, R.; SVENSSON, P.; ZAKRZEWSKA, J. M.; DE LAAT, A.; CEUSTERS, W.

    2012-01-01

    SUMMARY Propose a new taxonomy model based on ontological principles for disorders that manifest themselves through the symptom of persistent orofacial pain and are commonly seen in clinical practice and difficult to manage. Consensus meeting of eight experts from various geographic areas representing different perspectives (orofacial pain, headache, oral medicine and ontology) as an initial step towards improving the taxonomy. Ontological principles were introduced, reviewed and applied during the consensus building process. Diagnostic criteria for persistent dento-alveolar pain disorder (PDAP) were formulated as an example to be used to model the taxonomical structure of all orofacial pain conditions. These criteria have the advantage of being (i) anatomically defined, (ii) in accordance with other classification systems for the provision of clinical care, (iii) descriptive and succinct, (iv) easy to adapt for applications in varying settings, (v) scalable and (vi) transferable for the description of pain disorders in other orofacial regions of interest. Limitations are that the criteria introduce new terminology, do not have widespread acceptance and have yet to be tested. These results were presented to the greater conference membership and were unanimously accepted. Consensus for the diagnostic criteria of PDAP was established within this working group. This is an initial first step towards developing a coherent taxonomy for orofacial pain disorders, which is needed to improve clinical research and care. PMID:21848527

  14. Classifying orofacial pains: a new proposal of taxonomy based on ontology.

    PubMed

    Nixdorf, D R; Drangsholt, M T; Ettlin, D A; Gaul, C; De Leeuw, R; Svensson, P; Zakrzewska, J M; De Laat, A; Ceusters, W

    2012-03-01

    We propose a new taxonomy model based on ontological principles for disorders that manifest themselves through the symptom of persistent orofacial pain and are commonly seen in clinical practice and difficult to manage. Consensus meeting of eight experts from various geographic areas representing different perspectives (orofacial pain, headache, oral medicine and ontology) as an initial step towards improving the taxonomy. Ontological principles were introduced, reviewed and applied during the consensus building process. Diagnostic criteria for persistent dento-alveolar pain disorder (PDAP) were formulated as an example to be used to model the taxonomical structure of all orofacial pain conditions. These criteria have the advantage of being (i) anatomically defined, (ii) in accordance with other classification systems for the provision of clinical care, (iii) descriptive and succinct, (iv) easy to adapt for applications in varying settings, (v) scalable and (vi) transferable for the description of pain disorders in other orofacial regions of interest. Limitations are that the criteria introduce new terminology, do not have widespread acceptance and have yet to be tested. These results were presented to the greater conference membership and were unanimously accepted. Consensus for the diagnostic criteria of PDAP was established within this working group. This is an initial first step towards developing a coherent taxonomy for orofacial pain disorders, which is needed to improve clinical research and care. © 2011 Blackwell Publishing Ltd.

  15. Speeding up ontology creation of scientific terms

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Graybeal, J.

    2005-12-01

    An ontology is a formal specification of a controlled vocabulary. Ontologies are composed of classes (similar to categories), individuals (members of classes) and properties (attributes of the individuals). Having vocabularies expressed in a formal specification like the Web Ontology Language (OWL) enables interoperability due to the comprehensiveness of OWL by software programs. Two main non-inclusive strategies exist when constructing an ontology: an up-down approach and a bottom-up approach. The former one is directed towards the creation of top classes first (main concepts) and then finding the required subclasses and individuals. The later approach starts from the individuals and then finds similar properties promoting the creation of classes. At the Marine Metadata Interoperability (MMI) Initiative we used a bottom-up approach to create ontologies from simple-vocabularies (those that are not expressed in a conceptual way). We found that the vocabularies were available in different formats (relational data bases, plain files, HTML, XML, PDF) and sometimes were composed of thousands of terms, making the ontology creation process a very time consuming activity. To expedite the conversion process we created a tool VOC2OWL that takes a vocabulary in a table like structure (CSV or TAB format) and a conversion-property file to create automatically an ontology. We identified two basic structures of simple-vocabularies: Flat vocabularies (e.g., phone directory) and hierarchical vocabularies (e.g., taxonomies). The property file defines a list of attributes for the conversion process for each structure type. The attributes included metadata information (title, description, subject, contributor, urlForMoreInformation) and conversion flags (treatAsHierarchy, generateAutoIds) and other conversion information needed to create the ontology (columnForPrimaryClass, columnsToCreateClassesFrom, fileIn, fileOut, namespace, format). We created more than 50 ontologies and

  16. Proceedings of a Sickle Cell Disease Ontology workshop - Towards the first comprehensive ontology for Sickle Cell Disease.

    PubMed

    Mulder, Nicola; Nembaware, Victoria; Adekile, Adekunle; Anie, Kofi A; Inusa, Baba; Brown, Biobele; Campbell, Andrew; Chinenere, Furahini; Chunda-Liyoka, Catherine; Derebail, Vimal K; Geard, Amy; Ghedira, Kais; Hamilton, Carol M; Hanchard, Neil A; Haendel, Melissa; Huggins, Wayne; Ibrahim, Muntaser; Jupp, Simon; Kamga, Karen Kengne; Knight-Madden, Jennifer; Lopez-Sall, Philomène; Mbiyavanga, Mamana; Munube, Deogratias; Nirenberg, Damian; Nnodu, Obiageli; Ofori-Acquah, Solomon Fiifi; Ohene-Frempong, Kwaku; Opap, Kenneth Babu; Panji, Sumir; Park, Miriam; Pule, Gift; Royal, Charmaine; Sangeda, Raphael; Tayo, Bamidele; Treadwell, Marsha; Tshilolo, Léon; Wonkam, Ambroise

    2016-06-01

    Sickle cell disease (SCD) is a debilitating single gene disorder caused by a single point mutation that results in physical deformation (i.e. sickling) of erythrocytes at reduced oxygen tensions. Up to 75% of SCD in newborns world-wide occurs in sub-Saharan Africa, where neonatal and childhood mortality from sickle cell related complications is high. While SCD research across the globe is tackling the disease on multiple fronts, advances have yet to significantly impact on the health and quality of life of SCD patients, due to lack of coordination of these disparate efforts. Ensuring data across studies is directly comparable through standardization is a necessary step towards realizing this goal. Such a standardization requires the development and implementation of a disease-specific ontology for SCD that is applicable globally. Ontology development is best achieved by bringing together experts in the domain to contribute their knowledge. The SCD community and H3ABioNet members joined forces at a recent SCD Ontology workshop to develop an ontology covering aspects of SCD under the classes: phenotype, diagnostics, therapeutics, quality of life, disease modifiers and disease stage. The aim of the workshop was for participants to contribute their expertise to development of the structure and contents of the SCD ontology. Here we describe the proceedings of the Sickle Cell Disease Ontology Workshop held in Cape Town South Africa in February 2016 and its outcomes. The objective of the workshop was to bring together experts in SCD from around the world to contribute their expertise to the development of various aspects of the SCD ontology.

  17. OntoFox: web-based support for ontology reuse

    PubMed Central

    2010-01-01

    Background Ontology development is a rapidly growing area of research, especially in the life sciences domain. To promote collaboration and interoperability between different projects, the OBO Foundry principles require that these ontologies be open and non-redundant, avoiding duplication of terms through the re-use of existing resources. As current options to do so present various difficulties, a new approach, MIREOT, allows specifying import of single terms. Initial implementations allow for controlled import of selected annotations and certain classes of related terms. Findings OntoFox http://ontofox.hegroup.org/ is a web-based system that allows users to input terms, fetch selected properties, annotations, and certain classes of related terms from the source ontologies and save the results using the RDF/XML serialization of the Web Ontology Language (OWL). Compared to an initial implementation of MIREOT, OntoFox allows additional and more easily configurable options for selecting and rewriting annotation properties, and for inclusion of all or a computed subset of terms between low and top level terms. Additional methods for including related classes include a SPARQL-based ontology term retrieval algorithm that extracts terms related to a given set of signature terms and an option to extract the hierarchy rooted at a specified ontology term. OntoFox's output can be directly imported into a developer's ontology. OntoFox currently supports term retrieval from a selection of 15 ontologies accessible via SPARQL endpoints and allows users to extend this by specifying additional endpoints. An OntoFox application in the development of the Vaccine Ontology (VO) is demonstrated. Conclusions OntoFox provides a timely publicly available service, providing different options for users to collect terms from external ontologies, making them available for reuse by import into client OWL ontologies. PMID:20569493

  18. 75 FR 55846 - Public Meeting/Working Group With Industry on Volcanic Ash

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... operational requirements for the reporting and forecasting of volcanic eruptions and the associated ash cloud... Industry on Volcanic Ash AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public... operational needs for Volcanic Ash information in support of aviation from stakeholders. DATES: The meeting...

  19. A histological ontology of the human cardiovascular system.

    PubMed

    Mazo, Claudia; Salazar, Liliana; Corcho, Oscar; Trujillo, Maria; Alegre, Enrique

    2017-10-02

    In this paper, we describe a histological ontology of the human cardiovascular system developed in collaboration among histology experts and computer scientists. The histological ontology is developed following an existing methodology using Conceptual Models (CMs) and validated using OOPS!, expert evaluation with CMs, and how accurately the ontology can answer the Competency Questions (CQ). It is publicly available at http://bioportal.bioontology.org/ontologies/HO and https://w3id.org/def/System . The histological ontology is developed to support complex tasks, such as supporting teaching activities, medical practices, and bio-medical research or having natural language interactions.

  20. Biomedicine: an ontological dissection.

    PubMed

    Baronov, David

    2008-01-01

    Though ubiquitous across the medical social sciences literature, the term "biomedicine" as an analytical concept remains remarkably slippery. It is argued here that this imprecision is due in part to the fact that biomedicine is comprised of three interrelated ontological spheres, each of which frames biomedicine as a distinct subject of investigation. This suggests that, depending upon one's ontological commitment, the meaning of biomedicine will shift. From an empirical perspective, biomedicine takes on the appearance of a scientific enterprise and is defined as a derivative category of Western science more generally. From an interpretive perspective, biomedicine represents a symbolic-cultural expression whose adherence to the principles of scientific objectivity conceals an ideological agenda. From a conceptual perspective, biomedicine represents an expression of social power that reflects structures of power and privilege within capitalist society. No one perspective exists in isolation and so the image of biomedicine from any one presents an incomplete understanding. It is the mutually-conditioning interrelations between these ontological spheres that account for biomedicine's ongoing development. Thus, the ontological dissection of biomedicine that follows, with particular emphasis on the period of its formal crystallization in the latter nineteenth and early twentieth century, is intended to deepen our understanding of biomedicine as an analytical concept across the medical social sciences literature.

  1. GFVO: the Genomic Feature and Variation Ontology.

    PubMed

    Baran, Joachim; Durgahee, Bibi Sehnaaz Begum; Eilbeck, Karen; Antezana, Erick; Hoehndorf, Robert; Dumontier, Michel

    2015-01-01

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology's GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  2. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  3. Semi-automated ontology generation and evolution

    NASA Astrophysics Data System (ADS)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural

  4. Ontological metaphors for negative energy in an interdisciplinary context

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Gouvea, Julia; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F.

    2014-12-01

    Teaching about energy in interdisciplinary settings that emphasize coherence among physics, chemistry, and biology leads to a more central role for chemical bond energy. We argue that an interdisciplinary approach to chemical energy leads to modeling chemical bonds in terms of negative energy. While recent work on ontological metaphors for energy has emphasized the affordances of the substance ontology, this ontology is problematic in the context of negative energy. Instead, we apply a dynamic ontologies perspective to argue that blending the substance and location ontologies for energy can be effective in reasoning about negative energy in the context of reasoning about chemical bonds. We present data from an introductory physics for the life sciences course in which both experts and students successfully use this blended ontology. Blending these ontologies is most successful when the substance and location ontologies are combined such that each is strategically utilized in reasoning about particular aspects of energetic processes.

  5. Methodology to build medical ontology from textual resources.

    PubMed

    Baneyx, Audrey; Charlet, Jean; Jaulent, Marie-Christine

    2006-01-01

    In the medical field, it is now established that the maintenance of unambiguous thesauri goes through ontologies. Our research task is to help pneumologists code acts and diagnoses with a software that represents medical knowledge through a domain ontology. In this paper, we describe our general methodology aimed at knowledge engineers in order to build various types of medical ontologies based on terminology extraction from texts. The hypothesis is to apply natural language processing tools to textual patient discharge summaries to develop the resources needed to build an ontology in pneumology. Results indicate that the joint use of distributional analysis and lexico-syntactic patterns performed satisfactorily for building such ontologies.

  6. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  7. Markov Chain Ontology Analysis (MCOA)

    PubMed Central

    2012-01-01

    Background Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. Results In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. Conclusion A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches

  8. Markov Chain Ontology Analysis (MCOA).

    PubMed

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  9. The SWAN biomedical discourse ontology.

    PubMed

    Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim

    2008-10-01

    Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies.

  10. Ontology Matching with Semantic Verification.

    PubMed

    Jean-Mary, Yves R; Shironoshita, E Patrick; Kabuka, Mansur R

    2009-09-01

    ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

  11. DeMO: An Ontology for Discrete-event Modeling and Simulation.

    PubMed

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-09-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community.

  12. DeMO: An Ontology for Discrete-event Modeling and Simulation

    PubMed Central

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  13. Extensible Ontological Modeling Framefork for Subject Mediation

    NASA Astrophysics Data System (ADS)

    Kalinichenko, L. A.; Skvortsov, N. A.

    An approach for extensible ontological model construction in a mediation environment intended for heterogeneous information sources integration in various subject domains is presented. A mediator ontological language (MOL) may depend on a subject domain and is to be defined at the mediator consolidation phase. On the other hand, for different information sources different ontological models (languages) can be used to define their own ontologies. Reversible mapping of the source ontological models into MOL is needed for information sources registration at the mediator. An approach for such reversible mapping is demonstrated for a class of the Web information sources. It is assumed that such sources apply the DAML+OIL ontological model. A subset of the hybrid object-oriented and semi-structured canonical mediator data model is used for the core of MOL. Construction of a reversible mapping of DAML+OIL into an extension of the core of MOL is presented in the paper. Such mapping is a necessary pre-requisite for contextualizing and registration of information sources at the mediator. The mapping shows how extensible MOL can be constructed. The approach proposed is oriented on digital libraries where retrieval is focused on information content, rather than on information entities.

  14. An Ontology Based Approach to Information Security

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Santos, Henrique

    The semantically structure of knowledge, based on ontology approaches have been increasingly adopted by several expertise from diverse domains. Recently ontologies have been moved from the philosophical and metaphysics disciplines to be used in the construction of models to describe a specific theory of a domain. The development and the use of ontologies promote the creation of a unique standard to represent concepts within a specific knowledge domain. In the scope of information security systems the use of an ontology to formalize and represent the concepts of security information challenge the mechanisms and techniques currently used. This paper intends to present a conceptual implementation model of an ontology defined in the security domain. The model presented contains the semantic concepts based on the information security standard ISO/IEC_JTC1, and their relationships to other concepts, defined in a subset of the information security domain.

  15. Semantics and metaphysics in informatics: toward an ontology of tasks.

    PubMed

    Figdor, Carrie

    2011-04-01

    This article clarifies three principles that should guide the development of any cognitive ontology. First, that an adequate cognitive ontology depends essentially on an adequate task ontology; second, that the goal of developing a cognitive ontology is independent of the goal of finding neural implementations of the processes referred to in the ontology; and third, that cognitive ontologies are neutral regarding the metaphysical relationship between cognitive and neural processes. Copyright © 2011 Cognitive Science Society, Inc.

  16. Improving the interoperability of biomedical ontologies with compound alignments.

    PubMed

    Oliveira, Daniela; Pesquita, Catia

    2018-01-09

    Ontologies are commonly used to annotate and help process life sciences data. Although their original goal is to facilitate integration and interoperability among heterogeneous data sources, when these sources are annotated with distinct ontologies, bridging this gap can be challenging. In the last decade, ontology matching systems have been evolving and are now capable of producing high-quality mappings for life sciences ontologies, usually limited to the equivalence between two ontologies. However, life sciences research is becoming increasingly transdisciplinary and integrative, fostering the need to develop matching strategies that are able to handle multiple ontologies and more complex relations between their concepts. We have developed ontology matching algorithms that are able to find compound mappings between multiple biomedical ontologies, in the form of ternary mappings, finding for instance that "aortic valve stenosis"(HP:0001650) is equivalent to the intersection between "aortic valve"(FMA:7236) and "constricted" (PATO:0001847). The algorithms take advantage of search space filtering based on partial mappings between ontology pairs, to be able to handle the increased computational demands. The evaluation of the algorithms has shown that they are able to produce meaningful results, with precision in the range of 60-92% for new mappings. The algorithms were also applied to the potential extension of logical definitions of the OBO and the matching of several plant-related ontologies. This work is a first step towards finding more complex relations between multiple ontologies. The evaluation shows that the results produced are significant and that the algorithms could satisfy specific integration needs.

  17. Ontology through a Mindfulness Process

    ERIC Educational Resources Information Center

    Bearance, Deborah; Holmes, Kimberley

    2015-01-01

    Traditionally, when ontology is taught in a graduate studies course on social research, there is a tendency for this concept to be examined through the process of lectures and readings. Such an approach often leaves graduate students to grapple with a personal embodiment of this concept and to comprehend how ontology can ground their research.…

  18. Common IED exploitation target set ontology

    NASA Astrophysics Data System (ADS)

    Russomanno, David J.; Qualls, Joseph; Wowczuk, Zenovy; Franken, Paul; Robinson, William

    2010-04-01

    The Common IED Exploitation Target Set (CIEDETS) ontology provides a comprehensive semantic data model for capturing knowledge about sensors, platforms, missions, environments, and other aspects of systems under test. The ontology also includes representative IEDs; modeled as explosives, camouflage, concealment objects, and other background objects, which comprise an overall threat scene. The ontology is represented using the Web Ontology Language and the SPARQL Protocol and RDF Query Language, which ensures portability of the acquired knowledge base across applications. The resulting knowledge base is a component of the CIEDETS application, which is intended to support the end user sensor test and evaluation community. CIEDETS associates a system under test to a subset of cataloged threats based on the probability that the system will detect the threat. The associations between systems under test, threats, and the detection probabilities are established based on a hybrid reasoning strategy, which applies a combination of heuristics and simplified modeling techniques. Besides supporting the CIEDETS application, which is focused on efficient and consistent system testing, the ontology can be leveraged in a myriad of other applications, including serving as a knowledge source for mission planning tools.

  19. A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

    PubMed Central

    2010-01-01

    Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082

  20. Development and Evaluation of an Ontology for Guiding Appropriate Antibiotic Prescribing

    PubMed Central

    Furuya, E. Yoko; Kuperman, Gilad J.; Cimino, James J.; Bakken, Suzanne

    2011-01-01

    Objectives To develop and apply formal ontology creation methods to the domain of antimicrobial prescribing and to formally evaluate the resulting ontology through intrinsic and extrinsic evaluation studies. Methods We extended existing ontology development methods to create the ontology and implemented the ontology using Protégé-OWL. Correctness of the ontology was assessed using a set of ontology design principles and domain expert review via the laddering technique. We created three artifacts to support the extrinsic evaluation (set of prescribing rules, alerts and an ontology-driven alert module, and a patient database) and evaluated the usefulness of the ontology for performing knowledge management tasks to maintain the ontology and for generating alerts to guide antibiotic prescribing. Results The ontology includes 199 classes, 10 properties, and 1,636 description logic restrictions. Twenty-three Semantic Web Rule Language rules were written to generate three prescribing alerts: 1) antibiotic-microorganism mismatch alert; 2) medication-allergy alert; and 3) non-recommended empiric antibiotic therapy alert. The evaluation studies confirmed the correctness of the ontology, usefulness of the ontology for representing and maintaining antimicrobial treatment knowledge rules, and usefulness of the ontology for generating alerts to provide feedback to clinicians during antibiotic prescribing. Conclusions This study contributes to the understanding of ontology development and evaluation methods and addresses one knowledge gap related to using ontologies as a clinical decision support system component—a need for formal ontology evaluation methods to measure their quality from the perspective of their intrinsic characteristics and their usefulness for specific tasks. PMID:22019377

  1. Development and evaluation of an ontology for guiding appropriate antibiotic prescribing.

    PubMed

    Bright, Tiffani J; Yoko Furuya, E; Kuperman, Gilad J; Cimino, James J; Bakken, Suzanne

    2012-02-01

    To develop and apply formal ontology creation methods to the domain of antimicrobial prescribing and to formally evaluate the resulting ontology through intrinsic and extrinsic evaluation studies. We extended existing ontology development methods to create the ontology and implemented the ontology using Protégé-OWL. Correctness of the ontology was assessed using a set of ontology design principles and domain expert review via the laddering technique. We created three artifacts to support the extrinsic evaluation (set of prescribing rules, alerts and an ontology-driven alert module, and a patient database) and evaluated the usefulness of the ontology for performing knowledge management tasks to maintain the ontology and for generating alerts to guide antibiotic prescribing. The ontology includes 199 classes, 10 properties, and 1636 description logic restrictions. Twenty-three Semantic Web Rule Language rules were written to generate three prescribing alerts: (1) antibiotic-microorganism mismatch alert; (2) medication-allergy alert; and (3) non-recommended empiric antibiotic therapy alert. The evaluation studies confirmed the correctness of the ontology, usefulness of the ontology for representing and maintaining antimicrobial treatment knowledge rules, and usefulness of the ontology for generating alerts to provide feedback to clinicians during antibiotic prescribing. This study contributes to the understanding of ontology development and evaluation methods and addresses one knowledge gap related to using ontologies as a clinical decision support system component-a need for formal ontology evaluation methods to measure their quality from the perspective of their intrinsic characteristics and their usefulness for specific tasks. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Ontologies and Information Systems: A Literature Survey

    DTIC Science & Technology

    2011-06-01

    Science and Technology Organisation DSTO–TN–1002 ABSTRACT An ontology captures in a computer-processable language the important con - cepts in a...knowledge shara- bility, reusability and scalability, and that support collaborative and distributed con - struction of ontologies, the DOGMA and DILIGENT...and assemble the received information). In the second stage, the designers determine how ontologies should be used in the pro - cess of adding

  3. Ontological Approach to Military Knowledge Modeling and Management

    DTIC Science & Technology

    2004-03-01

    federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries

  4. IDEF5 Ontology Description Capture Method: Concept Paper

    NASA Technical Reports Server (NTRS)

    Menzel, Christopher P.; Mayer, Richard J.

    1990-01-01

    The results of research towards an ontology capture method referred to as IDEF5 are presented. Viewed simply as the study of what exists in a domain, ontology is an activity that can be understood to be at work across the full range of human inquiry prompted by the persistent effort to understand the world in which it has found itself - and which it has helped to shape. In the contest of information management, ontology is the task of extracting the structure of a given engineering, manufacturing, business, or logistical domain and storing it in an usable representational medium. A key to effective integration is a system ontology that can be accessed and modified across domains and which captures common features of the overall system relevant to the goals of the disparate domains. If the focus is on information integration, then the strongest motivation for ontology comes from the need to support data sharing and function interoperability. In the correct architecture, an enterprise ontology base would allow th e construction of an integrated environment in which legacy systems appear to be open architecture integrated resources. If the focus is on system/software development, then support for the rapid acquisition of reliable systems is perhaps the strongest motivation for ontology. Finally, ontological analysis was demonstrated to be an effective first step in the construction of robust knowledge based systems.

  5. War of Ontology Worlds: Mathematics, Computer Code, or Esperanto?

    PubMed Central

    Rzhetsky, Andrey; Evans, James A.

    2011-01-01

    The use of structured knowledge representations—ontologies and terminologies—has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies. PMID:21980276

  6. War of ontology worlds: mathematics, computer code, or Esperanto?

    PubMed

    Rzhetsky, Andrey; Evans, James A

    2011-09-01

    The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.

  7. DMTO: a realistic ontology for standard diabetes mellitus treatment.

    PubMed

    El-Sappagh, Shaker; Kwak, Daehan; Ali, Farman; Kwak, Kyung-Sup

    2018-02-06

    Treatment of type 2 diabetes mellitus (T2DM) is a complex problem. A clinical decision support system (CDSS) based on massive and distributed electronic health record data can facilitate the automation of this process and enhance its accuracy. The most important component of any CDSS is its knowledge base. This knowledge base can be formulated using ontologies. The formal description logic of ontology supports the inference of hidden knowledge. Building a complete, coherent, consistent, interoperable, and sharable ontology is a challenge. This paper introduces the first version of the newly constructed Diabetes Mellitus Treatment Ontology (DMTO) as a basis for shared-semantics, domain-specific, standard, machine-readable, and interoperable knowledge relevant to T2DM treatment. It is a comprehensive ontology and provides the highest coverage and the most complete picture of coded knowledge about T2DM patients' current conditions, previous profiles, and T2DM-related aspects, including complications, symptoms, lab tests, interactions, treatment plan (TP) frameworks, and glucose-related diseases and medications. It adheres to the design principles recommended by the Open Biomedical Ontologies Foundry and is based on ontological realism that follows the principles of the Basic Formal Ontology and the Ontology for General Medical Science. DMTO is implemented under Protégé 5.0 in Web Ontology Language (OWL) 2 format and is publicly available through the National Center for Biomedical Ontology's BioPortal at http://bioportal.bioontology.org/ontologies/DMTO . The current version of DMTO includes more than 10,700 classes, 277 relations, 39,425 annotations, 214 semantic rules, and 62,974 axioms. We provide proof of concept for this approach to modeling TPs. The ontology is able to collect and analyze most features of T2DM as well as customize chronic TPs with the most appropriate drugs, foods, and physical exercises. DMTO is ready to be used as a knowledge base for

  8. Measuring the level of activity in community built bio-ontologies.

    PubMed

    Malone, James; Stevens, Robert

    2013-02-01

    In this paper we explore the measurement of activity in ontology projects as an aspect of community ontology building. When choosing whether to use an ontology or whether to participate in its development, having some knowledge of how actively that ontology is developed is an important issue. Our knowledge of biology grows and changes and an ontology must adapt to keep pace with those changes and also adapt with respect to other ontologies and organisational principles. In essence, we need to know if there is an 'active' community involved with a project or whether a given ontology is inactive or moribund. We explore the use of additions, deletions and changes to ontology files, the regularity and frequency of releases, and the number of ontology repository updates to an ontology as the basis for measuring activity in an ontology. We present our results of this study, which show a dramatic range of activity across some of the more prominent community ontologies, illustrating very active and mature efforts through to those which appear to have become dormant for a number of possible reasons. We show that global activity within the community has remained at a similar level over the last 2 years. Measuring additions, deletions and changes, together with release frequency, appear to be useful metrics of activity and useful pointers towards future behaviour. Measuring who is making edits to ontologies is harder to capture; this raises issues of record keeping in ontology projects and in micro-credit, although we have identified one ontologist that appears influential across many community efforts; a Super-Ontologist. We also discuss confounding factors in our activity metric and discuss how it can be improved and adopted as an assessment criterion for community ontology development. Overall, we show that it is possible to objectively measure the activity in an ontology and to make some prediction about future activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. An Ontology for Modeling Complex Inter-relational Organizations

    NASA Astrophysics Data System (ADS)

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  10. 78 FR 19492 - Draft Guidance for Industry on Formal Meetings Between FDA and Biosimilar Biological Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0286] Draft Guidance for Industry on Formal Meetings Between FDA and Biosimilar Biological Product Sponsors or... Drug Administration (FDA) is announcing the availability of a draft guidance for industry entitled...

  11. HuPSON: the human physiology simulation ontology.

    PubMed

    Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin

    2013-11-22

    Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.

  12. HuPSON: the human physiology simulation ontology

    PubMed Central

    2013-01-01

    Background Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. Results We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios. The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). Conclusions HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain. PMID:24267822

  13. Development and Evaluation of an Adolescents' Depression Ontology for Analyzing Social Data.

    PubMed

    Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min

    2016-01-01

    This study aims to develop and evaluate an ontology for adolescents' depression to be used for collecting and analyzing social data. The ontology was developed according to the 'ontology development 101' methodology. Concepts were extracted from clinical practice guidelines and related literatures. The ontology is composed of five sub-ontologies which represent risk factors, sign and symptoms, measurement, diagnostic result and management care. The ontology was evaluated in four different ways: First, we examined the frequency of ontology concept appeared in social data; Second, the content coverage of ontology was evaluated by comparing ontology concepts with concepts extracted from the youth depression counseling records; Third, the structural and representational layer of the ontology were evaluated by 5 ontology and psychiatric nursing experts; Fourth, the scope of the ontology was examined by answering 59 competency questions. The ontology was improved by adding new concepts and synonyms and revising the level of structure.

  14. Expert2OWL: A Methodology for Pattern-Based Ontology Development.

    PubMed

    Tahar, Kais; Xu, Jie; Herre, Heinrich

    2017-01-01

    The formalization of expert knowledge enables a broad spectrum of applications employing ontologies as underlying technology. These include eLearning, Semantic Web and expert systems. However, the manual construction of such ontologies is time-consuming and thus expensive. Moreover, experts are often unfamiliar with the syntax and semantics of formal ontology languages such as OWL and usually have no experience in developing formal ontologies. To overcome these barriers, we developed a new method and tool, called Expert2OWL that provides efficient features to support the construction of OWL ontologies using GFO (General Formal Ontology) as a top-level ontology. This method allows a close and effective collaboration between ontologists and domain experts. Essentially, this tool integrates Excel spreadsheets as part of a pattern-based ontology development and refinement process. Expert2OWL enables us to expedite the development process and modularize the resulting ontologies. We applied this method in the field of Chinese Herbal Medicine (CHM) and used Expert2OWL to automatically generate an accurate Chinese Herbology ontology (CHO). The expressivity of CHO was tested and evaluated using ontology query languages SPARQL and DL. CHO shows promising results and can generate answers to important scientific questions such as which Chinese herbal formulas contain which substances, which substances treat which diseases, and which ones are the most frequently used in CHM.

  15. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics

    PubMed Central

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335

  16. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    PubMed

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  17. Mining Rare Associations between Biological Ontologies

    PubMed Central

    Benites, Fernando; Simon, Svenja; Sapozhnikova, Elena

    2014-01-01

    The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations. PMID:24404165

  18. Mining rare associations between biological ontologies.

    PubMed

    Benites, Fernando; Simon, Svenja; Sapozhnikova, Elena

    2014-01-01

    The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  19. 23 CFR 636.115 - May I meet with industry to gather information concerning the appropriate risk allocation...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... information are as follows: (1) Industry or small business conferences; (2) Public hearings; (3) Market research; (4) One-on-one meetings with potential offerors (any meetings that are substantially involved... obtain price, delivery, other market information, or capabilities for planning purposes. Responses to...

  20. 23 CFR 636.115 - May I meet with industry to gather information concerning the appropriate risk allocation...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... information are as follows: (1) Industry or small business conferences; (2) Public hearings; (3) Market research; (4) One-on-one meetings with potential offerors (any meetings that are substantially involved... obtain price, delivery, other market information, or capabilities for planning purposes. Responses to...

  1. Self-Supervised Chinese Ontology Learning from Online Encyclopedias

    PubMed Central

    Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO. PMID:24715819

  2. Self-supervised Chinese ontology learning from online encyclopedias.

    PubMed

    Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.

  3. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  4. BioPortal: An Open-Source Community-Based Ontology Repository

    NASA Astrophysics Data System (ADS)

    Noy, N.; NCBO Team

    2011-12-01

    Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its

  5. Interoperability between phenotype and anatomy ontologies.

    PubMed

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  6. Ontological interpretation of biomedical database content.

    PubMed

    Santana da Silva, Filipe; Jansen, Ludger; Freitas, Fred; Schulz, Stefan

    2017-06-26

    Biological databases store data about laboratory experiments, together with semantic annotations, in order to support data aggregation and retrieval. The exact meaning of such annotations in the context of a database record is often ambiguous. We address this problem by grounding implicit and explicit database content in a formal-ontological framework. By using a typical extract from the databases UniProt and Ensembl, annotated with content from GO, PR, ChEBI and NCBI Taxonomy, we created four ontological models (in OWL), which generate explicit, distinct interpretations under the BioTopLite2 (BTL2) upper-level ontology. The first three models interpret database entries as individuals (IND), defined classes (SUBC), and classes with dispositions (DISP), respectively; the fourth model (HYBR) is a combination of SUBC and DISP. For the evaluation of these four models, we consider (i) database content retrieval, using ontologies as query vocabulary; (ii) information completeness; and, (iii) DL complexity and decidability. The models were tested under these criteria against four competency questions (CQs). IND does not raise any ontological claim, besides asserting the existence of sample individuals and relations among them. Modelling patterns have to be created for each type of annotation referent. SUBC is interpreted regarding maximally fine-grained defined subclasses under the classes referred to by the data. DISP attempts to extract truly ontological statements from the database records, claiming the existence of dispositions. HYBR is a hybrid of SUBC and DISP and is more parsimonious regarding expressiveness and query answering complexity. For each of the four models, the four CQs were submitted as DL queries. This shows the ability to retrieve individuals with IND, and classes in SUBC and HYBR. DISP does not retrieve anything because the axioms with disposition are embedded in General Class Inclusion (GCI) statements. Ambiguity of biological database content is

  7. Enabling Interoperability - Supporting a Diversity of Search Paradigms Using Shared Ontologies and Federated Registries

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D. J.; Hardman, S. H.; Mattman, C. A.; Ramirez, P. M.

    2009-12-01

    Experience suggests that no single search paradigm will meet all of a community’s search requirements. Traditional forms based search is still considered critical by a significant percentage of most science communities. However text base and facet based search are improving the community’s perception that search can be easy and that the data is available and can be located. Finally semantic search promises ways to find data that were not conceived when the metadata was first captured and organized. This situation suggests that successful science information systems must be able to deploy new search applications quickly, efficiently, and often for ad-hoc purposes. Federated registries allow data to be packaged or associated with their metadata and managed as simple registry objects. Standard reference models for federated registries now exist that ensure registry objects are uniquely identified at registration and that versioning, classification, and cataloging are addressed automatically. Distributed but locally governed, federated registries also provide notification of registry events and federated query, linking, and replication of registry objects. Key principles for shared ontology development in the space sciences are that the ontology remains independent of its implementation and be extensible, flexible and scalable. The dichotomy between digital things and physical/conceptual things in the domain need to be unified under a standard model, such as the Open Archive Information System (OAIS) Information Object. Finally the fact must be accepted that ontology development is a difficult task that requires time, patience and experts in both the science domain and information modeling. The Planetary Data System (PDS) has adopted this architecture for it next generation information system, PDS 2010. The authors will report on progress, briefly describe key elements, and illustrate how the new system will be phased into operations to handle both legacy and new

  8. Application of neuroanatomical ontologies for neuroimaging data annotation.

    PubMed

    Turner, Jessica A; Mejino, Jose L V; Brinkley, James F; Detwiler, Landon T; Lee, Hyo Jong; Martone, Maryann E; Rubin, Daniel L

    2010-01-01

    The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are "part of" which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  9. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  10. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  11. OLSVis: an animated, interactive visual browser for bio-ontologies

    PubMed Central

    2012-01-01

    Background More than one million terms from biomedical ontologies and controlled vocabularies are available through the Ontology Lookup Service (OLS). Although OLS provides ample possibility for querying and browsing terms, the visualization of parts of the ontology graphs is rather limited and inflexible. Results We created the OLSVis web application, a visualiser for browsing all ontologies available in the OLS database. OLSVis shows customisable subgraphs of the OLS ontologies. Subgraphs are animated via a real-time force-based layout algorithm which is fully interactive: each time the user makes a change, e.g. browsing to a new term, hiding, adding, or dragging terms, the algorithm performs smooth and only essential reorganisations of the graph. This assures an optimal viewing experience, because subsequent screen layouts are not grossly altered, and users can easily navigate through the graph. URL: http://ols.wordvis.com Conclusions The OLSVis web application provides a user-friendly tool to visualise ontologies from the OLS repository. It broadens the possibilities to investigate and select ontology subgraphs through a smooth visualisation method. PMID:22646023

  12. Kuhn's Ontological Relativism.

    ERIC Educational Resources Information Center

    Sankey, Howard

    2000-01-01

    Discusses Kuhn's model of scientific theory change. Documents Kuhn's move away from conceptual relativism and rational relativism. Provides an analysis of his present ontological form of relativism. (CCM)

  13. An Ontology-Based Conceptual Model For Accumulating And Reusing Knowledge In A DMAIC Process

    NASA Astrophysics Data System (ADS)

    Nguyen, ThanhDat; Kifor, Claudiu Vasile

    2015-09-01

    DMAIC (Define, Measure, Analyze, Improve, and Control) is an important process used to enhance quality of processes basing on knowledge. However, it is difficult to access DMAIC knowledge. Conventional approaches meet a problem arising from structuring and reusing DMAIC knowledge. The main reason is that DMAIC knowledge is not represented and organized systematically. In this article, we overcome the problem basing on a conceptual model that is a combination of DMAIC process, knowledge management, and Ontology engineering. The main idea of our model is to utilizing Ontologies to represent knowledge generated by each of DMAIC phases. We build five different knowledge bases for storing all knowledge of DMAIC phases with the support of necessary tools and appropriate techniques in Information Technology area. Consequently, these knowledge bases provide knowledge available to experts, managers, and web users during or after DMAIC execution in order to share and reuse existing knowledge.

  14. Where to search top-K biomedical ontologies?

    PubMed

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  15. An ontology for Autism Spectrum Disorder (ASD) to infer ASD phenotypes from Autism Diagnostic Interview-Revised data.

    PubMed

    Mugzach, Omri; Peleg, Mor; Bagley, Steven C; Guter, Stephen J; Cook, Edwin H; Altman, Russ B

    2015-08-01

    Our goal is to create an ontology that will allow data integration and reasoning with subject data to classify subjects, and based on this classification, to infer new knowledge on Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first step toward this goal by extending an existing autism ontology to allow automatic inference of ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based on subjects' Autism Diagnostic Interview-Revised (ADI-R) assessment data. Knowledge regarding diagnostic instruments, ASD phenotypes and risk factors was added to augment an existing autism ontology via Ontology Web Language class definitions and semantic web rules. We developed a custom Protégé plugin for enumerating combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) and DSM-5 diagnostic criteria based on their ADI-R data. We extended the ontology by adding 443 classes and 632 rules that represent phenotypes, along with their synonyms, environmental risk factors, and frequency of comorbidities. Applying the rules on the data set showed that the method produced accurate results: the true positive and true negative rates for inferring autistic disorder diagnosis according to DSM-IV criteria were 1 and 0.065, respectively; the true positive rate for inferring ASD based on DSM-5 criteria was 0.94. The ontology allows automatic inference of subjects' disease phenotypes and diagnosis with high accuracy. The ontology may benefit future studies by serving as a knowledge base for ASD. In addition, by adding knowledge of related NDDs, commonalities and differences in manifestations and risk factors could be automatically inferred, contributing to the understanding of ASD pathophysiology. Copyright

  16. What Four Million Mappings Can Tell You about Two Hundred Ontologies

    NASA Astrophysics Data System (ADS)

    Ghazvinian, Amir; Noy, Natalya F.; Jonquet, Clement; Shah, Nigam; Musen, Mark A.

    The field of biomedicine has embraced the Semantic Web probably more than any other field. As a result, there is a large number of biomedical ontologies covering overlapping areas of the field. We have developed BioPortal—an open community-based repository of biomedical ontologies. We analyzed ontologies and terminologies in BioPortal and the Unified Medical Language System (UMLS), creating more than 4 million mappings between concepts in these ontologies and terminologies based on the lexical similarity of concept names and synonyms. We then analyzed the mappings and what they tell us about the ontologies themselves, the structure of the ontology repository, and the ways in which the mappings can help in the process of ontology design and evaluation. For example, we can use the mappings to guide users who are new to a field to the most pertinent ontologies in that field, to identify areas of the domain that are not covered sufficiently by the ontologies in the repository, and to identify which ontologies will serve well as background knowledge in domain-specific tools. While we used a specific (but large) ontology repository for the study, we believe that the lessons we learned about the value of a large-scale set of mappings to ontology users and developers are general and apply in many other domains.

  17. Using ontologies for structuring organizational knowledge in Home Care assistance.

    PubMed

    Valls, Aida; Gibert, Karina; Sánchez, David; Batet, Montserrat

    2010-05-01

    Information Technologies and Knowledge-based Systems can significantly improve the management of complex distributed health systems, where supporting multidisciplinarity is crucial and communication and synchronization between the different professionals and tasks becomes essential. This work proposes the use of the ontological paradigm to describe the organizational knowledge of such complex healthcare institutions as a basis to support their management. The ontology engineering process is detailed, as well as the way to maintain the ontology updated in front of changes. The paper also analyzes how such an ontology can be exploited in a real healthcare application and the role of the ontology in the customization of the system. The particular case of senior Home Care assistance is addressed, as this is a highly distributed field as well as a strategic goal in an ageing Europe. The proposed ontology design is based on a Home Care medical model defined by an European consortium of Home Care professionals, framed in the scope of the K4Care European project (FP6). Due to the complexity of the model and the knowledge gap existing between the - textual - medical model and the strict formalization of an ontology, an ontology engineering methodology (On-To-Knowledge) has been followed. After applying the On-To-Knowledge steps, the following results were obtained: the feasibility study concluded that the ontological paradigm and the expressiveness of modern ontology languages were enough to describe the required medical knowledge; after the kick-off and refinement stages, a complete and non-ambiguous definition of the Home Care model, including its main components and interrelations, was obtained; the formalization stage expressed HC medical entities in the form of ontological classes, which are interrelated by means of hierarchies, properties and semantically rich class restrictions; the evaluation, carried out by exploiting the ontology into a knowledge-driven e

  18. Information Pre-Processing using Domain Meta-Ontology and Rule Learning System

    NASA Astrophysics Data System (ADS)

    Ranganathan, Girish R.; Biletskiy, Yevgen

    Around the globe, extraordinary amounts of documents are being created by Enterprises and by users outside these Enterprises. The documents created in the Enterprises constitute the main focus of the present chapter. These documents are used to perform numerous amounts of machine processing. While using thesedocuments for machine processing, lack of semantics of the information in these documents may cause misinterpretation of the information, thereby inhibiting the productiveness of computer assisted analytical work. Hence, it would be profitable to the Enterprises if they use well defined domain ontologies which will serve as rich source(s) of semantics for the information in the documents. These domain ontologies can be created manually, semi-automatically or fully automatically. The focus of this chapter is to propose an intermediate solution which will enable relatively easy creation of these domain ontologies. The process of extracting and capturing domain ontologies from these voluminous documents requires extensive involvement of domain experts and application of methods of ontology learning that are substantially labor intensive; therefore, some intermediate solutions which would assist in capturing domain ontologies must be developed. This chapter proposes a solution in this direction which involves building a meta-ontology that will serve as an intermediate information source for the main domain ontology. This chapter proposes a solution in this direction which involves building a meta-ontology as a rapid approach in conceptualizing a domain of interest from huge amount of source documents. This meta-ontology can be populated by ontological concepts, attributes and relations from documents, and then refined in order to form better domain ontology either through automatic ontology learning methods or some other relevant ontology building approach.

  19. Complex Topographic Feature Ontology Patterns

    USGS Publications Warehouse

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  20. A bibliometric and visual analysis of global geo-ontology research

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Yu; Zhu, Haihong; Ying, Shen; Luo, Qinyao; Luo, Heng; Kuai, Xi; Xia, Hui; Shen, Hang

    2017-02-01

    In this paper, the results of a bibliometric and visual analysis of geo-ontology research articles collected from the Web of Science (WOS) database between 1999 and 2014 are presented. The numbers of national institutions and published papers are visualized and a global research heat map is drawn, illustrating an overview of global geo-ontology research. In addition, we present a chord diagram of countries and perform a visual cluster analysis of a knowledge co-citation network of references, disclosing potential academic communities and identifying key points, main research areas, and future research trends. The International Journal of Geographical Information Science, Progress in Human Geography, and Computers & Geosciences are the most active journals. The USA makes the largest contributions to geo-ontology research by virtue of its highest numbers of independent and collaborative papers, and its dominance was also confirmed in the country chord diagram. The majority of institutions are in the USA, Western Europe, and Eastern Asia. Wuhan University, University of Munster, and the Chinese Academy of Sciences are notable geo-ontology institutions. Keywords such as "Semantic Web," "GIS," and "space" have attracted a great deal of attention. "Semantic granularity in ontology-driven geographic information systems, "Ontologies in support of activities in geographical space" and "A translation approach to portable ontology specifications" have the highest cited centrality. Geographical space, computer-human interaction, and ontology cognition are the three main research areas of geo-ontology. The semantic mismatch between the producers and users of ontology data as well as error propagation in interdisciplinary and cross-linguistic data reuse needs to be solved. In addition, the development of geo-ontology modeling primitives based on OWL (Web Ontology Language)and finding methods to automatically rework data in Semantic Web are needed. Furthermore, the topological

  1. Developing Domain Ontologies for Course Content

    ERIC Educational Resources Information Center

    Boyce, Sinead; Pahl, Claus

    2007-01-01

    Ontologies have the potential to play an important role in instructional design and the development of course content. They can be used to represent knowledge about content, supporting instructors in creating content or learners in accessing content in a knowledge-guided way. While ontologies exist for many subject domains, their quality and…

  2. 75 FR 3197 - Notice of a Public Meeting on Administration of the Business and Industry Guaranteed Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... DEPARTMENT OF AGRICULTURE Rural Business-Cooperative Service Notice of a Public Meeting on Administration of the Business and Industry Guaranteed Loan Program AGENCY: Rural Business-Cooperative Service, USDA. ACTION: Notice of public meeting. SUMMARY: The Rural Business-Cooperative Service (RBS), an...

  3. OAE: The Ontology of Adverse Events.

    PubMed

    He, Yongqun; Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Guo, Abra; Zhang, Shelley; Jagannathan, Desikan; Toldo, Luca; Tao, Cui; Smith, Barry

    2014-01-01

    A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term 'adverse event' denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of adverse events and of the factors (e

  4. Academia Meets Industry.

    PubMed

    Schäfer, Christian; Paprotka, Tobias; Heitzer, Ellen; Eccleston, Mark; Noe, Johannes; Holdenrieder, Stefan; Diehl, Frank; Thierry, Alain

    2016-01-01

    Researchers working in industrial laboratories as well as in academic laboratories discussed topics related to the use of extracellular nucleic acids in different fields. These included areas like non-invasive prenatal diagnosis, the application of different methods for the analysis and characterization of patients with benign and malignant diseases and technical aspects associated with extracellular nucleic acids. In addition, the possibilities and chances for a cooperation of researchers working in different worlds, i.e. academia and industry, were discussed.

  5. 75 FR 56651 - ITS Joint Program Office; Trucking Industry Mobility & Technology Coalition Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ...: Beating Gridlock with a Smart Grid; U.S. DOT Truck Technology Initiatives; and State and Federal... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Trucking Industry Mobility & Technology Coalition Annual Meeting AGENCY: Research and Innovative Technology Administration, U.S. Department of...

  6. Application of Ontologies for Big Earth Data

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know

  7. Deafblindness, ontological security, and social recognition.

    PubMed

    Danermark, Berth D; Möller, Kerstin

    2008-11-01

    Trust, ontological security, and social recognition are discussed in relation to self-identity among people with acquired deafblindness. To date the phenomenon has not been elaborated in the context of deafblindness. When a person with deafblindness interacts with the social and material environment, the reliability, constancy, and predictability of his or her relations is crucial for maintaining or achieving ontological security or a general and fairly persistent feeling of well-being. When these relations fundamentally change, the impact on ontological security will be very negative. The construction of social recognition through the interaction between the self and others is embodied across three dimensions: at the individual level, at the legal systems level, and at the normative or value level. The relationship between trust and ontological security on the one hand and social recognition on the other hand is discussed. It is argued that these basic processes affecting personality development have to be identified and acknowledged in the interactions people with deafblindness experience. Some implications for the rehabilitation of people with acquired deafblindness are presented and illustrated.

  8. Automated Ontology Generation Using Spatial Reasoning

    NASA Astrophysics Data System (ADS)

    Coalter, Alton; Leopold, Jennifer L.

    Recently there has been much interest in using ontologies to facilitate knowledge representation, integration, and reasoning. Correspondingly, the extent of the information embodied by an ontology is increasing beyond the conventional is_a and part_of relationships. To address these requirements, a vast amount of digitally available information may need to be considered when building ontologies, prompting a desire for software tools to automate at least part of the process. The main efforts in this direction have involved textual information retrieval and extraction methods. For some domains extension of the basic relationships could be enhanced further by the analysis of 2D and/or 3D images. For this type of media, image processing algorithms are more appropriate than textual analysis methods. Herein we present an algorithm that, given a collection of 3D image files, utilizes Qualitative Spatial Reasoning (QSR) to automate the creation of an ontology for the objects represented by the images, relating the objects in terms of is_a and part_of relationships and also through unambiguous Relational Connection Calculus (RCC) relations.

  9. The Relationship between User Expertise and Structural Ontology Characteristics

    ERIC Educational Resources Information Center

    Waldstein, Ilya Michael

    2014-01-01

    Ontologies are commonly used to support application tasks such as natural language processing, knowledge management, learning, browsing, and search. Literature recommends considering specific context during ontology design, and highlights that a different context is responsible for problems in ontology reuse. However, there is still no clear…

  10. Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain

    NASA Astrophysics Data System (ADS)

    Lieberman, J. E.; Cheatham, M.; Varanka, D.

    2015-12-01

    Ontologies are playing an increasing role in facilitating mediation and translation between datasets representing diverse schemas, vocabularies, or knowledge communities. This role is relatively straightforward when there is one ontology comprising all relevant common concepts that can be mapped to entities in each dataset. Frequently, one common ontology has not been agreed to. Either each dataset is represented by a distinct ontology, or there are multiple candidates for commonality. Either the one most appropriate (expressive, relevant, correct) ontology must be chosen, or else concepts and relationships matched across multiple ontologies through an alignment process so that they may be used in concert to carry out mediation or other semantic operations. A resulting alignment can be effective to the extent that entities in in the ontologies represent differing terminology for comparable conceptual knowledge. In cases such as spatial ontologies, though, ontological entities may also represent disparate conceptualizations of space according to the discernment methods and application domains on which they are based. One ontology's wetland concept may overlap in space with another ontology's recharge zone or wildlife range or water feature. In order to evaluate alignment with respect to spatial ontologies, alignment has been applied to a series of ontologies pertaining to surface water that are used variously in hydrography (characterization of water features), hydrology (study of water cycling), and water quality (nutrient and contaminant transport) application domains. There is frequently a need to mediate between datasets in each domain in order to develop broader understanding of surface water systems, so there is a practical as well theoretical value in the alignment. From a domain expertise standpoint, the ontologies under consideration clearly contain some concepts that are spatially as well as conceptually identical and then others with less clear

  11. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  12. Using Ontologies for Knowledge Management: An Information Systems Perspective.

    ERIC Educational Resources Information Center

    Jurisica, Igor; Mylopoulos, John; Yu, Eric

    1999-01-01

    Surveys some of the basic concepts that have been used in computer science for the representation of knowledge and summarizes some of their advantages and drawbacks. Relates these techniques to information sciences theory and practice. Concepts are classified in four broad ontological categories: static ontology, dynamic ontology, intentional…

  13. ExO: An Ontology for Exposure Science

    EPA Science Inventory

    An ontology is a formal representation of knowledge within a domain and typically consists of classes, the properties of those classes, and the relationships between them. Ontologies are critically important for specifying data of interest in a consistent manner, thereby enablin...

  14. TrhOnt: building an ontology to assist rehabilitation processes.

    PubMed

    Berges, Idoia; Antón, David; Bermúdez, Jesús; Goñi, Alfredo; Illarramendi, Arantza

    2016-10-04

    One of the current research efforts in the area of biomedicine is the representation of knowledge in a structured way so that reasoning can be performed on it. More precisely, in the field of physiotherapy, information such as the physiotherapy record of a patient or treatment protocols for specific disorders must be adequately modeled, because they play a relevant role in the management of the evolutionary recovery process of a patient. In this scenario, we introduce TRHONT, an application ontology that can assist physiotherapists in the management of the patients' evolution via reasoning supported by semantic technology. The ontology was developed following the NeOn Methodology. It integrates knowledge from ontological (e.g. FMA ontology) and non-ontological resources (e.g. a database of movements, exercises and treatment protocols) as well as additional physiotherapy-related knowledge. We demonstrate how the ontology fulfills the purpose of providing a reference model for the representation of the physiotherapy-related information that is needed for the whole physiotherapy treatment of patients, since they step for the first time into the physiotherapist's office, until they are discharged. More specifically, we present the results for each of the intended uses of the ontology listed in the document that specifies its requirements, and show how TRHONT can answer the competency questions defined within that document. Moreover, we detail the main steps of the process followed to build the TRHONT ontology in order to facilitate its reproducibility in a similar context. Finally, we show an evaluation of the ontology from different perspectives. TRHONT has achieved the purpose of allowing for a reasoning process that changes over time according to the patient's state and performance.

  15. Semantic Similarity in Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.

    2009-01-01

    In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320

  16. A four stage approach for ontology-based health information system design.

    PubMed

    Kuziemsky, Craig E; Lau, Francis

    2010-11-01

    To describe and illustrate a four stage methodological approach to capture user knowledge in a biomedical domain area, use that knowledge to design an ontology, and then implement and evaluate the ontology as a health information system (HIS). A hybrid participatory design-grounded theory (GT-PD) method was used to obtain data and code them for ontology development. Prototyping was used to implement the ontology as a computer-based tool. Usability testing evaluated the computer-based tool. An empirically derived domain ontology and set of three problem-solving approaches were developed as a formalized model of the concepts and categories from the GT coding. The ontology and problem-solving approaches were used to design and implement a HIS that tested favorably in usability testing. The four stage approach illustrated in this paper is useful for designing and implementing an ontology as the basis for a HIS. The approach extends existing ontology development methodologies by providing an empirical basis for theory incorporated into ontology design. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Supporting ontology adaptation and versioning based on a graph of relevance

    NASA Astrophysics Data System (ADS)

    Sassi, Najla; Jaziri, Wassim; Alharbi, Saad

    2016-11-01

    Ontologies recently have become a topic of interest in computer science since they are seen as a semantic support to explicit and enrich data-models as well as to ensure interoperability of data. Moreover, supporting ontology adaptation becomes essential and extremely important, mainly when using ontologies in changing environments. An important issue when dealing with ontology adaptation is the management of several versions. Ontology versioning is a complex and multifaceted problem as it should take into account change management, versions storage and access, consistency issues, etc. The purpose of this paper is to propose an approach and tool for ontology adaptation and versioning. A series of techniques are proposed to 'safely' evolve a given ontology and produce a new consistent version. The ontology versions are ordered in a graph according to their relevance. The relevance is computed based on four criteria: conceptualisation, usage frequency, abstraction and completeness. The techniques to carry out the versioning process are implemented in the Consistology tool, which has been developed to assist users in expressing adaptation requirements and managing ontology versions.

  18. Ontology-based reusable clinical document template production system.

    PubMed

    Nam, Sejin; Lee, Sungin; Kim, James G Boram; Kim, Hong-Gee

    2012-01-01

    Clinical documents embody professional clinical knowledge. This paper shows an effective clinical document template (CDT) production system that uses a clinical description entity (CDE) model, a CDE ontology, and a knowledge management system called STEP that manages ontology-based clinical description entities. The ontology represents CDEs and their inter-relations, and the STEP system stores and manages CDE ontology-based information regarding CDTs. The system also provides Web Services interfaces for search and reasoning over clinical entities. The system was populated with entities and relations extracted from 35 CDTs that were used in admission, discharge, and progress reports, as well as those used in nursing and operation functions. A clinical document template editor is shown that uses STEP.

  19. Operational Plan Ontology Model for Interconnection and Interoperability

    NASA Astrophysics Data System (ADS)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  20. The NASA Air Traffic Management Ontology: Technical Documentation

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    2017-01-01

    This document is intended to serve as comprehensive documentation for the NASA Air Traffic Management (ATM) Ontology. The ATM Ontology is a conceptual model that defines key classes of entities and relationships pertaining to the US National Airspace System (NAS) and the management of air traffic through that system. A wide variety of classes are represented in the ATM Ontology, including classes corresponding to flights, aircraft, manufacturers, airports, airlines, air routes, NAS facilities, air traffic control advisories, weather phenomena, and many others. The Ontology can be useful in the context of a variety of information management tasks relevant to NAS, including information exchange, data query and search, information organization, information integration, and terminology standardization.

  1. Unsupervised Ontology Generation from Unstructured Text. CRESST Report 827

    ERIC Educational Resources Information Center

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2013-01-01

    Ontologies are a vital component of most knowledge acquisition systems, and recently there has been a huge demand for generating ontologies automatically since manual or supervised techniques are not scalable. In this paper, we introduce "OntoMiner", a rule-based, iterative method to extract and populate ontologies from unstructured or…

  2. TNM-O: ontology support for staging of malignant tumours.

    PubMed

    Boeker, Martin; França, Fábio; Bronsert, Peter; Schulz, Stefan

    2016-11-14

    Objectives of this work are to (1) present an ontological framework for the TNM classification system, (2) exemplify this framework by an ontology for colon and rectum tumours, and (3) evaluate this ontology by assigning TNM classes to real world pathology data. The TNM ontology uses the Foundational Model of Anatomy for anatomical entities and BioTopLite 2 as a domain top-level ontology. General rules for the TNM classification system and the specific TNM classification for colorectal tumours were axiomatised in description logic. Case-based information was collected from tumour documentation practice in the Comprehensive Cancer Centre of a large university hospital. Based on the ontology, a module was developed that classifies pathology data. TNM was represented as an information artefact, which consists of single representational units. Corresponding to every representational unit, tumours and tumour aggregates were defined. Tumour aggregates consist of the primary tumour and, if existing, of infiltrated regional lymph nodes and distant metastases. TNM codes depend on the location and certain qualities of the primary tumour (T), the infiltrated regional lymph nodes (N) and the existence of distant metastases (M). Tumour data from clinical and pathological documentation were successfully classified with the ontology. A first version of the TNM Ontology represents the TNM system for the description of the anatomical extent of malignant tumours. The present work demonstrates its representational power and completeness as well as its applicability for classification of instance data.

  3. A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands

    ERIC Educational Resources Information Center

    Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui

    2011-01-01

    Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…

  4. Margin based ontology sparse vector learning algorithm and applied in biology science.

    PubMed

    Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad

    2017-01-01

    In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.

  5. Natural Language Processing Methods and Systems for Biomedical Ontology Learning

    PubMed Central

    Liu, Kaihong; Hogan, William R.; Crowley, Rebecca S.

    2010-01-01

    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they must achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships as well as difficulty in updating the ontology as knowledge changes. Methodologies developed in the fields of natural language processing, information extraction, information retrieval and machine learning provide techniques for automating the enrichment of an ontology from free-text documents. In this article, we review existing methodologies and developed systems, and discuss how existing methods can benefit the development of biomedical ontologies. PMID:20647054

  6. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  7. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    PubMed Central

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  8. Versioning System for Distributed Ontology Development

    DTIC Science & Technology

    2016-03-15

    provides guidelines for evaluating the impact of the version changes. This page intentionally left blank. v...conformance to a clear set of development and versioning guidelines to assure that changes and extensions can be integrated back into the “main development... guidelines for evolution of an ontology would have considerably helped the users of the ontology in these situations. The currently accessible

  9. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    PubMed

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  10. iSMART: Ontology-based Semantic Query of CDA Documents

    PubMed Central

    Liu, Shengping; Ni, Yuan; Mei, Jing; Li, Hanyu; Xie, Guotong; Hu, Gang; Liu, Haifeng; Hou, Xueqiao; Pan, Yue

    2009-01-01

    The Health Level 7 Clinical Document Architecture (CDA) is widely accepted as the format for electronic clinical document. With the rich ontological references in CDA documents, the ontology-based semantic query could be performed to retrieve CDA documents. In this paper, we present iSMART (interactive Semantic MedicAl Record reTrieval), a prototype system designed for ontology-based semantic query of CDA documents. The clinical information in CDA documents will be extracted into RDF triples by a declarative XML to RDF transformer. An ontology reasoner is developed to infer additional information by combining the background knowledge from SNOMED CT ontology. Then an RDF query engine is leveraged to enable the semantic queries. This system has been evaluated using the real clinical documents collected from a large hospital in southern China. PMID:20351883

  11. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    PubMed Central

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  12. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.

    PubMed

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-03-11

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.

  13. Developing Learning Materials Using an Ontology of Mathematical Logic

    ERIC Educational Resources Information Center

    Boyatt, Russell; Joy, Mike

    2012-01-01

    Ontologies describe a body of knowledge and give formal structure to a domain by describing concepts and their relationships. The construction of an ontology provides an opportunity to develop a shared understanding and a consistent vocabulary to be used for a given activity. This paper describes the construction of an ontology for an area of…

  14. Uberon, an integrative multi-species anatomy ontology

    PubMed Central

    2012-01-01

    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552

  15. Ontology-based geospatial data query and integration

    USGS Publications Warehouse

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  16. Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies.

    PubMed

    Samwald, Matthias; Miñarro Giménez, Jose Antonio; Boyce, Richard D; Freimuth, Robert R; Adlassnig, Klaus-Peter; Dumontier, Michel

    2015-02-22

    Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of

  17. Ontology for cell-based geographic information

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  18. OntoPop: An Ontology Population System for the Semantic Web

    NASA Astrophysics Data System (ADS)

    Thongkrau, Theerayut; Lalitrojwong, Pattarachai

    The development of ontology at the instance level requires the extraction of the terms defining the instances from various data sources. These instances then are linked to the concepts of the ontology, and relationships are created between these instances for the next step. However, before establishing links among data, ontology engineers must classify terms or instances from a web document into an ontology concept. The tool for help ontology engineer in this task is called ontology population. The present research is not suitable for ontology development applications, such as long time processing or analyzing large or noisy data sets. OntoPop system introduces a methodology to solve these problems, which comprises two parts. First, we select meaningful features from syntactic relations, which can produce more significant features than any other method. Second, we differentiate feature meaning and reduce noise based on latent semantic analysis. Experimental evaluation demonstrates that the OntoPop works well, significantly out-performing the accuracy of 49.64%, a learning accuracy of 76.93%, and executes time of 5.46 second/instance.

  19. Semi Automatic Ontology Instantiation in the domain of Risk Management

    NASA Astrophysics Data System (ADS)

    Makki, Jawad; Alquier, Anne-Marie; Prince, Violaine

    One of the challenging tasks in the context of Ontological Engineering is to automatically or semi-automatically support the process of Ontology Learning and Ontology Population from semi-structured documents (texts). In this paper we describe a Semi-Automatic Ontology Instantiation method from natural language text, in the domain of Risk Management. This method is composed from three steps 1 ) Annotation with part-of-speech tags, 2) Semantic Relation Instances Extraction, 3) Ontology instantiation process. It's based on combined NLP techniques using human intervention between steps 2 and 3 for control and validation. Since it heavily relies on linguistic knowledge it is not domain dependent which is a good feature for portability between the different fields of risk management application. The proposed methodology uses the ontology of the PRIMA1 project (supported by the European community) as a Generic Domain Ontology and populates it via an available corpus. A first validation of the approach is done through an experiment with Chemical Fact Sheets from Environmental Protection Agency2.

  20. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    PubMed

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  1. SSDOnt: An Ontology for Representing Single-Subject Design Studies.

    PubMed

    Berges, Idoia; Bermúdez, Jesus; Illarramendi, Arantza

    2018-02-01

    Single-Subject Design is used in several areas such as education and biomedicine. However, no suited formal vocabulary exists for annotating the detailed configuration and the results of this type of research studies with the appropriate granularity for looking for information about them. Therefore, the search for those study designs relies heavily on a syntactical search on the abstract, keywords or full text of the publications about the study, which entails some limitations. To present SSDOnt, a specific purpose ontology for describing and annotating single-subject design studies, so that complex questions can be asked about them afterwards. The ontology was developed following the NeOn methodology. Once the requirements of the ontology were defined, a formal model was described in a Description Logic and later implemented in the ontology language OWL 2 DL. We show how the ontology provides a reference model with a suitable terminology for the annotation and searching of single-subject design studies and their main components, such as the phases, the intervention types, the outcomes and the results. Some mappings with terms of related ontologies have been established. We show as proof-of-concept that classes in the ontology can be easily extended to annotate more precise information about specific interventions and outcomes such as those related to autism. Moreover, we provide examples of some types of queries that can be posed to the ontology. SSDOnt has achieved the purpose of covering the descriptions of the domain of single-subject research studies. Schattauer GmbH.

  2. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  3. The Plant Ontology: A Tool for Plant Genomics.

    PubMed

    Cooper, Laurel; Jaiswal, Pankaj

    2016-01-01

    The use of controlled, structured vocabularies (ontologies) has become a critical tool for scientists in the post-genomic era of massive datasets. Adoption and integration of common vocabularies and annotation practices enables cross-species comparative analyses and increases data sharing and reusability. The Plant Ontology (PO; http://www.plantontology.org/ ) describes plant anatomy, morphology, and the stages of plant development, and offers a database of plant genomics annotations associated to the PO terms. The scope of the PO has grown from its original design covering only rice, maize, and Arabidopsis, and now includes terms to describe all green plants from angiosperms to green algae.This chapter introduces how the PO and other related ontologies are constructed and organized, including languages and software used for ontology development, and provides an overview of the key features. Detailed instructions illustrate how to search and browse the PO database and access the associated annotation data. Users are encouraged to provide input on the ontology through the online term request form and contribute datasets for integration in the PO database.

  4. Towards a Consistent and Scientifically Accurate Drug Ontology.

    PubMed

    Hogan, William R; Hanna, Josh; Joseph, Eric; Brochhausen, Mathias

    2013-01-01

    Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.

  5. Kernel Methods for Mining Instance Data in Ontologies

    NASA Astrophysics Data System (ADS)

    Bloehdorn, Stephan; Sure, York

    The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.

  6. Application of Ontology Technology in Health Statistic Data Analysis.

    PubMed

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  7. ASON: An OWL-S based ontology for astrophysical services

    NASA Astrophysics Data System (ADS)

    Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.

    2018-07-01

    Modern astrophysics heavily relies on Web services to expose most of the data coming from many different instruments and researches worldwide. The virtual observatory (VO) has been designed to allow scientists to locate, retrieve and analyze useful information among those heterogeneous data. The use of ontologies has been studied in the VO context for astrophysical concerns like object types or astrophysical services subjects. On the operative point of view, ontological description of astrophysical services for interoperability and querying still has to be considered. In this paper, we design a global ontology (Astrophysical Services ONtology, ASON) based on web Ontology Language for Services (OWL-S) to enhance existing astrophysical services description. By expressing together VO specific and non-VO specific services design, it will improve the automation of services queries and allow automatic composition of heterogeneous astrophysical services.

  8. PAV ontology: provenance, authoring and versioning.

    PubMed

    Ciccarese, Paolo; Soiland-Reyes, Stian; Belhajjame, Khalid; Gray, Alasdair Jg; Goble, Carole; Clark, Tim

    2013-11-22

    Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as Dublin Core Terms (DC Terms) and the W3C Provenance Ontology (PROV-O) are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. In particular, to track authoring and versioning information of web resources, PROV-O provides a basic methodology but not any specific classes and properties for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. We present the Provenance, Authoring and Versioning ontology (PAV, namespace http://purl.org/pav/): a lightweight ontology for capturing "just enough" descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the W3C PROV-O ontology to support broader interoperability. The initial design of the PAV ontology was driven by requirements from the AlzSWAN project with further requirements incorporated later from other projects detailed in this paper. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. We analyze and compare PAV with related

  9. Summary of workshop 'Theory Meets Industry'—the impact of ab initio solid state calculations on industrial materials research

    NASA Astrophysics Data System (ADS)

    Wimmer, E.

    2008-02-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.

  10. Using AberOWL for fast and scalable reasoning over BioPortal ontologies.

    PubMed

    Slater, Luke; Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

    2016-08-08

    Reasoning over biomedical ontologies using their OWL semantics has traditionally been a challenging task due to the high theoretical complexity of OWL-based automated reasoning. As a consequence, ontology repositories, as well as most other tools utilizing ontologies, either provide access to ontologies without use of automated reasoning, or limit the number of ontologies for which automated reasoning-based access is provided. We apply the AberOWL infrastructure to provide automated reasoning-based access to all accessible and consistent ontologies in BioPortal (368 ontologies). We perform an extensive performance evaluation to determine query times, both for queries of different complexity and for queries that are performed in parallel over the ontologies. We demonstrate that, with the exception of a few ontologies, even complex and parallel queries can now be answered in milliseconds, therefore allowing automated reasoning to be used on a large scale, to run in parallel, and with rapid response times.

  11. Automated Agent Ontology Creation for Distributed Databases

    DTIC Science & Technology

    2004-03-01

    relationships between themselves if one exists. For example, if one agent’s ontology was ‘ NBA ’ and the second agent’s ontology was ‘College Hoops...the two agents should discover their relationship ‘ basketball ’ [28]. The authors’ agents use supervised inductive learning to learn their individual

  12. Ontology-supported Research on Vaccine Efficacy, Safety, and Integrative Biological Networks

    PubMed Central

    He, Yongqun

    2016-01-01

    Summary While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including the Vaccine Ontology, Ontology of Adverse Events, and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network (“OneNet”) Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms. PMID:24909153

  13. Effects of an ontology display with history representation on organizational memory information systems.

    PubMed

    Hwang, Wonil; Salvendy, Gavriel

    2005-06-10

    Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.

  14. Inferring gene ontologies from pairwise similarity data

    PubMed Central

    Kramer, Michael; Dutkowski, Janusz; Yu, Michael; Bafna, Vineet; Ideker, Trey

    2014-01-01

    Motivation: While the manually curated Gene Ontology (GO) is widely used, inferring a GO directly from -omics data is a compelling new problem. Recognizing that ontologies are a directed acyclic graph (DAG) of terms and hierarchical relations, algorithms are needed that: analyze a full matrix of gene–gene pairwise similarities from -omics data;infer true hierarchical structure in these data rather than enforcing hierarchy as a computational artifact; andrespect biological pleiotropy, by which a term in the hierarchy can relate to multiple higher level terms. Methods addressing these requirements are just beginning to emerge—none has been evaluated for GO inference. Methods: We consider two algorithms [Clique Extracted Ontology (CliXO), LocalFitness] that uniquely satisfy these requirements, compared with methods including standard clustering. CliXO is a new approach that finds maximal cliques in a network induced by progressive thresholding of a similarity matrix. We evaluate each method’s ability to reconstruct the GO biological process ontology from a similarity matrix based on (a) semantic similarities for GO itself or (b) three -omics datasets for yeast. Results: For task (a) using semantic similarity, CliXO accurately reconstructs GO (>99% precision, recall) and outperforms other approaches (<20% precision, <20% recall). For task (b) using -omics data, CliXO outperforms other methods using two -omics datasets and achieves ∼30% precision and recall using YeastNet v3, similar to an earlier approach (Network Extracted Ontology) and better than LocalFitness or standard clustering (20–25% precision, recall). Conclusion: This study provides algorithmic foundation for building gene ontologies by capturing hierarchical and pleiotropic structure embedded in biomolecular data. Contact: tideker@ucsd.edu PMID:24932003

  15. Best behaviour? Ontologies and the formal description of animal behaviour.

    PubMed

    Gkoutos, Georgios V; Hoehndorf, Robert; Tsaprouni, Loukia; Schofield, Paul N

    2015-10-01

    The development of ontologies for describing animal behaviour has proved to be one of the most difficult of all scientific knowledge domains. Ranging from neurological processes to human emotions, the range and scope needed for such ontologies is highly challenging, but if data integration and computational tools such as automated reasoning are to be fully applied in this important area the underlying principles of these ontologies need to be better established and development needs detailed coordination. Whilst the state of scientific knowledge is always paramount in ontology and formal description framework design, this is a particular problem with neurobehavioural ontologies where our understanding of the relationship between behaviour and its underlying biophysical basis is currently in its infancy. In this commentary, we discuss some of the fundamental problems in designing and using behaviour ontologies, and present some of the best developed tools in this domain.

  16. Querying archetype-based EHRs by search ontology-based XPath engineering.

    PubMed

    Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich

    2018-05-11

    Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.

  17. Managing changes in distributed biomedical ontologies using hierarchical distributed graph transformation.

    PubMed

    Shaban-Nejad, Arash; Haarslev, Volker

    2015-01-01

    The issue of ontology evolution and change management is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies and interactions with other existing ontologies have been widely neglected. In our research, after revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, Represent, Legitimate and Reproduce (RLR), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general and aids in tracking and representing the changes, particularly through the use of category theory and hierarchical graph transformation.

  18. Module Extraction for Efficient Object Queries over Ontologies with Large ABoxes

    PubMed Central

    Xu, Jia; Shironoshita, Patrick; Visser, Ubbo; John, Nigel; Kabuka, Mansur

    2015-01-01

    The extraction of logically-independent fragments out of an ontology ABox can be useful for solving the tractability problem of querying ontologies with large ABoxes. In this paper, we propose a formal definition of an ABox module, such that it guarantees complete preservation of facts about a given set of individuals, and thus can be reasoned independently w.r.t. the ontology TBox. With ABox modules of this type, isolated or distributed (parallel) ABox reasoning becomes feasible, and more efficient data retrieval from ontology ABoxes can be attained. To compute such an ABox module, we present a theoretical approach and also an approximation for SHIQ ontologies. Evaluation of the module approximation on different types of ontologies shows that, on average, extracted ABox modules are significantly smaller than the entire ABox, and the time for ontology reasoning based on ABox modules can be improved significantly. PMID:26848490

  19. Critical Ontology for an Enactive Music Pedagogy

    ERIC Educational Resources Information Center

    van der Schyff, Dylan; Schiavio, Andrea; Elliott, David J.

    2016-01-01

    An enactive approach to music education is explored through the lens of critical ontology. Assumptions central to Western academic music culture are critically discussed; and the concept of "ontological education" is introduced as an alternative framework. We argue that this orientation embraces more primordial ways of knowing and being,…

  20. C2 Domain Ontology within Our Lifetime

    DTIC Science & Technology

    2009-06-01

    25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR, May 2003. [26...www.ifomis.org/bfo/BFO  [25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR

  1. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    PubMed Central

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  2. An Agent-Based Data Mining System for Ontology Evolution

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Dillon, Darshan

    We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.

  3. Reconciliation of ontology and terminology to cope with linguistics.

    PubMed

    Baud, Robert H; Ceusters, Werner; Ruch, Patrick; Rassinoux, Anne-Marie; Lovis, Christian; Geissbühler, Antoine

    2007-01-01

    To discuss the relationships between ontologies, terminologies and language in the context of Natural Language Processing (NLP) applications in order to show the negative consequences of confusing them. The viewpoints of the terminologist and (computational) linguist are developed separately, and then compared, leading to the presentation of reconciliation among these points of view, with consideration of the role of the ontologist. In order to encourage appropriate usage of terminologies, guidelines are presented advocating the simultaneous publication of pragmatic vocabularies supported by terminological material based on adequate ontological analysis. Ontologies, terminologies and natural languages each have their own purpose. Ontologies support machine understanding, natural languages support human communication, and terminologies should form the bridge between them. Therefore, future terminology standards should be based on sound ontology and do justice to the diversities in natural languages. Moreover, they should support local vocabularies, in order to be easily adaptable to local needs and practices.

  4. From Patient Discharge Summaries to an Ontology for Psychiatry.

    PubMed

    Richard, Marion; Aimé, Xavier; Jaulent, Marie-Christine; Krebs, Marie-Odile; Charlet, Jean

    2017-01-01

    Psychiatry aims at detecting symptoms, providing diagnoses and treating mental disorders. We developed ONTOPSYCHIA, an ontology for psychiatry in three modules: social and environmental factors of mental disorders, mental disorders, and treatments. The use of ONTOPSYCHIA, associated with dedicated tools, will facilitate semantic research in Patient Discharge Summaries (PDS). To develop the first module of the ontology we propose a PDS text analysis in order to explicit psychiatry concepts. We decided to set aside classifications during the construction of the modu le, to focus only on the information contained in PDS (bottom-up approach) and to return to domain classifications solely for the enrichment phase (top-down approach). Then, we focused our work on the development of the LOVMI methodology (Les Ontologies Validées par Méthode Interactive - Ontologies Validated by Interactive Method), which aims to provide a methodological framework to validate the structure and the semantic of an ontology.

  5. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    NASA Astrophysics Data System (ADS)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  6. Validating EHR clinical models using ontology patterns.

    PubMed

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An Approach to Folksonomy-Based Ontology Maintenance for Learning Environments

    ERIC Educational Resources Information Center

    Gasevic, D.; Zouaq, Amal; Torniai, Carlo; Jovanovic, J.; Hatala, Marek

    2011-01-01

    Recent research in learning technologies has demonstrated many promising contributions from the use of ontologies and semantic web technologies for the development of advanced learning environments. In spite of those benefits, ontology development and maintenance remain the key research challenges to be solved before ontology-enhanced learning…

  8. Biomedical imaging ontologies: A survey and proposal for future work

    PubMed Central

    Smith, Barry; Arabandi, Sivaram; Brochhausen, Mathias; Calhoun, Michael; Ciccarese, Paolo; Doyle, Scott; Gibaud, Bernard; Goldberg, Ilya; Kahn, Charles E.; Overton, James; Tomaszewski, John; Gurcan, Metin

    2015-01-01

    Background: Ontology is one strategy for promoting interoperability of heterogeneous data through consistent tagging. An ontology is a controlled structured vocabulary consisting of general terms (such as “cell” or “image” or “tissue” or “microscope”) that form the basis for such tagging. These terms are designed to represent the types of entities in the domain of reality that the ontology has been devised to capture; the terms are provided with logical definitions thereby also supporting reasoning over the tagged data. Aim: This paper provides a survey of the biomedical imaging ontologies that have been developed thus far. It outlines the challenges, particularly faced by ontologies in the fields of histopathological imaging and image analysis, and suggests a strategy for addressing these challenges in the example domain of quantitative histopathology imaging. Results and Conclusions: The ultimate goal is to support the multiscale understanding of disease that comes from using interoperable ontologies to integrate imaging data with clinical and genomics data. PMID:26167381

  9. Ontology matters: a commentary on contribution to cultural historical activity

    NASA Astrophysics Data System (ADS)

    Martin, Jenny

    2017-10-01

    This commentary promotes discussion on the imaginary provided by Sanaz Farhangi in her article entitled, Contribution to activity: a lens for understanding students' potential and agency in physics education. The commentary is concerned with aligning ontological assumptions in research accounts of learning and development with transformative aims. A broad definition of ontology as the theory of existence is preferred. Sociocultural approaches share relational ontology as a common foundation. I agree with scholars elaborating Vygotsky's Transformative Activist Stance that a relational ontology does not imply activism. However, I argue that relational ontology provides a necessary and sufficient theoretical grounding for intentional transformation. I draw upon positioning theory to elaborate the moral aspects of language use and to illustrate that a theory of being as relational already eliminates the transcendental position. I draw on Farhangi's article to further the discussion on the necessity and sufficiency of relational ontology and associated grammars in accounting for activism.

  10. Ontology-Based Administration of Web Directories

    NASA Astrophysics Data System (ADS)

    Horvat, Marko; Gledec, Gordan; Bogunović, Nikola

    Administration of a Web directory and maintenance of its content and the associated structure is a delicate and labor intensive task performed exclusively by human domain experts. Subsequently there is an imminent risk of a directory structures becoming unbalanced, uneven and difficult to use to all except for a few users proficient with the particular Web directory and its domain. These problems emphasize the need to establish two important issues: i) generic and objective measures of Web directories structure quality, and ii) mechanism for fully automated development of a Web directory's structure. In this paper we demonstrate how to formally and fully integrate Web directories with the Semantic Web vision. We propose a set of criteria for evaluation of a Web directory's structure quality. Some criterion functions are based on heuristics while others require the application of ontologies. We also suggest an ontology-based algorithm for construction of Web directories. By using ontologies to describe the semantics of Web resources and Web directories' categories it is possible to define algorithms that can build or rearrange the structure of a Web directory. Assessment procedures can provide feedback and help steer the ontology-based construction process. The issues raised in the article can be equally applied to new and existing Web directories.

  11. Light-Weighted Automatic Import of Standardized Ontologies into the Content Management System Drupal.

    PubMed

    Beger, Christoph; Uciteli, Alexandr; Herre, Heinrich

    2017-01-01

    The amount of ontologies, which are utilizable for widespread domains, is growing steadily. BioPortal alone, embraces over 500 published ontologies with nearly 8 million classes. In contrast, the vast informative content of these ontologies is only directly intelligible by experts. To overcome this deficiency it could be possible to represent ontologies as web portals, which does not require knowledge about ontologies and their semantics, but still carries as much information as possible to the end-user. Furthermore, the conception of a complex web portal is a sophisticated process. Many entities must be analyzed and linked to existing terminologies. Ontologies are a decent solution for gathering and storing this complex data and dependencies. Hence, automated imports of ontologies into web portals could support both mentioned scenarios. The Content Management System (CMS) Drupal 8 is one of many solutions to develop web presentations with less required knowledge about programming languages and it is suitable to represent ontological entities. We developed the Drupal Upper Ontology (DUO), which models concepts of Drupal's architecture, such as nodes, vocabularies and links. DUO can be imported into ontologies to map their entities to Drupal's concepts. Because of Drupal's lack of import capabilities, we implemented the Simple Ontology Loader in Drupal (SOLID), a Drupal 8 module, which allows Drupal administrators to import ontologies based on DUO. Our module generates content in Drupal from existing ontologies and makes it accessible by the general public. Moreover Drupal offers a tagging system which may be amplified with multiple standardized and established terminologies by importing them with SOLID. Our Drupal module shows that ontologies can be used to model content of a CMS and vice versa CMS are suitable to represent ontologies in a user-friendly way. Ontological entities are presented to the user as discrete pages with all appropriate properties, links and

  12. A common layer of interoperability for biomedical ontologies based on OWL EL.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Wimalaratne, Sarala; Rebholz-Schuhmann, Dietrich; Schofield, Paul; Gkoutos, Georgios V

    2011-04-01

    Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies. We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses. The EL Vira software is available from http://el-vira.googlecode.com and converted OBO ontologies and their mappings are available from http://bioonto.gen.cam.ac.uk/el-ont.

  13. A Systematic Analysis of Term Reuse and Term Overlap across Biomedical Ontologies

    PubMed Central

    Kamdar, Maulik R.; Tudorache, Tania; Musen, Mark A.

    2016-01-01

    Reusing ontologies and their terms is a principle and best practice that most ontology development methodologies strongly encourage. Reuse comes with the promise to support the semantic interoperability and to reduce engineering costs. In this paper, we present a descriptive study of the current extent of term reuse and overlap among biomedical ontologies. We use the corpus of biomedical ontologies stored in the BioPortal repository, and analyze different types of reuse and overlap constructs. While we find an approximate term overlap between 25–31%, the term reuse is only <9%, with most ontologies reusing fewer than 5% of their terms from a small set of popular ontologies. Clustering analysis shows that the terms reused by a common set of ontologies have >90% semantic similarity, hinting that ontology developers tend to reuse terms that are sibling or parent–child nodes. We validate this finding by analysing the logs generated from a Protégé plugin that enables developers to reuse terms from BioPortal. We find most reuse constructs were 2-level subtrees on the higher levels of the class hierarchy. We developed a Web application that visualizes reuse dependencies and overlap among ontologies, and that proposes similar terms from BioPortal for a term of interest. We also identified a set of error patterns that indicate that ontology developers did intend to reuse terms from other ontologies, but that they were using different and sometimes incorrect representations. Our results stipulate the need for semi-automated tools that augment term reuse in the ontology engineering process through personalized recommendations. PMID:28819351

  14. Knowledge Discovery from Biomedical Ontologies in Cross Domains.

    PubMed

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

  15. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  16. Ontology modularization to improve semantic medical image annotation.

    PubMed

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Summarizing an Ontology: A "Big Knowledge" Coverage Approach.

    PubMed

    Zheng, Ling; Perl, Yehoshua; Elhanan, Gai; Ochs, Christopher; Geller, James; Halper, Michael

    2017-01-01

    Maintenance and use of a large ontology, consisting of thousands of knowledge assertions, are hampered by its scope and complexity. It is important to provide tools for summarization of ontology content in order to facilitate user "big picture" comprehension. We present a parameterized methodology for the semi-automatic summarization of major topics in an ontology, based on a compact summary of the ontology, called an "aggregate partial-area taxonomy", followed by manual enhancement. An experiment is presented to test the effectiveness of such summarization measured by coverage of a given list of major topics of the corresponding application domain. SNOMED CT's Specimen hierarchy is the test-bed. A domain-expert provided a list of topics that serves as a gold standard. The enhanced results show that the aggregate taxonomy covers most of the domain's main topics.

  18. Ontology-Based Annotation of Learning Object Content

    ERIC Educational Resources Information Center

    Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan

    2007-01-01

    The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…

  19. MIRO: guidelines for minimum information for the reporting of an ontology.

    PubMed

    Matentzoglu, Nicolas; Malone, James; Mungall, Chris; Stevens, Robert

    2018-01-18

    Creation and use of ontologies has become a mainstream activity in many disciplines, in particular, the biomedical domain. Ontology developers often disseminate information about these ontologies in peer-reviewed ontology description reports. There appears to be, however, a high degree of variability in the content of these reports. Often, important details are omitted such that it is difficult to gain a sufficient understanding of the ontology, its content and method of creation. We propose the Minimum Information for Reporting an Ontology (MIRO) guidelines as a means to facilitate a higher degree of completeness and consistency between ontology documentation, including published papers, and ultimately a higher standard of report quality. A draft of the MIRO guidelines was circulated for public comment in the form of a questionnaire, and we subsequently collected 110 responses from ontology authors, developers, users and reviewers. We report on the feedback of this consultation, including comments on each guideline, and present our analysis on the relative importance of each MIRO information item. These results were used to update the MIRO guidelines, mainly by providing more detailed operational definitions of the individual items and assigning degrees of importance. Based on our revised version of MIRO, we conducted a review of 15 recently published ontology description reports from three important journals in the Semantic Web and Biomedical domain and analysed them for compliance with the MIRO guidelines. We found that only 41.38% of the information items were covered by the majority of the papers (and deemed important by the survey respondents) and a large number of important items are not covered at all, like those related to testing and versioning policies. We believe that the community-reviewed MIRO guidelines can contribute to improving significantly the quality of ontology description reports and other documentation, in particular by increasing consistent

  20. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system.

    PubMed

    Senderov, Viktor; Simov, Kiril; Franz, Nico; Stoev, Pavel; Catapano, Terry; Agosti, Donat; Sautter, Guido; Morris, Robert A; Penev, Lyubomir

    2018-01-18

    The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.

  1. Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains

    PubMed Central

    Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.

    2014-01-01

    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology

  2. Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.

    PubMed

    Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F

    2014-10-01

    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology

  3. An ontology based trust verification of software license agreement

    NASA Astrophysics Data System (ADS)

    Lu, Wenhuan; Li, Xiaoqing; Gan, Zengqin; Wei, Jianguo

    2017-08-01

    When we install software or download software, there will show up so big mass document to state the rights and obligations, for which lots of person are not patient to read it or understand it. That would may make users feel distrust for the software. In this paper, we propose an ontology based verification for Software License Agreement. First of all, this work proposed an ontology model for domain of Software License Agreement. The domain ontology is constructed by proposed methodology according to copyright laws and 30 software license agreements. The License Ontology can act as a part of generalized copyright law knowledge model, and also can work as visualization of software licenses. Based on this proposed ontology, a software license oriented text summarization approach is proposed which performances showing that it can improve the accuracy of software licenses summarizing. Based on the summarization, the underline purpose of the software license can be explicitly explored for trust verification.

  4. Formal ontology for natural language processing and the integration of biomedical databases.

    PubMed

    Simon, Jonathan; Dos Santos, Mariana; Fielding, James; Smith, Barry

    2006-01-01

    The central hypothesis underlying this communication is that the methodology and conceptual rigor of a philosophically inspired formal ontology can bring significant benefits in the development and maintenance of application ontologies [A. Flett, M. Dos Santos, W. Ceusters, Some Ontology Engineering Procedures and their Supporting Technologies, EKAW2002, 2003]. This hypothesis has been tested in the collaboration between Language and Computing (L&C), a company specializing in software for supporting natural language processing especially in the medical field, and the Institute for Formal Ontology and Medical Information Science (IFOMIS), an academic research institution concerned with the theoretical foundations of ontology. In the course of this collaboration L&C's ontology, LinKBase, which is designed to integrate and support reasoning across a plurality of external databases, has been subjected to a thorough auditing on the basis of the principles underlying IFOMIS's Basic Formal Ontology (BFO) [B. Smith, Basic Formal Ontology, 2002. http://ontology.buffalo.edu/bfo]. The goal is to transform a large terminology-based ontology into one with the ability to support reasoning applications. Our general procedure has been the implementation of a meta-ontological definition space in which the definitions of all the concepts and relations in LinKBase are standardized in the framework of first-order logic. In this paper we describe how this principles-based standardization has led to a greater degree of internal coherence of the LinKBase structure, and how it has facilitated the construction of mappings between external databases using LinKBase as translation hub. We argue that the collaboration here described represents a new phase in the quest to solve the so-called "Tower of Babel" problem of ontology integration [F. Montayne, J. Flanagan, Formal Ontology: The Foundation for Natural Language Processing, 2003. http://www.landcglobal.com/].

  5. Instance-Based Ontology Matching for Open and Distance Learning Materials

    ERIC Educational Resources Information Center

    Cerón-Figueroa, Sergio; López-Yáñez, Itzamá; Villuendas-Rey, Yenny; Camacho-Nieto, Oscar; Aldape-Pérez, Mario; Yáñez-Márquez, Cornelio

    2017-01-01

    The present work describes an original associative model of pattern classification and its application to align different ontologies containing Learning Objects (LOs), which are in turn related to Open and Distance Learning (ODL) educative content. The problem of aligning ontologies is known as Ontology Matching Problem (OMP), whose solution is…

  6. The MGED ontology: a framework for describing functional genomics experiments.

    PubMed

    Stoeckert, Christian J; Parkinson, Helen

    2003-01-01

    The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organisms and their properties. Our solution was to create a framework for describing microarray experiments with an initial focus on the biological sample and its manipulation. For concepts that are common for many species, we could provide a manageable listing of controlled terms. For concepts that are species-specific or whose values cannot be readily listed, we created an 'OntologyEntry' concept that referenced an external resource. The MGED ontology is a work in progress that needs additional instances and particularly needs constraints to be added. The ontology currently covers the experimental sample and design, and we have begun capturing aspects of the microarrays themselves as well. The primary application of the ontology will be to develop forms for entering information into databases, and consequently allowing queries, taking advantage of the structure provided by the ontology. The application of an ontology of experimental conditions extends beyond microarray experiments and, as the scope of MGED includes other aspects of functional genomics, so too will the MGED ontology.

  7. Ontological Issues and the Possible Development of Cultural Psychology.

    PubMed

    Pérez-Campos, Gilberto

    2017-12-01

    Ontological issues have a bad reputation within mainstream psychology. This paper, however, is an attempt to argue that ontological reflection may play an important role in the development of cultural psychology. A cross-reading of two recent papers on the subject (Mammen & Mironenko, Integrative Psychological and Behavioral Science, 49(4), 681-713, 2015; Simão Integrative Psychological and Behavioral Science, 50, 568-585, 2016), aimed at characterizing their respective approaches to ontological issues, sets the stage for a presentation of Cornelius Castoriadis' ontological reflections. On this basis, a dialogue is initiated with E.E. Boesch's Symbolic Activity Theory that could contribute to a more refined understanding of human psychological functioning in its full complexity.

  8. The BioHub Knowledge Base: Ontology and Repository for Sustainable Biosourcing.

    PubMed

    Read, Warren J; Demetriou, George; Nenadic, Goran; Ruddock, Noel; Stevens, Robert; Winter, Jerry

    2016-06-01

    The motivation for the BioHub project is to create an Integrated Knowledge Management System (IKMS) that will enable chemists to source ingredients from bio-renewables, rather than from non-sustainable sources such as fossil oil and its derivatives. The BioHubKB is the data repository of the IKMS; it employs Semantic Web technologies, especially OWL, to host data about chemical transformations, bio-renewable feedstocks, co-product streams and their chemical components. Access to this knowledge base is provided to other modules within the IKMS through a set of RESTful web services, driven by SPARQL queries to a Sesame back-end. The BioHubKB re-uses several bio-ontologies and bespoke extensions, primarily for chemical feedstocks and products, to form its knowledge organisation schema. Parts of plants form feedstocks, while various processes generate co-product streams that contain certain chemicals. Both chemicals and transformations are associated with certain qualities, which the BioHubKB also attempts to capture. Of immediate commercial and industrial importance is to estimate the cost of particular sets of chemical transformations (leading to candidate surfactants) performed in sequence, and these costs too are captured. Data are sourced from companies' internal knowledge and document stores, and from the publicly available literature. Both text analytics and manual curation play their part in populating the ontology. We describe the prototype IKMS, the BioHubKB and the services that it supports for the IKMS. The BioHubKB can be found via http://biohub.cs.manchester.ac.uk/ontology/biohub-kb.owl .

  9. Standardized description of scientific evidence using the Evidence Ontology (ECO)

    PubMed Central

    Chibucos, Marcus C.; Mungall, Christopher J.; Balakrishnan, Rama; Christie, Karen R.; Huntley, Rachael P.; White, Owen; Blake, Judith A.; Lewis, Suzanna E.; Giglio, Michelle

    2014-01-01

    The Evidence Ontology (ECO) is a structured, controlled vocabulary for capturing evidence in biological research. ECO includes diverse terms for categorizing evidence that supports annotation assertions including experimental types, computational methods, author statements and curator inferences. Using ECO, annotation assertions can be distinguished according to the evidence they are based on such as those made by curators versus those automatically computed or those made via high-throughput data review versus single test experiments. Originally created for capturing evidence associated with Gene Ontology annotations, ECO is now used in other capacities by many additional annotation resources including UniProt, Mouse Genome Informatics, Saccharomyces Genome Database, PomBase, the Protein Information Resource and others. Information on the development and use of ECO can be found at http://evidenceontology.org. The ontology is freely available under Creative Commons license (CC BY-SA 3.0), and can be downloaded in both Open Biological Ontologies and Web Ontology Language formats at http://code.google.com/p/evidenceontology. Also at this site is a tracker for user submission of term requests and questions. ECO remains under active development in response to user-requested terms and in collaborations with other ontologies and database resources. Database URL: Evidence Ontology Web site: http://evidenceontology.org PMID:25052702

  10. Ontologies for Effective Use of Context in E-Learning Settings

    ERIC Educational Resources Information Center

    Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff

    2007-01-01

    This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…

  11. Ontology-based representation and analysis of host-Brucella interactions.

    PubMed

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  12. PAV ontology: provenance, authoring and versioning

    PubMed Central

    2013-01-01

    Background Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as Dublin Core Terms (DC Terms) and the W3C Provenance Ontology (PROV-O) are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. In particular, to track authoring and versioning information of web resources, PROV-O provides a basic methodology but not any specific classes and properties for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. Results We present the Provenance, Authoring and Versioning ontology (PAV, namespace http://purl.org/pav/): a lightweight ontology for capturing “just enough” descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the W3C PROV-O ontology to support broader interoperability. Method The initial design of the PAV ontology was driven by requirements from the AlzSWAN project with further requirements incorporated later from other projects detailed in this paper. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. Discussion

  13. Integrating systems biology models and biomedical ontologies

    PubMed Central

    2011-01-01

    Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms. PMID:21835028

  14. Probabilistic Ontology Architecture for a Terrorist Identification Decision Support System

    DTIC Science & Technology

    2014-06-01

    in real-world problems requires probabilistic ontologies, which integrate the inferential reasoning power of probabilistic representations with the... inferential reasoning power of probabilistic representations with the first-order expressivity of ontologies. The Reference Architecture for...ontology, terrorism, inferential reasoning, architecture I. INTRODUCTION A. Background Whether by nature or design, the personas of terrorists are

  15. Identification of protein features encoded by alternative exons using Exon Ontology.

    PubMed

    Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier

    2017-06-01

    Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents

    NASA Astrophysics Data System (ADS)

    Thiam, Mouhamadou; Bennacer, Nacéra; Pernelle, Nathalie; Lô, Moussa

    SHIRIis an ontology-based system for integration of semi-structured documents related to a specific domain. The system’s purpose is to allow users to access to relevant parts of documents as answers to their queries. SHIRI uses RDF/OWL for representation of resources and SPARQL for their querying. It relies on an automatic, unsupervised and ontology-driven approach for extraction, alignment and semantic annotation of tagged elements of documents. In this paper, we focus on the Extract-Align algorithm which exploits a set of named entity and term patterns to extract term candidates to be aligned with the ontology. It proceeds in an incremental manner in order to populate the ontology with terms describing instances of the domain and to reduce the access to extern resources such as Web. We experiment it on a HTML corpus related to call for papers in computer science and the results that we obtain are very promising. These results show how the incremental behaviour of Extract-Align algorithm enriches the ontology and the number of terms (or named entities) aligned directly with the ontology increases.

  17. Ontology to relational database transformation for web application development and maintenance

    NASA Astrophysics Data System (ADS)

    Mahmudi, Kamal; Inggriani Liem, M. M.; Akbar, Saiful

    2018-03-01

    Ontology is used as knowledge representation while database is used as facts recorder in a KMS (Knowledge Management System). In most applications, data are managed in a database system and updated through the application and then they are transformed to knowledge as needed. Once a domain conceptor defines the knowledge in the ontology, application and database can be generated from the ontology. Most existing frameworks generate application from its database. In this research, ontology is used for generating the application. As the data are updated through the application, a mechanism is designed to trigger an update to the ontology so that the application can be rebuilt based on the newest ontology. By this approach, a knowledge engineer has a full flexibility to renew the application based on the latest ontology without dependency to a software developer. In many cases, the concept needs to be updated when the data changed. The framework is built and tested in a spring java environment. A case study was conducted to proof the concepts.

  18. Ontology construction and application in practice case study of health tourism in Thailand.

    PubMed

    Chantrapornchai, Chantana; Choksuchat, Chidchanok

    2016-01-01

    Ontology is one of the key components in semantic webs. It contains the core knowledge for an effective search. However, building ontology requires the carefully-collected knowledge which is very domain-sensitive. In this work, we present the practice of ontology construction for a case study of health tourism in Thailand. The whole process follows the METHONTOLOGY approach, which consists of phases: information gathering, corpus study, ontology engineering, evaluation, publishing, and the application construction. Different sources of data such as structure web documents like HTML and other documents are acquired in the information gathering process. The tourism corpora from various tourism texts and standards are explored. The ontology is evaluated in two aspects: automatic reasoning using Pellet, and RacerPro, and the questionnaires, used to evaluate by experts of the domains: tourism domain experts and ontology experts. The ontology usability is demonstrated via the semantic web application and via example axioms. The developed ontology is actually the first health tourism ontology in Thailand with the published application.

  19. Ontology Performance Profiling and Model Examination: First Steps

    NASA Astrophysics Data System (ADS)

    Wang, Taowei David; Parsia, Bijan

    "[Reasoner] performance can be scary, so much so, that we cannot deploy the technology in our products." - Michael Shepard. What are typical OWL users to do when their favorite reasoner never seems to return? In this paper, we present our first steps considering this problem. We describe the challenges and our approach, and present a prototype tool to help users identify reasoner performance bottlenecks with respect to their ontologies. We then describe 4 case studies on synthetic and real-world ontologies. While the anecdotal evidence suggests that the service can be useful for both ontology developers and reasoner implementors, much more is desired.

  20. Advancing Science through Mining Libraries, Ontologies, and Communities*

    PubMed Central

    Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119

  1. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    ERIC Educational Resources Information Center

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  2. Making Meetings Work Better.

    ERIC Educational Resources Information Center

    Standke, Linda

    1978-01-01

    Focusing on the increased use by trainers of off-site facilities for employee training meetings, this article looks at some improvements and the expanding market in the meeting site industry. It also highlights emerging trends in the industry and covers the growth of meeting planning into a profession. (EM)

  3. Using ontology databases for scalable query answering, inconsistency detection, and data integration

    PubMed Central

    Dou, Dejing

    2011-01-01

    An ontology database is a basic relational database management system that models an ontology plus its instances. To reason over the transitive closure of instances in the subsumption hierarchy, for example, an ontology database can either unfold views at query time or propagate assertions using triggers at load time. In this paper, we use existing benchmarks to evaluate our method—using triggers—and we demonstrate that by forward computing inferences, we not only improve query time, but the improvement appears to cost only more space (not time). However, we go on to show that the true penalties were simply opaque to the benchmark, i.e., the benchmark inadequately captures load-time costs. We have applied our methods to two case studies in biomedicine, using ontologies and data from genetics and neuroscience to illustrate two important applications: first, ontology databases answer ontology-based queries effectively; second, using triggers, ontology databases detect instance-based inconsistencies—something not possible using views. Finally, we demonstrate how to extend our methods to perform data integration across multiple, distributed ontology databases. PMID:22163378

  4. Developing a Domain Ontology: the Case of Water Cycle and Hydrology

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Pozzi, W.; Piasecki, M.; Imam, B.; Houser, P.; Raskin, R.; Ramachandran, R.; Martinez Baquero, G.

    2008-12-01

    A semantic web ontology enables semantic data integration and semantic smart searching. Several organizations have attempted to implement smart registration and integration or searching using ontologies. These are the NOESIS (NSF project: LEAD) and HydroSeek (NSF project: CUAHS HIS) data discovery engines and the NSF project GEON. All three applications use ontologies to discover data from multiple sources and projects. The NASA WaterNet project was established to identify creative, innovative ways to bridge NASA research results to real world applications, linking decision support needs to available data, observations, and modeling capability. WaterNet (NASA project) utilized the smart query tool Noesis as a testbed to test whether different ontologies (and different catalog searches) could be combined to match resources with user needs. NOESIS contains the upper level SWEET ontology that accepts plug in domain ontologies to refine user search queries, reducing the burden of multiple keyword searches. Another smart search interface was that developed for CUAHSI, HydroSeek, that uses a multi-layered concept search ontology, tagging variables names from any number of data sources to specific leaf and higher level concepts on which the search is executed. This approach has proven to be quite successful in mitigating semantic heterogeneity as the user does not need to know the semantic specifics of each data source system but just uses a set of common keywords to discover the data for a specific temporal and geospatial domain. This presentation will show tests with Noesis and Hydroseek lead to the conclusion that the construction of a complex, and highly heterogeneous water cycle ontology requires multiple ontology modules. To illustrate the complexity and heterogeneity of a water cycle ontology, Hydroseek successfully utilizes WaterOneFlow to integrate data across multiple different data collections, such as USGS NWIS. However,different methodologies are employed by

  5. Ontology-Based Approach to Social Data Sentiment Analysis: Detection of Adolescent Depression Signals

    PubMed Central

    Jung, Hyesil; Song, Tae-Min

    2017-01-01

    Background Social networking services (SNSs) contain abundant information about the feelings, thoughts, interests, and patterns of behavior of adolescents that can be obtained by analyzing SNS postings. An ontology that expresses the shared concepts and their relationships in a specific field could be used as a semantic framework for social media data analytics. Objective The aim of this study was to refine an adolescent depression ontology and terminology as a framework for analyzing social media data and to evaluate description logics between classes and the applicability of this ontology to sentiment analysis. Methods The domain and scope of the ontology were defined using competency questions. The concepts constituting the ontology and terminology were collected from clinical practice guidelines, the literature, and social media postings on adolescent depression. Class concepts, their hierarchy, and the relationships among class concepts were defined. An internal structure of the ontology was designed using the entity-attribute-value (EAV) triplet data model, and superclasses of the ontology were aligned with the upper ontology. Description logics between classes were evaluated by mapping concepts extracted from the answers to frequently asked questions (FAQs) onto the ontology concepts derived from description logic queries. The applicability of the ontology was validated by examining the representability of 1358 sentiment phrases using the ontology EAV model and conducting sentiment analyses of social media data using ontology class concepts. Results We developed an adolescent depression ontology that comprised 443 classes and 60 relationships among the classes; the terminology comprised 1682 synonyms of the 443 classes. In the description logics test, no error in relationships between classes was found, and about 89% (55/62) of the concepts cited in the answers to FAQs mapped onto the ontology class. Regarding applicability, the EAV triplet models of the

  6. Developing VISO: Vaccine Information Statement Ontology for patient education.

    PubMed

    Amith, Muhammad; Gong, Yang; Cunningham, Rachel; Boom, Julie; Tao, Cui

    2015-01-01

    To construct a comprehensive vaccine information ontology that can support personal health information applications using patient-consumer lexicon, and lead to outcomes that can improve patient education. The authors composed the Vaccine Information Statement Ontology (VISO) using the web ontology language (OWL). We started with 6 Vaccine Information Statement (VIS) documents collected from the Centers for Disease Control and Prevention (CDC) website. Important and relevant selections from the documents were recorded, and knowledge triples were derived. Based on the collection of knowledge triples, the meta-level formalization of the vaccine information domain was developed. Relevant instances and their relationships were created to represent vaccine domain knowledge. The initial iteration of the VISO was realized, based on the 6 Vaccine Information Statements and coded into OWL2 with Protégé. The ontology consisted of 132 concepts (classes and subclasses) with 33 types of relationships between the concepts. The total number of instances from classes totaled at 460, along with 429 knowledge triples in total. Semiotic-based metric scoring was applied to evaluate quality of the ontology.

  7. Supporting Better Treatments for Meeting Health Consumers' Needs: Extracting Semantics in Social Data for Representing a Consumer Health Ontology

    ERIC Educational Resources Information Center

    Choi, Yunseon

    2016-01-01

    Introduction: The purpose of this paper is to provide a framework for building a consumer health ontology using social tags. This would assist health users when they are accessing health information and increase the number of documents relevant to their needs. Methods: In order to extract concepts from social tags, this study conducted an…

  8. The Ontological Politics of Evidence and Policy Enablement

    ERIC Educational Resources Information Center

    Carusi, F. Tony; Rawlins, Peter; Ashton, Karen

    2018-01-01

    Ontological politics has received increasing attention within education policy studies, particularly as a support for the notion of policy enactment. While policy enactment offers serious challenges to traditional approaches toward policy implementation, this paper takes up ontological politics as a concept that extends beyond implementation and…

  9. [Analysis of health terminologies for use as ontologies in healthcare information systems].

    PubMed

    Romá-Ferri, Maria Teresa; Palomar, Manuel

    2008-01-01

    Ontologies are a resource that allow the concept of meaning to be represented informatically, thus avoiding the limitations imposed by standardized terms. The objective of this study was to establish the extent to which terminologies could be used for the design of ontologies, which could be serve as an aid to resolve problems such as semantic interoperability and knowledge reusability in healthcare information systems. To determine the extent to which terminologies could be used as ontologies, six of the most important terminologies in clinical, epidemiologic, documentation and administrative-economic contexts were analyzed. The following characteristics were verified: conceptual coverage, hierarchical structure, conceptual granularity of the categories, conceptual relations, and the language used for conceptual representation. MeSH, DeCS and UMLS ontologies were considered lightweight. The main differences among these ontologies concern conceptual specification, the types of relation and the restrictions among the associated concepts. SNOMED and GALEN ontologies have declaratory formalism, based on logical descriptions. These ontologies include explicit qualities and show greater restrictions among associated concepts and rule combinations and were consequently considered as heavyweight. Analysis of the declared representation of the terminologies shows the extent to which they could be reused as ontologies. Their degree of usability depends on whether the aim is for healthcare information systems to solve problems of semantic interoperability (lightweight ontologies) or to reuse the systems' knowledge as an aid to decision making (heavyweight ontologies) and for non-structured information retrieval, extraction, and classification.

  10. Ontology-Based Method for Fault Diagnosis of Loaders.

    PubMed

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  11. The unexpected high practical value of medical ontologies.

    PubMed

    Pinciroli, Francesco; Pisanelli, Domenico M

    2006-01-01

    Ontology is no longer a mere research topic, but its relevance has been recognized in several practical fields. Current applications areas include natural language translation, e-commerce, geographic information systems, legal information systems and biology and medicine. It is the backbone of solid and effective applications in health care and can help to build more powerful and more interoperable medical information systems. The design and implementation of ontologies in medicine is mainly focused on the re-organization of medical terminologies. This is obviously a difficult task and requires a deep analysis of the structure and the concepts of such terminologies, in order to define domain ontologies able to provide both flexibility and consistency to medical information systems. The aim of this special issue of Computers in Biology and Medicine is to report the current evolution of research in biomedical ontologies, presenting both papers devoted to methodological issues and works with a more applicative emphasis.

  12. Ontology for customer centric digital services and analytics

    NASA Astrophysics Data System (ADS)

    Keat, Ng Wai; Shahrir, Mohammad Shazri

    2017-11-01

    In computer science research, ontologies are commonly utilised to create a unified abstract across many rich and different fields. In this paper, we apply the concept to the customer centric domain of digital services analytics and present an analytics solution ontology. The essence is based from traditional Entity Relationship Diagram (ERD), which then was abstracted out to cover wider areas on customer centric digital services. The ontology we developed covers both static aspects (customer identifiers) and dynamic aspects (customer's temporal interactions). The structure of the customer scape is modeled with classes that represent different types of customer touch points, ranging from digital and digital-stamps which represent physical analogies. The dynamic aspects of customer centric digital service are modeled with a set of classes, with the importance is represented in different associations involving establishment and termination of the target interaction. The realized ontology can be used in development of frameworks for customer centric applications, and for specification of common data format used by cooperating digital service applications.

  13. Ontology-Based Method for Fault Diagnosis of Loaders

    PubMed Central

    Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-01-01

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646

  14. Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.

    PubMed

    Leroy, G; Chen, H

    2001-12-01

    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.

  15. Survey-based naming conventions for use in OBO Foundry ontology development

    PubMed Central

    Schober, Daniel; Smith, Barry; Lewis, Suzanna E; Kusnierczyk, Waclaw; Lomax, Jane; Mungall, Chris; Taylor, Chris F; Rocca-Serra, Philippe; Sansone, Susanna-Assunta

    2009-01-01

    Background A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. Results We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Conclusion Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data. PMID:19397794

  16. The ontology of science teaching in the neoliberal era

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  17. Towards a Pattern-Driven Topical Ontology Modeling Methodology in Elderly Care Homes

    NASA Astrophysics Data System (ADS)

    Tang, Yan; de Baer, Peter; Zhao, Gang; Meersman, Robert; Pudkey, Kevin

    This paper presents a pattern-driven ontology modeling methodology, which is used to create topical ontologies in the human resource management (HRM) domain. An ontology topic is used to group concepts from different contexts (or even from different domain ontologies). We use the Organization for Economic Co-operation and Development (OECD) and the National Vocational Qualification (NVQ) as the resource to create the topical ontologies in this paper. The methodology is implemented in a tool called PAD-ON suit. The paper approach is illustrated with a use case from elderly care homes in UK.

  18. Gene Ontology: Pitfalls, Biases, and Remedies.

    PubMed

    Gaudet, Pascale; Dessimoz, Christophe

    2017-01-01

    The Gene Ontology (GO) is a formidable resource, but there are several considerations about it that are essential to understand the data and interpret it correctly. The GO is sufficiently simple that it can be used without deep understanding of its structure or how it is developed, which is both a strength and a weakness. In this chapter, we discuss some common misinterpretations of the ontology and the annotations. A better understanding of the pitfalls and the biases in the GO should help users make the most of this very rich resource. We also review some of the misconceptions and misleading assumptions commonly made about GO, including the effect of data incompleteness, the importance of annotation qualifiers, and the transitivity or lack thereof associated with different ontology relations. We also discuss several biases that can confound aggregate analyses such as gene enrichment analyses. For each of these pitfalls and biases, we suggest remedies and best practices.

  19. Spatial Data Integration Using Ontology-Based Approach

    NASA Astrophysics Data System (ADS)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  20. Ontology Extraction Tools: An Empirical Study with Educators

    ERIC Educational Resources Information Center

    Hatala, M.; Gasevic, D.; Siadaty, M.; Jovanovic, J.; Torniai, C.

    2012-01-01

    Recent research in Technology-Enhanced Learning (TEL) demonstrated several important benefits that semantic technologies can bring to the TEL domain. An underlying assumption for most of these research efforts is the existence of a domain ontology. The second unspoken assumption follows that educators will build domain ontologies for their…

  1. Eliciting Taiwanese high school students' scientific ontological and epistemic beliefs

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    This study employed the interview method to clarify the underlying dimensions of and relationships between students' scientific ontological and epistemic beliefs. Forty Taiwanese high school students were invited to participate in this study. Through content analysis of the participants' interview responses two ontological dimensions including 'status of nature' and 'structure of nature' were identified and found to be associated with each other. The two epistemic dimensions 'knowledge' and 'knowing' aligned with past literature were also categorised. Besides five pattern variations in terms of the aforementioned four dimensions were recognised based on the students' philosophical stances on their scientific ontological and epistemic beliefs. According to the Chi-square test results both dimensions of scientific ontological beliefs were significantly related to the two dimensions of scientific epistemic beliefs respectively. In general the students who endorsed a more sophisticated ontological stance regarding the status and structure of nature tended to express a more mature epistemic stance toward scientific knowledge and ways of knowing. The results suggest that the maturation of students' scientific epistemic beliefs may serve as a precursor and the fundamental step in promoting the sophistication of students' scientific ontological beliefs.

  2. Evaluating Health Information Systems Using Ontologies.

    PubMed

    Eivazzadeh, Shahryar; Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-06-16

    There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems-whether similar or heterogeneous-by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union

  3. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration

    PubMed Central

    Smith, Barry; Ashburner, Michael; Rosse, Cornelius; Bard, Jonathan; Bug, William; Ceusters, Werner; Goldberg, Louis J; Eilbeck, Karen; Ireland, Amelia; Mungall, Christopher J; Leontis, Neocles; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Shah, Nigam; Whetzel, Patricia L; Lewis, Suzanna

    2010-01-01

    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved. PMID:17989687

  4. Development of an Adolescent Depression Ontology for Analyzing Social Data.

    PubMed

    Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min; Jeon, Eunjoo; Kim, Ae Ran; Lee, Joo Yun

    2015-01-01

    Depression in adolescence is associated with significant suicidality. Therefore, it is important to detect the risk for depression and provide timely care to adolescents. This study aims to develop an ontology for collecting and analyzing social media data about adolescent depression. This ontology was developed using the 'ontology development 101'. The important terms were extracted from several clinical practice guidelines and postings on Social Network Service. We extracted 777 terms, which were categorized into 'risk factors', 'sign and symptoms', 'screening', 'diagnosis', 'treatment', and 'prevention'. An ontology developed in this study can be used as a framework to understand adolescent depression using unstructured data from social media.

  5. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  6. Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support

    PubMed Central

    Bodenreider, O.

    2008-01-01

    Summary Objectives To provide typical examples of biomedical ontologies in action, emphasizing the role played by biomedical ontologies in knowledge management, data integration and decision support. Methods Biomedical ontologies selected for their practical impact are examined from a functional perspective. Examples of applications are taken from operational systems and the biomedical literature, with a bias towards recent journal articles. Results The ontologies under investigation in this survey include SNOMED CT, the Logical Observation Identifiers, Names, and Codes (LOINC), the Foundational Model of Anatomy, the Gene Ontology, RxNorm, the National Cancer Institute Thesaurus, the International Classification of Diseases, the Medical Subject Headings (MeSH) and the Unified Medical Language System (UMLS). The roles played by biomedical ontologies are classified into three major categories: knowledge management (indexing and retrieval of data and information, access to information, mapping among ontologies); data integration, exchange and semantic interoperability; and decision support and reasoning (data selection and aggregation, decision support, natural language processing applications, knowledge discovery). Conclusions Ontologies play an important role in biomedical research through a variety of applications. While ontologies are used primarily as a source of vocabulary for standardization and integration purposes, many applications also use them as a source of computable knowledge. Barriers to the use of ontologies in biomedical applications are discussed. PMID:18660879

  7. Ontology-Based Approach to Social Data Sentiment Analysis: Detection of Adolescent Depression Signals.

    PubMed

    Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min

    2017-07-24

    Social networking services (SNSs) contain abundant information about the feelings, thoughts, interests, and patterns of behavior of adolescents that can be obtained by analyzing SNS postings. An ontology that expresses the shared concepts and their relationships in a specific field could be used as a semantic framework for social media data analytics. The aim of this study was to refine an adolescent depression ontology and terminology as a framework for analyzing social media data and to evaluate description logics between classes and the applicability of this ontology to sentiment analysis. The domain and scope of the ontology were defined using competency questions. The concepts constituting the ontology and terminology were collected from clinical practice guidelines, the literature, and social media postings on adolescent depression. Class concepts, their hierarchy, and the relationships among class concepts were defined. An internal structure of the ontology was designed using the entity-attribute-value (EAV) triplet data model, and superclasses of the ontology were aligned with the upper ontology. Description logics between classes were evaluated by mapping concepts extracted from the answers to frequently asked questions (FAQs) onto the ontology concepts derived from description logic queries. The applicability of the ontology was validated by examining the representability of 1358 sentiment phrases using the ontology EAV model and conducting sentiment analyses of social media data using ontology class concepts. We developed an adolescent depression ontology that comprised 443 classes and 60 relationships among the classes; the terminology comprised 1682 synonyms of the 443 classes. In the description logics test, no error in relationships between classes was found, and about 89% (55/62) of the concepts cited in the answers to FAQs mapped onto the ontology class. Regarding applicability, the EAV triplet models of the ontology class represented about 91

  8. Fundamental physical theories: Mathematical structures grounded on a primitive ontology

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional primitive ontology that evolves according to a law determined by the wave function. The primitive ontology is what matter is made of while the wave function tells the matter how to move. One might think that what is important in the notion of primitive ontology is their three-dimensionality. If so, in a theory like classical electrodynamics electromagnetic fields would be part of the primitive ontology. I argue that, reflecting on what the purpose of a fundamental physical theory is, namely to explain the behavior of objects in three-dimensional space, one can recognize that a fundamental physical theory has a particular architecture. If so, electromagnetic fields play a different role in the theory than the particles and therefore should be considered, like the wave function, as part of the law. Therefore, we can characterize the general structure of a fundamental physical theory as a mathematical structure grounded on a primitive ontology. I explore this idea to better understand theories like classical mechanics and relativity, emphasizing that primitive ontology is crucial in the process of building new theories, being fundamental in identifying the symmetries. Finally, I analyze what it means to explain the word around us in terms of the notion of primitive ontology in the case of regularities of statistical character. Here is where the notion of typicality comes into play: we have explained a phenomenon if the typical histories of the primitive

  9. Building a semi-automatic ontology learning and construction system for geosciences

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Sunderraman, R.; Zhu, Y.

    2013-12-01

    We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using

  10. Development and Evaluation of an Obesity Ontology for Social Big Data Analysis.

    PubMed

    Kim, Ae Ran; Park, Hyeoun-Ae; Song, Tae-Min

    2017-07-01

    The aim of this study was to develop and evaluate an obesity ontology as a framework for collecting and analyzing unstructured obesity-related social media posts. The obesity ontology was developed according to the 'Ontology Development 101'. The coverage rate of the developed ontology was examined by mapping concepts and terms of the ontology with concepts and terms extracted from obesity-related Twitter postings. The structure and representative ability of the ontology was evaluated by nurse experts. We applied the ontology to the density analysis of keywords related to obesity types and management strategies and to the sentiment analysis of obesity and diet using social big data. The developed obesity ontology was represented by 8 superclasses and 124 subordinate classes. The superclasses comprised 'risk factors,' 'types,' 'symptoms,' 'complications,' 'assessment,' 'diagnosis,' 'management strategies,' and 'settings.' The coverage rate of the ontology was 100% for the concepts and 87.8% for the terms. The evaluation scores for representative ability were higher than 4.0 out of 5.0 for all of the evaluation items. The density analysis of keywords revealed that the top-two posted types of obesity were abdomen and thigh, and the top-three posted management strategies were diet, exercise, and dietary supplements or drug therapy. Positive expressions of obesity-related postings has increased annually in the sentiment analysis. It was found that the developed obesity ontology was useful to identify the most frequently used terms on obesity and opinions and emotions toward obesity posted by the geneal population on social media.

  11. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    PubMed Central

    2011-01-01

    Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX) and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches. PMID:21914205

  12. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies

    PubMed Central

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.

    2016-01-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947

  13. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An ontology for component-based models of water resource systems

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  15. A methodological approach for designing a usable ontology-based GUI in healthcare.

    PubMed

    Lasierra, N; Kushniruk, A; Alesanco, A; Borycki, E; García, J

    2013-01-01

    This paper presents a methodological approach to the design and evaluation of an interface for an ontology-based system used for designing care plans for monitoring patients at home. In order to define the care plans, physicians need a tool for creating instances of the ontology and configuring some rules. Our purpose is to develop an interface to allow clinicians to interact with the ontology. Although ontology-driven applications do not necessarily present the ontology in the user interface, it is our hypothesis that showing selected parts of the ontology in a "usable" way could enhance clinician's understanding and make easier the definition of the care plans. Based on prototyping and iterative testing, this methodology combines visualization techniques and usability methods. Preliminary results obtained after a formative evaluation indicate the effectiveness of suggested combination.

  16. Evolving BioAssay Ontology (BAO): modularization, integration and applications

    PubMed Central

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  17. Evolving BioAssay Ontology (BAO): modularization, integration and applications.

    PubMed

    Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  18. Issues in the Classification of Disease Instances with Ontologies

    PubMed Central

    Burgun, Anita; Bodenreider, Olivier; Jacquelinet, Christian

    2006-01-01

    Ontologies define classes of entities and their interrelations. They are used to organize data according to a theory of the domain. Towards that end, ontologies provide class definitions (i.e., the necessary and sufficient conditions for defining class membership). In medical ontologies, it is often difficult to establish such definitions for diseases. We use three examples (anemia, leukemia and schizophrenia) to illustrate the limitations of ontologies as classification resources. We show that eligibility criteria are often more useful than the Aristotelian definitions traditionally used in ontologies. Examples of eligibility criteria for diseases include complex predicates such as ‘ x is an instance of the class C when at least n criteria among m are verified’ and ‘symptoms must last at least one month if not treated, but less than one month, if effectively treated’. References to normality and abnormality are often found in disease definitions, but the operational definition of these references (i.e., the statistical and contextual information necessary to define them) is rarely provided. We conclude that knowledge bases that include probabilistic and statistical knowledge as well as rule-based criteria are more useful than Aristotelian definitions for representing the predicates defined by necessary and sufficient conditions. Rich knowledge bases are needed to clarify the relations between individuals and classes in various studies and applications. However, as ontologies represent relations among classes, they can play a supporting role in disease classification services built primarily on knowledge bases. PMID:16160339

  19. Issues in the classification of disease instances with ontologies.

    PubMed

    Burgun, Anita; Bodenreider, Olivier; Jacquelinet, Christian

    2005-01-01

    Ontologies define classes of entities and their interrelations. They are used to organize data according to a theory of the domain. Towards that end, ontologies provide class definitions (i.e., the necessary and sufficient conditions for defining class membership). In medical ontologies, it is often difficult to establish such definitions for diseases. We use three examples (anemia, leukemia and schizophrenia) to illustrate the limitations of ontologies as classification resources. We show that eligibility criteria are often more useful than the Aristotelian definitions traditionally used in ontologies. Examples of eligibility criteria for diseases include complex predicates such as ' x is an instance of the class C when at least n criteria among m are verified' and 'symptoms must last at least one month if not treated, but less than one month, if effectively treated'. References to normality and abnormality are often found in disease definitions, but the operational definition of these references (i.e., the statistical and contextual information necessary to define them) is rarely provided. We conclude that knowledge bases that include probabilistic and statistical knowledge as well as rule-based criteria are more useful than Aristotelian definitions for representing the predicates defined by necessary and sufficient conditions. Rich knowledge bases are needed to clarify the relations between individuals and classes in various studies and applications. However, as ontologies represent relations among classes, they can play a supporting role in disease classification services built primarily on knowledge bases.

  20. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  1. The Domain Shared by Computational and Digital Ontology: A Phenomenological Exploration and Analysis

    ERIC Educational Resources Information Center

    Compton, Bradley Wendell

    2009-01-01

    The purpose of this dissertation is to explore and analyze a domain of research thought to be shared by two areas of philosophy: computational and digital ontology. Computational ontology is philosophy used to develop information systems also called computational ontologies. Digital ontology is philosophy dealing with our understanding of Being…

  2. The Gene Ontology of eukaryotic cilia and flagella.

    PubMed

    Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane

    2017-01-01

    Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to

  3. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon

    PubMed Central

    2014-01-01

    Background Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent ‘natural’ phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes. Results Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued. Conclusions The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies. The ontology release files associated with the ontology merge described in this manuscript are available at: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/ Current ontology release files are available always available at: http://purl.obolibrary.org/obo/uberon/releases/ PMID:25009735

  4. Towards natural language question generation for the validation of ontologies and mappings.

    PubMed

    Ben Abacha, Asma; Dos Reis, Julio Cesar; Mrabet, Yassine; Pruski, Cédric; Da Silveira, Marcos

    2016-08-08

    The increasing number of open-access ontologies and their key role in several applications such as decision-support systems highlight the importance of their validation. Human expertise is crucial for the validation of ontologies from a domain point-of-view. However, the growing number of ontologies and their fast evolution over time make manual validation challenging. We propose a novel semi-automatic approach based on the generation of natural language (NL) questions to support the validation of ontologies and their evolution. The proposed approach includes the automatic generation, factorization and ordering of NL questions from medical ontologies. The final validation and correction is performed by submitting these questions to domain experts and automatically analyzing their feedback. We also propose a second approach for the validation of mappings impacted by ontology changes. The method exploits the context of the changes to propose correction alternatives presented as Multiple Choice Questions. This research provides a question optimization strategy to maximize the validation of ontology entities with a reduced number of questions. We evaluate our approach for the validation of three medical ontologies. We also evaluate the feasibility and efficiency of our mappings validation approach in the context of ontology evolution. These experiments are performed with different versions of SNOMED-CT and ICD9. The obtained experimental results suggest the feasibility and adequacy of our approach to support the validation of interconnected and evolving ontologies. Results also suggest that taking into account RDFS and OWL entailment helps reducing the number of questions and validation time. The application of our approach to validate mapping evolution also shows the difficulty of adapting mapping evolution over time and highlights the importance of semi-automatic validation.

  5. Development and Evaluation of an Obesity Ontology for Social Big Data Analysis

    PubMed Central

    Kim, Ae Ran; Song, Tae-Min

    2017-01-01

    Objectives The aim of this study was to develop and evaluate an obesity ontology as a framework for collecting and analyzing unstructured obesity-related social media posts. Methods The obesity ontology was developed according to the ‘Ontology Development 101’. The coverage rate of the developed ontology was examined by mapping concepts and terms of the ontology with concepts and terms extracted from obesity-related Twitter postings. The structure and representative ability of the ontology was evaluated by nurse experts. We applied the ontology to the density analysis of keywords related to obesity types and management strategies and to the sentiment analysis of obesity and diet using social big data. Results The developed obesity ontology was represented by 8 superclasses and 124 subordinate classes. The superclasses comprised ‘risk factors,’ ‘types,’ ‘symptoms,’ ‘complications,’ ‘assessment,’ ‘diagnosis,’ ‘management strategies,’ and ‘settings.’ The coverage rate of the ontology was 100% for the concepts and 87.8% for the terms. The evaluation scores for representative ability were higher than 4.0 out of 5.0 for all of the evaluation items. The density analysis of keywords revealed that the top-two posted types of obesity were abdomen and thigh, and the top-three posted management strategies were diet, exercise, and dietary supplements or drug therapy. Positive expressions of obesity-related postings has increased annually in the sentiment analysis. Conclusions It was found that the developed obesity ontology was useful to identify the most frequently used terms on obesity and opinions and emotions toward obesity posted by the geneal population on social media. PMID:28875050

  6. Fish Ontology framework for taxonomy-based fish recognition

    PubMed Central

    Ali, Najib M.; Khan, Haris A.; Then, Amy Y-Hui; Ving Ching, Chong; Gaur, Manas

    2017-01-01

    Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users. PMID:28929028

  7. Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases

    PubMed Central

    Santana, Filipe; Schober, Daniel; Medeiros, Zulma; Freitas, Fred; Schulz, Stefan

    2011-01-01

    Motivation: Ontology-like domain knowledge is frequently published in a tabular format embedded in scientific publications. We explore the re-use of such tabular content in the process of building NTDO, an ontology of neglected tropical diseases (NTDs), where the representation of the interdependencies between hosts, pathogens and vectors plays a crucial role. Results: As a proof of concept we analyzed a tabular compilation of knowledge about pathogens, vectors and geographic locations involved in the transmission of NTDs. After a thorough ontological analysis of the domain of interest, we formulated a comprehensive design pattern, rooted in the biomedical domain upper level ontology BioTop. This pattern was implemented in a VBA script which takes cell contents of an Excel spreadsheet and transforms them into OWL-DL. After minor manual post-processing, the correctness and completeness of the ontology was tested using pre-formulated competence questions as description logics (DL) queries. The expected results could be reproduced by the ontology. The proposed approach is recommended for optimizing the acquisition of ontological domain knowledge from tabular representations. Availability and implementation: Domain examples, source code and ontology are freely available on the web at http://www.cin.ufpe.br/~ntdo. Contact: fss3@cin.ufpe.br PMID:21685092

  8. Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Roldán-Charria, Jairo

    2014-12-01

    The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr's writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend at all on the collectivity of human beings, nor on their decisions or limitations, nor on their existence, and empirical reality constituted by everything that not being ontological is, however, intersubjective. According to the proposed interpretation, neither the dynamical properties, nor the constitutive properties of microsystems like mass, charge and spin, are ontological. The properties of macroscopic systems and space-time are also considered to belong to empirical reality. The acceptance of the above mentioned conclusion does not imply a total rejection of the notion of ontological reality. In the paper, utilizing the Aristotelian ideas of general cause and potentiality, a relation between ontological reality and empirical reality is proposed. Some glimpses of ontological reality, in the form of what can be said about it, are finally presented.

  9. Experimental evaluation of ontology-based HIV/AIDS frequently asked question retrieval system.

    PubMed

    Ayalew, Yirsaw; Moeng, Barbara; Mosweunyane, Gontlafetse

    2018-05-01

    This study presents the results of experimental evaluations of an ontology-based frequently asked question retrieval system in the domain of HIV and AIDS. The main purpose of the system is to provide answers to questions on HIV/AIDS using ontology. To evaluate the effectiveness of the frequently asked question retrieval system, we conducted two experiments. The first experiment focused on the evaluation of the quality of the ontology we developed using the OQuaRE evaluation framework which is based on software quality metrics and metrics designed for ontology quality evaluation. The second experiment focused on evaluating the effectiveness of the ontology in retrieving relevant answers. For this we used an open-source information retrieval platform, Terrier, with retrieval models BM25 and PL2. For the measurement of performance, we used the measures mean average precision, mean reciprocal rank, and precision at 5. The results suggest that frequently asked question retrieval with ontology is more effective than frequently asked question retrieval without ontology in the domain of HIV/AIDS.

  10. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

    PubMed

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

    2015-09-22

    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  11. Pedagogically-Driven Ontology Network for Conceptualizing the e-Learning Assessment Domain

    ERIC Educational Resources Information Center

    Romero, Lucila; North, Matthew; Gutiérrez, Milagros; Caliusco, Laura

    2015-01-01

    The use of ontologies as tools to guide the generation, organization and personalization of e-learning content, including e-assessment, has drawn attention of the researchers because ontologies can represent the knowledge of a given domain and researchers use the ontology to reason about it. Although the use of these semantic technologies tends to…

  12. Research on geo-ontology construction based on spatial affairs

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing

  13. Development of health information search engine based on metadata and ontology.

    PubMed

    Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae

    2014-04-01

    The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.

  14. G-Bean: an ontology-graph based web tool for biomedical literature retrieval.

    PubMed

    Wang, James Z; Zhang, Yuanyuan; Dong, Liang; Li, Lin; Srimani, Pradip K; Yu, Philip S

    2014-01-01

    query statement automatically from the natural language query strings. G-Bean is available at http://bioinformatics.clemson.edu/G-Bean/index.php. G-Bean addresses PubMed's limitations with ontology-graph based query expansion, automatic document indexing, and user search intention discovery. It shows significant advantages in finding relevant articles from the MEDLINE database to meet the information need of the user.

  15. Region Evolution eXplorer - A tool for discovering evolution trends in ontology regions.

    PubMed

    Christen, Victor; Hartung, Michael; Groß, Anika

    2015-01-01

    A large number of life science ontologies has been developed to support different application scenarios such as gene annotation or functional analysis. The continuous accumulation of new insights and knowledge affects specific portions in ontologies and thus leads to their adaptation. Therefore, it is valuable to study which ontology parts have been extensively modified or remained unchanged. Users can monitor the evolution of an ontology to improve its further development or apply the knowledge in their applications. Here we present REX (Region Evolution eXplorer) a web-based system for exploring the evolution of ontology parts (regions). REX provides an analysis platform for currently about 1,000 versions of 16 well-known life science ontologies. Interactive workflows allow an explorative analysis of changing ontology regions and can be used to study evolution trends for long-term periods. REX is a web application providing an interactive and user-friendly interface to identify (un)stable regions in large life science ontologies. It is available at http://www.izbi.de/rex.

  16. A high-resolution anatomical ontology of the developing murine genitourinary tract

    PubMed Central

    Little, Melissa H.; Brennan, Jane; Georgas, Kylie; Davies, Jamie A.; Davidson, Duncan R.; Baldock, Richard A.; Beverdam, Annemiek; Bertram, John F.; Capel, Blanche; Chiu, Han Sheng; Clements, Dave; Cullen-McEwen, Luise; Fleming, Jean; Gilbert, Thierry; Houghton, Derek; Kaufman, Matt H.; Kleymenova, Elena; Koopman, Peter A.; Lewis, Alfor G.; McMahon, Andrew P.; Mendelsohn, Cathy L.; Mitchell, Eleanor K.; Rumballe, Bree A.; Sweeney, Derina E.; Valerius, M. Todd; Yamada, Gen; Yang, Yiya; Yu., Jing

    2007-01-01

    Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17 to 27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided. PMID:17452023

  17. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  18. A Uniform Ontology for Software Interfaces

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    2002-01-01

    It is universally the case that computer users who are not also computer specialists prefer to deal with computers' in terms of a familiar ontology, namely that of their application domains. For example, the well-known Windows ontology assumes that the user is an office worker, and therefore should be presented with a "desktop environment" featuring entities such as (virtual) file folders, documents, appointment calendars, and the like, rather than a world of machine registers and machine language instructions, or even the DOS command level. The central theme of this research has been the proposition that the user interacting with a software system should have at his disposal both the ontology underlying the system, as well as a model of the system. This information is necessary for the understanding of the system in use, as well as for the automatic generation of assistance for the user, both in solving the problem for which the application is designed, and for providing guidance in the capabilities and use of the system.

  19. Phenex: ontological annotation of phenotypic diversity.

    PubMed

    Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J

    2010-05-05

    Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  20. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis.

    PubMed

    Zheng, Qi; Wang, Xiu-Jie

    2008-07-01

    Gene Ontology (GO) analysis has become a commonly used approach for functional studies of large-scale genomic or transcriptomic data. Although there have been a lot of software with GO-related analysis functions, new tools are still needed to meet the requirements for data generated by newly developed technologies or for advanced analysis purpose. Here, we present a Gene Ontology Enrichment Analysis Software Toolkit (GOEAST), an easy-to-use web-based toolkit that identifies statistically overrepresented GO terms within given gene sets. Compared with available GO analysis tools, GOEAST has the following improved features: (i) GOEAST displays enriched GO terms in graphical format according to their relationships in the hierarchical tree of each GO category (biological process, molecular function and cellular component), therefore, provides better understanding of the correlations among enriched GO terms; (ii) GOEAST supports analysis for data from various sources (probe or probe set IDs of Affymetrix, Illumina, Agilent or customized microarrays, as well as different gene identifiers) and multiple species (about 60 prokaryote and eukaryote species); (iii) One unique feature of GOEAST is to allow cross comparison of the GO enrichment status of multiple experiments to identify functional correlations among them. GOEAST also provides rigorous statistical tests to enhance the reliability of analysis results. GOEAST is freely accessible at http://omicslab.genetics.ac.cn/GOEAST/

  1. Evaluating Health Information Systems Using Ontologies

    PubMed Central

    Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-01-01

    Background There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and

  2. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    PubMed Central

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  3. Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.

    PubMed

    Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan

    2017-10-01

    Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.

  4. Approaching the axiomatic enrichment of the Gene Ontology from a lexical perspective.

    PubMed

    Quesada-Martínez, Manuel; Mikroyannidi, Eleni; Fernández-Breis, Jesualdo Tomás; Stevens, Robert

    2015-09-01

    The main goal of this work is to measure how lexical regularities in biomedical ontology labels can be used for the automatic creation of formal relationships between classes, and to evaluate the results of applying our approach to the Gene Ontology (GO). In recent years, we have developed a method for the lexical analysis of regularities in biomedical ontology labels, and we showed that the labels can present a high degree of regularity. In this work, we extend our method with a cross-products extension (CPE) metric, which estimates the potential interest of a specific regularity for axiomatic enrichment in the lexical analysis, using information on exact matches in external ontologies. The GO consortium recently enriched the GO by using so-called cross-product extensions. Cross-products are generated by establishing axioms that relate a given GO class with classes from the GO or other biomedical ontologies. We apply our method to the GO and study how its lexical analysis can identify and reconstruct the cross-products that are defined by the GO consortium. The label of the classes of the GO are highly regular in lexical terms, and the exact matches with labels of external ontologies affect 80% of the GO classes. The CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments that are classes into two external ontologies that are selected for our experiment, namely, the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90% of them are fully decomposable into smaller parts. Our results show that the CPE metric permits our method to detect GO cross-product extensions with a mean recall of 62% and a mean precision of 28%. The study is completed with an analysis of false positives to explain this precision value. We think that our results support the claim that our lexical approach can contribute to the axiomatic enrichment of biomedical ontologies and that it can provide new insights into the engineering of

  5. Is the crowd better as an assistant or a replacement in ontology engineering? An exploration through the lens of the Gene Ontology.

    PubMed

    Mortensen, Jonathan M; Telis, Natalie; Hughey, Jacob J; Fan-Minogue, Hua; Van Auken, Kimberly; Dumontier, Michel; Musen, Mark A

    2016-04-01

    Biomedical ontologies contain errors. Crowdsourcing, defined as taking a job traditionally performed by a designated agent and outsourcing it to an undefined large group of people, provides scalable access to humans. Therefore, the crowd has the potential to overcome the limited accuracy and scalability found in current ontology quality assurance approaches. Crowd-based methods have identified errors in SNOMED CT, a large, clinical ontology, with an accuracy similar to that of experts, suggesting that crowdsourcing is indeed a feasible approach for identifying ontology errors. This work uses that same crowd-based methodology, as well as a panel of experts, to verify a subset of the Gene Ontology (200 relationships). Experts identified 16 errors, generally in relationships referencing acids and metals. The crowd performed poorly in identifying those errors, with an area under the receiver operating characteristic curve ranging from 0.44 to 0.73, depending on the methods configuration. However, when the crowd verified what experts considered to be easy relationships with useful definitions, they performed reasonably well. Notably, there are significantly fewer Google search results for Gene Ontology concepts than SNOMED CT concepts. This disparity may account for the difference in performance - fewer search results indicate a more difficult task for the worker. The number of Internet search results could serve as a method to assess which tasks are appropriate for the crowd. These results suggest that the crowd fits better as an expert assistant, helping experts with their verification by completing the easy tasks and allowing experts to focus on the difficult tasks, rather than an expert replacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.

    PubMed

    Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang

    2018-01-19

    Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each ontology have been studied with in silico methods, term similarities across different ontologies were not investigated as deeply. The latest method took advantage of gene functional interaction network (GFIN) to explore such inter-ontology similarities of terms. However, it only used gene interactions and failed to make full use of the connectivity among gene nodes of the network. In addition, all existent methods are particularly designed for GO and their performances on the extended ontology community remain unknown. We proposed a method InfAcrOnt to infer similarities between terms across ontologies utilizing the entire GFIN. InfAcrOnt builds a term-gene-gene network which comprised ontology annotations and GFIN, and acquires similarities between terms across ontologies through modeling the information flow within the network by random walk. In our benchmark experiments on sub-ontologies of GO, InfAcrOnt achieves a high average area under the receiver operating characteristic curve (AUC) (0.9322 and 0.9309) and low standard deviations (1.8746e-6 and 3.0977e-6) in both human and yeast benchmark datasets exhibiting superior performance. Meanwhile, comparisons of InfAcrOnt results and prior knowledge on pair-wise DO-HPO terms and pair-wise DO-GO terms show high correlations. The experiment results show that InfAcrOnt significantly improves the performance of inferring similarities between terms across ontologies in benchmark set.

  7. An ontology-driven, diagnostic modeling system.

    PubMed

    Haug, Peter J; Ferraro, Jeffrey P; Holmen, John; Wu, Xinzi; Mynam, Kumar; Ebert, Matthew; Dean, Nathan; Jones, Jason

    2013-06-01

    To present a system that uses knowledge stored in a medical ontology to automate the development of diagnostic decision support systems. To illustrate its function through an example focused on the development of a tool for diagnosing pneumonia. We developed a system that automates the creation of diagnostic decision-support applications. It relies on a medical ontology to direct the acquisition of clinic data from a clinical data warehouse and uses an automated analytic system to apply a sequence of machine learning algorithms that create applications for diagnostic screening. We refer to this system as the ontology-driven diagnostic modeling system (ODMS). We tested this system using samples of patient data collected in Salt Lake City emergency rooms and stored in Intermountain Healthcare's enterprise data warehouse. The system was used in the preliminary development steps of a tool to identify patients with pneumonia in the emergency department. This tool was compared with a manually created diagnostic tool derived from a curated dataset. The manually created tool is currently in clinical use. The automatically created tool had an area under the receiver operating characteristic curve of 0.920 (95% CI 0.916 to 0.924), compared with 0.944 (95% CI 0.942 to 0.947) for the manually created tool. Initial testing of the ODMS demonstrates promising accuracy for the highly automated results and illustrates the route to model improvement. The use of medical knowledge, embedded in ontologies, to direct the initial development of diagnostic computing systems appears feasible.

  8. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a

  9. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate

  10. Federated ontology-based queries over cancer data

    PubMed Central

    2012-01-01

    Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user

  11. An ontology-driven tool for structured data acquisition using Web forms.

    PubMed

    Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A

    2017-08-01

    Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.

  12. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  13. Evaluation of an ontological resource for pharmacovigilance.

    PubMed

    Jaulent, Marie-Christine; Alecu, Iulian

    2009-01-01

    In this work, we present a methodology for evaluating an ontology designed in a previous study to describe adverse drug reactions. We evaluate it in term of its fitness for grouping cases in pharmacovigilance. We define as gold standard the Standardized MedDRA Queries (SMQs) developed manually to group terms representing similar medical conditions. We perform an automatic search in the ontology in order to retrieve concepts related to the medical conditions. An optimal query is built for each medical condition. The evaluation relies on the comparison between the terms in the SMQ and the terms subsumed by the query. The result is quantified by sensitivity and specificity. We applied this methodology for 24 SMQs and we obtain a mean sensitivity of 0.82. This work allows validating the semantic resource and provides, in perspective, tools to maintain the ontology while the knowledge is evolving.

  14. A Lexical-Ontological Resource for Consumer Heathcare

    NASA Astrophysics Data System (ADS)

    Cardillo, Elena

    In Consumer Healthcare Informatics it is still difficult for laypersons to understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and Semantic Web technologies. The system is based on the development of a consumer-oriented medical terminology which will be integrated with other existing domain ontologies/terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems by providing many knowledge services to help users in accessing and managing their healthcare data.

  15. Ontology-Based Model Of Firm Competitiveness

    NASA Astrophysics Data System (ADS)

    Deliyska, Boryana; Stoenchev, Nikolay

    2010-10-01

    Competitiveness is important characteristics of each business organization (firm, company, corporation etc). It is of great significance for the organization existence and defines evaluation criteria of business success at microeconomical level. Each criterium comprises set of indicators with specific weight coefficients. In the work an ontology-based model of firm competitiveness is presented as a set of several mutually connected ontologies. It would be useful for knowledge structuring, standardization and sharing among experts and software engineers who develop application in the domain. Then the assessment of the competitiveness of various business organizations could be generated more effectively.

  16. Taxonomy-Based Approaches to Quality Assurance of Ontologies

    PubMed Central

    Perl, Yehoshua; Ochs, Christopher

    2017-01-01

    Ontologies are important components of health information management systems. As such, the quality of their content is of paramount importance. It has been proven to be practical to develop quality assurance (QA) methodologies based on automated identification of sets of concepts expected to have higher likelihood of errors. Four kinds of such sets (called QA-sets) organized around the themes of complex and uncommonly modeled concepts are introduced. A survey of different methodologies based on these QA-sets and the results of applying them to various ontologies are presented. Overall, following these approaches leads to higher QA yields and better utilization of QA personnel. The formulation of additional QA-set methodologies will further enhance the suite of available ontology QA tools. PMID:29158885

  17. Gene function prediction based on the Gene Ontology hierarchical structure.

    PubMed

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  18. Ontologies in medicinal chemistry: current status and future challenges.

    PubMed

    Gómez-Pérez, Asunción; Martínez-Romero, Marcos; Rodríguez-González, Alejandro; Vázquez, Guillermo; Vázquez-Naya, José M

    2013-01-01

    Recent years have seen a dramatic increase in the amount and availability of data in the diverse areas of medicinal chemistry, making it possible to achieve significant advances in fields such as the design, synthesis and biological evaluation of compounds. However, with this data explosion, the storage, management and analysis of available data to extract relevant information has become even a more complex task that offers challenging research issues to Artificial Intelligence (AI) scientists. Ontologies have emerged in AI as a key tool to formally represent and semantically organize aspects of the real world. Beyond glossaries or thesauri, ontologies facilitate communication between experts and allow the application of computational techniques to extract useful information from available data. In medicinal chemistry, multiple ontologies have been developed during the last years which contain knowledge about chemical compounds and processes of synthesis of pharmaceutical products. This article reviews the principal standards and ontologies in medicinal chemistry, analyzes their main applications and suggests future directions.

  19. Fuzzy ontologies for semantic interpretation of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2015-10-01

    Object-based image classification consists in the assignment of object that share similar attributes to object categories. To perform such a task the remote sensing expert uses its personal knowledge, which is rarely formalized. Ontologies have been proposed as solution to represent domain knowledge agreed by domain experts in a formal and machine readable language. Classical ontology languages are not appropriate to deal with imprecision or vagueness in knowledge. Fortunately, Description Logics for the semantic web has been enhanced by various approaches to handle such knowledge. This paper presents the extension of the traditional ontology-based interpretation with fuzzy ontology of main land-cover classes in Landsat8-OLI scenes (vegetation, built-up areas, water bodies, shadow, clouds, forests) objects. A good classification of image objects was obtained and the results highlight the potential of the method to be replicated over time and space in the perspective of transferability of the procedure.

  20. Defining Resilience and Vulnerability Based on Ontology Engineering Approach

    NASA Astrophysics Data System (ADS)

    Kumazawa, T.; Matsui, T.; Endo, A.

    2014-12-01

    It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.

  1. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  2. Prioritising lexical patterns to increase axiomatisation in biomedical ontologies. The role of localisation and modularity.

    PubMed

    Quesada-Martínez, M; Fernández-Breis, J T; Stevens, R; Mikroyannidi, E

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point.Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns. We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT. The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies. The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.

  3. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  4. Development of Health Information Search Engine Based on Metadata and Ontology

    PubMed Central

    Song, Tae-Min; Jin, Dal-Lae

    2014-01-01

    Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907

  5. TermGenie - a web-application for pattern-based ontology class generation.

    PubMed

    Dietze, Heiko; Berardini, Tanya Z; Foulger, Rebecca E; Hill, David P; Lomax, Jane; Osumi-Sutherland, David; Roncaglia, Paola; Mungall, Christopher J

    2014-01-01

    Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 new classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.

  6. Ontology for assessment studies of human-computer-interaction in surgery.

    PubMed

    Machno, Andrej; Jannin, Pierre; Dameron, Olivier; Korb, Werner; Scheuermann, Gerik; Meixensberger, Jürgen

    2015-02-01

    New technologies improve modern medicine, but may result in unwanted consequences. Some occur due to inadequate human-computer-interactions (HCI). To assess these consequences, an investigation model was developed to facilitate the planning, implementation and documentation of studies for HCI in surgery. The investigation model was formalized in Unified Modeling Language and implemented as an ontology. Four different top-level ontologies were compared: Object-Centered High-level Reference, Basic Formal Ontology, General Formal Ontology (GFO) and Descriptive Ontology for Linguistic and Cognitive Engineering, according to the three major requirements of the investigation model: the domain-specific view, the experimental scenario and the representation of fundamental relations. Furthermore, this article emphasizes the distinction of "information model" and "model of meaning" and shows the advantages of implementing the model in an ontology rather than in a database. The results of the comparison show that GFO fits the defined requirements adequately: the domain-specific view and the fundamental relations can be implemented directly, only the representation of the experimental scenario requires minor extensions. The other candidates require wide-ranging extensions, concerning at least one of the major implementation requirements. Therefore, the GFO was selected to realize an appropriate implementation of the developed investigation model. The ensuing development considered the concrete implementation of further model aspects and entities: sub-domains, space and time, processes, properties, relations and functions. The investigation model and its ontological implementation provide a modular guideline for study planning, implementation and documentation within the area of HCI research in surgery. This guideline helps to navigate through the whole study process in the form of a kind of standard or good clinical practice, based on the involved foundational frameworks

  7. Development and Evaluation of a Low Fertility Ontology for Analyzing Social Data in Korea.

    PubMed

    Lee, Ji-Hyun; Park, Hyeoun-Ae; Song, Tae-Min

    2016-01-01

    The purpose of this study is to develop a low fertility ontology for collecting and analyzing social data. A low fertility ontology was developed according to Ontology Development 101 and formally represented using Protégé. The content coverage of the ontology was evaluated using 1,387 narratives posted by the public and 63 narratives posted by public servants. Six super-classes of the ontology were developed based on Bronfenbrenner's ecological system theory with an individual in the center and environmental systems impacting their as surroundings. In total, 568 unique concepts were extracted from the narratives. Out of these concepts, 424(74.6%) concepts were lexically or semantically mapped, 67(11.8%) were either broadly or narrowly mapped to the ontology concepts. Remaining 77(13.6%) concepts were not mapped to any of the ontology concepts. This ontology can be used as a framework to understand low fertility problems using social data in Korea.

  8. Research on land registration procedure ontology of China

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongjun; Du, Qingyun; Zhang, Weiwei; Liu, Tao

    2009-10-01

    Land registration is public act which is to record the state-owned land use right, collective land ownership, collective land use right and land mortgage, servitude, as well as other land rights required the registration according to laws and regulations onto land registering books. Land registration is one of the important government affairs , so it is very important to standardize, optimize and humanize the process of land registration. The management works of organization are realized through a variety of workflows. Process knowledge is in essence a kind of methodology knowledge and a system which including the core and the relational knowledge. In this paper, the ontology is introduced into the field of land registration and management, trying to optimize the flow of land registration, to promote the automation-building and intelligent Service of land registration affairs, to provide humanized and intelligent service for multi-types of users . This paper tries to build land registration procedure ontology by defining the land registration procedure ontology's key concepts which represent the kinds of processes of land registration and mapping the kinds of processes to OWL-S. The land registration procedure ontology shall be the start and the basis of the Web service.

  9. Elements for an Ontology of Care in the Field of Artificial Intelligence.

    PubMed

    González Aguña, Alexandra; Fernández Batalla, Marta; Cercas Duque, Adriana; Herrero Jaén, Sara; Monsalvo San Macario, Enrique; Jiménez Rodríguez, Ma Lourdes; Santamaría García, José Ma; Ramírez Sánchez, Sylvia Claudine; Vialart Vidal, Niurka; Condor Camara, Daniel Flavio

    2018-01-01

    An ontology of care is a formal, explicit specification of a shared conceptualization. Constructing an ontology is a process that requires four elements: knowledge object, subject that knows, knowledge operation and result. These elements configure theframework to generate ontologies that can be used in Artificial Intelligence systems for care.

  10. An Ontology for Learning Services on the Shop Floor

    ERIC Educational Resources Information Center

    Ullrich, Carsten

    2016-01-01

    An ontology expresses a common understanding of a domain that serves as a basis of communication between people or systems, and enables knowledge sharing, reuse of domain knowledge, reasoning and thus problem solving. In Technology-Enhanced Learning, especially in Intelligent Tutoring Systems and Adaptive Learning Environments, ontologies serve as…

  11. Text Mining to inform construction of Earth and Environmental Science Ontologies

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  12. Ontology-based specification, identification and analysis of perioperative risks.

    PubMed

    Uciteli, Alexandr; Neumann, Juliane; Tahar, Kais; Saleh, Kutaiba; Stucke, Stephan; Faulbrück-Röhr, Sebastian; Kaeding, André; Specht, Martin; Schmidt, Tobias; Neumuth, Thomas; Besting, Andreas; Stegemann, Dominik; Portheine, Frank; Herre, Heinrich

    2017-09-06

    Medical personnel in hospitals often works under great physical and mental strain. In medical decision-making, errors can never be completely ruled out. Several studies have shown that between 50 and 60% of adverse events could have been avoided through better organization, more attention or more effective security procedures. Critical situations especially arise during interdisciplinary collaboration and the use of complex medical technology, for example during surgical interventions and in perioperative settings (the period of time before, during and after surgical intervention). In this paper, we present an ontology and an ontology-based software system, which can identify risks across medical processes and supports the avoidance of errors in particular in the perioperative setting. We developed a practicable definition of the risk notion, which is easily understandable by the medical staff and is usable for the software tools. Based on this definition, we developed a Risk Identification Ontology (RIO) and used it for the specification and the identification of perioperative risks. An agent system was developed, which gathers risk-relevant data during the whole perioperative treatment process from various sources and provides it for risk identification and analysis in a centralized fashion. The results of such an analysis are provided to the medical personnel in form of context-sensitive hints and alerts. For the identification of the ontologically specified risks, we developed an ontology-based software module, called Ontology-based Risk Detector (OntoRiDe). About 20 risks relating to cochlear implantation (CI) have already been implemented. Comprehensive testing has indicated the correctness of the data acquisition, risk identification and analysis components, as well as the web-based visualization of results.

  13. Building an Ontology for Identity Resolution in Healthcare and Public Health.

    PubMed

    Duncan, Jeffrey; Eilbeck, Karen; Narus, Scott P; Clyde, Stephen; Thornton, Sidney; Staes, Catherine

    2015-01-01

    Integration of disparate information from electronic health records, clinical data warehouses, birth certificate registries and other public health information systems offers great potential for clinical care, public health practice, and research. Such integration, however, depends on correctly matching patient-specific records using demographic identifiers. Without standards for these identifiers, record linkage is complicated by issues of structural and semantic heterogeneity. Our objectives were to develop and validate an ontology to: 1) identify components of identity and events subsequent to birth that result in creation, change, or sharing of identity information; 2) develop an ontology to facilitate data integration from multiple healthcare and public health sources; and 3) validate the ontology's ability to model identity-changing events over time. We interviewed domain experts in area hospitals and public health programs and developed process models describing the creation and transmission of identity information among various organizations for activities subsequent to a birth event. We searched for existing relevant ontologies. We validated the content of our ontology with simulated identity information conforming to scenarios identified in our process models. We chose the Simple Event Model (SEM) to describe events in early childhood and integrated the Clinical Element Model (CEM) for demographic information. We demonstrated the ability of the combined SEM-CEM ontology to model identity events over time. The use of an ontology can overcome issues of semantic and syntactic heterogeneity to facilitate record linkage.

  14. 76 FR 20633 - Announcement of Meeting to Explore Feasibility of Establishing a NIST/Industry Consortium on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Explore Feasibility of Establishing a NIST/Industry Consortium on Neutron Measurements for Soft Materials.... SUMMARY: The National Institute of Standards and Technology (NIST) invites interested parties to attend a pre-consortium meeting on June 2-3, 2011 to be held on the NIST campus. The goal of the one-day...

  15. Using ontology network structure in text mining.

    PubMed

    Berndt, Donald J; McCart, James A; Luther, Stephen L

    2010-11-13

    Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy.

  16. A Lexical-Ontological Resource for Consumer Healthcare

    NASA Astrophysics Data System (ADS)

    Cardillo, Elena; Serafini, Luciano; Tamilin, Andrei

    In Consumer Healthcare Informatics it is still difficult for laypeople to find, understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and semantic web technologies. The system is based on the development of a consumer-oriented medical terminology that will be integrated with other medical domain ontologies and terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems, such as Personal Health Records, by providing many knowledge services to help users in accessing and managing their healthcare data.

  17. An ontological model of the practice transformation process.

    PubMed

    Sen, Arun; Sinha, Atish P

    2016-06-01

    Patient-centered medical home is defined as an approach for providing comprehensive primary care that facilitates partnerships between individual patients and their personal providers. The current state of the practice transformation process is ad hoc and no methodological basis exists for transforming a practice into a patient-centered medical home. Practices and hospitals somehow accomplish the transformation and send the transformation information to a certification agency, such as the National Committee for Quality Assurance, completely ignoring the development and maintenance of the processes that keep the medical home concept alive. Many recent studies point out that such a transformation is hard as it requires an ambitious whole-practice reengineering and redesign. As a result, the practices suffer change fatigue in getting the transformation done. In this paper, we focus on the complexities of the practice transformation process and present a robust ontological model for practice transformation. The objective of the model is to create an understanding of the practice transformation process in terms of key process areas and their activities. We describe how our ontology captures the knowledge of the practice transformation process, elicited from domain experts, and also discuss how, in the future, that knowledge could be diffused across stakeholders in a healthcare organization. Our research is the first effort in practice transformation process modeling. To build an ontological model for practice transformation, we adopt the Methontology approach. Based on the literature, we first identify the key process areas essential for a practice transformation process to achieve certification status. Next, we develop the practice transformation ontology by creating key activities and precedence relationships among the key process areas using process maturity concepts. At each step, we employ a panel of domain experts to verify the intermediate representations of the

  18. Expressing Biomedical Ontologies in Natural Language for Expert Evaluation.

    PubMed

    Amith, Muhammad; Manion, Frank J; Harris, Marcelline R; Zhang, Yaoyun; Xu, Hua; Tao, Cui

    2017-01-01

    We report on a study of our custom Hootation software for the purposes of assessing its ability to produce clear and accurate natural language phrases from axioms embedded in three biomedical ontologies. Using multiple domain experts and three discrete rating scales, we evaluated the tool on clarity of the natural language produced, fidelity of the natural language produced from the ontology to the axiom, and the fidelity of the domain knowledge represented by the axioms. Results show that Hootation provided relatively clear natural language equivalents for a select set of OWL axioms, although the clarity of statements hinges on the accuracy and representation of axioms in the ontology.

  19. Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula M

    2010-05-20

    The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of

  20. Validating Domain Ontologies: A Methodology Exemplified for Concept Maps

    ERIC Educational Resources Information Center

    Steiner, Christina M.; Albert, Dietrich

    2017-01-01

    Ontologies play an important role as knowledge domain representations in technology-enhanced learning and instruction. Represented in form of concept maps they are commonly used as teaching and learning material and have the potential to enhance positive educational outcomes. To ensure the effective use of an ontology representing a knowledge…

  1. Complex overlapping concepts: An effective auditing methodology for families of similarly structured BioPortal ontologies.

    PubMed

    Zheng, Ling; Chen, Yan; Elhanan, Gai; Perl, Yehoshua; Geller, James; Ochs, Christopher

    2018-05-28

    In previous research, we have demonstrated for a number of ontologies that structurally complex concepts (for different definitions of "complex") in an ontology are more likely to exhibit errors than other concepts. Thus, such complex concepts often become fertile ground for quality assurance (QA) in ontologies. They should be audited first. One example of complex concepts is given by "overlapping concepts" (to be defined below.) Historically, a different auditing methodology had to be developed for every single ontology. For better scalability and efficiency, it is desirable to identify family-wide QA methodologies. Each such methodology would be applicable to a whole family of similar ontologies. In past research, we had divided the 685 ontologies of BioPortal into families of structurally similar ontologies. We showed for four ontologies of the same large family in BioPortal that "overlapping concepts" are indeed statistically significantly more likely to exhibit errors. In order to make an authoritative statement concerning the success of "overlapping concepts" as a methodology for a whole family of similar ontologies (or of large subhierarchies of ontologies), it is necessary to show that "overlapping concepts" have a higher likelihood of errors for six out of six ontologies of the family. In this paper, we are demonstrating for two more ontologies that "overlapping concepts" can successfully predict groups of concepts with a higher error rate than concepts from a control group. The fifth ontology is the Neoplasm subhierarchy of the National Cancer Institute thesaurus (NCIt). The sixth ontology is the Infectious Disease subhierarchy of SNOMED CT. We demonstrate quality assurance results for both of them. Furthermore, in this paper we observe two novel, important, and useful phenomena during quality assurance of "overlapping concepts." First, an erroneous "overlapping concept" can help with discovering other erroneous "non-overlapping concepts" in its vicinity

  2. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  3. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia

    PubMed Central

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  4. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  5. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  6. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  7. The Human Phenotype Ontology in 2017

    DOE PAGES

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...

    2016-11-24

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less

  8. Ontology of Space Physics for e-Science Applications Based on ISO 19156

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Fung, S. F.; Benson, R. F.; Heynderickx, D.; Charisi, A.; Lowe, D.; Ventouras, S.; Ritschel, B.; Hapgood, M. A.; Belehaki, A.; Roberts, D. A.; King, T. A.; Narock, T.

    2014-12-01

    A structural, ontological presentation of the discipline domain concepts and their relationships is a powerful e-science tool: it enables data search and discovery by content of the observations. Even a simple classification of the concepts using the parent-child hierarchies enables analyses by association, thus bringing a greater insight in the data. Ontology specifications have been put to many uses in space physics, primarily to harmonize data analysis across multiple data resources and thus facilitate interoperability. Among the multitude of ontology writeups, the SPASE data model stands out as a prominent, highly detailed collection of keywords for heliophysics. We will present an ontology design that draws its strengths from SPASE and further enhances it with a greater structural organization of the keyword vocabularies, in particular related to wave phenomena, as well as describes a variety of events and activities in the Sun-Earth system beyond the quiet-time behaviour. The new ontology is being developed for the Near Earth Space Data Infrastructure for e-Science (ESPAS) project funded by the 7th European Framework, whose data model is based on a suite of ISO 19156 standards for Observations and Measurements (O&M). The O&M structure and language have driven the ESPAS ontology organization, with the Observed Property vocabulary as its cornerstone. The ontology development has progressed beyond the O&M framework to include domain-specific components required to describe the space physics concepts in a dictionary-controlled, unambiguous manner. Not surprisingly, wave phenomena and events presented the greatest challenge to the ESPAS ontology team as they demanded characterization of processes involved in the wave generation, propagation, modification, and reception, as well as the propagation medium itself. One of the notable outcomes of this effort is the ability of the new ontology schema to accommodate and categorize, for example, the URSI standard

  9. An ontology of and roadmap for mHealth research.

    PubMed

    Cameron, Joshua D; Ramaprasad, Arkalgud; Syn, Thant

    2017-04-01

    Mobile health or mHealth research has been growing exponentially in recent years. However, the research on mHealth has been ad-hoc and selective without a clear definition of the mHealth domain. Without a roadmap for research we may not realize the full potential of mHealth. In this paper, we present an ontological framework to define the mHealth domain and illuminate a roadmap. We present an ontology of mHealth. The ontology is developed by systematically deconstructing the domain into its primary dimensions and elements. We map the extent research on mHealth in 2014 onto the ontology and highlight the bright, light, and blind/blank spots which represent the emphasis of mHealth research. The emphases of mHealth research in 2014 are very uneven. There are a few bright spots and many light spots. The research predominantly focuses on individuals' use of mobile devices and applications to capture or obtain health-related data mostly to improve quality of care through mobile intervention. We argue that the emphases can be balanced in the roadmap for mHealth research. The ontological mapping plays an integral role in developing and maintaining the roadmap which can be updated periodically to continuously assess and guide mHealth research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs

    PubMed Central

    Bard, Jonathan B. L.

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883

  11. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.

    PubMed

    Bard, Jonathan B L

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.

  12. TrOn: an anatomical ontology for the beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Grossmann, Daniela; Schild, Inga; Schmitt-Engel, Christian; Bradler, Sven; Prpic, Nikola-Michael; Bucher, Gregor

    2013-01-01

    In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.

  13. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  14. Ontology-based automatic identification of public health-related Turkish tweets.

    PubMed

    Küçük, Emine Ela; Yapar, Kürşad; Küçük, Dilek; Küçük, Doğan

    2017-04-01

    Social media analysis, such as the analysis of tweets, is a promising research topic for tracking public health concerns including epidemics. In this paper, we present an ontology-based approach to automatically identify public health-related Turkish tweets. The system is based on a public health ontology that we have constructed through a semi-automated procedure. The ontology concepts are expanded through a linguistically motivated relaxation scheme as the last stage of ontology development, before being integrated into our system to increase its coverage. The ultimate lexical resource which includes the terms corresponding to the ontology concepts is used to filter the Twitter stream so that a plausible tweet subset, including mostly public-health related tweets, can be obtained. Experiments are carried out on two million genuine tweets and promising precision rates are obtained. Also implemented within the course of the current study is a Web-based interface, to track the results of this identification system, to be used by the related public health staff. Hence, the current social media analysis study has both technical and practical contributions to the significant domain of public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A web-based land cover classification system based on ontology model of different classification systems

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Chen, X.

    2016-12-01

    Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.

  16. 77 FR 31368 - Guidance on Meetings With Industry and Investigators on the Research and Development of Tobacco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... the Research and Development of Tobacco Products'' to the Center for Tobacco Products, Food and Drug...] Guidance on Meetings With Industry and Investigators on the Research and Development of Tobacco Products... and Investigators on the Research and Development of Tobacco Products.'' This guidance describes FDA's...

  17. Using Ontological Engineering to Overcome AI-ED Problems: Contribution, Impact and Perspectives

    ERIC Educational Resources Information Center

    Mizoguchi, Riichiro; Bourdeau, Jacqueline

    2016-01-01

    This article reflects on the ontology engineering methodology discussed by the paper entitled "Using Ontological Engineering to Overcome AI-ED Problems" published in this journal in 2000. We discuss the achievements obtained in the last 10 years, the impact of our work as well as recent trends and perspectives in ontology engineering for…

  18. On Constructing, Grouping and Using Topical Ontology for Semantic Matching

    NASA Astrophysics Data System (ADS)

    Tang, Yan; de Baer, Peter; Zhao, Gang; Meersman, Robert

    An ontology topic is used to group concepts from different contexts (or even from different domain ontologies). This paper presents a pattern-driven modeling methodology for constructing and grouping topics in an ontology (PAD-ON methodology), which is used for matching similarities between competences in the human resource management (HRM) domain. The methodology is supported by a tool called PAD-ON. This paper demonstrates our recent achievement in the work from the EC Prolix project. The paper approach is applied to the training processes at British Telecom as the test bed.

  19. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    EPA Science Inventory

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  20. Developing an Ontology for Ocean Biogeochemistry Data

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Allison, M. D.; Groman, R. C.; West, P.; Zednik, S.; Maffei, A. R.

    2010-12-01

    Semantic Web technologies offer great promise for enabling new and better scientific research. However, significant challenges must be met before the promise of the Semantic Web can be realized for a discipline as diverse as oceanography. Evolving expectations for open access to research data combined with the complexity of global ecosystem science research themes present a significant challenge, and one that is best met through an informatics approach. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is funded by the National Science Foundation Division of Ocean Sciences to work with ocean biogeochemistry researchers to improve access to data resulting from their respective programs. In an effort to improve data access, BCO-DMO staff members are collaborating with researchers from the Tetherless World Constellation (Rensselaer Polytechnic Institute) to develop an ontology that formally describes the concepts and relationships in the data managed by the BCO-DMO. The project required transforming a legacy system of human-readable, flat files of metadata to well-ordered controlled vocabularies to a fully developed ontology. To improve semantic interoperability, terms from the BCO-DMO controlled vocabularies are being mapped to controlled vocabulary terms adopted by other oceanographic data management organizations. While the entire process has proven to be difficult, time-consuming and labor-intensive, the work has been rewarding and is a necessary prerequisite for the eventual incorporation of Semantic Web tools. From the beginning of the project, development of the ontology has been guided by a use case based approach. The use cases were derived from data access related requests received from members of the research community served by the BCO-DMO. The resultant ontology satisfies the requirements of the use cases and reflects the information stored in the metadata database. The BCO-DMO metadata database currently contains information that