Science.gov

Sample records for open channel h2o

  1. Epigallocatechin-3-gallate induces mesothelioma cell death via H2 O2 -dependent T-type Ca2+ channel opening.

    PubMed

    Ranzato, Elia; Martinotti, Simona; Magnelli, Valeria; Murer, Bruno; Biffo, Stefano; Mutti, Luciano; Burlando, Bruno

    2012-11-01

    Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin-3-gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H(2) O(2) release in cell cultures, and exogenous catalase (CAT) abrogated EGCG-induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3-loaded, EGCG-exposed MMe cells showed significant [Ca(2+) ](i) rise, prevented by CAT, dithiothreitol or the T-type Ca(2+) channel blockers mibefradil and NiCl(2) . Cell loading with dihydrorhodamine 123 revealed EGCG-induced ROS production, prevented by CAT, mibefradil or the Ca(2+) chelator BAPTA-AM. Direct exposure of cells to H(2) O(2) produced similar effects on Ca(2+) and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Ca(v) 3.2 T-type Ca(2+) channels in these cells, compared to normal mesothelium. Also, Ca(v) 3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Ca(v) 3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T-type Ca(2+) channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target. PMID:22564432

  2. Epigallocatechin-3-gallate induces mesothelioma cell death via H2O2—dependent T-type Ca2+ channel opening

    PubMed Central

    Ranzato, Elia; Martinotti, Simona; Magnelli, Valeria; Murer, Bruno; Biffo, Stefano; Mutti, Luciano; Burlando, Bruno

    2012-01-01

    Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin-3-gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H2O2 release in cell cultures, and exogenous catalase (CAT) abrogated EGCG-induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3-loaded, EGCG-exposed MMe cells showed significant [Ca2+]i rise, prevented by CAT, dithiothreitol or the T-type Ca2+ channel blockers mibefradil and NiCl2. Cell loading with dihydrorhodamine 123 revealed EGCG-induced ROS production, prevented by CAT, mibefradil or the Ca2+ chelator BAPTA-AM. Direct exposure of cells to H2O2 produced similar effects on Ca2+ and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Cav3.2 T-type Ca2+ channels in these cells, compared to normal mesothelium. Also, Cav3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Cav3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T-type Ca2+ channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target. PMID:22564432

  3. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  4. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  5. A Minimal Cysteine Motif Required to Activate the SKOR K+ Channel of Arabidopsis by the Reactive Oxygen Species H2O2*

    PubMed Central

    Garcia-Mata, Carlos; Wang, Jianwen; Gajdanowicz, Pawel; Gonzalez, Wendy; Hills, Adrian; Donald, Naomi; Riedelsberger, Janin; Amtmann, Anna; Dreyer, Ingo; Blatt, Michael R.

    2010-01-01

    Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant. PMID:20605786

  6. ROLE OF H2O2-ACTIVATED TRPM2 CALCIUM CHANNEL IN OXIDANT-INDUCED ENDOTHELIAL INJURY

    PubMed Central

    Hecquet, Claudie M.; Malik, Asrar B.

    2013-01-01

    The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated nonselective cation channel, that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H2O2, stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca2+ entry and the subsequent specific Ca2+-dependent cellular reactions such as endothelial hyper-permeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signaling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCα and phospho-tyrosine phosphates L1. PMID:19350103

  7. Synthesis and structure of [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O: An expanded open-framework amine-bearing uranyl phosphate

    NASA Astrophysics Data System (ADS)

    Bray, Travis H.; Gorden, John D.; Albrecht-Schmitt, Thomas E.

    2008-09-01

    A new open-framework compound, [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O, ( DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH 22+ (C 6H 14N 22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO 7 units. [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH 22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P2 1/ n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2 σ( I).

  8. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    PubMed Central

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  9. SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2.

    PubMed

    Richter, Maren; Nickel, Catharina; Apel, Lisa; Kaas, Alexander; Dodel, Richard; Culmsee, Carsten; Dolga, Amalia M

    2015-02-01

    Previous studies established an essential role for small conductance calcium-activated potassium (SK) channels in neuronal cell death pathways induced by glutamate excitotoxicity in cortical neurons in vitro and after cerebral ischemia in vivo. In addition to the intracellular calcium deregulation, glutamate-induced cell death also involves mechanisms of oxidative stress and mitochondrial dysfunction. Therefore, we sought to investigate whether SK channel activation might also affect mechanisms of intrinsic death pathways induced by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Exposure of immortalized hippocampal HT-22 cells to H2O2 imposed activation of a cascade of intracellular toxic events resulting in intracellular ROS production, mitochondrial loss of function, and ultimately cell death. Using a pharmacological approach to activate SK channels with CyPPA, we demonstrated a reduction of H2O2-mediated intracellular ROS production and cell death. Interestingly, CyPPA mediated neuroprotection in conditions of extracellular calcium and/or pyruvate depletion, pointing to a neuroprotective role of mitochondrial SK channels. Moreover, CyPPA partially inhibited H2O2-induced mitochondrial superoxide production, but did not prevent mitochondrial membrane depolarization. CyPPA treatment resulted in slight ATP depletion and a reduction of mitochondrial respiration/oxygen consumption. These findings postulate that SK channels mediate a protective effect by preventing neuronal death from subsequent oxidative stress through an adaptive metabolic response at the level of mitochondria. Therefore, SK channel activation may serve as a therapeutic target, where mitochondrial dysfunction and related mechanisms of oxidative stress contribute to progressive degeneration and death of neurons. PMID:25576183

  10. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum.

    PubMed

    Xia, Xiao-Jian; Gao, Chun-Juan; Song, Liu-Xia; Zhou, Yan-Hong; Shi, Kai; Yu, Jing-Quan

    2014-09-01

    Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR-induced stomatal movements is studied. The effects of 24-epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)-deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR-induced stomatal movements were closely related to dynamic changes in H(2)O(2) and redox status in guard cells. The stomata of SlRBOH1-silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR-induced stomatal closure but did not affect EBR-induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR-induced stomatal opening. The results suggest that transient H(2)O(2) production is essential for poising the cellular redox status of glutathione, which plays an important role in BR-induced stomatal opening. However, a prolonged increase in H(2)O(2) facilitated ABA signalling and stomatal closure. PMID:24428600

  11. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney.

    PubMed

    Lin, Chian-Shiung; Lee, Shang-Hsing; Huang, Ho-Shiang; Chen, Yih-Sharng; Ma, Ming-Chieh

    2015-08-15

    The presence of NADPH oxidase (Nox) in the kidney, especially Nox4, results in H2O2 production, which regulates Na(+) excretion and urine formation. Redox-sensitive transient receptor potential vanilloid 1 channels (TRPV1s) are distributed in mechanosensory fibers of the renal pelvis and monitor changes in intrapelvic pressure (IPP) during urine formation. The present study tested whether H2O2 derived from Nox4 affects TRPV1 function in renal sensory responses. Perfusion of H2O2 into the renal pelvis dose dependently increased afferent renal nerve activity and substance P (SP) release. These responses were attenuated by cotreatment with catalase or TRPV1 blockers. In single unit recordings, H2O2 activated afferent renal nerve activity in response to rising IPP but not high salt. Western blots revealed that Nox2 (gp91(phox)) and Nox4 are both present in the rat kidney, but Nox4 is abundant in the renal pelvis and originates from dorsal root ganglia. This distribution was associated with expression of the Nox4 regulators p22(phox) and polymerase δ-interacting protein 2. Coimmunoprecipitation experiments showed that IPP increases polymerase δ-interacting protein 2 association with Nox4 or p22(phox) in the renal pelvis. Interestingly, immunofluorescence labeling demonstrated that Nox4 colocalizes with TRPV1 in sensory fibers of the renal pelvis, indicating that H2O2 generated from Nox4 may affect TRPV1 activity. Stepwise increases in IPP and saline loading resulted in H2O2 and SP release, sensory activation, diuresis, and natriuresis. These effects, however, were remarkably attenuated by Nox inhibition. Overall, these results suggest that Nox4-positive fibers liberate H2O2 after mechanostimulation, thereby contributing to a renal sensory nerve-mediated diuretic/natriuretic response. PMID:26136558

  12. Structure and thermal behaviour of ScK(C 2O 4) 2(H 2O) 2 and InRb 1- x(H 3O) x(C 2O 4) 2(H 2O) 2ṡ0.5(H 2O): Two members of a family of open-framework oxalates with isotypic helical structures and zeolite-like properties

    NASA Astrophysics Data System (ADS)

    Mahé, Nathalie; Audebrand, Nathalie

    2006-08-01

    Two new mixed oxalates with an open architecture, ScK(C 2O 4) 2(H 2O) 2 ( I) and InRb 0.77(H 3O) 0.23(C 2O 4) 2(H 2O) 2ṡ0.5(H 2O) ( II), have been synthesised from precipitation methods at ambient temperature. They crystallize in hexagonal system, space group P622 (No. 180), Z=3, with the following unit-cell parameters for I: a=8.8667(2) Å, c=11.4908(4) Å, V=782.36(4) Å, for II: a=9.0148(3) Å, c=11.4645(3) Å, V=806.86(4) Å. The two structures belong to a family of isotypic helical anionic open-frameworks built from square antiprismatic coordinated metals and bischelating oxalates. The counter-cations K + and Rb +/H 3O + are located in the tunnels of the framework. The thermal decomposition process has demonstrated zeolite-like properties associated with weakly-bonded water molecules located in the voids of the framework.

  13. H2O2: a dynamic neuromodulator.

    PubMed

    Rice, Margaret E

    2011-08-01

    Increasing evidence implicates hydrogen peroxide (H(2)O(2)) as an intracellular and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H(2)O(2) can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H(2)O(2) activates ATP-sensitive K(+) (K-ATP) channels that inhibit DA neuron firing. In the striatum, H(2)O(2) generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via K-ATP channels. The source of dynamically generated H(2)O(2) is mitochondrial respiration; thus, H(2)O(2) provides a novel link between activity and metabolism via K-ATP channels. Additional targets of H(2)O(2) include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H(2)O(2) acting via K-ATP channels, TRP channel activation is excitatory. This review describes emerging roles of H(2)O(2) as a signaling agent in the nigrostriatal pathway and basal ganglia neurons. PMID:21666063

  14. Ring-opening polymerization of epoxidized soybean oil catalyzed by the superacid, Fluroantimonic acid hexahydrate (HSbF6-6H2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted. The resulting polymers, SA-RPESO, were characterized using infrared spectroscopy, differential scanning calorimetry, thermogravimetri...

  15. Synthesis of Open-Framework Iron Phosphates, [C 6N 2H 14][Fe III2F 2(HPO 4) 2(H 2PO 4) 2]·2H 2O and [C 6N 2H 14] 2[Fe III3(OH)F 3(PO 4)(HPO 4) 2] 2·H 2O, with One- and Three-Dimensional Structures

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Green, Mark A.; Natarajan, Srinivasan

    2002-05-01

    The hydrothermal syntheses and structures of two new open-framework iron phosphates, I, [C6N2H14][FeIII2F2(HPO4)2 (H2PO4)2].2H2O, II, and [C6N2H14]2[FeIII3(OH)F3(PO4) (HPO4)2]2. H2O, are presented. The structures of both I and II consist of FeO4F2 octahedra and PO4 terahedra linked to form one- and three-dimensional structures. Both the compounds possess infinite one-dimensional chains of Fe-O/F-Fe formed by the FeO4F2 octahedra. The di-protonated DABCO cations are located in between the chains in I and within the channels in II. Whilst I possess the tancoite structure with a new chain composition, II has a three-dimensional structure similar to the gallophosphate, ULM-1. Crystal data for I: M=685.84, monoclinic, space group=C2/c (no. 15), a=7.232(2), b=20.520(7), c=13.933(4) Å, β=97.68(3)°, ν=2049.1(1) Å3, Z=4, ρcalc.=2.223 g cm-3, μ(MoKα)=1.841 mm-1, R1=0.06, wR2=0.12, S=1.17 for 163 parameters; II, M=1303.33, monoclinic, space group =C2/c (no. 15), a=18.1836(2), b=10.0126(7), c=20.0589(4) Å, β=106.08(3)°, ν=3509.0(2) Å3, Z=4, ρcalc=2.467 g cm-3, μ(MoKα)=2.830 mm-1, R1=0.034, wR2=0.081, S=1.06 for 284 parameters.

  16. Results of first field tests of the improved open-path and enclosed models of CO2 and H2O flux measurements systems

    NASA Astrophysics Data System (ADS)

    Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everett; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle; Burba, George

    2016-04-01

    In 2014-2015, improved open-path and enclosed-path flux measurement systems were developed, based on established LI-7500A and LI-7200 gas analyzer models, with the focus on improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In addition to optical and electronic redesign, both systems incorporate automated on-site flux calculations using EddyPro® software run by a weatherized remotely-accessible microcomputer, SmartFlux 2, with fully digital inputs. The ultimate goal of such development was to reduce errors in CO2 and H2O hourly fluxes and in long-term carbon and water budgets. Field tests of both systems were conducted over six periods, each 5-14 months long, at 6 sites with diverse environments, setups, and types of contamination, using 26 gas analyzers. The open-path LI-7500RS system performed significantly better than the original LI-7500A model in terms of contamination-related drifts in mean concentrations. Improvements in CO2 drifts were strong, with RS models often drifting few-to-tens of times less than the original. Improvements in H2O contamination-related drifts were particularly significant, with modified models often drifting many tens of times less than the original. The enclosed-path LI-7200RS system performed substantially better than the original LI-7200 in terms of the drifts in H2O, sometimes drifting few-to-tens of times less than the original. Improvements in CO2 contamination-related drifts were modest, being similar or just a bit better than the original. Results from field tests suggest that both RS systems can help improve flux data coverage and potentially reduce site maintenance: (i) Frequency of cleaning and site visits for service and maintenance should decrease, especially for the open-path design (ii) Amount of highest quality data with smallest error bars on fluxes is expected to increase for both open-path and enclosed

  17. COMBINING THE STRENGTHS OF OPEN-PATH AND CLOSED-PATH DESIGNS INTO A SINGLE CO2/H2O GAS ANALYZER

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Furtaw, M.; McDermitt, D. K.; Eckles, R.

    2009-12-01

    Open-path and closed-path designs of the fast CO2/H2O gas analyzers are widely used to measure concentrations and fluxes. Both designs have their advantages and deficiencies. Open-path analyzers have excellent frequency response, long-term stability, and low sensitivity to window contamination. They are pump-free and require infrequent calibrations. Yet they are susceptible to data loss during precipitation and icing, and may need instrument surface heat flux correction when used in cold conditions. Closed-path analyzers can collect data during precipitation, can be climate-controlled, and are not susceptible to surface heating issues. Yet they experience significant frequency loss in long intake tubes, especially problematic when computing water vapor flux. They may require frequent calibrations and need powerful pump. Here we present preliminary data from third kind of a design: a compact enclosed CO2/H2O analyzer, the LI-7200, enabled for operation with short intake tube, intended to maximize strengths and to minimize weaknesses of both traditional open-path and closed-path designs. Four prototypes were extensively field-tested in three experiments over contrasting ecosystems in 2006-2009. Instantaneous temperature fluctuations were attenuated, on average, by about 85-90% with 0.5 m intake tube, and by about 90-95% with 1 m intake tube, minimizing sensible heat flux portion of Webb-Pearman-Leuning term. The remainder was measured directly eliminating open-path heating or any other temperature issues. Fast temperature and pressure measured inside the cell of LI-7200, and low sensitivity to window contamination allowed for the use of short intake tube (0.5-1.0 m or less), leading to a low power demand for the pump and entire system. The power demand of the tested blower with flow control was about 15 W, which is considerably less than that of traditional closed-path systems (about 50-100 W). Frequency losses for CO2 and H2O fluxes from LI-7200 were small, yet

  18. Measurements of CO2 and H2O Fluxes with New Enclosed Design and with Modified Open-path Design of Fast Gas Analyzers

    NASA Astrophysics Data System (ADS)

    Burba, George; McDermitt, Dayle K.; Velgersdyk, Michael; Eckles, Robert; Anderson, Dan

    2010-05-01

    In this presentation two novel approaches to designing fast CO2/H2O gas analyzers (e.g., new enclosed short tube enabled design and modified open-path low temperature controlled design) are discussed in comparison with two conventional approaches (e.g., traditional closed-path and open-path designs) in terms of their field performance for Eddy Covariance flux measurements. Closed- and open-path designs of the fast gas analyzers are two well-established sampling cell configurations widely utilized for measurements of CO2 and H2O fluxes and concentrations. Each configuration has advantages and deficiencies. Open-path analyzers have excellent frequency response, long-term stability, and low sensitivity to window contamination. They are pump-free and require infrequent calibrations. Yet they are susceptible to data loss during precipitation and icing, and may need instrument surface heat flux correction when used in extremely cold conditions. Closed-path analyzers can collect data during precipitation, can be climate-controlled, and are not susceptible to surface heating issues. Yet they experience significant frequency loss in long intake tubes, especially problematic when computing water vapor flux. They may require frequent calibrations and need powerful pump. The study presents field data from an alternative new design: a compact enclosed CO2/H2O analyzer, the LI-7200, enabled for operation with short intake tube, intended to maximize strengths and to minimize weaknesses of both traditional open-path and closed-path designs. Also presented are data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during extremely cold conditions. Four prototypes of LI-7200, were extensively field-tested in three experiments over contrasting ecosystems in 2006-2009. Instantaneous temperature fluctuations were attenuated, on average, by about 85-90% with 0.5 m intake tube, and by about 90-95% with 1 m intake

  19. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways1[OPEN

    PubMed Central

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei

    2016-01-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2. As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. PMID:26945050

  20. Open-path TDL-Spectrometry for a Tomographic Reconstruction of 2D H2O-Concentration Fields in the Soil-Air-Boundary-Layer of Permafrost

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2013-04-01

    The melting of permafrost soils in arctic regions is one of the effects of climate change. It is recognized that climatically relevant gases are emitted during the thawing process, and that they may lead to a positive atmospheric feedback [1]. For a better understanding of these developments, a quantification of the gases emitted from the soil would be required. Extractive sensors with local point-wise gas sampling are currently used for this task, but are hampered due to the complex spatial structure of the soil surface, which complicates the situation due to the essential need for finding a representative gas sampling point. For this situation it would be much preferred if a sensor for detecting 2D-concentration fields of e.g. water vapor, (and in the mid-term also for methane or carbon dioxide) directly in the soil-atmosphere-boundary layer of permafrost soils would be available. However, it also has to be kept in mind that field measurements over long time periods in such a harsh environment require very sturdy instrumentation preferably without the need for sensor calibration. Therefore we are currently developing a new, robust TDLAS (tuneable diode laser absorption spectroscopy)-spectrometer based on cheap reflective foils [2]. The spectrometer is easily transportable, requires hardly any alignment and consists of industrially available, very stable components (e.g. diode lasers and glass fibers). Our measurement technique, open path TDLAS, allows for calibration-free measurements of absolute H2O concentrations. The static instrument for sampling open-path H2O concentrations consists of a joint sending and receiving optics at one side of the measurement path and a reflective element at the other side. The latter is very easy to align, since it is a foil usually applied for traffic purposes that retro-reflects the light to its origin even for large angles of misalignment (up to 60°). With this instrument, we achieved normalized detection limits of up to 0

  1. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  2. Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol.

  3. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O

    NASA Technical Reports Server (NTRS)

    Hellawell, A.; Sarazin, J. R.

    1988-01-01

    The formation of segregation channels during the unidirectional solidification of base chilled ingots has been studied as a function of composition in binary Pb-Sn and Pb-Sb and ternary Pb-Sn-Sb alloys. The patterns of channel distribution were characterized in the binary and ternary systems and are described as functions of temperature gradients, growth rates, dendrite spacings, and interdendritic permeabilities. Channels appear to nucleate at random across a dendritic front and subsequently to interact as they propagate, decreasing in density across the front. Assuming that the interdendritic spacing is the characteristic distance for a liquid perturbation, yields critical effective Rayleigh numbers which lie within a factor of x 40 for both metallic and aqueous systems. This correlation is close, considering the sensitivity to any assumed dimension and the range of material properties involved, and is taken to support a model for channel nucleation occurring close to the dendritic growth front.

  4. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  5. Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish.

    PubMed

    Appenzeller-Herzog, Christian; Bánhegyi, Gabor; Bogeski, Ivan; Davies, Kelvin J A; Delaunay-Moisan, Agnès; Forman, Henry Jay; Görlach, Agnes; Kietzmann, Thomas; Laurindo, Francisco; Margittai, Eva; Meyer, Andreas J; Riemer, Jan; Rützler, Michael; Simmen, Thomas; Sitia, Roberto; Toledano, Michel B; Touw, Ivo P

    2016-05-01

    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. PMID:26928585

  6. On the Stark effect in open shell complexes exhibiting partially quenched electronic angular momentum: Infrared laser Stark spectroscopy of OH-C2H2, OH-C2H4, and OH-H2O

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Douberly, Gary E.

    2015-08-01

    The Stark effect is considered for polyatomic open shell complexes that exhibit partially quenched electronic angular momentum. Matrix elements of the Stark Hamiltonian represented in a parity conserving Hund's case (a) basis are derived for the most general case, in which the permanent dipole moment has projections on all three inertial axes of the system. Transition intensities are derived, again for the most general case, in which the laser polarization has projections onto axes parallel and perpendicular to the Stark electric field, and the transition dipole moment vector is projected onto all three inertial axes in the molecular frame. Simulations derived from this model are compared to experimental rovibrational Stark spectra of OH-C2H2, OH-C2H4, and OH-H2O complexes formed in helium nanodroplets.

  7. Speciation and diffusion profiles of H2O in water-poor beryl: comparison with cordierite

    NASA Astrophysics Data System (ADS)

    Della Ventura, G.; Radica, F.; Bellatreccia, F.; Freda, C.; Cestelli Guidi, M.

    2015-10-01

    This paper reports on water speciation and diffusion in synthetic beryl samples treated in CO2-rich atmosphere, at 700 MPa and 700 and 800 °C, respectively. The study has been conducted by means of polarized FTIR (Fourier transform infrared) integrated with FPA (focal plane array) imaging. As expected, the infrared spectra show the presence of CO2 but also of minor H2O interpreted as resulting from moisture present in the starting materials used for the experiments. FPA-FTIR images show that H2O diffuses into the beryl matrix along the structural channels oriented parallel to [001]. Spectra collected along profiles parallel to the c-axis show subtle changes as a function of the distance from the crystal edge; these changes can be correlated to a progressive change in the H2O coordination environment in the channel, as a response to the varying H2O/alkali ratio. In particular, the data show that when 2H2O > Na+ apfu (atoms per formula unit), H2O can assume both type I and type II orientation; in the latter case, each Na cation coordinates two H2O[II] molecules (doubly coordinated H2O). If 2H2O < Na+ apfu, then H2O[II] molecules are singly coordinated to each Na cation. The same type of feature is observed and commented for the structurally related cordierite. Diffusion coefficients and activation energies have been also determined for both types of water molecules.

  8. Nonadiabatic dissociation dynamics in H2O: Competition between rotationally and nonrotationally mediated pathways

    PubMed Central

    Yuan, Kaijun; Cheng, Yuan; Cheng, Lina; Guo, Qing; Dai, Dongxu; Wang, Xiuyan; Yang, Xueming; Dixon, Richard N.

    2008-01-01

    The photochemistry of H2O in the VUV region is important in interstellar chemistry. Whereas previous studies of the photodissociation used excitation via unbound states, we have used a tunable VUV photolysis source to excite individual levels of the rotationally structured C̃ state near 124 nm. The ensuing OH product state distributions were recorded by using the H-atom Rydberg tagging technique. Experimental results indicate a dramatic variation in the OH product state distributions and its stereodynamics for different resonant states. Photodissociation of H2O(C̃) in rotational states with k′a = 0 occurs exclusively through a newly discovered homogeneous coupling to the à state, leading to OH products that are vibrationally hot (up to v = 13), but rotationally cold. In contrast, for H2O in rotationally excited states with k′a > 0, an additional pathway opens through Coriolis-type coupling to the B̃ state surface. This yields extremely rotationally hot and vibrationally cold ground state OH(X) and electronically excited OH(A) products, through 2 different mechanisms. In the case of excitation via the 110 ← 000 transition the H atoms for these 2 product channels are ejected in completely different directions. Quantum dynamical models for the C̃-state photodissociation clearly support this remarkable dynamical picture, providing a uniquely detailed illustration of nonadiabatic dynamics involving at least 4 electronic surfaces. PMID:19047628

  9. The Successive H2O Binding Energies for Fe(H2O)n(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The binding energy, computed using density functional theory (DFT), are in good agreement with experiment. The bonding is electrostatic (charge-dipole) in origin for all systems. The structures are therefore determined mostly by metal-ligand and ligand-ligand repulsion. The computed structure for FeH2O(+) is C(2v) where sp hybridization is important in reducing the Fe-H2O repulsion. Fe(H2O)2(+) has D2d symmetry where sdo hybridization is the primary factor leading to the linear O-Fe-O geometry. The bonding in Fe(H2O)3(+) and Fe(H2O)4(+) are very complex because ligand-ligand and metal-ligand repulsion, both for the in-plane and out-of-plane water lone-pair orbitals, are important.

  10. EPA H2O Software Tool

    EPA Science Inventory

    EPA H2O allows user to: Understand the significance of EGS in Tampa Bay watershed; visually analyze spatial distribution of the EGS in Tampa Bay watershed; obtain map and summary statistics of EGS values in Tampa Bay watershed; analyze and compare potential impacts of development...

  11. EPA H2O User Manual

    EPA Science Inventory

    EPA H2O is a software tool designed to support research being conducted in the Tampa Bay watershed to provide information, data, and approaches and guidance that communities can use to examine alternatives when making strategic decisions to support a prosperous and environmentall...

  12. Crystal structure of K0.75[FeII 3.75FeIII 1.25(HPO3)6]·0.5H2O, an open-framework iron phosphite with mixed-valent FeII/FeIII ions

    PubMed Central

    Larrea, Edurne S.; Mesa, José Luis; Legarra, Estibaliz; Aguayo, Andrés Tomás; Arriortua, Maria Isabel

    2016-01-01

    Single crystals of the title compound, potassium hexa­phosphito­penta­ferrate(II,III) hemihydrate, K0.75[FeII 3.75FeIII 1.25(HPO3)6]·0.5H2O, were grown under mild hydro­thermal conditions. The crystal structure is isotypic with Li1.43[FeII 4.43FeIII 0.57(HPO3)6]·1.5H2O and (NH4)2[FeII 5(HPO3)6] and exhibits a [FeII 3.75FeIII 1.25(HPO3)6]0.75− open framework with disordered K+ (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa­hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3]2− oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa­hedra, giving rise to channels with a radius of ca 3.1 Å where the K+ cations and likewise disordered water mol­ecules (occupancy 1/4) are located. O⋯O contacts between the water mol­ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter­actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of FeII and FeIII ions. PMID:26870587

  13. Large cavities with nanosized channels in a three-dimensional neutral framework: structure and properties of a novel oxovanadium arsenate: As 2V IVV VO 26(OH)]·8H 2O

    NASA Astrophysics Data System (ADS)

    Zhao, Yongnan; Li, Yafeng; Liu, Qingsheng; Chen, Xiangming; Wang, Yong; Li, Xiuhong; Li, Ming; Mai, Zhenhong

    2002-12-01

    A novel open-framework oxovanadium arsenate has been hydrothermally synthesized. It crystallizes in space group I 4¯3 m with cell parameters of a=16.708(2) Å, V=4664.4(9) Å 3 and Z=4. Its structure is composed of a new type of decavandium cluster, which is constructed by two pentamers. Linking this decavanadate by AsO 4 tetrahedral, a three-dimensional open-framework structure forms, which possesses large cavities. These high symmetric cavities interconnected through 12-membered ring windows forming a three-dimensional channel system. Catalytic measurements indicate that this compound is active for phenol hydroxylation using hydrogen peroxide as the oxidant. Catechol, hydroquinone and benzoquinone are the main products with 15.8% conversion of phenol (taking no account of the secondary product of tar) and 59.6% selectivity for hydroquinone, when the reaction was performed in water at 60°C for 6 h.

  14. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  15. Theoretical studies of photoexcitation and ionization in H2O

    NASA Technical Reports Server (NTRS)

    Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.

    1982-01-01

    Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.

  16. Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Zhen-guo; Li, Shi-bin; Liu, Wei-dong

    2012-07-01

    Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2-O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2-O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2-O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.

  17. Phase transitions in natural zeolites and the importance of P H2O

    NASA Astrophysics Data System (ADS)

    Bish, David L.; Wang, Hsiu-Wen

    2010-06-01

    Zeolites are low-density silicates with structures consisting of a negatively charged aluminosilicate framework that creates a system of uniform linked channels and cavities. Variable amounts of extraframework cations and H2O molecules occupy the channel system, and the H2O molecules are very responsive to changes in temperature, pressure and partial pressure of water (i.e. P H2O or relative humidity, RH). As the H2O molecules occupy much of the volume of the extraframework sites, a gain or loss of H2O molecules has a direct effect on the extraframework cations and an indirect effect on the framework. Temperature or RH-induced changes can result in both first- and second-order phase transitions, the latter resulting from continuous, minor changes in hydration state and cation position, and the former resulting from discrete changes in hydration state, which can cause similar shifts in cation position. Second-order transitions are typically reversible with no hysteresis, but first-order transitions exhibit considerable hysteresis. As H2O molecules are crucial in determining zeolite behavior, it is important that any study of thermal behavior involve control of not only temperature but also of relative humidity. Stabilization of a zeolite's hydrated phase to higher temperatures under higher RH conditions can cause some phase transitions to be missed, as is the case with natrolite.

  18. H2O2 space shuttle APU

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  19. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress[OPEN

    PubMed Central

    Wang, Cun; Zhang, Wen-Zheng

    2015-01-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca2+-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca2+ inhibition of inward K+ currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  20. Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; May, Randy D.

    1987-01-01

    Simultaneous in situ measurements of temperature, pressure, and the NO, NO2, O3, jNO2, CH4, H2O, and CO2 concentrations were conducted in the 40- to 26-km region of the stratosphere using the JPL Balloon-borne Laser In Situ Sensor, a tunable diode laser absorption spectrometer. The NO, NO2, CH4, H2O, and CO2 concentration measurements generally show good agreement with previous observations, with a tendency for somewhat lower NO2 amounts. Measured O3 concentrations at 38 km agree well with comparable measurements from in situ UV photometers, but at 28 km they are lower by about 10 percent and agree more closely with the solar backscattered UV data. A decline was found in NO2 during the night over a 5-km altitude range, which implies either lower NO2 postsunset profiles, or an NO2 decay rate that is significantly higher than current model predictions that use N2O5 chemistry.

  1. Polynuclear complexes with bridging pyrophosphate ligands: synthesis and characterisation of {[(bipy)Cu(H2O)(mu-P2O7)Na2(H2O)6] x 4H2O}, {[(bipy)Zn-(H2O)(mu-P2O7)Zn(bipy)]2 x 14H2O} and {[(bipy)(VO)2]2(mu-P2O7)] x 5H2O}.

    PubMed

    Doyle, Robert P; Nieuwenhuyzen, Mark; Kruger, Paul E

    2005-12-01

    The reaction in water of M(II) ions (M = Cu, 1; Zn, 2; VO, 3) with 2,2'-bipyridine (bipy) followed by Na4P2O7 leads to the formation of three new complexes which feature the pyrophosphate anion, P2O7(4-), as a bridging ligand. Single crystal X-ray diffraction revealed 1 to be {[(bipy)Cu(H2O)(micro-P2O7)Na2(H2O)6] x 4H2O}, and 2 as a tetranuclear Zn(II) complex, {[(bipy)Zn(H2O)(micro-P2O7)Zn(bipy)]2 x 14H2O}. The structure of 1 consists of a mononuclear [(bipy)Cu(H2O)(P2O7)]2- unit that links via a pyrophosphate bridge to two Na atoms. The hydrated six-coordinate Na atoms themselves join together through bridging water molecules to generate a 2D Na-water sheet. The structure of 2 consists of a tetranuclear Zn(II) cluster (dimer-of-dimers) with two pyrophosphate ligands bridging between four metal centres. Adjacent clusters interact through face-to-face pi-pi interactions via the bipy ligands to yield a 2D sheet. Adjacent sheets pack in register to create channels, which are filled by the water molecules of crystallisation. An intricate 2D H-bonded water network separates adjacent sheets and encapsulates the tetranuclear clusters. Aspects of the pyrophosphate coordination modes in 1 and 2 are of structural relevance to those found within the inorganic pyrophosphatases. Compound 3, {[(bipy)(VO)2]2(micro-P2O7)] x 5H2O}, was isolated as an insoluble lime-green powder. Its dinuclear structure was elucidated from elemental and thermal analysis, magnetic susceptibility measurement and IR spectroscopy. The latter displayed characteristic bridging pyrophosphate and signature V=O stretches, which were corroborated by contrast to the IR spectra of 1 and 2 and through comparison with those found in the structurally characterised dinuclear complex, {[(bipy)Cu(H2O)]2(micro-P2O7) x 7H2O}, 4. PMID:16471055

  2. Electron swarm coefficients for H2O and H2O-N2

    NASA Astrophysics Data System (ADS)

    Juarez, A. M.; Basurto, E.; Hernandez-Avila, J. L.; de Urquijo, J.

    2008-10-01

    We have used a pulsed Townsend technique to measure the electron drift velocity ve, the density normalized longitudinal diffusion coefficient NDL, and effective ionization coefficient (α-η)/N, in water vapour and water vapour-nitrogen mixtures over the density-reduced electric field range E/N, 16-650 x 10-17V cm^2. The ve values are in good agreement with previous ones, while those for NDL agree well with a previous calculation. The limiting value for E/N was found to be E/Nlim=137 x 10-17 V cm^2. For E/N<70x10-17 V cm^2, the ve curves lie below that for pure N2; however, the 10% H2O-N2 curve for ve shows the trend for negative differential conductivity. The (α-η)/N curve for H2O shows a shallow, negative minimum, in disagreement with a recent measurement using the steady-state Townsend technique. The H2O-N2 curves for (α-η)/N show a progressively smaller minima, together with a trend to lower values of (α-η)/N as the N2 content in the mixture increases. This research aims to provide a complete set of self-consistent electron swarm parameters for the simulation of flue-gas discharges.

  3. Experiments on H2-O2 MHD power generation

    NASA Astrophysics Data System (ADS)

    Smith, J. M.

    1980-06-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid have been carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments are conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator.

  4. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  5. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    PubMed Central

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  6. [Relationships between H2O2 metabolism and Ca2+ transport in dormancy-breaking process of nectarine floral buds].

    PubMed

    Tan, Yue; Gao, Dong-sheng; Li, Ling; Wei, Hai-rong; Wang, Jia-wei; Liu, Qing-zhong

    2015-02-01

    In order to explore regulatory function of H2O2 in bud dormancy release, main effects of three dormancy-breaking treatments (high temperature, hydrogen cyanamide and TDZ) on H2O2 metabolism were determined, and impacts of H2O2 on Ca2+ transport were tested using non-invasive micro-test technique. The results showed that both high temperature and hydrogen cyanamide induced H2O2 accumulation and CAT inhibition were efficient in breaking dormancy during deep dormancy period. However, TDZ showed little impacts on H2O2 metabolism and was much less effective in breaking dormancy. Dormant floral primordium was absorbing state to exogenous Ca2+ due to active calcium channels. The Ca2+ transport could be changed by exogenous H2O2. H2O2 of low concentration reduced the absorption rate of Ca2+, and at high concentration, it changed the Ca2+ transport direction from absorption to release. The results indicated that H2O2 signals were related with Ca2+ signals in dormant buds. Ca2+ signal regulated by H2O2 accumulation might be important in the dormancy-breaking signal transduction process induced by high temperature and hydrogen cyanamide. PMID:26094456

  7. Microscopic shifts of size-assigned p-cresol/H2O-cluster spectra

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Schmitt, M.; Kleinermanns, K.

    1991-02-01

    p-cresol and its complexes with H2O and CH3OH were cooled in a pulsed supersonic free jet and studied by resonant multiphoton ionization with time-of-flight mass analysis. Detailed mass and concentration analysis allowed an unambiguous assignment of cluster size. The electronic origins of p-cresol (H2O)1,2,3 show irregular red- and blueshifts with change of cluster size, which is referred to the bivalent role of p-cresol as proton donor and acceptor. Ab initio and semiempirical quantum chemical calculations support this interpretation and show the spectral shifts to be essentially due to the inductive effect of the solvent molecules Y exerted on X in X-H...Y. While the vibronic bands of p-cresol (H2O)2 are quite broad, those of p-cresol (H2O)3 are sharp again. The ab initio calculations show that this may be attributed to the quite rigid ``open cyclic'' structure of p-cresol (H2O)3. Our experimental and theoretical investigations show a completely analogous behavior of phenol (H2O)1,2,3 clusters

  8. Synthesis, X-ray crystal structure, and EPR study of [Na(H 2O) 2] 2[VO(H 2O) 5][SiW 12O 40]·4H 2O

    NASA Astrophysics Data System (ADS)

    Tézé, André; Marchal-Roch, Catherine; So, Hyunsoo; Fournier, Michel; Hervé, Gilbert

    2001-03-01

    The vanadyl salt [Na(H 2O) 2] 2[VO(H 2O) 5][SiW 12O 40]·4H 2O has been synthesized in mild conditions by cationic exchanges from dodecasilicotungstic acid. Structural determination and EPR study have been achieved on single crystals. They are tetragonal, space group P4/ n with a=14.7759(1), c=10.4709(2) Å, V=2286(1) Å 3 and Z=2. A three-dimensional framework built from Keggin anions [SiW 12O 40] 4- linked by sodium cations in (110) and ( 1 1¯0 ) planes generates channels along the c axis in which are localized aquo vanadyl complexes [VO(H 2O) 5] 2+ and water molecules. Single crystal EPR spectra show eight hyperfine lines of the vanadium atom ( I=7/2) which are split into 1:2:1 pattern when the magnetic field is parallel to the c axis. The triplet pattern may be attributed to weak dipolar interactions between the nearest-neighbor vanadium atoms which are 10.47 Å apart in the infinite chain. A ring model was used to simulate the spectrum, and a very small antiferromagnetic exchange interaction was determined accurately . The EPR parameters determined are gx= gy=1.980, gz=1.9336, Ax= Ay=0.0072 cm -1, and Az=0.01805 cm -1, J=-0.00025 cm -1.

  9. Production of vibrationally excited H(2)O from charge exchange of H(3)O(+) with cesium.

    PubMed

    Mann, Jennifer E; Xie, Zhen; Savee, John D; Bowman, Joel M; Continetti, Robert E

    2009-01-28

    The center-of-mass kinetic energy release for the dissociation of H(3)O following charge exchange of H(3)O(+) with cesium has been studied experimentally and modeled using quasiclassical trajectory calculations based on an ab initio potential energy surface for H(3)O(+) and "direct dynamics" for H(3)O. Branching fractions for the H(2)O+H and OH+H(2) dissociation channels have been measured and compared to the calculations. The dominant channel is found to be H(2)O+H and the experimental kinetic energy release spectrum reveals that H(2)O is formed with a vibrational inversion in stretching vibrations, coupled with low bending and rotational excitation. PMID:19191369

  10. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    NASA Astrophysics Data System (ADS)

    Zhu, Chengbo; Wang, Xiaolin

    2015-12-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors.

  11. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  12. Tuning the conductance of H2O@C60 by position of the encapsulated H2O.

    PubMed

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green's function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  13. Effect of H2O, and combined effects of H2O + F, H2O + CO2, and H2O + F + CO2 on the viscosity of a natural basalt from Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Knipping, J.; Scherbarth, S.; Stechern, A.; Behrens, H.

    2012-12-01

    We measured the viscosity of 5 series of remelted natural basalt from Fuego volcano, Guatemala. These series include single and multiple volatile species: H2O, F, H2O-F, H2O-CO2, and H2O-CO2-F. The hydrous glasses were synthesized at 3 kbar and 1250°C in Internally Heated Pressure Vessels. The multiple volatile series were synthesized at 5 kbar and 1250°C. CO2 was added as Ag2C2O4, F as AlF3, and H2O as distilled water. The anhydrous, F-bearing series was synthesized at 1 atm by simply remelting the Fuego basalt and adding F as CaF2.The natural, dry, remelted Fuego basalt has an NBO/T of 0.64. The following comparisons are based on parallel-plate viscosity measurements in the range ~108 to 1012 Pa s. The temperature at which the viscosity is 1012 Pa s (T12) is taken to be the viscosimetric glass transition temperature (Tg). The addition of 2 wt.% H2O results in a decrease of T12 of ~150°C for basalt. Fluorine on its own has a measurable, but much smaller effect, than the equivalent amount of water. Indeed, ~2 wt.% F results in a T12 depression of only ~30°C. When H2O and F are both present, their effects are approximately additive. For example, the viscosity of a basalt with 1.44 wt.% H2O is very similar to the viscosity of a basalt with ~1 wt.% H2O and ~1.25 wt.% F, and the viscosities of a basalt with 2.29 wt.% H2O and a basalt with ~1.65 wt.% H2O and ~1.3 wt.% F are also very similar. The effect of CO2 is somewhat ambiguous. The viscosity of a basalt with ~1.7 wt.% H2O, ~1.3 wt.% F and ~0.2 wt.% CO2 is essentially the same as the viscosity of a basalt with 2.29 wt.% H2O, so CO2 seems to have a negligible or even viscosity-increasing effect when F and H2O are also present. However, a basalt with ~0.84 wt.% H2O and ~0.09 wt.% CO2 has about the same viscosity as a basalt with 1.34 wt.% H2O, which could suggest a strong (viscosity-decreasing) effect of very small amounts of CO2. These results suggest that the effects on viscosity of F in basaltic systems are

  14. K(NpO(2))(3)(H(2)O)Cl(4): A channel structure assembled two- and three-center cation-cation interactions of neptunyl cations

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-06-06

    A Np(V) compound containing three-center cation–cation interations, K(NpO₂)₃(H₂O)Cl₄, has been prepared by reacting Np(V) with KCl in molten boric acid. This compound forms a three-dimensional channel structure that is constructed from both two- and three-center cation–cation interactions. Three new bonding modes for cation–cation interactions are added to the summary of all known Np(V) compounds.

  15. Hormetic Effect of H2O2 in Saccharomyces cerevisiae

    PubMed Central

    Valishkevych, Bohdana V.

    2016-01-01

    In this study, we investigated the relationship between target of rapamycin (TOR) and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1) hydrogen peroxide (H2O2) induces hormesis in a TOR-dependent manner; (2) the H2O2-induced hormetic dose–response in yeast depends on the type of carbohydrate in growth medium; (3) the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4) both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1. PMID:27099601

  16. CO Diffusion into Amorphous H2O Ices

    NASA Astrophysics Data System (ADS)

    Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.

    2015-03-01

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  17. Surface and bulk uptake of H2O2 to snow: Insights from laboratory studies

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, Thorsten; Ulrich, Thomas; Ammann, Markus

    2014-05-01

    crystals, the bulk uptake is thought to occur into grain boundaries. Characterizing the uptake of trace gases to ice on different time-scales and identifying the compartment to which trace gases are taken up in snow are essential, but open questions. In this study the H2O2 uptake to thin ice films was investigated over long time-scales of hours, thus combining features of previous experiments. A long-lasting uptake of H2O2 to thin ice films is observed for the first time. The initial component of the overall uptake agrees perfectly with the parameterisation of surface adsorption derived in the previous study on thin ice films. The total uptake that was observed in this study agrees with the pioneering study on H2O2 uptake to backed snow samples. The total amount of H2O2 taken up by the ice film via this slow process might easily exceed the adsorbed H2O2 under environmental time scales.

  18. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing

    PubMed Central

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J.; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M.; Yang, X. Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection. PMID:24392147

  19. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    SciTech Connect

    Adeniyi Lawal

    2008-12-09

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant to produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole

  20. A comparison of ice VII formed in the H2O, NaCl-H2O, and CH3OH-H2O systems: Implications for H2O-rich planets

    NASA Astrophysics Data System (ADS)

    Frank, Mark R.; Aarestad, Elizabeth; Scott, Henry P.; Prakapenka, Vitali B.

    2013-02-01

    High-pressure H2O polymorphs, namely ice VI, ice VII, and ice X, are hypothesized to make up a considerable portion of the interiors of large icy satellites and select extra-solar planets. The incorporation of foreign ions or molecules into these high-pressure phases is possible through ocean-ice interaction, rock-ice interaction at depth, or processes that occurred during accretion. Recent research concerning the effects charged ions have on ice VII has shown that these ions notably affect the structure of ice VII (Frank et al., 2006; Klotz et al., 2009). This study was designed to determine the effects of a molecular impurity on ice VII and compare those effects to both pure H2O ice and ice with an ionic impurity. Ice samples were formed in this study via compression in a diamond anvil cell from either H2O, a 1.60 mol% NaCl aqueous solution, a 1.60 mol% CH3OH aqueous solution, or a 5.00 mol% CH3OH aqueous solution and were compressed up to 71 GPa at room temperature. Ice formed from pure H2O had no impurities whereas ices formed in the NaCl-H2O and CH3OH-H2O systems contained the impurities Na+ and Cl- and CH3OH, respectively. Pressure-volume relations were observed in situ by using synchrotron based X-ray diffraction and were used to determine the equations of state for ices formed in the H2O, NaCl-H2O and CH3OH-H2O systems. The data illustrate that ice VII formed from a NaCl-bearing aqueous solution exhibited a depressed volume when compared to that of H2O-only ice VII at any given pressure, whereas ice VII formed from CH3OH-bearing aqueous solutions showed an opposite trend, with an increase in volume relative to that of pure ice VII. The ices within planetary bodies will most likely have both ionic and molecular impurities and the trends outlined in this study can be used to improve density profiles of H2O-rich planetary bodies.

  1. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-01

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9. PMID:18439004

  2. Interaction between sulphide and H 2O in silicate melts

    NASA Astrophysics Data System (ADS)

    Stelling, Jan; Behrens, Harald; Wilke, Max; Göttlicher, Jörg; Chalmin-Aljanabi, Emilie

    2011-06-01

    Reaction between dissolved water and sulphide was experimentally investigated in soda-lime-silicate (NCS) and sodium trisilicate (NS3) melts at temperatures from 1000 to 1200 °C and pressures of 100 or 200 MPa in internally heated gas pressure vessels. Diffusion couple experiments were conducted at water-undersaturated conditions with one half of the couple being doped with sulphide (added as FeS or Na 2S; 1500-2000 ppm S by weight) and the other with H 2O (˜3.0 wt.%). Additionally, two experiments were performed using a dry NCS glass cylinder and a free H 2O fluid. Here, the melt was water-saturated at least at the melt/fluid interface. Profiling by electron microprobe (sulphur) and infrared microscopy (H 2O) demonstrate that H 2O diffusion in the melts is faster by 1.5-2.3 orders of magnitude than sulphur diffusion and, hence, H 2O can be considered as a rapidly diffusing oxidant while sulphur is quasi immobile in these experiments. In Raman spectra a band at 2576 cm -1 appears in the sulphide - H 2O transition zone which is attributed to fundamental S-H stretching vibrations. Formation of new IR absorption bands at 5025 cm -1 (on expense of the combination band of molecular H 2O at 5225 cm -1) and at 3400 cm -1 was observed at the front of the in-diffusing water in the sulphide bearing melt. The appearance and intensity of these two IR bands is correlated with systematic changes in S K-edge XANES spectra. A pre-edge excitation at 2466.5 eV grows with increasing H 2O concentration while the sulphide peak at 2474.0 eV decreases in intensity relative to the peak at 2477.0 eV and the feature at 2472.3 eV becomes more pronounced (all energies are relative to the sulphate excitation, calibrated to 2482.5 eV). The observations by Raman, IR and XANES spectroscopy indicate a well coordinated S 2- - H 2O complex which was probably formed in the glasses during cooling at the glass transition. No oxidation of sulphide was observed in any of the diffusion couple

  3. Destruction and Sequestration of H2O on Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  4. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  5. Role of Metabolic H2O2 Generation

    PubMed Central

    Sies, Helmut

    2014-01-01

    Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound. PMID:24515117

  6. [Functional characteristics of yeast cells in nutrient aqueous solution enriched with ortho-H2O isomers].

    PubMed

    Pershin, S M; Ismailov, E Sh; Suleimanova, Z G; Abdulmagomedova, Z N; Zagirova, D Z

    2014-01-01

    It has been experimentally established that cultivation of yeast cells in depleted, dietary or normal nutrient aqueous solutions enriched with ortho-H2O spin isomers is accompanied by an increase in the amount of carbon dioxide produced by the cells and an increase in their biomass. It has been revealed that the rate of metabolic processes and biological activity depends on the quality of nutrition and enhances in time in both nutrient solutions. In contrast, the reproductive function and the rate of cell division are insusceptible to the components of nutrition, but intensified in a solution enriched with ortho-H2O similar to retardation of aging. The observed effects are discussed in assumption that an increase of a portion of ortho-H2O molecules occurs in the neighborhood of water channels in the cell membrane that let through only monomers of H2O and determine the rate of metabolic processes. PMID:25702495

  7. Amorphous and Crystalline H2O-Ice

    NASA Astrophysics Data System (ADS)

    Mastrapa, Rachel M. E.; Grundy, William M.; Gudipati, Murthy S.

    On the surfaces of Solar System objects, H2O-ice can form in several different phases, including amorphous and crystalline. The stability of these phases as a function of thermal and radiation history is an active area of laboratory research. Meanwhile, remote detection of H2O-ice depends on the interpretation of infrared absorptions that are also dependent on phase and temperature. Surface processes, such as surface chemistry, micrometeorite gardening, and cryovolcanic resurfacing, on the surfaces of objects are linked to H2O-ice phase. We review the current state of laboratory measurements in the context of observations of Solar System objects and list the areas where new measurements are needed.

  8. Explosive origin of silicic lava: Textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion

    NASA Astrophysics Data System (ADS)

    Castro, Jonathan M.; Bindeman, Ilya N.; Tuffen, Hugh; Ian Schipper, C.

    2014-11-01

    A long-standing challenge in volcanology is to explain why explosive eruptions of silicic magma give way to lava. A widely cited idea is that the explosive-to-effusive transition manifests a two-stage degassing history whereby lava is the product of non-explosive, open-system gas release following initial explosive, closed-system degassing. Direct observations of rhyolite eruptions indicate that effusive rhyolites are in fact highly explosive, as they erupt simultaneously with violent volcanic blasts and pyroclastic fountains for months from a common vent. This explosive and effusive overlap suggests that pyroclastic processes play a key role in rendering silicic magma sufficiently degassed to generate lava. Here we use precise H-isotope and magmatic H2O measurements and textural evidence to demonstrate that effusion results from explosion(s)-lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels (tuffisites) that repetitively and explosively vent from effusing lava. Our measurements show, specifically that D/H ratios and H2O contents of a broad suite of explosive and effusive samples from Chaitén volcano (hydrous bombs, Plinian pyroclasts, tuffisite veins, and lava) define a single and continuous degassing trend that links wet explosive pyroclasts (∼1.6 wt.% H2O, δD=-76.4‰) to dry obsidian lavas (∼0.13 wt.% H2O, δD=-145.7‰). This geochemical pattern is best fit with batched degassing model that comprises small repeated closed-system degassing steps followed by pulses of vapour extraction. This degassing mechanism is made possible by the action of tuffisite veins, which, by tapping already vesicular or brecciated magma, allow batches of exsolved gas to rapidly and explosively escape from relatively isolated closed-system domains and large tracts of conduit magma by giving them long-range connectivity. Even though tuffisite veins render magma degassed and capable of effusing, they are

  9. Maps of [HDO]/[H2O] near Mars’ Aphelion

    NASA Astrophysics Data System (ADS)

    Novak, Robert E.; Mumma, M. J.; Villanueva, G. L.

    2013-10-01

    We report maps of HDO and H2O taken at three seasonal points before and near Mars’ aphelion (Ls = 71°). These observations were taken at Ls = 357° (15 January 2006), Ls = 50° (26 March 2008) and Ls = 72° (2/3 April 2010) using CSHELL at the NASA Infrared Telescope Facility. For these three seasonal dates, the entrance slit of the spectrometer was positioned N-S on Mars centered at the sub-Earth point; on 3 April 2010, the slit was positioned E-W. Data were extracted at 0.6 arc-second intervals from the spectral-spatial images. Individual spectral lines were measured near 3.67 μm (HDO) and 3.29 μm (H2O). The column densities were obtained by comparing the observed lines to those of a multi-layered, radiative transfer model. The model includes solar Fraunhofer lines, two-way transmission through Mars’ atmosphere, thermal emission from Mars’ surface and atmosphere, and a one-way transmission through the Earth’s atmosphere. Latitudinal maps of HDO, H2O, and their ratios were then constructed. The [HDO]/[H2O] ratios have been found to be larger than those on Earth and they vary with both latitude and season. For the Ls = 357° and 50° observations, the ratio peaks near the sub-solar latitude ([HDO]/[H2O] ~ 6.9 VSMOW) and decreases towards both the North and South polar-regions. At Ls = 72°, column densities of both HDO and H2O and their ratios increase from the Southern hemisphere to the North polar-region. Observations from 3 April 2013 show diurnal variations of both the column densities and their ratio. Specific points on Mars’ surface were tracked for four hours. It is believed that this variation is caused by the vaporization of ground frost and water ice clouds that are formed during the night and disappear during daytime. Our results for H2O column densities will be compared to TES results. The results for HDO and the [HDO]/[H2O] ratios will be compared to model results.This work was partially funded by grants from NASA's Planetary Astronomy

  10. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  11. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells.

    PubMed

    Shimizu, Shunichi; Yonezawa, Ryo; Negoro, Takaharu; Yamamoto, Shinichiro; Numata, Tomohiro; Ishii, Masakazu; Mori, Yasuo; Toda, Takahiro

    2015-11-01

    Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca(2+)-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30°C to 37°C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca(2+) ([Ca(2+)]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe(2+)-accumulation following pretreatment with FeSO4. Thus intracellular Fe(2+)-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe(2+)-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe(2+)-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37°C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe(2+)-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe(2+)-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2

  12. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place

  13. H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation.

    PubMed

    Sharma, Pankaj; Senwar, Kishna Ram; Jeengar, Manish Kumar; Reddy, T Srinivasa; Naidu, V G M; Kamal, Ahmed; Shankaraiah, Nagula

    2015-11-01

    A simple method for isatin spiro-epoxide ring-opening by sodium cyanide in water to obtain a variety of isatin hydroxy nitriles has been developed. Further, these intermediates have been converted into new 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids via azide-nitrile cycloaddition reaction in a sealed tube. These compounds were evaluated for their in vitro anticancer activity on five human cancer cell lines i.e. breast (BT549 and MDA MB-231), prostate (PC-3 and DU-145) and ovarian (PA-1). The compounds 6d and 6r showed potent anticancer activity against DU-145 cell line with IC50 values in the range of 7.01 ± 0.91 and 4.26 ± 0.09 μM respectively. The compounds 6d, 6g, 6q and 6r were also tested on human normal prostate epithelial (RWPE-1) cells and found to be safer with lesser cytotoxicity. The morphology and long term clonogenic survival of DU-145 cells were severely affected by compound 6r. Cell cycle analysis revealed that the compounds arrest the cells in G2/M phase. Acridine orange/ethidium bromide (AO/EB) staining, DAPI staining, annexin-V binding assay and DNA fragmentation analysis showed that cell proliferation was inhibited through induction of apoptosis. Moreover, one of the compounds 6r treatment led to collapse of the mitochondrial membrane potential (DΨm) and increased levels of reactive oxygen species (ROS) in DU-145 cells. PMID:26413726

  14. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  15. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  16. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  17. Multidimentional Normal Mode Calculations for the OH Vibrational Spectra of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar

    NASA Astrophysics Data System (ADS)

    Li, Ying-Cheng; Chuang, Hsiao-Han; Tan, Jake Acedera; Takahashi, Kaito; Kuo, Jer-Lai

    2014-06-01

    Recent experimental observations of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar clusters in the region 1400-3800 wn show that the OH stretching vibration has distinct characteristics. Multidimensional normal mode calculations were carried out for OH stretching vibrations in the 1200-4000 wn photon energy range. The potential energy and dipole surfaces were evaluated by using first-principles methods. By comparing the calculated frequencies and intensities of OH stretching vibration with experimental spectra, we found that the assignment of OH strecthing of H_3O^+ moiety and free OH strectching vibration have resonable agreement with experimental data. Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan, Science, 2005, 17, 1765. Kenta Mizuse, Jer-Lai Kuo and Asuka Fujii, Chem. Sci., 2011, 2, 868 Kenta Mizuse and Asuka Fujii, J. Phys. Chem. A, 2013, 117, 929.

  18. Preformance Analysis of NH3-H2O Absorption Cycle

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi

    Different from H2O-LiBr absorption cycle, it is necessary to have rectifier between generator and condenser in NH3-H2O absorption cycle, because there mixes some steam in refrigerant vapor in the process of regenerating refrigerant from the ammonia strong aqueous solution. And in some case ex. partial load or heating, the efficiency of rectifier might decrease, if the flow rate of refrigerant vapor and ammonia aqueous solution decrease. As a result, steam flow into condenser with ammonia refrigerant vapor, which reduces cycle COPs of cooling and heating. Accordingly in order to evaluate the effect of ammonia concentration in refrigerant for the performance of NH3-H2O absorption heat pump, the simple design approach of modeling condenser and evaporator is introduced in this paper. In the model, the calculation of heat rate in condenser and evaporator was simplified considering the characteristic of NH3-H2O liquid-vapor equilibrium. Then the simulation for cycle perforance based on GAX absorption cycle was made using the efficiency of rectifier that established the ammonia concentration in refrigerant and it was derived that 3 [%] decrease of ammonia concentration in refrigerant induced 15 [%] decrcase of cooling COP and 7 [%] decrease of heating COP and that there existed the most suitable circulation ratio for each ammonia concentration in refrigerant.

  19. Cyclosis-mediated transfer of H2O 2 elicited by localized illumination of Chara cells and its relevance to the formation of pH bands.

    PubMed

    Eremin, Alexey; Bulychev, Alexander; Hauser, Marcus J B

    2013-12-01

    Cytoplasmic streaming occurs in most plant cells and is vitally important for large cells as a means of long-distance intracellular transport of metabolites and messengers. In internodal cells of characean algae, cyclosis participates in formation of light-dependent patterns of surface pH and photosynthetic activity, but lateral transport of regulatory metabolites has not been visualized yet. Hydrogen peroxide, being a signaling molecule and a stress factor, is known to accumulate under excessive irradiance. This study was aimed to examine whether H2O2 produced in chloroplasts under high light conditions is released into streaming fluid and transported downstream by cytoplasmic flow. To this end, internodes of Chara corallina were loaded with the fluorogenic probe dihydrodichlorofluorescein diacetate and illuminated locally by a narrow light beam through a thin optic fiber. Fluorescence of dihydrodichlorofluorescein (DCF), produced upon oxidation of the probe by H2O2, was measured within and around the illuminated cell region. In cells exhibiting active streaming, H2O2 first accumulated in the illuminated region and then entered into the streaming cytoplasm, giving rise to the expansion of DCF fluorescence downstream of the illuminated area. Inhibition of cyclosis by cytochalasin B prevented the spreading of DCF fluorescence along the internode. The results suggest that H2O2 released from chloroplasts under high light is transported along the cell with the cytoplasmic flow. It is proposed that the shift of cytoplasmic redox poise and light-induced elevation of cytoplasmic pH facilitate the opening of H(+)/OH(-)-permeable channels in the plasma membrane. PMID:23760663

  20. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. PMID:25038578

  1. Silicate-H2O Systems at High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Tailby, N.; Mavrogenes, J. A.; Hermann, J.; O'Neill, H. S.

    2008-12-01

    Since the discovery of the second critical endpoint (CP2) in the albite-water system, numerous attempts have been made to determine the pressure and temperature of this CP2 and the mutual solubilities within more complex systems. The P-T position of the CP2 has been estimated for many systems: SiO2 (<10 kb/900 °C, Newton and Manning, 2008); NaAlSi3O8 (15 kb/800 °C, Burnham and Davis, 1974; Shen and Keppler, 1997); Pelite (50 kb/1,000 °C, Schmidt et al., 2004), basalt (50 kb/ 1000 °C, Kessel et al., 2004), Peridotite (38 kb/1000 °C, Mibe et al., 2007). A number of experimental techniques have been used to determine phase relations and H2O solubility in experiments. These include in-situ experimental techniques (e.g., HYDAC; Shen and Keppler, 1997), fluid trap techniques (e.g., diamond traps; Stalder et al., 2000), and single crystal weight-loss techniques (e.g., SiO2-H2O techniques employed by Newton and Manning, 2008). None of these techniques is without difficulties, as H2O rich experiments need to overcome huge retrograde fluid solubilities upon quench in order to determine mutual solubilities at experimental conditions. We have developed a new technique to determine "rock"-H2O relationships at high-P conditions, with particular focus on the shape and locus of solvi in pressure temperature space. In this series of experiments, an oxygen fugacity buffer (Re-ReO2) and a sliding H-fugacity sensor (NiO-Ni-Pd mixture) are combined to monitor H2O activity over the entire range of pressure and temperature. Unlike other techniques, the use of sensor capsules does not require textural interpretation of experiments. H2O activity is related to oxygen and hydrogen fugacity by the reaction: H2O = H2 + ½O2 NiO-Ni-Pd mixtures were placed within a ZrO2 jacket and sealed within a welded 2.3 mm Pt capsule. This 2.3 mm Pt sensor capsule was then encased within a larger, thick walled 6 mm diameter Ag capsule. Pelite-H2O mixtures and oxygen buffers were held within this larger

  2. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed. PMID:26671379

  3. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon

    NASA Astrophysics Data System (ADS)

    Soulard, P.; Tremblay, B.

    2015-12-01

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  4. Crystalline and amorphous H2O on Charon

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.

    2015-11-01

    Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.

  5. The Structures of Fluorene-(H2O)(1,2) Determined by Rotational Coherence Spectroscopy

    SciTech Connect

    Laman, David M.; Joly, Alan G.; Ray, Douglas

    2003-07-22

    Rotational coherence spectroscopy (RCS), via time-correlated single photon counting, and two-color resonant two-photon ionization (R2PI) time-of-flight mass spectrometry, have been used to characterize fluorene-(water)1,2 (FL-(water)1,2) van der Waals clusters generated in supersonic jets. Rotational coherence traces have been obtained at excitation energies corresponding to several resonant features in the S1S0 R2PI spectra of FL-(H2O)1,2. RCS simulations and diagonalization of the moment of inertia tensor have been used to obtain the S1 excited state rotational constants and structures of FL-(H2O)1,2 that are consistent with the experimental rotational coherence traces. The RCS results indicate that: (i) the water molecule in FL-H2O bridges the central five-membered ring of fluorene and hydrogen bonds to both aromatic sites; (ii) the water molecules in FL-(H2O)2 form a water dimer that is oriented along the long axis of fluorene and is hydrogen-bonded to both aromatic sites. The S1S0 R2PI spectra of FL-(D2O)1,2 and FL-HDO have also been obtained. The transition is a doublet in the R2PI spectra of FL-H2O, FL-D2O, and a singlet in the R2PI spectrum of FL-HDO. The presence of this doublet in the FL-H2O/D2O spectra, and the absence of such a splitting in the FL-HDO spectrum, is an indication of nearly free internal rotation of the water molecule on a potential energy surface that changes upon electronic excitation. Lastly, the use of RCS and psec time-resolved fluorescence as a tool for assigning features in R2PI spectra that are of ambiguous origin due to fragmentation of higher mass clusters into lower mass channels is demonstrated.

  6. H2-O2 auxiliary power unit for Space Shuttle vehicles - A progress report.

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    Description of a program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the Space Shuttle orbiter vehicle. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial auxiliary power unit (APU) configuration with recycled hydrogen flow has been studied and revised toward greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and heat from the hydraulic system. The revised configuration schematic and its calculated performance are reviewed. A weight comparison is made between the shuttle baseline hydrazine and H2-O2 APU systems, showing that hydrogen-oxygen APUs have the potential of increasing the payload of the Space Shuttle.

  7. The Target: H2O on the Moon

    NASA Technical Reports Server (NTRS)

    Green, J.; Wys, J. Negusde; Zuppero, A.

    1992-01-01

    The importance of H2O on the lunar surface has long been identified as a high priority for the existence of a human colony for mining activities and, more recently, for space fuel. Using the Earth as an analog, volcanic activity would suggest the generation of water during lunar history. Evidence of volcanism is found not only in present lunar morphology, but in over 400 locations of lunar transient events cataloged by Middlehurst and Kuiper in the 1960's. These events consisted of sightings since early history of vapor emissions and bright spots or flares. Later infrared scanning by Saari and Shorthill showed 'hot spots', many of which coincided with transient event sites. Many of the locations of Middlehurst and Kuiper were the sites of repeat events, leading to the conclusion that these were possibly volcanic in nature. The detection and use of H2O from the lunar surface is discussed.

  8. The target: H2O on the Moon

    NASA Astrophysics Data System (ADS)

    Green, J.; Wys, J. Negusde; Zuppero, A.

    1992-09-01

    The importance of H2O on the lunar surface has long been identified as a high priority for the existence of a human colony for mining activities and, more recently, for space fuel. Using the Earth as an analog, volcanic activity would suggest the generation of water during lunar history. Evidence of volcanism is found not only in present lunar morphology, but in over 400 locations of lunar transient events cataloged by Middlehurst and Kuiper in the 1960's. These events consisted of sightings since early history of vapor emissions and bright spots or flares. Later infrared scanning by Saari and Shorthill showed 'hot spots', many of which coincided with transient event sites. Many of the locations of Middlehurst and Kuiper were the sites of repeat events, leading to the conclusion that these were possibly volcanic in nature. The detection and use of H2O from the lunar surface is discussed.

  9. Antiferromagnetism of UO2⋅2H2O

    USGS Publications Warehouse

    Pankey, T.; Senftle, F.E.; Cuttitta, F.

    1963-01-01

    Magnetic susceptibility measurements have been made on UO2⋅xH2O for x=1.78 to x=2.13, and from 77° to 375°K. As the value of x decreased the susceptibility increased. Both these data and structural arguments imply that the formula of this compound is U(OH)4 rather than the dihydrate form. Based on this concept the data have been corrected for diamagnetism and also small amounts of UO2 and H2O which were present. The molar susceptibility of U4+ in U(OH)4 is nearly an order of magnitude less than in other uranium compounds, and it is suggested that this is probably due to superexchange between adjacent uranium atoms through intervening oxygen atoms.

  10. Near Infrared Spectra of H2O/HCN Mixtures

    NASA Technical Reports Server (NTRS)

    Mastrapa, R. M.; Bernstein, M. P.; Sanford, S. A.

    2006-01-01

    Cassini's VIMS has already returned exciting results interpreting spectra of Saturn's icy satellites. The discovery of unidentified features possibly due to CN compounds inspired the work reported here. We wanted to test HCN as a possibility for explaining these features, and also explore how the features of HCN change when mixed with H2O. We have previously noted that mixing H20 and CO2 produces new spectral features and that those features change with temperature and mixing ratio.

  11. Detection Of OH+ And H2O+ Towards Orion KL

    NASA Astrophysics Data System (ADS)

    Gupta, Harshal; Rimmer, P.; Pearson, J. C.; Herbst, E.; Yu, S.; Bergin, E. A.; Key Program, HEXOS

    2011-01-01

    The reactive molecular ions, OH+, H2O+, and H3O+, key probes of the oxygen chemistry of the interstellar gas, have been observed toward Orion KL with the Heterodyne Instrument for Far Infrared on board the Herschel Space Observatory. All three N = 1 - 0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111 - 000 transition at 1115 and 1139 GHz were detected, and an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blue shifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 x 1012 cm-2 and 7 ± 2 x 1012 cm-2, and those in the outflow of 1.9 ± 0.7 x 1013 cm-2 and 1.0 ± 0.3 x 1013 cm-2. Upper limits of 2.4 x 1012 cm-2 and 8.7 ± 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. A higher gas density, despite the assumption of a large ionization rate, may explain the comparatively low column densities of the ions. A part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Copyright 2010© California Institute of Technology. All rights reserved.

  12. The Effect of H2O on Ice Photochemistry

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; van Dishoeck, Ewine F.; Linnartz, Harold; Andersson, Stefan

    2010-08-01

    UV irradiation of simple ices is proposed to efficiently produce complex organic species during star formation and planet formation. Through a series of laboratory experiments, we investigate the effects of the H2O concentration, the dominant ice constituent in space, on the photochemistry of more volatile species, especially CH4, in ice mixtures. In the experiments, thin (~40 ML) ice mixtures, kept at 20-60 K, are irradiated under ultra-high vacuum conditions with a broadband UV hydrogen discharge lamp. Photodestruction cross sections of volatile species (CH4 and NH3) and production efficiencies of new species (C2H6, C2H4, CO, H2CO, CH3OH, CH3CHO, and CH3CH2OH) in water-containing ice mixtures are determined using reflection-absorption infrared spectroscopy during irradiation and during a subsequent slow warm-up. The four major effects of increasing the H2O concentration are: (1) an increase of the destruction efficiency of the volatile mixture constituent by up to an order of magnitude due to a reduction of back reactions following photodissociation, (2) a shift to products rich in oxygen, e.g., CH3OH and H2CO, (3) trapping of up to a factor of 5 more of the formed radicals in the ice, and (4) a disproportional increase in the diffusion barrier for the OH radical compared with the CH3 and HCO radicals. The radical diffusion temperature dependencies are consistent with calculated H2O-radical bond strengths. All the listed effects are potentially important for the production of complex organics in H2O-rich icy grain mantles around protostars and should thus be taken into account when modeling ice chemistry.

  13. Third-generation synchrotron x-ray diffraction of 6-μm crystal of raite, ≈Na3Mn3Ti0.25Si8O20(OH)2⋅10H2O, opens up new chemistry and physics of low-temperature minerals

    PubMed Central

    Pluth, Joseph J.; Smith, Joseph V.; Pushcharovsky, Dmitry Y.; Semenov, Eugenii I.; Bram, Andreas; Riekel, Christian; Weber, Hans-Peter; Broach, Robert W.

    1997-01-01

    The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole. PMID:11038590

  14. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    NASA Technical Reports Server (NTRS)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  15. Effects of H2O and H2O2 on Thermal Desorption of Tritium from Stainless Steel

    SciTech Connect

    Quinlan, M.J.; Shmayda, W.T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroder, W.U.

    2010-03-12

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H2O or H2O2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals.

  16. H2O Adsorption on Smectites: Application to the Diurnal Variation of H2O in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Howard, J.; Quinn, R. C.

    2000-01-01

    Observations of the Martian planetary boundary layer lead to interpretations that are baffling and contradictory. In this paper, we specifically address the question of whether or not water vapor finds a substantial diurnal reservoir in the Martian regolith. To address this issue, we have measured H2O adsorption kinetics on SWy-1, a Na-rich montmorillonite from Wyoming. The highest-temperature (273 K) data equilibrates rapidly. Data gathered at realistic H2O partial pressures and temperatures appropriate to early morning show two phenomena that preclude a significant role for smectites in diurnally exchanging a large column abundance. First, the equilibration timescale is longer than a sol. Second, the equilibrium abundances are a small fraction of that predicted by earlier adsorption isotherms. The explanation for this phenomenon is that smectite clay actually increases its surface area as a function of adsorptive coverage. At Mars-like conditions, we show that the interlayer sites of smectites are likely to be unavailable.

  17. Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed.

    PubMed

    Tomalin, Lewis Elwood; Day, Alison Michelle; Underwood, Zoe Elizabeth; Smith, Graham Robert; Dalle Pezze, Piero; Rallis, Charalampos; Patel, Waseema; Dickinson, Bryan Craig; Bähler, Jürg; Brewer, Thomas Francis; Chang, Christopher Joh-Leung; Shanley, Daryl Pierson; Veal, Elizabeth Ann

    2016-06-01

    Reactive oxygen species, such as H2O2, can damage cells but also promote fundamental processes, including growth, differentiation and migration. The mechanisms allowing cells to differentially respond to toxic or signaling H2O2 levels are poorly defined. Here we reveal that increasing external H2O2 produces a bi-phasic response in intracellular H2O2. Peroxiredoxins (Prx) are abundant peroxidases which protect against genome instability, ageing and cancer. We have developed a dynamic model simulating in vivo changes in Prx oxidation. Remarkably, we show that the thioredoxin peroxidase activity of Prx does not provide any significant protection against external rises in H2O2. Instead, our model and experimental data are consistent with low levels of extracellular H2O2 being efficiently buffered by other thioredoxin-dependent activities, including H2O2-reactive cysteines in the thiol-proteome. We show that when extracellular H2O2 levels overwhelm this buffering capacity, the consequent rise in intracellular H2O2 triggers hyperoxidation of Prx to thioredoxin-resistant, peroxidase-inactive form/s. Accordingly, Prx hyperoxidation signals that H2O2 defenses are breached, diverting thioredoxin to repair damage. PMID:26944189

  18. H2O masers from low and intermediate luminosity young stellar objects: H2O masers and YSOs

    NASA Astrophysics Data System (ADS)

    Persi, P.; Palagi, F.; Felli, M.

    1994-11-01

    We have used the Medicina 32-m radiotelescope to search for H2O 22.2 GHz maser emission from a sample of 68 red peculiar nebulosities associated with low luminosity (LIR less than 103 solar luminosity)) and intermediate luminosity (LIR approximately 104 solar luminosity) Young Stellar Objects (YSOs). H2O maser emission was detected in 9 sources, with a new detection in IRAS 18265+0028. Comparison with other samples indicates that YSOs have a higher probability of hosting an H2O maser, when they are associated with red peculiar nebulosities. Seven of the detected sources are associated with molecular outflows, which confirms that these two phenomena are strictly correlated. The maser sources associated with the Class I YSOs (IRAS 03225+3034, and IRAS 03245+3002, in the dark clouds L1448 and L1455 respectively) appear overluminous with respect to their IR luminosity. The maser emission shows a remarkable variability on time scales of months and years, which tends to be larger for lower luminosity sources. This is indicative of unsaturated emission in low luminosity sources.

  19. The effects of small amounts of H2O on partial melting of model spinel lherzolite in the system CMAS

    NASA Astrophysics Data System (ADS)

    Liu, X.; St. C. Oneill, H.

    2003-04-01

    quantify the amounts of H_2O. This is necessary, as Pt capsules are to some extent open to H_2 diffusion. All melts were found to contain CO_2 (<0.7 wt%), which appears to come mainly from the hydroxide starting materials but also by C diffusion through the Pt capsule. Since CO_2 is experimentally correlated with H_2O, its presence significantly effects the interpretation of the results. Ignoring this complication, we find that 1 wt% H_2O decreases the solidus by ˜40 K; melt compositions do not change greatly, the main effect being a small decrease in MgO.

  20. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  1. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Gogotsi, Yury; Alshareef, Husam N.

    2016-03-01

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g-1, 337 mA h g-1 and 297 mA h g-1 were obtained for H2O2 treated MXene at current densities of 100 mA g-1, 500 mA g-1 and 1000 mA g-1, respectively. In addition, when tested at a very high current density, such as 5000 mA g-1, the H2O2 treated MXene showed a specific capacity of 150 mA h g-1 and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as

  2. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Fillion, J.-H.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Jochims, H. W.; Leach, S.

    2003-07-01

    The absorption cross section and the ionization quantum yield of H2O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first tilde A 2A 1 and to the second tilde B 2B 2 excited states of H2O+. Comparison with D2O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  3. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes.

    PubMed

    Ahmed, Bilal; Anjum, Dalaver H; Hedhili, Mohamed N; Gogotsi, Yury; Alshareef, Husam N

    2016-04-14

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g(-1), 337 mA h g(-1) and 297 mA h g(-1) were obtained for H2O2 treated MXene at current densities of 100 mA g(-1), 500 mA g(-1) and 1000 mA g(-1), respectively. In addition, when tested at a very high current density, such as 5000 mA g(-1), the H2O2 treated MXene showed a specific capacity of 150 mA h g(-1) and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors. PMID:26984324

  4. Crystal structures, UV spectra of solid iodide anionic water clusters I(-)(H2O)(1-4), and electrochemical reaction of I(-)(H2O)(1-4) → I· + e(-)(H2O)(1-4).

    PubMed

    Qiu, Yanxuan; Yang, Meng; Chen, Wenbin; Su, Yuzhi; Ouyang, Zhenjie; Yan, Hua; Gao, Feixian; Dong, Wen

    2013-05-16

    Four iodide anionic water clusters of I(-)(H2O)1-4 in two supramolecular complexes of [Fe(phen)3][I2(H2O)3] (1) and [Zn(phen)3][I2(H2O)4.5] (2) have been determined by single-crystal X-ray diffraction analysis. The diffuse reflectance spectra for the solid iodide anionic water clusters of I(-)(H2O)1-4 were investigated, and their absorption bands were demonstrated by denisty functional theory calculation. The electrochemical reaction of I(-)(H2O)1-4 → I· + e(-)(H2O)1-4 with the oxidation potential of Ep = 0.61 eV was first found and reported in two aqueous solutions (1 mmol·dm(-3)) of 1 and 2. PMID:23614806

  5. Timescales of magma ascent recorded by H2O zonation in clinopyroxene

    NASA Astrophysics Data System (ADS)

    Lloyd, A. S.; Plank, T. A.; Ruprecht, P.; Hauri, E. H.; Rose, W. I.

    2013-12-01

    Magma ascent prior to explosive eruptions occurs on timescales of minutes to hours, and so requires exceptionally fast chronometers to quantify. One promising approach involves the diffusion of water in clinopyroxene (cpx), given laboratory measurements of diffusivities on the order of 10-9.5 to 10-11.5 at temperatures appropriate for mafic magmas [1]. Previous studies have observed H2O zonation in cpx grains but this was accompanied by major element zonation, leaving open the possibility for crystal growth zonation instead of diffusive loss of water [2]. We report SIMS and EMP analyses for three cpx phenocrysts from ash samples collected in situ during the Oct 17, 1974 sub-plinian eruption of Volcán de Fuego. Concentration profiles were assessed by 5-6 measurements along ~350-450 μm transects measured perpendicular to glassy rims. The maximum H2O measured in the cores of the cpx ranges from 230-320 ppm; whereas, the measurements closest to the rim range from 80-170 ppm. Importantly, we chose grains with limited major element zonation (i.e., Mg# and Al2O3 remain relatively constant or do not co-vary with H2O concentrations). Based on a temperature-dependent parameterization for the partition coefficient of H2O between cpx and melt that accounts for tetrahedrally coordinated Al3+ [3], cores and rims of these cpx are in equilibrium with a melt containing 2.0-2.7 wt% (core) and 0.7-1.6 wt% (rim). The maximum H2O concentration measured in olivine-hosted melt inclusions (~4.2 wt% H2O) erupted on the same day as the cpx phenocrysts [4] suggests that the cpx are not in equilibrium with the melt inclusions. The Mg# of the cpxs (73-77) fall within the range of that for the olivines (72-78) indicating that cpx and olivine were co-crystalizing and that H+ loss by diffusion has potentially occurred. Utilizing the same melt inclusion data to constrain the degassing path for the ascending magma under Fuego, we used forward models to estimate the decompression rate needed to

  6. H2O Isotopologues in Extreme OH/IR Stars

    NASA Astrophysics Data System (ADS)

    Justtanont, K.; Barlow, M. J.; Blommaert, J. A. D. L.; Decin, L.; Kerschbaum, F.; Matsuura, M.; Olofsson, H.; Swinyard, B.; Teyssier, D.; Waters, L. B. F. M.; Yates, J.

    2015-08-01

    Using Herschel Space Observatory, we observed isotopologues of H2O in extreme OH/IR stars. We detected strong H216O and H217O while the H218O lines are missing, contrary to the overall galactic oxygen abundance in the interstellar medium and the Sun, where 18O is more abundant than 17O. Theoretical stellar evolution suggests that 18O is being destroyed during the hot-bottom burning. This implies that these OH/IR stars come from a population of intermediate-mass stars which have an initial mass ≥ 5 M⊙.

  7. Advanced H2/O2 space engine parametrics

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1989-01-01

    Engine cycle analyses conducted on a 3000-lbf component testing model of an H2/O2-fueled advanced orbit-transfer vehicle engine employing a dual-expander cycle have yielded pressure and temperature trend predictions. On the basis of the results obtained, the dual-expander cycle is projected to be scalable to thrust levels of as much as 50,000 lbf, with chamber pressures of 2000 psi. The high chamber pressure, in conjunction with the use of a gas-gas injector element, facilitates 10:1-range continuously variable throttling. The preferred thrust level for supporting mission studies would be of the order of 20,000 lbf.

  8. Radiative Lifetime for Nuclear Spin Conversion of Water-Ion H_2O^+

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-06-01

    Nuclear spin conversion interaction of the water ion, H_2O^+, has been studied to derive the spontaneous emission lifetime between the ortho- and para-levels. The H_2O^+ ion is a radical with ^2 B _1 electronic ground state and the off-diagonal electron spin-nuclear spin interaction term, T_{ab} (S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ {I} = {I}_1 - {I}_2 has nonvanishing matrix elements between I = 0 and 1. The T_{ab} coupling constant, derived by an ab initio calculation in MRD-CI/Bk level to be 72 MHz, is larger than that of H_2O by 4 orders of magnitude, makes the ortho to para conversion of H_2O^+ faster than that of H_2O by 8 orders of magnitude and possibly competitive with other astrophysical processes. Last year we reported ortho and para coupling channels below 900 cm^{-1} caused by accidental near degeneracy of rotational levels. For example, hyperfine components of the 4_{2,2}(o) and 3_{3,0}(p) levels mix each other by 1.2 x 10^{-3} due to the near degeneracy (Δ E = 0.417 cm^{-1}), but the lower lying 1_{0,1}(p) and 1_{1,1}(o) levels mix only by 8.9 x 10^{-5} because of their large separation (Δ E = 16.27 cm^{-1}). In the present study, we solved the radiative rate equations including all the rotational levels below 900 cm^{-1} to give the o-p conversion lifetime to be 0.451, 3.27, 398 and 910 years for the equilibrium o/p ratio of 3.00, 3.00, 4.52, and 406 when the radiation temperature T_r is 100, 60, 20 and 5 K. These results qualitatively help to understand the observed high o/p ratio of 4.8 ± 0.5 (corresponding to the nuclear spin temperature of 21 K) toward Sgr B2, but they are too slow to compete with the reaction by collision unless the number of density of H_2 in the region is very low (n˜1 cm^{-3}) or the radiative temperature is very high (T_r > 50K). K. Tanaka, K. Harada, and T. Oka, the 67th OSU Symposium MG06, 2012. P. Schilke, et al., A&A 521, L11 (2010). K. Tanaka, K. Harada, and T. Oka, J. Phys. Chem. A

  9. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    USGS Publications Warehouse

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Molecular complex morpholine-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Zhang, Shufen; Xu, Yingmei

    2009-02-01

    Morpholine absorbs CO 2 and H 2O in air to form a molecular complex: morpholinium-1-morpholinecarboxylate-H 2O. The structure of the complex was characterized by X-ray single crystal diffraction, 1H NMR and FT-IR. The crystal structure was determined to be triclinic, space group P1¯ with a = 6.494(2) Å, b = 8.098(4) Å, c = 13.533(4) Å, α = 96.99(3)°, β = 102.57(2)°, γ = 104.15(3)°, Z = 2. The complex is stabilized via three hydrogen bonds between the three components, N…O electrostatic attraction and O…O interaction (electron transfer). Due to electron transfer of the carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O sbnd H bond is considerably shorter than that of free water molecules. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.

  11. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO.

    PubMed

    Lin, Liang-Chun; Chang, Hung-Tzu; Chang, Chien-Hsun; Chao, Wen; Smith, Mica C; Chang, Chun-Hung; Jr-Min Lin, Jim; Takahashi, Kaito

    2016-02-14

    In this study, we performed ab initio calculations and obtained the bimolecular rate coefficients for the CH2OO/CH3CHOO reactions with H2O/(H2O)2. The energies were calculated with QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) and the partition functions were estimated with anharmonic vibrational corrections by using the second order perturbation theory. Furthermore, we directly measured the rate of the CH2OO reaction with water vapor at high temperatures (348 and 358 K) to reveal the contribution of the water monomer in the CH2OO decay kinetics. We found that the theoretical rate coefficients reproduce the experimental results of CH2OO for a wide range of temperatures. For anti- (syn-) CH3CHOO, we obtained theoretical rate coefficients of 1.60 × 10(-11) (2.56 × 10(-14)) and 3.40 × 10(-14) (1.98 × 10(-19)) cm(3) s(-1) for water dimer and monomer reactions at room temperature. From the detailed analysis of the quantum chemistry and approximations for the thermochemistry calculations, we conclude that our calculated values would be within a factor of 3 of the correct values. Furthermore, at [H2O] = 1 × 10(17) to 5 × 10(17) cm(-3), we estimate that the effective first-order rate coefficients for CH2OO, anti- and syn-CH3CHOO reactions with water vapor will be ∼10(3), ∼10(4), and ∼10(1) s(-1), respectively. Thereby, for Criegee intermediates with a hydrogen atom on the same side as the terminal oxygen atom, the reaction with water vapor will likely dominate the removal processes of these CIs in the atmosphere. PMID:26797528

  12. H2-O2 auxiliary power unit for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    A program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the space shuttle orbiter vehicle is discussed. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial APU configuration with recycled hydrogen flow has been studied and revised towards greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and from the hydraulic system. Steady-state test of the combustor has been successful.

  13. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  14. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  15. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  16. Relationship between NaCl- and H2O2-Induced Cytosolic Ca2+ Increases in Response to Stress in Arabidopsis

    PubMed Central

    Ye, Rui; Xue, Yan; Chen, Amelia; An, Lizhe; Pei, Zhen-Ming

    2013-01-01

    Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS). It is well established that ROS also triggers increases in [Ca2+]i. However, the relationship and interaction between salinity stress-induced [Ca2+]i increases and ROS-induced [Ca2+]i increases remain poorly understood. Using an aequorin-based Ca2+ imaging assay we have analyzed [Ca2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca2+]i than did addition of NaCl. These results imply that NaCl-gated Ca2+ channels and H2O2-gated Ca2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways. PMID:24124535

  17. Utilization of membranes for H2O recycle system

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  18. Intermolecular potential for thermal H2O-He collisions

    NASA Technical Reports Server (NTRS)

    Palma, Amedeo; Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1988-01-01

    Theoretical potentials for rotational excitation of H2O by He were constructed via several methods, all of which start with a large basis set SCF interaction. The semiempirical Hartree-Fock with damped dispersion model adds a damped long-range attraction with parameters adjusted to fit experimental total differential cross sections. Purely ab initio potentials add correlation energies obtained via perturbation theory (MP2 and MP4) or a variational method (ICF1). Scattering calculations were performed on all surfaces to compare wih available beam scattering and pressure broadening data and to assess sensitivity of state-to-state rates to uncertainties in the potential. From comparison with the limited experimental data, the ICF1 surface appears to be marginally better than the MP4 surface. Thermal rates calculated from this surface should be accurate to better than 50 percent, at least for the larger, more important rates.

  19. Infrared spectrum and predissociation dynamics of H2O+ -Ar.

    PubMed

    Dopfer, O; Engel, V

    2004-12-22

    The infrared (IR) spectrum and vibrational predissociation of the proton-bound H(2)O(+)-Ar ionic complex are investigated within an ab initio and quantum dynamical study. For this purpose, a two-dimensional potential energy surface (2D PES) is determined as a function of the HO-H and OH-Ar coordinates. This PES is then employed in a wave-packet calculation to determine spectral properties of the system and to calculate the IR absorption spectrum. The vibrational energy levels and relative IR intensities agree well with the experimental spectrum reported earlier. On the other hand, the predissociation lifetimes in the nanosecond regime derived from the 2D PES are in disagreement with the experimental observations, indicating the importance of the neglected degrees of freedom for a correct description of the dynamics of the complex. PMID:15606253

  20. H2O at the Phoenix landing site.

    PubMed

    Smith, P H; Tamppari, L K; Arvidson, R E; Bass, D; Blaney, D; Boynton, W V; Carswell, A; Catling, D C; Clark, B C; Duck, T; Dejong, E; Fisher, D; Goetz, W; Gunnlaugsson, H P; Hecht, M H; Hipkin, V; Hoffman, J; Hviid, S F; Keller, H U; Kounaves, S P; Lange, C F; Lemmon, M T; Madsen, M B; Markiewicz, W J; Marshall, J; McKay, C P; Mellon, M T; Ming, D W; Morris, R V; Pike, W T; Renno, N; Staufer, U; Stoker, C; Taylor, P; Whiteway, J A; Zent, A P

    2009-07-01

    The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water. PMID:19574383

  1. First Principle Predictions of Isotopic Shifts in H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We compute isotope independent first and second order corrections to the Born-Oppenheimer approximation for water and use them to predict isotopic shifts. For the diagonal correction, we use icMRCI wavefunctions and derivatives with respect to mass dependent, internal coordinates to generate the mass independent correction functions. For the non-adiabatic correction, we use scaled SCF/CIS wave functions and a generalization of the Handy method to obtain mass independent correction functions. We find that including the non-adiabatic correction gives significantly improved results compared to just including the diagonal correction when the Born-Oppenheimer potential energy surface is optimized for H2O-16. The agreement with experimental results for deuterium and tritium containing isotopes is nearly as good as our best empirical correction, however, the present correction is expected to be more reliable for higher, uncharacterized levels.

  2. Ferroelectricity in high-density H2O ice.

    PubMed

    Caracas, Razvan; Hemley, Russell J

    2015-04-01

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. The presence of local electric fields triggers the preferential parallel orientation of the water molecules in the structure, which could be stabilized in bulk using new high-pressure techniques. PMID:25854247

  3. Observations of H2O in Titan's atmosphere with Herschel

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Lara, L. M.; Courtin, R.; Hartogh, P.; Rengel, M.

    2012-04-01

    Disk averaged observations of several H2O far infrared lines in Titan’s atmosphere were performed with the Herschel Space Observatory, as part of the guaranteed time key program "Water and related chemistry in the Solar System" (HssO, see Hartogh et al 2011). Two instruments were used: (i) HIFI, a heterodyne instrument (R~ 106 ) in the sub-millimeter, which measured the H2O(110-101) rotational transition at 557 GHz on June 10 and Dec. 31, 2010 (ii) PACS, a photoconductor spectrometer (R~103) which measured three water lines at 108.1, 75.4 and 66.4 microns on June 22, 2010. Additional PACS measurements at 66.4 microns on Dec. 15 and 22, 2010 and on July 09, 2011, do not show any significant line intensity variation with time, nor between the leading/trailing sides (i.e. longitude). Spectra were analyzed with a line-by-line radiative transfer code accounting for spherical geometry (Moreno et al. 2011). This model considers the H2O molecular opacity from JPL catalog (Pickett et al. 1998) and also includes collision-induced opacities N2-N2, N2-CH4 and CH4-CH4 (Borysow and Frommhold 1986, 1987, Borysow and Tang 1993). Far infrared aerosol opacities derived by CIRS were included, following Anderson and Samuelson (2011) for their vertical distribution and spectral dependencies. Analysis of the 557 GHz narrow line (FWHM ~ 2 MHz) indicates that it originates at altitudes above 300 km, while lines measured with PACS probe mainly deeper levels (80-150 km). The HIFI and PACS observations are fitted simultaneously, considering a vertical distribution of H2O mixing ratio which follows a power law dependency q=q0(P/P0)n, where q0 is the mixing ratio at some reference pressure level P0, taken near the expected condensation level. Model fits will be presented, and compared with previously proposed H2O vertical distributions. We show in particular that both the steep profile proposed by Lara et al. (1996) (and adopted by Coustenis et al. (1998) to model the first detection of H2O

  4. Opening the shaker K+ channel with hanatoxin.

    PubMed

    Milescu, Mirela; Lee, Hwa C; Bae, Chan Hyung; Kim, Jae Il; Swartz, Kenton J

    2013-02-01

    Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1-S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1-S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance-voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin-channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance-voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b-S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin-channel interface determine whether a toxin is an inhibitor or opener. PMID:23359283

  5. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway.

    PubMed

    Zhou, Long; Chen, Xi; Liu, Tao; Gong, Yihong; Chen, Sijin; Pan, Guoqing; Cui, Wenguo; Luo, Zong-Ping; Pei, Ming; Yang, Huilin; He, Fan

    2015-09-01

    Mesenchymal stem cells (MSCs) represent an attractive source for stem cell-based regenerative therapy, but they are vulnerable to oxidative stress-induced premature senescence in pathological conditions. We previously reported antioxidant and antiarthritic effects of melatonin on MSCs against proinflammatory cytokines. In this study, we hypothesized that melatonin could protect MSCs from premature senescence induced by hydrogen peroxide (H2 O2 ) via the silent information regulator type 1 (SIRT1)-dependent pathway. In response to H2 O2 at a sublethal concentration of 200 μm, human bone marrow-derived MSCs (BM-MSCs) underwent growth arrest and cellular senescence. Treatment with melatonin before H2 O2 exposure cannot significantly prevent premature senescence; however, treatment with melatonin subsequent to H2 O2 exposure successfully reversed the senescent phenotypes of BM-MSCs in a dose-dependent manner. This result was made evident by improved cell proliferation, decreased senescence-associated β-galactosidase activity, and the improved entry of proliferating cells into the S phase. In addition, treatment with 100 μm melatonin restored the osteogenic differentiation potential of BM-MSCs that was inhibited by H2 O2 -induced premature senescence. We also found that melatonin attenuated the H2 O2 -stimulated phosphorylation of p38 mitogen-activated protein kinase, decreased expression of the senescence-associated protein p16(INK) (4α) , and increased SIRT1. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked melatonin-mediated antisenescence effects. Inhibition of SIRT1 by sirtinol counteracted the protective effects of melatonin, suggesting that melatonin reversed the senescence in cells through the SIRT1-dependent pathway. Together, these findings lay new ground for understanding oxidative stress-induced premature senescence and open perspectives for therapeutic applications of melatonin in stem cell

  6. A HIFI view on circumstellar H2O in M-type AGB stars: radiative transfer, velocity profiles, and H2O line cooling

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Danilovich, T.; Olofsson, H.; De Beck, E.; Justtanont, K.; Lombaert, R.; Royer, P.

    2016-06-01

    Aims: We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type asymptotic giant branch (AGB) stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. Methods: We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI aboard the Herschel Space Observatory. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PACS aboard Herschel. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. Results: The fits to the line profiles only set moderate constraints on the velocity profile, indicating shallower acceleration profiles in the winds of M-type AGB stars than predicted by dynamical models, while the CO observations effectively constrain the temperature structure. Including H2O line cooling in the energy balance was only possible for the low-mass-loss-rate objects in the sample, and required an ad hoc adjustment of the dust velocity profile in order to counteract extreme cooling in the inner CSE. H2O line cooling was therefore excluded from the models. The constraints set on the temperature profile by the CO lines nevertheless allowed us to derive H2O abundances. The derived H2O abundances confirm previous estimates and are consistent with chemical models. However, the uncertainties in the derived abundances are relatively large, in particular for p-H2O, and consequently the derived o/p-H2O ratios are not well constrained.

  7. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    PubMed

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-01

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system. PMID:26562487

  8. Simultaneous mapping of H 2O and H 2O 2 on Mars from infrared high-resolution imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Richter, M. J.; Bézard, B.; Fouchet, T.; Lefèvre, F.; Montmessin, F.; Forget, F.; Lebonnois, S.; Atreya, S. K.

    2008-06-01

    New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude L was 332° (end of southern summer). Data have been obtained at 1235-1243 cm -1, with a spectral resolution of 0.016 cm -1 ( R=8×10). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H 2O 2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H 2O 2 abundance remains to be understood and modeled.

  9. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy.

    PubMed

    Li, Junjie; Ke, Wendong; Wang, Lei; Huang, Mingming; Yin, Wei; Zhang, Ping; Chen, Qixian; Ge, Zhishen

    2016-03-10

    One of distinct features in tumor tissues is the elevated concentration of reactive oxygen species (ROS) during tumor immortality, proliferation and metastasis. However, ROS-responsive materials are rarely utilized in the field of in vivo tumoral ROS-responsive applications due to the fact that the intrinsic ROS level in the tumors could not escalate to an adequate level that the developed materials can possibly respond. Herein, palmitoyl ascorbate (PA) as a prooxidant for hydrogen peroxide (H2O2) production in tumor tissue is strategically compiled into a H2O2-responsive camptothecin (CPT) polymer prodrug micelle, which endowed the nanocarriers with self-sufficing H2O2 stimuli in tumor tissues. Molecular oncology manifests the hallmarks of tumoral physiology with deteriorating propensity in eliminating hazardous ROS. H2O2 production was demonstrated to specifically sustain in tumors, which not only induced tumor cell apoptosis by elevated oxidation stress but also served as autochthonous H2O2 resource to trigger CPT release for chemotherapy. Excess H2O2 and released CPT could penetrate into cells efficiently, which showed synergistic cytotoxicity toward cancer cells. Systemic therapeutic trial revealed potent tumor suppression of the proposed formulation via synergistic oxidation-chemotherapy. This report represents a novel nanomedicine platform combining up-regulation of tumoral H2O2 level and self-sufficing H2O2-responsive drug release to achieve novel synergistic oxidation-chemotherapy. PMID:26806789

  10. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.

    PubMed

    Bao, Li; Avshalumov, Marat V; Rice, Margaret E

    2005-10-26

    Mitochondrial dysfunction is a potential causal factor in Parkinson's disease. We show here that acute exposure to the mitochondrial complex I inhibitor rotenone (30-100 nM; 30 min) causes concentration-dependent suppression of single-pulse evoked dopamine (DA) release monitored in real time with carbon-fiber microelectrodes in guinea pig striatal slices, with no effect on DA content. Suppression of DA release was prevented by the sulfonylurea glibenclamide, implicating ATP-sensitive K+ (KATP) channels; however, tissue ATP was unaltered. Because KATP channels can be activated by hydrogen peroxide (H2O2), as well as by low ATP, we examined the involvement of rotenone-enhanced H2O2 generation. Confirming an essential role for H2O2, the inhibition of DA release by rotenone was prevented by catalase, a peroxide-scavenging enzyme. Striatal H2O2 generation during rotenone exposure was examined in individual medium spiny neurons using fluorescence imaging with dichlorofluorescein (DCF). An increase in intracellular H2O2 levels followed a similar time course to that of DA release suppression and was accompanied by cell membrane depolarization, decreased input resistance, and increased excitability. Extracellular catalase markedly attenuated the increase in DCF fluorescence and prevented rotenone-induced effects on membrane properties; membrane changes were also largely prevented by flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thus, partial mitochondrial inhibition can cause functional DA denervation via H2O2 and KATP channels, without DA or ATP depletion. Furthermore, amplified H2O2 levels and TRP channel activation in striatal spiny neurons indicate potential sources of damage in these cells. Overall, these novel factors could contribute to parkinsonian motor deficits and neuronal degeneration caused by mitochondrial dysfunction. PMID:16251452

  11. A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements

    NASA Astrophysics Data System (ADS)

    Koman, V.; Suárez, G.; Santschi, Ch.; Cadarso, V. J.; Brugger, J.; von Moos, N.; Slaveykova, V. I.; Martin, O. J. F.

    2013-03-01

    In this work a portable analytical biosensor for real-time extracellular monitoring of released hydrogen peroxide (H2O2 ) is presented. The biosensor is based on the optical detection of the cytochrome c (cyt c) oxidation state. The setup consists of an integrated microscope combined with a compact spectrometer. The light being absorbed by cyt c is enhanced via multiscattering produced by random aggregates of polystyrene beads in a cross-linked cyt c matrix. Using ink-jet printing technique, the sensing elements, namely cyt c loaded polystyrene aggregates, are fabricated with high reliability in terms of repeatability of size and sensitivity. Additionally, the sensing elements are enclosed in a microfluidic channel assuring a fast and efficient analytes delivery. As an example, the effect of trace concentrations of functionalized cadmium selenide/zinc sulfide (CdSe/ZnS) core shell quantum dots on the green algae Chlamydomonas reinhardtii is investigated, showing extracellular H2O2 release with different production rates over a period of 1 hour. In conclusion, the presented portable biosensor enables the highly sensitive and non-invasive real-time monitoring of the cell metabolism of C. reinhardtii.

  12. H2O2 levels in rainwater collected in south Florida and the Bahama Islands

    NASA Technical Reports Server (NTRS)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.

    1982-01-01

    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  13. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  14. Determination of the ortho to para ratio of H2Cl+ and H2O+ from submillimeter observations.

    PubMed

    Gerin, Maryvonne; de Luca, Massimo; Lis, Dariusz C; Kramer, Carsten; Navarro, Santiago; Neufeld, David; Indriolo, Nick; Godard, Benjamin; Le Petit, Franck; Peng, Ruisheng; Phillips, Thomas G; Roueff, Evelyne

    2013-10-01

    The opening of the submillimeter sky with the Herschel Space Observatory has led to the detection of new interstellar molecular ions, H2O(+), H2Cl(+), and HCl(+), which are important intermediates in the synthesis of water vapor and hydrogen chloride. In this paper, we report new observations of H2O(+) and H2Cl(+) performed with both Herschel and ground-based telescopes, to determine the abundances of their ortho and para forms separately and derive the ortho-to-para ratio. At the achieved signal-to-noise ratio, the observations are consistent with an ortho-to-para ratios of 3 for both H2O(+) and H2Cl(+), in all velocity components detected along the lines-of-sight to the massive star-forming regions W31C and W49N. We discuss the mechanisms that contribute to establishing the observed ortho-to-para ratio and point to the need for a better understanding of chemical reactions, which are important for establishing the H2O(+) and H2Cl(+) ortho-to-para ratios. PMID:23869910

  15. Novel design of an enclosed CO2/H2O gas analyser for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Furtaw, M. D.; Eckles, R. D.

    2010-11-01

    ABSTRACT This study describes design and field performance of a new enclosed CO2/H2O gas analyser, LI-7200. Unlike present closed-path analysers, this new instrument is designed for operation with short intake tubes, with the intention to maximize strengths and to minimize weaknesses of both traditional open-path and closed-path approaches. The study provides description of the instrument, shows the principles of its operation, and explains advantages of a new design. Field results are provided from three field experiments with the prototypes, and cover such parameters as high frequency air temperature and pressure fluctuations inside the sampling cell versus ambient conditions, instantaneous concentrations and cospectra for CO2 and H2O in comparison with open-path instrument, and eddy covariance hourly CO2 and H2O fluxes in comparison with both open-path and closed-path instruments. Field data loss inventory is also provided in comparison with open-path and closed-path gas analysers. The new enclosed design results in little data loss during precipitation and icing, similar to the closed-path design, but with a low power consumption and high field stability comparable to open-path instruments.

  16. Seasonal variation of HDO/H2O ratio in the atmosphere of Mars observed by SUBARU/IRCS and MEX/PFS

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Giuranna, M.; Sindoni, G.; Nakagawa, H.; Sagawa, H.; Aronica, A.; Kasaba, Y.

    2014-04-01

    We present the seasonal variation of HDO/H2O ratio caused by sublimation-condensation process in a global view of the Martian water cycle. It is well-known that water on Mars exists as vapor (in the atmosphere) and ice (ice clouds, surface ice, and possibly subsurface ice), and its phase change occurs via sublimationcondensation process. Mapping of HDO/H2O ratio could provide the information to discriminate these physical processes. The key theory here is that the condensation process induces an isotopic fractionation on water vapor due to the difference in their vapor pressures, i.e., the heavier HDO vapor preferentially condensates compared to the lighter H2O vapor [1], whereas there is no isotope fractionation during sublimation due to very slow molecular diffusion within ice. Indeed, general Circulation Model (GCM) predicted that HDO/H2O ratio changes by a factor of 2 due to condensationinduced fractionation in the polar region [2]. So far, distribution of HDO/H2O ratio has been investigated by only a few ground-based observations. They found that HDO/H2O ratio was not constant but varied in the range between 2 and 10 wrt VSMOW [3,4]. In addition, latitudinal gradients of HDO/H2O ratio probably due to condensation of HDO vapor over high latitude at the middle of the northern spring was suggested [4]. However, it is still open question that what causes the un-uniform distribution of the HDO/H2O ratio due to lack of its seasonal behavior. In order to answer the question, we investigated the HDO/H2O ratio at two different seasons, the northern spring (Ls=52°) and summer (Ls=96°), and revealed the seasonal variation. The HDO/H2O ratio was retrieved from groundbased observations by high-dispersion echelle spectroscopy of Infrared Camera and Spectrograph (IRCS) [5] onboard Subaru telescope and the coordinated joint observation by Planetary Fourier Spectrometer (PFS) [6] onboard Mars Express (MEX) spacecraft. The observations were performed at middle of the northern

  17. The open pore conformation of potassium channels

    NASA Astrophysics Data System (ADS)

    Jiang, Youxing; Lee, Alice; Chen, Jiayun; Cadene, Martine; Chait, Brian T.; MacKinnon, Roderick

    2002-05-01

    Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K+ channels, respectively, reveal how such gating transitions occur. Pore-lining `inner' helices contain a `gating hinge' that bends by approximately 30°. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12Å) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K+ channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.

  18. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  19. Visible spectrum photofragmentation of O3-(H2O)n, n ≤ 16

    NASA Astrophysics Data System (ADS)

    Lehman, Julia H.; Lineberger, W. Carl

    2014-10-01

    Photofragmentation of ozonide solvated in water clusters, O3-(H2O)n, n ≤ 16, has been studied as a function of photon energy as well as the degree of solvation. Using mass selection, the effect of the presence of the solvent molecule on the O3- photodissociation process is assessed one solvent molecule at a time. The O3- acts as a visible light chromophore within the water cluster, namely the O3-(H2O) total photodissociation cross-section exhibits generally the same photon energy dependence as isolated O3- throughout the visible wavelength range studied (430-620 nm). With the addition of a single solvent molecule, new photodissociation pathways are opened, including the production of recombined O3-. As the degree of solvation of the parent anion increases, recombination to O3--based products accounts for close to 40% of photoproducts by n = 16. The remainder of the photoproducts exist as O--based; no O2--based products are observed. Upper bounds on the O3- solvation energy (530 meV) and the O--OO bond dissociation energy in the cluster (1.06 eV) are derived.

  20. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.

    PubMed

    Rosenfeldt, Erik J; Linden, Karl G; Canonica, Silvio; von Gunten, Urs

    2006-12-01

    Comparison of advanced oxidation processes (AOPs) can be difficult due to physical and chemical differences in the fundamental processes used to produce OH radicals. This study compares the ability of several AOPs, including ozone, ozone+H2O2, low pressure UV (LP)+H2O2, and medium pressure UV (MP)+H2O2 in terms of energy required to produce OH radicals. Bench scale OH radical formation data was generated for each AOP using para-chlorobenzoic acid (pCBA) as an OH radical probe compound in three waters, Lake Greifensee water, Lake Zurich water, and a simulated groundwater. Ozone-based AOPs were found to be more energy efficient than the UV/H2O2 process at all H2O2 levels, and the addition of H2O2 in equimolar concentration resulted in 35% greater energy consumption over the ozone only process. Interestingly, the relatively high UV/AOP operational costs were due almost exclusively to the cost of hydrogen peroxide while the UV portion of the UV/AOP process typically accounted for less than 10 percent of the UV/AOP cost and was always less than the ozone energy cost. As the *OH radical exposure increased, the energy gap between UV/H2O2 AOP and ozone processes decreased, becoming negligible in some water quality scenarios. PMID:17078993

  1. Ultrafast phosphate hydration dynamics in bulk H2O

    NASA Astrophysics Data System (ADS)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-06-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4- ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ν S ( PO2 - ) ) and asymmetric ( ν A S ( PO2 - ) ) PO 2- stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S ( PO2 - ) and ν A S ( PO2 - ) transition frequencies with larger frequency excursions for ν A S ( PO2 - ) . The calculated frequency-time correlation function is in good agreement with the experiment. The ν ( PO2 - ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4-/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  2. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas

    NASA Technical Reports Server (NTRS)

    Gamache, Robert R.; Pollack, James B.

    1995-01-01

    Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe.

  3. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes.

    PubMed

    Morgan, Bruce; Van Laer, Koen; Owusu, Theresa N E; Ezeriņa, Daria; Pastor-Flores, Daniel; Amponsah, Prince Saforo; Tursch, Anja; Dick, Tobias P

    2016-06-01

    Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate. PMID:27089028

  4. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification?

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark J.

    2012-01-01

    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  5. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development.

    PubMed

    Gauron, Carole; Meda, Francesca; Dupont, Edmond; Albadri, Shahad; Quenech'Du, Nicole; Ipendey, Eliane; Volovitch, Michel; Del Bene, Filippo; Joliot, Alain; Rampon, Christine; Vriz, Sophie

    2016-06-15

    It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway. PMID:27158028

  6. Using H2O and trace element ratios to produce a spatial map of magmatic H2O contents throughout the Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Wallace, P. J.; Manea, V. C.

    2007-12-01

    Along with fluids, trace elements are released during dehydration of subducting sediment and altered oceanic crust. Large ion lithophile elements are typically fluid mobile, and thus may be used as tracers for fluid fluxing. We used melt inclusion H2O and trace element data from nine cinder cones across the subduction-related Michoacan-Guanajuato Volcanic Field (MGVF) of central Mexico to assess the fluid mobility of trace element species. We found correlations between H2O and Sr/La, Ba/Nb, Ba/Y, Pb/Y, Sr/Ti, suggesting that Sr, Ba, and Pb are present in fluids released from the downgoing slab. Additionally, we used regression lines for these correlations to estimate magmatic H2O for cinder cones across Mexico. We have applied the Sr/La and Sr/Ti relationships to the extensive dataset of cinder cone lava and scoria analyses from the MGVF by Hasenaka and Carmichael (1985). In order to see 2-D spatial patterns in H2O across the MGVF, we plotted the localities and the calculated H2O contents on a digital elevation model of Mexico. Initial results from this modeling show that, like our melt inclusion data, magmatic H2O contents are generally high (>3 wt%) across a broad region from the volcanic front to ~100 km behind the front. High H2O concentrations (4-6 wt%) are most abundant along the volcanic front, whereas much lower values (1-2 wt%) occur in an extensional region far behind the front. The relationship between H2O and trace element ratios can also be extended to other regions of Mexico, as the correlation between H2O/La and Sr/La is consistent to the east in the Chichinautzin Volcanic Field (Cervantes and Wallace, 2003) and to the west in the Colima Graben. Using analyses from these and other regions, we have created a spatial map of H2O contents across the Trans- Mexican Volcanic Belt, enabling us to see trends both along and across the arc. We can then use these spatial maps to relate patterns in H2O content to subduction processes such as arc migration over

  7. Hydrocalcite (CaCO3 * H2O) and Nesquehonite (MgCO3 * 3H2O) in Carbonate Scales.

    PubMed

    Marschner, H

    1969-09-12

    Hydrocalcite (CaCO(3) * H(2)O) with exactly one molecule of hydrate water is the main component of carbonate scales deposited from cold water in contact with air. When the magnesium content of the water is high, the hydrocalcite occurs together with MgCO(3) * 3H(2)O (nesquehonite). From the conditions under which hydrocalcite is transformed into calcite and aragonite, it appears that in some cases aragonite in nature may be formed by way of an intermediary of CaCO(3) * H(2)O. PMID:17779803

  8. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  9. Lithium diaqua­magnesium catena-borodiphosphate(V) monohydrate, LiMg(H2O)2[BP2O8]·H2O, at 173 K

    PubMed Central

    Lin, Jin-Ru; Huang, Ya-Xi; Wu, Yu-Huan; Zhou, Yan

    2008-01-01

    The crystal structure of LiMg(H2O)2[BP2O8]·H2O consists of tubular structural units, built from tetra­hedral ∞ 1{[BP2O8]3−} borophosphate ribbons and (LiO4)n helices running along [001], which are inter­connected by MgO4(H2O)2 octa­hedra, forming a three-dimensional network structure with one-dimensional channels along [001] in which the water mol­ecules are located. The water mol­ecule in the channel is significantly displaced by up to 0.3 Å from the special position 6b (..2) to a half-occupied general position. Mg, B and one Li atom all lie on twofold axes. Of the two Li positions, one is at a special position 6b (..2), while the other is at a general position; both are only half-occupied. PMID:21202441

  10. Association-Dissociation of Glycolate Oxidase with Catalase in Rice: A Potential Switch to Modulate Intracellular H2O2 Levels.

    PubMed

    Zhang, Zhisheng; Xu, Yuanyuan; Xie, Zongwang; Li, Xiangyang; He, Zheng-Hui; Peng, Xin-Xiang

    2016-05-01

    Rapid and dynamic change in hydrogen peroxide (H2O2) levels can serve as an important signal to regulate various biological processes in plants. The change is realized by tilting the balance between its production and scavenging rates, in which membrane-associated NADPH oxidases are known to play a crucial role. Functioning independently from NADPH oxidases, glycolate oxidase (GLO) was recently demonstrated as an alternative source for H2O2 production during both gene-for-gene and non-host resistance in plants. In this study, we show that GLO physically interacts with catalase (CAT) in rice leaves, and that the interaction can be deregulated by salicylic acid (SA). Furthermore, the GLO-mediated H2O2 accumulation is synergistically enhanced by SA. Based on the well-known mechanism of substrate channeling in enzyme complexes, SA-induced H2O2 accumulation likely results from SA-induced GLO-CAT dissociation. In the GLO-CAT complex, GLO-mediated H2O2 production during photorespiration is very high, whereas the affinity of CAT for H2O2 (measured Km ≈ 43 mM) is extraordinarily low. This unique combination can further potentiate the increase in H2O2 when GLO is dissociated from CAT. Taken together, we propose that the physical association-dissociation of GLO and CAT, in response to environmental stress or stimuli, seems to serve as a specific mechanism to modulate H2O2 levels in rice. PMID:26900141

  11. Crystal structures of hydrates of simple inorganic salts. II. Water-rich calcium bromide and iodide hydrates: CaBr2 · 9H2O, CaI2 · 8H2O, CaI2 · 7H2O and CaI2 · 6.5H2O.

    PubMed

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-09-01

    Single crystals of calcium bromide enneahydrate, CaBr(2) · 9H2O, calcium iodide octahydrate, CaI(2) · 8H2O, calcium iodide heptahydrate, CaI(2) · 7H2O, and calcium iodide 6.5-hydrate, CaI(2) · 6.5H2O, were grown from their aqueous solutions at and below room temperature according to the solid-liquid phase diagram. The crystal structure of CaI(2) · 6.5H2O was redetermined. All four structures are built up from distorted Ca(H2O)8 antiprisms. The antiprisms of the iodide hydrate structures are connected either via trigonal-plane-sharing or edge-sharing, forming dimeric units. The antiprisms in calcium bromide enneahydrate are monomeric. PMID:25186361

  12. The Paradox of a Wet (High H2O) and Dry (Low H2O/Ce) Mantle: High Water Concentrations in Mantle Garnet Pyroxenites from Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2013-01-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of Mid-Ocean Ridge Basalt (MORB) and Oceanic Island Basalt (OIB). but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. Here, we analyzed by FTIR water in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than cpx/opx equilibrium from experimental data. The pyroxenite cpx and opx H2O concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between H2O in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between H2O concentrations and or the presence of phlogopite. These data imply that cpx and opx may be at water saturation, far lower than experimental data suggest. Reconstructed bulk rock pyroxenite H2O ranges from 200-460 ppm (average 331 +/- 75 ppm), 2 to 8 times higher than H2O estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas. The average bulk rock pyroxenite H2O/Ce is 69

  13. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  14. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    PubMed

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light. PMID:12724951

  15. Absolute linestrengths in the H2O2 nu6 band

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  16. Elucidating the interaction of H2O2 with polar amino acids - Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karmakar, Tarak; Balasubramanian, Sundaram

    2014-10-01

    Quantum chemical calculations have been carried out to investigate the interaction motifs of H2O2 with polar amino acid residues. Binding energies obtained from gas phase and continuum solvent phase calculations range between 2 and 30 kcal/mol. H2O2 interacts with the side chain of polar amino acids chiefly through the formation of hydrogen bonds. The sbnd CH group in side chains of a few residues provides additional stabilization to H2O2.

  17. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    PubMed Central

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  18. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays.

    PubMed

    Munro, Daniel; Banh, Sheena; Sotiri, Emianka; Tamanna, Nahid; Treberg, Jason R

    2016-07-01

    The most common methods of measuring mitochondrial hydrogen peroxide production are based on the extramitochondrial oxidation of a fluorescent probe such as amplex ultra red (AUR) by horseradish peroxidase (HRP). These traditional HRP-based assays only detect H2O2 that has escaped the matrix, raising the potential for substantial underestimation of production if H2O2 is consumed by matrix antioxidant pathways. To measure this underestimation, we characterized matrix consumers of H2O2 in rat skeletal muscle mitochondria, and developed specific means to inhibit these consumers. Mitochondria removed exogenously added H2O2 (2.5µM) at rates of 4.7 and 5.0nmol min(-1) mg protein(-1) when respiring on glutamate+malate and succinate+rotenone, respectively. In the absence of respiratory substrate, or after disrupting membranes by cycles of freeze-thaw, rates of H2O2 consumption were negligible. We concluded that matrix consumers are respiration-dependent (requiring respiratory substrates), suggesting the involvement of either the thioredoxin (Trx) and/or glutathione (GSH)-dependent enzymatic pathways. The Trx-reductase inhibitor auranofin (2µM), and a pre-treatment of mitochondria with 35µM of 1-chloro-2,4-dintrobenzene (CDNB) to deplete GSH specifically compromise these two consumption pathways. These inhibition approaches presented no undesirable "off-target" effects during extensive preliminary tests. These inhibition approaches independently and additively decreased the rate of consumption of H2O2 exogenously added to the medium (2.5µM). During traditional HRP-based H2O2 efflux assays, these inhibition approaches independently and additively increased apparent efflux rates. When used in combination (double inhibition), these inhibition approaches allowed accumulation of (endogenously produced) H2O2 in the medium at a comparable rate whether it was measured with an end point assay where 2.5µM H2O2 is initially added to the medium or with traditional HRP-based efflux

  19. High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy.

    PubMed

    Wassenaar, L I; Hendry, M J; Chostner, V L; Lis, G P

    2008-12-15

    A new H2O(liquid)-H2O(vapor) pore water equilibration and laser spectroscopy method provides a fast way to obtain accurate high resolution deltaD and delta18O profiles from single core samples from saturated and unsaturated geologic media. The precision and accuracy of the H2O(liquid)-H2O(vapor) equilibration method was comparable to or better than conventional IRMS-based methods, and it can be conducted on geologic cores that contain volumetric water contents as low as 5%. Significant advantages of the H2O(liquid)-H2O(vapor) pore water equilibration method and laser isotopic analysis method include dual hydrogen- and oxygen-isotope assays on single small core samples, low consumable and instrumentation costs, and the potential for field-based hydrogeologic profiling. A single core is sufficient to obtain detailed vertical isotopic depth profiles in geologic, soil, and lacustrine pore water, dramatically reducing the cost of obtaining pore water by conventional wells or physical water extraction methods. In addition, other inherent problems like contamination of wells by leakage and drilling fluids can be eliminated. PMID:19174902

  20. Heterogeneous degradation of precipitated hexamine from wastewater by catalytic function of silicotungstic acid in the presence of H2O2 and H2O2/Fe2+.

    PubMed

    Taghdiri, Mehdi; Saadatjou, Naghi; Zamani, Navid; Farrokhi, Reyhaneh

    2013-02-15

    The industrial wastewater produced by hexamine plants is considered as a major environmental polluting factor due to resistance to biodegradation. So the treatment of such wastewater is required. In this work, the removal of hexamine from wastewater and its degradation have been studied. Hexamine was precipitated through formation of an insoluble and stable compound with silicotungstic acid. The oxidative heterogeneous degradation of precipitated hexamine was carried out with hydrogen peroxide (H(2)O(2)) aqueous solution and H(2)O(2)/Fe(2+) under the catalysis of silicotungstic acid. The operating conditions including amount of precipitate, hydrogen peroxide and ferrous ion dosage, temperature, time and pH were optimized by evaluating the removal of total organic carbon from system. A total organic carbon conversion higher than 70% was achieved in the presence of H(2)O(2)/Fe(2+). The experimental results showed that hexamine can be effectively degraded with H(2)O(2) and H(2)O(2)/Fe(2+) under the catalysis of silicotungstic acid. It was interesting that the solution of dissolved precipitate with H(2)O(2) can re-react with hexamine after the removal of excess hydrogen peroxide. This observation indicates the catalysis role of silicotungstic acid in the degradation of hexamine. A kinetic analysis based on total organic carbon reduction was carried out. The two steps mechanism was proposed for the degradation of hexamine. PMID:23313893

  1. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  2. 22 GHz H2O maser survey towards 221 BGPS sources

    NASA Astrophysics Data System (ADS)

    Xi, Hongwei; Zhou, Jianjun; Esimbek, Jarken; Wu, Gang; He, Yuxin; Ji, Weiguang; Tang, Xiaoke

    2015-11-01

    We performed a 22 GHz H2O maser survey towards 221 Bolocam Galactic Plane Survey (BGPS) sources. We detected 107 H2O masers, of which 12 are new. The detection rate is 48.4 per cent for our sample. We obtained the positions of five new H2O masers via On The Fly (OTF) observations. The detection rate of H2O masers is correlated with continuum emission fluxes of BGPS sources at far-infrared, sub-millimetre and millimetre wavelengths. We employed the classification of Dunham et al. to classify the evolutionary stage of BGPS sources into Group 0, 1, 2, and 3. The detection rate and velocity range of H2O masers increases as the BGPS sources evolve from Group 1 to Group 3. The BGPS sources associated with both H2O and CH3OH masers are more compact than that associated with either only H2O or only CH3OH masers. This indicates that the sources associated with both H2O and CH3OH masers are in relative later evolutionary stage. The detection rate of H2O masers towards BGPS sources displaying evidence of the collapse phenomenon is 62.1 per cent, which suggests that most BGPS sources showing indications of collapse phenomena contain ongoing active star formation activities.

  3. Modelling of OH production in cold atmospheric-pressure He-H2O plasma jets

    NASA Astrophysics Data System (ADS)

    Naidis, G. V.

    2013-06-01

    Results of the modelling of OH production in the plasma bullet mode of cold atmospheric-pressure He-H2O plasma jets are presented. It is shown that the dominant source of OH molecules is related to the Penning and charge transfer reactions of H2O molecules with excited and charged helium species produced by guided streamers (plasma bullets), in contrast to the case of He-H2O glow discharges where OH production is mainly due to the dissociation of H2O molecules by electron impact.

  4. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics.

    PubMed

    Kang, Changsun; Cho, Wooram; Park, Minhyung; Kim, Jinsub; Park, Sanghoon; Shin, Dongho; Song, Chulgyu; Lee, Dongwon

    2016-04-01

    Overproduction of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) leads to oxidative stress, causing inflammation and cellular damages and death. H2O2 is one of the most stable and abundant ROS and H2O2-mediated oxidative stress is considered as a key mediator of cellular and tissue damages during ischemia/reperfusion (I/R) injury. Therefore, H2O2 could hold tremendous potential as a diagnostic biomarker and therapeutic target for oxidative stress-associated inflammatory conditions such as I/R injury. Here, we report a novel nanotheranostic agent that can express ultrasound imaging and simultaneous therapeutic effects for hepatic I/R treatment, which is based on H2O2-triggered CO2-generating antioxidant poly(vanillin oxalate) (PVO). PVO nanoparticles generate CO2 through H2O2-triggered oxidation of peroxalate esters and release vanillin, which exerts antioxidant and anti-inflammatory activities. PVO nanoparticles intravenously administrated remarkably enhanced the ultrasound signal in the site of hepatic I/R injury and also effectively suppressed the liver damages by inhibiting inflammation and apoptosis. To our best understanding, H2O2-responsive PVO is the first platform which generates bubbles to serve as ultrasound contrast agents and also exerts therapeutic activities. We therefore anticipate that H2O2-triggered bubble-generating antioxidant PVO nanoparticles have great potential for ultrasound imaging and therapy of H2O2-associated diseases. PMID:26874282

  5. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; Russell, J. M., III

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  6. Ionic fragmentation of CO and H2O under impact of 10 keV electrons: kinetic energy release distributions

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2014-04-01

    Dissociative ionization of COq+ (q=2-4) and H2Oq+ (q=2-3) molecular ions produced from the collisions of CO and H2O with 10 keV electrons is studied using time-of-flight mass spectrometer and position sensitive detector with multi-hit ability, respectively. The kinetic energy release distributions for these channels are obtained. We found that a pure Coulomb explosion model is insufficient to explain the observed kinetic release distributions for the Coulomb explosion channels. A detail of this study is given in references [3, 4].

  7. Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam

    NASA Technical Reports Server (NTRS)

    Bootle, John

    2008-01-01

    A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.

  8. Spontaneous openings of the acetylcholine receptor channel.

    PubMed Central

    Jackson, M B

    1984-01-01

    Patch clamp recordings from embryonic mouse muscle cells in culture revealed spontaneous openings of the acetylcholine receptor channel in the absence of exogenously applied cholinergic agent. The conductance of the spontaneous channel currents was, within experimental error, identical with the conductance of suberyldicholine-activated channel currents. The comparison of channel conductance was made with sodium and with cesium, each at two concentrations, with the same result. Treatment of the cells with alpha-bungarotoxin blocked the spontaneous channel currents. To determine whether the spontaneous openings were caused by an endogenous agent with cholinergic activity a reactive disulfide bond near the receptor binding site was reduced with dithiothreitol and alkylated with N-ethylmaleimide. This chemical modification reduced the effectiveness with which suberyldicholine and curare activated channel currents but did not reduce the frequency of spontaneous openings. These experiments indicate that the acetylcholine receptor briefly and infrequently fluctuates into an active state in the absence of agonist. Agonist activation of the receptor presumably accelerates this spontaneously occurring process. PMID:6328531

  9. Possibility of Detecting the H2O Snowline in Protoplanetary Disks Using Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Ishimoto, Daiki; Walsh, Catherine; Honda, Mitsuhiko; Millar, Thomas J.

    2015-08-01

    Inside the H2O snowline in protoplanetary disks, H2O evaporates from grain surfaces into the gas. On the other hand, it is frozen out on the grain surface in the cold region beyond the H2O snowline. The H2O snowline is thought to divide the regions of rocky planet and gas giant planet formation. Observationally measuring the position of the H2O snowline in protoplanetary disks in exoplanetary systems will constrain modern theories of planet formation. In disks around solar-mass T-tauri stars, the H2O snowline is thought to exist at a few AU from the central star. Therefore, it is difficult to detect the H2O snowline of exoplanetary systems by direct imaging, since the spatial resolution of existing telescopes is insufficient. In this work, we propose a method of detecting the H2O snowline directly by analyzing the velocity profiles of H2O line spectra which can be obtained by high dispersion spectroscopic observations in the near future.First, we use self-consistent physical models of protoplanetary disks (e.g., Nomura & Millar 2005, Nomura et al. 2007, Walsh et al. 2010, 2012) to investigate the abundance distribution of H2O gas and the position of the snowline. We confirm that the abundance of H2O gas is high not only inside the H2O snowline near the equatorial plane but also in the hot surface layer of the outer disk. Second, we calculate the emergent intensity of H2O emission lines from protoplanetary disks that are assumed to rotate with Keplerian velocity profiles. We can find information on the H2O snowline through investigating the profiles of emission lines that have small Einstein A coefficients and large excitation energies. The wavelengths of the useful H2O emission lines range from mid-infrared to sub-millimeter wavelengths. These lines will be observable with future high dispersion spectroscopic observations (e.g., ALMA, TMT).

  10. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts.

    PubMed

    Wang, Ruirui; Pan, Kecheng; Han, Dandan; Jiang, Jingjing; Xiang, Chengxiang; Huang, Zhuangqun; Zhang, Lu; Xiang, Xu

    2016-09-01

    Light-driven generation of H2 O2 only from water and molecular oxygen could be an ideal pathway for clean production of solar fuels. In this work, a mixed metal oxide/graphitic-C3 N4 (MMO@C3 N4 ) composite was synthesized as a dual-functional photocatalyst for both water oxidation and oxygen reduction to generate H2 O2 . The MMO was derived from a NiFe-layered double hydroxide (LDH) precursor for obtaining a high dispersion of metal oxides on the surface of the C3 N4 matrix. The C3 N4 is in the graphitic phase and the main crystalline phase in MMO is cubic NiO. The XPS analyses revealed the doping of Fe(3+) in the dominant NiO phase and the existence of surface defects in the C3 N4 matrix. The formation and decomposition kinetics of H2 O2 on the MMO@C3 N4 and the control samples, including bare MMO, C3 N4 matrix, Ni- or Fe-loaded C3 N4 and a simple mixture of MMO and C3 N4 , were investigated. The MMO@C3 N4 composite produced 63 μmol L(-1) of H2 O2 in 90 min in acidic solution (pH 3) and exhibited a significantly higher rate of production for H2 O2 relative to the control samples. The positive shift of the valence band in the composite and the enhanced water oxidation catalysis by incorporating the MMO improved the light-induced hole collection relative to the bare C3 N4 and resulted in the enhanced H2 O2 formation. The positively shifted conduction band in the composite also improved the selectivity of the two-electron reduction of molecular oxygen to H2 O2 . PMID:27484581

  11. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC 4945

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Horiuchi, Shinji; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G.

    2016-08-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. We have discovered H2O maser emission at 321 GHz toward the center of NGC 4945, a nearby type 2 Seyfert. The maser emission shows Doppler-shifted velocity features with velocity ranges similar to those of the previously reported 22 GHz H2O masers however, the non-contemporaneous observations also show differences in velocity offsets. The subparsec-scale distribution of the 22 GHz H2O masers revealed by earlier very long baseline interferometry observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved by the synthesized beam of ∼0.″54 (∼30 pc) and are located toward the 321 GHz continuum peak within errors. A marginally detected (3σ) high-velocity feature is redshifted by 579 km {{{s}}}-1 with respect to the systemic velocity of the galaxy. Assuming that this feature is real and arises from a Keplerian rotating disk in this galaxy, it is located at a radius of ∼0.020 pc (∼1.5 × 105 Schwarzschild radii), which would enable molecular material closer to the central engine to be probed than the 22 GHz H2O masers. This detection confirms that submillimeter H2O masers are a potential tracer of the circumnuclear regions of active galaxies, which will benefit from higher angular resolution studies with ALMA.

  12. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC 4945

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Horiuchi, Shinji; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G.

    2016-08-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. We have discovered H2O maser emission at 321 GHz toward the center of NGC 4945, a nearby type 2 Seyfert. The maser emission shows Doppler-shifted velocity features with velocity ranges similar to those of the previously reported 22 GHz H2O masers however, the non-contemporaneous observations also show differences in velocity offsets. The subparsec-scale distribution of the 22 GHz H2O masers revealed by earlier very long baseline interferometry observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved by the synthesized beam of ˜0.″54 (˜30 pc) and are located toward the 321 GHz continuum peak within errors. A marginally detected (3σ) high-velocity feature is redshifted by 579 km {{{s}}}-1 with respect to the systemic velocity of the galaxy. Assuming that this feature is real and arises from a Keplerian rotating disk in this galaxy, it is located at a radius of ˜0.020 pc (˜1.5 × 105 Schwarzschild radii), which would enable molecular material closer to the central engine to be probed than the 22 GHz H2O masers. This detection confirms that submillimeter H2O masers are a potential tracer of the circumnuclear regions of active galaxies, which will benefit from higher angular resolution studies with ALMA.

  13. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    PubMed

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+). PMID:25186362

  14. NARSTO EPA SS HOUSTON TEXAQS2000 HCHO H2O2 DATA

    Atmospheric Science Data Center

    2014-04-25

    NARSTO EPA SS HOUSTON TEXAQS2000 HCHO H2O2 DATA Project Title:  NARSTO ... Instrument:  Fluorescence Location:  Houston, Texas Spatial Resolution:  Point Measurements ...   Order Data Guide Documents:  Houston TexAQS2000 HCHO H2O2Guide Houston Project Plan  (PDF) ...

  15. Transport properties of the H2O@C60-dimer-based junction.

    PubMed

    Zhu, Chengbo; Wang, Xiaolin

    2015-09-23

    Theoretical predictions play an important role in finding potential applications in molecular electronics. Fullerenes have a number of potential applications, and the charge flow from a single C60 molecule to another becomes more versatile and more interesting after doping. Here, we report the conductance of two H2O@C60 molecules in series order and how the number of encapsulated water molecules influences the transport properties of the junction. Encapsulating an H2O molecule into one of the C60 cages increases the conductance of the dimer. Negative differential resistance is found in the dimer systems, and its peak-to-valley current ratio depends on the number of encapsulated H2O molecules. The conductance of the C60 dimer and the H2O@C60 dimer is two orders of magnitude smaller than that of the C60 monomer. Furthermore, we demonstrate that the conductance of the molecular junctions based on the H2O@C60 dimer can be tuned by moving the encapsulated H2O molecules. The conductance is H2O-position dependent. Our findings indicate that H2O@C60 can be used as a building block in C60-based molecular electronic devices and sensors. PMID:26325223

  16. Transport properties of the H2O@C60-dimer-based junction

    NASA Astrophysics Data System (ADS)

    Zhu, Chengbo; Wang, Xiaolin

    2015-09-01

    Theoretical predictions play an important role in finding potential applications in molecular electronics. Fullerenes have a number of potential applications, and the charge flow from a single C60 molecule to another becomes more versatile and more interesting after doping. Here, we report the conductance of two H2O@C60 molecules in series order and how the number of encapsulated water molecules influences the transport properties of the junction. Encapsulating an H2O molecule into one of the C60 cages increases the conductance of the dimer. Negative differential resistance is found in the dimer systems, and its peak-to-valley current ratio depends on the number of encapsulated H2O molecules. The conductance of the C60 dimer and the H2O@C60 dimer is two orders of magnitude smaller than that of the C60 monomer. Furthermore, we demonstrate that the conductance of the molecular junctions based on the H2O@C60 dimer can be tuned by moving the encapsulated H2O molecules. The conductance is H2O-position dependent. Our findings indicate that H2O@C60 can be used as a building block in C60-based molecular electronic devices and sensors.

  17. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2015-02-06

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  18. The discovery of five new H2O megamasers in active galaxies

    NASA Technical Reports Server (NTRS)

    Braatz, J. A.; Wilson, A. S.; Henkel, C.

    1994-01-01

    H2O megamasers with (isotropic) luminosities between 60 and 200 solar luminosity (H(sub 0) = 75 km/s/Mpc) have been detected in the Seyfert 2 galaxies Mrk 1, Mrk 1210, and NGC 5506 and in the LINERs NGC 1052 and NGC 2639. No megamasers have been found in Seyfert 1's. The galaxies have redshifts between 1500 and 4800 km/s and are the most distant H2O sources reported to date. NGC 1052 is also the first elliptical galaxy known to contain an H2O maser. The intensity distribution of an H2O five-point map obtained toward NGC 5506 shows that the H2O emission is pointlike compared to the 40 sec telescope beam. The lack of CO emission in NGC 1052 implies a conservative lower limit to the H2O brightness temperature of 1000 K, thus ruling out a thermal origin for the H2O emission. The success of this survey relative to other recent searches makes it evident that H2O megamasers are preferentially found in galaxies with active nuclei.

  19. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. PMID:26141667

  20. 40 CFR 1065.370 - CLD CO2 and H2O quench verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false CLD CO2 and H2O quench verification... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.370 CLD CO2 and H2O quench verification. (a) Scope and frequency. If you use a CLD analyzer to...

  1. 40 CFR 1065.350 - H2O interference verification for CO2 NDIR analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through distilled water in a sealed vessel. If the sample is not passed through a dryer during emission... dryer during this verification test, measure the water mole fraction, x H2O, of the humidified test gas... pressure, p total, to calculate x H2O. Verify that the water content meets the requirement in paragraph...

  2. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process. PMID:23029927

  3. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process. PMID:21882559

  4. UV and IR Spectroscopy of Cold H2O(+)-Benzo-Crown Ether Complexes.

    PubMed

    Inokuchi, Yoshiya; Ebata, Takayuki; Rizzo, Thomas R

    2015-11-12

    The H2O(+) radical ion, produced in an electrospray ion source via charge transfer from Eu(3+), is encapsulated in benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6). We measure UV photodissociation (UVPD) spectra of the (H2O·B15C5)(+) and (H2O·B18C6)(+) complexes in a cold, 22-pole ion trap. These complexes show sharp vibronic bands in the 35 700-37 600 cm(-1) region, similar to the case of neutral B15C5 or B18C6. These results indicate that the positive charge in the complexes is localized on H2O, giving the forms H2O(+)·B15C5 and H2O(+)·B18C6, in spite of the fact that the ionization energy of B15C5 and B18C6 is lower than that of H2O. The formation of the H2O(+) complexes and the suppression of the H3O(+) production through the reaction of H2O(+) and H2O can be attributed to the encapsulation of hydrated Eu(3+) clusters by B15C5 and B18C6. On the contrary, the main fragment ions subsequent to the UV excitation of these complexes are B15C5(+) and B18C6(+) radical ions; the charge transfer occurs from H2O(+) to B15C5 and B18C6 after the UV excitation. The position of the band origin for the H2O(+)·B18C6 complex (36323 cm(-1)) is almost the same as that for Rb(+)·B18C6 (36315 cm(-1)); the strength of the intermolecular interaction of H2O(+) with B18C6 is similar to that of Rb(+). The spectral features of the H2O(+)·B15C5 complex also resemble those of the Rb(+)·B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region. Four conformers are found for the H2O(+)·B15C5 complex, but there is one dominant form for the H2O(+)·B18C6 ion. This study demonstrates the production of radical ions by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase. PMID:26491792

  5. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  6. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    the disk must be <1000 K and the toroidal magnetic field component must be <250 mG. If the molecular mass density in the disk is 10(10) cm-3, then the disk mass is approximately 10(4) M[symbol: see text], and the disk is marginally stable as defined by the Toomre stability parameter Q (Q = 6 at the inner edge and 1 at the outer edge). The inward drift velocity is predicted to be <0.007 km.s-1, for a viscosity parameter of 0.1, and the accretion rate is <7 x 10(-5) M[symbol: see text].yr-1. At this value the accretion would be sufficient to power the nuclear x-ray source of 4 x 10(40) ergs-1 (1 erg = 0.1 microJ). The volume of individual maser components may be as large as 10(46) cm3, based on the velocity gradients, which is sufficient to supply the observed luminosity. The pump power undoubtedly comes from the nucleus, perhaps in the form of x-rays. The warp may allow the pump radiation to penetrate the disk obliquely [Neufeld, D. A. & Maloney, P. R. (1995) Astrophys. J. Lett. 447, L17-L19]. A total of 15 H2O megamasers have been identified out of >250 galaxies searched. Galaxy NGC4258 may be the only case where conditions are optimal to reveal a well-defined nuclear disk. Future measurement of proper motions and accelerations for NGC4258 will yield an accurate distance and a more precise definition of the dynamics of the disk Images Fig. 6 PMID:11607612

  7. Copernicus observational searches for OH and H2O in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Smith, W. H.; Snow, T. P., Jr.

    1979-01-01

    An intensive search for OH and H2O in the directions of Sigma Sco, Alpha Cam, and Omicron Per was undertaken with the Copernicus satellite. Multiple scans were carried out over the wavelength region for the expected absorption features due to the OH D-X and H2O C-X transitions. The feature due to OH was possibly detected toward Sigma Sco, and only an upper limit can be given toward Alpha Cam. H2O was not detected in any of the stars at the signal level accumulated. The OH abundance toward Sigma Sco and the respective lower limits for the OH/H2O ratios are discussed with regard to the extant models for the steady-state abundances of OH and H2O, and shown not to be inconsistent with ion-molecule schemes.

  8. Copernicus observational searches for OH and H2O in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Smith, W. H.; Snow, T. P., Jr.

    1983-01-01

    An intensive search for OH and H2O in the directions of sigma Sco, alpha Cam, and micron Per was undertaken with the Copernicus satellite. Multiple scans were carried out over the wavelength region for the expected absorption features due to the OH D-X and H2O C-X transitions. The feature due to OH was detected marginally towards sigma Sco, and only an upper limit can be given towards alpha Cam. H2O was not detected in any of the stars at the signal level accumulated. The OH abundance towards sigma Sco and the respective lower limits for the OH/H2O ratios are discussed with regard to the extant models for the steady state abundances of OH and H2O, and shown not to be inconsistent with ion-molecule schemes.

  9. The effect of H2O and CO2 on planetary mantles

    NASA Technical Reports Server (NTRS)

    Wyllie, P. J.

    1978-01-01

    The peridotite-H2O-CO2 system is discussed, and it is shown that even traces of H2O and CO2, in minerals or vapor, lower mantle solidus temperatures through hundreds of degrees in comparison with the volatile-free solidus. The solidus for peridotite-H2O-CO2 is a divariant surface traversed by univariant lines that locate the intersections of subsolidus divariant surfaces for carbonation or hydration reactions occurring in the presence of H2O-CO2 mixtures. Vapor phase compositions are normally buffered to these lines, and near the buffered curve for the solidus of partly carbonated peridotite there is a temperature maximum on the peridotite-vapor solidus. Characteristics on the CO2 side of the maximum and on the H2O side of the maximum are described.

  10. Hydrogen-bond-directed assemblies of [La(18-crown-6)(H2O)4](BiCl6)·3H2O and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O regulated by different symmetries

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yong; Li, Jian; Zeng, Ying; Wen, He-Rui; Du, Zi-Yi

    2016-12-01

    The reactions of La2O3 or Nd2O3 with BiCl3 and 18-crown-6 in the presence of excessive hydrochloric acid afforded two ion-pair compounds, namely [La(18-crown-6)(H2O)4](BiCl6)·3H2O (1) and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O (2). Although these two compounds contain similar building blocks, they exhibit two distinct hydrogen-bonded networks, which are mainly induced by the slightly different geometries of their large-sized cationic [Ln(18-crown-6)(H2O)4]3+ components.

  11. CCD observations of comet Tuttle 1980 XIII - The H2O(+) ionosphere

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Fink, U.; Johnson, J. R.

    1985-01-01

    A CCD spectrum of comet Tuttle 1980h has been analyzed with emphasis on the emission of H2O(+) ions. The fine angular resolution (1.5 arcsec) and the capability of absolute brightness calibration of the CCD instrument made it possible to determine the spatial concentration of the H2O(+) ions of this faint comet and the total number of these ions confined within a spherical region. Solar photoionization of the H2O atmosphere can account for the production of the H2O(+) ions observed in the confined region. The dimension of the H2O(+) ionosphere at the time of observation was found to be comparatively small, implying the possible existence of an ionopause sharply delineating the extension of the cometary ionosphere.

  12. Structures and rearrangement reactions of 4-aminophenol(H2O)1+ and 3-aminophenol(H2O)1+ clusters

    NASA Astrophysics Data System (ADS)

    Gerhards, M.; Jansen, A.; Unterberg, C.; Gerlach, A.

    2005-08-01

    In this paper the structures of 4-aminophenol(H2O)1+ and 3-aminophenol(H2O)1+ clusters are investigated in molecular beam experiments by different IR/UV-double resonance techniques as well as the mass analyzed threshold ionization spectroscopy yielding both inter- and intramolecular vibrations of the ionic and neutral species. Possible structures are extensively calculated at the level of density functional theory (DFT) or at the ab initio level of theory. From the experimental and theoretical investigations it can be concluded that in the case of 4-aminophenol(H2O)1 one O H⋯O hydrogen-bonded structure exists in the neutral cluster but two structures containing either an O H⋯O or a N H⋯O hydrogen-bonded arrangement are observed in the spectra of the ionic species. This observation is a result of an intramolecular rearrangement reaction within the ion which can only take place if high excess energies are used. A reaction path via the CH bonds is calculated and explains the experimental observations. In the case of 3-aminophenol(H2O)1+ only one O H⋯O bound structure is observed both in the neutral and ionic species. Ab initio and DFT calculations show that due to geometrical and energetical reasons a rearrangement cannot be observed in the 3-aminophenol(H2O)1+ cluster ion.

  13. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase.

    PubMed

    Chen, Xiao-Hui; Zhou, Xue; Yang, Xiao-Yu; Zhou, Zhi-Bin; Lu, Di-Han; Tang, Ying; Ling, Ze-Min; Zhou, Li-Hua; Feng, Xia

    2016-05-01

    Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase. PMID:26162968

  14. An H2O Maser survey towards BGPS sources in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Xi, Hong-Wei; Zhou, Jian-Jun; Esimbek, Jarken; Wu, Gang; He, Yu-Xin; Ji, Wei-Guang; Tang, Xiao-Ke; Yuan, Ye

    2016-06-01

    We performed an H2O maser survey towards 274 Bolocam Galactic Plane Survey (BGPS) sources with 85° < l < 193° using the Nanshan 25 m radio telescope. We detected 25 H2O masers, and five of them are new detections. The detection rate of H2O masers in our sample is 9% which is very low. The detection rate of H2O masers increases as the 1.1 mm flux density of BGPS sources increases, and both the peak flux density and luminosity of H2O masers increase as the sources evolve. The detection rate of H2O masers toward BGPS sources without HCO+ emission is low. The BGPS sources associated with both H2O and CH3OH masers seem to be more compact than those only associated with H2O masers. This indicates that the sources with both masers may be in a relatively later evolutionary stage. The strongest H2O maser source G133.715+01.217, also well known as W3 IRS 5 which has a flux density of 2.9×103 Jy, was detected at eight different nearby positions. By measuring the correlation between the flux densities of these H2O masers and their angular distance from the true source location, we get the influence radius r = \\frac{1}{{0.8}}log ≤ft({\\frac{{F_0}}{{3\\text{rms}}}}\\right). For our observations, strong sources can be detected anywhere within this radius. It is helpful to determine whether or not a weak maser nearby the strong maser is a true detection.

  15. In Vivo Monitoring of H2O2 with Polydopamine and Prussian Blue-coated Microelectrode.

    PubMed

    Li, Ruixin; Liu, Xiaomeng; Qiu, Wanling; Zhang, Meining

    2016-08-01

    In vivo monitoring of hydrogen peroxide (H2O2) in the brain is of importance for understanding the function of both reactive oxygen species (ROS) and signal transmission. Producing a robust microelectrode for in vivo measurement of H2O2 is challenging due to the complex brain environment and the instability of electrocatalysts employed for the reduction of H2O2. Here, we develop a new kind of microelectrode for in vivo monitoring of H2O2, which is prepared by, first, electrodeposition of Prussian blue (PB) onto carbon nanotube (CNT) assembled carbon fiber microelectrodes (CFEs) and then overcoating of the CFEs with a thin membrane of polydopamine (PDA) through self-polymerization. Scanning electron microscopic and X-ray proton spectroscopic results confirm the formation of PDA/PB/CNT/CFEs. The PDA membrane enables PB-based electrodes to show high stability in both in vitro and in vivo studies and to stably catalyze the electrochemical reduction of H2O2. The microelectrode is selective for in vivo measurements of H2O2, interference-free from O2 and other electroactive species coexisting in the brain. These properties, along with good linearity, high biocompatibility, and stability toward H2O2, substantially enable the microelectrode to track H2O2 changes in vivo during electrical stimulation and microinfusion of H2O2 and drug, which demonstrates that the microelectrode could be well suited for in vivo monitoring of dynamic changes of H2O2 in rat brain. PMID:27385361

  16. Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode.

    PubMed

    Guascito, M R; Chirizzi, D; Malitesta, C; Mazzotta, E; M Siciliano; Siciliano, T; Tepore, A; Turco, A

    2011-04-15

    In this work a new original amperometric sensor for H(2)O(2) detection based on a Pt electrode modified with Te-microtubes was developed. Te-microtubes, synthesized by the simple thermal evaporation of Te powder, have a tubular structure with a hexagonal cross-section and are open ended. Modified electrode was prepared by direct drop casting of the mixture of Te-microtubes dispersed in ethanol on Pt surface. The spectroscopic characterization of synthesized Te-microtubes and Pt/Te-microtubes modified electrodes was performed by scanning electron microscopy (SEM), energy-dispersive X-rays microanalysis (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). Moreover a complete electrochemical characterization of the new composite material Pt/Te-microtubes was performed by cyclic voltammetry (CV) and cronoamperometry (CA) in phosphate buffer solution (PBS) at pH 7. Electrochemical experiments showed that the presence of Te-microtubes on modified electrode was responsible for an increment of both cathodic and anodic currents in presence of H(2)O(2) with respect to bare Pt. Specifically, data collected from amperometric experiments at -150 mV vs. SCE in batch and -200 mV vs. SCE in flow injection analysis (FIA) experiments show a remarkable increment of the cathodic current. The electrochemical performances of tested sensors make them suitable for the quantitative determination of H(2)O(2) substrate both in batch and in FIA. PMID:21377859

  17. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    NASA Technical Reports Server (NTRS)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  18. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  19. Rutile Solubility in Supercritical Albite-H2O fluids: Implications for Element Mobility in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Antignano, A.; Manning, C. E.

    2006-12-01

    in high- P veins. Low Ti solubility requires that these features result from channelized flow and/or high fluid fluxes. For example, at our experimental conditions, growth of a 1 mm3 crystal from a fluid produced by 2 wt% dehydration from metabasalt and containing 5 wt% ab would require 61 m3 of rock, assuming the fluid precipitates all dissolved Ti. If the supercritical ab-H2O system adequately approximates the possible range of natural fluids, it is evident that supercritical fluids may not have the ability to dissolve and mobilize significant concentrations of nominally insoluble trace elements.

  20. Hydrothermal synthesis and characteristics of 3-D hydrated bismuth oxalate coordination polymers with open-channel structure

    NASA Astrophysics Data System (ADS)

    Chen, Xinxiang; Cao, Yanning; Zhang, Hanhui; Chen, Yiping; Chen, Xuehuan; Chai, Xiaochuan

    2008-05-01

    Two new 3-D porous bismuth coordination polymers, (C 5NH 6) 2[Bi 2(H 2O) 2(C 2O 4) 4]·2H 2O 1 and (NH 4)[Bi(C 2O 4) 2]·3H 2O 2, have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic symmetry, P2 1/ c space group with a=10.378(2) Å, b=17.285(3) Å, c=16.563(5) Å, α=90°, β=119.66(2)°, γ=90°, V=2581.8(10) Å 3, Z=4, R1=0.0355 and w R2=0.0658 for unique 4713 reflections I >2 σ( I). Compound 2 crystallizes in the tetragonal symmetry, I4 1/ amd space group with a=11.7026(17) Å, b=11.7026(17) Å, c=9.2233(18) Å, α=90°, β=90°, γ=90°, V=1263.1(4) Å 3, Z=32, R1=0.0208 and w R2=0.0518 for unique 359 reflections I> 2 σ( I). Compounds 1 and 2 are 3-D open-framework structures with a 6 6 uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers, study of ultrasonic treatment on 2 indicates the replacement of NH 4+ by K + on potassium ion exchange. Thermogravimetric analysis indicates that the open-channel frameworks are thermally stable up to 200 °C, and other characterizations are also described by elemental analysis, IR and ultraviolet-visible diffuse reflectionintegral spectrum (UV-Vis DRIS).

  1. Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Srinivasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-04-01

    We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl-rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36-73 ppm H2O and the depleted source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust-mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.

  2. Vibrational and reorientational motions of H2O ligands, phase transition and thermal properties of [Sr(H2O)6]Cl2

    NASA Astrophysics Data System (ADS)

    Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward

    2013-11-01

    One phase transition (PT) at TCh = 252.9 K (on heating) and at TCc = 226.5 K (on cooling) was detected by DSC for [Sr(H2O)6]Cl2 in 123-295 K range. Thermal hysteresis of this PT equals to 26.4 K. Entropy change (ΔS) value at this first-order type phase transition equals to ca. 1.5 J mol-1 K-1. The temperature dependences of the full width at half maximum (FWHM) values of the infrared bands associated with ρt(H2O)E and δas(HOH)E modes (at ca. 417 and 1628 cm-1, respectively) suggest that the observed phase transition is associated with a sudden change of a speed of the H2O reorientational motions. The H2O ligands in the high temperature phase reorientate quickly (correlation times 10-11-10-13 s) with the activation energy of ca. 2 kJ mol-1. Below TCc probably a part of the H2O ligands stop their reorientation, while the remainders continue their fast reorientation but with the activation energy of ca. 8 kJ mol-1. Far and middle infrared spectra indicated characteristic changes at the vicinity of PT with decreasing of temperature, which suggested lowering of the crystal structure symmetry. Splitting of the band (at 3601 cm-1) connected with vas(OH) mode near the TCc suggests lowering of the crystal lattice symmetry. All these facts suggest that the discovered PT is connected both with a change of the reorientational dynamics of the H2O ligands and with the change of the crystal structure.

  3. Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment.

    PubMed

    Gao, Nai-Yun; Deng, Yang; Zhao, Dandan

    2009-05-30

    Ultraviolet (UV) irradiation (253.7nm) in the presence of hydrogen peroxide (H(2)O(2)) was used to decompose aqueous ametryn. The concentrations of ametryn were measured with time under various experiment conditions. The investigated factors included H(2)O(2) dosages, initial pH, initial ametryn concentrations, and a variety of inorganic anions. Results showed that ametryn degradation in UV/H(2)O(2) process was a pseudo-first-order reaction. Removal rates of ametryn were greatly affected by H(2)O(2) dosage and initial concentrations of ametryn, but appeared to be slightly influenced by initial pH. Furthermore, we investigated the effects of four anions (SO(4)(2-), Cl(-), HCO(3)(-), and CO(3)(2-)) on ametryn degradation by UV/H(2)O(2). The impact of SO(4)(2-) seemed to be insignificant; however, Cl(-), HCO(3)(-), and CO(3)(2-) considerably slowed down the degradation rate because they could strongly scavenge hydroxyl radicals (OH) produced during the UV/H(2)O(2) process. Finally, a preliminary cost analysis revealed that UV/H(2)O(2) process was more cost-effective than the UV alone in removal of ametryn from water. PMID:18824296

  4. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  5. Density functional study of H2O molecule adsorption on α-U(001) surface.

    PubMed

    Huang, Shanqisong; Zeng, Xiu-Lin; Zhao, Feng-Qi; Ju, Xuehai

    2016-04-01

    Periodic density functional theory (DFT) calculations were performed to investigate the adsorption of H2O on U(001) surface. The metallic nature of uranium atom and different adsorption sites of U(001) surface play key roles in the H2O molecular dissociate reaction. The long-bridge site is the most favorable site of H2O-U(001) adsorption configuration. The triangle-center site of the H atom is the most favorable site of HOH-U(001) adsorption configuration. The interaction between H2O and U surface is more evident on the first layer than that on any other two sub-layers. The dissociation energy of one hydrogen atom from H2O is -1.994 to -2.215 eV on U(001) surface, while the dissociating energy decreases to -3.351 to -3.394 eV with two hydrogen atoms dissociating from H2O. These phenomena also indicate that the Oads can promote the dehydrogenation of H2O. A significant charge transfer from the first layer of the uranium surface to the H and O atoms is also found to occur, making the bonding partly ionic. PMID:26994022

  6. Distribution and state of H2O in the high-latitude shallow subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Fanale, F. P.; Salvail, J. R.; Postawko, S. E.

    1986-01-01

    The state and distribution of H2O molecules at high latitudes are evaluated numerically with emphasis on the effects of seasonal temperatures on the kinetics of H2O transport. The investigation is carried out with a thermal model for the regolith regions from the surface through the ice interface and an atmospheric model for the H2O vapor density at the surface as a function of latitude. Few differences are found in the state and distribution of H2O whether the regolith is composed of Montmorillonite or basalt. During an obliquity cycle, the average exchanged H2O mass is determined to be in the range 1-20 gr/sq cm over the planetary surface, with a total maximum exchanged volume of 1500 cu km of H2O. The exchanged mass would arise mainly from ground ice in the case of a basalt regolith and from adsorbed H2O with Montmorillonite. Finally, seasonal ice stabilization is expected to occur at latitudes above 40 deg when obliquities exceed 25 deg.

  7. Tyrosine Kinase Signal Modulation: A Matter of H2O2 Membrane Permeability?

    PubMed Central

    Bertolotti, Milena; Bestetti, Stefano; García-Manteiga, Jose M.; Medraño-Fernandez, Iria; Dal Mas, Andrea; Malosio, Maria Luisa

    2013-01-01

    Abstract H2O2 produced by extracellular NADPH oxidases regulates tyrosine kinase signaling inhibiting phosphatases. How does it cross the membrane to reach its cytosolic targets? Silencing aquaporin-8 (AQP8), but not AQP3 or AQP4, inhibited H2O2 entry into HeLa cells. Re-expression of AQP8 with silencing-resistant vectors rescued H2O2 transport, whereas a C173A-AQP8 mutant failed to do so. Lowering AQP8 levels affected H2O2 entry into the endoplasmic reticulum, but not into mitochondria. AQP8 silencing also inhibited the H2O2 spikes and phosphorylation of downstream proteins induced by epidermal growth factor. These observations lead to the hypothesis that H2O2 does not freely diffuse across the plasma membrane and AQP8 and other H2O2 transporters are potential targets for manipulating key signaling pathways in cancer and degenerative diseases. Antioxid. Redox Signal. 19, 1447–1451. PMID:23541115

  8. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling.

    PubMed

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems. PMID:26909564

  9. Anionic ordering and thermal properties of FeF3·3H2O.

    PubMed

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-10-01

    Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes. PMID:26378743

  10. Anionic ordering and thermal properties of FeF3·3H2O

    DOE PAGESBeta

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-09-17

    In this study, iron fluoride tri-hydrate can be used to prepare iron hydroxyfluoride with the Hexagonal-Tungsten-Bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis andmore » physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F- and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.« less

  11. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    PubMed Central

    Xing, Shasha; Yang, Xiaoyan; Li, Wenjing; Bian, Fang; Wu, Dan; Chi, Jiangyang; Xu, Gao; Zhang, Yonghui; Jin, Si

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways. PMID:24868319

  12. Optical Absorption and Photo-Thermal Conversion Properties of CuO/H2O Nanofluids.

    PubMed

    Wang, Liangang; Wu, Mingyan; Wu, Daxiong; Zhang, Canying; Zhu, Qunzhi; Zhu, Haitao

    2015-04-01

    Stable CuO/H2O nanofluids were synthesized in a wet chemical method. Optical absorption property of CuO/H2O nanofluids was investigated with hemispheric transmission spectrum in the wavelength range from 200 nm to 2500 nm. Photo-thermal conversion property of the CuO/H2O nanofluids was studied with an evaluation system equipped with an AUT-FSL semiconductor/solid state laser. The results indicate that CuO/H2O nanofluids have strong absorption in visible light region where water has little absorption. Under the irradiation of laser beam with a wavelength of 635 nm and a power of 0.015 W, the temperature of CuO/H2O nanofluids with 1.0% mass fraction increased by 5.6 °C within 40 seconds. Furthermore, the temperature elevation of CuO/H2O nanofluids was proved to increase with increasing mass fractions. On the contrast, water showed little temperature elevation under the identical conditions. The present work shows that the CuO/H2O nanofluids have high potential in the application as working fluids for solar utilization purpose. PMID:26353558

  13. Sodium channel slow inactivation interferes with open channel block

    PubMed Central

    Hampl, Martin; Eberhardt, Esther; O’Reilly, Andrias O.; Lampert, Angelika

    2016-01-01

    Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block. PMID:27174182

  14. Stability and prospect of UV/H2O2 activated titania films for biomedical use

    NASA Astrophysics Data System (ADS)

    Unosson, Erik; Welch, Ken; Persson, Cecilia; Engqvist, Håkan

    2013-11-01

    Biomedical implants and devices that penetrate soft tissue are highly susceptible to infection, but also accessible for UV induced decontamination through photocatalysis if coated with suitable surfaces. As an on-demand antibacterial strategy, photocatalytic surfaces should be able to maintain their antibacterial properties over repeated activation. This study evaluates the surface properties and photocatalytic performance of titania films obtained by H2O2-oxidation and heat treatment of Ti and Ti-6Al-4V substrates, as well as the prospect of assisting photocatalytic reactions with H2O2 for improved efficiency. H2O2-oxidation generated a nanoporous coating, and subsequent heat treatment above 500 °C resulted in anatase formation. Tests using photo-assisted degradation of rhodamine B showed that prior to heat treatment, an initially high photocatalytic activity (PCA) of H2O2-oxidized substrates decayed significantly with repeated testing. Heat treating the samples at 600 °C resulted in stable yet lower PCA. Addition of 3% H2O2 during the photo-assisted reaction led to a substantial increase in PCA due to synergetic effects at the surface and H2O2 photolysis, the effect being most notable for non-heat treated samples. Both heat treated and non-heat treated samples showed stable PCA through repeated tests with H2O2-assisted photocatalysis, indicating that the combination of H2O2-oxidized titania films, UV light and added H2O2 can improve efficiency of these photocatalytic surfaces.

  15. Characteristics of natural organic matter degradation in water by UV/H2O2 treatment.

    PubMed

    Wang, G S; Liao, C H; Chen, H W; Yang, H C

    2006-03-01

    This study evaluated the UV/H2O2 system for degradation of natural organic matter in water. The photolysis experiments were conducted in a 10-l batch reactor using a 450-watt high-pressure mercury vapor lamp as the light source. The addition of H2O2 in water greatly improved the rate of humic acid degradation by UV light and 90% of the humic acid was removed within 30 min of photolysis. Kinetic data showed that the first-order reaction could be used to describe the kinetics of both humic acid oxidation and H2O2 decomposition, and the optimum H2O2 dose was 0.01%-0.05% for humic acid oxidation. It was also observed that the absorption of UVC (UV with wavelength between 200 and 280 nm) is responsible for the dissociation of H2O2 to generate the reactive hydroxyl radicals. Depending on the initial dosages, the H2O2 added to the system can be completely decomposed by UV within 50 to 90 minutes. Upon UV irradiation, the humic intermediates with smaller molecular sizes increase as a result of the degradation of larger humic substances. Photolysis of surface water also shows that the UV/H2O2 was effective in reducing trihalomethanes (THMs) formation in treating surface water with high contents of organic precursors. The distribution of THMs shifted from chlorine-THMs to bromine-THMs after UV/H2O2 treatments when bromide was present in water. However, higher H2O2 dosages would be necessary for the photolysis of surface water containing high concentrations of organic THM precursors. As observed from the Fourier transform infrared (FTIR) spectra, the functional groups of treated humic acids were destructed significantly, including -OH (from -COOH and -COH), aromatic -C=C, and -C=O conjugated with aromatic rings. PMID:16548208

  16. H2O content of nominally anhydrous mineral inclusions in diamonds from the Udachnaya kimberlite

    NASA Astrophysics Data System (ADS)

    Novella, D.; Bolfan-Casanova, N.; Nestola, F.; Harris, J. W.

    2015-12-01

    Nominally anhydrous minerals (such as olivine, pyroxene and garnet) present in mantle xenoliths have been found to contain up to hundreds of ppm wt H2O, bonded as H to their mineral structure. However, it is not well understood whether these H2O contents are representative for the hydrous state of the deep mantle where they formed, or if they are the result of interactions between the xenoliths and metasomatic fluids or magmas during their travel to the surface. Given the fact that trace amounts of H2O can alter the physical and chemical properties of mantle materials and therefore affect Earth's dynamics, it is important to accurately determine the H2O content of deep mantle minerals. Natural diamonds can contain mineral inclusions that formed at high depths (>5 GPa) and are representative for the deep and inaccessible portions of the mantle where they originated. This is because the strong and inert diamond prevents the inclusions to react with any fluid or melt that get in contact with it. Therefore, valuable information regarding the H2O content of the deep mantle can be obtained by studying these minerals trapped in diamonds. In this study we measured the H2O contents of 10 olivine and garnet inclusions in diamonds from the Udachnaya kimberlite (Siberian craton) by Fourier Transform Infrared spectroscopy. Olivine crystals contain 1-5 ppm wt H2O while garnets do not show absorption bands indicating the presence of detectable H in their structure and are therefore considered dry. The H2O contents of olivine and garnet inclusions in diamonds presented here are considerably lower than those found in xenoliths or xenocrists from the same locality. Based on these new results, we discuss the presence of H2O in the cratonic mantle and its importance in stabilizing these areas during geological time, as well as the volatile signature of diamond forming melts in the Siberian craton.

  17. Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5.

    PubMed

    Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele; Richards, William Davidson; Malik, Rahul; Ceder, Gerbrand

    2016-04-13

    Cointercalation is a potential approach to influence the voltage and mobility with which cations insert in electrodes for energy storage devices. Combining a robust thermodynamic model with first-principles calculations, we present a detailed investigation revealing the important role of H2O during ion intercalation in nanomaterials. We examine the scenario of Mg(2+) and H2O cointercalation in nanocrystalline Xerogel-V2O5, a potential cathode material to achieve energy density greater than Li-ion batteries. Water cointercalation in cathode materials could broadly impact an electrochemical system by influencing its voltages or causing passivation at the anode. The analysis of the stable phases of Mg-Xerogel V2O5 and voltages at different electrolytic conditions reveals a range of concentrations for Mg in the Xerogel and H2O in the electrolyte where there is no thermodynamic driving force for H2O to shuttle with Mg during electrochemical cycling. Also, we demonstrate that H2O shuttling with the Mg(2+) ions in wet electrolytes yields higher voltages than in dry electrolytes. The thermodynamic framework used to study water and Mg(2+) cointercalation in this work opens the door for studying the general phenomenon of solvent cointercalation observed in other complex solvent-electrode pairs used in the Li- and Na-ion chemical spaces. PMID:26982964

  18. Submillimeter H2O emission in infrared bright galaxies near and far

    NASA Astrophysics Data System (ADS)

    Yang, Chentao

    2015-08-01

    We conduct the first systematic study of the submillimeter H2O rotational emission lines in the infrared bright galaxies from local to high redshift universe observed by FTS/Herschel and PdBI. Among the 176 local galaxies, 45 have at least one H2O emission line detected. And H2O is found to be the strongest molecular emitter after CO in FTS spectra. For the five most detected H2O lines, the luminosity is near-linearly correlated with LIR no matter strong AGN signature is present or not. However, the luminosity of H2O (211-202) and H2O (220-211) appears to increase slightly faster than linear with LIR. Although the slope turns out to be slightly steeper when z˜2-4 ULIRGs (Ultra-Luminous InfraRed Galaxies) are included, the correlation is still not far from linear. We find that LH2O/LIR decreases with increasing infrared color f25/f60, but nearly no dependence on f60/f100, possibly indicating that very warm dust contributes little to the excitation of submillimeter H2O lines, and this is consistent with later modeling studies. The average spectral line energy distribution (SLED) of entire sample is consistent with individual SLEDs and the IR pumping plus collisional excitation model, showing that the strongest lines are H2O (202-111) and H2O (321-312). Moreover, we have detected J=2 and J=3 H2O lines in 17 high-z lensed ULIRGs that picked from H-ATLAS survey. Most of their line profiles are similar to those of the high-J CO lines, indicating the similar location. By comparing the map of H2O and dust continuum emission, the emission from H2O is more compact than dust. A slightly faster than linear correlation has been found in these high-z ULIRGs. However, high resolution study by the telescopes, e.g., NOEMA and ALMA, is still need for studying the spatial distribution of the water vapor.

  19. Do aerosols influence the diurnal variation of H2O2 in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z.; Wu, Q.; Huang, D.; Zhao, Y.

    2013-12-01

    Hydrogen peroxide (H2O2) and organic peroxides are crucial reactive species that are involved in the cycling of HOx (OH and HO2) radicals and the formation of secondary inorganic and organic aerosols in the atmosphere. Despite the importance of peroxides, their formation and removal mechanisms with the coexistence of aerosols are as yet less well known. From June 10 to July 15 2013, summertime surface measurements for atmospheric peroxides were simultaneously obtained in urban Beijing (UB) and Gucheng (GC). The UB site is located in the northern downtown of Beijing city, while the GC site is a rural site located in the North China Plain and ~100 km southwest of Beijing. In both sites, the major peroxides were determined to be H2O2, methyl hydroperoxide (MHP), peroxyformic acid (PFA) and peroxyacetic acid (PAA). By comparing the concentrations of PFA and PAA in the gas phase and rainwater, for the first time, we estimated the Henry's law constant for PFA as ~210 M atm-1 at 298 K, a quarter of that for PAA. Interestingly, we observed different H2O2 profiles in the two sites as follows: (i) the average concentration of H2O2 in UB was 50% higher than that in GC; (ii) H2O2 in GC reached its peak concentration at around 15:30, whereas the peak concentration in UB appeared at as late as 21:00; and (iii) the daily variation of H2O2 in GC generally kept consistent with that of O3 and organic peroxides while it was not always the case in UB. These differences indicate a hitherto unrecognized storage-release mechanism for H2O2 in UB, that is, an extra sink in the noontime and an extra source in the early evening. The extra source of H2O2 would enhance the aerosol phase OH radical in the early evening by the Fenton reaction. A box model analysis shows that the impacts of aerosols were majorly responsible to this unrecognized mechanism, although NOx, regional transport and planet boundary layer height also contributed a minor part. Aerosols participated in the storage

  20. Hydrothermal synthesis and characterization of the lutetium borate-nitrate Lu2B2O5(NO3)2·2H2O

    NASA Astrophysics Data System (ADS)

    Ortner, Teresa S.; Wurst, Klaus; Hejny, Clivia; Huppertz, Hubert

    2016-01-01

    The lutetium diborate-dinitrate Lu2B2O5(NO3)2·2H2O was discovered through a hydrothermal synthesis from Lu(NO3)3·H2O and H3BO3. The compound crystallizes in the space group P 1 ̅ (no. 2) with the lattice parameters a=789.52(5), b=988.62(6), c=1460.33(8) pm, α=90.83(1), β=101.75(1), and γ=110.02(1)° (Z=4). Isolated [B2O5]4- units show coplanar alignment and the coordinating [NO3]- groups are stacked perpendicular to the borate plane. Thereby, a novel, open arrangement solely built up from diborate and nitrate groups at a 1:1 ratio is formed. Additionally, Lu2B2O5(NO3)2·2H2O is characterized by vibrational spectroscopy (IR/Raman).

  1. Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity. A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated at Big Spring, TX. This chamber system is an open or flow...

  2. Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio 2159

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance flux research has relied on open- or closed-path gas analyzers for producing estimates of net ecosystem exchange of carbon dioxide (CO2) and water vapor (H2O). The two instruments have had different challenges that have led to development of an enclosed design that is intended to max...

  3. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels.

    PubMed

    Feng, Yuquan; Li, Min; Fan, Huitao; Huang, Qunzeng; Qiu, Dongfang; Shi, Hengzhen

    2015-01-21

    A novel open-framework copper borophosphate, Na5KCu3[B9P6O33(OH)3]·H2O (), has been synthesised by a boric acid flux method. Its structure can be viewed as a 3-D open framework constructed by the connection of Cu(II)O6 octahedra and 1-D (4,4)-connected borophosphate anionic structures composed of trigonal-planar BO2(OH) groups, tetrahedral BO4 and PO4 groups. The compound not only features a novel borophosphate anionic partial structure containing 1-D 12-MR channels, but also exhibits ferromagnetic interactions and high catalytic activity for the oxidative degradation of chitosan. PMID:25437261

  4. Absorption cross sections of surface-adsorbed H2O in the 295-370 nm region and heterogeneous nucleation of H2O on fused silica surfaces.

    PubMed

    Du, Juan; Huang, Li; Zhu, Lei

    2013-09-12

    We have determined absorption cross sections of a monolayer of H2O adsorbed on the fused silica surfaces in the 295-370 nm region at 293 ± 1 K by using Brewster angle cavity ring-down spectroscopy. Absorption cross sections of surface-adsorbed H2O vary between (4.66 ± 0.83) × 10(-20) and (1.73 ± 0.52) × 10(-21) cm(2)/molecule over this wavelength range, where errors quoted represent experimental scatter (1σ). Our experimental study provides direct evidence that surface-adsorbed H2O is an absorber of the near UV solar radiation. We also varied the H2O pressure in the surface study cell over the 0.01-17 Torr range and obtained probe laser absorptions at 295, 340, and 350 nm by multilayer of adsorbed H2O molecules until the heterogeneous nucleation of water occurred on fused silica surfaces. The average absorption cross sections of multilayer adsorbed H2O are (2.17 ± 0.53) × 10(-20), (2.48 ± 0.67) × 10(-21), and (2.34 ± 0.59) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average absorption cross sections of transitional H2O layer are (6.06 ± 2.73) × 10(-20), (6.48 ± 3.85) × 10(-21), and (8.04 ± 4.92) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average thin water film absorption cross sections are (2.39 ± 0.50) × 10(-19), (3.21 ± 0.81) × 10(-20), and (3.37 ± 0.94) × 10(-20) cm(2)/molecule at 295 nm, 340 nm, and 350 nm. Atmospheric implications of the results are discussed. PMID:23947798

  5. The evolution of the early Martian climate and the initial emplacement of crustal H2O

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early Martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the Martian valley networks to terrestrial runoff channels and their almost exclusive occurrence in the planet's ancient (approximately 4-b.y.-old) heavily cratered terrain are often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was groundwater sapping, a process that does not require that surface water exists in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered here from two perspectives: (1) the early climate started warm and wet, but gradually cooled with time, and (2) the early climate never differed substantially from that of today.

  6. Redetermination of kovdorskite, Mg2PO4(OH)·3H2O

    PubMed Central

    Morrison, Shaunna M.; Downs, Robert T.; Yang, Hexiong

    2012-01-01

    The crystal structure of kovdorskite, ideally Mg2PO4(OH)·3H2O (dimagnesium phosphate hydroxide trihydrate), was reported previously with isotropic displacement paramaters only and without H-atom positions [Ovchinnikov et al. (1980 ▶). Dokl. Akad. Nauk SSSR. 255, 351–354]. In this study, the kovdorskite structure is redetermined based on single-crystal X-ray diffraction data from a sample from the type locality, the Kovdor massif, Kola Peninsula, Russia, with anisotropic displacement parameters for all non-H atoms, with all H-atom located and with higher precision. Moreover, inconsistencies of the previously published structural data with respect to reported and calculated X-ray powder patterns are also discussed. The structure of kovdorskite contains a set of four edge-sharing MgO6 octa­hedra inter­connected by PO4 tetra­hedra and O—H⋯O hydrogen bonds, forming columns and channels parallel to [001]. The hydrogen-bonding system in kovdorskite is formed through the water mol­ecules, with the OH− ions contributing little, if any, to the system, as indicated by the long H⋯A distances (>2.50 Å) to the nearest O atoms. The hydrogen-bond lengths determined from the structure refinement agree well with Raman spectroscopic data. PMID:22346789

  7. Optimization of a gas sampling system for measuring eddy-covariance fluxes of H2O and CO2

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H.; Zulueta, R. C.

    2015-10-01

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) will provide the ability of unbiased ecological inference across eco-climatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analysers are widely employed for eddy-covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties, and requires correction. Here, we show that the gas sampling system substantially contributes to high-frequency attenuation, which can be minimized by careful design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO2, 2.4-14.3 Hz for H2O, and 8.3-21.8 Hz for CO2, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyser cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this basis. The design consists of the stainless steel intake tube, a pleated mesh

  8. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    NASA Astrophysics Data System (ADS)

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-01

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO2, 2.4-14.3 Hz for H2O, and 8.3-21.8 Hz for CO2, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this

  9. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1988-01-01

    IR spectroscopy has been used to ascertain several parameters associated with CO, H2O, and H2O:CO ices' physical behavior. Since CO is noted to be capable of condensing into H2O-rich ices at temperatures that are twice as high as those required for condensation in pure CO, CO is able to condense onto H2O-rich ice grains at temperatures of up to 50 K. CO's presence in H2O ice modestly enhances the effective volatility of the H2O. Attention is given to the implications of these results for cometary models generally and the question of cometary formation specifically.

  10. Chemical Reactions in Protoplanetary Disks and Possibility of Detecting H2O Snowline Using Spectroscopic Observations with ALMA

    NASA Astrophysics Data System (ADS)

    Notsu, S.; Nomura, H.; Ishimoto, D.; Walsh, C.; Honda, M.; Millar, T. J.

    2015-12-01

    We calculate chemical reactions and obtain abundance distribution of H2O gas. We confirm that the abundance of H2O is high not only in the region inside H2 O snowline near the equatorial plane but also in the hot surface layer of outer disk. We also calculate velocity profiles of H2O emission lines, and find that we can obtain the information of H2O snowline through investigating the profiles of some line transitions that have small Einstein A coefficient and large excitation energy. Some useful H2O emission lines exist at sub-millimeter wavelength and are observable with ALMA.

  11. New H2O masers in Seyfert and FIR bright galaxies. III. The southern sample

    NASA Astrophysics Data System (ADS)

    Surcis, G.; Tarchi, A.; Henkel, C.; Ott, J.; Lovell, J.; Castangia, P.

    2009-08-01

    Context: A relationship between the water maser detection rate and far infrared (FIR) flux densities was established as a result of two 22 GHz maser surveys in a complete sample of galaxies ({Dec>-30°) with {100 μ m} flux densities of >50 Jy and >30 Jy. Aims: We attempted to discover new maser sources and investigate the galaxies hosting the maser spots by extending previous surveys to southern galaxies with particular emphasis on the study of their nuclear regions. Methods: A sample of 12 galaxies with {Dec<-30° and S100 μ m>50 Jy was observed with the 70-m telescope of the Canberra deep space communication complex (CDSCC) at Tidbinbilla (Australia) in a search for water maser emission. The average 3σ noise level of the survey was 15 mJy for a {0.42 km s-1} channel, corresponding to a detection threshold of ˜ 0.1 L⊙ for the isotropic maser luminosity at a distance of 25 Mpc. Results: Two new detections are reported: a kilomaser with an isotropic luminosity L{H2O}˜5 L⊙ in NGC 3620 and a maser with about twice this luminosity in the merger system NGC 3256. The detections have been followed-up by continuum and spectral line interferometric observations with the Australia Telescope Compact Array (ATCA). In NGC 3256, a fraction (about a third) of the maser emission originates in two hot spots associated with star formation activity, which are offset from the galactic nuclei of the system. The remaining emission may originate in weaker centres of maser activity distributed over the central 50''. For NGC 3620, the water maser is coincident with the nuclear region of the galaxy. Our continuum observations indicate that the nature of the nuclear emission is probably linked to particularly intense star formation. Including the historical detection in NGC 4945, the water maser detection rate in the southern sample is 15% (3/20), consistent with the northern sample. The high rate of maser detections in the complete all-sky FIR sample (23%, 15/65) confirms the

  12. Radiolytic corrosion of uranium dioxide induced by He2+ localized irradiation of water: Role of the produced H2O2 distance

    NASA Astrophysics Data System (ADS)

    Traboulsi, Ali; Vandenborre, Johan; Blain, Guillaume; Humbert, Bernard; Haddad, Ferid; Fattahi, Massoud

    2015-12-01

    The short-range (few μm in water) of the α-emitting from the spent fuel involves that the radiolytic corrosion of this kind of sample occurs at the solid/solution interface. In order to establish the role of localization of H2O2 species produced by the He2+ particle beam in water from the surface, we perform UO2 radiolytic corrosion experiment with different distance between H2O2 production area and UO2 surface. Then, in this work, the radiolytic corrosion of UO2 particles by oxidative species produced by 4He2+ radiolysis of water was investigated in open to air atmosphere. The dose rate, the localization of H2O2 produced by water radiolysis and the grain boundaries present on the surface of the particles were investigated. UO2 corrosion was investigated by in situ (during irradiation) characterization of the solid surface, analysis of H2O2 produced by water radiolysis and quantification of the uranium species released into the solution during irradiation. Characterization of the UO2 particles, surface and volume, was realized by Raman spectroscopy. UV-vis spectrophotometry was used to monitor H2O2 produced by water radiolysis and in parallel the soluble uranium species released into the solution were quantified by inductively coupled plasma mass spectrometry. During the He2+ irradiation of ultra-pure water in contact with the UO2 particles, metastudtite phase was formed on the solid surface indicating an oxidation process of the particles by the oxidative species produced by water radiolysis. This oxidation occurred essentially on the grain boundaries and was accompanied by migration of soluble uranium species (U(VI)) into the irradiated solution. Closer to the surface the localization of H2O2 formation, higher the UO2 oxidation process occurs, whereas the dose rate had no effect on it. Simultaneously, closer to the surface the localization of H2O2 formation lower the H2O2 concentration measured in solution. Moreover, the metastudtite was the only secondary

  13. 40 CFR 1065.370 - CLD CO2 and H2O quench verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analyzer uses quench compensation algorithms that utilize H2O and/or CO2 measurement instruments, evaluate quench with these instruments active and evaluate quench with the compensation algorithms applied....

  14. Reactions of chlorine nitrate with HCl and H2O. [ozone controlling chemistry in stratosphere

    NASA Technical Reports Server (NTRS)

    Hatakeyama, Shiro; Leu, Ming-Taun

    1986-01-01

    The kinetics of the reactions of chlorine nitrate with HCl and H2O are characterized using a static photolysis/Fourier transform infrared spectrophotometer apparatus. For the homogeneous gas-phase reaction with HCl, an upper limit for the rate constant of less than 8.4 x 10 to the -21st, and for the reaction with H2O, a limit of less than 3.4 x 10 to the -21st cu cm/molecule per s, were obtained at 296 + or - 2 K. The yield of HNO3 is almost unity in both cases, and no synergistic effect is noted between HCl and H2O. The kinetic behavior of the reaction with H2O is well described by simple first-order kinetics, while the behavior of the reaction with HCl is described in terms of the Langmuir adsorption isotherm.

  15. New Optical Constants of Amorphous and Crystalline H2O-ice, 3-20_m

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel Michelle Elizab

    2008-01-01

    We will present new optical constants forth amorphous and crystalline H2O-ice in the spectral range 3-20 _m. Our new measurements provide high temperature resolution for crystalline H2O-ice, 10 K intervals from 20-150 K, including temperatures relevant to Solar System ices. We have found that the shape of the 3 _m feature in amorphous H2O-ice is strongly dependant on deposition temperature and the high and low density phases of amorphous H2O-ice are not easily distinguishable. We will present methods of measuring the change in band shape with phase and temperature. We acknowledge financial support from the NASA Origins of the Solar System Program and the NASA Planetary Geology and Geophysics Program.

  16. [Cryogenic Raman spectroscopic characteristics of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O: application to analysis of fluid inclusions].

    PubMed

    Mao, Cui; Chen, Yong; Zhou, Yao-Qi; Ge, Yun-Jin; Zhou, Zhen-Zhu; Wang, You-Zhi

    2010-12-01

    Accurately diagnosing the types of the salt and calculating the salinity quantitatively are the significant content of fluid inclusions. The traditional method of testing fluid inclusions salinity is cooling. To overcome the difficulty for observing freezing phase transition, the authors tested the spectrum of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O systems at -180 degrees C by laser Raman spectroscopy. The result demonstrates that the ratio of peak values has linear relationship with salinity. Calibration curves were established by typical ratio of hydro-halite at 3 420 cm(-1) to the ice at 3 092 cm(-1), and the ratio of antarcticite at 3 432 cm(-1) to the ice at 3 092 cm(-1). The calibration curves have very high correlation coefficient. This method is verified by synthetic hydrocarbon-bearing aqueous fluid inclusions and quartz aqueous fluid inclusions of well Fengshen 6 in Dongying sag. The results of the authors' experiments show that cryogenic Raman spectroscopy can not only identify the types of the salts but also determine the salinity effectively in fluid inclusions. PMID:21322218

  17. Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Krawczynski, Michael J.; Grove, Timothy L.; Behrens, Harald

    2012-08-01

    The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200-800 MPa, temperature range of 915-1,070 °C, and oxygen fugacities varying from the nickel-nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515-533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975-1,025 °C. With increasing H2O pressure ({P}_{{H}_2O}), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and f_{{O}_2}: P_{{H}2O}(MPa)=[{Mg#/52.7}-0.014 * Updelta NNO]^{15.12} This barometer gives a minimum {P}_{{H}2O} recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500-900 MPa) and high pre-eruptive magmatic

  18. Titanium silicalite-1 zeolite microparticles for enzymeless H2O2 detection.

    PubMed

    Liu, Sen; Tian, Jingqi; Zhai, Junfeng; Wang, Lei; Lu, Wenbo; Sun, Xuping

    2011-05-21

    In this communication, we demonstrate for the first time that titanium silicalite-1 zeolite microparticles (TSZMs) can effectively catalyze the reduction of H(2)O(2), leading to an enzymeless H(2)O(2) sensor with a linear detection range from 100 μM to 40 mM (r = 0.994) and a detection limit of 0.5 μM at a signal-to-noise ratio of 3. PMID:21431231

  19. Removal of azo dye C.I. acid red 14 from contaminated water using Fenton, UV/H(2)O(2), UV/H(2)O(2)/Fe(II), UV/H(2)O(2)/Fe(III) and UV/H(2)O(2)/Fe(III)/oxalate processes: a comparative study.

    PubMed

    Daneshvar, N; Khataee, A R

    2006-01-01

    The decolorization of the solution containing a common textile and leather dye, C.I. Acid Red 14 (AR14), at pH 3 by hydrogen peroxide photolysis, Fenton, Fenton-like and photo-Fenton processes was studied. The dark and light reactions were carried out in stirred batch photoreactor equipped with an UV-C lamp (30 W) as UV light source. The experiments showed that the dye was resistant to the UV illumination, but was oxidized when one of Fe(II), Fe(III) and H(2)O(2) compounds was present. It was also found that UV light irradiation can accelerate significantly the rate of AR14 decolorization in the presence of Fe(III)/H(2)O(2) or Fe(II)/H(2)O(2), comparing to that in the dark. The effect of different system variables like initial concentration of the azo dye, effect of UV light irradiation, initial concentration of Fe(II) or Fe(III) and added oxalate ion has been investigated. The results showed that the decolorization efficiency of AR14 at the reaction time of 2 min follows the decreasing order: UV/H(2)O(2)/Fe(III)/oxalate > UV/H(2)O(2)/Fe(III) > UV/H(2)O(2)/Fe(II) > UV/H(2)O(2). Our results also showed that the UV/H(2)O(2)/Fe(III)/oxalate process was appropriate as the effective treatment method for decolorization of a real dyeing and finishing. The mechanism for each process is also discussed and linked together for understanding the observed differences in reactivity. PMID:16484066

  20. Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices.

    PubMed

    Avshalumov, M V; Chen, B T; Rice, M E

    2000-11-01

    Hydrogen peroxide (H(2)O(2)) inhibits the population spike (PS) evoked by Schaffer collateral stimulation in hippocampal slices. Proposed mechanisms underlying this effect include generation of hydroxyl radicals (.OH) and inhibition of presynaptic Ca(2+) entry. We have examined these possible mechanisms in rat hippocampal slices. Inhibition of the evoked PS by H(2)O(2) was sharply concentration-dependent: 1.2 mM H(2)O(2) had no effect, whereas 1.5 and 2.0 mM H(2)O(2) reversibly depressed PS amplitude by roughly 80%. The iron chelator, deferoxamine (1 mM), and the endogenous.OH scavenger, ascorbate (400 microM), prevented PS inhibition, confirming.OH involvement. Isoascorbate (400 microM), which unlike ascorbate is not taken up by brain cells, also prevented PS inhibition, indicating an extracellular site of.OH generation or action. We then investigated whether H(2)O(2)-induced PS depression could be overcome by prolonged stimulation, which enhances Ca(2+) entry. During 5-s, 10-Hz trains under control conditions, PS amplitude increased to over 200% during the first three-four pulses, then stabilized. In the presence of H(2)O(2), PS amplitude was initially depressed, but began to recover after 2.5 s of stimulation, finally reaching 80% of the control maximum. In companion experiments, we assessed the effect of H(2)O(2) on presynaptic Ca(2+) entry by monitoring extracellular Ca(2+) concentration ([Ca(2+)](o)) during train stimulation in the presence of postsynaptic receptor blockers. Evoked [Ca(2+)](o) shifts were apparently unaltered by H(2)O(2), suggesting a lack of effect on Ca(2+) entry. Taken together, these findings suggest new ways in which reactive oxygen species (ROS) might act as signaling agents, specifically as modulators of synaptic transmission. PMID:11056187

  1. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  2. Decolorization of alkaline TNT hydrolysis effluents using UV/H(2)O(2).

    PubMed

    Hwang, Sangchul; Bouwer, Edward J; Larson, Steven L; Davis, Jeffrey L

    2004-04-30

    Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step. PMID:15081163

  3. Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Seperuelo Duarte, E.; Domaracka, A.; Rothard, H.; Boduch, P.; da Silveira, E. F.

    2010-11-01

    An experimental study of the interaction of heavy, highly charged, and energetic ions (52 MeV 58Ni13+) with pure H2O, pure CO2 and mixed H2O:CO2 astrophysical ice analogs is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by heavy cosmic rays inside dense and cold astrophysical environments, such as molecular clouds or protostellar clouds. The measurements were performed at the heavy ion accelerator GANIL (Grand Accélérateur National d'Ions Lourds in Caen, France). The gas samples were deposited onto a CsI substrate at 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross sections of pure H2O and CO2 ices are 1.1 and 1.9 × 10-13 cm2, respectively. For mixed H2O:CO2 (10:1), the dissociation cross sections of both species are about 1 × 10-13 cm2. The measured sputtering yield of pure CO2 ice is 2.2 × 104 molec ion-1. After a fluence of 2-3 × 1012 ions cm-2, the CO2/CO ratio becomes roughly constant (~0.1), independent of the initial CO2/H2O ratio. A similar behavior is observed for the H2O2/H2O ratio, which stabilizes at 0.01, independent of the initial H2O column density or relative abundance.

  4. Vibrationally mediated photolysis dynamics of H2O in the vOH=3 manifold: Far off resonance photodissociation cross sections and OH product state distributions

    NASA Astrophysics Data System (ADS)

    Votava, Ondrej; Plusquellic, David F.; Nesbitt, David J.

    1999-05-01

    Vibrationally mediated photodissociation dynamics of water on the first excited electronic state surface (Ã) has been studied with slit jet-cooled H2O prepared in the complete polyad of vOH=3 overtone stretch levels (|03+>, |12+>, |12->, and |03->). (Notationally, |n1n2±> refers to symmetric/antisymmetric combinations of local mode OH stretch excitation, roughly corresponding to n1 and n2 quanta in the spectator and photolyzed OH bond, respectively.) At 248 nm photolysis wavelength the Condon point for bond cleavage occurs in the classically forbidden region, primarily sampling highly asymmetric H+OH exit valley geometries of the potential energy surface. Rotational, vibrational, spin orbit, and lambda doublet distributions resulting from this "far off resonance" photodissociation process are probed via laser induced fluorescence, exploiting the high efficiency laser excitation and light collection properties of the slit jet expansion geometry. Only vibrationally unexcited OH products are observed for both |12±> and |03±> initial excitation of H2O, despite different levels of vibration in the spectator OH bond. This is in contrast with "near-resonance" vibrationally mediated photolysis studies by Crim and co-workers in the |04-> and |13-> manifold, but entirely consistent with theoretical predictions from a simple two-dimensional quantum model. Photolysis out of the rotational ground H2O state (i.e., JKaKc=000) yields OH product state distributions that demonstrate remarkable insensitivity to the initial choice of H2O vibrational stretch state, in good agreement with rotational Franck-Condon models. However, this simple trend is not followed uniformly for rotationally excited H2O precursors, which indicates that these Franck-Condon models are insufficient and suggests that exit channel interactions do play a significant role in photodissociation dynamics of H2O at the fully state-to-state level.

  5. Quantification of the production of hydrogen peroxide H2O2 during accelerated wine oxidation.

    PubMed

    Héritier, Julien; Bach, Benoît; Schönenberger, Patrik; Gaillard, Vanessa; Ducruet, Julien; Segura, Jean-Manuel

    2016-11-15

    Understanding how wines react towards oxidation is of primary importance. Here, a novel approach was developed based on the quantitative determination of the key intermediate H2O2 produced during accelerated oxidation by ambient oxygen. The assay makes use of the conversion of the non-fluorescent Amplex Red substrate into a fluorescent product in presence of H2O2. The total production of H2O2 during 30min was quantified with low within-day and between-day variabilities. Polymerized pigments, but not total polyphenols, played a major role in the determination of H2O2 levels, which were lower in white wines than red wines. H2O2 amounts also increased with temperature and the addition of metal ions, but did not depend on the concentration of many other wine constituents such as SO2. H2O2 levels did not correlate with anti-oxidant properties. We believe that this novel methodology might be generically used to decipher the oxidation mechanisms in wines and food products. PMID:27283717

  6. Oxidative degradation of dimethyl phthalate (DMP) by UV/H(2)O(2) process.

    PubMed

    Xu, Bin; Gao, Nai-Yun; Cheng, Hefa; Xia, Sheng-Ji; Rui, Min; Zhao, Dan-Dan

    2009-03-15

    The photochemical degradation of dimethyl phthalate (DMP) in UV/H(2)O(2) advanced oxidation process was studied and a kinetic model based on the elementary reactions involved was developed in this paper. Relatively slow DMP degradation was observed during UV radiation, while DMP was not oxidized by H(2)O(2) alone. In contrast, the combined UV/H(2)O(2) process could effectively degraded DMP, which is attributed to the strong oxidation strength of hydroxyl radical produced. Results show that DMP degradation rate was affected by H(2)O(2) concentration, intensity of UV radiation, initial DMP concentration, and solution pH. A kinetic model without the pseudo-steady state assumption was established according to the generally accepted elementary reactions in UV/H(2)O(2) advanced oxidation process. The rate constant for the reaction between DMP and hydroxyl radical was found to be 4.0 x 10(9) M(-1)s(-1) through fitting the experimental data to this model. The kinetic model could adequately describe the influence of key factors on DMP degradation rate in UV/H(2)O(2) advanced oxidation process, and could serve as a guide in designing treatment systems for DMP removal. PMID:18639981

  7. Application of the Hartmann-Tran profile to analysis of H2O spectra

    NASA Astrophysics Data System (ADS)

    Lisak, D.; Cygan, A.; Bermejo, D.; Domenech, J. L.; Hodges, J. T.; Tran, H.

    2015-10-01

    The Hartmann-Tran profile (HTP), which has been recently recommended as a new standard in spectroscopic databases, is used to analyze spectra of several lines of H2O diluted in N2, SF6, and in pure H2O. This profile accounts for various mechanisms affecting the line-shape and can be easily computed in terms of combinations of the complex Voigt profile. A multi-spectrum fitting procedure is implemented to simultaneously analyze spectra of H2O transitions acquired at different pressures. Multi-spectrum fitting of the HTP to a theoretical model confirms that this profile provides an accurate description of H2O line-shapes in terms of residuals and accuracy of fitted parameters. This profile and its limiting cases are also fit to measured spectra for three H2O lines in different vibrational bands. The results show that it is possible to obtain accurate HTP line-shape parameters when measured spectra have a sufficiently high signal-to-noise ratio and span a broad range of collisional-to-Doppler line widths. Systematic errors in the line area and differences in retrieved line-shape parameters caused by the overly simplistic line-shape models are quantified. Also limitations of the quadratic speed-dependence model used in the HTP are demonstrated in the case of an SF6 broadened H2O line, which leads to a strongly asymmetric line-shape.

  8. Photometric Measurements of H2O Ice Crystallinity on Trans-Neptunian Objects

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi; Oasa, Yumiko; Furusho, Reiko; Watanabe, Junichi

    2016-08-01

    We present a measurement of H2O ice crystallinity on the surface of trans-neptunian objects with near-infrared narrow-band imaging. The newly developed photometric technique allows us to efficiently determine the strength of a 1.65 μm absorption feature in crystalline H2O ice. Our data for three large objects—Haumea, Quaoar, and Orcus—which are known to contain crystalline H2O ice on the surfaces, show a reasonable result with high fractions of the crystalline phase. It can also be pointed out that if the grain size of H2O ice is larger than ∼20 μm, the crystallinities of these objects are obviously below 1.0, which suggests the presence of the amorphous phase. In particular, Orcus exhibits a high abundance of amorphous H2O ice compared to Haumea and Quaoar, possibly indicating a correlation between the bulk density of the bodies and the degree of surface crystallization. We also found the presence of crystalline H2O ice on Typhon and 2008 AP129, both of which are smaller than the minimum size limit for inducing cryovolcanism as well as a transition from amorphous to crystalline phase through thermal evolution due to the decay of long-lived isotopes. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan (NAOJ).

  9. Effects of Convective Ice Lofting on H2O and HDO in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Hanisco, T. F.; Fueglistaler, S.

    2007-01-01

    We have added convective ice lofting to a Lagrangian trajectory model of near-tropopause water vapor (H2O) and its isotopologue HDO. The ice lofting simulation is based on a parameterization derived from Aura Microwave Limb Sounder (MLS) icewater content measurements. In previous papers, the Lagrangian model has accurately interannual and seasonal H2O abundances; there was no need for convection to be included in the model. We show here that this model does a poor job of simulating near-tropopause HDO, but that the addition of convective ice lofting greatly improves the HDO simulation. Convective ice lofting has a small effect on lower stratospheric H2O. H2O there is set by the minimum temperature encountered at the cold-point tropopause, so H2O added by convection below this level does not make it through this cold point and into the lower stratosphere. Thus, adding convection to the model does not degrade the model's previously demonstrated accurate simulations of H2O. We conclude that the HDO data suggest an important role for convective mass flux into the so-called tropical tropopause layer.

  10. Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose.

    PubMed

    Zhang, Jianxiu; Tu, Liping; Zhao, Shuang; Liu, Guohua; Wang, Yangyun; Wang, Yong; Yue, Zhao

    2015-05-15

    In this work, low-toxicity fluorescent gold nanoclusters (AuNCs) based photoelectrochemical sensors were developed for H2O2 and glucose detection. Herein, the processes used to fabricate the sensors and the photoelectrochemical performances of the sensors under different conditions were presented. Based on the energy band levels of the AuNCs and electron tunneling processes, a detailed photoelectrochemical sensing model was given. The designed sensors were then used for H2O2 and glucose detection without any extra modification of the AuNCs or complex enzyme immobilization. The results demonstrate that the AuNCs allow for H2O2 sensing based on their capacity for both fluorescence and catalysis. Indeed, it was observed that H2O2 was catalyzed by the AuNCs and reduced by photoinduced electrons derived from excited AuNCs. Furthermore, an enhancement in photocurrent amplitude followed the increase in the concentrations of H2O2 and glucose. The effects of the types of ligands surrounding the AuNCs and the applied potential on the output photocurrent were well studied to optimize the measurement conditions. The sensitivity and LOD of MUA-AuNCs at -500 mV were 4.33 nA/mM and 35 μM, respectively. All experimental results indicated that AuNCs could not only serve as a promising photoelectrical material for building the photoelectrochemical biosensors but as catalysts for H2O2 sensing. PMID:25190086