Science.gov

Sample records for open low-field system

  1. A System for Open-Access 3He Human Lung Imaging at Very Low Field

    PubMed Central

    RUSET, I.C.; TSAI, L.L.; MAIR, R.W.; PATZ, S.; HROVAT, M.I.; ROSEN, M.S.; MURADIAN, I.; NG, J.; TOPULOS, G.P.; BUTLER, J.P.; WALSWORTH, R.L.; HERSMAN, F.W.

    2010-01-01

    We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized 3He gas. The system employs an open four-coil electromagnet with an operational B0 field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain 1H and 3He phantom images and supine and upright 3He images of human lungs. We include discussion on challenges unique to imaging at 50 –200 kHz, including noise filtering and compensation for narrow-bandwidth coils. PMID:20354575

  2. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  3. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  4. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system.

    PubMed

    Mair, R W; Hrovat, M I; Patz, S; Rosen, M S; Ruset, I C; Topulos, G P; Tsai, L L; Butler, J P; Hersman, F W; Walsworth, R L

    2005-04-01

    The human lung and its functions are extremely sensitive to gravity; however, the conventional high-field magnets used for most laser-polarized (3)He MRI of the human lung restrict subjects to lying horizontally. Imaging of human lungs using inhaled laser-polarized (3)He gas is demonstrated in an open-access very-low-magnetic-field (<5 mT) MRI instrument. This prototype device employs a simple, low-cost electromagnet, with an open geometry that allows variation of the orientation of the imaging subject in a two-dimensional plane. As a demonstration, two-dimensional lung images were acquired with 4-mm in-plane resolution from a subject in two orientations: lying supine and sitting in a vertical position with one arm raised. Experience with this prototype device will guide optimization of a second-generation very-low-field imager to enable studies of human pulmonary physiology as a function of subject orientation. PMID:15799045

  5. Analysis of the ITER Low Field Side Reflectometer Transmission Line System

    SciTech Connect

    Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J; Biewer, Theodore M

    2010-01-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of 42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

  6. Biofilm detection in natural unconsolidated porous media using a low-field magnetic resonance system.

    PubMed

    Sanderlin, Alexis B; Vogt, Sarah J; Grunewald, Elliot; Bergin, Bridget A; Codd, Sarah L

    2013-01-15

    The extent to which T(2) relaxation measurements can be used to determine biofouling in several natural geological sand media using a low-field (275 kHz, 6.5 mT) NMR system has been demonstrated. It has been previously shown that, at high laboratory strength fields (300 MHz, 7 T), T(2) techniques can be used as a bioassay to confirm the growth of biofilm inside opaque porous media with low magnetic susceptibilities such as borosilicate or soda lime glass beads. Additionally decreases in T(2) can be associated with intact biofilm as opposed to degraded biofilm material. However, in natural geological media, the strong susceptibility gradients generated at high fields dominated the T(2) relaxation time distributions and biofilm growth could not be reliably detected. Samples studied included Bacillus mojavensis biofilm in several sand types, as well as alginate solution and alginate gel in several sand types. One of the sand types was highly magnetic. Data was collected with a low-field (275 kHz, 6.5 mT) benchtop NMR system using a CPMG sequence with an echo time of 1.25 ms providing the ability to detect signals with T(2) greater than 1 ms. Data presented here clearly demonstrate that biofilm can be reliably detected and monitored in highly magnetically susceptible geological samples using a low-field NMR spectrometer indicating that low-field NMR could be viable as a biofilm sensor at bioremedation sites. PMID:23256613

  7. Analysis of the ITER low field side reflectometer transmission line system.

    PubMed

    Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M

    2010-10-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given. PMID:21033952

  8. Low-noise pulsed pre-polarization magnet system for ultra-low field NMR

    SciTech Connect

    Sims, James R; Schilling, Josef B; Swenson, Charles A; Gardner, David L; Matlashov, Andrei N; Ammerman, Curti N

    2009-01-01

    A liquid cooled, pulsed electromagnet of solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system has been designed, fabricated and successfully operated. The magnet design minimizes Johnson noise, minimizes the hydrogen signal and incorporates minimal metal and no ferromagnetic materials. In addition, an acoustically quiet cooling system permitting 50% duty cycle operation was achieved by designing for single-phase, laminar flow, forced convection cooling. Winding, conductor splicing and epoxy impregnation techniques were successfully developed to produce a coil winding body with integral cooling passageways and adequate structural integrity. Issues of material compatibility, housing, coolant flow system and heat rejection system design will be discussed. Additionally, this pulsed electromagnet design has been extended to produce a boiling liquid cooled version in a paired solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system. This pair of liquid nitrogen cooled coils is currently being tested and commissioned. Issues of material compatibility, thermal insulation, thermal contraction, housing and coolant flow design are discussed.

  9. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment

    PubMed Central

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  10. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.

    PubMed

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  11. Investigation of Magnetic Interference Induced via Gradient Field Coils for Ultra-Low-Field MRI Systems

    NASA Astrophysics Data System (ADS)

    Oyama, D.; Hatta, J.; Miyamoto, M.; Adachi, Y.; Higuchi, M.; Kawai, J.; Fujihira, J.; Tsuyuguchi, N.; Uehara, G.

    2014-05-01

    We are developing a compact ultra-low-field MRI system that is composed of a SQUID gradiometer and a coil set that generates magnetic fields for capturing MR images. The magnetic interference induced from a power amplifier potentially disturbs MRI measurements. We investigated the path of the interference by experimental measurements and calculation of the magnetic field generated by the coil set. We found that the magnetic field generated from a particular gradient coil affected the SQUID gradiometer and that the level of the interference was strongly dependent on the shape of the gradient coils. When the coils' shapes are designed, minimizing the noise introduced from the power amplifier is crucial, in addition to consideration of the homogeneities of the magnetic field.

  12. Development of Ultra-low Field SQUID-MRI System with an LC Resonator

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Toyota, H.; Kawagoe, S.; Hatta, J.; Tanaka, S.

    We are developing an Ultra-Low Field (ULF) magnetic resonance imaging (MRI) system using high temperature superconductor (HTS)-rf-superconducting quantum interference device (SQUID) for food inspection. The advantage of the ULF MRI system is that non-magnetic contaminants, which are difficult to be detected by a magnetic sensor, can be detected and localized. The system uses HTS-SQUID with high sensitivity that is independent of frequency, because the signal frequency is reduced in ULF. However the detection area of HTS-SQUID is difficult to be increased. Therefore, we studied to increase the detection area using an LC resonator. The LC resonator is composed of a coil (22.9 mH, Φ40 mm inner diameter) and a capacitor (the setting resonance frequency of 1890 Hz). The signal is detected by a copper wound coil of the resonator, and transferred to HTS-SQUID that inductively coupled to the coil immersed in liquid nitrogen at 77 K. We combined the LC resonator with the ULF MRI system, and obtained the 2D-MR images. The signal detector, with the SQUID and the LC resonator, provided a 1.5 times larger detection area. The size of 2D-MR image was near the size of the actual sample. Then we obtained 2D-MR images by a filtered back projection (FBP) method and a 2D-fast fourier transform (FFT) method. In the 2D-FFT method, the pixel size of the image was smaller than that of image by FBP method. As a result, the quality of the 2D-MR image by 2D-FFT method has been improved. There results suggested that the system we are proposing is feasible.

  13. Top-Level System Designs for Hybrid Low-Field MRI-CT with Potential of Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Yelleswarapu, Venkata R.; Liu, Fenglin; Cong, Wenxiang; Wang, Ge

    2014-11-01

    We previously discussed "omni-tomography", but intrinsic conflicts between the magnetic fields of the MRI and the X-ray tube within the CT are inherent. We propose that by using low-field MRI with a negligible fringe field at the site of the CT source, it is possible to create a CT-MRI system with minimal interference. Low field MRI is particularly useful for lung imaging, where hyperpolarized gas can enhance the signal. Three major designs were considered and simulated, with modifications in coil design and axis allowing for further variation. The first uses Halbach arrays to minimize magnetic fields outside, the second uses solenoids pairs with active shielding, and the third uses a rotating compact MRI-CT. Each system is low field, which may allow the implementation of a standard rotating CT. Both structural and functional information can be acquired simultaneously for a true hybrid image with matching temporal and spatial image acquisition.

  14. Two-dimensional compressed sensing using the cross-sampling approach for low-field MRI systems.

    PubMed

    Tamada, Daiki; Kose, Katsumi

    2014-09-01

    A compressed sensing method using a cross sampling and self-calibrated off-resonance correction is proposed. Estimation of the magnetic field inhomogeneity based on image registration enables the off-resonance correction with no additional radio-frequency pulses or acquisitions. In addition to this advantage, a fast and straightforward calculation was achieved by using the first-order components of the magnetic field inhomogeneity. Imaging experiments using a phantom and a chemically fixed mouse demonstrated practical benefits in improving blurring and artifacts in magnetic resonance images in low field magnetic resonance imaging systems. PMID:24879645

  15. A system for low field imaging of laser-polarized noble gas

    NASA Technical Reports Server (NTRS)

    Wong, G. P.; Tseng, C. H.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1999-01-01

    We describe a device for performing MRI with laser-polarized noble gas at low magnetic fields (<50 G). The system is robust, portable, inexpensive, and provides gas-phase imaging resolution comparable to that of high field clinical instruments. At 20.6 G, we have imaged laser-polarized (3)He (Larmor frequency of 67 kHz) in both sealed glass cells and excised rat lungs, using approximately 0.1 G/cm gradients to achieve approximately 1 mm(2) resolution. In addition, we measured (3)He T(2)(*) times greater than 100 ms in excised rat lungs, which is roughly 20 times longer than typical values observed at high ( approximately 2 T) fields. We include a discussion of the practical considerations for working at low magnetic fields and conclude with evidence of radiation damping in this system. Copyright 1999 Academic Press.

  16. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  17. Evaluation of low back pain with low field open magnetic resonance imaging scanner in rural hospital of Southern India

    PubMed Central

    Shrinuvasan, Sadhanandham; Chidambaram, Ranganathan

    2016-01-01

    Background: Low back pain (LBP) is the most common symptom which is associated with limitation of normal activities and work-related disability. Imaging techniques are often essential in making the correct diagnosis for prompt management. Plain Radiography though remain a first imaging modality, magnetic resonance imaging (MRI) due to its inherent softtissue contrast resolution and lack of ionizing radiation remains invaluable modality in the evaluation of LBP. Aim: To find the common causes of LBP in different age groups and the role of MRI in detecting the spectrum of various pathological findings. Materials and Methods: This is a prospective study done in the Department of Radiodiagnosis during a period of 2 years from July 2013 to July 2015. The study population includes all the cases referred to our department with complaints of LBP. Patients with ferromagnetic metallic implants and uncooperative cases were excluded. HITACHI 0.4 Tesla open MRI machine was used for imaging. Results and Conclusion: This study involved a total of 235 cases. There were 121 males and 114 females. The age of the patient ranged from 21 to 68 years with an average of 41.3 years. Back pain was commonly observed in the third to fifth decade. The common causes for back pain are disc herniations (disc bulge – 35.3%, disc protrusion – 39.6%, disc extrusion – 7.2%) accounting to 82.1%, followed by normal study (10.2%), vertebral collapse (traumatic – 2.1%, osteoporotic – 1.7%), infections (2.1%), and neoplasm (1.7%). MRI provides valuable information regarding the underlying causes of LBP, especially in disc and marrow pathology. PMID:27365953

  18. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  19. Open coil traction system.

    PubMed

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement. PMID:22567645

  20. Open system environment procurement

    NASA Technical Reports Server (NTRS)

    Fisher, Gary

    1994-01-01

    Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.

  1. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  2. Open architecture CNC system

    SciTech Connect

    Tal, J.; Lopez, A.; Edwards, J.M.

    1995-04-01

    In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool in a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.

  3. A secure open system?

    NASA Astrophysics Data System (ADS)

    Crowe, James A.

    1993-08-01

    The notion of a large distributed computing system in support of a program like EOSDIS, carries with it the requirement that the system provide the user with guarantees about the integrity of the data and certain assurances about the security of the network of computing systems. This paper examines the challenges of providing a `secure' open system and how these challenges may be addressed from both an architectural as well as functional viewpoint. The role of discretionary access control, mandatory access control, and detection and control of computer viruses is discussed. It has often been observed that the role of the security engineer is one of restricting access to data, whereas the role of the system architect, of an open system that is encouraging research, should make data easy to obtain and utilize. This paradox is manifest in a system such a EOSDIS where to be useful, the systems data must be easy to obtain, but to ensure the integrity of the data it must exercise some level of security. This paper address the use and role of the Security Services of the OSF Distributed Computing Environment in support of networked applications, such as those that may be used in the implementation of the EOS Science Network. It further examines the role of mandatory access control mechanisms to provide data integrity guarantees. The paper further discusses how a system like EOSDIS may prevent computer viruses using a system of automated detection mechanisms and configuration control.

  4. Naval open systems architecture

    NASA Astrophysics Data System (ADS)

    Guertin, Nick; Womble, Brian; Haskell, Virginia

    2013-05-01

    For the past 8 years, the Navy has been working on transforming the acquisition practices of the Navy and Marine Corps toward Open Systems Architectures to open up our business, gain competitive advantage, improve warfighter performance, speed innovation to the fleet and deliver superior capability to the warfighter within a shrinking budget1. Why should Industry care? They should care because we in Government want the best Industry has to offer. Industry is in the business of pushing technology to greater and greater capabilities through innovation. Examples of innovations are on full display at this conference, such as exploring the impact of difficult environmental conditions on technical performance. Industry is creating the tools which will continue to give the Navy and Marine Corps important tactical advantages over our adversaries.

  5. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. PMID:26094138

  6. Low-field MRI for studies of human pulmonary physiology and traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wilson, Alyssa; Devience, Stephen; Rosen, Matthew; Walsworth, Ronald

    2011-05-01

    We describe recent progress on the development of an open-access low-magnetic-field MRI system for studies of human pulmonary physiology and traumatic brain injury. Low-field MRI benefits from reduced magnetic susceptibility effects and can provide high-resolution images of the human body when used with hyperpolarized media such as 3He and 129Xe.

  7. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  8. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  9. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  10. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  11. OpenSM Monitoring System

    Energy Science and Technology Software Center (ESTSC)

    2015-04-17

    The OpenSM Monitoring System includes a collection of diagnostic and monitoring tools for use on Infiniband networks. The information this system gathers is obtained from a service, which in turn is obtained directly from the OpenSM subnet manager.

  12. Open fermionic quantum systems

    SciTech Connect

    Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )

    1993-01-15

    A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.

  13. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  14. Low-field MRI of laser polarized noble gas.

    PubMed

    Tseng, C H; Wong, G P; Pomeroy, V R; Mair, R W; Hinton, D P; Hoffmann, D; Stoner, R E; Hersman, F W; Cory, D G; Walsworth, R L

    1998-10-26

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems. PMID:11543589

  15. Low-field magnetic resonance imaging of gases

    SciTech Connect

    Schmidt, D.M.; Espy, M.A.

    1998-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main goal of this project was to develop the capability to conduct low-field magnetic resonance imaging of hyper-polarized noble gas nuclei and of thermally polarized protons in water. The authors constructed a versatile low-field NMR system using a SQUID gradiometer detector inside a magnetically shielded room. This device has sufficient low-field sensitivity to detect the small signals associated with NMR at low magnetic fields.

  16. An Open Source Simulation System

    NASA Technical Reports Server (NTRS)

    Slack, Thomas

    2005-01-01

    An investigation into the current state of the art of open source real time programming practices. This document includes what technologies are available, how easy is it to obtain, configure, and use them, and some performance measures done on the different systems. A matrix of vendors and their products is included as part of this investigation, but this is not an exhaustive list, and represents only a snapshot of time in a field that is changing rapidly. Specifically, there are three approaches investigated: 1. Completely open source on generic hardware, downloaded from the net. 2. Open source packaged by a vender and provided as free evaluation copy. 3. Proprietary hardware with pre-loaded proprietary source available software provided by the vender as for our evaluation.

  17. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  18. Sensor Open System Architecture (SOSA)

    NASA Astrophysics Data System (ADS)

    Collier, Charles P.; Lipkin, Ilya; Davidson, Steven A.; Dirner, Jason

    2016-05-01

    The Sensor Open System Architecture (SOSA) is a C4ISR-focused technical and economic collaborative effort between the Air Force, Navy, Army, the Department of Defense (DoD), Industry, and other Governmental agencies to develop (and incorporate) technical Open Systems Architecture standards in order to maximize C4ISR sub-system, system, and platform affordability, re-configurability, overall performance, and hardware/software/firmware re-use. The SOSA effort will effectively create an operational and technical framework for the integration of disparate payloads into C4ISR systems; with a focus on the development of a functional decomposition for common multi-purpose backbone architecture for radar, EO/IR, SIGINT, EW, and communications modalities. SOSA addresses hardware, software, and mechanical/electrical interfaces. The functional decomposition will produce a set of re-useable components, interfaces, and sub-systems that engender re-usable capabilities. This, in effect, creates a realistic and affordable ecosystem enabling mission effectiveness through systematic re-use of all available re-composed hardware, software, and electrical/mechanical base components and interfaces.

  19. Quasiequilibria in open quantum systems

    SciTech Connect

    Walls, Jamie D.

    2010-03-15

    In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.

  20. Perturbative approach to open circuit QED systems

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens

    2014-03-01

    Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. The proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system observables, which would otherwise be impractical. This enables us to investigate a variety of open circuit QED systems, including the open Jaynes-Cummings lattice model.

  1. Adiabaticity in open quantum systems

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo

    2016-03-01

    We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.

  2. Open architecture in control system integration

    SciTech Connect

    Wysor, R.W.; Carnal, C.L.; Igou, R.E.

    1993-09-01

    Open architecture offers the manufacturing community a number of advantages in the integration of future machine control systems. Among these advantages is the ability to upgrade and take advantage of innovative new control strategies. A key enabling technology in open architecture control systems is the digital signal processor (DSP). DSPs can be used to provide a complete control system or can enhance the computational capability of larger control systems. The use of DSPs in the integration of open architecture control systems is discussed, including their impact on reliability and control system functionality. In addition, the role of DSPs in control system architecture is addressed.

  3. Perturbative approach to Markovian open quantum systems

    PubMed Central

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  4. Low field magnetoresistance of gadolinium nanowire

    SciTech Connect

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2014-02-07

    We report low field (μ{sub 0}H < 0.2 T) magnetoresistance (MR) studies on a single Gd nanowire patterned from a nano-structured film (average grain size ∼ 35 nm) by focused ion beam. For comparison, we did similar MR measurements on a polycrystalline sample with large crystallographic grains (∼4 μm). It is observed that in the low field region where the MR is due to motion of magnetic domains, the MR in the large grained sample shows a close relation to the characteristic temperature dependent magnetocrystalline anisotropy including a sharp rise in MR at the spin reorientation transition at 235 K. In stark contrast, in the nanowire, the MR shows complete suppression of the above behaviours and it shows predominance of the grain boundary and spin disorder controlling the domain response.

  5. Open Source, Open Standards, and Health Care Information Systems

    PubMed Central

    2011-01-01

    Recognition of the improvements in patient safety, quality of patient care, and efficiency that health care information systems have the potential to bring has led to significant investment. Globally the sale of health care information systems now represents a multibillion dollar industry. As policy makers, health care professionals, and patients, we have a responsibility to maximize the return on this investment. To this end we analyze alternative licensing and software development models, as well as the role of standards. We describe how licensing affects development. We argue for the superiority of open source licensing to promote safer, more effective health care information systems. We claim that open source licensing in health care information systems is essential to rational procurement strategy. PMID:21447469

  6. Open Marriage: Implications for Human Service Systems

    ERIC Educational Resources Information Center

    O'Neill, Nena; O'Neill, George

    1973-01-01

    The authors of Open Marriage reiterate the meaning and possibilities of the open marriage concept and advance suggestions for change in the areas of residence, work, child care, and educational patterns. Human service systems must search out the universal values to be maintained in all human relationships. (Editor)

  7. Open System Architecture design for planet surface systems

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  8. Open quantum systems and random matrix theory

    SciTech Connect

    Mulhall, Declan

    2014-10-15

    A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.

  9. Consistent low-field mobility modeling for advanced MOS devices

    NASA Astrophysics Data System (ADS)

    Stanojević, Zlatan; Baumgartner, Oskar; Filipović, Lidija; Kosina, Hans; Karner, Markus; Kernstock, Christian; Prause, Philipp

    2015-10-01

    In this paper we develop several extensions to semi-classical modeling of low-field mobility, which are necessary to treat planar and non-planar channel geometries on equal footing. We advance the state-of-the-art by generalizing the Prange-Nee model for surface roughness scattering to non-planar geometries, providing a fully numerical treatment of Coulomb scattering, and formulating the Kubo-Greenwood mobility model in a consistent, dimension-independent manner. These extensions allow meaningful comparison of planar and non-planar structures alike, and open the door to evaluating emerging device concepts, such as the FinFET or the junction-less transistor, on physical grounds.

  10. Rewriting Modulo SMT and Open System Analysis

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  11. Very-low-field MRI of laser polarized xenon-129.

    PubMed

    Zheng, Yuan; Cates, Gordon D; Tobias, William A; Mugler, John P; Miller, G Wilson

    2014-10-17

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2(∗) species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2(∗) available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity. PMID:25462954

  12. Very-low-field MRI of laser polarized xenon-129

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan; Cates, Gordon D.; Tobias, William A.; Mugler, John P.; Miller, G. Wilson

    2014-12-01

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2 mT. A unique feature of this system was the use of Maxwell coils oriented at so-called 'magic angles' to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2∗species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2∗available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.

  13. Open Hardware for CERN's accelerator control systems

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Serrano, J.; Wlostowski, T.; Cattin, M.; Gousiou, E.; Alvarez Sanchez, P.; Boccardi, A.; Voumard, N.; Penacoba, G.

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an `Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  14. Repeated interactions in open quantum systems

    SciTech Connect

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  15. Quantum mechanics of open systems

    NASA Astrophysics Data System (ADS)

    Melikidze, Akakii

    In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.

  16. Mobile processing in open systems

    SciTech Connect

    Sapaty, P.S.

    1996-12-31

    A universal spatial automaton, called WAVE, for highly parallel processing in arbitrary distributed systems is described. The automaton is based on a virus principle where recursive programs, or waves, self-navigate in networks of data or processes in multiple cooperative parts while controlling and modifying the environment they exist in and move through. The layered general organization of the automaton as well as its distributed implementation in computer networks have been discussed. As the automaton dynamically creates, modifies, activates and processes any knowledge networks arbitrarily distributed in computer networks, it can easily model any other paradigms for parallel and distributed computing. Comparison of WAVE with some known programming models and languages, and ideas of their possible integration have also been given.

  17. Data Architecture in an Open Systems Environment.

    ERIC Educational Resources Information Center

    Bernbom, Gerald; Cromwell, Dennis

    1993-01-01

    The conceptual basis for structured data architecture, and its integration with open systems technology at Indiana University, are described. Key strategic goals guiding these efforts are discussed: commitment to improved data access; migration to relational database technology, and deployment of a high-speed, multiprotocol network; and…

  18. Optimization studies of the ITER low field side reflectometer

    SciTech Connect

    Diem, S. J.; Wilgen, J. B.; Bigelow, T. S.; Hanson, G. R.; Harvey, R. W.; Smirnov, A. P.

    2010-10-15

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  19. Optimization studies of the ITER low field side reflectometer.

    PubMed

    Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P

    2010-10-01

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern. PMID:21033946

  20. Optimization studies of the ITER low field side reflectometer

    SciTech Connect

    Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J

    2010-01-01

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, ELM density transients, and as a L-H transition monitor. The ITER low field side (LFS) reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  1. A generalized fidelity amplitude for open systems.

    PubMed

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. PMID:27140969

  2. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  3. OCSEGen: Open Components and Systems Environment Generator

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  4. Evolution of Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, A.

    2010-08-04

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.

  5. Enzyme efficiency: An open reaction system perspective

    NASA Astrophysics Data System (ADS)

    Banerjee, Kinshuk; Bhattacharyya, Kamal

    2015-12-01

    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for very small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k2/KM. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.

  6. Enzyme efficiency: An open reaction system perspective

    SciTech Connect

    Banerjee, Kinshuk; Bhattacharyya, Kamal

    2015-12-21

    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for very small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.

  7. Open, reconfigurable cytometric acquisition system: ORCAS.

    PubMed

    Naivar, Mark A; Parson, Jimmie D; Wilder, Mark E; Habbersett, Robert C; Edwards, Bruce S; Sklar, Larry; Nolan, John P; Graves, Steven W; Martin, John C; Jett, James H; Freyer, James P

    2007-11-01

    A digital signal processing (DSP)-based digital data acquisition system has been developed to support novel flow cytometry efforts. The system flexibility includes how it detects, captures, and processes event data. Custom data capture boards utilizing analog to digital converters (ADCs) and field programmable gate arrays (FPGA) detect events and capture correlated event data. A commercial DSP board processes the captured data and sends the results over the IEEE 1394 bus to the host computer that provides a user interface for acquisition, display, analysis, and storage. The system collects list mode data, correlated pulse shapes, or streaming data from a variety of detector types using Linux, Mac OS X, and Windows host computers. It extracts pulse features not found on commercial systems with excellent sensitivity and linearity over a wide dynamic range. List mode data are saved in FCS 3.0 formatted files while streaming or correlated waveform data are saved in custom format files for postprocessing. Open, reconfigurable cytometric acquisition system is compact, scaleable, flexible, and modular. Programmable feature extraction algorithms have exciting possibilities for both new and existing applications. The recent availability of a commercial data capture board will enable general availability of similar systems. PMID:17680705

  8. Uncertainty Relation for a Quantum Open System

    NASA Astrophysics Data System (ADS)

    Hu, B. L.; Zhang, Yuhong

    We derive the uncertainty relation for a quantum open system consisting of a Brownian particle interacting with a bath of quantum oscillators at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the system. We show that upon contact with the bath (assumed to be ohmic in this paper) the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is the same as the decoherence time in similar models in the discussion of quantum to classical transition. This offers some insight into the physical mechanisms involved in the environment-induced decoherence process. We obtain closed analytic expressions for this generalized uncertainty relation under the conditions of high temperature and weak damping, separately. We also consider under these conditions an arbitrarily squeezed initial state and show how the squeeze parameter enters in the generalized uncertainty relation. Using these results we examine the transition of the system from a quantum pure state to a nonequilibrium quantum statistical state and to an equilibrium quantum statistical state. The three stages are marked by the decoherence time and the relaxation time, respectively. With these observations we explicate the physical conditions under which the two basic postulates of quantum statistical mechanics become valid. We also comment on the inappropriate usage of the word “classicality” in many decoherence studies of quantum to classical transition.

  9. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  10. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  11. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  12. Intraventricular cerebrospinal fluid pulsation artifacts on low-field magnetic resonance imaging: Potential pitfall in diagnosis?

    PubMed Central

    Ogbole, Godwin I.; Soneye, Mayowa A.; Okorie, Chinonye N.; Sammet, Steffen

    2016-01-01

    Background: Intraventricular cerebrospinal fluid (CSF) pulsation artifact can pose a diagnostic problem in fluid-attenuated inversion recovery (FLAIR) brain magnetic resonance images (MRI) appearing as intraventricular hyperintensity. The extent of this challenge among radiologists in Africa using low-field MRI systems is relatively sparsely documented in the literature. The purpose of this study was to identify the presence and frequency of ventricular CSF pulsation artifact (VCSFA) on FLAIR axial brain images with a low-field MR system. Materials and Methods: FLAIR axial images were obtained on a low-field 0.3T unit (6000 ms/108 ms/2 [repetition time/echo time/excitations], inversion time = 1700 ms, field of view = 28 cm, matrix = 195 × 256, and 6 mm contiguous sections). Two experienced radiologists independently rated VCSFA in the lateral, third, and fourth ventricles in 202 consecutive patients (age range 1–100 years) referred for brain MR for various indications. We reviewed the pattern of artifacts, to determine its relationship to age, gender, and third ventricular size. Results: The low-field FLAIR MR brain images of 33 patients (16.3%) showed VCSFA in at least one ventricular cavity. The fourth ventricle was the most common site of VCSFA (n = 10), followed by the third ventricle (n = 8) and the lateral ventricles (n = 7). Eight patients had VCSFA in multiple locations, one of them in all ventricles. A smaller third ventricular size and, to a lesser extent, younger age was significantly associated with VCSFA. CSF Pulsation of VCSFA did not occur across the brain parenchyma in the phase encoding direction. Conclusion: VCSFA may mimic pathology on low-field axial FLAIR brain images and are more common in young patients with smaller ventricular size. Although these artifacts are less frequently observed at lower magnetic field strengths, their recognition on low-field MRI systems is important in avoiding a misdiagnosis. PMID:27185981

  13. Open Source Course Management Systems: A Case Study

    ERIC Educational Resources Information Center

    Remy, Eric

    2005-01-01

    In Fall 2003, Randolph-Macon Woman's College rolled out Claroline, an Open Source course management system for all the classes on campus. This document will cover some background on both Open Source in general and course management systems in specific, discuss technical challenges in the introduction and integration of the system and give some…

  14. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: Towards quantitative imaging

    NASA Astrophysics Data System (ADS)

    Dabek, Juhani; Vesanen, Panu T.; Zevenhoven, Koos C. J.; Nieminen, Jaakko O.; Sepponen, Raimo; Ilmoniemi, Risto J.

    2012-11-01

    In ultra-low-field magnetic resonance imaging (ULF MRI), measured resonance signals oscillate at Larmor frequencies around 1 kHz compared to even above 100 MHz in high-field MRI. Thus, detection by induction coils in ULF MRI is not feasible, whereas superconducting quantum interference device (SQUID) sensors can measure these femtotesla-level signals. The signal-to-noise ratio is enhanced by prepolarization in a field that is typically 100-1000 times higher than the field during acquisition. Based on both measurements and simulations, a procedure for calibrating a SQUID-sensor-based MRI system with MR images is presented in this article. Magnetoencephalography (MEG) can be integrated with ULF MRI, and may also benefit from such a calibration procedure. Conventionally, electromagnet probe signals have been used for the SQUID-sensor calibration in MEG; the presented ULF-MRI-based approach using an imaging phantom could replace this procedure in hybrid MEG-MRI or ULF MRI alone. The necessary theory is provided here with experimental verification. The calibration procedure opens the possibility of performing quantitative ULF MRI without sample-specific reference scans.

  15. A Framework for Open Textbooks Analytics System

    ERIC Educational Resources Information Center

    Prasad, Deepak; Totaram, Rajneel; Usagawa, Tsuyoshi

    2016-01-01

    In the last few years, open textbook development has picked up dramatically due both to the expense of commercially published textbooks and the increasing availability of high-quality OER alternatives. While this offers a tremendous benefit in terms of lowering student textbook costs, the question remains, to what extent (if any) do open textbooks…

  16. Quantum arrival time for open systems

    SciTech Connect

    Yearsley, J. M.

    2010-07-15

    We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to the probability current, so we explore the properties of the current for general open systems that can be written in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion, and show that after a time of order the localization time of the current becomes positive. We show that the arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which we compute. We perform a decoherent histories analysis including the effects of the environment and show that time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization time, but that there is a fundamental limitation on the accuracy {delta}t, with which they can be specified which obeys E{delta}t>>({h_bar}/2{pi}). We confirm that the arrival time probabilities computed in this way agree with those computed via the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival time distribution, and a systematic rule for deciding when probabilities may be assigned.

  17. Relativistic Quantum Metrology in Open System Dynamics

    PubMed Central

    Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang

    2015-01-01

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187

  18. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system is described including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirtconduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a tranversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure.

  19. Open cycle lithium chloride cooling system

    NASA Astrophysics Data System (ADS)

    Lenz, T. G.; Loef, G. O. G.; Iyer, R.; Wenger, J.

    1983-05-01

    A lithium chloride open cycle absorption chiller has been designed, built and tested. Solution reconcentration takes place in a small counter current packed column supplied with solar heated air. Removal of noncondensable gases that enter the chiller dissolved in the strong solution and the make-up refrigerant streams is accomplished by a liquid-jet ejector and a small vacuum pump. Cooling capacities approaching 1.4 tons and COP levels of 0.58 have been achieved at non-optimum operating conditions. Test results from preliminary system operation suggest that mass transfer processes in both the packed column reconcentrator and the absorber are controlled by concentration gradients in the lithium chloride solution. Liquid phase controlled mass transfer dictates an operating strategy different from the previously assumed gas phase controlled process to obtain maximum rates of evaporation in the packed column. Determination of optimal operating conditions leading to decreased electrical power consumption and improved cooling capacity and coefficient of performance will require further analysis and testing.

  20. Empowering open systems through cross-platform interoperability

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    2014-06-01

    Most of the motivations for open systems lie in the expectation of interoperability, sometimes referred to as "plug-and-play". Nothing in the notion of "open-ness", however, guarantees this outcome, which makes the increased interest in open architecture more perplexing. In this paper, we explore certain themes of open architecture. We introduce the concept of "windows of interoperability", which can be used to align disparate portions of architecture. Such "windows of interoperability", which concentrate on a reduced set of protocol and interface features, might achieve many of the broader purposes assigned as benefits in open architecture. Since it is possible to engineer proprietary systems that interoperate effectively, this nuanced definition of interoperability may in fact be a more important concept to understand and nurture for effective systems engineering and maintenance.

  1. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  2. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system includes a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flow path of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flow path and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support there for and impart a desired flow direction to the steam. 10 figs.

  3. Magnetic Resonance Relaxometry at Low and Ultra low Fields

    PubMed Central

    Volegov, P.; Flynn, M.; Kraus, R.; Magnelind, P.; Matlashov, A.; Nath, P.; Owens, T.; Sandin, H.; Savukov, I.; Schultz, L.; Urbaitis, A.; Zotev, V.; Espy, M.

    2011-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment. In this regime the proton Larmor frequencies (1 Hz – 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with “slow” molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques. We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented. Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited. PMID:21796269

  4. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited. PMID:21796269

  5. Open-ended magnetic confinement systems for fusion

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

  6. Open MPI for Cray XE/XK Systems

    SciTech Connect

    Gorentla Venkata, Manjunath; Graham, Richard L; Hjelm, Nathan T; Gutierrez, Samuel K

    2012-01-01

    Open MPI provides an implementation of the MPI standard supporting communications over a range of high-performance network interfaces. Recently, ORNL and LANL have collaborated on creating a port of Open MPI for Gemini, the network interface for Cray XE and XK systems. In this paper, we present our design and implementation of Open MPI's point-to-point and collective operations for Gemini, and techniques we employ to provide good scaling, and performance characteristics.

  7. Open Source Library Management Systems: A Multidimensional Evaluation

    ERIC Educational Resources Information Center

    Balnaves, Edmund

    2008-01-01

    Open source library management systems have improved steadily in the last five years. They now present a credible option for small to medium libraries and library networks. An approach to their evaluation is proposed that takes account of three additional dimensions that only open source can offer: the developer and support community, the source…

  8. Open Learning. Systems and Problems in Post-Secondary Education.

    ERIC Educational Resources Information Center

    MacKenzie, Norman; And Others

    Examined are open learning systems in Australia, Canada, France, Federal Republic of Germany, Iran, Israel, Japan, Kenya, Lebanon, Poland, Union of Soviet Socialist Republics, United Kingdom, and the United States. The implications of open-learning and its relation to nontraditional student and continuing education, educational and social…

  9. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between

  10. Transverse low-field RF coils in MRI.

    PubMed

    Claasen-Vujcić, T; Borsboom, H M; Gaykema, H J; Mehlkopf, T

    1996-07-01

    Imaging at low fields imposes a number of nonstandard requirements on the RF coil. At low fields, coil losses are dominant over patient losses. This means that even more stress is put on the quality factor Q. Furthermore, the low frequency also implies a high inductance L and/or a high capacitance C product. Just increasing the capacitance C results in a difficult optimal matching to the preamplifier as well as increased costs and higher complexity of the resonator construction. Coils with a high quality factor Q and a high inductance are thus required at low fields. Birdcage coils possess a number of advantages over saddle and solenoidal coils. However, the currently used birdcages have inherently low inductances limited by the size of the coil. The problem can be solved by a novel design in which the strip configuration for inductors is abandoned and the inductors are realized as a certain number of turns. The Q factor can be further improved by using Litz wire. Three novel transverse RF coils with high inductances are presented and compared with each other as well as to the standard coils. Both linear and quadrature modes are discussed. PMID:8795029

  11. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  12. 16. VIEW NORTH FROM SWINGSPAN DECK, CHANNEL OPEN, FENDER SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW NORTH FROM SWING-SPAN DECK, CHANNEL OPEN, FENDER SYSTEM AND ABUTMENT ON CHANNEL END OF NORTHERN FIXED SPAN; new bridge located on right - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  13. An open system for measuring canopy gas exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber systems were built and evaluated in 2006. This chamber system is an open or flow-through system that, once deployed in the field, can operate unattended for extended periods (e.g. overnight for example). The CETA chamber con...

  14. Canopy gas exchange measurements of cotton in an open system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated in 2006. This chamber system is an open or flow-through system that, once field deployed, can operate unattended for extended periods. The CETA chamber consisted of an aluminum framework, 1 m x 0.7...

  15. Developing open systems using theories and models of the world

    SciTech Connect

    Kokar, M.M.; Korona, Z.

    1996-12-31

    This paper considers an open system as such that can deal with inputs that were not anticipated by the designer. Using an ATR system as an example, we show how the combination of logic with software engineering techniques allowed us to improve the performance of the system.

  16. Dissipation and entropy production in open quantum systems

    NASA Astrophysics Data System (ADS)

    Majima, H.; Suzuki, A.

    2010-11-01

    A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.

  17. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  18. Limit of small exits in open Hamiltonian systems.

    PubMed

    Aguirre, Jacobo; Sanjuán, Miguel A F

    2003-05-01

    The nature of open Hamiltonian systems is analyzed, when the size of the exits decreases and tends to zero. Fractal basins appear typically in open Hamiltonian systems, but we claim that in the limit of small exits, the invariant sets tend to fill up the whole phase space with the strong consequence that a new kind of basin appears, where the unpredictability grows indefinitely. This means that for finite, arbitrarily small accuracy, we can find uncertain basins, where any information about the future of the system is lost. This total indeterminism had only been reported in dissipative systems, in particular in the so-called intermingled riddled basins, as well as in the riddledlike basins. We show that this peculiar, behavior is a general feature of open Hamiltonian systems. PMID:12786244

  19. Very low field magnetic resonance imaging with spintronic sensors.

    PubMed

    Herreros, Q; Dyvorne, H; Campiglio, P; Jasmin-Lebras, G; Demonti, A; Pannetier-Lecoeur, M; Fermon, C

    2013-09-01

    A very low field magnetic resonance imaging (MRI) setup based on magnetoresistive-superconducting mixed sensors is presented. A flux transformer is used to achieve coupling between the sample to image and the mixed sensor. The novel detector was implemented in a spin echo MRI experiment, exposing the mixed sensor to RF pulses without use of any RF switch. The performance of the novel detector is given in terms of signal-to-noise ratio and is compared with classical tuned coils. PMID:24089875

  20. Moving droplets between closed and open microfluidic systems.

    PubMed

    Wang, Weiqiang; Jones, Thomas B

    2015-05-21

    In electric-field-mediated droplet microfluidics, there are two distinct architectures - closed systems using parallel-plate electrodes and open systems using coplanar electrodes fabricated on an open substrate. An architecture combining both closed and open systems on a chip would facilitate many of the chemical and biological processes now envisioned for the laboratory on a chip. To accomplish such an integration requires a means to move droplets back and forth between the two. This paper presents an investigation of the requirements for such manipulation of both water and oil droplets. The required wetting conditions for a droplet to cross the open/closed boundary is revealed by a force balance analysis and predictions of this model are compared to experimental results. Water droplets can be moved between closed and open systems by electrowetting actuation; droplet detachment from the upper plate is facilitated by the use of beveled edge. The force model predicts that driving an oil droplet from a closed to an open structure requires an oleophobic surface. This prediction has been tested and confirmed using <100> silicon wafers made oleophobic by re-entrant microstructures etched into the surface. PMID:25850701

  1. Guidelines for the implementation of an open source information system

    SciTech Connect

    Doak, J.; Howell, J.A.

    1995-08-01

    This work was initially performed for the International Atomic Energy Agency (IAEA) to help with the Open Source Task of the 93 + 2 Initiative; however, the information should be of interest to anyone working with open sources. The authors cover all aspects of an open source information system (OSIS) including, for example, identifying relevant sources, understanding copyright issues, and making information available to analysts. They foresee this document as a reference point that implementors of a system could augment for their particular needs. The primary organization of this document focuses on specific aspects, or components, of an OSIS; they describe each component and often make specific recommendations for its implementation. This document also contains a section discussing the process of collecting open source data and a section containing miscellaneous information. The appendix contains a listing of various providers, producers, and databases that the authors have come across in their research.

  2. Driven harmonic oscillator as a quantum simulator for open systems

    SciTech Connect

    Piilo, Jyrki; Maniscalco, Sabrina

    2006-09-15

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  3. Open Access: A User Information System. Professional Paper Series, #6.

    ERIC Educational Resources Information Center

    Gleason, Bernard W.

    Focusing on the need for information systems that provide faculty, staff, and students with open access to all necessary information resources, this paper begins by discussing the issues involved in developing such systems. A review of the traditional environment looks at the traditional centralized resources versus the current trend toward…

  4. Control landscapes for observable preparation with open quantum systems

    SciTech Connect

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin

    2008-02-15

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape.

  5. An open systems architecture for development of a physician's workstation.

    PubMed Central

    Young, C. Y.; Tang, P. C.; Annevelink, J.

    1991-01-01

    We are developing a physician's workstation consisting of highly integrated information management tools for use by physicians in patient care. We have designed and implemented an open systems, client/server architecture as a development platform which allows new applications to be easily added to the system. Applications cooperate by exchanging messages via a broadcast message server. PMID:1807649

  6. Identification of open quantum systems from observable time traces

    SciTech Connect

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  7. Potentiality of Disaster Management Education through Open and Distance Learning System in Bangladesh Open University

    ERIC Educational Resources Information Center

    Ahmad, Saima; Numan, Sharker Md.

    2015-01-01

    Bangladesh Open University (BOU) is the only public educational institution in Bangladesh, where, a dual-mode method of learning system has been introduced. Established in 21st October, 1992, the University now accommodates 174,459 learners in 2012. The wide range networking of this university provides it a great prospect to execute a broad…

  8. Distillation of Bell states in open systems

    SciTech Connect

    Isasi, E.; Mundarain, D.

    2010-04-15

    In this work we show that the distillation protocol proposed by P. Chen et al. [Phys. Rev. A 54, 3824 (1996)] allows one to distill Bell states at any time for a system evolving in vacuum and prepared in an initial singlet. It is also shown that the same protocol, applied in nonzero temperature thermal baths, yields a considerable recovering of entanglement.

  9. Open systems dynamics for propagating quantum fields

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben Quinn

    In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a Markovian reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. In the context of quantum tomography or metrology one attempts, using measure- ments of the light, to extract information about the quantum state of the system. An inevitable consequence of these measurements is a disturbance of the system's quantum state. These ideas focus on the system and regard the light as ancillary. It serves its purpose as a probe or as a mechanism to generate interesting dynamics or system states but is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. What, then, when the state of light itself harbors intrinsic self-entanglement? One such set of states, those where a traveling wave packet is prepared with a defi- nite number of photons, is a focal point of this dissertation. These N-photon states are ideal candidates as couriers in quantum information processing device. In con- trast to quasi-classical states, such as coherent or thermal fields, N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The reduced state of a system probed by an N-photon state evolves in a non-Markovian way, and to describe its dynamics one is obliged to keep track of the field's evolution. I present a method to do this for an arbitrary quantum system using a set of coupled master equations. Many models set aside spatial degrees of freedom as an unnecessary complicating factor. By doing so the precision of predictions is limited. Consider a ensemble of cold, trapped atomic spins dispersively probed by a paraxial laser beam. Atom-light coupling across the ensemble is spatially inhomogeneous as is the radiation pattern of

  10. Information theory of open fragmenting systems

    SciTech Connect

    Gulminelli, F.; Juillet, O.; Ison, M. J.; Dorso, C. O.

    2007-02-12

    An information theory description of finite systems explicitly evolving in time is presented. We impose a MaxEnt variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix contains explicit time odd components in the form of collective flows. As a specific application we consider the dynamics of the expansion in connection with heavy ion experiments. Lattice gas and classical molecular dynamics simulations are shown.

  11. Periodic thermodynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.

  12. Periodic thermodynamics of open quantum systems.

    PubMed

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235

  13. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  14. Lessons learned in transitioning to an open systems environment

    NASA Technical Reports Server (NTRS)

    Boland, Dillard E.; Green, David S.; Steger, Warren L.

    1994-01-01

    Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).

  15. Exchange and correlation in open systems of fluctuating electron number

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Csonka, Gabor I.; Vydrov, Oleg A.; Scuseria, Gustavo E.; Staroverov, Viktor N.; Tao, Jianmin

    2007-10-15

    While the exact total energy of a separated open system varies linearly as a function of average electron number between adjacent integers, the energy predicted by semilocal density-functional approximations is concave up and the exact-exchange-only or Hartree-Fock energy is concave down. As a result, semilocal density functionals fail for separated open systems of fluctuating electron number, as in stretched molecular ions A{sub 2}{sup +} and in solid transition-metal oxides. We develop an exact-exchange theory and an exchange-hole sum rule that explain these failures and we propose a way to correct them via a local hybrid functional.

  16. Low cost open data acquisition system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  17. Low-field giant magnetoresistance in layered magnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Morecroft, D.; Ross, C. A.

    2006-12-01

    The low-field magnetization reversal of NiFe/Cu/Co multilayer mesoscopic elliptical and circular rings has been investigated via magnetoresistance measurements and micromagnetic modeling. Minor loop measurements, in which the NiFe layer is cycled for a fixed Co layer configuration, show qualitatively different behavior depending on whether the Co layer is present in a vortex or an onion state. Micromagnetic simulations are in excellent agreement with the experimental data and confirm the dominant role played by magnetostatic interactions between the Co and NiFe layers, as a result of stray fields from the domain walls present in the layers. Multiple stable remanent resistance levels can be obtained by cycling the rings at modest fields.

  18. Synthesis, characterization and low field emission of CN x nanotubes

    NASA Astrophysics Data System (ADS)

    Ding, Pei; Liang, Erjun; Chao, Mingju; Guo, Xinyong; Zhang, Jingwei

    2005-01-01

    Aligned CNx nanotubes were fabricated by pyrolyzing ethylenediamine on p-type Si(1 1 1) substrates using iron as the catalyst. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrum (XPS) and Raman spectroscopy were used to characterize the CNx nanotubes. The CNx nanotubes with the average length of 20 μm and diameters in the range of 50-100 nm have the "bamboo-like" structure and worse crystalline order. The low-field emission measurements of the CNx nanotubes indicated that 20 μA/cm2 current densities were observed at an electric field of 1.4 V/μm and 1.280 mA/cm2 were obtained at 2.54 V/μm. The CNx nanotubes exhibit better field emission properties than the carbon nanotubes and the BCN nanotubes. The emission mechanism of CNx nanotubes is also discussed.

  19. Interventional and intraoperative MRI at low field scanner--a review.

    PubMed

    Blanco, Roberto T; Ojala, Risto; Kariniemi, Juho; Perälä, Jukka; Niinimäki, Jaakko; Tervonen, Osmo

    2005-11-01

    Magnetic resonance imaging (MRI) is a cutting edge imaging modality in detecting diseases and pathologic tissue. The superior soft tissue contrast in MRI allows better definition of the pathology. MRI is increasingly used for guiding, monitoring and controlling percutaneous procedures and surgery. The rapid development of interventional techniques in radiology has led to integration of imaging with computers, new therapy devices and operating room like conditions. This has projected as faster and more accurate imaging and hence more demanding procedures have been applied to the repertoire of the interventional radiologist. In combining features of various other imaging modalities and adding some more into them, interventional MRI (IMRI) has potential to take further the interventional radiology techniques, minimally invasive therapies and surgery. The term "Interventional MRI" consists in short all those procedures, which are performed under MRI guidance. These procedures can be either percutaneous or open surgical of nature. One of the limiting factors in implementing MRI as guidance modality for interventional procedures has been the fact, that most widely used magnet design, a cylindrical magnet, is not ideal for guiding procedures as it does not allow direct access to the patient. Open, low field scanners usually operating around 0.2 T, offer this feature. Clumsy hardware, bad patient access, slow image update frequency and strong magnetic fields have been other limiting factors for interventional MRI. However, the advantages of MRI as an imaging modality have been so obvious that considerable development has taken place in the 20-year history of MRI. The image quality has become better, ever faster software, new innovative sequences, better MRI hardware and increased computing power have accelerated imaging speed and image quality to a totally new level. Perhaps the most important feature in the recent development has been the introduction of open

  20. Coarse grained open system quantum dynamics

    SciTech Connect

    Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe

    2008-11-21

    We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.

  1. Dynamics of an Open System for Repeated Harmonic Perturbation

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroshi; Zagrebnov, Valentin A.

    2016-05-01

    We use the Kossakowski-Lindblad-Davies formalism to study an open dynamical system defined as Markovian extension of the one-mode quantum resonator S, perturbed by repeated harmonic interaction with a chain of multi-level harmonic atoms C. The long-time asymptotic behaviour and correlations of various subsystems of the system S + C are treated in the framework of the W^*-dynamical system approach.

  2. GROSS AND HISTOPATHOLOGIC CORRELATION OF LOW-FIELD MAGNETIC RESONANCE IMAGING FINDINGS IN THE STIFLE OF ASYMPTOMATIC HORSES.

    PubMed

    Santos, Marcos P; Gutierrez-Nibeyro, Santiago D; McKnight, Alexia L; Singh, Kuldeep

    2015-01-01

    With the recent introduction of a 0.25T rotating MRI system, clinical evaluation of the equine stifle joint is now possible in the average equine athlete. A recent publication described common abnormalities of horses with stifle lameness detected with a low-field MRI system; however, postmortem corroboration of the lesions detected was not possible. Therefore, our objective was to compare postmortem findings with low-field MRI findings in equine cadaver stifle joints. Ten fresh cadaver stifle joints from horses without clinical signs of stifle disease were evaluated using low-field MRI, gross dissection, and histopathology. In eight stifles, either the lateral or medial cranial meniscotibial ligament had an irregular shape, fiber separation, or moderate abnormal signal intensity (SI) on all sequences. In five stifles, the medial femoral condyle had articular cartilage fibrillation with or without an osteochondral defect over the weight bearing surface of the medial femoral condyle. All stifles had abnormal SI on all sequences within the patellar ligaments that corresponded with adipose tissue infiltrating between the collagen bundles. Other abnormalities identified included articular cartilage fibrillation of the tibial condyles in three stifles, and articular cartilage fibrillation with chondral defects in the patella in three stifles. All abnormalities detected with low-field MRI were corroborated by gross dissection. Findings from the current study supported the use of low-field MRI for detection of stifle joint lesions in horses and demonstrated that some stifle joint pathologies may be subclinical in horses. PMID:25545132

  3. Duality quantum algorithm efficiently simulates open quantum systems.

    PubMed

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  4. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  5. Duality quantum algorithm efficiently simulates open quantum systems

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-07-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.

  6. Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia

    NASA Astrophysics Data System (ADS)

    Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.

    2000-06-01

    The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.

  7. Mechanism for quantum speedup in open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu

    2016-02-01

    The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.

  8. Multimedia Courseware in an Open Systems Environment: A Federal Strategy.

    ERIC Educational Resources Information Center

    Moline, Judi; And Others

    The Portable Courseware Project (PORTCO) of the U.S. Department of Defense (DoD) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby the federal multimedia courseware initiative leverages the open systems movement and the new realities of information technology. The federal…

  9. Eigenvalue problem of the Liouvillian of open quantum systems

    SciTech Connect

    Hatano, Naomichi; Petrosky, Tomio

    2015-03-10

    It is argued that the Liouvillian that appears in the Liouville-von Neumann equation for open quantum systems can have complex eigenvalues. Attention is paid to the question whether the Liouvillian has an eigenvalue that are not given by the difference of the two Hamiltonian eigenvalues.

  10. 21 CFR 11.30 - Controls for open systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Controls for open systems. 11.30 Section 11.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC... designed to ensure the authenticity, integrity, and, as appropriate, the confidentiality of...

  11. A Model Regional Open Learning System. Final Report.

    ERIC Educational Resources Information Center

    McBride, Jack

    This 1978 report on the model regional open learning system of the University of Mid-America (UMA), Lincoln, Nebraska, summarizes the activities of the following program areas: course development, delivery, research and dissemination, and governance and administration. Descriptions are provided of courses in the following stages of development:…

  12. Chinese Localisation of Evergreen: An Open Source Integrated Library System

    ERIC Educational Resources Information Center

    Zou, Qing; Liu, Guoying

    2009-01-01

    Purpose: The purpose of this paper is to investigate various issues related to Chinese language localisation in Evergreen, an open source integrated library system (ILS). Design/methodology/approach: A Simplified Chinese version of Evergreen was implemented and tested and various issues such as encoding, indexing, searching, and sorting…

  13. Unconventional and Innovative: The Open Croquet Project. The Systems Librarian

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    This brief article gives a description of the Open Croquet Project and its applications. The project's Web site describes Croquet as a "combination of computer software and network architecture that supports deep collaboration and resource sharing among large numbers of users within the context of a large-scale distributed information system." One…

  14. Open-frame system for single-molecule microscopy.

    PubMed

    Arsenault, Adriel; Leith, Jason S; Henkin, Gil; McFaul, Christopher M J; Tarling, Matthew; Talbot, Richard; Berard, Daniel; Michaud, Francois; Scott, Shane; Leslie, Sabrina R

    2015-03-01

    We present the design and construction of a versatile, open frame inverted microscope system for wide-field fluorescence and single molecule imaging. The microscope chassis and modular design allow for customization, expansion, and experimental flexibility. We present two components which are included with the microscope which extend its basic capabilities and together create a powerful microscopy system: A Convex Lens-induced Confinement device provides the system with single-molecule imaging capabilities, and a two-color imaging system provides the option of imaging multiple molecular species simultaneously. The flexibility of the open-framed chassis combined with accessible single-molecule, multi-species imaging technology supports a wide range of new measurements in the health, nanotechnology, and materials science research sectors. PMID:25832232

  15. Government Open Systems Interconnection Profile (GOSIP) transition strategy

    NASA Astrophysics Data System (ADS)

    Laxen, Mark R.

    1993-09-01

    This thesis analyzes the Government Open Systems Interconnection Profile (GOSIP) and the requirements of the Federal Information Processing Standard (FIPS) Publication 146-1. It begins by examining the International Organization for Standardization (ISO) Open Systems Interconnection (OSI) architecture and protocol suites and the distinctions between GOSIP version one and two. Additionally, it explores some of the GOSIP protocol details and discusses the process by which standards organizations have developed their recommendations. Implementation considerations from both government and vendor perspectives illustrate the barriers and requirements faced by information systems managers, as well as basic transition strategies. The result of this thesis is to show a transition strategy through an extended and coordinated period of coexistence due to extensive legacy systems and GOSIP product unavailability. Recommendations for GOSIP protocol standards to include capabilities outside the OSI model are also presented.

  16. Geometric phase for open quantum systems and stochastic unravelings

    SciTech Connect

    Bassi, Angelo; Ippoliti, Emiliano

    2006-06-15

    We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.

  17. Dynamical semigroup for unbounded repeated perturbation of an open system

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroshi; Zagrebnov, Valentin A.

    2016-02-01

    We consider a dynamical semigroup for unbounded Kossakowski-Lindblad-Davies generator corresponding to evolution of an open system for a tuned repeated harmonic perturbation. For this evolution, we prove the existence of uniquely determined minimal trace-preserving strongly continuous dynamical semigroups on the space of states. The corresponding dual W∗-dynamical system is shown to be unital quasi-free and completely positive automorphisms of the canonical commutation relation-algebra.

  18. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  19. Low-field magnetoelectric effect at room temperature

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Hiraoka, Yuji; Honda, Takashi; Ishikura, Taishi; Nakamura, Hiroyuki; Kimura, Tsuyoshi

    2010-10-01

    The discoveries of gigantic ferroelectric polarization in BiFeO3 (ref. 1) and ferroelectricity accompanied by a magnetic order in TbMnO3 (ref. 2) have renewed interest in research on magnetoelectric multiferroics, materials in which magnetic and ferroelectric orders coexist, from both fundamental and technological points of view. Among several different types of magnetoelectric multiferroic, magnetically induced ferroelectrics in which ferroelectricity is induced by complex magnetic orders, such as spiral orders, exhibit giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field. Many magnetically induced ferroelectrics showing the magnetoelectric effects have been found in the past several years. From a practical point of view, however, their magnetoelectric effects are useless because they operate only far below room temperature (for example, 28K in TbMnO3 (ref. 2) and 230K in CuO (ref. 11)). Furthermore, in most of them, the operating magnetic field is an order of tesla that is too high for practical applications. Here we report materials, Z-type hexaferrites, overcoming these problems on magnetically induced ferroelectrics. The best magnetoelectric properties were obtained for Sr3Co2Fe24O41 ceramics sintered in oxygen, which exhibit a low-field magnetoelectric effect at room temperature. Our result represents an important step towards practical device applications using the magnetoelectric effects.

  20. Two hot, low-field magnetic DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Liebert, J.; Schmidt, G. D.; Green, R. F.; Stockman, H. S.; Mcgraw, J. T.

    1983-01-01

    Two hot stars discovered in the Palomar Green survey which were found to exhibit peculiarly broad and strong Balmer lines possibly indicative of low magnetic fields are discussed. The stars, PG 1658+441 and PG 0136+251, were found to have extended trough-shaped Balmer and Lyman-alpha line profiles when compared to nonmagnetic dwarfs of similar temperatures. Further observations of PG 1658+441 show it to correspond to a 30,000 K pure hydrogen atmosphere and confirm its nature as a magnetic object with a longitudinal field strength of about 0.7 megagauss and a mean surface field of about 2.3 megagauss. PG 0136+251 is found to be a hotter star (40,000-50,000 K) with weaker lines. Although no strong evidence for magnetic line splitting was obtained, it is argued that neither a high surface gravity nor very rapid rotation can account for the Balmer line shapes. Results thus extend the range of magnetic degenerates to include very hot white dwarfs, and demonstrate the usefulness of line-widths as indicators of possible low-field magnetic sources.

  1. Low-field susceptibility anisotropy of some biotite crystals

    NASA Astrophysics Data System (ADS)

    Zapletal, Karel

    1990-10-01

    The low-field magnetic susceptibility anisotropy (LMA) of weakly magnetic rocks is dominated by paramagnetic minerals among which micas, and mainly biotite, is important. For this reason, the LMA of biotite crystals was investigated in detail. Natural biotite crystals (from ten localities) having a wide range of iron concentration were also studied by other methods, including optical microscopy, X-ray microanalysis, Mössbauer spectroscopy and induced isothermal remanent magnetization. Ferromagnetic inclusions disturbing the magnetic properties of biotite were revealed in some crystals. The measured mean bulk susceptibility of pure crystals (four localities) ranges from 1.0 × 10 -3 to 1.8 × 10 -3 SI and agrees with the susceptibility calculated from the iron concentration (ranging from 12 to 20 wt.%) determined for each specimen. The susceptibility ellipsoid of pure biotite crystals is rotational about the minimum susceptibility direction parallel to the crystallographic c'-axis, and the anisotropy degree ranges from 1.34 to 1.36.

  2. Low-field carrier transport properties in biased bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2014-07-01

    Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the metal-BLG contact resistance as the only one free fitting parameter, we find that the carrier density dependence of the calculated total conductivity agrees well with that observed in experiment under different temperatures. The conductivity results also suggest that in high carrier density range, the metal-BLG contact resistance can be a significant factor in determining the BLG conductivity at low temperature, and both acoustic phonon scattering and surface polar phonon scattering play important roles at higher temperature, especially for BLG samples with a low doping concentration, which can compete with charged impurity scattering.

  3. Low-field Hall effect near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Marianer, S.; Bergman, D. J.

    1989-06-01

    We use a random-resistor-network model to study the critical behavior of the low-field Hall constant in a three-dimensional (3D) metal-insulator composite near the percolation threshold. The transfer-matrix method, which was originally introduced for calculating conductivity, is generalized to be applicable to the calculation of the Hall constant and the magnetoresistance as well. We then use this generalized method to perform a renormalization-group calculation for a cubic random resistor network and two simulations of random resistor networks at the percolation threshold: one of cubes and the other of long (3D) strips. Fitting an expression RH~(p-pc)-g to the effective Hall constant RH of the network, we find a divergent Hall constant both from the renormalization-group calculation (g=0.625) and from the simulation of cubes (g=0.25), while the long-strips simulation yields one that is concentration independent, i.e., g=0.

  4. Experimental specification of open systems evolution physical principles

    NASA Astrophysics Data System (ADS)

    Brilkov, A. V.; Loginov, I. A.; Morozova, E. V.; Pechurkin, N. S.

    According to M. Eigen classification, open systems are thermodynamic systems able to maintain stable stationary state of two types: with constant flows and with constant organization case (or constant reacting forces). Thus, experimentalists possess open systems of two major types of evolution both for biology and thermodynamics. If evolutionary changes or transfer from one steady state to another in the result of changing qualitative properties of the system (e.g. after the processes of mutation or selection) take place in such systems, the main characteristics of these genetic reorganizations in populations of macromolecules or species, i.e. evolution steps can be measured without losing the community of approach from the point of view of both biology and physics. By now this has not been realized from the point of view of methodology, though a lot of data on the work of both types of "evolutionary machines" has been collected. In our experiments we used the Escherichia coli genetically engineered strains, containing in plasmids the cloned genes of marine photobacteria bioluminescence and genes of green fluorescent protein (GFP), which expression level can be easily changed and controlled. In spite of the apparent kinetic diversity of evolutionary transfers in two types of open systems, the general mechanisms characterizing the increase of used energy flow by bacterial populations can be revealed at their study. According to our observations, at spontaneous transfer from one steady state to another (e.g. in the process of microevolution), heat dissipation characterizing the rate of entropy growth should increase rather then decrease or maintain steady as M. Eigen, G. Nikolis and I. Prigogin believed. The results require further development of thermodynamic theory of open pre- and biological systems evolution.

  5. [Design of an Incremental and Open Laboratory Automation System].

    PubMed

    Xie, Chuanfen; Chen, Yueping; Wang, Zhihong

    2015-07-01

    Recent years have witnessed great development of TLA (Total Laboratory Automation) technology, however, its application hit the bottleneck of high cost and openess to other parties' instruments. Specifically speaking, the initial purchase of the medical devices requires large sum of money and the new system can hardly be compatible with existing equipment. This thesis proposes a new thought for system implementation that through incremental upgrade, the initial capital investment can be reduced and through open architecture and interfaces, the seamless connection of different devices can be achieved. This thesis elaborates on the standards that open architecture design should follow in aspect of mechanics, electro-communication and information interaction and the key technology points in system implementation. PMID:26665947

  6. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  7. Digital time stamping system based on open source technologies.

    PubMed

    Miskinis, Rimantas; Smirnov, Dmitrij; Urba, Emilis; Burokas, Andrius; Malysko, Bogdan; Laud, Peeter; Zuliani, Francesco

    2010-03-01

    A digital time stamping system based on open source technologies (LINUX-UBUNTU, OpenTSA, OpenSSL, MySQL) is described in detail, including all important testing results. The system, called BALTICTIME, was developed under a project sponsored by the European Commission under the Program FP 6. It was designed to meet the requirements posed to the systems of legal and accountable time stamping and to be applicable to the hardware commonly used by the national time metrology laboratories. The BALTICTIME system is intended for the use of governmental and other institutions as well as personal bodies. Testing results demonstrate that the time stamps issued to the user by BALTICTIME and saved in BALTICTIME's archives (which implies that the time stamps are accountable) meet all the regulatory requirements. Moreover, the BALTICTIME in its present implementation is able to issue more than 10 digital time stamps per second. The system can be enhanced if needed. The test version of the BALTICTIME service is free and available at http://baltictime. pfi.lt:8080/btws/ and http://baltictime.lnmc.lv:8080/btws/. PMID:20211793

  8. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  9. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. PMID:25850822

  10. Mining chemical patents with an ensemble of open systems

    PubMed Central

    Leaman, Robert; Wei, Chih-Hsuan; Zou, Cherry; Lu, Zhiyong

    2016-01-01

    The significant amount of medicinal chemistry information contained in patents makes them an attractive target for text mining. In this manuscript, we describe systems for named entity recognition (NER) of chemicals and genes/proteins in patents, using the CEMP (for chemicals) and GPRO (for genes/proteins) corpora provided by the CHEMDNER task at BioCreative V. Our chemical NER system is an ensemble of five open systems, including both versions of tmChem, our previous work on chemical NER. Their output is combined using a machine learning classification approach. Our chemical NER system obtained 0.8752 precision and 0.9129 recall, for 0.8937 f-score on the CEMP task. Our gene/protein NER system is an extension of our previous work for gene and protein NER, GNormPlus. This system obtained a performance of 0.8143 precision and 0.8141 recall, for 0.8137 f-score on the GPRO task. Both systems achieved the highest performance in their respective tasks at BioCreative V. We conclude that an ensemble of independently-created open systems is sufficiently diverse to significantly improve performance over any individual system, even when they use a similar approach. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. PMID:27173521

  11. Mining chemical patents with an ensemble of open systems.

    PubMed

    Leaman, Robert; Wei, Chih-Hsuan; Zou, Cherry; Lu, Zhiyong

    2016-01-01

    The significant amount of medicinal chemistry information contained in patents makes them an attractive target for text mining. In this manuscript, we describe systems for named entity recognition (NER) of chemicals and genes/proteins in patents, using the CEMP (for chemicals) and GPRO (for genes/proteins) corpora provided by the CHEMDNER task at BioCreative V. Our chemical NER system is an ensemble of five open systems, including both versions of tmChem, our previous work on chemical NER. Their output is combined using a machine learning classification approach. Our chemical NER system obtained 0.8752 precision and 0.9129 recall, for 0.8937 f-score on the CEMP task. Our gene/protein NER system is an extension of our previous work for gene and protein NER, GNormPlus. This system obtained a performance of 0.8143 precision and 0.8141 recall, for 0.8137 f-score on the GPRO task. Both systems achieved the highest performance in their respective tasks at BioCreative V. We conclude that an ensemble of independently-created open systems is sufficiently diverse to significantly improve performance over any individual system, even when they use a similar approach.Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. PMID:27173521

  12. An open system network for the biological sciences.

    PubMed Central

    Springer, G. K.; Loch, J. L.; Patrick, T. B.

    1991-01-01

    A description of an open system, distributed computing environment for the Biological Sciences is presented. This system utilizes a transparent interface in a computer network using NCS to implement an application system for molecular biologists to perform various processing activities from their local workstation. This system accepts requests for the services of a remote database server, located across the network, to perform all of the database searches needed to support the activities of the user. This database access is totally transparent to the user of the system and it appears, to the user, that all activities are being carried out on the local workstation. This system is a prototype for a much more extensive system being built to support the research efforts in the Biological Sciences at UMC. PMID:1807659

  13. A pseudospectral method for optimal control of open quantum systems.

    PubMed

    Li, Jr-Shin; Ruths, Justin; Stefanatos, Dionisis

    2009-10-28

    In this paper, we present a unified computational method based on pseudospectral approximations for the design of optimal pulse sequences in open quantum systems. The proposed method transforms the problem of optimal pulse design, which is formulated as a continuous-time optimal control problem, to a finite-dimensional constrained nonlinear programming problem. This resulting optimization problem can then be solved using existing numerical optimization suites. We apply the Legendre pseudospectral method to a series of optimal control problems on open quantum systems that arise in nuclear magnetic resonance spectroscopy in liquids. These problems have been well studied in previous literature and analytical optimal controls have been found. We find an excellent agreement between the maximum transfer efficiency produced by our computational method and the analytical expressions. Moreover, our method permits us to extend the analysis and address practical concerns, including smoothing discontinuous controls as well as deriving minimum-energy and time-optimal controls. The method is not restricted to the systems studied in this article and is applicable to optimal manipulation of both closed and open quantum systems. PMID:19894930

  14. Open system trajectories specify fluctuating work but not heat.

    PubMed

    Talkner, Peter; Hänggi, Peter

    2016-08-01

    Based on the explicit knowledge of a Hamiltonian of mean force, the classical statistical mechanics and equilibrium thermodynamics of open systems in contact with a thermal environment at arbitrary interaction strength can be formulated. Yet, even though the Hamiltonian of mean force uniquely determines the equilibrium phase space probability density of a strongly coupled open system, the knowledge of this probability density alone is insufficient to determine the Hamiltonian of mean force, needed in constructing the underlying statistical mechanics and thermodynamics. We demonstrate that under the assumption that the Hamiltonian of mean force is known, an extension of thermodynamic structures from the level of averaged quantities to fluctuating objects (i.e., a stochastic thermodynamics) is possible. However, such a construction undesirably also involves a vast ambiguity. This situation is rooted in the eminent lack of a physical guiding principle allowing us to distinguish a physically meaningful theory out of a multitude of other equally conceivable ones. PMID:27627282

  15. Controlling open quantum systems: tools, achievements, and limitations

    NASA Astrophysics Data System (ADS)

    Koch, Christiane P.

    2016-06-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions.

  16. Controlling open quantum systems: tools, achievements, and limitations.

    PubMed

    Koch, Christiane P

    2016-06-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. PMID:27143501

  17. Detecting quantum speedup in closed and open systems

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu

    2016-07-01

    We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.

  18. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    USGS Publications Warehouse

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  19. [Optimization of Three-dimensional Ultrashort Echo Time Magnetic Resonance Imaging at a Low Field].

    PubMed

    Huang, Yuli; Du, Yiping

    2015-12-01

    Conventional magnetic resonance (MR) pulse sequences typically have an echo time (TE) of 1 ms or longer, providing an excellent contrast between different soft tissues. However, some short T2 tissues appear dark in conventional MR images because the signal from these tissues has decayed to nearly zero before the center of k-space is acquired. Because of the ability of directly imaging short T2 tissues, ultrashort echo time technique has been widely studied in recent years. An overwhelming majority of the studies were carried out at high fields, while many low- field scanner systems are still used in developing countries. To investigate the effects of the delay between analog-to-digital converter sampling and the readout gradient, the TE of the second echo used to calculate the R2 * map, and the undersampling ratio on the results of three-dimensional (3D) ultrashort echo time imaging at a low field, we implemented a 3D ultrashort echo time sequence on a 0. 35T scanner. Different parameters were used and the reconstructed images and R2 * maps were compared. Images reconstructed with slightly varying delays appeared quite different. Different contrast between short and long T2 tissues were found in R2 * maps calculated with different echoes. The result of undersampling study indicated that excessive undersampling could cause unwanted blurring, making it difficult to better visualize the short T2 tissues in the R2 * map. The results suggested that cautions should be taken in the choice of these parameters in 3D ultrashort echo time imaging. Short T2 tissues can be visualized with appropriate imaging parameters at this low field. PMID:27079094

  20. Open architecture for health care systems: the European RICHE experience.

    PubMed

    Frandji, B

    1997-01-01

    Groupe RICHE is bringing to the market of health IT the Open Systems approach allowing a new generation of health information systems to arise with benefit for patients, health care professionals, hospital managers, agencies and citizens. Groupe RICHE is a forum for exchanging information, expertise around open systems in health care. It is open to any organisation interested by open systems in health care and wanting to participate and influence the work done by its user, marketing and technical committees. The Technical Committee is in charge of the maintenance of the architecture and impact the results of industrial experiences on new releases. Any Groupe RICHE member is entitled to participate to this process. This unique approach in Europe allows health care professionals to benefit from applications supporting their business processes, including providing a cooperative working environment, a shared electronic record, in an integrated system where the information is entered only once, customised according to the user needs and available to the administrative applications. This allows Hospital managers to satisfy their health care professionals, to smoothly migrate from their existing environment (protecting their investment), to choose products in a competitive environment, being able to mix and match system components and services from different suppliers, being free to change suppliers without having to replace their existing system (minimising risk), in line with national and regional strategies. For suppliers, this means being able to commercialise products well fitted to their field of competence in a large market, reducing investments and increasing returns. The RICHE approach also allows agencies to define a strategy, allowing to create a supporting infrastructure, organising the market leaving enough freedom to health care organisations and suppliers. Such an approach is based on the definition of an open standard architecture. The RICHE esprit project

  1. Protecting sensitive systems and data in an open agency

    NASA Technical Reports Server (NTRS)

    Hunt, Douglas B.; Tompkins, Frederick G.

    1987-01-01

    This paper focuses on the policy and definitional issues associated with providing adequate and reasonable levels of protection for sensitive systems and data in an agency whose basic charter mandates the open sharing of information and transfer of technology into the market economy. An information model based on current Federal regulatory issuances is presented. A scheme for determining sensitivity levels, based on a categorization taxonomy,is provided.

  2. Dynamics of open bosonic quantum systems in coherent state representation

    SciTech Connect

    Dalvit, D. A. R.; Berman, G. P.; Vishik, M.

    2006-01-15

    We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.

  3. Shear Flow Pumping in Open Micro- and Nanofluidic Systems

    NASA Astrophysics Data System (ADS)

    Rauscher, Markus; Dietrich, S.; Koplik, Joel

    2007-06-01

    Based on a novel interplay of wetting adhesion and concurrent flow concepts, we propose to drive open microfluidic systems by shear in a covering fluid layer, e.g., oil covering water-filled chemical channels. The advantages are simpler forcing and prevention of evaporation of volatile components. We calculate the expected throughput for straight channels and show that devices can be built with off-the-shelf technology. Molecular dynamics simulations suggest that this concept is scalable down to the nanoscale.

  4. Investigating non-Markovian dynamics of quantum open systems

    NASA Astrophysics Data System (ADS)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  5. Non-cryogenic anatomical imaging in ultra-low field regime: Hand MRI demonstration

    NASA Astrophysics Data System (ADS)

    Savukov, I.; Karaulanov, T.; Castro, A.; Volegov, P.; Matlashov, A.; Urbatis, A.; Gomez, J.; Espy, M.

    2011-08-01

    Ultra-low field (ULF) MRI with a pulsed prepolarization is a promising method with potential for applications where conventional high-, mid-, and low-field medical MRI cannot be used due to cost, weight, or other restrictions. Previously, successful ULF demonstrations of anatomical imaging were made using liquid helium-cooled SQUIDs and conducted inside a magnetically shielded room. The Larmor frequency for these demonstrations was ˜3 kHz. In order to make ULF MRI more accessible, portable, and inexpensive, we have recently developed a non-cryogenic system. To eliminate the requirement for a magnetically shielded room and improve the detection sensitivity, we increased the frequency to 83.6 kHz. While the background noise at these frequencies is greatly reduced, this is still within the ULF regime and most of its advantages such as simplicity in magnetic field generation hardware, and less stringent requirements for uniform fields, remaining. In this paper we demonstrate use of this system to image a human hand with up to 1.5 mm resolution. The signal-to-noise ratio was sufficient to reveal anatomical features within a scan time of less than 7 min. This prototype can be scaled up for constructing head and full body scanners, and work is in progress toward demonstration of head imaging.

  6. Non-cryogenic anatomical imaging in ultra-low field regime: Hand MRI demonstration

    PubMed Central

    Savukov, I.; Karaulanov, T.; Castro, A.; Volegov, P.; Matlashov, A.; Urbatis, A.; Gomez, J.; Espy, M.

    2011-01-01

    Ultra-low field (ULF) MRI with a pulsed prepolarization is a promising method with potential for applications where conventional high-, mid-, and low-field medical MRI cannot be used due to cost, weight, or other restrictions. Previously, successful ULF demonstrations of anatomical imaging were made using liquid helium-cooled SQUIDs and conducted inside a magnetically shielded room. The Larmor frequency for these demonstrations was ~ 3 kHz. In order to make ULF MRI more accessible, portable, and inexpensive, we have recently developed a non-cryogenic system. To eliminate the requirement for a magnetically shielded room and improve the detection sensitivity, we increased the frequency to 83.6 kHz. While the background noise at these frequencies is greatly reduced, this is still within the ULF regime and most of its advantages such as simplicity in magnetic field generation hardware, less stringent requirements for uniform fields etc., remaining. In this paper we demonstrate use of this system to image a human hand with up to 1.5 mm resolution. The signal-to-noise ratio was sufficient to reveal anatomical features within a scan time of less than 7 minutes. This prototype can be scaled up for constructing head and full body scanners, and work is in progress toward demonstration of head imaging. PMID:21700482

  7. Environmental impacts of open loop geothermal system on groundwater

    NASA Astrophysics Data System (ADS)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  8. A systems approach to achieving the benefits of open and modular systems

    NASA Astrophysics Data System (ADS)

    Pearson, Gavin; Smith, Richard; Tripp, Howard; Worthington, Olwen

    2015-05-01

    The ability to evolve Military Communication and Information Systems (CIS) effectively and affordably is enhanced by the adoption of open and modular system architectures. However, there are a number of issues with actually achieving these benefits in practice. This paper presents the results of an initial system study into blockers to the achievement of the benefits of open and modular systems. In particular, the study and this paper, focuses on the issues associated with: the rapidly evolving Information and Communications Technology landscape; the commercial approach to the procurement of CIS systems; the evolution of such systems in a safe and secure manner.

  9. Open Source and Open Standard based decision support system: the example of lake Verbano floods management.

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Antonovic, Milan; Pozzoni, Maurizio; Graf, Andrea

    2015-04-01

    The Locarno area (Switzerland, Canton Ticino) is exposed to lacual floods with a return period of about 7-8 years. The risk is of particular concern because the area is located in a floodplain that registered in the last decades a great increase in settlement and values of the real estates. Moreover small differences in lake altitude may produce a significant increase in flooded area due to the very low average slope of the terrain. While fatalities are not generally registered, several important economic costs are associated, e.g.: damages to real estates, interruption of activities, evacuation and relocation and environmental damages. While important events were registered in 1978, 1993, 2000, 2002 and 2014 the local stakeholder invested time and money in the set-up of an up-to-date decision support system that allows for the reduction of risks. Thanks to impressive technological advances the visionary concept of the Digital Earth (Gore 1992, 1998) is being realizing: geospatial coverages and monitoring systems data are increasingly available on the Web, and more importantly, in a standard format. As a result, today is possible to develop innovative decision support systems (Molinari et al. 2013) which mesh-up several information sources and offers special features for risk scenarios evaluation. In agreement with the exposed view, the authors have recently developed a new Web system whose design is based on the Service Oriented Architecture pattern. Open source software (e.g.: Geoserver, PostGIS, OpenLayers) has been used throughout the whole system and geospatial Open Standards (e.g.: SOS, WMS, WFS) are the pillars it rely on. SITGAP 2.0, implemented in collaboration with the Civil protection of Locarno e Vallemaggia, combines a number of data sources such as the Federal Register of Buildings and Dwellings, the Cantonal Register of residents, the Cadastral Surveying, the Cantonal Hydro-meteorological monitoring observations, the Meteoswiss weather forecasts, and

  10. Shiftable belt conveyor systems in open pit mining

    SciTech Connect

    Weissflog, J.

    1983-10-01

    During recent years the open-cast mining scene in the USA has altered and the first steps towards continuous haulage have been made. The authors are of the opinion that this development will continue in the future due to the fact that governments, not only the American Government, have introduced environmental laws and regulations which require very high standards of reclamation of mined-out areas. To improve the strip mining system and to improve and to meet reclamation standards, many mining companies now start to operate with cross pit conveying or round the pit conveying systems.

  11. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  12. Ultra-low field magnetic resonance imaging detection with gradient tensor compensation in urban unshielded environment

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Qiu, Longqing; Shi, Wen; Chang, Baolin; Qiu, Yang; Xu, Lu; Liu, Chao; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2013-03-01

    An ultra-low field (ULF) magnetic resonance imaging (MRI) system was set up in an urban laboratory without magnetic shielding. The measured environmental gradient fields of 1 ˜ 5 μT/m caused image distortion. We designed a gradient detection and compensation system to effectively balance the gradient tensor components. The free induction decay signal duration of tap water was thus extended from 0.3 s to 2.5 s, providing the possibility for high-resolution imaging. Two-dimensional MRI images were then obtained at 130 μT with a helium-cooled second-order superconducting quantum interference device gradiometer. This result allows us to develop an inexpensive ULF MRI system for biological studies.

  13. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGESBeta

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  14. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  15. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging.

    PubMed

    Malone, Michael W; Yoder, Jacob; Hunter, James F; Espy, Michelle A; Dickman, Lee T; Nelson, Ron O; Vogel, Sven C; Sandin, Henrik J; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  16. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  17. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    NASA Astrophysics Data System (ADS)

    Agulles-Pedrós, L.; Abril, A.

    2016-07-01

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  18. Open Source Dataturbine (OSDT) Android Sensorpod in Environmental Observing Systems

    NASA Astrophysics Data System (ADS)

    Fountain, T. R.; Shin, P.; Tilak, S.; Trinh, T.; Smith, J.; Kram, S.

    2014-12-01

    The OSDT Android SensorPod is a custom-designed mobile computing platform for assembling wireless sensor networks for environmental monitoring applications. Funded by an award from the Gordon and Betty Moore Foundation, the OSDT SensorPod represents a significant technological advance in the application of mobile and cloud computing technologies to near-real-time applications in environmental science, natural resources management, and disaster response and recovery. It provides a modular architecture based on open standards and open-source software that allows system developers to align their projects with industry best practices and technology trends, while avoiding commercial vendor lock-in to expensive proprietary software and hardware systems. The integration of mobile and cloud-computing infrastructure represents a disruptive technology in the field of environmental science, since basic assumptions about technology requirements are now open to revision, e.g., the roles of special purpose data loggers and dedicated site infrastructure. The OSDT Android SensorPod was designed with these considerations in mind, and the resulting system exhibits the following characteristics - it is flexible, efficient and robust. The system was developed and tested in the three science applications: 1) a fresh water limnology deployment in Wisconsin, 2) a near coastal marine science deployment at the UCSD Scripps Pier, and 3) a terrestrial ecological deployment in the mountains of Taiwan. As part of a public education and outreach effort, a Facebook page with daily ocean pH measurements from the UCSD Scripps pier was developed. Wireless sensor networks and the virtualization of data and network services is the future of environmental science infrastructure. The OSDT Android SensorPod was designed and developed to harness these new technology developments for environmental monitoring applications.

  19. Modular open RF architecture: extending VICTORY to RF systems

    NASA Astrophysics Data System (ADS)

    Melber, Adam; Dirner, Jason; Johnson, Michael

    2015-05-01

    Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.

  20. 47 CFR 76.1501 - Qualifications to be an open video system operator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Qualifications to be an open video system... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1501 Qualifications to be an open video system operator. Any person may obtain a certification to operate an...

  1. 47 CFR 76.1712 - Open video system (OVS) requests for carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Open video system (OVS) requests for carriage... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1712 Open video system (OVS) requests for carriage. An open video system operator shall maintain...

  2. 47 CFR 76.1504 - Rates, terms and conditions for carriage on open video systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... open video systems. 76.1504 Section 76.1504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1504 Rates, terms and conditions for carriage on open video systems. (a) Reasonable rate principle....

  3. 47 CFR 76.1712 - Open video system (OVS) requests for carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Open video system (OVS) requests for carriage... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1712 Open video system (OVS) requests for carriage. An open video system operator shall maintain...

  4. 47 CFR 76.1501 - Qualifications to be an open video system operator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Qualifications to be an open video system... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1501 Qualifications to be an open video system operator. Any person may obtain a certification to operate an...

  5. 47 CFR 76.1712 - Open video system (OVS) requests for carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Open video system (OVS) requests for carriage... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1712 Open video system (OVS) requests for carriage. An open video system operator shall maintain...

  6. 47 CFR 76.1504 - Rates, terms and conditions for carriage on open video systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... open video systems. 76.1504 Section 76.1504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1504 Rates, terms and conditions for carriage on open video systems. (a) Reasonable rate principle....

  7. 47 CFR 76.1712 - Open video system (OVS) requests for carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Open video system (OVS) requests for carriage... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1712 Open video system (OVS) requests for carriage. An open video system operator shall maintain...

  8. 47 CFR 76.1712 - Open video system (OVS) requests for carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Open video system (OVS) requests for carriage... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1712 Open video system (OVS) requests for carriage. An open video system operator shall maintain...

  9. 47 CFR 76.1501 - Qualifications to be an open video system operator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Qualifications to be an open video system... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1501 Qualifications to be an open video system operator. Any person may obtain a certification to operate an...

  10. 47 CFR 76.1504 - Rates, terms and conditions for carriage on open video systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... open video systems. 76.1504 Section 76.1504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1504 Rates, terms and conditions for carriage on open video systems. (a) Reasonable rate principle....

  11. 47 CFR 76.1504 - Rates, terms and conditions for carriage on open video systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... open video systems. 76.1504 Section 76.1504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1504 Rates, terms and conditions for carriage on open video systems. (a) Reasonable rate principle....

  12. 47 CFR 76.1501 - Qualifications to be an open video system operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Qualifications to be an open video system... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1501 Qualifications to be an open video system operator. Any person may obtain a certification to operate an...

  13. 47 CFR 76.1501 - Qualifications to be an open video system operator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Qualifications to be an open video system... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1501 Qualifications to be an open video system operator. Any person may obtain a certification to operate an...

  14. Characterization of Oat (Avena nuda L.) β-Glucan Cryogelation Process by Low-Field NMR.

    PubMed

    Wu, Jia; Li, Linlin; Wu, Xiaoyan; Dai, Qiaoling; Zhang, Ru; Zhang, Yi

    2016-01-13

    Low-field nuclear magnetic resonance (LF-NMR) is a useful method in studying the water distribution and mobility in heterogeneous systems. This technique was used to characterize water in an oat β-glucan aqueous system during cryogelation by repeated freeze-thaw treatments. The results indicated that microphase separation occurred during cryogelation, and three water components were determined in the cryostructure. The spin-spin relaxation time was analyzed on the basis of chemical exchange and diffusion exchange theory. The location of each water component was identified in the porous microstructure of the cryogel. The pore size measured from the SEM image is in accordance with that estimated from relaxation time. The formation of cryogel is confirmed by rheological method. The results suggested that the cryogelation process of the polysaccharide could be monitored by LF-NMR through the evolution of spin-spin relaxation characteristics. PMID:26653669

  15. Nursing Services Delivery Theory: an open system approach

    PubMed Central

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  16. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  17. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  18. a Cultural Landscape Information System Developed with Open Source Tools

    NASA Astrophysics Data System (ADS)

    Chudyk, C.; Müller, H.; Uhler, M.; Würriehausen, F.

    2013-07-01

    Since 2010, the state of Rhineland-Palatinate in Germany has developed a cultural landscape information system as a process to secure and further enrich aggregate data about its cultural assets. In an open dialogue between governing authorities and citizens, the intention of the project is an active cooperation of public and private actors. A cultural landscape information system called KuLIS was designed as a web platform, combining semantic wiki software with a geographic information system. Based on data sets from public administrations, the information about cultural assets can be extended and enhanced by interested participants. The developed infrastructure facilitates local information accumulation through a crowdsourcing approach. This capability offers new possibilities for e-governance and open data developments. The collaborative approach allows governing authorities to manage and supervise official data, while public participation enables affordable information acquisition. Gathered cultural heritage information can provide incentives for touristic valorisation of communities or concepts for strengthening regional identification. It can also influence political decisions in defining significant cultural regions worth of protecting from industrial influences. The presented cultural landscape information allows citizens to influence the statewide development of cultural landscapes in a democratic way.

  19. NIRVANA GOSIP (Government Open Systems Interconnect Profile) requirements

    SciTech Connect

    Wood, B.J.

    1990-08-01

    NIRVANA is an effort to standardize electrical computer-aided design workstations at Sandia National Laboratories in Albuquerque, New Mexico. The early effect of this project will be the introduction of at least 60 new engineering workstations at Sandia National Laboratories, Albuquerque, and at Allied Signal, Kansas City Division. These workstations are expected to begin arriving in September 1990. This paper outlines the requirements that a NIRVANA Network must satisfy to comply with the Government Open Systems Interconnect Profile (GOSIP). The author also identifies several issues involved in achieving GOSIP compliance. 4 refs., 1 fig.

  20. Open System Interconnection - NASA program communications of the future

    NASA Astrophysics Data System (ADS)

    Brady, Charles D.

    Open Systems Interconnection (OSI) standards are being developed by the ISO and the Consultative Committee on International Telephone and Telegraph with the support of industry. These standards are being developed to allow the interconnecting of computer systems and the interworking of applications such that the applications can be independent of any equipment manufacturer. Significant progress has been made, and the establishment of government OSI standards is being considered. There is considerable interest within NASA in the potential benefits of OSI and in communications standards in general. The OSI standards are being considered for possible application in the Space Station onboard data management system. The OSI standards have reached a high level of maturity, and it is now imperative that NASA plan for future migration to OSI where appropriate.

  1. Thermodynamics of trajectories of open quantum systems, step by step

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Xuereb, André

    2016-06-01

    Thermodynamics of trajectories promises to make possible the thorough analysis of the dynamical properties of an open quantum system, a sought-after goal in modern physics. Unfortunately, calculation of the relevant quantities presents severe challenges. Determining the large-deviation function that gives access to the full counting statistics associated with a dynamical order parameter is challenging, if not impossible, even for systems evolving in a restricted Liouville space. Acting on the realisation that the salient features of most dynamical systems are encoded in the first few moments of the counting statistics, in this article we present a method that gives sequential access to these moments. Our method allows for obtaining analytical result in several cases, as we illustrate, and allows using large deviation theory to reinterpret certain well-known results.

  2. Dentocase - open-source education management system in dentistry.

    PubMed

    Peroz, I; Seidel, O; Böning, K; Bösel, C; Schütte, U

    2004-04-01

    Since 2001, an interdisciplinary project on multimedia education in medicine has been sponsored by the Federal Ministry of Education and Research at the Charité. One part of the project is on dentistry. In the light of the results of a survey of dental students, an Internet-based education management system was created using open-source back-end systems. It supports four didactic levels for editing documentation of patient treatments. Each level corresponds to the learning abilities of the students. The patient documentation is organized to simulate the working methods of a physician or dentist. The system was tested for the first time by students in the summer semester of 2003 and has been used since the winter semester of 2003 as part of the curriculum. PMID:15516095

  3. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  4. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  5. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT. PMID:27036438

  6. Open information systems and data security in medicine.

    PubMed

    Blobel, B

    1996-01-01

    The realization of the German law for a new structure of health care delivery by the assurance of efficient structures and processes in hospitals calls for an optimal design of informational processes. To realize applications near to the users and just in time as well as to build up the complex functional relationships between departments and subsystems in big hospitals, a new design for Hospital Information Systems (HIS) is necessary. The features of modern HIS outlined in the paper can only be established by open systems, which guarantee portability, scalability and interoperability. This is also true in regionally distributed systems like the tumour register at Cancer Centres. In the paper the necessity and possibilities of open systems and different levels of application integration are discussed. The general statements are illustrated by practical realizations in the HIS of the Magdeburg University Hospital as well as in the tumour register at the Cancer Centre of Magdeburg/Sachsen-Anhalt. The creation of integrated structures for communications makes great demands on the assurance of data security and data protection, especially for the inclusion of external partners from the region. In the context of high sensitive data of cancer patients data protection is of top priority. The legal problems of data collection, data storage and exchange in medicine are discussed first. The paper presents some aspects of the concept for data security and data protection in the Magdeburg University HIS and of the related concept for data protection in the tumour register of the Cancer Centre Magdeburg/Sachsen-Anhalt. Appropriate steps of realization are demonstrated. The application of hardware based modern access control systems with integrated encryption of data follows. The statements are extended to the planned installation of hardware based network access control systems with integrated encryption of data in the LAN. PMID:10163732

  7. Open Badges for Education: What Are the Implications at the Intersection of Open Systems and Badging?

    ERIC Educational Resources Information Center

    Ahn, June; Pellicone, Anthony; Butler, Brian S.

    2014-01-01

    Badges have garnered great interest among scholars of digital media and learning. In addition, widespread initiatives such as Mozilla's Open Badge Framework expand the potential of badging into the realm of open education. In this paper, we explicate the concept of open badges. We highlight some of the ways that researchers have examined…

  8. A low-cost, open-source, wireless electrophysiology system.

    PubMed

    Ghomashchi, A; Zheng, Z; Majaj, N; Trumpis, M; Kiorpes, L; Viventi, J

    2014-01-01

    Many experiments in neuroscience require or would benefit tremendously from a wireless neural recording system. However, commercially available wireless systems are expensive, have moderate to high noise and are often not customizable. Academic wireless systems present impressive capabilities, but are not available for other labs to use. To overcome these limitations, we have developed an ultra-low noise 8 channel wireless electrophysiological data acquisition system using standard, commercially available components. The system is capable of recording many types of neurological signals, including EEG, ECoG, LFP and unit activity. With a diameter of just 25 mm and height of 9 mm, including a CR2032 Lithium coin cell battery, it is designed to fit into a small recording chamber while minimizing the overall implant height (Fig. 1 and 3). Using widely available parts we were able to keep the material cost of our system under $100 dollars. The complete design, including schematic, PCB layout, bill of materials and source code, will be released through an open source license, allowing other labs to modify the design to fit their needs. We have also developed a driver to acquire data using the BCI2000 software system. Feedback from the community will allow us to improve the design and create a more useful neuroscience research tool. PMID:25570656

  9. [Removal of Phosphate by Calcite in Open-System].

    PubMed

    Li, Zhen-xuan; Diao, Jia-yong; Huang, Li-dong; Chen, Yan-fan; Liu, Da-gang; Xu, Zheng-wen

    2015-12-01

    Batch methods were deployed to study the removal of phosphate by calcite in an open-system. Results showed that: (1) The pre-equilibrium process of calcite in open system could be achieved within 24 hours (2) The kinetic results showed that, at initial concentration of 0.5 mg · L⁻¹, the phosphate removal was almost completed within 10 hours of the first phase. The observation may be attributed to surface adsorption. At initial concentration of 2.5 mg · L⁻¹, the phosphate removal was mainly carried out by the precipitation of phosphate at later stage of the process; (3) At initial concentration of ≤ 2.5 mg · L⁻¹ setting 10 h as reaction time, the phosphate removal process was described well by the Langmuir model. It is hypothesized that surface adsorption was the principal removal way of phosphate; (4) With the addition of phthalate, at initial concentration of < 2.5 mg · L⁻¹, the phosphate removal rate experienced a small decrease. That was because phosphate was mainly removed by surface adsorption, and thus, phthalate was a competitor to phosphate for the same adsorption site. The phosphate removal rate increased a little at initial concentration of > 2.5 mg · L⁻¹, this was because the phosphate precipitation was reinforced by the increase of calcium concentration, which was caused by phthalate addition. PMID:27011989

  10. Boundary driven open quantum many-body systems

    SciTech Connect

    Prosen, Tomaž

    2014-01-08

    In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.

  11. The conditions of chondrule formation, Part II: Open system

    NASA Astrophysics Data System (ADS)

    Friend, Pia; Hezel, Dominik C.; Mucerschi, Daniel

    2016-01-01

    We studied the texture of 256 chondrules in thin sections of 16 different carbonaceous (CV, CR, CO, CM, CH) and Rumuruti chondrites. In a conservative count ∼75% of all chondrules are mineralogically zoned, i.e. these chondrules have an olivine core, surrounded by a low-Ca pyroxene rim. A realistic estimate pushes the fraction of zoned chondrules to >90% of all chondrules. Mineralogically zoned chondrules are the dominant and typical chondrule type in carbonaceous and Rumuruti chondrites. The formation of the mineralogical zonation represents a fundamentally important process of chondrule formation. The classic typification of chondrules into PO, POP and PP might in fact represent different sections through mineralogically zoned chondrules. On average, the low-Ca pyroxene rims occupy 30 vol.% of the entire chondrule. The low-Ca pyroxene most probably formed by reaction of an olivine rich chondrule with SiO from the surrounding gas. This reaction adds 3-15 wt.% of material, mainly SiO2, to the chondrule. Chondrules were open systems and interacted substantially with the surrounding gas. This is in agreement with many previous studies on chondrule formation. This open system behaviour and the exchange of material with the surrounding gas can explain bulk chondrule compositional variations in a single meteorite and supports the findings from complementarity that chondrules and matrix formed from the same chemical reservoir.

  12. Ultra-low field NMR for detection and characterization of 235 UF6

    SciTech Connect

    Espy, Michelle A; Magnelind, Per E; Matlashov, Andrei N; Urbaitis, Algis V; Volegov, Petr L

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  13. 47 CFR 76.1503 - Carriage of video programming providers on open video systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Carriage of video programming providers on open... Carriage of video programming providers on open video systems. (a) Non-discrimination principle. Except as... discriminate among video programming providers with regard to carriage on its open video system, and its...

  14. 47 CFR 76.1503 - Carriage of video programming providers on open video systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Carriage of video programming providers on open...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1503 Carriage of video programming providers on open video systems. (a) Non-discrimination principle. Except...

  15. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  16. Radiocarbon dating of open systems with bomb effect

    SciTech Connect

    McKay, C.P.; Long, A.; Friedmann, E.I.

    1986-03-10

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3% for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  17. System studies of open-cycle OTEC components

    SciTech Connect

    Parsons, B K; Link, H F

    1985-09-01

    A system model of open Rankine cycle ocean thermal energy conversion (OC-OTEC) was used to examine the effects of component performance and design on plant cost. Three components are examined in detail: an optional seawater deaeration subsystem, the flash evaporator, and a two-stage direct-contact condenser. Preliminary data quantifying noncondensable gas release in upcomers and a debubbler chamber were used to evaluate the effect of predeaeration (removing the dissolved gases in deaeration chambers before the seawater enters the heat exchangers) on system cost and performance. Little data on the interactions between geometry and performance of vertical spout flash evaporators operating under OTEC conditions are available; therefore, we performed independent parametric variations. For the direct-contact condenser previous numerical studies provide the basis for coupling geometry and performance. Results of these studies are useful in setting research priorities, in defining operating conditions for further seawater experiments, and in updating plant cost estimates.

  18. Symmetry and the thermodynamics of currents in open quantum systems

    NASA Astrophysics Data System (ADS)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  19. Radiocarbon dating of open systems with bomb effect

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Long, A.; Friedmann, E. I.

    1986-01-01

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3 percent for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  20. An open real-time tele-stethoscopy system

    PubMed Central

    2012-01-01

    Background Acute respiratory infections are the leading cause of childhood mortality. The lack of physicians in rural areas of developing countries makes difficult their correct diagnosis and treatment. The staff of rural health facilities (health-care technicians) may not be qualified to distinguish respiratory diseases by auscultation. For this reason, the goal of this project is the development of a tele-stethoscopy system that allows a physician to receive real-time cardio-respiratory sounds from a remote auscultation, as well as video images showing where the technician is placing the stethoscope on the patient’s body. Methods A real-time wireless stethoscopy system was designed. The initial requirements were: 1) The system must send audio and video synchronously over IP networks, not requiring an Internet connection; 2) It must preserve the quality of cardiorespiratory sounds, allowing to adapt the binaural pieces and the chestpiece of standard stethoscopes, and; 3) Cardiorespiratory sounds should be recordable at both sides of the communication. In order to verify the diagnostic capacity of the system, a clinical validation with eight specialists has been designed. In a preliminary test, twelve patients have been auscultated by all the physicians using the tele-stethoscopy system, versus a local auscultation using traditional stethoscope. The system must allow listen the cardiac (systolic and diastolic murmurs, gallop sound, arrhythmias) and respiratory (rhonchi, rales and crepitations, wheeze, diminished and bronchial breath sounds, pleural friction rub) sounds. Results The design, development and initial validation of the real-time wireless tele-stethoscopy system are described in detail. The system was conceived from scratch as open-source, low-cost and designed in such a way that many universities and small local companies in developing countries may manufacture it. Only free open-source software has been used in order to minimize manufacturing costs

  1. Closed and Open Systems: The Tavistock Group from a General System Perspective.

    ERIC Educational Resources Information Center

    Rugel, Robert P.

    1991-01-01

    Describes phases in the life of a Tavistock group composed of college students using concepts from Von Bertalanffy's general systems theory, MacKenzie's role theory, and Kantor's family theory. Discusses early, middle, and late phases of typical 16-session group as it moves from a closed to an open system. (Author/NB)

  2. Integration of HIS components through open standards: an American HIS and a European Image Processing System.

    PubMed Central

    London, J. W.; Engelmann, U.; Morton, D. E.; Meinzer, H. P.; Degoulet, P.

    1993-01-01

    This paper describes the integration of an existing American Hospital Information System with a European Image Processing System. Both systems were built independently (with no knowledge of each other), but on open systems standards. The easy integration of these systems demonstrates the major benefit of open standards-based software design. PMID:8130452

  3. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  4. Openings.

    PubMed

    Selwyn, Peter A

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  5. Persistent current and low-field magnetic susceptibility in one channel mesoscopic loops and Möbius strips

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    2006-06-01

    I study persistent current and low-field magnetic susceptibility of one-dimensional normal metal mesoscopic rings and Möbius strips threaded by slowly varying magnetic flux phi. In strictly one-channel perfect rings, current shows saw-tooth-like variation with phi for the cases where the rings contain odd and even number of electrons Ne respectively. But in disordered rings, current shows a continuous variation with phi. In these systems current has only phi0 flux-quantum periodicity. Now in Möbius strips, the motion of the electrons in the transverse direction has an important factor on persistent current and also on low-field magnetic response. If the electrons are unable to hop in the transverse direction then an electron encircles the system twice before returning to its initial position and current obtains phi0/2 flux-quantum periodicity unlike phi0 flux-quantum periodicity in strictly one-channel rings or multi-channel cylinders. The sign of the low-field currents in one-channel mesoscopic rings can be predicted exactly, even in the presence of impurity in these systems. For perfect rings current has only diamagnetic behaviour in the limit of zero field irrespective of the total number of electrons Ne. On the other hand, in dirty rings, current shows paramagnetic and diamagnetic signs respectively for the rings with even and odd Ne. In Möbius strips for zero hopping strength of the electrons in the transverse direction we get exactly the same behaviour as in strictly one-channel rings, but for nonzero transverse hopping strength the sign of the low-field currents cannot be predicted since it strongly depends on Ne and the specific realization of disorder configuration of the systems.

  6. JSim, an open-source modeling system for data analysis

    PubMed Central

    Bassingthwaighte, James B.

    2013-01-01

    JSim is a simulation system for developing models, designing experiments, and evaluating hypotheses on physiological and pharmacological systems through the testing of model solutions against data. It is designed for interactive, iterative manipulation of the model code, handling of multiple data sets and parameter sets, and for making comparisons among different models running simultaneously or separately. Interactive use is supported by a large collection of graphical user interfaces for model writing and compilation diagnostics, defining input functions, model runs, selection of algorithms solving ordinary and partial differential equations, run-time multidimensional graphics, parameter optimization (8 methods), sensitivity analysis, and Monte Carlo simulation for defining confidence ranges. JSim uses Mathematical Modeling Language (MML) a declarative syntax specifying algebraic and differential equations. Imperative constructs written in other languages (MATLAB, FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is simple, basically defining the parameters and variables, then writing the equations in a straightforward, easily read and understood mathematical form. This makes JSim good for teaching modeling as well as for model analysis for research.   For high throughput applications, JSim can be run as a batch job.  JSim can automatically translate models from the repositories for Systems Biology Markup Language (SBML) and CellML models. Stochastic modeling is supported. MML supports assigning physical units to constants and variables and automates checking dimensional balance as the first step in verification testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The JSim Project File sets a standard for reproducible modeling analysis: it includes in one file everything for analyzing a set of experiments: the data, the models, the data fitting, and evaluation of parameter confidence ranges. JSim is open source; it

  7. JSim, an open-source modeling system for data analysis.

    PubMed

    Butterworth, Erik; Jardine, Bartholomew E; Raymond, Gary M; Neal, Maxwell L; Bassingthwaighte, James B

    2013-01-01

    JSim is a simulation system for developing models, designing experiments, and evaluating hypotheses on physiological and pharmacological systems through the testing of model solutions against data. It is designed for interactive, iterative manipulation of the model code, handling of multiple data sets and parameter sets, and for making comparisons among different models running simultaneously or separately. Interactive use is supported by a large collection of graphical user interfaces for model writing and compilation diagnostics, defining input functions, model runs, selection of algorithms solving ordinary and partial differential equations, run-time multidimensional graphics, parameter optimization (8 methods), sensitivity analysis, and Monte Carlo simulation for defining confidence ranges. JSim uses Mathematical Modeling Language (MML) a declarative syntax specifying algebraic and differential equations. Imperative constructs written in other languages (MATLAB, FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is simple, basically defining the parameters and variables, then writing the equations in a straightforward, easily read and understood mathematical form. This makes JSim good for teaching modeling as well as for model analysis for research.   For high throughput applications, JSim can be run as a batch job.  JSim can automatically translate models from the repositories for Systems Biology Markup Language (SBML) and CellML models. Stochastic modeling is supported. MML supports assigning physical units to constants and variables and automates checking dimensional balance as the first step in verification testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The JSim Project File sets a standard for reproducible modeling analysis: it includes in one file everything for analyzing a set of experiments: the data, the models, the data fitting, and evaluation of parameter confidence ranges. JSim is open source; it

  8. Non-Markovian dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.

    An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature

  9. Low-field MRI can be more sensitive than high-field MRI.

    PubMed

    Coffey, Aaron M; Truong, Milton L; Chekmenev, Eduard Y

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium 'hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of (1)H and (13)C spins. Experimental SNRs at 0.0475T were ∼40% of those obtained at 4.7T. Conservatively, theoretical SNRs at 0.0475T 1.13-fold higher than those at 4.7T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7T and 0.0475T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters. PMID:24239701

  10. Low-field MRI can be more sensitive than high-field MRI

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  11. Designing a Resource Evolution Support System for Open Knowledge Communities

    ERIC Educational Resources Information Center

    Yang, Xianmin; Yu, Shengquan

    2015-01-01

    The continuous generation and evolution of digital learning resources is important for promoting open learning and meeting the personalized needs of learners. In the Web 2.0 era, open and collaborative authoring is becoming a popular method by which to create vast personalized learning resources in open knowledge communities (OKCs). However, the…

  12. Non-cryogenic ultra-low field MRI of wrist-forearm area

    NASA Astrophysics Data System (ADS)

    Savukov, I.; Karaulanov, T.; Wurden, C. J. V.; Schultz, L.

    2013-08-01

    Ultra-low field (ULF) MRI as an alternative to high field MRI can find some niche applications where high field is a liability. Previously we demonstrated hand images with a non-cryogenic ULF MRI system, but such a system was restrictive to the size of the imaging objects. We have modified the previous setup to increase the imaging volume and demonstrate the image of human hand near the wrist area. One goal for the demonstration is the evaluation of quality of larger bone structure to project image quality to other parts of extremities, such as elbows, shoulders, and knees. We found that after 12 min of acquisition, the image quality was quite satisfactory. To achieve this image quality, several problems were solved that appeared in the new system. The increase in the imaging volume size led to an increase in transient time and various measures were taken to reduce this time. We also explored a method of overcoming the artifacts and image quality reduction arising from field drifts present in the system due to heating of the coils. We believe that our results can be useful for evaluation of diagnostic capability of non-cryogenic ULF MRI of extremities and other parts of the body. The system can be also applied to image animals and tissues.

  13. Non-cryogenic ultra-low field MRI of wrist-forearm area

    PubMed Central

    Savukov, I.; Karaulanov, T.; Wurden, C.; Schultz, L.

    2013-01-01

    Ultra-low field (ULF) MRI as an alternative to high field MRI can find some niche applications where high field is a liability. Previously we demonstrated hand images with a non-cryogenic ULF MRI system, but such a system was restrictive to the size of the imaging objects. We have modified the previous setup to increase the imaging volume and demonstrate the image of human hand near the wrist area. One goal for the demonstration is the evaluation of quality of larger bone structure to project image quality to other parts of extremities, such as elbows, shoulders, knees, etc. We found that after 12 minutes of acquisition the image quality was quite satisfactory. To achieve this image quality, several problems were solved that appeared in the new system. The increase in the imaging volume size led to an increase in transient time and various measures were taken to reduce this time. We also explored a method of overcoming the artifacts and image quality reduction arising from field drifts present in the system due to heating of the coils. We believe that our results can be useful for evaluation of diagnostic capability of non-cryogenic ULF MRI of extremities and other parts of the body. The system can be also applied to image animals and tissues. PMID:23796804

  14. Tunable polaritonic molecules in an open microcavity system

    SciTech Connect

    Dufferwiel, S.; Li, Feng Giriunas, L.; Walker, P. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Trichet, A. A. P.; Smith, J. M.; Farrer, I.; Ritchie, D. A.

    2015-11-16

    We experimentally demonstrate tunable coupled cavities based upon open access zero-dimensional hemispherical microcavities. The modes of the photonic molecules are strongly coupled with quantum well excitons forming a system of tunable polaritonic molecules. The cavity-cavity coupling strength, which is determined by the degree of modal overlap, is controlled through the fabricated centre-to-centre distance and tuned in-situ through manipulation of both the exciton-photon and cavity-cavity detunings by using nanopositioners to vary the mirror separation and angle between them. We demonstrate micron sized confinement combined with high photonic Q-factors of 31 000 and lower polariton linewidths of 150 μeV at resonance along with cavity-cavity coupling strengths between 2.5 meV and 60 μeV for the ground cavity state.

  15. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  16. Reference Model for an Open Archival Information System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document is a technical report for use in developing a consensus on what is required to operate a permanent, or indefinite long-term, archive of digital information. It may be useful as a starting point for a similar document addressing the indefinite long-term preservation of non-digital information. This report establishes a common framework of terms and concepts which comprise an Open Archival Information System (OAIS). It allows existing and future archives to be more meaningfully compared and contrasted. It provides a basis for further standardization of within an archival context and it should promote greater vendor awareness of, and support of , archival requirements. Through the process of normal evolution, it is expected that expansion, deletion, or modification to this document may occur. This report is therefore subject to CCSDS document management and change control procedures.

  17. DESIGN CONSIDERATIONS FOR LOW FIELD SHORT PHOTO-INJECTED RF ELECTRON GUN WITH HIGH CHARGE ELECTRON BUNCH.

    SciTech Connect

    CHANG,X.; BEN-ZVI,I.; KEWISCH,J.

    2004-06-21

    The RF field and space charge effect in a low field RF gun is given. The cell lengths are modified to have maximum accelerating efficiency. The modification introduces an extra RF field slice emittance. The phase space evolution of the following emittance compensation system is presented taking into account the chromatic effect. The emittance compensation mechanics for RF field and chromatic effect induced emittance is similar to that of compensating the space charge induced emittance. But the requirements are different to have best compensation for them. The beam waist is far in front of linac entrance to have best compensation for the RF field and chromatic effect induced emittance. For low field RF gun with high charge electron bunch this compensation is more important.

  18. Open-system dynamics of entanglement: a key issues review.

    PubMed

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  19. Importance of Hydrogeological Conditions on Open-loop Geothermal System

    NASA Astrophysics Data System (ADS)

    Park, D.; Bae, G.; Kim, S.; Lee, K.

    2013-12-01

    The open-loop geothermal system has been known as an eco-friendly, energy-saving, and cost-efficient alternative for the cooling and heating of buildings with directly using the relatively stable temperature of groundwater. Thus, hydrogeological properties of aquifer, such as hydraulic conductivity and storage, must be important in the system application. The study site is located near Han-river, Korea, and because of the well-developed alluvium it might be a typical site appropriate to this system requiring an amount of groundwater. In this study, the first objective of numerical experiments was to find the best distributions of pumping and injection wells suitable to the hydrogeological conditions of the site for the efficient and sustainable system operation. The aquifer has a gravel layer at 15m depth below the ground surface and the river and the agricultural field, which may be a potential contaminant source, are located at the west and east sides, respectively. Under the general conditions that the regional groundwater flows from the east to the river, the locally reversed well distribution, locating the pumping well at upgradient and the injection well at downgradient of the regional flow, was most sustainable. The gravel layer with high hydraulic conductivity caused a little drawdown despite of an amount of pumping and allowed to stably reinject the used groundwater in all the cases, but it provided a passage transferring the injected heat to the pumping well quickly, particularly in the cases locating the injection well at the upgradient. This thermal interference was more severe in the cases of the short distance between the wells. The high conductive layer is also a reason that the seasonal role conversion of wells for the aquifer thermal energy storage was ineffective in this site. Furthermore, the well distribution vertical to the regional groundwater flow was stable, but not best, and, thus, it may be a good choice in the conditions that the regional

  20. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  1. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  2. Dissipation equation of motion approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao

    2016-08-01

    This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

  3. Open Geospatial Consortium standards supporting Lake Maggiore Early Warning System

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Antonovic, Milan; Molinari, Monia; Pozzoni, Maurizio

    2013-04-01

    The Locarno area (Canton Ticino, Switzerland) is an area exposed to lake Maggiore flooding risk. In order to reduce the effects of such a kind of events, the Canton Ticino [1] and the Locarno and Vallemaggia Civil Protection [2] provide mandates to the Institute of Earth sciences of Southern Switzerland University of Applied Sciences (IST-SUPSI) [3] to supply a system for supporting the management, alerting and intervention in the area. The system, that was originally created about 15 year ago, includes: 1. the management of the regional hydro-meteorological monitoring network, 2. the Lake Maggiore basins hydrological modelling, 3. the management of geoinformation that includes exposed and contextual elements and, 4. the provision of a Web platform for access and interact with the information. In the last years, the IST-SUPSI has undertaken a process of renewal of the entire system following the concept of interoperability as identified in recently conducted European projects like SANY [4] or TRIDEC [5]. This mainstream leads us to adopt different open standards and to develop ad-hoc software. At the present time, the renewal process is almost finished: the Web interface is the only component currently under upgrade. As a result today the IST-SUPSI offers: - a Sensor Observation Service (SOS) for the monitoring data and has developed his own SOS implementation (istSOS [6]) capable to satisfy all the requirements identified in over 20 year of hydro-meteorological data management; - Web Processing Services (WPS) for the elaboration of raw monitoring data (from the SOS) and meteorological forecasts to feed the hydrological model with costumized and real-time inputs; - Web Mapping Service (WMS) and Web Feature Service (WFS) for the visualization of exposed elements and base maps; - a RESTFul Web Services for the provision of all the civil protection information management and elaboration of specific requests; - a security system for authentication and authorization

  4. Outcome of limb reconstruction system in open tibial diaphyseal fractures

    PubMed Central

    Ajmera, Anand; Verma, Ankit; Agrawal, Mukul; Jain, Saurabh; Mukherjee, Arunangshu

    2015-01-01

    Background: Management of open tibial diaphyseal fractures with bone loss is a matter of debate. The treatment options range from external fixators, nailing, ring fixators or grafting with or without plastic reconstruction. All the procedures have their own set of complications, like acute docking problems, shortening, difficulty in soft tissue management, chronic infection, increased morbidity, multiple surgeries, longer hospital stay, mal union, nonunion and higher patient dissatisfaction. We evaluated the outcome of the limb reconstruction system (LRS) in the treatment of open fractures of tibial diaphysis with bone loss as a definative mode of treatment to achieve union, as well as limb lengthening, simultaneously. Materials and Methods: Thirty open fractures of tibial diaphysis with bone loss of at least 4 cm or more with a mean age 32.5 years were treated by using the LRS after debridement. Distraction osteogenesis at rate of 1 mm/day was done away from the fracture site to maintain the limb length. On the approximation of fracture ends, the dynamized LRS was left for further 15-20 weeks and patient was mobilized with weight bearing to achieve union. Functional assessment was done by Association for the Study and Application of the Methods of Illizarov (ASAMI) criteria. Results: Mean followup period was 15 months. The mean bone loss was 5.5 cm (range 4-9 cm). The mean duration of bone transport was 13 weeks (range 8-30 weeks) with a mean time for LRS in place was 44 weeks (range 24-51 weeks). The mean implant index was 56.4 days/cm. Mean union time was 52 weeks (range 31-60 weeks) with mean union index of 74.5 days/cm. Bony results as per the ASAMI scoring were excellent in 76% (19/25), good in 12% (3/25) and fair in 4% (1/25) with union in all except 2 patients, which showed poor results (8%) with only 2 patients having leg length discrepancy more than 2.5 cm. Functional results were excellent in 84% (21/25), good in 8% (2/25), fair in 8% (2/25). Pin tract

  5. Correlations in Single File Diffusion: Open and Closed Systems

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashwani Kr.; Kumar, Deepak

    2014-07-01

    We present a discussion of positional and velocity correlations of particles in single-file diffusion, based on some earlier work. We consider two physical situations: (a) An open system of N hard-core particles on an infinite line. (b) A large system with a fixed density of hard-core particles at an arbitrary temperature. In the first case (a), moments and correlations show unusual behavior. The average displacement of a particle is nonzero and grows as t1/2. Furthermore it depends on the position of the particle. Particles on the right of center are pushed right and those on the left are pushed left. The mean-square displacement also depends on the position. The diffusion constant is small for particles around the center but grows rapidly toward edges. Certain correlations in particle displacement grow with separation. For the second case (b) we give exact results for velocity-velocity auto-correlator of a tagged particle and establish that with time this correlator becomes negative and approaches zero as a power-law t-3/2 at long times. The mobility of the tagged particle is shown to decrease rapidly with density as has been observed in experiments. Special Issue Comments: This article presents mathematical results on the dynamics in expanding files, and constant density files. This article is connected to the Special Issue articles about advanced statistical properties in single file dynamics29 and files with force and advanced formulations.30

  6. Nucleus as an Open System: New Effects and Theoretical Challenges

    NASA Astrophysics Data System (ADS)

    Zelevinsky, Vladimir

    2012-10-01

    As nuclear science moves in the direction of nuclei far from stability, the studies of nuclear structure and nuclear reactions become more and more interrelated. The main theoretical challenge is to find a consistent description of the nucleus as an open mesoscopic system coupled with continuum through real decay channels and through virtual excitations. The method using the effective non-Hermitian Hamiltonian [see review article: N. Auerbach and V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011)] is one of the most promising theoretical approaches; it can be strictly derived from quantum many-body theory, it allows for calculating bound states, resonances and reaction cross sections in the unified framework, and it is quite flexible in practical applications. After explaining the main features of this theory, I will show the method at work (continuum shell model with predictions recently confirmed by the experiments with exotic oxygen isotopes, phenomenon of super-radiance, relation to the idea of doorway states, quantum signal transmission through mesoscopic systems) and discuss new theoretical challenges.

  7. Definitive Management of Open Tibia Fractures Using Limb Reconstruction System

    PubMed Central

    Patil, Mahantesh Yellangouda; Gupta, Srinath Myadam; Agarwal, Saumya; Chandarana, Vishal

    2016-01-01

    Introduction Open fractures are treated as surgical emergency and early administration of intravenous antibiotic coupled with early irrigation and debridement decreases the infection rate dramatically. Limb Reconstruction System (LRS) is a unilateral rail system which consists of Shanz pins, rail rods and sliding clamps. It is specifically designed to enable the surgeon to perform simple and effective surgery as it offers rigid fixation of fracture fragments, allowing early weight bearing and reduces economic burden. Aim To determine the efficacy of Limb Reconstruction System for treatment of compound tibia fractures. Materials and Methods A prospective study was carried out where in 54 cases out of 412 compound tibia fractures having Modified Gustilo Anderson Type IIIA and IIIB with a mean age of 42±5 years were treated using LRS over a period of 26 months. Limb reconstruction system was used in acute docking mode or with corticotomy and bone transport was done depending upon the bone loss. The soft tissue condition was assessed and split thickness skin grafting and flap repairs were done as per the need. Clinical and radiological assessment was done at every follow-up. Bony and functional assessment was done by Association for the Study and Application of the Methods of Illizarov (ASAMI) criteria. Results Among 54 patients, bony results as per ASAMI score were excellent in 36, good in 14, fair in 2 and poor in 2 patients. Functional results were excellent in 43, good in 7, fair in 4 patients. The average fracture union time was 8 months. Post-surgery patient satisfaction was excellent since fixation allowed weight bearing immediately. Average hospital stay was 7 days and financial burden was reduced by 40% as compared to multi staged surgery. The average time of return to work was 20 days. Conclusion LRS is an easy, simple and definitive surgical procedure that allows immediate full weight bearing walking. It reduces hospital stay, is cost effective with

  8. Open Online System Adoption in K-12 as a Democratising Factor

    ERIC Educational Resources Information Center

    Kimmons, Royce

    2015-01-01

    This study seeks to understand how district size and wealth factors influence the adoption of open-source online systems in primary and secondary (K-12) education. Most schools now utilise online systems (e.g. CMS, LMS, SIS) for a number of purposes, and it is anticipated that no-cost and open-source systems could be of great value for…

  9. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian

    2014-03-01

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered.

  10. Low-field permanent magnets for industrial process and quality control.

    PubMed

    Mitchell, J; Gladden, L F; Chandrasekera, T C; Fordham, E J

    2014-01-01

    In this review we focus on the technology associated with low-field NMR. We present the current state-of-the-art in low-field NMR hardware and experiments, considering general magnet designs, rf performance, data processing and interpretation. We provide guidance on obtaining the optimum results from these instruments, along with an introduction for those new to low-field NMR. The applications of lowfield NMR are now many and diverse. Furthermore, niche applications have spawned unique magnet designs to accommodate the extremes of operating environment or sample geometry. Trying to capture all the applications, methods, and hardware encompassed by low-field NMR would be a daunting task and likely of little interest to researchers or industrialists working in specific subject areas. Instead we discuss only a few applications to highlight uses of the hardware and experiments in an industrial environment. For details on more particular methods and applications, we provide citations to specialized review articles. PMID:24360243