Open fermionic quantum systems
Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1993-01-15
A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.
Quasiequilibria in open quantum systems
Walls, Jamie D.
2010-03-15
In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Perturbative approach to Markovian open quantum systems
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-01-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Uncertainty Relation for a Quantum Open System
NASA Astrophysics Data System (ADS)
Hu, B. L.; Zhang, Yuhong
We derive the uncertainty relation for a quantum open system consisting of a Brownian particle interacting with a bath of quantum oscillators at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the system. We show that upon contact with the bath (assumed to be ohmic in this paper) the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is the same as the decoherence time in similar models in the discussion of quantum to classical transition. This offers some insight into the physical mechanisms involved in the environment-induced decoherence process. We obtain closed analytic expressions for this generalized uncertainty relation under the conditions of high temperature and weak damping, separately. We also consider under these conditions an arbitrarily squeezed initial state and show how the squeeze parameter enters in the generalized uncertainty relation. Using these results we examine the transition of the system from a quantum pure state to a nonequilibrium quantum statistical state and to an equilibrium quantum statistical state. The three stages are marked by the decoherence time and the relaxation time, respectively. With these observations we explicate the physical conditions under which the two basic postulates of quantum statistical mechanics become valid. We also comment on the inappropriate usage of the word “classicality” in many decoherence studies of quantum to classical transition.
Quantum mechanics of open systems
NASA Astrophysics Data System (ADS)
Melikidze, Akakii
In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Current in open quantum systems.
Gebauer, Ralph; Car, Roberto
2004-10-15
We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation. PMID:15524960
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Relativistic Quantum Metrology in Open System Dynamics
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-01
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Quantum arrival time for open systems
Yearsley, J. M.
2010-07-15
We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to the probability current, so we explore the properties of the current for general open systems that can be written in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion, and show that after a time of order the localization time of the current becomes positive. We show that the arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which we compute. We perform a decoherent histories analysis including the effects of the environment and show that time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization time, but that there is a fundamental limitation on the accuracy {delta}t, with which they can be specified which obeys E{delta}t>>({h_bar}/2{pi}). We confirm that the arrival time probabilities computed in this way agree with those computed via the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival time distribution, and a systematic rule for deciding when probabilities may be assigned.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Open systems dynamics for propagating quantum fields
NASA Astrophysics Data System (ADS)
Baragiola, Ben Quinn
In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a Markovian reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. In the context of quantum tomography or metrology one attempts, using measure- ments of the light, to extract information about the quantum state of the system. An inevitable consequence of these measurements is a disturbance of the system's quantum state. These ideas focus on the system and regard the light as ancillary. It serves its purpose as a probe or as a mechanism to generate interesting dynamics or system states but is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. What, then, when the state of light itself harbors intrinsic self-entanglement? One such set of states, those where a traveling wave packet is prepared with a defi- nite number of photons, is a focal point of this dissertation. These N-photon states are ideal candidates as couriers in quantum information processing device. In con- trast to quasi-classical states, such as coherent or thermal fields, N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The reduced state of a system probed by an N-photon state evolves in a non-Markovian way, and to describe its dynamics one is obliged to keep track of the field's evolution. I present a method to do this for an arbitrary quantum system using a set of coupled master equations. Many models set aside spatial degrees of freedom as an unnecessary complicating factor. By doing so the precision of predictions is limited. Consider a ensemble of cold, trapped atomic spins dispersively probed by a paraxial laser beam. Atom-light coupling across the ensemble is spatially inhomogeneous as is the radiation pattern of
Periodic thermodynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Driven harmonic oscillator as a quantum simulator for open systems
Piilo, Jyrki; Maniscalco, Sabrina
2006-09-15
We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Detecting quantum speedup in closed and open systems
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu
2016-07-01
We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.
Coarse grained open system quantum dynamics
Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe
2008-11-21
We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Geometric phase for open quantum systems and stochastic unravelings
Bassi, Angelo; Ippoliti, Emiliano
2006-06-15
We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.
Dissipation and entropy production in open quantum systems
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2010-11-01
A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.
Controlling open quantum systems: tools, achievements, and limitations
NASA Astrophysics Data System (ADS)
Koch, Christiane P.
2016-06-01
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions.
Controlling open quantum systems: tools, achievements, and limitations.
Koch, Christiane P
2016-06-01
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. PMID:27143501
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Eigenvalue problem of the Liouvillian of open quantum systems
Hatano, Naomichi; Petrosky, Tomio
2015-03-10
It is argued that the Liouvillian that appears in the Liouville-von Neumann equation for open quantum systems can have complex eigenvalues. Attention is paid to the question whether the Liouvillian has an eigenvalue that are not given by the difference of the two Hamiltonian eigenvalues.
Symmetry and the thermodynamics of currents in open quantum systems
NASA Astrophysics Data System (ADS)
Manzano, Daniel; Hurtado, Pablo I.
2014-09-01
Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Control landscapes for observable preparation with open quantum systems
Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin
2008-02-15
A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape.
A pseudospectral method for optimal control of open quantum systems.
Li, Jr-Shin; Ruths, Justin; Stefanatos, Dionisis
2009-10-28
In this paper, we present a unified computational method based on pseudospectral approximations for the design of optimal pulse sequences in open quantum systems. The proposed method transforms the problem of optimal pulse design, which is formulated as a continuous-time optimal control problem, to a finite-dimensional constrained nonlinear programming problem. This resulting optimization problem can then be solved using existing numerical optimization suites. We apply the Legendre pseudospectral method to a series of optimal control problems on open quantum systems that arise in nuclear magnetic resonance spectroscopy in liquids. These problems have been well studied in previous literature and analytical optimal controls have been found. We find an excellent agreement between the maximum transfer efficiency produced by our computational method and the analytical expressions. Moreover, our method permits us to extend the analysis and address practical concerns, including smoothing discontinuous controls as well as deriving minimum-energy and time-optimal controls. The method is not restricted to the systems studied in this article and is applicable to optimal manipulation of both closed and open quantum systems. PMID:19894930
Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola
2013-04-23
The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field. PMID:23572581
Boundary driven open quantum many-body systems
Prosen, Tomaž
2014-01-08
In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.
Dissipation equation of motion approach to open quantum systems
NASA Astrophysics Data System (ADS)
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
Dynamics of incompatibility of quantum measurements in open systems
NASA Astrophysics Data System (ADS)
Addis, Carole; Heinosaari, Teiko; Kiukas, Jukka; Laine, Elsi-Mari; Maniscalco, Sabrina
2016-02-01
The nonclassical nature of quantum states, often illustrated using entanglement measures or quantum discord, constitutes a resource for quantum information protocols. However, the nonclassicality of a quantum system cannot be seen as a property of the state alone, as the set of available measurements used to extract information on the system is typically restricted. In this work we study how the nonclassicality of quantum measurements, quantified via their incompatibility, is influenced by quantum noise and how a non-Markovian environment can be useful for maintaining the measurement resources.
Quantum algorithm for simulating the dynamics of an open quantum system
Wang Hefeng; Ashhab, S.; Nori, Franco
2011-06-15
In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
NASA Astrophysics Data System (ADS)
Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban
2016-03-01
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them.
Thermodynamics of trajectories of open quantum systems, step by step
NASA Astrophysics Data System (ADS)
Pigeon, Simon; Xuereb, André
2016-06-01
Thermodynamics of trajectories promises to make possible the thorough analysis of the dynamical properties of an open quantum system, a sought-after goal in modern physics. Unfortunately, calculation of the relevant quantities presents severe challenges. Determining the large-deviation function that gives access to the full counting statistics associated with a dynamical order parameter is challenging, if not impossible, even for systems evolving in a restricted Liouville space. Acting on the realisation that the salient features of most dynamical systems are encoded in the first few moments of the counting statistics, in this article we present a method that gives sequential access to these moments. Our method allows for obtaining analytical result in several cases, as we illustrate, and allows using large deviation theory to reinterpret certain well-known results.
Non-Markovian dynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Fleming, Chris H.
An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature
Revealing electronic open quantum systems with subsystem TDDFT
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Pavanello, Michele
2016-03-01
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.
Revealing electronic open quantum systems with subsystem TDDFT.
Krishtal, Alisa; Pavanello, Michele
2016-03-28
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT. PMID:27036438
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.
Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S
2016-06-10
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies. PMID:27341253
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.
2016-06-01
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Linearity versus complete positivity of the evolution of open quantum systems
NASA Astrophysics Data System (ADS)
Ceballos, Russell R.
The title may be a bit misleading. Perhaps, "On the Complete Positivity of Reduced Quantum Dynamics," would be a more fitting title. Determining whether or not completely positive (CP) maps are required to describe open system quantum dynamics is an extremely important issue concerning the fundamental mathematical foundations of QM, as well as many other areas of physics. it had been typically believed that only CP maps actually describe the dynamical evolution of open quantum systems, however there has been speculation as to whether this is a strict constraint on the mathematical and physical structure of stochastic quantum dynamical maps. The objective of this thesis is to demonstrate that given a particular unitary operator, an initial system state, a final system state, and the dimension of the environment state, there exists no CP map with a composite system-environment, product initial state that is compatible with the given constraints on the reduced quantum dynamics of the system under investigation.
Energy Exchange in Driven Open Quantum Systems at Strong Coupling
NASA Astrophysics Data System (ADS)
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-01
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .
Energy Exchange in Driven Open Quantum Systems at Strong Coupling.
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-17
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Real-time transport in open quantum systems from PT-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Elenewski, Justin E.; Chen, Hanning
2014-08-01
Nanoscale electronic transport is of intense technological interest, with applications ranging from semiconducting devices and molecular junctions to charge migration in biological systems. Most explicit theoretical approaches treat transport using a combination of density functional theory (DFT) and nonequilibrium Green's functions. This is a static formalism, with dynamic response properties accommodated only through complicated extensions. To circumvent this limitation, the carrier density may be propagated using real-time time-dependent DFT (RT-TDDFT), with boundary conditions corresponding to an open quantum system. Complex absorbing potentials can emulate outgoing particles at the simulation boundary, although these do not account for introduction of charge density. It is demonstrated that the desired positive particle flux is afforded by a class of PT-symmetric generating potentials that are characterized by anisotropic transmission resonances. These potentials add density every time a particle traverses the cell boundary, and may be used to engineer a continuous pulse train for incident packets. This is a first step toward developing a complete transport formalism unique to RT-TDDFT.
Canonical versus noncanonical equilibration dynamics of open quantum systems.
Yang, Chun-Jie; An, Jun-Hong; Luo, Hong-Gang; Li, Yading; Oh, C H
2014-08-01
In statistical mechanics, any quantum system in equilibrium with its weakly coupled reservoir is described by a canonical state at the same temperature as the reservoir. Here, by studying the equilibration dynamics of a harmonic oscillator interacting with a reservoir, we evaluate microscopically the condition under which the equilibration to a canonical state is valid. It is revealed that the non-Markovian effect and the availability of a stationary state of the total system play a profound role in the equilibration. In the Markovian limit, the conventional canonical state can be recovered. In the non-Markovian regime, when the stationary state is absent, the system equilibrates to a generalized canonical state at an effective temperature; whenever the stationary state is present, the equilibrium state of the system cannot be described by any canonical state anymore. Our finding of the physical condition on such noncanonical equilibration might have significant impact on statistical physics. A physical scheme based on circuit QED is proposed to test our results. PMID:25215704
The open quantum Brownian motions
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2014-09-01
Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H_z : orbital (walker) Hilbert space, {C}^{{Z}} in the discrete, L^2({R}) in the continuum H_c : internal spin (or gyroscope) Hilbert space H_sys=H_z\\otimesH_c : system Hilbert space H_p : probe (or quantum coin) Hilbert space, H_p={C}^2 \\rho^tot_t : density matrix for the total system (walker + internal spin + quantum coins) \\bar \\rho_t : reduced density matrix on H_sys : \\bar\\rho_t=\\int dxdy\\, \\bar\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | \\hat \\rho_t : system density matrix in a quantum trajectory: \\hat\\rho_t=\\int dxdy\\, \\hat\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | . If diagonal and localized in position: \\hat \\rho_t=\\rho_t\\otimes| X_t \\rangle _z\\langle X_t | ρt: internal density matrix in a simple quantum trajectory Xt: walker position in a simple quantum trajectory Bt: normalized Brownian motion ξt, \\xi_t^\\dagger : quantum noises
General response formula and application to topological insulator in quantum open system.
Shen, H Z; Qin, M; Shao, X Q; Yi, X X
2015-11-01
It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics. PMID:26651662
Fast resonator reset in circuit QED using open quantum system optimal control
NASA Astrophysics Data System (ADS)
Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Blais, Alexandre
Practical implementations of quantum information processing requires repetitive qubit readout. In circuit QED, where readout is performed using a resonator dispersively coupled to the qubits, the measurement repetition rate is limited by the resonator reset time. This reset is usually performed passively by waiting several resonator decay times. Alternatively, it was recently shown that a simple pulse sequence allows to decrease the reset time to twice the resonator decay time. In this work, we show how to further optimize the ring-down pulse sequence by using optimal control theory for open quantum systems. Using a new implementation of the open GRAPE algorithm that is well suited to large Hilbert spaces, we find active resonator reset procedures that are faster than a single resonator decay time. Simple quantum speed limits for this kind of active reset processes will be discussed
Demonstration of open-quantum-system optimal control in dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Sheldon, S.; Cory, D. G.
2015-10-01
Dynamic nuclear polarization (DNP) is used in nuclear magnetic resonance to transfer polarization from electron spins to nuclear spins. The resulting nuclear polarization enhancement can, in theory, be two or three orders of magnitude depending on the sample. In solid-state systems, however, there are competing mechanisms of DNP, which, when occurring simultaneously, reduce the net polarization enhancement of the nuclear spin. We present a simple quantum description of DNP and apply optimal control theory (OCT) with an open-quantum-system framework to design pulses that select one DNP process and suppress the others. We demonstrate experimentally an order of magnitude improvement in the DNP enhancement using OCT pulses.
Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems
Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F.; Zhang, Y.; Kaplan, L.
2014-10-15
We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2012-08-15
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation. PMID:27627265
Probability-current analysis of energy transport in open quantum systems
NASA Astrophysics Data System (ADS)
Roden, Jan J. J.; Whaley, K. Birgitta
2016-01-01
We introduce a probability-current analysis of excitation energy transfer between states of an open quantum system. Expressing the energy transfer through currents of excitation probability between the states in a site representation enables us to gain key insights into the energy transfer dynamics. In particular, the analysis yields direct identification of the pathways of energy transport in large networks of sites and quantifies their relative weights, as well as the respective contributions of unitary dynamics, coherence, dephasing, and relaxation and dissipation processes to the energy transfer. It thus provides much more information than studying only excitation probabilities of the states as a function of time. Our analysis is general and can be readily applied to a broad range of dynamical descriptions of open quantum system dynamics with coupling to non-Markovian or Markovian environments.
Influence of external magnetic field on dynamics of open quantum systems
Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.
2007-03-15
The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.
Application of the theory of open quantum systems to nuclear physics problems
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.
2016-03-01
Quantum diffusion equations with transport coefficients explicitly depending on time are derived from the generalized non-Markovian Langevin equations. The asymptotic behavior of the friction and diffusion coefficients is investigated in the case of the FC and RWA couplings between the collective and internal subsystems. An asymptotic expression is obtained for the propagator of the density matrix of the open quantum system with the general quadratic Hamiltonian, linearly coupled (in coordinate and momentum) to internal degrees of freedom. The effect of different sets of transport coefficients on the decoherence and decay rate of the metastable state is investigated using the master equation for the reduced density matrix of open quantum systems. The developed approach is used to study the capture of the projectile nucleus by the target nucleus at energies near the Coulomb barrier. Capture cross sections in asymmetric reactions are well described with allowance for the calculated capture probabilities. Particular cases where dissipation favors penetration through the potential barrier are found. The generalized Kramers formula for the quasi-stationary decay rate of the quantum metastable systems is analytically derived.
Description of non-Markovian effect in open quantum system with the discretized environment method
NASA Astrophysics Data System (ADS)
Lacroix, Denis; Sargsyan, Vazgen; Adamian, Gurgen; Antonenko, Nikolai
2015-04-01
An approach, called discretized environment method, is used to treat exactly non-Markovian effects in open quantum systems. In this approach, a complex environment described by a spectral function is mapped into a finite set of discretized states with an appropriate coupling to the system of interest. The finite set of system plus environment degrees of freedom are then explicitly followed in time leading to a quasi-exact description. The present approach is anticipated to be particularly accurate in the low temperature and strongly non-Markovian regime. The discretized environment method is validated on a two-level system (qubit) coupled to a bosonic or fermionic heat-bath. A perfect agreement with the quantum Langevin approach is found. Further illustrations are made on a three-level system (qutrit) coupled to a bosonic heat-bath. Emerging processes due to strong memory effects are discussed.
NASA Astrophysics Data System (ADS)
Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng
2016-05-01
Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.
Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
Budich, Jan C; Trauzettel, Björn
2010-07-01
We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schrödinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure. PMID:20571188
Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions
NASA Astrophysics Data System (ADS)
Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.
In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.
Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems
Merkli, M.; Berman, G. P.; Borgonovi, F.; Tsifrinovich, V. I.
2012-01-01
We considermore » an open quantum system of N not directly interacting spins (qubits) in contact with both local and collective thermal environments. The qubit-environment interactions are energy conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters of the thermal environments and the number of qubits, N . Our results demonstrate that the two-qubit entanglement generally decreases as N increases. We show analytically that, in the limit N → ∞ , no entanglement can be created. This indicates that collective thermal environments cannot create two-qubit entanglement when many qubits are located within a region of the size of the environment coherence length. We discuss possible relevance of our consideration to recent quantum information devices and biosystems.« less
Thermofield-based chain-mapping approach for open quantum systems
NASA Astrophysics Data System (ADS)
de Vega, Inés; Bañuls, Mari-Carmen
2015-11-01
We consider a thermofield approach to analyze the evolution of an open quantum system coupled to an environment at finite temperature. In this approach, the finite-temperature environment is exactly mapped onto two virtual environments at zero temperature. These two environments are then unitarily transformed into two different chains of oscillators, leading to a one-dimensional structure that can be numerically studied using tensor network techniques. Compared to previous approaches using a single chain mapping, our strategy offers the advantage of an exact description of the initial state at arbitrary temperatures, which results in a gain in computational efficiency and a reduced truncation error.
General Formalism of Decision Making Based on Theory of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.
2013-01-01
We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.
Ultracold Mixtures of Rubidium and Ytterbium for Open Quantum System Engineering
NASA Astrophysics Data System (ADS)
Herold, Creston David
Exquisite experimental control of quantum systems has led to sharp growth of basic quantum research in recent years. Controlling dissipation has been crucial in producing ultracold, trapped atomic samples. Recent theoretical work has suggested dissipation can be a useful tool for quantum state preparation. Controlling not only how a system interacts with a reservoir, but the ability to engineer the reservoir itself would be a powerful platform for open quantum system research. Toward this end, we have constructed an apparatus to study ultracold mixtures of rubidium (Rb) and ytterbium (Yb). We have developed a Rb-blind optical lattice at 423.018(7) nm, which will enable us to immerse a lattice of Yb atoms (the system) into a Rb BEC (superfluid reservoir). We have produced Bose-Einstein condensates of 170Yb and 174Yb, two of the five bosonic isotopes of Yb, which also has two fermionic isotopes. Flexible optical trapping of Rb and Yb was achieved with a two-color dipole trap of 532 and 1064 nm, and we observed thermalization in ultracold mixtures of Rb and Yb. Using the Rb-blind optical lattice, we measured very small light shifts of 87Rb BECs near the light shift zero-wavelengths adjacent the 6p electronic states, through a coherent series of lattice pulses. The positions of the zero-wavelengths are sensitive to the electric dipole matrix elements between the 5s and 6p states, and we made the first experimental measurement of their strength. By measuring a light shift, we were not sensitive to excited state branching ratios, and we achieved a precision better than 0.3%.
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-06-01
We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.
Problem-free time-dependent variational principle for open quantum systems
NASA Astrophysics Data System (ADS)
Joubert-Doriol, Loïc; Izmaylov, Artur F.
2015-04-01
Methods of quantum nuclear wave-function dynamics have become very efficient in simulating large isolated systems using the time-dependent variational principle (TDVP). However, a straightforward extension of the TDVP to the density matrix framework gives rise to methods that do not conserve the energy in the isolated system limit and the total system population for open systems where only energy exchange with environment is allowed. These problems arise when the system density is in a mixed state and is simulated using an incomplete basis. Thus, the basis set incompleteness, which is inevitable in practical calculations, creates artificial channels for energy and population dissipation. To overcome this unphysical behavior, we have introduced a constrained Lagrangian formulation of TDVP applied to a non-stochastic open system Schrödinger equation [L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 141, 234112 (2014)]. While our formulation can be applied to any variational ansatz for the system density matrix, derivation of working equations and numerical assessment is done within the variational multiconfiguration Gaussian approach for a two-dimensional linear vibronic coupling model system interacting with a harmonic bath.
A review of progress in the physics of open quantum systems: theory and experiment
NASA Astrophysics Data System (ADS)
Rotter, I.; Bird, J. P.
2015-11-01
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In
A review of progress in the physics of open quantum systems: theory and experiment.
Rotter, I; Bird, J P
2015-11-01
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In
NASA Astrophysics Data System (ADS)
Chen, Xin
2014-04-01
Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.
Chen, Xin
2014-04-21
Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.
Quantum cascade laser open-path system for remote sensing of trace gases in Beijing, China
NASA Astrophysics Data System (ADS)
Michel, Anna P. M.; Liu, Peter Q.; Yeung, June K.; Corrigan, Paul; Baeck, Mary Lynn; Wang, Zifa; Day, Timothy; Smith, James A.
2010-11-01
Exploiting several key characteristics of quantum cascade (QC) lasers, including wide tunability and room-temperature operation, the Quantum Cascade Laser Open-Path System (QCLOPS) was designed for the detection of a range of trace gases and for field deployment in urban environments. Tunability over a wavelength range from 9.3 to 9.8 μm potentially provides the capability for monitoring ozone, ammonia, and carbon dioxide, a suite of trace gases important for air quality and regional climate applications in urban environments. The 2008 Olympic Games in Beijing, China drew attention to air quality problems in urban environments. Prior to and during the Olympic games, regional air quality modifications through factory shutdowns, car restrictions, and construction halts in Beijing and its surrounding areas created a unique test bed for new sensor technologies such as the QCLOPS sensor. We report the design of this novel, open-path air quality sensor and the results of both laboratory tests and field trials during the 2008 Olympic Games in Beijing, China.
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
NASA Astrophysics Data System (ADS)
Arrachea, Liliana
2007-01-01
We present an efficient method and a fast algorithm to exactly calculate spectral functions and one-body observables of open quantum systems described by lattice Hamiltonians with harmonically time-dependent terms and without many-body interactions. The theoretical treatment is based in Keldysh nonequilibrium Green’s function formalism. We illustrate the implementation of the technique in a paradigmatic model of a quantum pump driven by local fields oscillating in time with one and two harmonic components.
Degenerate mixtures of rubidium and ytterbium for engineering open quantum systems
NASA Astrophysics Data System (ADS)
Vaidya, Varun Dilip
In the last two decades, experimental progress in controlling cold atoms and ions now allows us to manipulate fragile quantum systems with an unprecedented degree of precision. This has been made possible by the ability to isolate small ensembles of atoms and ions from noisy environments, creating truly closed quantum systems which decouple from dissipative channels. However in recent years, several proposals have considered the possibility of harnessing dissipation in open systems, not only to cool degenerate gases to currently unattainable temperatures, but also to engineer a variety of interesting many-body states. This thesis will describe progress made towards building a degenerate gas apparatus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein condensate (BEC) of rubidium atoms which will act as a bath. Here we describe the challenges encountered in making a degenerate mixture of rubidium and ytterbium atoms and present two experiments performed on the path to creating a controllable open quantum system. The first experiment will describe the measurement of a tune-out wavelength where the light shift of 87Rb vanishes. This wavelength was used to create a species-selective trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed us to extract the dipole matrix element of the 5s → 6p transition in 87Rb with an extraordinary degree of precision. Our method to extract matrix elements has found use in atomic clocks where precise knowledge of transition strengths is necessary to account for minute blackbody radiation shifts. The second experiment will present the first realization of a degenerate Bose-Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap (ODT), we were able to create a highly-tunable, species-selective potential for rubidium and ytterbium atoms which allowed us to use 87
Limits in the characteristic-function description of non-Lindblad-type open quantum systems
Maniscalco, Sabrina
2005-08-15
In this paper I investigate the usability of the characteristic functions for the description of the dynamics of open quantum systems focussing on non-Lindblad-type master equations. I consider, as an example, a non-Markovian generalized master equation containing a memory kernel which may lead to nonphysical time evolutions characterized by negative values of the density matrix diagonal elements [S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808 (2001)]. The main result of the paper is to demonstrate that there exist situations in which the symmetrically ordered characteristic function is perfectly well-defined while the corresponding density matrix loses positivity. Therefore, nonphysical situations may not show up in the characteristic function. As a consequence, the characteristic function cannot be considered an alternative complete description of the non-Lindblad dynamics.
Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses
NASA Astrophysics Data System (ADS)
Song, Ya-Ju; Kuang, Le-Man; Tan, Qing-Shou
2016-06-01
We present a method to accelerate the dynamical evolution of mutltiqubit open system by employing dynamical decoupling pulses (DDPs) when the qubits are initially in W-type states. Here the qubits are independent and coupled to local Lorentzian reservoirs. It is found that this speedup evolution can be achieved in both the weak-coupling regime and the strong-coupling regime. The essential physical mechanism behind the acceleration evolution is explained as a result of the joint action of the non-Markovianity of reservoirs and the excited-state population of qubits. It is shown that both the non-Markovianity and the excited-state population can be controlled by DDPs to realize the quantum speedup.
Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems
Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.
2007-06-15
Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.
Casimir force for absorbing media in an open quantum system framework: Scalar model
Lombardo, Fernando C.; Rubio Lopez, Adrian E.; Mazzitelli, Francisco D.
2011-11-15
In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment.
Entanglement evolution in the open quantum systems consisting of asymmetric oscillators
NASA Astrophysics Data System (ADS)
Afshar, Davood; Mehrabankar, Somayeh; Abbasnezhad, Farkhondeh
2016-03-01
Using the theory of open quantum systems, we study the entanglement evolution in two and three-mode systems consisting of uncoupled harmonic oscillators which interact with a thermal bath as the environment. The evolution of the system is obtained with the use of the master equation in the Lindblad form with the Markovian approximation. The coherent states of a spinless charged particle in an anisotropic harmonic potential and a uniform magnetic field are considered as the initial states of two and three-mode systems. Then by the use of the positive partial transpose criterion for three-mode system and the logarithmic negativity for two-mode system, the entanglement evolution is obtained as a function of the temperature, dissipation coefficient, magnetic field and asymmetric parameter. In both two and three-mode systems, by increasing the dissipation coefficient and temperature, the entanglement sudden death occurs sooner. Also, for certain values of the magnetic field and asymmetric parameter which depend on the other parameters, the entanglement survives the most.
Quantum Fisher information of an open and noisy system in the steady state
NASA Astrophysics Data System (ADS)
Altintas, Azmi Ali
2016-04-01
We study the quantum Fisher information (QFI) per particle of an open (particles can enter and leave the system) and dissipative (far from thermodynamical equilibrium) steady state system of two qubits in a noise which is decoherence. We show the behavior of QFI per particle of the system due to changes of reset and decoherence parameters r and γ respectively. The parameter r is the strength of the reset mechanism, γ is the strength of decoherence and in our case it is dephasing channel. The parameters γ and r are real numbers. We observe that the reset parameter must be bigger than decoherence parameter. We have found that by choosing coupling parameter g as 5 γ the QFI per particle is 1.00226 which is greater than shot noise limit at γ = 0.5 and r = 14. Also the concurrence and negativity of the such state have been calculated and they are found as 0.0992486 and 0.0496243 respectively. We have shown that when the concurrence and negativity of some specific states different than zero, which means the state is entangled, the QFI of the system is greater than 1. The QFI per particle, concurrence and negativity shows that the chosen case is weakly entangled. We discovered that the optimal direction depends on the parameters r and γ and a change in the direction affects the behavior of the QFI of the system.
Larsen, Ask Hjorth; De Giovannini, Umberto; Rubio, Angel
2016-01-01
We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump-probe photoelectron spectroscopy of molecular systems. PMID:25860253
Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation
Sun, Zhe; Liu, Jing; Ma, Jian; Wang, Xiaoguang
2015-01-01
We derive an easily computable quantum speed limit (QSL) time bound for open systems whose initial states can be chosen as either pure or mixed states. Moreover, this QSL time is applicable to either Markovian or non-Markovian dynamics. By using of a hierarchy equation method, we numerically study the QSL time bound in a qubit system interacting with a single broadened cavity mode without rotating-wave, Born and Markovian approximation. By comparing with rotating-wave approximation (RWA) results, we show that the counter-rotating terms are helpful to increase evolution speed. The problem of non-Markovianity is also considered. We find that for non-RWA cases, increasing system-bath coupling can not always enhance the non-Markovianity, which is qualitatively different from the results with RWA. When considering the relation between QSL and non-Markovianity, we find that for small broadening widths of the cavity mode, non-Markovianity can increase the evolution speed in either RWA or non-RWA cases, while, for larger broadening widths, it is not true for non-RWA cases. PMID:25676589
Time-reversal symmetric resolution of unity without background integrals in open quantum systems
Hatano, Naomichi; Ordonez, Gonzalo
2014-12-15
We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the central scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.
Hu Jie; Luo Meng; Jiang Feng; Xu Ruixue; Yan Yijing
2011-06-28
Pade spectrum decomposition is an optimal sum-over-poles expansion scheme of Fermi function and Bose function [J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106 (2010)]. In this work, we report two additional members to this family, from which the best among all sum-over-poles methods could be chosen for different cases of application. Methods are developed for determining these three Pade spectrum decomposition expansions at machine precision via simple algorithms. We exemplify the applications of present development with optimal construction of hierarchical equations-of-motion formulations for nonperturbative quantum dissipation and quantum transport dynamics. Numerical demonstrations are given for two systems. One is the transient transport current to an interacting quantum-dots system, together with the involved high-order co-tunneling dynamics. Another is the non-Markovian dynamics of a spin-boson system.
Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation
NASA Astrophysics Data System (ADS)
Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H.
2013-01-01
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
Resonant purification of mixed states for closed and open quantum systems
Romano, Raffaele
2007-02-15
Pure states are fundamental for the implementation of quantum technologies, and several methods for the purification of the state of a quantum system S have been developed in the past years. In this work we describe a mechanism leading to purification of mixed states, based on the interaction of S with an auxiliary system P. Considering two-level systems and assuming a particular interaction between them, we study how the dynamical parameters of the system P affect the purification of S. By using analytical and numerical tools, we show that the purification process exhibits a resonant behavior in both the cases of system isolated from the external environment or not.
NASA Astrophysics Data System (ADS)
Garmon, Savannah; Ordonez, Gonzalo
Recently the physics of coalescing eigenvalues at an exceptional point (EP) has been studied in a wide range of physical contexts, including open quantum systems. At an EP N at which N eigenvalues coalesce the Hamiltonian can no longer be diagonalized but instead only reduced to a Jordan block of dimension N. In order to describe the survival probability P (t) for an initially prepared state in the vicinity of two coalescing levels, we further subdivide the EP2 case into the EP2A and EP2B, where the EP2A involves the coalesce of two virtual bound states to form a resonance/anti-resonance pair and the EP2B occurs when two resonances collide to form two new resonances. We show that in the vicinity of the EP2B the usual exponential decay appearing for resonances on intermediate timescales is modified as P (t) ~ te-Γt . However, the long-time evolution near the EP2B follows a 1 /t3 power law decay. Meanwhile the evolution for the EP2A is non-exponential on all timescales, and may be strongly influenced by continuum threshold effects.
QuTiP 2: A Python framework for the dynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Johansson, J. R.; Nation, P. D.; Nori, Franco
2013-04-01
We present version 2 of QuTiP, the Quantum Toolbox in Python. Compared to the preceding version [J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183 (2012) 1760.], we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Here we introduce these new features, demonstrate their use, and give a summary of the important backward-incompatible API changes introduced in this version. Catalog identifier: AEMB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 33625 No. of bytes in distributed program, including test data, etc.: 410064 Distribution format: tar.gz Programming language: Python. Computer: i386, x86-64. Operating system: Linux, Mac OSX. RAM: 2+ Gigabytes Classification: 7. External routines: NumPy, SciPy, Matplotlib, Cython Catalog identifier of previous version: AEMB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1760 Does the new version supercede the previous version?: Yes Nature of problem: Dynamics of open quantum systems Solution method: Numerical solutions to Lindblad, Floquet-Markov, and Bloch-Redfield master equations, as well as the Monte Carlo wave function method. Reasons for new version: Compared to the preceding version we have introduced numerous new features, enhanced performance, and made changes in
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-05-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-09-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
Optical signatures of non-Markovian behavior in open quantum systems
NASA Astrophysics Data System (ADS)
McCutcheon, Dara P. S.
2016-02-01
We derive an extension to the quantum regression theorem which facilitates the calculation of two-time correlation functions and emission spectra for systems undergoing non-Markovian evolution. The derivation exploits projection operator techniques, with which we obtain explicit equations of motion for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature of the dynamics has observable signatures in the form of phonon sidebands in the resonance fluorescence emission spectrum. Furthermore, we use recently developed non-Markovianity measures to demonstrate an associated flow of information from the phonon bath back into the quantum dot exciton system.
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-12-01
This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming
Non-Markovian dynamics of an open quantum system with nonstationary coupling
Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.
2011-04-15
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.
Non-Markovian dynamics of an open quantum system with nonstationary coupling.
Kalandarov, S A; Kanokov, Z; Adamian, G G; Antonenko, N V; Scheid, W
2011-04-01
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency. PMID:21599112
NASA Astrophysics Data System (ADS)
Segnorile, Héctor H.; Zamar, Ricardo C.
2011-12-01
Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance (1H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by
Segnorile, Héctor H; Zamar, Ricardo C
2011-12-28
Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance ((1)H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by
NASA Technical Reports Server (NTRS)
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
Demonstration of Jarzynski's equality in open quantum systems using a stepwise pulling protocol
NASA Astrophysics Data System (ADS)
Ngo, Van A.; Haas, Stephan
2012-09-01
We present a generalization of Jarzynski's equality, applicable to quantum systems, that is related to discretized mechanical work and free-energy changes. The theory is based on a stepwise pulling protocol. We find that work distribution functions can be constructed from fluctuations of a reaction coordinate along a reaction pathway in the stepwise pulling protocol. We also propose two sets of equations to determine the two possible optimal pathways that provide the most significant contributions to free-energy changes. We find that the transitions along these most optimal pathways, satisfying both sets of equations, follow the principle of detailed balance. We then test the theory by explicitly computing the free-energy changes for a one-dimensional quantum harmonic oscillator. This approach suggests a feasible way of measuring the fluctuations to experimentally test Jarzynski's equality in many-body systems, such as Bose-Einstein condensates.
NASA Astrophysics Data System (ADS)
Anders, Frithjof B.
2008-08-01
We propose a numerical renormalization group (NRG) approach to steady-state currents through nanodevices. A discretization of the scattering-states continuum ensures the correct boundary condition for an open quantum system. We introduce two degenerate Wilson chains for current carrying left- and right-moving electrons reflecting time-reversal symmetry in the absence of a finite bias V. We employ the time-dependent NRG to evolve the known steady-state density operator for a noninteracting junction into the density operator of the fully interacting nanodevice at finite bias. We calculate the differential conductance as function of V, T, and the external magnetic field.
Communication: Conditions for one-photon coherent phase control in isolated and open quantum systems
Spanner, Michael; Arango, Carlos A.; Brumer, Paul
2010-10-21
Coherent control of observables using the phase properties of weak light that induces one-photon transitions is considered. Measurable properties are shown to be categorizable as either class A, where control is not possible, or class B, where control is possible. Using formal arguments, we show that phase control in open systems can be environmentally assisted.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
NASA Astrophysics Data System (ADS)
Schröder, Florian A. Y. N.; Chin, Alex W.
2016-02-01
We report the development of an efficient many-body algorithm for simulating open quantum system dynamics that utilizes a time-dependent variational principle for matrix product states to evolve large system-environment states. Capturing all system-environment correlations, we reproduce the nonperturbative, quantum-critical dynamics of the zero-temperature spin-boson model, and then exploit the many-body information to visualize the complete time-frequency spectrum of the environmental excitations. Our "environmental spectra" reveal correlated vibrational motion in polaronic modes which preserve their vibrational coherence during incoherent spin relaxation, demonstrating how environment information could yield valuable insights into complex quantum dissipative processes.
NASA Astrophysics Data System (ADS)
Nikitin, N. V.; Sotnikov, V. P.; Toms, K. S.
2015-10-01
A radically new class of Bell inequalities in Wigner's form was obtained on the basis of Kolmorov's axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner's form). By using these inequalities, one can propose a means for experimentally testing Bohr' complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion-antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett-Garg approach, for example.
Nikitin, N. V. Sotnikov, V.P.; Toms, K. S.
2015-10-15
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.
Note on entropies for quantum dynamical systems.
Watanabe, Noboru
2016-05-28
Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165
Laguna, Humberto G; Sagar, Robin P; Tempel, David G; Aspuru-Guzik, Alán
2016-01-01
The effects of bath coupling on an interacting two-particle quantum system are studied using tools from information theory. Shannon entropies of the one (reduced) and two-particle distribution functions in position, momentum and separable phase-space are examined. Results show that the presence of the bath leads to a delocalization of the distribution functions in position space, and a localization in momentum space. This can be interpreted as a loss of information in position space and a gain of information in momentum space. The entropy sum of the system, in the presence of a bath, is shown to be dependent on the strength of the interparticle potential and also on the strength of the coupling to the bath. The statistical correlation between the particles, and its dependence on the bath and interparticle potential, is examined using mutual information. A stronger repulsive potential between particles, in the presence of the bath, yields a smaller correlation between the particles positions, and a larger one between their momenta. PMID:26616490
General open-system quantum evolution in terms of affine maps of the polarization vector
Byrd, Mark S.; Bishop, C. Allen; Ou, Yong-Cheng
2011-01-15
The operator-sum decomposition of a map from one density matrix to another has many applications in quantum information science. To this mapping there corresponds an affine map which provides a geometric description of the map of the density matrix in terms of the polarization vector representation. This has been thoroughly explored for qubits since the components of the polarization vector are measurable quantities (corresponding to expectation values of Hermitian operators) and also because it enables the description of map domains geometrically. Here we extend the operator-sum-affine-map correspondence to qudits, briefly discuss general properties of the map and the form for some particular cases, and provide several explicit results for qutrit maps. We use the affine map and a singular-value-like decomposition to find positivity constraints that provide a symmetry for small polarization vector magnitudes (states which are closer to the maximally mixed state), which is broken as the polarization vector increases in magnitude (a state becomes more pure). The dependence of this symmetry on the magnitude of the polarization vector implies the polar decomposition of the map cannot be used as it can for the qubit case. However, it still leads us to a connection between positivity and purity for general d-state systems.
Generalized Kac lemma for recurrence time in iterated open quantum systems
NASA Astrophysics Data System (ADS)
Sinkovicz, P.; Kiss, T.; Asbóth, J. K.
2016-05-01
We consider recurrence to the initial state after repeated actions of a quantum channel. After each iteration a projective measurement is applied to check recurrence. The corresponding return time is known to be an integer for the special case of unital channels, including unitary channels. We prove that for a more general class of quantum channels the expected return time can be given as the inverse of the weight of the initial state in the steady state. This statement is a generalization of the Kac lemma for classical Markov chains.
Perturbative approach to open circuit QED systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens
2014-03-01
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. The proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system observables, which would otherwise be impractical. This enables us to investigate a variety of open circuit QED systems, including the open Jaynes-Cummings lattice model.
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.
2012-12-01
The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter
Conductance Peaks in Open Quantum Dots
NASA Astrophysics Data System (ADS)
Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.
2011-10-01
We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be ⟨ρZ⟩=αZ/Zc, where αZ is a universal constant and Zc is the conductance autocorrelation length, which is system specific. The analysis of ⟨ρZ⟩ does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Zc.
Time-dependent approach to electron pumping in open quantum systems
NASA Astrophysics Data System (ADS)
Stefanucci, G.; Kurth, S.; Rubio, A.; Gross, E. K. U.
2008-02-01
We use a recently proposed time-dependent approach to investigate the motion of electrons in quantum pump device configurations. The occupied one-particle states are propagated in real time and employed to calculate the local electron density and current. The approach can also be embedded in the framework of time-dependent density functional theory to include electron-electron interactions. An advantage of the present computational scheme is that the same computational effort is required to simulate monochromatic, polychromatic, and nonperiodic drivings. Furthermore, initial-state dependence and history effects are naturally accounted for. We present results for one-dimensional devices exposed to a traveling potential wave. (i) We show that for pumping across a single potential barrier, electrons are transported in pockets and the transport mechanism resembles pumping of water with the Archimedean screw; (ii) we propose a simple model to study pumping through semiconductor nanostructures and we address the phenomenon of the current flowing in the opposite direction to the field propagation; (iii) we present the first numerical evidence of long-lived superimposed oscillations as induced by the presence of bound states and discuss the dependence of their lifetime on the frequency and amplitude of the driving field. By combining Floquet theory with nonequilibrium Green’s functions, we also obtain a general expression for the pumped current in terms of inelastic transmission probabilities. This latter result is used for benchmarking our propagation scheme in the long-time limit. Finally, we discuss the limitations of Floquet-based algorithms and suggest our approach as a possible way to go beyond them.
NASA Astrophysics Data System (ADS)
Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham
2016-07-01
We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Mappings of open quantum systems onto chain representations and Markovian embeddings
Woods, M. P.; Groux, R.; Chin, A. W.; Huelga, S. F.; Plenio, M. B.
2014-03-15
We study systems coupled linearly to a bath of oscillators. In an iterative process, the bath is transformed into a chain of oscillators with nearest neighbour interactions. A systematic procedure is provided to obtain the spectral density of the residual bath in each step, and it is shown that under general conditions these data converge. That is, the asymptotic part of the chain is universal, translation invariant with semicircular spectral density. The methods are based on orthogonal polynomials, in which we also solve the outstanding so-called “sequence of secondary measures problem” and give them a physical interpretation.
Order O (1) algorithm for first-principles transient current through open quantum systems
NASA Astrophysics Data System (ADS)
Cheung, King Tai; Yu, Zhizhou; Fu, Bin; Wang, Jian
First principles transient current through molecular devices is known to be extremely time consuming with typical computational complexity T3N3 where N and T are the dimension of the scattering system and the number of time steps respectively. Various algorithms have been developed which eventually brings the complexity down to cTN3 , a linear scaling in T, where c is a large coefficient comparable to N. Here we provide an order O (1) algorithm that reduces it further to c1N3 +c2 TN2 where c1 and c2 are ~50 and 0.1 respectively. Hence for T < N , the transient calculation is independent of T, thus order O (1) is achieved. To make this happening four important ingredients are essential: (1). availability of exact solution based on non-equilibrium Green's function (NEGF) that goes beyond wideband limit; (2). the use of complex absorbing potential (CAP) so that all the pole of Green's function can be found; (3). the exact solution is separable between real space and time domain; (4). the exploit of Vandermonde matrix further reduces the scaling of TN2 to TlnTN for T > N . Benchmark calculation has been done on graphene nanoribbons using Tight-binding (TB) Hamiltonian with a huge speed up factor of 100 T , confirmed the O (1) scaling.
Nonlinear Fano interferences in open quantum systems: An exactly solvable model
NASA Astrophysics Data System (ADS)
Finkelstein-Shapiro, Daniel; Calatayud, Monica; Atabek, Osman; Mujica, Vladimiro; Keller, Arne
2016-06-01
We obtain an explicit solution for the stationary-state populations of a dissipative Fano model, where a discrete excited state is coupled to a continuum set of states; both excited sets of states are reachable by photoexcitation from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values within the model. We show that the population of the continuum states as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a 4 ×4 matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic-induced transparency, population inversions, power narrowing and broadening, as well as an effective reduction of the Fano asymmetry parameter.
NASA Astrophysics Data System (ADS)
Khrennikova, Polina; Haven, Emmanuel; Khrennikov, Andrei
2014-04-01
The Gorini-Kossakowski-Sudarshan-Lindblad equation allows us to model the process of decision making in US elections. The crucial point we attempt to make is that the voter's mental state can be represented as a superposition of two possible choices for either republicans or democrats. However, reality dictates a more complicated situation: typically a voter participates in two elections, i.e. the congress and the presidential elections. In both elections the voter has to decide between two choices. This very feature of the US election system requires that the mental state is represented by a 2-qubit state corresponding to the superposition of 4 different choices. The main issue is to describe the dynamics of the voters' mental states taking into account the mental and political environment. What is novel in this paper is that we apply the theory of open quantum systems to social science. The quantum master equation describes the resolution of uncertainty (represented in the form of superposition) to a definite choice.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Dynamical and thermodynamical control of open quantum Brownian motion
NASA Astrophysics Data System (ADS)
Petruccione, Francesco; Sinayskiy, Ilya
Open quantum Brownian motion was introduced as a new type of quantum Brownian motion for Brownian particles with internal quantum degrees of freedom. Recently, an example of the microscopic derivation of open quantum Brownian motion has been presented [I. Sinayskiy and F. Petruccione, Phys. Scr. T165, 014017 (2015)]. The microscopic derivation allows to relate the dynamical properties of open Quantum Brownian motion and the thermodynamical properties of the environment. In the present work, we study the possibility of control of the external degrees of freedom of the ''walker'' (position) by manipulating the internal one, e.g. spin, polarization, occupation numbers. In the particular example of the known microscopic derivation the connection between dynamics of the ''walker'' and thermodynamical parameters of the system is established. For the system of open Brownian walkers coupled to the same environment controllable creation of quantum correlations is investigated. This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
NASA Astrophysics Data System (ADS)
Head-Marsden, Kade; Mazziotti, David A.
2015-02-01
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.
Head-Marsden, Kade; Mazziotti, David A
2015-02-01
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise. PMID:25662627
Quantum electromechanical systems
NASA Astrophysics Data System (ADS)
Milburn, Gerard J.; Polkinghorne, Rodney
2001-11-01
We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-04-01
In this work we aim at proving central limit theorems for open quantum walks on {{Z}}^d . We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-07-01
In this work we aim at proving central limit theorems for open quantum walks on {mathbb {Z}}^d. We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
NASA Astrophysics Data System (ADS)
Dušek, Miloslav; Haderka, Ondřej; Hendrych, Martin; Myška, Robert
1999-07-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and sequences are ``refueled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.
Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
Magnetoconductance fluctuations in open bismuth quantum dots
NASA Astrophysics Data System (ADS)
Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.
2002-03-01
We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.
Full-counting statistics and phase transition in an open quantum system of non-interacting electrons
NASA Astrophysics Data System (ADS)
Medvedyeva, Mariya; Kehrein, Stefan
2014-03-01
We develop a method for calculating the full-counting statistics for a non-interacting fermionic system coupled to memory-less reservoirs. The evolution of the system is described by the Lindblad equation. We introduce the counting field in the Lindblad equation which yields the generating function and allows us to obtain all cumulants of the charge transport. In a uniform system the cumulants of order k are independent of the system size for systems longer than k+1 sites. The counting statistics from the Lindblad approach does not take into account the interference in the reservoirs which gives a decreased value of noise in comparison to the Green function approach which describes phase coherent leads. The two methods yield the same value for the current, which is due to current conservation. The Fano factors are different (and linearly related) and allow us to distinguish between memory-less and phase coherent reservoirs. We also consider the influence of dissipation along the chain allowing for both tunneling into and out of the chain along its length. Infinitesimally small dissipation along the chain induces a quantum phase transition which manifests itself as a discontinuity in transport properties and entropy.
NASA Astrophysics Data System (ADS)
Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred
2015-10-01
Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.
Dynamical and thermodynamical control of Open Quantum Walks
NASA Astrophysics Data System (ADS)
Petruccione, Francesco; Sinayskiy, Ilya
2014-03-01
Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Scheme of thinking quantum systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
Theory of short periodic orbits for partially open quantum maps
NASA Astrophysics Data System (ADS)
Carlo, Gabriel G.; Benito, R. M.; Borondo, F.
2016-07-01
We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009), 10.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R . These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R =0 ) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.
Theory of short periodic orbits for partially open quantum maps.
Carlo, Gabriel G; Benito, R M; Borondo, F
2016-07-01
We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009)PLEEE81539-375510.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R=0) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits. PMID:27575138
Head-Marsden, Kade; Mazziotti, David A.
2015-02-07
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system’s density matrix. While Lindblad’s modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F{sub 2}, N{sub 2}, CO, and BeH{sub 2} subject to environmental noise.
Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2016-04-01
Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.
Quantum game theory and open access publishing
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Bernius, Steffen; Dugall, Berndt
2007-08-01
The digital revolution of the information age and in particular the sweeping changes of scientific communication brought about by computing and novel communication technology, potentiate global, high grade scientific information for free. The arXiv, for example, is the leading scientific communication platform, mainly for mathematics and physics, where everyone in the world has free access on. While in some scientific disciplines the open access way is successfully realized, other disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many scientists belonging to these communities approve the open access principle. In this paper we try to explain these different publication patterns by using a game theoretical approach. Based on the assumption, that the main goal of scientists is the maximization of their reputation, we model different possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”. From an individual perspective, they have no incentive to deviate from the Nash equilibrium of traditional publishing. By extending the model using the quantum game theory approach it can be shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the dilemma and terminate to publish only traditionally in all three settings.
Veeraraghavan, Srikant; Mazziotti, David A.
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502–R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C{sub 2}, CN, Cr {sub 2}, and NO {sub 2}.
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2. PMID:24697423
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Equilibration of quantum chaotic systems.
Zhuang, Quntao; Wu, Biao
2013-12-01
The quantum ergordic theorem for a large class of quantum systems was proved by von Neumann [Z. Phys. 57, 30 (1929)] and again by Reimann [Phys. Rev. Lett. 101, 190403 (2008)] in a more practical and well-defined form. However, it is not clear whether the theorem applies to quantum chaotic systems. With a rigorous proof still elusive, we illustrate and verify this theorem for quantum chaotic systems with examples. Our numerical results show that a quantum chaotic system with an initial low-entropy state will dynamically relax to a high-entropy state and reach equilibrium. The quantum equilibrium state reached after dynamical relaxation bears a remarkable resemblance to the classical microcanonical ensemble. However, the fluctuations around equilibrium are distinct: The quantum fluctuations are exponential while the classical fluctuations are Gaussian. PMID:24483425
Open-loop quantum control as a resource for secure communications
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2016-05-01
Properties of unitary time evolution of quantum systems can be applied to define quantum cryptographic protocols. Dynamics of a qubit can be exploited as a data encryption/decryption procedure by means of timed measurements, implementation of an open-loop control scheme over a qubit increases robustness of a protocol employing this principle.
Dynamical gauge effects in an open quantum network
NASA Astrophysics Data System (ADS)
Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan
2016-05-01
We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.
Open systems storage platforms
NASA Technical Reports Server (NTRS)
Collins, Kirby
1992-01-01
The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.
Vibhute, Pavankumar Janardan
2012-01-01
Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement. PMID:22567645
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Open system environment procurement
NASA Technical Reports Server (NTRS)
Fisher, Gary
1994-01-01
Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.
Dwell-time-limited coherence in open quantum dots.
Hackens, B; Faniel, S; Gustin, C; Wallart, X; Bollaert, S; Cappy, A; Bayot, V
2005-04-15
We present measurements of the electron phase coherence time tau(varphi) on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of tau(varphi) below temperatures 0.5 K
Dwell-Time-Limited Coherence in Open Quantum Dots
NASA Astrophysics Data System (ADS)
Hackens, B.; Faniel, S.; Gustin, C.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.
2005-04-01
We present measurements of the electron phase coherence time τϕ on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of τϕ below temperatures 0.5 K
Energy Cost of Controlling Mesoscopic Quantum Systems
NASA Astrophysics Data System (ADS)
Horowitz, Jordan M.; Jacobs, Kurt
2015-09-01
We determine the minimum energy required to control the evolution of any mesoscopic quantum system in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic equivalent of the fundamental cost of refrigeration, sets the minimum power consumption of mesoscopic devices that operate out of equilibrium, and allows one to calculate the efficiency of any control protocol, whether it be open-loop or feedback control. As examples, we calculate the energy cost of maintaining a qubit in the ground state and the efficiency of resolved-sideband cooling of nano-mechanical resonators, and discuss the energy cost of quantum information processing.
ERIC Educational Resources Information Center
Denenberg, Ray
1985-01-01
Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…
Decoherence in infinite quantum systems
Blanchard, Philippe; Hellmich, Mario
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool in a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.
NASA Astrophysics Data System (ADS)
Crowe, James A.
1993-08-01
The notion of a large distributed computing system in support of a program like EOSDIS, carries with it the requirement that the system provide the user with guarantees about the integrity of the data and certain assurances about the security of the network of computing systems. This paper examines the challenges of providing a `secure' open system and how these challenges may be addressed from both an architectural as well as functional viewpoint. The role of discretionary access control, mandatory access control, and detection and control of computer viruses is discussed. It has often been observed that the role of the security engineer is one of restricting access to data, whereas the role of the system architect, of an open system that is encouraging research, should make data easy to obtain and utilize. This paradox is manifest in a system such a EOSDIS where to be useful, the systems data must be easy to obtain, but to ensure the integrity of the data it must exercise some level of security. This paper address the use and role of the Security Services of the OSF Distributed Computing Environment in support of networked applications, such as those that may be used in the implementation of the EOS Science Network. It further examines the role of mandatory access control mechanisms to provide data integrity guarantees. The paper further discusses how a system like EOSDIS may prevent computer viruses using a system of automated detection mechanisms and configuration control.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm. PMID:23829722
Experimental test of Jarzynski equality in a quasi-open quantum using a trapped ion
NASA Astrophysics Data System (ADS)
Lu, Yao; An, Shuoming; Zhang, Xiang; Zhang, Jing-Ning; Quan, H. T.; Smith, A. M.; Jarzynski, Christopher; Kim, Kihwan
2015-05-01
We report on an experimental test of the Jarzynski equality in a quantum system consisting of a single 171Yb+ ion that undergoes dephasing. The Jarzynski equality, which relates equilibrium free energy differences to nonequilibrium work distributions, has been tested in many classical open systems and recently in isolated quantum systems. For open quantum systems, however, the definitions of work and heat are not fully settled, which hinders experimental verification. Here, we study a quantum system that interacts with an environment which causes dephasing (or decoherence) without dissipation. We observe that although the work distribution varies with the strength of dephasing, the Jarzynski equality remains valid. Our investigation constitutes the first experimental test of the quantum Jarzynski equality in an effectively open quantum system. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China under Grants No. 11374178 and 11375012, and the US National Science Foundation under Grant No. DMR 1206971.
Approximation, Proof Systems, and Correlations in a Quantum World
NASA Astrophysics Data System (ADS)
Gharibian, Sevag
2013-01-01
This thesis studies three topics in quantum computation and information: The approximability of quantum problems, quantum proof systems, and non-classical correlations in quantum systems. In the first area, we demonstrate a polynomial-time (classical) approximation algorithm for dense instances of the canonical QMA-complete quantum constraint satisfaction problem, the local Hamiltonian problem. In the opposite direction, we next introduce a quantum generalization of the polynomial-time hierarchy, and define problems which we prove are not only complete for the second level of this hierarchy, but are in fact hard to approximate. In the second area, we study variants of the interesting and stubbornly open question of whether a quantum proof system with multiple unentangled quantum provers is equal in expressive power to a proof system with a single quantum prover. Our results concern classes such as BellQMA(poly), and include a novel proof of perfect parallel repetition for SepQMA(m) based on cone programming duality. In the third area, we study non-classical quantum correlations beyond entanglement, often dubbed "non-classicality". Among our results are two novel schemes for quantifying non-classicality: The first proposes the new paradigm of exploiting local unitary operations to study non-classical correlations, and the second introduces a protocol through which non-classical correlations in a starting system can be "activated" into distillable entanglement with an ancilla system. An introduction to all required linear algebra and quantum mechanics is included.
Naval open systems architecture
NASA Astrophysics Data System (ADS)
Guertin, Nick; Womble, Brian; Haskell, Virginia
2013-05-01
For the past 8 years, the Navy has been working on transforming the acquisition practices of the Navy and Marine Corps toward Open Systems Architectures to open up our business, gain competitive advantage, improve warfighter performance, speed innovation to the fleet and deliver superior capability to the warfighter within a shrinking budget1. Why should Industry care? They should care because we in Government want the best Industry has to offer. Industry is in the business of pushing technology to greater and greater capabilities through innovation. Examples of innovations are on full display at this conference, such as exploring the impact of difficult environmental conditions on technical performance. Industry is creating the tools which will continue to give the Navy and Marine Corps important tactical advantages over our adversaries.
Quantum statistical ensemble for emissive correlated systems
NASA Astrophysics Data System (ADS)
Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N -particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223
i QIST: An open source continuous-time quantum Monte Carlo impurity solver toolkit
NASA Astrophysics Data System (ADS)
Huang, Li; Wang, Yilin; Meng, Zi Yang; Du, Liang; Werner, Philipp; Dai, Xi
2015-10-01
Quantum impurity solvers have a broad range of applications in theoretical studies of strongly correlated electron systems. Especially, they play a key role in dynamical mean-field theory calculations of correlated lattice models and realistic materials. Therefore, the development and implementation of efficient quantum impurity solvers is an important task. In this paper, we present an open source interacting quantum impurity solver toolkit (dubbed i QIST). This package contains several highly optimized quantum impurity solvers which are based on the hybridization expansion continuous-time quantum Monte Carlo algorithm, as well as some essential pre- and post-processing tools. We first introduce the basic principle of continuous-time quantum Monte Carlo algorithm and then discuss the implementation details and optimization strategies. The software framework, major features, and installation procedure for i QIST are also explained. Finally, several simple tutorials are presented in order to demonstrate the usage and power of i QIST.
Geodesic paths for quantum many-body systems
NASA Astrophysics Data System (ADS)
Tomka, Michael; Souza, Tiago; Rosenberg, Steve; Kolodrubetz, Michael; Polkovnikov, Anatoli
The quantum length is a distance between parameter-dependent eigenstates of an adiabatically driven quantum system. Its associated metric has many intriguing properties, for example it is related to the fidelity susceptibility, an important quantity in the study of quantum phase transitions. The metric also appears as the leading adiabatic correction of the energy fluctuations of a quantum system and gives rise to a time-energy uncertainty principle and a geometric interpretation of time. The adiabatic response of an open quantum system can as well be expressed through this metric. Further, the quantum length introduces the notion of Riemannian geometry to the manifold of eigenstates and hence allows one to define geodesics in parameter space. We study the geodesics in parameter space of certain quantum many-body systems, emerging from this quantum distance. These geodesic paths provide a well-defined optimal control protocol on how to drive the system's parameters in time, to get from one eigenstate to another. Generating optimal evolution plays a central role in quantum information technology, adiabatic quantum computing and quantum metrology. Swiss National Science Foundation (SNSF).
Towards a Theory of Metastability in Open Quantum Dynamics.
Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P
2016-06-17
By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces. PMID:27367368
Towards a Theory of Metastability in Open Quantum Dynamics
NASA Astrophysics Data System (ADS)
Macieszczak, Katarzyna; GuÅ£ǎ, Mǎdǎlin; Lesanovsky, Igor; Garrahan, Juan P.
2016-06-01
By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states—distinct from the asymptotic stationary state—is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.
Quantum statistics of overlapping modes in open resonators
Hackenbroich, Gregor; Viviescas, Carlos; Haake, Fritz
2003-12-01
We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes. Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator dynamics may be used as a starting point for a quantum theory of random lasers.
Quantum walk public-key cryptographic system
NASA Astrophysics Data System (ADS)
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Hybrid quantum systems with ultracold spins and optomechanics
NASA Astrophysics Data System (ADS)
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-05-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
The quantum Hall effect in quantum dot systems
NASA Astrophysics Data System (ADS)
Beltukov, Y. M.; Greshnov, A. A.
2014-12-01
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.
Universal Braess paradox in open quantum dots.
Barbosa, A L R; Bazeia, D; Ramos, J G G S
2014-10-01
We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior. PMID:25375575
Universal Braess paradox in open quantum dots
NASA Astrophysics Data System (ADS)
Barbosa, A. L. R.; Bazeia, D.; Ramos, J. G. G. S.
2014-10-01
We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.
Averaging in SU(2) open quantum random walk
NASA Astrophysics Data System (ADS)
Clement, Ampadu
2014-03-01
We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.
Opening up three quantum boxes causes classically undetectable wavefunction collapse
George, Richard E.; Robledo, Lucio M.; Maroney, Owen J. E.; Blok, Machiel S.; Bernien, Hannes; Markham, Matthew L.; Twitchen, Daniel J.; Morton, John J. L.; Briggs, G. Andrew D.; Hanson, Ronald
2013-01-01
One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here, we implement the “three-box” quantum game [Aharonov Y, et al. (1991) J Phys A Math Gen 24(10):2315–2328] by using state-of-the-art control and measurement of the nitrogen vacancy center in diamond. In this protocol, the back-action of quantum measurements adds no detectable disturbance to the classical description of the game. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure; however, classical observers are unable to invoke measurement-induced disturbance to explain the discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by ≳7.8 standard deviations, allowing us to exclude the property of macroscopic state definiteness from our system. Our experiment is then equivalent to the test of quantum noncontextuality [Kochen S, Specker E (1967) J Math Mech 17(1):59–87] that successfully addresses the measurement detectability loophole. PMID:23412336
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Limit Theorem and Applications of the Pauli Open Quantum Random Walk on Z
NASA Astrophysics Data System (ADS)
Ampadu, Clement
2013-04-01
Following the recent talk in the ``Workshop of Quantum Dynamics and Quantum Walks'' held at Okazaki Conference Center, Okazaki, Japan. This talk clarifies the relationship between the convergent behavior of the Pauli quantum walk on the line, and the open quantum random walk obtained from the Pauli quantum walk.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Homogeneous Open Quantum Random Walks on a Lattice
NASA Astrophysics Data System (ADS)
Carbone, Raffaella; Pautrat, Yan
2015-09-01
We study open quantum random walks (OQRWs) for which the underlying graph is a lattice, and the generators of the walk are homogeneous in space. Using the results recently obtained in Carbone and Pautrat (Ann Henri Poincaré, 2015), we study the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process. We study in detail the case of homogeneous OQRWs on the lattice , with internal space.
Energy Science and Technology Software Center (ESTSC)
2015-04-17
The OpenSM Monitoring System includes a collection of diagnostic and monitoring tools for use on Infiniband networks. The information this system gathers is obtained from a service, which in turn is obtained directly from the OpenSM subnet manager.
Classical and quantum correlative capacities of quantum systems
Li Nan; Luo Shunlong
2011-10-15
How strongly can one system be correlated with another? In the classical world, this basic question concerning correlative capacity has a very satisfying answer: The ''effective size'' of the marginal system, as quantified by the Shannon entropy, sets a tight upper bound to the correlations, as quantified by the mutual information. Although in the quantum world bipartite correlations, like their classical counterparts, are also well quantified by mutual information, the similarity ends here: The correlations in a bipartite quantum system can be twice as large as the marginal entropy. In the paradigm of quantum discord, the correlations are split into classical and quantum components, and it was conjectured that both the classical and quantum correlations are (like the classical mutual information) bounded above by each subsystem's entropy. In this work, by exploiting the interplay between entanglement of formation, mutual information, and quantum discord, we disprove that conjecture. We further indicate a scheme to restore harmony between quantum and classical correlative capacities. The results illustrate dramatically the asymmetric nature of quantum discord and highlight some subtle and unusual features of quantum correlations.
NASA Astrophysics Data System (ADS)
Cui, Ping
celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system
Supersymmetric biorthogonal quantum systems
Curtright, Thomas; Mezincescu, Luca; Schuster, David
2007-09-15
We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.
Propagation of disturbances in degenerate quantum systems
NASA Astrophysics Data System (ADS)
Chancellor, Nicholas; Haas, Stephan
2011-07-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.
RKKY interaction in a chirally coupled double quantum dot system
Heine, A. W.; Tutuc, D.; Haug, R. J.; Zwicknagl, G.; Schuh, D.; Wegscheider, W.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.
Open quantum random walks: Bistability on pure states and ballistically induced diffusion
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2013-12-01
Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432
Maxwell's demons in multipartite quantum correlated systems
NASA Astrophysics Data System (ADS)
Braga, Helena C.; Rulli, Clodoaldo C.; de Oliveira, Thiago R.; Sarandy, Marcelo S.
2014-10-01
We investigate the extraction of thermodynamic work by a Maxwell's demon in a multipartite quantum correlated system. We begin by adopting the standard model of a Maxwell's demon as a Turing machine, either in a classical or quantum setup depending on its ability to implement classical or quantum conditional dynamics. Then, for an n -partite system (A1,A2,⋯,An) , we introduce a protocol of work extraction that bounds the advantage of the quantum demon over its classical counterpart through the amount of multipartite quantum correlation present in the system, as measured by a thermal version of the global quantum discord. This result is illustrated for an arbitrary n -partite pure state of qubits with Schmidt decomposition, where it is shown that the thermal global quantum discord exactly quantifies the quantum advantage. Moreover, we also consider the work extraction via mixed multipartite states, where examples of tight upper bounds can be obtained.
Classical versus quantum errors in quantum computation of dynamical systems.
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2004-11-01
We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Instantaneous Spreading Versus Space Localization for Nonrelativistic Quantum Systems
NASA Astrophysics Data System (ADS)
Coutinho, F. A. B.; Wreszinski, W. F.
2016-08-01
A theorem of Hegerfeldt (Kielanowski et al. 1998) establishes, for a class of quantum systems, a dichotomy between those which are permanently localized in a bounded region of space, and those exhibiting instantaneous spreading. We analyze in some detail the physical inconsistencies which follow from both of these options, and formulate which, in our view, are the basic open problems.
Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories
NASA Astrophysics Data System (ADS)
Wiese, U.-J.
2013-11-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399
Thermodynamics of Weakly Measured Quantum Systems
NASA Astrophysics Data System (ADS)
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Quantum coherence and entanglement control for atom-cavity systems
NASA Astrophysics Data System (ADS)
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler's Ruin and Potential Theory
NASA Astrophysics Data System (ADS)
Lardizabal, Carlos F.; Souza, Rafael R.
2016-07-01
In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832-852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961-979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler's ruin, birth-and-death chain and a basic theorem on potential theory.
A general transfer-function approach to noise filtering in open-loop quantum control
NASA Astrophysics Data System (ADS)
Viola, Lorenza
2015-03-01
Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.
Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler's Ruin and Potential Theory
NASA Astrophysics Data System (ADS)
Lardizabal, Carlos F.; Souza, Rafael R.
2016-09-01
In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832-852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961-979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler's ruin, birth-and-death chain and a basic theorem on potential theory.
Enhancing quantum effects via periodic modulations in optomechanical systems
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Giovannetti, Vittorio
2012-07-01
Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal quantum control strategies.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
A generalized fidelity amplitude for open systems.
Gorin, T; Moreno, H J; Seligman, T H
2016-06-13
We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. PMID:27140969
Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations
NASA Astrophysics Data System (ADS)
Pellegrini, Clément
2014-02-01
A new type of quantum random walks, called Open Quantum Random Walks, has been developed and studied in Attal et al. (Open quantum random walks, preprint) and (Central limit theorems for open quantum random walks, preprint). In this article we present a natural continuous time extension of these Open Quantum Random Walks. This continuous time version is obtained by taking a continuous time limit of the discrete time Open Quantum Random Walks. This approximation procedure is based on some adaptation of Repeated Quantum Interactions Theory (Attal and Pautrat in Annales Henri Poincaré Physique Théorique 7:59-104, 2006) coupled with the use of correlated projectors (Breuer in Phys Rev A 75:022103, 2007). The limit evolutions obtained this way give rise to a particular type of quantum master equations. These equations appeared originally in the non-Markovian generalization of the Lindblad theory (Breuer in Phys Rev A 75:022103, 2007). We also investigate the continuous time limits of the quantum trajectories associated with Open Quantum Random Walks. We show that the limit evolutions in this context are described by jump stochastic differential equations. Finally we present a physical example which can be described in terms of Open Quantum Random Walks and their associated continuous time limits.
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Superconductor-Diamond Hybrid Quantum System
NASA Astrophysics Data System (ADS)
Semba, Kouichi; Yoshihara, Fumiki; Johansson, Jan E. S.; Zhu, Xiaobo; Mizuochi, Norikazu; Munro, William J.; Saito, Shiro; Kakuyanagi, Kosuke; Matsuzaki, Yuichiro
This chapter describes recent progress on research into superconducting flux qubit, NV diamond, and superconductor-diamond hybrid quantum systems. First, we describe important physical properties of superconducting macroscopic artificial atoms i.e., the tunability of the qubit energy level spacing, the coherence property, an example of strong coupling to another quantum system such as an LC harmonic oscillator, and qubit state readout through a Josephson bifurcation amplifier. We then introduce the NV center in diamond as an intriguing candidate for quantum information processing, which offers excellent multiple accessibility via visible light, microwaves and magnetic fields. Finally, we describe the superconducting flux qubit - NV centers in a diamond hybrid quantum system.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Work, heat and entropy production in bipartite quantum systems
NASA Astrophysics Data System (ADS)
Hossein-Nejad, Hoda; O'Reilly, Edward J.; Olaya-Castro, Alexandra
2015-07-01
In bipartite quantum systems commutation relations between the Hamiltonian of each subsystem and the interaction impose fundamental constraints on the dynamics of each partition. Here we investigate work, heat and entropy production in bipartite systems characterized by particular commutators between their local Hamiltonians and the interaction operator. We consider the formalism of (Weimer et al 2008 Europhys. Lett. 83 30008), in which heat (work) is identified with energy changes that (do not) alter the local von Neumann entropy, as observed in an effective local measurement basis. We demonstrate the consequences of the commutation relations on the work and heat fluxes into each partition, and extend the formalism to open quantum systems where one, or both, partitions are subject to a Markovian thermal bath. We also discuss the relation between heat and entropy in bipartite quantum systems out of thermal equilibrium, and reconcile the aforementioned approach with the second law of thermodynamics.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Tailoring superradiance to design artificial quantum systems
NASA Astrophysics Data System (ADS)
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki
2014-10-01
To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
NASA Astrophysics Data System (ADS)
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L.; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P.; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M.
2009-09-01
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Logic of infinite quantum systems
NASA Astrophysics Data System (ADS)
Mundici, Daniele
1993-10-01
Limits of sequences of finite-dimensional (AF) C *-algebras, such as the CAR algebra for the ideal Fermi gas, are a standard mathematical tool to describe quantum statistical systems arising as thermodynamic limits of finite spin systems. Only in the infinite-volume limit one can, for instance, describe phase transitions as singularities in the thermodynamic potentials, and handle the proliferation of physically inequivalent Hilbert space representations of a system with infinitely many degrees of freedom. As is well known, commutative AF C *-algebras correspond to countable Boolean algebras, i.e., algebras of propositions in the classical two-valued calculus. We investigate the noncommutative logic properties of general AF C *-algebras, and their corresponding systems. We stress the interplay between Gödel incompleteness and quotient structures in the light of the “nature does not have ideals” program, stating that there are no quotient structures in physics. We interpret AF C *-algebras as algebras of the infinite-valued calculus of Lukasiewicz, i.e., algebras of propositions in Ulam's “ twenty questions” game with lies.
Open-system dynamics of entanglement: a key issues review.
Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz
2015-04-01
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Quantum demolition filtering and optimal control of unstable systems.
Belavkin, V P
2012-11-28
A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one. PMID:23091216
Quantum jump model for a system with a finite-size environment
NASA Astrophysics Data System (ADS)
Suomela, S.; Kutvonen, A.; Ala-Nissila, T.
2016-06-01
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.
Dynamics of an Open System for Repeated Harmonic Perturbation
NASA Astrophysics Data System (ADS)
Tamura, Hiroshi; Zagrebnov, Valentin A.
2016-05-01
We use the Kossakowski-Lindblad-Davies formalism to study an open dynamical system defined as Markovian extension of the one-mode quantum resonator S, perturbed by repeated harmonic interaction with a chain of multi-level harmonic atoms C. The long-time asymptotic behaviour and correlations of various subsystems of the system S + C are treated in the framework of the W^*-dynamical system approach.
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
An Open Source Simulation System
NASA Technical Reports Server (NTRS)
Slack, Thomas
2005-01-01
An investigation into the current state of the art of open source real time programming practices. This document includes what technologies are available, how easy is it to obtain, configure, and use them, and some performance measures done on the different systems. A matrix of vendors and their products is included as part of this investigation, but this is not an exhaustive list, and represents only a snapshot of time in a field that is changing rapidly. Specifically, there are three approaches investigated: 1. Completely open source on generic hardware, downloaded from the net. 2. Open source packaged by a vender and provided as free evaluation copy. 3. Proprietary hardware with pre-loaded proprietary source available software provided by the vender as for our evaluation.
Quantum contextuality in N-boson systems
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-09-15
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Multiparticle correlations in quaternionic quantum systems
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.; Anderson, R.
1995-02-01
We investigate the outcome of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multiparticle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements.
Quantum correlations in a clusterlike system
Chen Yixin; Li Shengwen; Yin Zhi
2010-11-15
We discuss a clusterlike one-dimensional system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system and is well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord, and mutual information. We study the different divergence behaviors of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in topological order systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.
Comparing conductance quantization in quantum wires and quantum Hall systems
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Cheianov, Vadim V.; Fröhlich, Jürg
1996-12-01
We suggest a means to calculate the dc conductance of a one-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and Büttiker on transport in ballistic channels and on the methods of current algebra. We analyze in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We provide a parallel treatment of a quantum wire and a fractional quantum Hall system on a cylinder with two widely separated edges. Although both systems are described by the same effective theory, the physical electrons are identified with different types of excitations, and hence the coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of e2/h per spin orientation whereas the Hall conductance allows for fractional quantization.
Chapter 2 A Single Quantum System
NASA Astrophysics Data System (ADS)
Toschek, Peter E.
The evolution of quantum mechanics has followed the critical analysis of "gedanken" experiments. Many of these concrete speculations can become implemented today in the laboratory--thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: (1) The microphysical measurement by a macroscopic device, (2) the system's temporal evolution, and (3) the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed. An experiment designed to demonstrate this "quantum Zeno effect" and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individual electrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation.
Quantum Mechanical Scattering in Nanoscale Systems
NASA Astrophysics Data System (ADS)
Gianfrancesco, A. G.; Ilyashenko, A.; Boucher, C. R.; Ram-Mohan, L. R.
2012-02-01
We investigate quantum scattering using the finite element method. Unlike textbook treatments employing asymptotic boundary conditions (BCs), we use modified BCs, which permits computation close to the near-field region and reduces the Cauchy BCs to Dirichlet BCs, greatly simplifying the analysis. Scattering from any finite quantum mechanical potential can be modeled, including scattering in a finite waveguide geometry and in the open domain. Being numerical, our analysis goes beyond the Born Approximation, and the finite element approach allows us to transcend geometric constraints. Results of the formulation will be presented with several case studies, including spin dependent scattering, demonstrating the high accuracy and flexibility attained in this approach.