ERIC Educational Resources Information Center
Shore, M. L.
1980-01-01
There are many uses for the shortest path algorithm presented which are limited only by our ability to recognize when a problem may be converted into the shortest path in a graph representation. (Author/TG)
Shortest path and Schramm-Loewner Evolution
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
2014-01-01
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for ? = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019
Optimal Distributed All Pairs Shortest Paths
Optimal Distributed All Pairs Shortest Paths ETH Zurich Distributed Computing Group Stephan = Number of hops of shortest path #12;Diameter of a network · Distance between two nodes = Number of hops of shortest path #12;Diameter of a network · Distance between two nodes = Number of hops of shortest path
The inverse shortest paths problem with upper bounds on shortest paths costs.
Toint, Philippe
The inverse shortest paths problem with upper bounds on shortest paths costs. by D. Burton 1 W of the inverse shortest paths problem with upper bounds on shortest path costs, and prove that obtaining, Belgium Keywords : computational complexity, shortest paths, inverse problems, traffic modelling. #12; 1
Physarum can compute shortest paths.
Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish
2012-09-21
Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274
Finding the k Shortest Paths David Eppstein
Eppstein, David
constraints beyond having a small length, but those other constraints may be ill-defined or hard to optimize-known shortest path problem, in which not one but several short paths must be produced. The k shortest paths problem, for a given k and a given source-destination pair in a digraph, is to list the k paths
Physarum Can Compute Shortest Paths
Bonifaci, Vincenzo; Varma, Girish
2011-01-01
A mathematical model has been proposed by biologists to describe the feedback mechanism used by the Physarum Polycephalum slime mold to adapt its tubular channels while foraging two food sources $s_0$ and $s_1$. We give a proof of the fact that, under this model, the mass of the mold will eventually converge to the shortest $s_0$-$s_1$ path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years.
Shortest Paths, Network Design and Associated Polyhedra
Magnanti, Thomas L.
We study a specialized version of network design problems that arise in telecommunication, transportation and other industries. The problem, a generalization of the shortest path problem, is defined on an undirected network ...
An Implementation of Chen & Han's Shortest Paths Algorithm
O'Rourke, Joseph
An Implementation of Chen & Han's Shortest Paths Algorithm Biliana Kaneva Joseph O'Rourke \\Lambda Abstract In 1990 Chen and Han proposed a quadratic algorithm for finding the shortest paths from one source In 1990 Chen and Han proposed a quadratic algorithm for finding the shortest paths from one source point
Shortest Path Problems with Resource Constraints
Stefan Irnich; Guy Desaulniers
In most vehicle routing and crew scheduling applications solved by column generation, the subproblem corresponds to a shortest\\u000a path problem with resource constraints (SPPRC) or one of its variants.\\u000a \\u000a This chapter proposes a classification and a generic formulation for the SPPRCs, briefly discusses complex modeling issues\\u000a involving resources, and presents the most commonly used SPPRC solution methods. First and foremost,
Shortest-path problems Proofs Weight of path p = v0 v1 vk
California at Davis, University of
Shortest-path problems Â Proofs Weight of path p = v0 v1 Â· Â· Â· vk: w(p) = k i=1 w(vi-1, vi) Shortest-path weight u ; v (u, v) = min{w(p) : u p ; v} if there exists a path u ; v otherwise Shortest-path u ; v any path p such that w(p) = (u, v) #12;Shortest-paths properties Triangular inequality
Shortest paths synthesis for a car-like robot
P. Soueres; J.-P. Laumond
1996-01-01
This paper deals with the complete characterization of the shortest paths for a car-like robot. Previous works have shown that the search for a shortest path may be limited to a simple family of trajectories. Our work completes this study by providing a way to select inside this family an optimal path to link any two configurations. We combine the
Shortest path algorithm based on city emergency system
Gui-Qin Dou; Yan-Song Zhu; Yu-Min Han
2011-01-01
It requires that the savers get to the spot with the quickest speed when the accidents take place in the City Emergency System, therefore the Shortest Path problem is one of the pivotal technology to satisfy the system. This paper put forward a real-time and effective algorithm realization of Shortest Path, according to the characteristics of City Emergency System, taking
Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing
Khanna, Sanjeev
Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing Patrick Briest1, , Parinya blaekh@cs.mcgill.ca 5 College of Computing, Georgia Tech, Atlanta, GA, USA danupon@cc.gatech.edu Abstract. We consider the Stackelberg shortest-path pricing problem, which is defined as follows. Given a graph
Minimizing Average Shortest Path Distances via Shortcut Edge Addition
Meyerson, Adam W.
Minimizing Average Shortest Path Distances via Shortcut Edge Addition Adam Meyerson and Brian typically use mesh networks since regular topologies are easier to manufacture. However, many pairs of nodes k shortcut edges (of length 0) whose addition minimizes the weighted average shortest path
Two betweenness centrality measures based on Randomized Shortest Paths
Kivimäki, Ilkka; Saramäki, Jari; Saerens, Marco
2015-01-01
This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world exa...
Using shortest path to discover criminal community
Magalingam, Pritheega; Rao, Asha
2015-01-01
Extracting communities using existing community detection algorithms yields dense sub-networks that are difficult to analyse. Extracting a smaller sample that embodies the relationships of a list of suspects is an important part of the beginning of an investigation. In this paper, we present the efficacy of our shortest paths network search algorithm (SPNSA) that begins with an "algorithm feed", a small subset of nodes of particular interest, and builds an investigative sub-network. The algorithm feed may consist of known criminals or suspects, or persons of influence. This sets our approach apart from existing community detection algorithms. We apply the SPNSA on the Enron Dataset of e-mail communications starting with those convicted of money laundering in relation to the collapse of Enron as the algorithm feed. The algorithm produces sparse and small sub-networks that could feasibly identify a list of persons and relationships to be further investigated. In contrast, we show that identifying sub-networks o...
The role of convexity for solving some shortest path problems in plane without triangulation
NASA Astrophysics Data System (ADS)
An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van
2013-09-01
Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.
Multiple-Source Shortest Paths in Embedded Graphs Sergio Cabello
Erickson, Jeff
Multiple-Source Shortest Paths in Embedded Graphs Sergio Cabello Erin W. Chambers Jeff Erickson of Mathematics, FMF, University of Ljubljana, Slovenia, sergio. cabello@fmf.uni-lj.si. Research partially
Shortest Path Games: Computational Complexity of Solution Concepts
Amsterdam, University of
Shortest Path Games: Computational Complexity of Solution Concepts MSc Thesis (Afstudeerscriptie 9 2.1 Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Concepts for Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Power Indices
Distributional properties of stochastic shortest paths for smuggled nuclear material
Cuellar, Leticia [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory; Roach, Fred [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory
2011-01-05
The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.
Analysis of Algorithms Problem Set no. 3 --Dynamic All-Pairs Shortest Paths
Zwick, Uri
Analysis of Algorithms Problem Set no. 3 -- Dynamic All-Pairs Shortest Paths Given: December 15, 2010 Exercise 3.1 Describe a simple dynamic all-pairs shortest path algorithm that can handle decreas a weighted n-vertex graph with unique shortest paths in which there are (n3) locally shortest paths. (b) Show
Evans, Will
16th Canadian Conference on Computational Geometry, 2004 Optimistic Shortest Paths on Uncertain shortest path on an un- certain terrain is NP-hard using a reduction similar to Canny and Reif's reduction of 3SAT to 3D Euclidean shortest path. §©!#"%$&'§() Shortest path problems are a well-studied class
Shortest node-disjoint paths on random graphs
NASA Astrophysics Data System (ADS)
De Bacco, C.; Franz, S.; Saad, D.; Yeung, C. H.
2014-07-01
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analysed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm.
Shortest path optimization under limited information
Dahleh, Munther A.
The problem of finding an optimal path in an uncertain graph arises in numerous applications, including network routing, path-planning for vehicles, and the control of finite-state systems. While techniques in robust and ...
Shortest Path Edit Distance for Enhancing UMLS Integration and Audit
Rudniy, Alex; Geller, James; Song, Min
2010-01-01
Expansion of the UMLS is an important long-term research project. This paper proposes Shortest Path Edit Distance (SPED) as an algorithm for improving existing source-integration and auditing techniques. We use SPED as a string similarity measure for UMLS terms that are known to be synonyms because they are assigned to the same concept. We compare SPED with several other well known string matching algorithms using two UMLS samples as test bed. One of those samples is SNOMED-based. SPED transforms the task of calculating edit distance among two strings into a problem of finding a shortest path from a source to a destination in a node and link graph. In the algorithm, the two strings are used to construct the graph. The Pulling algorithm is applied to find a shortest path, which determines the string similarity value. SPED was superior for one of the data sets, with a precision of 0.6. PMID:21347068
Detecting duplicate biological entities using Shortest Path Edit Distance.
Rudniy, Alex; Song, Min; Geller, James
2010-01-01
Duplicate entity detection in biological data is an important research task. In this paper, we propose a novel and context-sensitive Shortest Path Edit Distance (SPED) extending and supplementing our previous work on Markov Random Field-based Edit Distance (MRFED). SPED transforms the edit distance computational problem to the calculation of the shortest path among two selected vertices of a graph. We produce several modifications of SPED by applying Levenshtein, arithmetic mean, histogram difference and TFIDF techniques to solve subtasks. We compare SPED performance to other well-known distance algorithms for biological entity matching. The experimental results show that SPED produces competitive outcomes. PMID:20815139
Expected Shortest Paths for Landmark-Based Robot Navigation
Scharstein, Daniel
Expected Shortest Paths for Landmark-Based Robot Navigation Amy J. Briggs1 , Carrick Detweiler1 of planning reliable landmark- based robot navigation strategies in the presence of significant sensor uncertainty. The navigation environments are modeled with directed weighted graphs in which edges can
FINDING THE SHORTEST PATH FOR QUALITY ASSURANCE OF ELECTRIC COMPONENTS
Masaru Kageura; CANON IN; Kenji Shimada
This paper presents a computational method for calculating the shortest path along the surface of a product assembly between two components. The goal of this method is to check whether or not there is sufficient distance between two electrical components to prevent the occurrence of a spark between them. Our approach is an approximating method using a discrete weighted graph.
Efficient Shortest Paths on Massive Social Graphs (Invited Paper)
Almeroth, Kevin C.
extended to locate (near-) shortest paths between node pairs. After a one- time preprocessing cost, Rigel node distance queries on the original graph. Our initial system, Orion, was a centralized system in practice. First, Orion's initial graph embedding process is centralized and computationally expensive
Shortest Paths in Distance-Regular Graphs Enrique Bendito, Angeles Carmona and Andres M. Encinas
Bendito, Enrique
Shortest Paths in Distance-Regular Graphs Enrique Bendito, Angeles Carmona and Andr´es M. Encinas and Shortest Paths Angeles Carmona: e-mail:carmona@etseccpb.upc.es 2 #12;Abstract We aim here at introducing
Seedlings in the Theory of Shortest Paths
Grimmett, Geoffrey
of the distribution of the X i . This result has proved fruitful in most of the ways that are open to a mathematical preserving transformations from [0, 1] onto [0, 1] d that are Lipschitz of order 1/d. A basic objective
THE K SHORTEST PATHS PROBLEM Ernesto de Queir' os Vieira Martins
Pascoal, Marta Margarida Braz
THE K SHORTEST PATHS PROBLEM Ernesto de Queir' os Vieira Martins Marta Margarida Braz Pascoal Jos Coimbra PORTUGAL June 1998 Abstract: The shortest path problem is a classical network programming problem that has been extensively studied. The problem of determining not only the shortest path, but also listing
Approximate Euclidean Shortest Paths amid Convex Obstacles Pankaj K. Agarwal R. Sharathkumar Hai Yu
Agarwal, Pankaj K.
Approximate Euclidean Shortest Paths amid Convex Obstacles Pankaj K. Agarwal R. Sharathkumar Hai Yu and data structures for the approximate Euclidean shortest path problem amid a set P of k convex obstacles for computing the exact Euclidean shortest path between two points amid polygonal obstacles. In three dimensions
An improved Physarum polycephalum algorithm for the shortest path problem.
Zhang, Xiaoge; Wang, Qing; Adamatzky, Andrew; Chan, Felix T S; Mahadevan, Sankaran; Deng, Yong
2014-01-01
Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960
ON THE ACCELERATION OF SHORTEST PATH CALCULATIONS IN TRANSPORTATION NETWORKS
BAKER, ZACHARY K.; GOKHALE, MAYA B.
2007-01-08
Shortest path algorithms are a key element of many graph problems. They are used in such applications as online direction finding and navigation, as well as modeling of traffic for large scale simulations of major metropolitan areas. As the shortest path algorithms are an execution bottleneck, it is beneficial to move their execution to parallel hardware such as Field-Programmable Gate Arrays (FPGAs). Hardware implementation is accomplished through the use of a small A core replicated on the order of 20 times on an FPGA device. The objective is to maximize the use of on-board random-access memory bandwidth through the use of multi-threaded latency tolerance. Each shortest path core is responsible for one shortest path calculation, and when it is finished it outputs its result and requests the next source from a queue. One of the innovations of this approach is the use of a small bubble sort core to produce the extract-min function. While bubble sort is not usually considered an appropriate algorithm for any non-trivial usage, it is appropriate in this case as it can produce a single minimum out of the list in O(n) cycles, whwere n is the number of elements in the vertext list. The cost of this min operation does not impact the running time of the architecture, because the queue depth for fetching the next set of edges from memory is roughly equivalent to the number of cores in the system. Additionally, this work provides a collection of simulation results that model the behavior of the node queue in hardware. The results show that a hardware queue, implementing a small bubble-type minimum function, need only be on the order of 16 elements to provide both correct and optimal paths. Because the graph database size is measured in the hundreds of megabytes, the Cray SRAM memory is insufficient. In addition to the A* cores, they have developed a memory management system allowing round-robin servicing of the nodes as well as virtual memory managed over the Hypertransport bus. With support for a DRAM graph store with SRAM-based caching on the FPGA, the system provides a speedup of roughly 8.9x over the CPU-based implementation.
A Bio-Inspired Method for the Constrained Shortest Path Problem
Wang, Hongping; Lu, Xi; Wang, Qing
2014-01-01
The constrained shortest path (CSP) problem has been widely used in transportation optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method. PMID:24959603
THE K SHORTEST LOOPLESS PATHS PROBLEM Ernesto de Queir' os Vieira Martins
Pascoal, Marta Margarida Braz
THE K SHORTEST LOOPLESS PATHS PROBLEM Ernesto de Queir' os Vieira Martins Marta Margarida Braz loopless paths problem. It is shown that in general this problem does not satisfy the optimality principle and as a consequence only methods based on the computation of a super set of the set of the K shortest loopless paths
Route Dynamics for Shortest Path First Routing in Mobile Ad Hoc Networks
Bhatti, Saleem N.
dynamics of Shortest-Path First (SPF) routing in mobile ad hoc networks (MANETs). In particular, we find Path First (SPF) algorithm as in Optimised Link State Routing Protocol (OLSR) [1]. Moreover, fast]. In this paper we investigate the route dynamics of Shortest- Path First (SPF) routing protocols in MANETs
Damage detection via shortest-path network sampling
NASA Astrophysics Data System (ADS)
Ciulla, Fabio; Perra, Nicola; Baronchelli, Andrea; Vespignani, Alessandro
2014-05-01
Large networked systems are constantly exposed to local damages and failures that can alter their functionality. The knowledge of the structure of these systems is, however, often derived through sampling strategies whose effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged, not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the damage detection and the number of probes used to sample the network. We test and measure the efficiency of our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the damage precisely.
Watershed cuts: thinnings, shortest path forests, and topological watersheds.
Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel
2010-05-01
We recently introduced watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: The first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation, whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a notion of contrast, called connection value, on which several morphological region merging methods are (implicitly) based. We also establish the links and differences between watershed cuts, minimum spanning forests, shortest path forests, and topological watersheds. Finally, we present illustrations of the proposed framework to the segmentation of artwork surfaces and diffusion tensor images. PMID:20299715
Corridor location: the multi-gateway shortest path model
NASA Astrophysics Data System (ADS)
Scaparra, Maria P.; Church, Richard L.; Medrano, F. Antonio
2014-07-01
The problem of corridor location can be found in a number of fields including power transmission, highways, and pipelines. It involves the placement of a corridor or rights-of-way that traverses a landscape starting at an origin and ending at a destination. Since most systems are subject to environmental review, it is important to generate competitive, but different alternatives. This paper addresses the problem of generating efficient, spatially different alternatives to the corridor location problem. We discuss the weaknesses in current models and propose a new approach which is designed to overcome many of these problems. We present an application of this model to a real landscape and compare the results to past work. Overall, the new model called the multi-gateway shortest path problem can generate a wide variety of efficient alignments, which eclipse what could be generated by past work.
Self-organization and solution of shortest-path optimization problems with memristive networks.
Pershin, Yuriy V; Di Ventra, Massimiliano
2013-07-01
We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of the network into the shortest possible path(s). We introduce a network entropy function to characterize the self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions. PMID:23944581
Curvature-Constrained Shortest Paths in a Convex Polygon (Extended Abstract)
Agarwal, Pankaj K.
and shed some light on curvature-constrained shortest paths amid obstacles. Center for Geometric Computing-planning problem, a central problem in robotics, involves planning a collision-free path for a robot moving amid
Accepted Manuscript Shortest path in a multiply-connected domain having curved
Ramanathan, M.
Accepted Manuscript Shortest path in a multiply-connected domain having curved boundaries S this article as: Bharath Ram S, Ramanathan M. Shortest path in a multiply-connected domain having curved manuscript that has been accepted for publication. As a service to our customers we are providing this early
Shortest Paths in Time-Dependent FIFO Networks Using Edge Load Forecasts
Dehene, Frank
Shortest Paths in Time-Dependent FIFO Networks Using Edge Load Forecasts Frank Dehne School shortest paths in time- dependent networks with edge load forecasts where the be- havior of each edge in a pre- dictable manner and are given as edge load forecasts. For example, in many road networks
On the Complexity of Shortest Path Problems on Discounted Cost Graphs
Alur, Rajeev
it contains. In a generalized version of the shortest- path problem, each edge is labeled with a cost as wellOn the Complexity of Shortest Path Problems on Discounted Cost Graphs Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan University of Pennsylvania, Philadelphia, PA, US Abstract. Discounted Cost
Label-setting algorithms for a polynomial bi-objective multimodal shortest path problem
Paris-Sud XI, Université de
Label-setting algorithms for a polynomial bi-objective multimodal shortest path problem Fallou the multimodality of urban transportation networks for com- puting the itinerary of an individual passenger techniques are discussed. keywords: bi-objective viable shortest paths, multimodal transportation, finite
A bidirectional/multi-queue algorithm for the bi-objective multimodal viable shortest path
Paris-Sud XI, Université de
A bidirectional/multi-queue algorithm for the bi-objective multimodal viable shortest path problem fgueye@mobigis.fr, artigues@laas.fr, huguet@laas.fr Abstract Taking into account the multimodality-objective viable shortest path, multi-modal transportation, multi-queue label setting algorithms, deterministic
Randomized shortest-path problems: two related models.
Saerens, Marco; Achbany, Youssef; Fouss, François; Yen, Luh
2009-08-01
This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected. PMID:19323635
Larsen, Kristian; Faulkner, Guy E.?J.; Stone, Michelle R.
2013-01-01
Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys?=?45%, girls?=?54%, unreported gender?=?1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648
Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks
Bauckhage, Christian; Hadiji, Fabian
2015-01-01
Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results.
Aloul, Fadi
efficient implementa- tions of Dijkstra's algorithm exist and can handle large net- works in short runtimesAbstract--Today, most routing problems are solved using Dijkstra's shortest path algorithm. Many Dijkstra's algorithm. Such conditions can include forcing the path to go through a specific node, forcing
Shortest Path Planning for a Tethered Robot or an Anchored Cable
Xavier, P.G.
1999-02-22
We consider the problem of planning shortest paths for a tethered robot with a finite length tether in a 2D environment with polygonal obstacles. We present an algorithm that runs in time O((k{sub 1} + 1){sup 2}n{sup 4}) and finds the shortest path or correctly determines that none exists that obeys the constraints; here n is the number obstacle vertices, and k{sub 1} is the number loops in the initial configuration of the tether. The robot may cross its tether but nothing can cross obstacles, which cause the tether to bend. The algorithm applies as well for planning a shortest path for the free end of an anchored cable.
Lecture notes for "Analysis of Algorithms": Dynamic All-Pairs Shortest Paths
Zwick, Uri
Lecture notes for "Analysis of Algorithms": Dynamic All-Pairs Shortest Paths Lecturer: Uri Zwick December 2010 Function apsp(G = (V, E, c)) t 0 foreach u V do E[u] [u] path(u) d[u, u] 0 p[u, u] [u] foreach u = v V do P[u, v] heap() insert-edges(E) build-paths() Function insert-edges(Eins) foreach e
The approach for shortest paths in fire succor based on component GIS technology
NASA Astrophysics Data System (ADS)
Han, Jie; Zhao, Yong; Dai, K. W.
2007-06-01
Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.
von Thienen, Wolfhard; Metzler, Dirk; Witte, Volker
2015-05-01
The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches in the past decades. One model explains experimental observations in which Argentine ants (Linepithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest path experiments). This model serves as an important example for the emergence of collective behavior and self-organization in biological systems. In addition, it inspired the development of computer algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function describing how ants react to different pheromone concentrations is fundamental. However, the parameters of the choice function were not deduced experimentally but freely adapted so that the model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking about crucial model assumptions. A recent study on the Argentine ant provided this information by measuring the response of the ants to varying pheromone concentrations. In said study, the above mentioned choice function was fitted to the experimental data and its parameters were deduced. In addition, a psychometric function was fitted to the data and its parameters deduced. Based on these findings, it is possible to test the shortest path model by applying realistic parameter values. Here we present the results of such tests using Monte Carlo simulations of shortest path experiments with Argentine ants. We compare the choice function and the psychometric function, both with parameter values deduced from the above-mentioned experiments. Our results show that by applying the psychometric function, the shortest path experiments can be explained satisfactorily by the model. The study represents the first example of how psychophysical theory can be used to understand and model collective foraging behavior of ants based on trail pheromones. These findings may be important for other models of pheromone guided ant behavior and might inspire improved ACO algorithms. PMID:25769943
State-based accelerations and bidirectional search for bi-objective multimodal shortest paths
Paris-Sud XI, Université de
State-based accelerations and bidirectional search for bi-objective multimodal shortest paths artigues@laas.fr, huguet@laas.fr Abstract Taking into account the multimodality of urban transportation-dependent context, is not a challenge anymore for labeling algorithms [6, 7, 19]. The case of multimodal passenger
Routing and Protection in GMPLS Networks: From Shortest Paths to Optimized Designs*
Elwalid, Anwar
Abstract-- Shortest path algorithms such as SPF and CSPF are widely used in online traffic engineering indicate that DBR outperforms SPF and CSPF under a wide range of operating con- ditions, and is robust- tion, protection, SPF, CSPF, DBR. I. INTRODUCTION A. Background and Motivation Service Providers
A Shortest Path Dependency Kernel for Relation Extraction Razvan C. Bunescu and Raymond J. Mooney
Bunescu, Razvan C.
of automatically derived syn- tactic information can lead to significant improve- ments in extraction accuracyA Shortest Path Dependency Kernel for Relation Extraction Razvan C. Bunescu and Raymond J. Mooney razvan,mooney@cs.utexas.edu Abstract We present a novel approach to relation extraction, based
Should QoS routing algorithms prefer shortest paths? Karol Kowalik and Martin Collier
Collier, Martin
Should QoS routing algorithms prefer shortest paths? Karol Kowalik and Martin Collier Research is the task of Quality of Service (QoS) routing. This paper considers link-state routing, and the choice of cost metric used to implement QoS routing. There are two schools of thought regarding the choice
Performance of Shortest Path Routing under Various Link Cost Metrics for non-GEO Satellite Systems
Papapetrou, Evaggelos
. Specially in new generation satellite systems which employ Inter-Satellite Links (ISLs) [1,2] is foundPerformance of Shortest Path Routing under Various Link Cost Metrics for non-GEO Satellite Systems for non- GEO satellite systems. The Modified Dijkstra algorithm is used for different link cost functions
Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle
Zhu, Shanjiang; Levinson, David
2015-01-01
Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis—St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756
Cognitive Shortest Path Tree Restoration (CSPTR) for MANET Using Cost-Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Chen, Huan; Cheng, Bo-Chao; Tseng, Po-Kai
With quick topology changes due to mobile node movement or signal fading in MANET environments, conventional routing restoration processes are costly to implement and may incur high flooding of network traffic overhead and long routing path latency. Adopting the traditional shortest path tree (SPT) recomputation and restoration schemes used in Internet routing protocols will not work effectively for MANET. An object of the next generation SPT restoration system is to provide a cost-effective solution using an adaptive learning control system, wherein the SPT restoration engine is able to skip over the heavy SPT computation. We proposed a novel SPT restoration scheme, called Cognitive Shortest Path Tree Restoration (CSPTR). CSPTR is designed based on the Network Simplex Method (NSM) and Sensitivity Analysis (SA) techniques to provide a comprehensive and low-cost link failure healing process. NSM is used to derive the shortest paths for each node, while the use of SA can greatly reduce the effort of unnecessary recomputation of the SPT when network topology changes. In practice, a SA range table is used to enable the learning capability of CSPTR. The performance of computing and communication overheads are compared with other two well-known schemes, such as Dijstra's algorithm and incremental OSPF. Results show that CSPTR can greatly eliminate unnecessary SPT recomputation and reduce large amounts of the flooding overheads.
The d-edge shortest-path problem for a Monge graph
Bein, W.W. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Larmore, L.L. [California Univ., Riverside, CA (United States). Dept. of Computer Science; Park, J.K. [Sandia National Labs.,Albuquerque, NM (United States)
1992-07-14
A complete edge-weighted directed graph on vertices 1,2,...,n that assigns cost c(i,j) to the edge (i,j) is called Monge if its edge costs form a Monge array, i.e., for all i < k and j < l, c[i, j]+c[k,l]{le} < c[i,l]+c[k,j]. One reason Monge graphs are interesting is that shortest paths can be computed quite quickly in such graphs. In particular, Wilber showed that the shortest path from vertex 1 to vertex n of a Monge graph can be computed in O(n) time, and Aggarwal, Klawe, Moran, Shor, and Wilber showed that the shortest d-edge 1-to-n path (i.e., the shortest path among all 1-to-n paths with exactly d edges) can be computed in O(dn) time. This paper`s contribution is a new algorithm for the latter problem. Assuming 0 {le} c[i,j] {le} U and c[i,j + 1] + c[i + 1,j] {minus} c[i,j] {minus} c[i + 1, j + 1] {ge} L > 0 for all i and j, our algorithm runs in O(n(1 + 1g(U/L))) time. Thus, when d {much_gt} 1 + 1g(U/L), our algorithm represents a significant improvement over Aggarwal et al.`s O(dn)-time algorithm. We also present several applications of our algorithm; they include length-limited Huffman coding, finding the maximum-perimeter d-gon inscribed in a given convex n-gon, and a digital-signal-compression problem.
Scaling of average receiving time and average weighted shortest path on weighted Koch networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Chen, Dandan; Dong, Yujuan; Liu, Jie
2012-12-01
In this paper we present weighted Koch networks based on classic Koch networks. A new method is used to determine the average receiving time (ART), whose key step is to write the sum of mean first-passage times (MFPTs) for all nodes to absorption at the trap located at a hub node as a recursive relation. We show that the ART exhibits a sublinear or linear dependence on network order. Thus, the weighted Koch networks are more efficient than classic Koch networks in receiving information. Moreover, average weighted shortest path (AWSP) is calculated. In the infinite network order limit, the AWSP depends on the scaling factor. The weighted Koch network grows unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded.
Multiple Source Shortest Paths in a Genus g Graph Sergio Cabello
Erickson, Jeff
Multiple Source Shortest Paths in a Genus g Graph Sergio Cabello Erin W. Chambers Abstract We give of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubljana, Slovenia, sergio.cabello- Peled [5], O(g3/2 n3/2 log n) by Cabello and Mohar [1], and O(gO(g) n log n) by Kutz [10]. Our approach
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using ? -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Yang, Shengxiang
Genetic Algorithms with Elitism-based Immigrants for Dynamic Shortest Path Problem in Mobile Ad Hoc) in MANETs. In this paper, we propose to use elitism-based immigrants GA (EIGA) to solve the dynamic SP
NASA Astrophysics Data System (ADS)
Schafer, Sebastian; Singh, Vikas; Hoffmann, Kenneth R.; Noël, Peter B.; Xu, Jinhui
2007-03-01
Endovascular interventional procedures are being used more frequently in cardiovascular surgery. Unfortunately, procedural failure, e.g., vessel dissection, may occur and is often related to improper guidewire and/or device selection. To support the surgeon's decision process and because of the importance of the guidewire in positioning devices, we propose a method to determine the guidewire path prior to insertion using a model of its elastic potential energy coupled with a representative graph construction. The 3D vessel centerline and sizes are determined for a specified vessel. Points in planes perpendicular to the vessel centerline are generated. For each pair of consecutive planes, a vector set is generated which joins all points in these planes. We construct a graph representing these vector sets as nodes. The nodes representing adjacent vector sets are joined by edges with weights calculated as a function of the angle between the corresponding vectors (nodes). The optimal path through this weighted directed graph is then determined using shortest path algorithms, such as topological sort based shortest path algorithm or Dijkstra's algorithm. Volumetric data of an internal carotid artery phantom (Ø 3.5mm) were acquired. Several independent guidewire (Ø 0.4mm) placements were performed, and the 3D paths were determined using rotational angiography. The average RMS distance between the actual and the average simulated guidewire path was 0.7mm; the computation time to determine the path was 3 seconds. The ability to predict the guidewire path inside vessels may facilitate calculation of vessel-branch access and force estimation on devices and the vessel wall.
Analytical results for the distribution of shortest path lengths in random networks
NASA Astrophysics Data System (ADS)
Katzav, Eytan; Nitzan, Mor; ben-Avraham, Daniel; Krapivsky, P. L.; Kühn, Reimer; Ross, Nathan; Biham, Ofer
2015-07-01
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erd?s-Rényi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case in which the mean degree scales as N? with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance d=\\lfloor1/?\\rfloor from each other. The distribution of shortest path lengths between nodes of degree m and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of m, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.
Faster Shortest Path Algorithm for H-Minor Free Graphs with Negative Edge Weights
Wulff-Nilsen, Christian
2010-01-01
Let $H$ be a fixed graph and let $G$ be an $H$-minor free $n$-vertex graph with integer edge weights and no negative weight cycles reachable from a given vertex $s$. We present an algorithm that computes a shortest path tree in $G$ rooted at $s$ in $\\tilde{O}(n^{4/3}\\log L)$ time, where $L$ is the absolute value of the smallest edge weight. The previous best bound was $\\tilde{O}(n^{\\sqrt{11.5}-2}\\log L) = O(n^{1.392}\\log L)$. Our running time matches an earlier bound for planar graphs by Henzinger et al.
THE SHORTEST PATH AMID 3-D POLYHEDRAL OBSTACLES SHUI-NEE CHOW, JUN LU, HAO-MIN ZHOU
Ferguson, Thomas S.
, namely it consists of straight line segments connected by junctions on the edges of the polyhedral in the presence of obstacles is one of the fundamental problems in path planning and robotics. The problem can be described as follows: given a finite number of obstacles in R2 or R3, what is the shortest path connecting
A Continuous-State Version of Discrete Randomized Shortest-Paths, with Application to Path Planning
Del Moral , Pierre
a weighted directed graph G, the RSP considers the policy that minimizes the expected cost (exploitation] is a well-known problem in the robotics community, described by [26] as "checking the consequences entropy [23]. The introduced path randomization allows balancing the load (number of packages) per path
Parsimonious path openings and closings.
Morard, Vincent; Dokladal, Petr; Decenciere, Etienne
2014-04-01
Path openings and closings are morphological tools used to preserve long, thin, and tortuous structures in gray level images. They explore all paths from a defined class, and filter them with a length criterion. However, most paths are redundant, making the process generally slow. Parsimonious path openings and closings are introduced in this paper to solve this problem. These operators only consider a subset of the paths considered by classical path openings, thus achieving a substantial speed-up, while obtaining similar results. In addition, a recently introduced 1D opening algorithm is applied along each selected path. Its complexity is linear with respect to the number of pixels, independent of the size of the opening. Furthermore, it is fast for any input data accuracy (integer or floating point) and works in stream. Parsimonious path openings are also extended to incomplete paths, i.e., paths containing gaps. Noise-corrupted paths can thus be processed with the same approach and complexity. These parsimonious operators achieve a several orders of magnitude speed-up. Examples are shown for incomplete path openings, where computing times are brought from minutes to tens of milliseconds, while obtaining similar results. PMID:24569442
Freight Network Modeling System. Volume IV. Shortest-Path Analysis and Display user's guide
Not Available
1985-04-01
The Freight Network Modeling System (FNEM) is a general and flexible modeling system designed to have wide applicability to a variety of freight transportation analyses. The system consists of compatible network data bases, data management software, models of freight transportation, report generators, and graphics output. In many studies, a model as comprehensive as FNEM is not required. The second model, Shortest-Path Analysis and Display (SPAD), is a simpler model that optimizes routings of single shipments. The routing criteria that can be used are numerous - including minimizing cost, minimizing delay, minimizing population exposure (useful when considering shipments of hazardous materials), and minimizing accident risk. In addition to the above criteria, the routes can also be restricted to those with clearance for oversized loads or with sufficient load capabilities. SPAD can be used interactively and the routes can be displayed graphically. This volume contains a user's guide for SPAD including preprocessor programs and SPAD execution. 7 figs., 19 tabs.
Effective usage of shortest paths promotes transportation efficiency on scale-free networks
NASA Astrophysics Data System (ADS)
Du, Wen-Bo; Wu, Zhi-Xi; Cai, Kai-Quan
2013-09-01
With rapid economic and social development, the problem of traffic congestion is getting more and more serious. Accordingly, network traffic models have attracted extensive attention. In this paper, we introduce a shortest-remaining-path-first queuing strategy into a network traffic model on Barabási-Albert scale-free networks under efficient routing protocol, where one packet’s delivery priority is related to its current distance to the destination. Compared with the traditional first-in-first-out queuing strategy, although the network capacity has no evident changes, some other indexes reflecting transportation efficiency are significantly improved in the congestion state. Extensive simulation results and discussions are carried out to explain the phenomena. Our work may be helpful for the designing of optimal networked-traffic systems.
Tubule detection in testis images using boundary weighting and circular shortest path.
Zhang, Chao; Sun, Changming; Davey, Rhonda; Su, Ran; Bischof, Leanne; Vallotton, Pascal; Lovell, David; Hope, Shelly; Lehnert, Sigrid; Pham, Tuan D
2013-01-01
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. PMID:24110438
J. Sussmann; Guoqing Tang
1991-01-01
We illustrate the use of the techniques of modern geometric optimal control theory by studying the shortest paths for a model of a car that can move forwards and backwards. This problem was discussed in recent work by Reeds and Shepp who showed, by special methods, (a) that shortest path motion could always be achieved by means of trajectories of
Almeroth, Kevin C.
Orion: Shortest Path Estimation for Large Social Graphs Xiaohan Zhao, Alessandra Sala, Christo allowing constant time node distance computation. We describe Orion, a pro- totype graph coordinate system, and explore critical de- cisions in its design. Finally, we evaluate the accuracy of Orion's node distance
Bi-Qing Li; Tao Huang; Lei Liu; Yu-Dong Cai; Kuo-Chen Chou
2012-01-01
One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used to select differentially expressed genes
He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan
2015-01-01
Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model’s objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109
Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy
2013-11-01
We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result. PMID:23807445
NASA Astrophysics Data System (ADS)
Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng
2014-04-01
Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.
He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan
2015-01-01
Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model's objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109
A Simpler Algorithm for the All Pairs Shortest Path Problem with O(n 2logn) Expected Time
NASA Astrophysics Data System (ADS)
Takaoka, Tadao; Hashim, Mashitoh
The best known expected time for the all pairs shortest path problem on a directed graph with non-negative edge costs is O(n 2logn) by Moffat and Takaoka. Let the solution set be the set of vertices to which the given algorithm has established shortest paths. The Moffat-Takaoka algorithm maintains complexities before and after the critical point in balance, which is the moment when the size of the solution set is n - n/logn. In this paper, we remove the concept of critical point and the data structure, called a batch list, whereby we make the algorithm simpler and seamless, resulting in a simpler analysis and speed-up.
Wu, Jie
. The work of J. Wu was supported in part by U.S. NSF Grant CCR 9900646 and Grant ANI 0073736. Responsible, Philadelphia, PA 19104 USA (e-mail: LSheng@mcs.drexel.edu). J. Wu is with the Department of Computer Science) is Not Optimal for a General N N Torus Li Sheng and Jie Wu, Senior Member, IEEE Abstract--A shortest-path routing
NASA Astrophysics Data System (ADS)
Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart
2013-09-01
The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.
NASA Astrophysics Data System (ADS)
Blezek, Daniel J.; Robb, Richard A.
1999-05-01
Successful applications of virtual endoscopy often require the generation of centerlines as flight paths for fly-through examinations of anatomic structures. Criteria for design of effective centerline algorithms should include the following: (1) tracking of the most medial path possible, (2) robustness to segmentation errors, (3) computational efficiency, and (4) minimum of user interaction. To satisfy these design goals, we have developed a centerline generation algorithm based on the chamfer distance transform and Dijkstra's single-source shortest path algorithm. The distance transformation is applied to a segmented volume to determine the distance from each object voxel to the nearest background voxel -- a 'medialness' measure for each voxel. From a user specified source voxel, the distance and path from each object voxel to the source voxel is determined using Dijkstra's single-source shortest path algorithm, with the 'medialness' measure used as the weighting or distance factor between voxels. After execution of the algorithm is complete, paths from all voxels in the object to the source can be easily computed, a feature that is useful for all implementations of virtual endoscopy, but particularly for virtual bronchoscopy, which involves branching. The algorithm runs in O[2n(1 + f)] time, where n is the number of voxels in the volume, and f is the ratio of object voxels to total voxels in the volume. The algorithm is efficient, requiring approximately 90 seconds for a 60 megabyte dataset containing a segmented colon, and is robust to noise, segmentation errors, and start/end voxel selection. The only user interaction required is choosing the starting and ending voxels for the path. We report on objective and subjective evaluations of the algorithm when applied to several mathematical phantoms, the Visible Human Male Dataset and patient exams.
The Shortest Path to Happiness: Recommending Beautiful, Quiet, and Happy Routes in the City
Quercia, Daniele; Aiello, Luca Maria
2014-01-01
When providing directions to a place, web and mobile mapping services are all able to suggest the shortest route. The goal of this work is to automatically suggest routes that are not only short but also emotionally pleasant. To quantify the extent to which urban locations are pleasant, we use data from a crowd-sourcing platform that shows two street scenes in London (out of hundreds), and a user votes on which one looks more beautiful, quiet, and happy. We consider votes from more than 3.3K individuals and translate them into quantitative measures of location perceptions. We arrange those locations into a graph upon which we learn pleasant routes. Based on a quantitative validation, we find that, compared to the shortest routes, the recommended ones add just a few extra walking minutes and are indeed perceived to be more beautiful, quiet, and happy. To test the generality of our approach, we consider Flickr metadata of more than 3.7M pictures in London and 1.3M in Boston, compute proxies for the crowdsourced...
A Computational Study Identifies HIV Progression-Related Genes Using mRMR and Shortest Path Tracing
Liu, Lei
2013-01-01
Since statistical relationships between HIV load and CD4+ T cell loss have been demonstrated to be weak, searching for host factors contributing to the pathogenesis of HIV infection becomes a key point for both understanding the disease pathology and developing treatments. We applied Maximum Relevance Minimum Redundancy (mRMR) algorithm to a set of microarray data generated from the CD4+ T cells of viremic non-progressors (VNPs) and rapid progressors (RPs) to identify host factors associated with the different responses to HIV infection. Using mRMR algorithm, 147 gene had been identified. Furthermore, we constructed a weighted molecular interaction network with the existing protein-protein interaction data from STRING database and identified 1331 genes on the shortest-paths among the genes identified with mRMR. Functional analysis shows that the functions relating to apoptosis play important roles during the pathogenesis of HIV infection. These results bring new insights of understanding HIV progression. PMID:24244287
A computational study identifies HIV progression-related genes using mRMR and shortest path tracing.
Ma, Chengcheng; Dong, Xiao; Li, Rudong; Liu, Lei
2013-01-01
Since statistical relationships between HIV load and CD4+ T cell loss have been demonstrated to be weak, searching for host factors contributing to the pathogenesis of HIV infection becomes a key point for both understanding the disease pathology and developing treatments. We applied Maximum Relevance Minimum Redundancy (mRMR) algorithm to a set of microarray data generated from the CD4+ T cells of viremic non-progressors (VNPs) and rapid progressors (RPs) to identify host factors associated with the different responses to HIV infection. Using mRMR algorithm, 147 gene had been identified. Furthermore, we constructed a weighted molecular interaction network with the existing protein-protein interaction data from STRING database and identified 1331 genes on the shortest-paths among the genes identified with mRMR. Functional analysis shows that the functions relating to apoptosis play important roles during the pathogenesis of HIV infection. These results bring new insights of understanding HIV progression. PMID:24244287
Patrikalakis, Nicholas M.
Journal of Mechanical Design, ASME Transactions, Vol. 118 No. 4, pages 499-508, 1996. Computation of Shortest Paths on Free-Form Parametric Surfaces Takashi Maekawa Massachusetts Institute of Technology, computation of medial axis transforms of trimmed surface patches, terrain navigation and NC machining
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Teirelbar, A.; Boulenouar, A. J.
2001-09-01
Autonomous agent path planning is a main problem in the fields of machine learning and artificial intelligence. Reactive execution is often used in order to provide best decision for the agent's reactions. Although this problem is important in the stationary environment, most interesting environments are time varying. This paper is based on our previous work focusing on combining the potential field model with reinforcement learning to solve the stationary path problem. In this work we deal with the case of dynamic environment. In the dynamic environment, the motion of the obstacles provides for different problems and challenges, which our proposed algorithm in this paper encounters and addresses.
Spreading and shortest paths in systems with sparse long-range connections
Cristian F. Moukarzel
1999-01-01
Spreading according to simple rules (e.g. of fire or diseases), and\\u000ashortest-path distances are studied on d-dimensional systems with a small\\u000adensity p per site of long-range connections (``Small-World'' lattices). The\\u000avolume V(t) covered by the spreading quantity on an infinite system is exactly\\u000acalculated in all dimensions. We find that V(t) grows initially as t^d\\/d for\\u000at<< t^* =
Paths and stochastic order in open systems
Lucia, Umberto
2011-01-01
The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the entropy generation is maximum and, this maximum value is consequence of the stochastic order of the paths in the phase space, while, conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation at the stability.
NASA Astrophysics Data System (ADS)
Hogan, Patrick; Parajka, Juraj; Blöschl, Günter
2014-05-01
The eddy covariance method has become one of the most common methods for measuring evaporation and carbon dioxide fluxes as it makes direct measurements and can be used at different spatial scales. Eddy covariance measurement devices are divided into two different designs, designated open path and closed path depending on where the gas of interest is measured. There is currently no preferred eddy covariance design, with the decision on which design to use usually based on the local precipitation conditions and power availability. A recent long term field comparison by Haslwanter et al. (2009) found differences in the measured and corrected evaporation between the different designs, with the largest differences in the latent heat flux occurring during periods of above average meteorological conditions. All previous comparison studies have been performed using the LI-7500 OP analyser which must be placed a distance away from the closed path intake and the path of the sonic anemometer. This must be accounted for by including corrections for high frequency filtering and sensor heating. The objective of this study is to use the IRGASON open-path design from Campbell Scientific where the gas analyser and sonic anemometer will be directly aligned with the intake to a closed path sensor to compare the different sensor designs. The measurements will be performed at the HOAL catchment at Petzenkirchen, Austria, which is equipped with a weather and energy balance station as well as an extensive soil moisture network to measure evaporation. This project will perform a comparison between open path and closed path eddy covariance systems using a new integrated open path design. The measurements will then be used to study the differences between the corrections required for the different designs and the effects of meteorological variables on the measured latent heat fluxes to address the issue of open and closed path gas analyser comparisons.
Completely automated open-path FT-IR spectrometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Atmospheric analysis by open-path Fourier transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and s...
Shortest Non-trivial Cycles in Directed Surface Graphs Jeff Erickson
Erickson, Jeff
the observation by Cabello and Mohar [12] that the shortest non-trivial cycle crosses any shortest path at most condition [44] and Cabello and Mo- har's crossing condition [12] are consequences of the following easy
Completely automated open-path FT-IR spectrometry.
Griffiths, Peter R; Shao, Limin; Leytem, April B
2009-01-01
Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention. PMID:18946664
An advanced open-path atmospheric monitor design
Taylor, L.; Suhre, D. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Mech, S. [Westinghouse Hanford Co., Richland, WA (United States)
1996-05-01
The conceptual design of an open-path atmospheric monitor combines an acousto-optic tunable filter for emission spectroscopy (3-14 {mu}m) with a mid-IR (4.6-5.4 {mu}m) for absorption spectroscopy. It utilizes mostly commercially available components, covers a large area ({approximately}4 km radius), measures the distance to any reflecting object, can take measurements along any line-of-sight, and is eye safe. Of twenty test pollutants it is to detect, the concentrations of all twenty will be measurable via emission spectroscopy and ten by the more sensitive absorption spectroscopy.
TATP stand-off detection with open path: FTIR techniques
NASA Astrophysics Data System (ADS)
Fischer, C.; Pohl, T.; Weber, K.; Vogel, A.; van Haren, G.; Schweikert, W.
2012-10-01
TATP is a very easy to synthesize [9], sensitive, high explosive [10] and high volatile explosive [1, 3, 7] with great absorption in the IR Spectra [4, 5, 6]. In this project we detect TATP gas traces with open path FTIR - techniques. The first project phase was to construct and build a heatable multi-reflection cell with adjustable optical path length and a heatable intake to evaporate solid TATP samples. In this cell reference TATP - spectra were collected under controlled conditions with a Bruker FTIR system (Typ OPAG 33). The next step was to find out how the TATP gas will be diluted in the ambient air and validate some physical properties which are described inconsistently in literature e.g. evaporation rates. We constructed a special double - T shaped chamber with stabile air conditions. In this chamber the dispersion kinetics of the TATP vapour could be tested. It turned out that the TATP vapours has the tendency to drop down. Therefore the highest TATP - concentrations were measured below the TATP sample. During the investigation for this study it turned out, that some materials scrub the TATP- vapour out of the air, e.g. Metals, fabric, leather. In the second phase of the project successful open path FTIR- measurements were taken in ambient air and will be continued with different system configurations of the OPAG 33 to lower the detection limits. Also successful measurements were taken in indoor ambient air with a Hyper spectral camera (passive FTIR with array sensor) to detect TATP in solid and gaseous phase. This technique allows detecting TATP and identifying the TATP source. The poster shows some selected results of the continued research.
APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS
Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...
A unique bistatic FTIR monitor for long path open-air measurements
Spellicy, R.L.; Brewer, R.J.
1999-07-01
A unique bistatic open-path FTIR monitor has been developed and deployed at an industrial site which eliminates the path radiance issues usually associated with bistatic systems. This system was developed to address long path open-air monitoring while preserving high signal-to-noise ratio for low level detection. Initial test results show excellent accuracy and precision when the systems are tested against an in-situ calibration cell in the instrument.
Seedlings in the Theory of Shortest Paths
Steele, J. Michael
(x) is the density of the absolutely continuous part of the distribution of the Xi. This result has proved fruitful is the existence of measure preserving transformations from [0, 1] onto [0, 1]d that are Lipschitz of order 1/d
Calibration of DIAL and open-path systems using external gas cells
NASA Astrophysics Data System (ADS)
Milton, Martin J. T.; Woods, Peter T.; Partridge, R. H.; Goody, B. A.
1995-09-01
The importance of calibrating optical open-path measurements of atmospheric gases is discussed. Work carried out at NPL has involved calibrating integrated-path and range- resolved measurement instruments. The designs of the calibration gas cells used for this work are described and some results are presented. These results include the calibration of a DIAL measurement system using a calibration cell in which a stable flow of the target gas is maintained.
Application of neural networks to compound identification in open-path FT-IR spectrometry
NASA Astrophysics Data System (ADS)
Yang, Husheng; Griffiths, Peter R.
1998-06-01
Neural networks have been applied in an attempt to determine the feasibility of recognizing whether or not a given analyte is present in an open-path Fourier transform infrared (OP/FT-IR) spectrum measured at low resolution. The neural network architecture used in this paper was a two layer feed-forward network trained by fast backpropagation. A hyperbolic tangent sigmoid transfer function was used in both layers. Each network has only one output and was trained to recognize only one compound. Synthesized open-path spectra, which were obtained by digitally adding randomly scaled reference spectra and open-path background spectra, were used to train the neural networks. Spectral windows containing only the absorption bands of the analyte were used as the neural network input. Trained neural networks were tested by experimentally measured OP/FT-IR spectra.
Technology Transfer Automated Retrieval System (TEKTRAN)
Over 32,000 interferograms measured during open-path Fourier transform infrared (OP/FT-IR) measurements at dairy and hog farms were evaluated for anomalies. Five types of anomalies could be distinguished: a reduction in the interferogram intensity because of weather-related optical misalignment; an ...
Water Vapor, Cloud Liquid Water Paths, and Rain Rates over the Northern High Latitude Open Seas
Zuidema, Paquita
Water Vapor, Cloud Liquid Water Paths, and Rain Rates over the Northern High Latitude Open Seas-based Instrumentation: May 1-8 time series 35 GHz cloud radar ice cloud properties depolarization lidar depolarization lidar data; Intrieri et al., 2002 Major SHEBA results: liquid present much of the time dominates
We have performed a series of experiments to determine the tradeoff in detection sensitivity for implementing design features for an Open-Path Fourier Transform Infrared (OP-FTIR) chemical analyzer that would be quick to deploy under emergency response conditions. The fast-deplo...
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
OLiMPS. OpenFlow Link-layer MultiPath Switching
Newman, Harvey B. [California Institute of Technology, Pasadena, CA (United States); Barczyk, Artur [California Institute of Technology, Pasadena, CA (United States); Bredel, Michael [California Institute of Technology, Pasadena, CA (United States)
2014-11-17
The OLiMPS project’s goal was the development of an OpenFlow controller application allowing load balancing over multiple switched paths across a complex network topology. The second goal was to integrate the controller with Dynamic Circuit Network systems such as ESnet’s OSCARS. Both goals were achieved successfully, as laid out in this report.
PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY
Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...
OPEN-PATH FTIR MEASUREMENTS OF NOX AND OTHER DIESEL EMISSIONS
The paper gives results of a demonstration of the feasibility of using an open-path Fourier transform infrared (OP-FTIR) monitoring technique to address the across-road characterization of diesel vehicle emissions of criteria pollutants and hazardous air pollutants. Four sets of ...
Replacement Paths via Fast Matrix Multiplication Oren Weimann
Yuster, Raphael
Replacement Paths via Fast Matrix Multiplication Oren Weimann Department of Computer Science be a directed edge-weighted graph and let P be a shortest path from s to t in G. The replacement paths problem asks to compute, for every edge e on P, the shortest s-to-t path that avoids e. Apart from
Shortest billiard trajectories Daniel Bezdek Karoly Bezdek
de Leon, Alex R.
Shortest billiard trajectories DÂ´aniel Bezdek KÂ´aroly Bezdek October 23, 2008 Abstract shortest generalized billiard trajectory moreover, any of its shortest generalized billiard trajectories of its generating disks are at most r. We prove that any of the shortest generalized billiard
Open-path atmospheric transmission for a diode-pumped cesium laser.
Rice, Christopher A; Lott, Gordon E; Perram, Glen P
2012-12-01
A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ?0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration. PMID:23207380
Early detection of combustible gas leaks using open path infrared (IR) gas detectors
NASA Astrophysics Data System (ADS)
Naranjo, Edward; Baliga, Shankar
2012-06-01
Open path IR gas detectors are a mainstay in the oil and gas industry. They are used in a variety of instances to identify gas accumulations or monitor gas cloud migrations. In offshore installations, open path optical gas detectors are used to monitor drilling and production operations, crude oil separation, compression, and exhaust and ventilation systems. Because they can monitor a perimeter or fence line, they are ideally suited for detecting gas in open facilities, where point gas detectors would be difficult or expensive to deploy. Despite their widespread use, open path optical gas detectors are rarely employed to detect low level concentrations of combustible gases. Standard models are typically set to alarm at 50% LEL-m (50% LEL extended over one meter), providing sufficiently early warning when gas accumulations occur. Nevertheless, in cases in which a combustible gas is diluted quickly, such as ventilation exhaust ducting, it may be necessary to set the detector to alarm at the lowest predictable level. Further, interest in low level infrared gas detection has been growing as gases such as CH4 and CO2 are greenhouse gases. The present paper describes a mid-wave infrared (MWIR) open path system designed to detect combustible and carbon dioxide gas leaks in the parts-per-million-meter (ppm-m or mg/cm2). The detector has been installed in offshore platforms and large onshore facilities to detect a variety of flammable gases and vapors. Advantages and limitations of the system are presented. False alarm immunity and resilience to atmospheric interferences are also discussed.
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Nakase, Tomoya; Nakano, Masanori; Fujiwara, Koji; Takahashi, Norio
1999-09-01
A single sheet tester having closed magnetic path (a closed type of SST) has a problem that measurement accuracy of magnetostriction is considerably affected by electromagnetic force between specimen and yoke. Therefore, an open type has been developed. In order to get uniform flux distribution in sufficiently large region, a compensating magnetizing winding is installed, and a method of waveform control is investigated, in which applied voltages to main and compensating windings are adjusted individually. The effectiveness of the newly developed open type is demonstrated by measuring magnetostrictions of thin amorphous sheet as well as highly grain-oriented silicon steel sheet.
Long-range open-path greenhouse gas monitoring using mid-infrared laser dispersion spectroscopy
NASA Astrophysics Data System (ADS)
Daghestani, Nart; Brownsword, Richard; Weidmann, Damien
2015-04-01
Accurate and sensitive methods of monitoring greenhouse gas (GHG) emission over large areas has become a pressing need to deliver improved estimates of both human-made and natural GHG budgets. These needs relate to a variety of sectors including environmental monitoring, energy, oil and gas industry, waste management, biogenic emission characterization, and leak detection. To address the needs, long-distance open-path laser spectroscopy methods offer significant advantages in terms of temporal resolution, sensitivity, compactness and cost effectiveness. Path-integrated mixing ratio measurements stemming from long open-path laser spectrometers can provide emission mapping when combined with meteorological data and/or through tomographic approaches. Laser absorption spectroscopy is the predominant method of detecting gasses over long integrated path lengths. The development of dispersion spectrometers measuring tiny refractive index changes, rather than optical power transmission, may offer a set of specific advantages1. These include greater immunity to laser power fluctuations, greater dynamic range due to the linearity of dispersion, and ideally a zero baseline signal easing quantitative retrievals of path integrated mixing ratios. Chirped laser dispersion spectrometers (CLaDS) developed for the monitoring of atmospheric methane and carbon dioxide will be presented. Using quantum cascade laser as the source, a minimalistic and compact system operating at 7.8 ?m has been developed and demonstrated for the monitoring of atmospheric methane over a 90 meter open path2. Through full instrument modelling and error propagation analysis, precision of 3 ppm.m.Hz-0.5 has been established (one sigma precision for atmospheric methane normalized over a 1 m path and 1 s measurement duration). The system was fully functional in the rain, sleet, and moderate fog. The physical model and system concept of CLaDS can be adapted to any greenhouse gas species. Currently we are developing an in-lab instrument that can measure carbon dioxide using a quantum cascade laser operating in the 4 ?m range. In this case, the dynamic range benefit of CLaDS is used to provide high precision even when peak absorbance in the CO2 spectrum gets greater than 2. Development for this deployable CO2 measurement system is still at an early stage. So far laboratory gas cell experiments have demonstrated a 9.3 ppm.m.Hz-0.5 for CO2 monitoring. This corresponds to about 0.02% relative precision in measuring CO2 atmospheric background over a 100 m open-path in one second. 1 G. Wysocki and D. Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18(25), 26123-26140 (2010). 2 N.S. Daghestani, R. Brownsword, D. Weidmann, 'Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped dispersion spectroscopy' Opt. Express 22(25), A1731-A1743 (2014).
Cortes, Corinna
Directional mathematical morphology and path openings application to the analysis of satellite morphology : C/C++, Matlab ________________________________________________________________ The new...). Geometrical characteristics can be extracted using mathematical morphology [1][2][5]: the morphological
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...
Detto, M.; Verfaillie, J.; Anderson, F.; Xu, L.; Baldocchi, D.
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb-Pearman-Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require. ?? 2011.
Shortest recurrence periods of novae
Kato, Mariko [Department of Astronomy, Keio University, Hiyoshi, Yokohama 223-8521 (Japan); Saio, Hideyuki [Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken'ichi, E-mail: mariko@educ.cc.keio.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
2014-10-01
Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ?} WD with a mass accretion rate of 3.6 × 10{sup –7} M {sub ?} yr{sup –1}. A 1 yr recurrence period is realized for very massive (? 1.3 M {sub ?}) WDs with very high accretion rates (? 1.5 × 10{sup –7} M {sub ?} yr{sup –1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.
Open-path and extractive FT-IR environmental monitoring above and below the ground
Fateley, W.G.; Hammaker, R.M.; Chaffin, C.T.; Marshall, T.L.
1995-12-31
To demonstrate the versatility of Fourier transform infrared (FT-IR) spectrometry, two site investigations are discussed. The first is the monitoring of emissions from active volcanoes. The second is the analysis of soil gases from a site that is currently under remediation for ground water and soil contamination. The monitoring performed at the volcanoes used open-path FT-IR methods and the monitoring at the remediation site used extractive FT-IR methods. Descriptions of the sampling systems employed and the missions monitored at these sites will be used to demonstrate the advantages and limitations of environmental monitoring using FT-IR spectrometry.
[System design of open-path natural gas leakage detection based on Fresnel lens].
Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui
2009-03-01
Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas. PMID:19455840
FORMAL-LANGUAGE-CONSTRAINED PATH PROBLEMS CHRIS BARRETT, RIKO JACOB, AND MADHAV MARATHE
FORMAL-LANGUAGE-CONSTRAINED PATH PROBLEMS CHRIS BARRETT, RIKO JACOB, AND MADHAV MARATHE SIAM J , the formal-language-constrained shortest/simple path problem con- sists of finding a shortest (simple) path p by concatenating the -labels of the edges along the path p. The main contributions of this paper include
Field evaluation of a transportable open-path FTIR spectrometer for real-time air monitoring.
Ross, Kiley R; Todd, Lori A
2002-02-01
To effectively and accurately evaluate human exposures to chemicals, it is important to quantify mixtures of chemicals in air, at low levels, and in real time. The purpose of this study was to evaluate, in the field, a prototype of a new transportable instrument that can fill an important gap in methods available to industrial hygienists. This instrument is a cross between extractive and open-path Fourier Transform Infrared spectrometers and measures chemicals passively and in real time in the vicinity of the breathing zone. The spectrometer has a folded optical path that can be enclosed, similar to an extractive system. The enclosure can be removed, enabling the optical path to be open to the atmosphere; thus, the instrument could be operated as an open-path spectrometer. A field study was conducted in three different occupational settings, including a prosthodontics dental laboratory, a surgery recovery area, and a cytology laboratory. Chemicals that were identified and quantified included methyl methacrylate, nitrous oxide, xylene isomers, toluene, and ethanol. Simultaneous side-by-side sampling was conducted with the prototype instrument and recognized National Institute of Occupational Safety and Health (NIOSH) analytical methods. The distinct infrared "fingerprint" of each chemical made identification and quantification of multiple chemicals possible with the prototype instrument. This attribute allowed the industrial hygienist to quantify short-term exposures and ceiling levels, correlate work practices with concentration levels, evaluate the effectiveness of engineering controls, and identify the presence of unexpected compounds. There was no significant difference between the mean time-weighted averages (TWAs) of the prototype instrument and traditional methods (p > 0.03). Regression analysis found good correlation between the two methods with no significant differences between the slope and unity and between the y-intercept and zero (p > 0.03). The technology and design of the prototype instrument incorporated a unique combination of features and advantages not found in other methods or instruments. The instrument produced results comparable to recognized analytical methods under field conditions and shows promise as a powerful tool in industrial hygiene air monitoring applications. PMID:11843199
Development of an open path THz transmissometer for deterministic and random propagation studies
NASA Astrophysics Data System (ADS)
Scally, Lawrence J.; Gasiewski, Albin J.; Fritz, Jason
2012-05-01
The design of an open-path 320 GHz - 340 GHz coherent transmissometer for experimental measurements of amplitude scintillation, phase scintillation, angle-of-arrival (AoA) fluctuations, and transverse coherence near the 325.1529 GHz water absorption resonance is presented. The system uses a uni-directional transmitter and two phase-coherent receivers with adjustable transverse. The objective of the experiment is to verify and improve existing propagation models for use by designers of applied THz systems for remote sensing, radiolocation, or communications. System stability will be verified using a short range near-ground test path of several ~10's of meters length using a cable for locking the transmitter local oscillator (LO) to the receivers' LOs. This short range configuration, similar to tests conducted at Flatville, Illinois during the 1980s, permits characterization of system errors in all of the above parameters, thus yielding a baseline for the long range experiments. Characterization of the phase-coherent RF link will be studied vis-à-vis anticipated theoretical performance based on the Rytov approximation. The system will then be configured for long term open-path measurements on a 1.78 km elevated link between the University of Colorado at Boulder (CU) and the National Telecommunications and Information Administration (NTIA) Mesa site at the NOAA-NIST campus in Boulder, Colorado. The system will provide long range coherent THz propagation statistics during continuous longduration study of turbulent atmospheric propagation effects over an extensive array of atmospheric conditions in a realistic operational environment.
R. L. Desjardins; O. T. Denmead; L. Harper; M. McBain; D. Massé; S. Kaharabata
2004-01-01
In trials of a mass balance method for measuring methane (CH4) emissions, sonic anemometers and an open-path laser were used to measure the transport of CH4 released from a ground-level source across a downwind face 50m long and 6m high. Release rates matched emissions expected from dairy herds of 2 to 40 cows. The long laser path permitted inferences from
Open path FTIR detection of threat chemicals in air and on surfaces
NASA Astrophysics Data System (ADS)
Castro-Suarez, John R.; Pacheco-Londoño, Leonardo C.; Ortiz-Rivera, William; Vélez-Reyes, Miguel; Diem, Max; Hernandez-Rivera, Samuel P.
2011-06-01
A remote infrared spectroscopy (RIRS) detection system was assembled using a mid infrared (MIR) Fourier Transform interferometer useful in open-path (OP) mode, a reflective infrared telescope and a cryocooled wide band, MCT detector. The system was used for passive mode IR thermal emission measurements and was also coupled to another Newtonian telescope in conjunction with a globar source for active mode measurements. The operation of the system was validated by measuring RIRS spectra of gases (NH3) and condensable vapors: acetone, dichloromethane, methyl ether and acetonitrile. Solid samples were measured by smearing small amounts on aluminum plates after dissolving in appropriate solvents. Highly energetic compounds: TNT, DNT, PETN and RDX were also detected. Experiments of solids on metal surfaces were carried out in passive and active modes. The analyzed samples were placed at different standoff distances up to a maximum of 30 m in active mode and 60 m in passive mode.
Matching of high-resolution water-vapor spectra with open path FTIR field spectra
NASA Astrophysics Data System (ADS)
Webb, John D.; Loos, Karl R.; Reid, Stuart A.; Hughes, Joanna I.; Williamson, S.
1995-05-01
Optimal removal of ubiquitous water vapor spectral bands from open-path FTIR spectra is a well-known challenge. One potentially advantageous approach involves de- resolving water vapor spectra of high spectral resolution and carefully matching them to field spectra. This approach is compared with the more standard approach in which 'upwind' water vapor field reference spectra are used. Computer software implementations of these two approaches are described. A program is described that performs wavenumber scale calibration on single-beam background and measurement spectra using water vapor band frequencies prior to creating an absorbance spectrum. An iterative, interactive program is described for the de-resolution approach. It forms a specified concentration-path high-resolution water vapor spectrum, de-resolves it using Fourier spectral manipulation to a specified resolution and apodization, and allows small wavenumber shifts to be performed. The matching low resolution water vapor spectrum is subtracted from a field spectrum. A third program is described that facilitates subtraction of field water vapor spectra from field measurement spectra. Significant progress has been made in implementing the de-resolution approach, however, the field reference approach currently gives superior results, especially in the 3400-2700 cm-1 region. Further progress could be made by acquiring high- resolution water vapor spectra of higher ppm-m value and automating the procedure.
Shortest route algorithm with movement prohibitions
Said M. Easa
1985-01-01
This paper presents an algorithm with movement prohibitions which eliminates some problems encountered in network representation used for traffic assignment models, and further allows the representation of the network to be simplified. The paper first presents an appraisal of some proposed methods and reviews the basic concept of existing shortest-route algorithms. The problem of obtaining shortest routes in networks with
An Open-Path Tunable Diode Laser Sensor for Simultaneous Measurement of Methane And Carbon Dioxide
NASA Astrophysics Data System (ADS)
Bailey, D. M.; Adkins, E. M.; Wilson, E. L.; Miller, J. H. H.
2014-12-01
In a collaboration between NASA Goddard Space Flight Center, University of Alaska-Fairbanks, and George Washington University a study of the feedbacks to climate change caused by thawing permafrost has been initiated. An array of ground experiments at three unique permafrost sites will record permafrost depth, structure, meteorological data, and emissions of key greenhouse gases during a springtime permafrost thaw. Ground data will be linked to climate models and landscape structure from satellite imagery to gauge the magnitude of the feedbacks. GWU will deploy an open path instrument for independent measurement of ground-level carbon dioxide and methane. For several decades, our laboratory has developed diode laser absorption techniques using mid-infrared diode lasers as well as cavity- enhanced absorption measurements using near-infrared source. In the current project, we will continue to develop a system for open path measurements that builds on our past experience with deployment of multi-laser, multi species sensors. Spectral simulations suggest that at ambient levels of CO2 and CH4 (390 and 2 ppmV, respectively) we will observe extinction coefficients of ? 10-4 m-1 or ? 1% absorption over a 200 m path. Prior work in our laboratory suggests that a SNR in excess of 100 will be achievable at these absorption levels using wavelength-modulation techniques. Wavelength modulation spectroscopy entails applying a small amplitude modulation (on the order of the width of a spectral feature) to a laser's emitted frequency as it tunes through a spectrum. This is readily accomplished with near infrared telecom lasers whose frequency can be swept by varying the injection current going into the laser at fixed temperature. By sampling the detector's signal at a multiple of the modulation frequency, the resulting signal takes on the appearance of the spectrum's derivative. Typically, this is accomplished using a lock-in amplifier. To avoid the power burden of this electrical component we are exploring the use of digital signal processing using the microcontroller embedded in the sensor. Here we report on progress on the sensor's construction as well as demonstration of it for making both lab and field measurements using both "traditional" lock-in based demodulation for WMS as well as its use with our software-based, WMS scheme.
A NEW IMPLEMENTATION OF YEN'S RANKING LOOPLESS PATHS ALGORITHM 1
Pascoal, Marta Margarida Braz
A NEW IMPLEMENTATION OF YEN'S RANKING LOOPLESS PATHS ALGORITHM 1 Ernesto de Queir' os Vieira algorithm for ranking the K shortest loopless paths between a pair of nodes in a network. In this paper to conclude. Keywords: network, path, loopless path, paths ranking. 1 Introduction The problem of determining
Technology Transfer Automated Retrieval System (TEKTRAN)
In this study, we evaluated the accuracies of two relatively new micrometeorological methods using open-path tunable diode laser absorption spectrometers: vertical radial plume mapping method (US EPA OTM-10) and the backward Lagragian stochastic method (Wintrax®). We have evaluated the accuracy of t...
Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...
Hammock-on-Ears Decomposition: A Technique for the E cient Parallel Solution of Shortest
Waldmann, Uwe
Hammock-on-Ears Decomposition: A Technique for the E cient Parallel Solution of Shortest Paths the sequential hammock decomposition technique intro- duced by G. Frederickson and the parallel ear decomposition technique, thus we call it the hammock-on-ears decomposition. We mention that hammock-on-ears decomposi
The Stable Paths Problem and Interdomain Routing Timothy G. Griffin F. Bruce Shepherd Gordon Wilfong
Wilfong, Gordon
The Stable Paths Problem and Interdomain Routing Timothy G. Griffin F. Bruce Shepherd Gordon essentially im plement distributed algorithms for solving the Shortest Paths Problem. The Border Gateway is not solving a shortest paths problem since any interdomain protocol is required to allow policybased metrics
Open-path Fourier transform infrared studies of large-scale laboratory biomass fires
NASA Astrophysics Data System (ADS)
Yokelson, Robert J.; Griffith, David W. T.; Ward, Darold E.
1996-09-01
A series of nine large-scale, open fires was conducted in the Intermountain Fire Sciences Laboratory (IFSL) controlled-environment combustion facility. The fuels were pure pine needles or sagebrush or mixed fuels simulating forest-floor, ground fires; crown fires; broadcast burns; and slash pile burns. Mid-infrared spectra of the smoke were recorded throughout each fire by open path Fourier transform infrared (FTIR) spectroscopy at 0.12 cm-1 resolution over a 3 m cross-stack pathlength and analyzed to provide pseudocontinuous, simultaneous concentrations of up to 16 compounds. Simultaneous measurements were made of fuel mass loss, stack gas temperature, and total mass flow up the stack. The products detected are classified by the type of process that dominates in producing them. Carbon dioxide is the dominant emission of (and primarily produced by) flaming combustion, from which we also measure nitric oxide, nitrogen dioxide, sulfur dioxide, and most of the water vapor from combustion and fuel moisture. Carbon monoxide is the dominant emission formed primarily by smoldering combustion from which we also measure carbon dioxide, methane, ammonia, and ethane. A significant fraction of the total emissions is unoxidized pyrolysis products; examples are methanol, formaldehyde, acetic and formic acid, ethene (ethylene), ethyne (acetylene), and hydrogen cyanide. Relatively few previous data exist for many of these compounds and they are likely to have an important but as yet poorly understood role in plume chemistry. Large differences in emissions occur from different fire and fuel types, and the observed temporal behavior of the emissions is found to depend strongly on the fuel bed and product type.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2005-12-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.
Use of an open-path FTIR sensor at Camacari Petrochemical Complex--Bahia, Brazil
NASA Astrophysics Data System (ADS)
Neves, Neuza; Couto, Elizabeth d. R.; Kagann, Robert H.
1995-05-01
CETREL--Empresa de Protecao Ambiental, is an environmental engineering company, which is owned by the member companies in the Camacari Petrochemical Complex, the largest petrochemical complex in Brazil. CETREL operates a centralized waste treatment plant, treatment and disposal facilities, an incineration unit, groundwater monitoring and air quality monitoring networks. The air monitoring network was designed based on mathematical modeling, and the results showed that the monoitoring of hydrocarbons is important not just within the complex but also at the area surrounding the complex. There are presently no regulations for hydrocarbons in Brazil, however they are monitored due to concerns about health problems arising from human exposure. The network has eight multiparameter monitoring stations, located at the villages nearby, where hydrocarbons are sampled with Summa canisters and subsequently analyzed with a GC/MS, using a Cryogenic trap at the interface. The open-path FTIR is used to monitor at the individual plants and in the areas in between because it is more efficient and costs less than it would to attempt to achieve the same level of coverage using the canisters. Ten locations were selected based on mathematical modeling and knowledge of the likely emission sources. Since August 1993, there have been five different measurement campaigns.
Shortest Path Computation with No Information Leakage Kyriakos Mouratidis
Yiu, Man Lung
reveal personal information, such as social habits, health condition, shop- ping preferences, lifestyle systems and the diffusion of smart-phones has led to an expanding market of location-based services (LBSs nature of the queries may disclose per- sonal information (such as health status, shopping habits
Densities of shortest path lengths in spatial stochastic networks
Schmidt, Volker
for the probability density of this distribution which is based on functionals of the so-called typical serving zone processes, we derive a representation formula for the density of C # which is based on some functional for the typical serving zone which are used in a numerical study in order to estimate the density and moments
Parameter Shortest Path Algorithms with an Application to Cyclic Staffing
Karp, Richard M.
Let G = (V,E) be a digraph with n vertices including a special vertex s. Let E' C E be a designated subset of edges. For each e E E there is an associated real number fl(e). Furthermore, let 1 if e E E' f2(e): 0 if e E-E' ...
DT-MRI Fiber Tracking: A Shortest Paths Approach
Andrew Zalesky
2008-01-01
We derive a new fiber tracking algorithm for DT- MRI that parts with the locally 'greedy' paradigm intrinsic to conventional tracking algorithms. We demonstrate the ability to precisely reconstruct a diverse range of fiber trajectori es in authentic and computer-generated DT-MRI data, for which well- known conventional tracking algorithms are shown to fail. Our approach is to pose fiber tracking
Scalable Shortest Paths Browsing on Land Surface Songhua Xing
Shahabi, Cyrus
popularity of online Earth visualization tools and geo-realistic games and the availability of high, where N is the size of the terrain. With this method, the time and space requirements for an exhaustive leading to the growing popularity of online Earth visualization platforms (e.g., Google EarthTM) and geo
Ultrafast Shortest-Path Queries with Linear-Time Preprocessing
Matijevic, Domagoj
]. The asymptotic running time of Dijkstra's algorithm is O(m + n log m), where n is the number of nodes, and m in exactly that problem. Note that 1 #12;Figure 1: Transit nodes (red/bold dots) for a part of a city (center, dark) when travelling far (outside the light-gray area). road networks are particular in at least two
Modeling wildfire propagation with Delaunay triangulation and shortest path algorithms
Smith, J. MacGregor
) reported in excess of 459 thousand fires on 9.6 million hectares of land. The cost of fire extinction U.S. dollars were spent daily on fire extinction during 2000-2004; 108 firefighters lost their lives analytical models of fire behavior/propagation are required to assess potential risk to human lives, property
Dynamic Approximate AllPairs Shortest Paths in Undirected Graphs
Zwick, Uri
/#, such estimated distances are exact.) # School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E(mn) and it answers each distance query in O(1) worstÂcase time. The algorithm uses â? O(n 2 ) space. A running timeÂ weighted undirected graphs: 1. For any fixed # > 0, a decremental algorithm with an expected total running
Chitsan Lin; Naiwei Liou; Pao-Erh Chang; Jen-Chin Yang; Endy Sun
2007-01-01
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top
NASA Astrophysics Data System (ADS)
Steill, J. D.; Compton, R. N.; Hager, J. S.
2006-12-01
Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.
On-road ammonia emissions characterized by mobile, open-path measurements.
Sun, Kang; Tao, Lei; Miller, David J; Khan, M Amir; Zondlo, Mark A
2014-04-01
Ammonia (NH3) is a key precursor species to atmospheric fine particulate matter with strong implications for regional air quality and global climate change. NH3 from vehicles accounts for a significant fraction of total emissions of NH3 in urban areas. A mobile platform is developed to measure NH3, CO, and CO2 from the top of a passenger car. The mobile platform conducted 87 h of on-road measurements, covering 4500 km in New Jersey and California. The average on-road emission factor (EF) in CA is 0.49 ± 0.06 g NH3 per kg fuel and agrees with previous studies in CA (0.3-0.8 g/kg). The mean on-road NH3:CO emission ratio is 0.029 ± 0.005, and there is no systematic difference between NJ and CA. On-road NH3 EFs increase with road gradient by an enhancement of 53 mg/kg fuel per percentage of gradient. On-road NH3 EFs show higher values in both stop-and-go driving conditions and freeway speeds with a minimum near 70 km/h. Consistent with prior studies, the on-road emission ratios suggest a highly skewed distribution of NH3 emitters. Comparisons with existing NJ and CA on-road emission inventories indicate that there may be an underestimation of on-road NH3 emissions in both NJ and CA. We demonstrate that mobile, open-path measurements provide a unique tool to help quantitatively understand the on-road NH3 emissions in urban and suburban settings. PMID:24517544
Applying open-path Fourier transform infrared spectroscopy for measuring aerosols.
Wu, Chang-Fu; Chen, Yen-Ling; Chen, Chih-Chieh; Yang, Tzu-Ting; Chang, Pao-Erh
2007-07-01
This paper examines the feasibility of using Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) to measure aerosols. The extinction spectra of water, ammonium nitrate, and ammonium sulfate aerosols were first simulated with various particle size distributions (geometric mean ranged from 2 to 10 microm; geometric standard deviation ranged from 1.1 to 2.5) based on the Mie theory. An optimization procedure was developed to retrieve the geometric mean and standard deviation of the aerosols size distributions from the spectra, assuming that the complex refractive index is known. To test sensitivity, we also added 4%, 7%, and 10% noise levels to the spectra and compared the reconstruction results. In the experimental study, water aerosols were generated by a two-fluid nozzle inside a cylindrical chamber (3325 cm(3)). The extinction spectrum was collected with a modified FTIR and the size distribution information was retrieved following the same optimization procedure as the one used in the simulation study. The optimization procedure developed in this study reconstructed the size distribution reasonably well for particles with known refractive index (i.e. homogeneous or internally mixed aerosols). The results were robust with the added noise levels up to 10%, after removing inaccurate estimates with the use of the censoring criteria for reconstructed GSD < 1.3, reconstructed GM < 2.5 microm and GSD < 1.5, and reconstructed GM > 10 microm. With regard to externally mixed aerosols, the reconstructed results were sensitive to the noise within the measuring systems, although most ambient aerosols were internally mixed. The reconstructed size distribution in the chamber experiment had a GM of 3.85 microm and GSD of 1.70. The simulation results were applied to support this reconstruction result. We conclude that OP-FTIR can be used to measure aerosols and screen for the right region for a more detailed aerosol measurement campaign. PMID:17616885
Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna
NASA Astrophysics Data System (ADS)
La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Muré, Filippo
2015-03-01
In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500 m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ?1-2 km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2 and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2 ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (?2 km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.
Shepherd, Bruce
The Stable Paths Problem and Interdomain Routing Timothy G. Griffin and F. Bruce Shepherd distributed algorithms for solving the Shortest Paths Problem. The Border Gateway Protocol (BGP) is currently the only interdomain routing protoÂ col deployed in the Internet. BGP is not solving a shortest paths
Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2006-05-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.
NASA Astrophysics Data System (ADS)
Burba, George; McDermitt, Dayle; Anderson, Tyler; Komissarov, Anatoly
2013-04-01
Eddy flux is computed using a covariance between fast changes in gas density and vertical wind speed. The measured changes in gas density happen due to gas flux itself, thermal expansion and contraction of the sampled gas, water vapor dilution, and pressure-related expansions and contractions. These are standard processes described by the Ideal Gas Law and by the Law of Partial Pressures, and are often called density effects. The gas flux is usually corrected for such density effects using Webb-Pearman-Leuning terms (WPL). When gas density is measured by laser spectroscopy, there are also spectroscopic effects affecting measured gas density depending on fluctuations in temperature, water vapor and pressure, in addition to the density effects. The spectroscopic effects are related to changes in the shape of the absorption line due to changes in gas temperature, pressure and the presence of water vapor. These effects are specific for each specific absorption line, and the measurement technique. The majority of density effects and spectroscopic effects are reduced or eliminated in the closed-path analyzers, when: (a) intake tube is very long, (b) gas sample is dried, and (c) pressure fluctuations are very small. However, the use of long intake tubes and drying of the air sample also lead to a significant increase in power demand, and to increased uncertainties due to excess attenuation of the fluctuations of the gas in the drier. Not drying the air sample leads to a need for applying a density correction for dilution, and spectroscopic corrections for gas absorption due to fast fluctuations in water vapor pressure. For both of these corrections water vapor should be measured accurately at high-speed inside the closed-path device, which increases measurements costs. In addition, current fast closed-path analyzers based on laser spectroscopy have to operate under significantly reduced pressures, and require powerful pumps and grid power (400-1500 Watts). Power demands may be why these instruments are often deployed at locations with infrastructure and grid power, and not where the gas is produced. Open-path gas analyzers can require very low-power (e.g., 5-10 Watts), permitting solar-powered deployments, cost-effectively permitting an addition of a single new gas measurement to the present array of CO2 and H2O measurements, and avoiding attenuation of gas fluctuations in the intake tube. These features enable long-term deployments of permanent, portable or mobile open-path flux stations at remote locations with high production of the gas of interest. However, in open-path analyzers, density and spectroscopic effects cannot be neglected. Here we propose a new way to account for spectroscopic effects due to fast fluctuations in air temperature, water vapor and pressure in the same manner as Webb et al. (1980) proposed a way of accounting for respective density effects. Since both density effects and spectroscopic effects are known from Gas Laws and HITRAN, respectively, they can be incorporated into the WPL correction. We use an example of a fast open-path CH4 gas analyzer, the LI-7700, yet the proposed approach would also apply to any closed-path design where fluctuations in temperature, water vapor and pressure are not fully eliminated.
Chen Lixiang [Department of Physics, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); She Weilong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)
2011-03-15
We propose a scheme to generate hybrid Greenberger-Horne-Zeilinger (GHZ) entanglement where multiple photons are entangled in different degrees of freedom of spin, orbital angular momentum (OAM), and path (linear momentum). The generation involves mapping the preliminary OAM entanglement of photon pairs onto their spin-orbit and spin-path degrees of freedom, respectively. Based on the hybrid GHZ entanglement, we demonstrate an open-destination teleportation with multiples degrees of freedom, via which a spin state of a single photon is teleported onto a superposition of multiple photons with the postselection technique and the original information could be read out at any photon in individual spin, OAM, or the linear-momentum state. Our scheme holds promise for asymmetric optical quantum network.
Energy-Aware Two Link-Disjoint Paths Routing Gongqi Lin, Sieteng Soh, Mihai Lazarescu
Chin, Kwan-Wu
. To address this problem, we present a fast heuristic, called TLDP by Shortest Path First (TLDP-SPF simulation results show that TLDP-SPF can reduce network energy usage, on average, by more than 20%, even for MLU below 50%. As compared to using Shortest Path routing, while reducing energy by about 20%, TLDP-SPF
ERIC Educational Resources Information Center
Kelly, William E.
2010-01-01
The relation between reading for pleasure, night-sky watching interest, and openness to experience were examined in a sample of 129 college students. Results of a path analysis examining a mediation model indicated that the influence of night-sky interest on reading for pleasure was not mediated by the broad personality domain openness to…
Algorithms for Three Versions of the Shortest Common Superstring
Lonardi, Stefano
| + . . . + |sk| = n. Output: the shortest word s containing each si as a factor. Example: s1 = abaab, s2 = baba. Output: the shortest word s containing each si as a factor. Example: s1 = abaab, s2 = baba, s3 = aabbb, s. Output: the shortest word s containing each si as a factor. Example: s1 = abaab, s2 = baba, s3 = aabbb, s
Efficient Algorithms for Shortest Partial Seeds in Words
Lonardi, Stefano
Efficient Algorithms for Shortest Partial Seeds in Words Tomasz Kociumaka1 , Solon P. Pissis2. Wale Efficient Algorithms for Shortest Partial Seeds in Words 2/16 #12;Periodicity and quasiperiodicity. Radoszewski, W. Rytter, T. Wale Efficient Algorithms for Shortest Partial Seeds in Words 2/16 #12;Periodicity
Water Vapor, Cloud Liquid Water Paths, and Rain Rates over the Northern High Latitude Open Seas
Zuidema, Paquita
budget when present Zuidema et al., `05 May 1-8 example, T ~ -30C Microwave liquid water paths 100 g/m^2 Mean liquid cloud optical depth ~ 10 Mean ice cloud optical depth ~ 0.2 #12;Schweiger et al 2002 > 60N long-term visible & infrared satellite Arctic cloud datasets focus on cloud cover, poor phase
Einfield, W. [Sandia National Labs., Albuquerque, NM (United States). Environmental Characterization and Monitoring Dept.
1997-05-01
The ability of an open-path, fourier-transform infrared spectrometer to detect vehicle exhaust emissions approximately 3 meters above the roadway surface at a busy Albuquerque suburban intersection was evaluated in this study. Multiple measurements of carbon monoxide and carbon dioxide were carried out over pathlengths up to 100 meters during the morning commute period on multiple days in the summer of 1993. The carbon monoxide to fuel carbon ratio was computed from all spectral data in order to derive a vehicle fleet average ratio. The data were determined to be normally distributed with an overall carbon monoxide-fuel carbon ratio of 0.15. The 95% confidence interval about the mean was {+-} 0.009. Day-to-day variation of the mean ratio was determined to be on the order of 3%. The results indicate that anticipated reductions in carbon monoxide emissions following the implementation of a winter-season oxygenated fuel program could be reliably detected with an open-path fourier transform spectrometer. The periodic use of such an instrument may offer a cost-effective means of generating a city-wide carbon monoxide emission budget for vehicles sources.
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc
2010-05-01
A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.
Open-path Atmospheric N2O, CO, and NH3 Measurements Using Quantum Cascade Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Sun, K.; Khan, A.; Miller, D. J.; Rafferty, K.; Schreiber, J.; Puzio, C.; Portenti, M.; Silver, J.; Zondlo, M. A.
2010-12-01
We develop a compact, mid-infrared quantum cascade (QC) laser based sensor to perform high precision measurements of N2O and CO simultaneously. Since CO is a good tracer of anthropogenic emissions, simultaneous measurements of CO and N2O allow us to correlate the sources of N2O emissions. The thermoelectrically (TE) cooled, and continuous wave QC laser enables room-temperature and unattended operation. The laser is scanned over the absorption features of N2O and CO near 4.54 ?m by laser current modulation. A novel cylindrical multi-pass optical cell terminated at the (N/2)th spot is used to simplify the optical configuration by separating the laser and TE cooled detector. Our systems are open-path and non-cryogenic, which avoids vacuum pump and liquid nitrogen. This configuration enables a future design of a non-intrusive, compact (shoe box size), and low-power (10W) sensor. Wavelength modulation spectroscopy (WMS) is used to enhance measurement sensitivity. Higher-harmonic detection (4f and 6f) is performed to improve the resolution between the nearly overlapping N2O and CO lines. Relevant atmospheric N2O and CO concentration is measured, with a detection limit of 0.3 ppbv for N2O and 2 ppbv for CO for 1 s averaging in terms of noise. We also develop an open-path high sensitivity atmospheric ammonia (NH3) sensor using a very similar instrument design. A 9.06 ?m QC laser is used to probe absorption features of NH3. Open-path detection of NH3 is even more beneficial due to the surface absorption effect of NH3 and its tendency to readily partition into condensed phases. The NH3 sensor was deployed at the CALNEX 2010 field campaign. The entire system was stable throughout the campaign and acquired data with 10 s time resolution under adverse ambient temperatures and dusty conditions. The measurements were in general agreement with other NH3 and trace gases sensors. Both the N2O/CO and NH3 sensors will be deployed in a local eddy-covariance station to examine long term stability and detection limit in the field. Future sensor applications include characterizing urban and agricultural N2O and NH3 emission sources and quantifying their respective fluxes.
Measurement and study of partial VOCs based on open path FTIR
NASA Astrophysics Data System (ADS)
Tong, Jing-jing; Liu, Wen-qing; Gao, Min-guang; Liu, Zhi-ming; Xu, Liang; Wei, Xiu-li; Jin, Ling
2010-10-01
This paper describes a long path Fourier transform infrared spectroscopy system which is used to analyze ambient gas. Some VOCs (C2H2, C2H4) are measured with this system in laboratory. As different VOCs has unique infrared absorbing spectrum, we retrieve VOCs concentration based on the nonlinear least square algorithm. The result shows that the system is stable and rapid. The retrieved concentrations are very close to real value. The system can used to monitor and research VOCs in ambient gas.
Tomasko, M.S.
1995-12-31
Studies were performed to evaluate the accuracy of open-path Fourier Transform Infrared (OP-FTIR) spectrometers using a 35 foot outdoor exposure chamber in Pittsboro, North Carolina. Results obtained with the OP-FTIR spectrometer were compared to results obtained with a reference method (a gas chromatograph equipped with a flame ionization detector, GC-FID). Concentration results were evaluated in terms of the mathematical methods and spectral libraries used for quantification. In addition, the research investigated the effect on quantification of using different backgrounds obtained at various times during the day. The chemicals used in this study were toluene, cyclohexane, and methanol; and these were evaluated over the concentration range of 5-30 ppm.
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.
2012-12-01
The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 ?m using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter-comparison between our sensor and a commercial gas sensor was done to check the sensor's performance. Overall, our sensor showed a good performance with both static chamber measurement and EC flux measurement of N2O. Its open-path, compact and portable design with low power consumption provides lots of advantages for N2O emission flux measurement in the ecological systems. [1] S. A. Montzka, E. J. Dlugokencky, and J. H. Butler, "Non-CO2 greenhouse gases and climate change," Nature 476, 43-50 (2011). [2] L. Tao, K, Sun, D. J. Miller, M. A. Khan and M.A. Zondlo, "Optimizations for simultaneous detection of atmospheric N2O and CO with a quantum cascade laser," CLEO, 2012
Open access to tree genomes: the path to a better forest.
Neale, David B; Langley, Charles H; Salzberg, Steven L; Wegrzyn, Jill L
2013-01-01
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems. PMID:23796049
ERIC Educational Resources Information Center
Kelly, Hope
2014-01-01
Open educational resources (OER) are making their way into a variety of educational contexts from formal lesson planning to just in time learning. Educators and training professionals have been recognized as an important audience for these materials. The concepts of "self-efficacy" and "outcome judgment" from social cognitive…
Mahajan, Meena
Longest Paths in Planar DAGs in Unambiguous Log-Space Nutan Limaye, Meena Mahajan, Prajakta,meena,prajakta}@imsc.res.in November 13, 2009 Abstract We present a transformation from longest paths to shortest paths in sub in the same class of graphs. As a corollary, we obtain our main result: Longest Paths in planar DAGs is in UL
Tsao, Yung-Chieh; Wu, Chang-Fu; Chang, Pao-Erh; Chen, Shin-Yu; Hwang, Yaw-Huei
2011-08-01
This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. PMID:21621818
Technology Transfer Automated Retrieval System (TEKTRAN)
The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared (OP/FT-IR) spectroscopic data, and consequently the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-pa...
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...
The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...
The paper describes a rapid and cost effective methodology developed to estimate emissions factors of organic compounds from a variety of area sources. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations of hydrocarb...
NRMRL-RTP-P- 568 Childers, J.W., Phillips, W.J., Thompson*, E.L., Harris*, D.B., Kirchgessner*, D.A., Natschke, D.F., and Clayton, M.J. Comparison of an Innovative Nonlinear Algorithm to Classical Least Squares for Analyzing Open-Path Fourier Transform Infrared Spectra Collecte...
NASA Astrophysics Data System (ADS)
Buchholz, B.; Afchine, A.; Ebert, V.
2014-05-01
Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane. Under certain flight conditions we quantified for the first time stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the usually used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Afchine, A.; Ebert, V.
2014-11-01
Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
GRECS: Graph Encryption for Approximate Shortest Distance Queries
International Association for Cryptologic Research (IACR)
GRECS: Graph Encryption for Approximate Shortest Distance Queries Xianrui Meng1 , Seny Kamara2 Research 3 Department of Computer Science, Ben-Gurion University Abstract We propose graph encryption schemes that efficiently support approximate shortest distance queries on large-scale encrypted graphs
Finding the Minimum-Cost Path Without Cutting Corners
van Vliet, Lucas J.
, and Lucas J. van Vliet Quantitative Imaging Group, Delft University of Technology, The Netherlands L tracks are examples of string-like (network) structures, whose minimum-cost path is cutting through suggests that the path with the shortest arrival time will in general be longer than the Euclidean distance
Guo Zehua; Tang Xianzhu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2012-08-15
Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallel transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.
NASA Astrophysics Data System (ADS)
Oppenheimer, Clive; Kyle, Philip R.
2008-11-01
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H 2O, CO 2, CO, SO 2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO 2 and H 2O are consistent with gas extracted from the melt at a depth of up to ˜ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H 2O/CO 2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO 2 flux determinations and measured gas ratios. In the case of CO 2 and water, ˜ 1 and ˜ 0.4 m 3 s - 1 , respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.
NASA Astrophysics Data System (ADS)
Wu, Chang-Fu; Wu, Tzong-gang; Hashmonay, Ram A.; Chang, Shih-Ying; Wu, Yu-Syuan; Chao, Chun-Ping; Hsu, Cheng-Ping; Chase, Michael J.; Kagann, Robert H.
2014-01-01
Fugitive emission of air pollutants is conventionally estimated based on standard emission factors. The Vertical Radial Plume Mapping (VRPM) technique, as described in the US EPA OTM-10, is designed to measure emission flux by directly monitoring the concentration of the plume crossing a vertical plane downwind of the site of interest. This paper describes the evaluation results of implementing VRPM in a complex industrial setting (a petrochemical tank farm). The vertical plane was constructed from five retroreflectors and an open-path Fourier transform infrared spectrometer. The VRPM configuration was approximately 189.2 m in width × 30.7 m in height. In the accompanying tracer gas experiment, the bias of the VRPM estimate was less than 2% and its 95% confidence interval contained the true release rate. Emission estimates of the target VOCs (benzene, m-xylene, o-xylene, p-xylene, and toluene) ranged from 0.86 to 2.18 g s-1 during the 14-day field campaign, while estimates based on the standard emission factors were one order of magnitude lower, possibly leading to an underestimation of the impact of these fugitive emissions on air quality and human health. It was also demonstrated that a simplified 3-beam geometry (i.e., without one dimensional scanning lines) resulted in higher uncertainties in the emission estimates.
Exact Algorithms for the Canadian Traveller Problem on Paths and Trees
Karger, David
2008-01-28
The Canadian Traveller problem is a stochastic shortest paths problem in which one learns the cost of an edge only when arriving at one of its endpoints. The goal is to find an adaptive policy (adjusting as one learns more ...
Optimal paths for a car that goes both forwards and backwards
J. A. Reeds; L. A. Shepp
1990-01-01
The path taken by a car with a given minimum turning radius has a lower bound on its radius of curvature at each point, but the path has cusps if the car shifts into or out of reverse gear. What is the shortest such path a car can travel between two points if its starting and ending directions are specified?
Formal language constrained path problems
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
NASA Astrophysics Data System (ADS)
Flores, E.; Grutter, M.; Galle, B.; Mellqvist, J.; Samuelsson, J.; Knighton, B.; Jobson, B. T.; Volkamer, R.; Molina, L. T.; Molina, M. J.
2004-12-01
Mobile sources are responsible for about 50% of VOC (volatile organic compounds) and about 70% of NOx emissions in the Mexico City Metropolitan Area (MCMA). A novel approach has been developed to derive emission factors for mobile sources that are representative of the overall vehicle fleet, using collocated open-path Differential Optical Absorption Spectroscopy (DOAS) and Fourier Transform Infrared (FTIR) spectroscopic measurements. Measurements were recorded at two sites within the MCMA: (1) research-grade DOAS and FTIR systems were operated at the Mexican National Research and Training Center (CENICA) in Iztapalapa, (2) a research grade FTIR was operated at La Merced. In addition, point-sampling with a proton transfer reaction mass spectrometer (PTR-MS) was performed on the same location and the calibration standards for the PTR-MS and the DOAS instruments were cross-calibrated. The DOAS measured speciated aromatic hydrocarbons, including benzene, toluene, m-xylene, p-xylene, ethylbenzene (and mono-substituted alkylbenzenes), benzaldehyde, phenol, and p-cresol. The DOAS detection of aromatic hydrocarbons in the UV/vis spectral range between 250 to 310 nm suffers from the interference of molecular oxygen, and a novel approach is being presented that enables measurement of absolute concentrations of the above species. Further, HONO, NO2, SO2 and HCHO were measured at longer wavelengths. In combination with FTIR measurements of CO, CO2, NO, HCHO, ethylene, ethene, and total alkane, average emission factors for NOx, SO2 and numerous hydrocarbons were derived and scaled with fuel sales data to estimate total emissions of the vehicle fleet in the MCMA. The advantages and limitations of this low-cost emission inventory for mobile sources are decsribed.
NASA Astrophysics Data System (ADS)
Kricks, Robert J.; Keely, Jerry A.; Spellicy, Robert L.; Perry, Stephen H.
1999-02-01
Open-path Fourier transform-infrared (OP-FTIR) was used to collect emission data for a number of chemical compounds for several area sources at a northwestern industrial facility. The data collected was used in conjunction with meteorological measurements to assess the emission rate of several of the compounds from these area sources. The release of a tracer gas at a known emission rate and its subsequent measurement with the OP-FTIR allowed for correction of emission rates to account for local effects on the site specific vertical dispersion coefficients used for emission assessments. The methodology for emission rate assessment is presented, and the implications of correcting for site specific vertical dispersion are discussed. Four area source case studies are included for the study. Most of this data was collected during cold temperature conditions, and some of the data collected during the night time hours, this represents one of the first studies of site specific vertical dispersion under these conditions. Possible impacts of these conditions on emission rate determinations will be presented. The effectiveness of OP-FTIR as a tool for area source emission rate assessment will be evaluated. OP-FTIR was employed for data collection because of its ability to detect the compounds of interest accurately and with reasonable levels of detectability. Emission rate determinations were done for process ponds AA, and BB. Fence-line concentration measurements were also made north of pond AA. The on-site study was conducted from 11/10/97 through 11/26/97. The data collected indicated that moderate to significant levels of two target compounds were being emitted by both pond AA and pond BB. Emission rates were estimated using text book dispersion coefficients and found to overestimate actual emission rates based on tracer gas release significantly. One target compound's emission rate was found to also be related to wind speed.
NASA Astrophysics Data System (ADS)
Sung, Lung-Yu; Lu, Chia-Jung
2014-09-01
This study introduced a quantitative method that can be used to measure the concentration of analytes directly from a single-beam spectrum of open-path Fourier Transform Infrared Spectroscopy (OP-FTIR). The peak shapes of the analytes in a single-beam spectrum were gradually canceled (i.e., "titrated") by dividing an aliquot of a standard transmittance spectrum with a known concentration, and the sum of the squared differential synthetic spectrum was calculated as an indicator for the end point of this titration. The quantity of a standard transmittance spectrum that is needed to reach the end point can be used to calculate the concentrations of the analytes. A NIST traceable gas standard containing six known compounds was used to compare the quantitative accuracy of both this titration method and that of a classic least square (CLS) using a closed-cell FTIR spectrum. The continuous FTIR analysis of industrial exhausting stack showed that concentration trends were consistent between the CLS and titration methods. The titration method allowed the quantification to be performed without the need of a clean single-beam background spectrum, which was beneficial for the field measurement of OP-FTIR. Persistent constituents of the atmosphere, such as NH3, CH4 and CO, were successfully quantified using the single-beam titration method with OP-FTIR data that is normally inaccurate when using the CLS method due to the lack of a suitable background spectrum. Also, the synthetic spectrum at the titration end point contained virtually no peaks of analytes, but it did contain the remaining information needed to provide an alternative means of obtaining an ideal single-beam background for OP-FTIR.
Lin, Chitsan; Liou, Naiwei; Chang, Pao-Erh; Yang, Jen-Chin; Sun, Endy
2007-04-01
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health. PMID:17458466
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
The paper describes a new approach to quantify emissions from area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) technique and computed tomography (CT) technique. In this study, an...
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
Parallel Shortest Lattice Vector Enumeration on Graphics Cards
International Association for Cryptologic Research (IACR)
Parallel Shortest Lattice Vector Enumeration on Graphics Cards Jens Hermans 1 , Michael Schneider2/SCD-COSIC and IBBT {Jens.Hermans,Frederik.Vercauteren,Bart.Preneel}@esat.kuleuven.be 2 Technische Universit
IP-oriented control of unidirectional-path-switched-ring-based transport networks
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Abhimanyu; Chen, Charles
2003-03-01
An important requirement in the IP-based control of time-division multiplexing (TDM) optical transport networks is to utilize the in-built protection capabilities of synchronous optical network (SONET) unidirectional path-switched rings (UPSRs) and to automate the UPSR-protected path setup in mixed mesh-ring networks. This requires modifications to existing IP signaling and routing protocols and new processing rules at the network nodes. Here we leverage IP routing and signaling and multiprotocol label switching (MPLS) fast-reroute techniques for accurately advertising UPSR ring topologies to remote nodes and dynamically establishing UPSR-protected paths across a transport network. Our proposal also makes a NUT1-like (nonpreemptible unprotected traffic) feature possible in UPSRs, which allows for efficient utilization of UPSR protection bandwidth. We achieve this by encoding UPSR-specific information in the open shortest-path-first (OSPF) link state advertisements and in signaling messages of the Resource Reservation Protocol (RSVP) with TE extensions. In addition, we modify the signaling and routing state machines at the nodes to interpret and process this information to perform UPSR topology discovery and path computation. The uniqueness of our proposals is that the algorithms and the rules specified here allow for existing IP-based protocols [such as those within the generalized MPLS (GMPLS) framework, which currently applies to mesh networks] to be efficiently adapted for this context while still achieving our objective of exploiting UPSR-protection capabilities.
Path finding by tube morphogenesis in an amoeboid organism.
Nakagaki, T; Yamada, H; Tóth, A
2001-08-30
We have studied how the plasmodium of Physarum polycephalum, a large amoeboid cell, is able to track the shortest path between two selected points in a labyrinth. When nutrients are supplied at these points to a sheet-like plasmodium extended fully in a maze, the organism forms a single tube which connects the two sites via the shortest route. During the path finding, plasmodial parts in dead ends of the maze shrink and finally the tube with the minimum-length is selected from the existing possibilities. A simple cellular mechanism based on interacting cellular rhythms may describe the experimental observations. PMID:11527578
Fast-response CO2 mixing-ratio measurement with an open-path gas analyzer for eddy-flux applications
NASA Astrophysics Data System (ADS)
Bogoev, I.
2014-12-01
Infra-red gas analyzers operate on the principle of light absorption and measure the density of the gas in the sensing path. To account for density fluctuations caused by barometric pressure, thermal expansion and contraction, and water-vapor dilution, flux calculations using CO2 density measurements need to be corrected for sensible and latent heat transfer (also known as WPL corrections). In contrast, these corrections are not required if the flux calculation involves CO2 mixing ratio relative to dry air. Historically, CO2 mixing ratio measurements have been available only for analyzers with a closed-path where temperature fluctuations in the air sample are attenuated in the intake tubing to a level that they are adequately measured by a contact thermometer. Open-path gas analyzers are not able to make in situ CO2 mixing-ratio measurements because of the unavailability of a reliable, accurate and fast-response air-temperature sensor in the optical path. A newly developed eddy-flux system integrates an aerodynamic open-path gas analyzer with a sonic anemometer where the sensing volumes of the two instruments coincide. Thus the system has the ability to provide temporally and spatially synchronized fast-response measurements of the 3D wind vector, sonically derived air temperature, CO2 and water vapor densities. When these measurements are combined with a fast-response static pressure measurement an instantaneous in-situ CO2 mixing ratio can be calculated on-line, eliminating the need for density corrections in post-processing. In this study fluxes computed from CO2 mixing-ratio are compared to WPL corrected fluxes using CO2 density. Results from a field inter-comparison with an aspirated temperature probe suggest that accurate, fast response air temperature can be derived from humidity-corrected speed of sound measurements. Biases due to heat exchange with the analyzer surface are evaluated by comparing atmospheric sensible heat flux measurements with a traditional sonic anemometer. The results suggest that measuring air temperature, CO2 mixing ratio and vertical wind fluctuations in the same open-air sample volume reduces the uncertainty in flux calculations by eliminating the density and sensor spatial separation corrections.
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.
2014-12-01
Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPPÉ field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ?NH3/?CH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.
NASA Astrophysics Data System (ADS)
Simeonov, V.; van den Bergh, H.; Parlange, M. B.
2009-12-01
A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.
NASA Astrophysics Data System (ADS)
La Spina, A.; Burton, M. R.; Harig, R.; Mure, F.; Rusch, P.; Jordan, M.; Caltabiano, T.
2013-01-01
The ordinary, low intensity activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, "major explosions" and "paroxysms". These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had somewhat more direct connection to a primary, deep degassing system while the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new short-term precursory decreases in CO2/SO2 ratios immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction.
Computing the Length of the Shortest Telomere in the Nucleus
NASA Astrophysics Data System (ADS)
Dao Duc, K.; Holcman, D.
2013-11-01
The telomere length can either be shortened or elongated by an enzyme called telomerase after each cell division. Interestingly, the shortest telomere is involved in controlling the ability of a cell to divide. Yet, its dynamics remains elusive. We present here a stochastic approach where we model this dynamics using a Markov jump process. We solve the forward Fokker-Planck equation to obtain the steady state distribution and the statistical moments of telomere lengths. We focus specifically on the shortest one and we estimate its length difference with the second shortest telomere. After extracting key parameters such as elongation and shortening dynamics from experimental data, we compute the length of telomeres in yeast and obtain as a possible prediction the minimum concentration of telomerase required to ensure a proper cell division.
Yang, Wen-Liang; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Yu-Jun; He, Ying; Wang, Li-Ming; Chen, Xiao-Min; Chen, Wen-Chao
2012-11-01
The backward Lagrangian stochastic dispersion model in conjunction with open-path tunable diode absorption spectroscopy was used to quantify ammonia emissions from farmland based on the high-temporal resolution data, aiming to provide innovative achievements to diagnose patterns of ammonia flux. The results indicate that the bLS dispersion technique using open-path lasers to measure atmospheric ammonia concentrations is suitable for determining ammonia emissions from farmland continuously, especially for characterizing diurnal characteristics of NH3 emissions. The ammonia emissions have a significant diurnal pattern with two emission peaks from urea applied to maize on a calcareous sandy loam fluvo-aquic soil in the North China Plain. We believe that the first peak starting at approximately 9:00 am is due to NH3 absorbed by the dew re-emission at night as the dew evaporates. The maximum of ammonia flux at 14:00 corresponds to the peak of soil temperature and solar radiation. The ammonia emission increased rapidly, but the duration of emission peaks lasted approximately 4 d. Cumulative NH3 emission was 25.3% of the applied N over the entire measurement period. The NH3 emissions measured with bLS dispersion technique and venting method had certain difference. PMID:23387189
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.
2014-12-01
The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.
Spatial cognition: robot target localization in open arenas based on rat studies
NASA Astrophysics Data System (ADS)
Tejera, Gonzalo; Barrera, Alejandra; Fellous, Jean-Marc; Llofriu, Martin; Weitzenfeld, Alfredo
2013-05-01
We describe our latest work in understanding spatial localization in open arenas based on rat studies and corresponding modeling with simulated and physical robots. The studies and experiments focus on goal-oriented navigation where both rats and robots exploit distal cues to localize and find a goal in an open environment. The task involves training of both rats and robots to find the shortest path to the goal from multiple starting points in the environment. The spatial cognition model is based on the rat's brain neurophysiology of the hippocampus extending previous work by analyzing granularity of localization in relation to a varying number and position of landmarks. The robot integrates internal and external information to create a topological map of the environment and to generate shortest routes to the goal through path integration. One of the critical challenges for the robot is to analyze the similarity of positions and distinguish among different locations using visual cues and previous paths followed to reach the current position. We describe the robotics architecture used to develop, simulate and experiment with physical robots.
NASA Astrophysics Data System (ADS)
Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker
2013-04-01
The melting of permafrost soils in arctic regions is one of the effects of climate change. It is recognized that climatically relevant gases are emitted during the thawing process, and that they may lead to a positive atmospheric feedback [1]. For a better understanding of these developments, a quantification of the gases emitted from the soil would be required. Extractive sensors with local point-wise gas sampling are currently used for this task, but are hampered due to the complex spatial structure of the soil surface, which complicates the situation due to the essential need for finding a representative gas sampling point. For this situation it would be much preferred if a sensor for detecting 2D-concentration fields of e.g. water vapor, (and in the mid-term also for methane or carbon dioxide) directly in the soil-atmosphere-boundary layer of permafrost soils would be available. However, it also has to be kept in mind that field measurements over long time periods in such a harsh environment require very sturdy instrumentation preferably without the need for sensor calibration. Therefore we are currently developing a new, robust TDLAS (tuneable diode laser absorption spectroscopy)-spectrometer based on cheap reflective foils [2]. The spectrometer is easily transportable, requires hardly any alignment and consists of industrially available, very stable components (e.g. diode lasers and glass fibers). Our measurement technique, open path TDLAS, allows for calibration-free measurements of absolute H2O concentrations. The static instrument for sampling open-path H2O concentrations consists of a joint sending and receiving optics at one side of the measurement path and a reflective element at the other side. The latter is very easy to align, since it is a foil usually applied for traffic purposes that retro-reflects the light to its origin even for large angles of misalignment (up to 60°). With this instrument, we achieved normalized detection limits of up to 0.9 ppmv?m??Hz. For absorption path lengths of up to 2 m and time resolution of 0.2 sec, we attained detection limits of 1 ppmv. Furthermore we realized a wide dynamic range covering concentrations between 200 ppmv and 12300 ppmv. The static spectrometer will now be extended to a spatially scanning TDL sensor using rapidly rotating polygon mirrors. In combination with tomographic reconstruction methods, spatially resolved 2D-fields will be measured and retrieved. The aim is to capture concentration fields with at least 1 m2 spatial coverage with concentration detection faster than 1 Hz rate. We simulated various measurements from typical concentration distributions ("phantoms") and used Algebraic Reconstruction Techniques (ART) to compute the according 2D-fields. The reconstructions look very promising and demonstrate the potential of the measurement method. In the presentation we will describe and discuss the optical setup of the stationary instrument and explain the concept of extending this instrument to a spatially scanning tomographic TDL instrument for soil studies. Further we present first results evaluating the capabilities of the selected ART reconstruction on tomographic phantoms. [1] E. Schuur, J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra.," Nature, vol. 459, no. 7246, pp. 556-9, May 2009. [2] A. Seidel, S. Wagner, and V. Ebert, "TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets," Applied Physics B, vol. 109, no. 3, pp. 497-504, Oct. 2012.
Kira, Oz; Dubowski, Yael; Linker, Raphael
2015-07-27
Remote sensing of atmospheric aerosols is of great importance to public and environmental health. This research promotes a simple way of detecting an aerosol cloud using a passive Open Path FTIR (OP-FTIR) system, without utilizing radiative transfer models and without relying on an artificial light source. Meteorological measurements (temperature, relative humidity and solar irradiance), and chemometric methods (multiple linear regression and artificial neural networks) together with previous cloud-free OP-FTIR measurements were used to estimate the ambient spectrum in real time. The cloud detection process included a statistical comparison between the estimated cloud-free signal and the measured OP-FTIR signal. During the study we were able to successfully detect several aerosol clouds (water spray) in controlled conditions as well as during agricultural pesticide spraying in an orchard. PMID:26367691
Lin, Chitsan; Liou, Naiwei; Sun, Endy
2008-06-01
An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods. PMID:18581812
NASA Astrophysics Data System (ADS)
Kühnreich, B.; Wagner, S.; Habig, J. C.; Möhler, O.; Saathoff, H.; Ebert, V.
2015-04-01
An advanced in situ diode laser hygrometer for simultaneous, sampling-free detection of interstitial H2 16O and H2 18O vapor was developed and tested in the aerosol interaction and dynamics in atmosphere (AIDA) cloud chamber during dynamic cloud formation processes. The spectrometer to measure isotope-resolved water vapor concentrations comprises two rapidly time-multiplexed DFB lasers near 1.4 and 2.7 µm and an open-path White cell with 227-m absorption path length and 4-m mirror separation. A dynamic water concentration range from 2.6 ppb to 87 ppm for H2 16O and 87 ppt to 3.6 ppm for H2 18O could be achieved and was used to enable a fast and direct detection of dynamic isotope ratio changes during ice cloud formation in the AIDA chamber at temperatures between 190 and 230 K. Relative changes in the H2 18O/H2 16O isotope ratio of 1 % could be detected and resolved with a signal-to-noise ratio of 7. This converts to an isotope ratio resolution limit of 0.15 % at 1-s time resolution.
Pair correlations in classical crystals: The shortest-graph method
NASA Astrophysics Data System (ADS)
Yurchenko, Stanislav O.; Kryuchkov, Nikita P.; Ivlev, Alexei V.
2015-07-01
The shortest-graph method is applied to calculate the pair correlation functions of crystals. The method is based on the representation of individual correlation peaks by the Gaussian functions, summed along the shortest graph connecting the two given points. The analytical expressions for the Gaussian parameters are derived for two- and three-dimensional crystals. The obtained results are compared with the pair correlation functions deduced from the molecular dynamics simulations of Yukawa, inverse-power law, Weeks-Chandler-Andersen, and Lennard-Jones crystals. By calculating the Helmholtz free energy, it is shown that the method is particularly accurate for soft interparticle interactions and for low temperatures, i.e., when the anharmonicity effects are insignificant. The accuracy of the method is further demonstrated by deriving the solid-solid transition line for Yukawa crystals, and the compressibility for inverse-power law crystals.
Pair correlations in classical crystals: The shortest-graph method.
Yurchenko, Stanislav O; Kryuchkov, Nikita P; Ivlev, Alexei V
2015-07-21
The shortest-graph method is applied to calculate the pair correlation functions of crystals. The method is based on the representation of individual correlation peaks by the Gaussian functions, summed along the shortest graph connecting the two given points. The analytical expressions for the Gaussian parameters are derived for two- and three-dimensional crystals. The obtained results are compared with the pair correlation functions deduced from the molecular dynamics simulations of Yukawa, inverse-power law, Weeks-Chandler-Andersen, and Lennard-Jones crystals. By calculating the Helmholtz free energy, it is shown that the method is particularly accurate for soft interparticle interactions and for low temperatures, i.e., when the anharmonicity effects are insignificant. The accuracy of the method is further demonstrated by deriving the solid-solid transition line for Yukawa crystals, and the compressibility for inverse-power law crystals. PMID:26203035
Inter-Domain Redundancy Path Computation Methods Based on PCE
NASA Astrophysics Data System (ADS)
Hayashi, Rie; Oki, Eiji; Shiomoto, Kohei
This paper evaluates three inter-domain redundancy path computation methods based on PCE (Path Computation Element). Some inter-domain paths carry traffic that must be assured of high quality and high reliability transfer such as telephony over IP and premium virtual private networks (VPNs). It is, therefore, important to set inter-domain redundancy paths, i. e. primary and secondary paths. The first scheme utilizes an existing protocol and the basic PCE implementation. It does not need any extension or modification. In the second scheme, PCEs make a virtual shortest path tree (VSPT) considering the candidates of primary paths that have corresponding secondary paths. The goal is to reduce blocking probability; corresponding secondary paths may be found more often after a primary path is decided; no protocol extension is necessary. In the third scheme, PCEs make a VSPT considering all candidates of primary and secondary paths. Blocking probability is further decreased since all possible candidates are located, and the sum of primary and secondary path cost is reduced by choosing the pair with minimum cost among all path pairs. Numerical evaluations show that the second and third schemes offer only a few percent reduction in blocking probability and path pair total cost, while the overheads imposed by protocol revision and increase of the amount of calculation and information to be exchanged are large. This suggests that the first scheme, the most basic and simple one, is the best choice.
NASA Astrophysics Data System (ADS)
Jarboe, Thomas; Marklin, George; Nelson, Brian; Sutherland, Derek; HIT Team Team
2013-10-01
A proof of principle experiment to study closed-flux energy confinement of a spheromak sustained by imposed dynamo current drive is described. A two-fluid validated NIMROD code has simulated closed-flux sustainment on a stable spheromak using imposed dynamo current drive (IDCD), demonstrating that dynamo current drive is compatible with closed flux. (submitted for publication and see adjacent poster.(spsap)) HIT-SI, a = 0.25 m, has achieved 90 kA of toroidal current, current gains of nearly 4, and operation from 5.5 kHz to 68 kHz, demonstrating the robustness of the method.(spsap) Finally, a reactor design study using fusion technology developed for ITER and modern nuclear technology shows a design that is economically superior to coal.(spsap) The spheromak reactor and development path are about a factor of 10 less expensive than that of the tokamak/stellarator. These exciting results justify a proof of principle (PoP) confinement experiment of a spheromak sustained by IDCD. Such an experiment (R = 1.5 m, a = 1 m, Itor = 3 . 2 MA, n = 4e19/m3, T = 3 keV) is described in detail.
Finding Shortest Paths on Surfaces by Fast Global Approximation and Precise Local Refinement
Kimmel, Ron
. The 3D curve shortening flow is transformed into an equivalent 2D one that is implemented using an arbi trary initial curve ending at two given surface points via geodesic curvature shortening flow numerical solutions of differential equations by numerical integration [2], and are com putationally
Computing Single Source Shortest Paths using Single-Objective Fitness Functions
Doerr, Benjamin
such as vehicle routing [8] and routing problems in networks [6, 10] have been tackled. Therefore, it seems- est in recent years. One approach to analyze evolutionary Work supported by the Collaborative Research
A Parametric Copula Approach for Modelling Shortest-Path Trees in Telecommunication Networks
Schmidt, Volker
estimation in telecommunication networks, it is desir- able to gain knowledge about distributional properties derive a joint bivariate distribution for the lengths of these branches by means of copula functions, i copula, parametric marginal distribution, stochastic ge- ometry, network planning, Palm calculus
Jiang, Hai, 1979-
2004-01-01
This thesis aims at the development of faster Dynamic Traffic Assignment (DTA) models to meet the computational efficiency required by real world applications. A DTA model can be decomposed into several sub-models, of which ...
The Multiple Choice Elementary Constrained Shortest Path Problem Karen Smilowitz Guangming Zhang
Smilowitz, Karen
-and-price approaches for variations of the vehicle routing problem in which the nodes to be visited are chosen among incorporate these methods into a branch-and-price approach to solve a variation of the vehicle routing problem-and-price method for a variation of the vehicle routing problem, known as the Multi-Resource Routing Problem (MRRP
A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed
2008-01-01
E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success…
Scalability of Parallel Algorithms for the AllPairs Shortest Path Problem \\Lambda
Kumar, Vipin
version of this paper appeared in the proceedings of the 1990 International Conference on Parallel Computer Science Department University of Minnesota Minneapolis, MN 55455 Internet: kumar@cs.umn.edu Vineet. \\Lambda This work was partially supported by Army Research Office grant # 28408MASDI to the University
All-Pairs Almost Shortest Paths Ausarbeitung des Vortrags von Martin Holzer
Brandes, Ulrik
Grafen. Wird nun die Bedingung der Exaktheit dieser Distanzen etwas aufgeweicht und ein einseiti- ger und das APASP-Problem fÂ¨ur einen Grafen mit einem ein- seitigen additiven Fehler von maximal k l-Emulator zu einem ungewichteten Grafen einen gewichteten Grafen mit derselben Knotenmenge so, dass die Distanz
Stochastic Shortest Path MDPs with Dead Ends Andrey Kolobov Mausam Daniel S. Weld
Mausam
.g., sending a rover on Mars). Even though MDP algo- rithms are used for solving problems with dead with in many real-world planning problems, be it sending a rover on Mars or navigating a robot in a building for them. The first class we present, SSPADE, is a small extension of SSP that has well-defined easily
Fekete, SÃ¡ndor P.
Networks SÂ´andor Fekete Tom Kamphans Michael Stelzer Abstract A problem studied in Systems Biology is how do not properly reflect biochemical facts. An approach to overcome this issue is to use edge labels@freenet.de Helmholtz Centre for Infection Research (HZI), Systems Biology, 38124 Braunschweig, Germany Figure 1
Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand
Shepherd, Bruce
-to- point peak demands. Second, design the network to support all hose matrices (all matrices not exceeding patterns is available. We introduce a capped hose model to explore a range of traffic scenarios, which includes the above two as special cases. It is known that optimal network designs for the hose model
All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time
Chan, Timothy M.
n) if m > n log n log log log n O(mn log log n= log n) if m > n log log n O(n 2 log 2 log n= log n) if m #20; n log log n: These represent the best time bounds known for the problem for all m #28; n 1 in the general case with real-valued weights (the #12;rst subcubic time bound was O(n 3 (log log n= log n) 1
NSDL National Science Digital Library
Perry Samson
This website catalogs all the tornado paths in the United States since 1950. The tornado path data is overlaid onto a Google Maps base for easy browsing and manipulation of the map view. Clicking on individual tornados provides the user with information such as its Fujita rating, the amount of damage caused by the tornado, the size of the path that the tornado made, and the length of time the tornado was on the ground.
Pedestrian traffic: on the quickest path
NASA Astrophysics Data System (ADS)
Kretz, Tobias
2009-03-01
When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either 'move as far as possible toward the destination' or—reformulated—'of all coordinates accessible in this time step move to the one with the smallest distance to the destination'. On top of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation such as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one: however, the tricky part—and therefore in a strict sense the contribution of this work—is (a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, (b) do this with limited computational effort and (c) keep agents' movement at very low densities unaltered.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2013-12-01
Ground-based optical remote sensing has become an essential technology for quantifying pollutant or greenhouese gas (GHG) emissions from point or area sources and for the validation of airborne or satellite remote sensing data. Extensive studies have shown the capability of both ground and airborne surveys in meeting the necessary requirements for large-scale monitoring programs of atmospheric gas variations, e.g. in urban environments or regions with variable land use intensity. Open path instruments (such as infrared or laser spectrometer) that can rapidly scan in ambient air over significant distances are especially useful tools when it comes to detecting any GHG concentration variations (e.g. carbon dioxide CO2, nitrous oxide N2O, methane CH4) that are above normal background levels. Fourier-transform infrared spectroscopy is proven to be a powerful and non-invasive technique that can be used for online monitoring of fugitive emissions for industrial, environmental and health applications. We applied ground-based OP-FTIR spectroscopy as part of a hierarchical monitoring concept to investigate path-averaged atmospheric composition on a large scale, in terms of identifying areas with higher emission rates that subsequently require further detailed meso-scale investigations. A mobile passive and a bistatic active OP-FTIR spectrometer system (Bruker) were installed and a survey of column abundances of CO2 and several other trace gases was performed, allowing a maximum spatial coverage area of several square km to be mapped. In this presentation, we show results of a feasibility study investigating various scenarios (such as a Central European urban region, an agricultural landscape and a natural CO2 degassing area). The data were analysed and compared with accompanying in-situ geophysical, soil gas and micro-meteorological investigation results. Here, we present the significant spatial and temporal variability of CO2 emissions related to local anomalies, temporal events, and / or any correlations with rapidly changing environmental conditions.
Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg
2009-02-01
The differential design, deployment and data post-processing of open- (OP) and closed-path (CP) eddy covariance systems is a potential source of bias for ongoing global flux synthesis activities. Here we use a unique six year data set of concurrent CP and OP carbon dioxide (CO2) and water vapour (H2O) eddy covariance flux measurements above a temperate mountain grassland in Austria to explore the consequences of these differences on a long-term basis. The theoretically based transfer function approach was able to account and correct for the differences in low-pass filtering between the two systems. Corrected CO2 and H2O fluxes exhibited excellent 1:1 correspondence, but the CP system tended to underestimate OP H2O fluxes during conditions of high air temperature, wind speed and global radiation, large sun angles and low relative humidity. Corrections for self-heating of the OP infra-red gas analyser had a very small effect on these relationships. Energy balance closure was slightly more favourable for the OP system. No significant differences were found for the random flux uncertainty of both systems. A larger fraction of OP data had to be excluded because of obstructions of the infra-red path by water and snow. This, however, did not translate into a correspondingly larger fraction of accepted CP flux values, because of a larger percentage of CP flux data failing on the stationarity test. Integrated over the annual cycle, the CP system yielded on average a more positive net ecosystem CO2 exchange (25 vs. 0 gC m(-2) y(-1)) and a lower evapotranspiration (465 vs. 549 mm y(-1)) as compared to the OP system. PMID:24465069
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver
2015-04-01
A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause systematic errors in the CO2 density measurements. Under conditions of high positive or negative sensible heat flux, air-temperature fluctuations are correlated with fluctuations of the vertical wind component and can lead to significant biases in the CO2 flux estimates. This study demonstrates that sonically derived fast-response air temperature in the optical sensing path of an OP gas analyzer can replace the slow-response measurements from the temperature sensor as a scaling parameter in the calibration model to correct for these air temperature-induced spectroscopic effects. Our approach is evaluated by comparison between different OP and CP gas analyzer-based eddy-covariance systems in ecosystems with low CO2 uptake under a range of sensible heat flux regimes and varying meteorological parameters. We show that ignoring high-frequency spectroscopic effects can lead to false interpretations of net ecosystem CO2 exchange for specific site and environmental conditions.
Theraulaz, Guy
2006-01-01
the foraging behavior of ants moving in an artificial network of tunnels in which several interconnected paths and those of the experiments, showing that simple behavioral rules can lead ants to find the shortest paths; Trail; Collective behavior 1. Introduction In a lot of ant species foragers do not exploit food sources
Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
Banerjee, Rahul; Cukier, Robert I
2014-03-20
Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis. PMID:24571787
Path planning strategies for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Gifford, Kevin Kent
Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A hierarchical software control architecture is introduced that uses as the main guidance function an arbitration-based scheme which is able to efficiently and robustly integrate disparate sensor data. The flexibility provided by such an architecture allows for very easy integration of any type of environmental sensing device into the path planning algorithm.
Challenging of path planning algorithms for autonomous robot in known environment
NASA Astrophysics Data System (ADS)
Farah, R. N.; Irwan, N.; Zuraida, Raja Lailatul; Shaharum, Umairah; Hanafi@Omar, Hafiz Mohd
2014-06-01
Most of the mobile robot path planning is estimated to reach its predetermined aim through the shortest path and avoiding the obstacles. This paper is a survey on path planning algorithms of various current research and existing system of Unmanned Ground Vehicles (UGV) where their challenging issues to be intelligent autonomous robot. The focuses are some short reviews on individual papers for UGV in the known environment. Methods and algorithms in path planning for the autonomous robot had been discussed. From the reviews, we obtained that the algorithms proposed are appropriate for some cases such as single or multiple obstacles, static or movement obstacle and optimal shortest path. This paper also describes some pros and cons for every reviewed paper toward algorithms improvement for further work.
Dispersion of nonlinear group velocity determines shortest envelope solitons
Amiranashvili, Sh.; Bandelow, U.; Akhmediev, N. [Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin (Germany); Optical Sciences Group, Research School of Physics and Engineering, Institute of Advanced Studies, Australian National University, Canberra ACT 0200 (Australia)
2011-10-15
We demonstrate that a generalized nonlinear Schroedinger equation (NSE), which includes dispersion of the intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity times squared pulse duration is constant. For short durations, this scaling gets violated and a cusp of the envelope may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.
NASA Astrophysics Data System (ADS)
Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli
2014-09-01
An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.
Improved Approximation Results on the Shortest Common Supersequence Problem
NASA Astrophysics Data System (ADS)
Gotthilf, Zvi; Lewenstein, Moshe
The problem of finding the Shortest Common Supersequence (SCS) of an arbitrary number of input strings is a well-studied problem. Given a set L of k strings, s 1, s 2, ..., s k , over an alphabet ?, we say that their SCS is the shortest string that contains each of the input strings as a subsequence. The problem is known to be NP-hard [8] even over binary alphabet [12]. In this paper we focus on approximating two NP-hard variants of the SCS problem. For the first variant, where all input strings are of length 2, we present a 2 - frac {2}{1 + log{n}log{log{n}}} approximation algorithm, where |?| = n. This result immediately improves the 2 - frac {4}{n+1} approximation algorithm presented in [17]. Moreover, we present a 7/6 (? 1.166bar{6}) approximation algorithm for the restricted variant (but still NP-hard) where all input strings are of length 2 and every character in ? has at most 3 occurrences in L.
NASA Astrophysics Data System (ADS)
Smith, T. E. L.; Paton-Walsh, C.; Meyer, C. P.; Cook, G. D.; Maier, S. W.; Russell-Smith, J.; Wooster, M. J.; Yates, C. P.
2014-03-01
Savanna fires contribute approximately 40-50% of total global annual biomass burning carbon emissions. Recent comparisons of emission factors from different savanna regions have highlighted the need for a regional approach to emission factor development, and better assessment of the drivers of the temporal and spatial variation in emission factors. This paper describes the results of open-path Fourier Transform Infrared (OP-FTIR) spectroscopic field measurements at twenty-one fires occurring in the tropical savannas of the Northern Territory, Australia, within different vegetation assemblages and at different stages of the dry season. Spectra of infrared light passing through a long (22-70 m) open-path through ground-level smoke released from these fires were collected using an infrared lamp and a field-portable FTIR system. The IR spectra were used to retrieve the mole fractions of fourteen different gases present within the smoke, and these measurements used to calculate the emission ratios and emission factors of the various gases emitted by the burning. Only a handful of previous emission factor measures are available specifically for the tropical savannas of Australia and here we present the first reported emission factors for methanol, acetic acid, and formic acid for this biome. Given the relatively large sample size, it was possible to study the potential causes of the within-biome variation of the derived emission factors. We find that the emission factors vary substantially between different savanna vegetation assemblages; with a majority of this variation being mirrored by variations in the modified combustion efficiency (MCE) of different vegetation classes. We conclude that a significant majority of the variation in the emission factor for trace gases can be explained by MCE, irrespective of vegetation class, as illustrated by variations in the calculated methane emission factor for different vegetation classes using data subsetted by different combustion efficiencies. Therefore, the selection of emission factors for emissions modelling purposes need not necessarily require detailed fuel type information, if data on MCE (e.g. from future spaceborne total column measurements) or a correlated variable were available. From measurements at twenty-one fires, we recommend the following emission factors for Australian tropical savanna fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1674 g kg-1 of carbon dioxide; 87 g kg-1 of carbon monoxide; 2.1 g kg-1 of methane; 0.11 g kg-1 of acetylene; 0.49 g kg-1 of ethylene; 0.08 g kg-1 of ethane; 1.57 g kg-1 of formaldehyde; 1.06 g kg-1 of methanol; 1.54 g kg-1 of acetic acid; 0.16 g kg-1 of formic acid; 0.53 g kg-1 of hydrogen cyanide; and 0.70 g kg-1 of ammonia.
NASA Astrophysics Data System (ADS)
Smith, T. E. L.; Paton-Walsh, C.; Meyer, C. P.; Cook, G. D.; Maier, S. W.; Russell-Smith, J.; Wooster, M. J.; Yates, C. P.
2014-10-01
Savanna fires contribute approximately 40-50% of total global annual biomass burning carbon emissions. Recent comparisons of emission factors from different savanna regions have highlighted the need for a regional approach to emission factor development, and better assessment of the drivers of the temporal and spatial variation in emission factors. This paper describes the results of open-path Fourier transform infrared (OP-FTIR) spectroscopic field measurements at 21 fires occurring in the tropical savannas of the Northern~Territory, Australia, within different vegetation assemblages and at different stages of the dry season. Spectra of infrared light passing through a long (22-70 m) open-path through ground-level smoke released from these fires were collected using an infrared lamp and a field-portable FTIR system. The IR spectra were used to retrieve the mole fractions of 14 different gases present within the smoke, and these measurements used to calculate the emission ratios and emission factors of the various gases emitted by the burning. Only a handful of previous emission factor measures are available specifically for the tropical savannas of Australia and here we present the first reported emission factors for methanol, acetic acid, and formic acid for this biome. Given the relatively large sample size, it was possible to study the potential causes of the within-biome variation of the derived emission factors. We find that the emission factors vary substantially between different savanna vegetation assemblages; with a majority of this variation being mirrored by variations in the modified combustion efficiency (MCE) of different vegetation classes. We conclude that a significant majority of the variation in the emission factor for trace gases can be explained by MCE, irrespective of vegetation class, as illustrated by variations in the calculated methane emission factor for different vegetation classes using data sub-set by different combustion efficiencies. Therefore, the selection of emission factors for emissions modelling purposes need not necessarily require detailed fuel type information, if data on MCE (e.g. from future spaceborne total column measurements) or a correlated variable were available. From measurements at 21 fires, we recommend the following emission factors for Australian tropical savanna fires (in grams of gas emitted per kilogram of dry fuel burned), which are our mean measured values: 1674 ± 56 g kg-1 of carbon dioxide; 87 ± 33 g kg-1 of carbon monoxide; 2.1 ± 1.2 g kg-1 of methane; 0.11 ± 0.04 g kg-1 of acetylene; 0.49 ± 0.22 g kg-1 of ethylene; 0.08 ± 0.05 g kg-1 of ethane; 1.57 ± 0.44 g kg-1 of formaldehyde; 1.06 ± 0.87 g kg-1 of methanol; 1.54 ± 0.64 g kg-1 of acetic acid; 0.16 ± 0.07 g kg-1 of formic acid; 0.53 ± 0.31 g kg-1 of hydrogen cyanide; and 0.70 ± 0.36 g kg-1 of ammonia. In a companion paper, similar techniques are used to characterise the emissions from Australian temperate forest fires.
NASA Astrophysics Data System (ADS)
Paton-Walsh, C.; Smith, T. E. L.; Young, E. L.; Griffith, D. W. T.; Guérette, É.-A.
2014-10-01
Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 ± 160 g kg-1 of carbon dioxide; 120 ± 20 g kg-1 of carbon monoxide; 3.6 ± 1.1 g kg-1 of methane; 1.3 ± 0.3 g kg-1 of ethylene; 1.7 ± 0.4 g kg-1 of formaldehyde; 2.4 ± 1.2 g kg-1 of methanol; 3.8 ± 1.3 g kg-1 of acetic acid; 0.4 ± 0.2 g kg-1 of formic acid; 1.6 ± 0.6 g kg-1 of ammonia; 0.15 ± 0.09 g kg-1 of nitrous oxide and 0.5 ± 0.2 g kg-1 of ethane.
Pokemon Cards and the Shortest Common Superstring Mark Stamp Austin E Stamp
Stamp, Mark
Pok´emon Cards and the Shortest Common Superstring Mark Stamp Austin E Stamp June 12, 2003 Abstract Evidence is presented that certain sequences of Pok´emon cards are determined by selecting consecutive (SCS), i.e., the shortest string that contains each of the Pok´emon card sequences as a consecutive
A Genetic Algorithm for Searching Shortest Lattice Vector of SVP Challenge
International Association for Cryptologic Research (IACR)
A Genetic Algorithm for Searching Shortest Lattice Vector of SVP Challenge Dan Ding1 , Guizhen Zhu2, China P. R. Abstract. In this paper, we propose a genetic algorithm for solving the shortest vector pruning. The experimental results show that the genetic algorithm runs rather good on the SVP challenge
Path planning using a tangent graph for mobile robots among polygonal and curved obstacles
Liu, Yun-Hui; Arimoto, Suguru (Univ. of Tokyo (Japan))
1992-08-01
This article proposes a tangent graph for path planning of mobile robots among obstacles with a general boundary. The tangent graph is defined on the basis of the locally shortest path. It has the same data structure as the visibility graph, but its nodes represent common tangent points on obstacle boundaries, and its edges correspond to collision-free common tangents between the boundaries and convex boundary segments between the tangent points. The tangent graph requires O(K[sup 2]) memory, where K denotes the total number of convex segments of the obstacle boundaries. The tangent graph includes all locally shortest paths and is capable of coping with path planning not only among polygonal obstacles but also among curved obstacles.
Minimum Wheel-Rotation Paths for Differential-Drive Mobile Hamidreza Chitsaz
LaValle, Steven M.
Minimum Wheel-Rotation Paths for Differential-Drive Mobile Robots Hamidreza Chitsaz , Steven M. La. To obtain a well-defined notion of shortest, the total amount of wheel rotation is optimized. Using-Shepp car is equal to minimum wheel-rotation for the differential drive, and minimum time curves
An Explicit Characterization of Minimum Wheel-Rotation Paths for Differential-Drives
LaValle, Steven M.
An Explicit Characterization of Minimum Wheel-Rotation Paths for Differential-Drives Hamidreza. A well-defined notion of shortest is obtained by optimizing the total amount of wheel rotation. This paper extends our previous characterization of the minimum wheel-rotation trajectories that are maximal
NASA Technical Reports Server (NTRS)
Chandler, J. A.
1983-01-01
Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.
A methodology for predicting minimum travel paths using real-time traffic network data
Liu, Chang
1991-01-01
the shortest path between any two nodes. This is the path with minimum total link length. The links can be either directional or nondirectional. Mathematically, this problem can be defined as follows: if node V, and V, are the source and 11 destination... directional links. The TRANSYT computer program developed by Robertson in 19& can determine optimum cycle length, phase splits, and offsets that minimize a performance index which is a linear combination of stops and delays. The TRANSYT program can predict...
Minimum-Risk Path Finding by an Adaptive Amoebal Network
NASA Astrophysics Data System (ADS)
Nakagaki, Toshiyuki; Iima, Makoto; Ueda, Tetsuo; Nishiura, Yasumasa; Saigusa, Tetsu; Tero, Atsushi; Kobayashi, Ryo; Showalter, Kenneth
2007-08-01
When two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path. A model for an adaptive-tube network is presented that is in good agreement with the experimental observations.
Generalized path dependent representations for gauge theories
Reyes, Marat C. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico) and Universidad Tecnica Federico Santa Maria, Campus Santiago, C.P. 766-0251, Santiago (Chile)
2007-05-15
A set of differential operators acting by continuous deformations on path dependent functionals of open and closed curves is introduced. Geometrically, these path operators are interpreted as infinitesimal generators of curves in the base manifold of the gauge theory. They furnish a representation with the action of the group of loops having a fundamental role. We show that the path derivative, which is covariant by construction, satisfies the Ricci and Bianchi identities. Also, we provide a geometrical derivation of covariant Taylor expansions based on particular deformations of open curves. The formalism includes, as special cases, other path dependent operators such as end point derivatives and area derivatives.
NASA Astrophysics Data System (ADS)
Helbig, Manuel; Humphreys, Elyn; Bogoev, Ivan; Quinton, William L.; Wischnweski, Karoline; Sonnentag, Oliver
2015-04-01
Long-term measurements of net ecosystem exchange of CO2 (NEE) are conducted across a global network of flux tower sites. These sites are characterised by varying climatic and vegetation conditions, but also differ in the type of CO2/H2O gas analyser used to obtain NEE. Several studies have observed a systematic bias in measured NEE when comparing open-path (OP) and closed-path (CP) sensors with consistently more negative daytime NEE measurements when using OP sensors, both during the growing and non-growing season. A surface heating correction has been proposed in the literature, but seems not to be universally applicable. Systematic biases in NEE measurements are particularly problematic for synthesis papers and inter-comparison studies between sites where the 'true' NEE is small compared to the potential instrument bias. For example, NEE estimates for boreal forest sites derived from OP sensors show large, ecologically unreasonable winter CO2 uptake. To better understand the causes and the magnitude of this potential bias, we conducted a sensor inter-comparison study at the Mer Bleue peatland near Ottawa, ON, Canada. An eddy covariance system with a CP (LI7000 & GILL R3-50) and an OP sensor (EC150 & CSAT3A) was used. Measurements were made between September 2012 and January 2013 and covered late summer, fall, and winter conditions. Flux calculations were made as consistently as possible to minimise differences due to differing processing procedures (e.g. spectral corrections). The latent (LE, slope of orthogonal linear regression of LEOP on LECP: 1.02 ± 0.01 & intercept: -0.2 ± 0.6 W m-2 and sensible heat fluxes (H, slope of HCSAT3A on HGILL: 0.96 ± 0.01 & intercept: 0.1 ± 0.03 W m-2) did not show any significant bias. However, a significant bias was apparent in the NEE measurements (slope of NEEOP on NEECP: 1.36 ± 0.02 & intercept: -0.1 ± 0.05). The differences between NEEOP and NEECP were linearly related to the magnitude of HCSAT3A with a slope of -0.02 ± 0.001 ?mol CO2 m-2 s-1 and an intercept of -0.1 ± 0.03 ?mol CO2 m-2 s-1 (R2 = 0.82, p = 0.001) indicating a consistent overestimation of CO2 uptake during the day and an overestimation of ecosystem respiration during the night. Air temperatures did not have a significant effect on NEE differences. Winter NEE measurements at two boreal forest, one boreal wetland, and one tundra site show similar relationships with H further supporting the findings of this study. In contrast to OP sensors, CP sensors are less affected by high frequency air temperature fluctuations and do not require a correction for air density fluctuations to obtain NEE. Our results point toward a consistent bias in NEEOP that is likely related to the magnitude of H, the main input to the WPL term. The additional findings from five contrasting ecosystems suggest that the bias in NEEOP depends on the site-specific H regime, questioning the accuracy of comparison studies across contrasting ecosystems. Since the absolute magnitude of the bias seems to be directly related to the magnitude of H rather than to the magnitude of NEE, the relative error is likely larger for sites with small NEE. These findings are therefore particularly important for NEE studies at high latitude sites.
Preferential Path Profiling: Compactly Numbering Interesting Paths
Chilimbi, Trishul
Preferential Path Profiling: Compactly Numbering Interesting Paths Kapil Vaswani Indian Institute@microsoft.com Trishul M. Chilimbi Microsoft Research trishulc@microsoft.com Abstract Path profiles provide a more preferential path profiling (PPP), that reduces the overhead of path profiling. PPP leverages the observation
NASA Astrophysics Data System (ADS)
Miller, D. J.; Sun, K.; Tao, L.; Zondlo, M. A.
2013-12-01
Atmospheric ammonia (NH3) is an important fine aerosol gas-phase precursor, with implications for regional air quality and climate change. Atmospheric methane (CH4) is an important greenhouse gas, with high uncertainties in the partitioning of various emission sources. Ammonia and methane agricultural emissions are highly variable in space and time and are highly uncertain, with a lack of widespread, in-situ measurements. We characterize the spatial variability of dairy livestock emissions by performing high resolution (5 Hz), in-situ, on-road mobile measurements of NH3, CH4, CO2, N2O, CO and H2O simultaneously with open-path sensors mounted on a passenger vehicle. This suite of multiple trace gas measurements allows for emission ratio calculations and separation of agricultural, petrochemical and combustion emission signatures. Mobile measurements were performed in the Tulare County dairy farm region (~120 dairy farms sampled downwind) in the Central Valley, California during NASA DISCOVER-AQ in winter 2013. We calculate the ?NH3/?CH4 and ?NH3/?CO2 emission ratios for each dairy farm sampled downwind. Emission plumes from individual farms are isolated based on known dairy farm locations and high resolution (1 km) surface wind field simulations. Background concentrations are subtracted to calculate the emission ratios. We find high spatial variability of ammonia and methane concentrations, with localized maximums of >1 ppmv NH3 downwind of individual dairy farms. The spatial extent of individual farm emission plumes are evaluated for NH3, CH4 and CO2, which all show well-defined enhancements localized to the dairy farms near the roadside (typical sampling proximity of ? 50 m). The NH3 concentrations are correlated with the distance from each dairy farm. The observed median concentration within 100 m downwind of the dairy farms is 63 ppbv NH3, with the 95th percentile at 417 ppbv NH3 and decreases to background conditions at ~500 m distance downwind. The diurnal variability of NH3 and CH4 background concentrations at the same locations sampled on multiple days is also evaluated; including a case study of a strong morning temperature inversion. Finally, we find the NH3/CH4 ratios at the sub-farm scale vary by at least a factor of two due to spatially heterogeneous farming practices. These results highlight the need for widespread, in-situ spatial and temporal sampling of agricultural regions to further characterize these heterogeneous emissions. Future analyses will inform emission inventories and regional air quality modeling efforts.
NASA Astrophysics Data System (ADS)
Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Shirai, T.; Blake, D. R.
2004-01-01
Oxygenated volatile organic compounds (OVOC) can dominate atmospheric organic chemistry, but they are difficult to measure reliably at low levels in complex mixtures. Several techniques that have been used to speciate nonmethane organic compounds (NMOC) including OVOC were codeployed/intercompared in well-mixed smoke generated by 47 fires in the U.S. Department of Agriculture Forest Service Fire Sciences Combustion Facility. The agreement between proton transfer reaction mass spectrometry (PTR-MS) and open-path Fourier transform infrared spectroscopy (OP-FTIR) was excellent for methanol (PT/FT = 1.04 ± 0.118) and good on average for phenol (0.843 ± 0.845) and acetol (˜0.81). The sum of OP-FTIR mixing ratios for acetic acid and glycolaldehyde agreed (within experimental uncertainty) with the PTR-MS mixing ratios for protonated mass 61 (PT/FT = 1.17 ± 0.34), and the sum of OP-FTIR mixing ratios for furan and isoprene agreed with the PTR-MS mixing ratios for protonated mass 69 (PT/FT = 0.783 ± 0.465). The sum of OP-FTIR mixing ratios for acetone and methylvinylether accounted for most of the PTR-MS protonated mass 59 signal (PT/FT = 1.29 ± 0.81), suggesting that one of these compounds was underestimated by OP-FTIR or that it failed to detect other compounds that could contribute at mass 59. Canister grab sampling followed by gas chromatography (GC) with mass spectrometry (MS), flame ionization detection (FID), and electron capture detection (ECD) analysis by two different groups agreed well with OP-FTIR for ethylene, acetylene, and propylene. However, these propylene levels were below those observed by PTR-MS (PT/FT = 2.33 ± 0.89). Good average agreement between PTR-MS and GC was obtained for benzene and toluene. At mixing ratios above a few parts per billion the OP-FTIR had advantages for measuring sticky compounds (e.g., ammonia and formic acid) or compounds with low proton affinity (e.g., hydrogen cyanide and formaldehyde). Even at these levels, only the PTR-MS measured acetonitrile and acetaldehyde. Below a few ppbv only the PTR-MS measured a variety of OVOC, but the possibility of fragmentation, interference, and sampling losses must be considered.
NSDL National Science Digital Library
Cynthia Ann Radle (McCullough High School REV)
1995-06-30
Students follow several pathways using anatomical directions on a simulated "body" produced from a copy of a school building's fire evacuation plan. The main hallways are designated as major blood vessels and the various areas of the school, the head, chest, abdomen, etc. Students complete several pathways using anatomical terms as directions. For example, one of my paths begins, "Ex- ot-, ad- superior, ecto- derm-, peri-frontal, circum- rhino-, " which loosely means, exit the ear, go to the superior region, outside the skin, around the frontal region, around the nose. At the end of each path I leave a clue that lets me know the students actually made it. The combined clues form a sentence.
The shortest modulation period Blazhko RR Lyrae star: SS Cnc
J. Jurcsik; B. Szeidl; Á. Sódor; I. Dékány; Zs. Hurta; K. Posztobányi; K. Vida; M. Váradi; A. Szing
2006-03-20
Extended BV(RI)c CCD observations of SS Cnc, a short period RRab star are presented. Nearly 1400 data points in each band have been obtained spanning over 79 days during the spring of 2005. The star exhibits light curve modulation, the so called Blazhko effect with small amplitude (B maximum brightness varies 0.1 mag) and with the shortest modulation period (5.309 d) ever observed. In the Fourier spectrum of the V light curve the pulsation frequency components are detected up to the 24th harmonic order, and modulation side lobe frequencies with significantly asymmetric amplitudes are seen up to the 15th and 9th orders for the lower and higher frequency components, respectively. Detailed comparison of the modulation behavior of SS Cnc and RR Gem, the two recently discovered small amplitude, short modulation period Blazhko stars is presented. The modulation frequency (f_m) appears in the Fourier spectrum of both stars with similar amplitude. We also demonstrate that the modulation frequencies have basically different properties as the pulsation and modulation side lobe frequencies have, indicating that the physics behind these frequency components are not the same. The discovery of small amplitude modulations of RRab stars cautions that the large photometric surveys (MACHO, OGLE) may seriously underestimate the number of modulated RR Lyrae stars.
Identification of Biochemical Network Modules Based on Shortest Retroactive Distances
Sridharan, Gautham Vivek; Hassoun, Soha; Lee, Kyongbum
2011-01-01
Modularity analysis offers a route to better understand the organization of cellular biochemical networks as well as to derive practically useful, simplified models of these complex systems. While there is general agreement regarding the qualitative properties of a biochemical module, there is no clear consensus on the quantitative criteria that may be used to systematically derive these modules. In this work, we investigate cyclical interactions as the defining characteristic of a biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive Distance (ShReD), to characterize the retroactive connectivity between any two reactions in a biochemical network and to group together network components that mutually influence each other. We evaluate the metric on two types of networks that feature feedback interactions: (i) epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug transformation. For both networks, the ShReD partitions found hierarchically arranged modules that confirm biological intuition. In addition, the partitions also revealed modules that are less intuitive. In particular, ShReD-based partition of the metabolic network identified a ‘redox’ module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared production and consumption of NADPH. Our results suggest that retroactive interactions arising from feedback loops and metabolic cycles significantly contribute to the modularity of biochemical networks. For metabolic networks, cofactors play an important role as allosteric effectors that mediate the retroactive interactions. PMID:22102800
Constrained motion control on a hemispherical surface: path planning.
Berman, Sigal; Liebermann, Dario G; McIntyre, Joseph
2014-03-01
Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path (the shortest path between 2 points on a sphere) is advantageous not only in terms of path length but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from 11 healthy subjects. The task comprised point-to-point motion between targets at two elevations (30° and 60°). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements compared with the others. The "better" performance reflects the dynamical advantages of following the geodesic path and may also reflect invariant features of control policies used to produce such a surface-constrained motion. PMID:24259548
Route choices of transport bicyclists: a comparison of actually used and shortest routes
2014-01-01
Background Despite evidence that environmental features are related to physical activity, the association between the built environment and bicycling for transportation remains a poorly investigated subject. The aim of the study was to improve our understanding of the environmental determinants of bicycling as a means of transportation in urban European settings by comparing the spatial differences between the routes actually used by bicyclists and the shortest possible routes. Methods In the present study we examined differences in the currently used and the shortest possible bicycling routes, with respect to distance, type of street, and environmental characteristics, in the city of Graz, Austria. The objective measurement methods of a Global Positioning System (GPS) and a Geographic Information System (GIS) were used. Results Bicycling routes actually used were significantly longer than the shortest possible routes. Furthermore, the following attributes were also significantly different between the used route compared to the shortest possible route: Bicyclists often used bicycle lanes and pathways, flat and green areas, and they rarely used main roads and crossings. Conclusion The results of the study support our hypothesis that bicyclists prefer bicycle pathways and lanes instead of the shortest possible routes. This underlines the importance of a well-developed bicycling infrastructure in urban communities. PMID:24597725
Selwyn, Peter A
2015-01-01
Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687
Kim, Jae-Geun; Park, Min-Sik; Hwang, Soo Min; Heo, Yoon-Uk; Liao, Ting; Sun, Ziqi; Park, Jong Hwan; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun; Kim, Jung Ho; Dou, Shi Xue
2014-05-01
One-dimensional nanomaterials have short Li(+) diffusion paths and promising structural stability, which results in a long cycle life during Li(+) insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr(4+) doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr(4+) ions in the Ti(4+) sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li(+) diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr(4+) solubility had a negative effect on the Li(+) extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities. PMID:24700792
Hardwick, R D
1989-01-01
The design and implementation of an Intrusion Path Analysis (IPA) function came about as a result of the upgrades to the security systems at the Savannah River Site (SRS), near Aiken, South Carolina. The stated requirements for IPA were broad, leaving opportunity for creative freedom during design and development. The essential elements were that it: be based on alarm and sensor state data; consider insider as well as outsider threats; be flexible and easily enabled or disabled; not be processor intensive; and provide information to the operator in the event the analysis reveals possible path openings. The final design resulted from many and varied conceptual inputs, and will be implemented in selected test areas at SRS. It fulfils the requirements and: allows selective inclusion of sensors in the analysis; permits the formation of concentric rings of protection around assets; permits the defining of the number of rings which must be breached before issuing an alert; evaluates current sensor states as well as a recent, configurable history of sensor states; considers the sensors' physical location, with respect to the concentric rings; and enables changes for maintenance without software recompilation. 3 figs.
Buldyrev, Sergey
away. For example, in oil recovery the rst passage time from the injection well to a production well:1300:005 2 and dmin 1:13070:0004 3 . There has been an extensive theoretical and computer work done
Almeroth, Kevin C.
between node pairs. After a one- time preprocessing cost, Rigel answers node-distance queries in 10's, Orion, was a centralized system that approximated node distances by mapping nodes to the Euclidean coordinate system [4]. It has several limitations in practice. First, Orion's initial graph embedding process
Elsayed, Khaled Fouad
in MPLS Networks Khaled M. F. Elsayed, Senior Member, IEEE Department of Electronics and Communications for routing of MPLS bandwidth-guaranteed tunnels in general topology networks. The HCASP algorithm tries of bandwidth-guaranteed tunnels in MPLS networks are the minimum interference routing algorithm (MIRA
Kuperstein, Inna; Grieco, Luca; Cohen, David P A; Thieffry, Denis; Zinovyev, Andrei; Barillot, Emmanuel
2015-03-01
Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice. PMID:25688112
Zhang, Hongwei
" with intermediate speed, and "super-containment wave" with the highest speed. The containment wave contains a different propagation speed, i.e., "stabilization wave" with the lowest speed, "containment wave the mistakenly initiated stabilization wave, the super-containment wave contains the mistakenly initiated
All-Pairs Shortest Paths with Real Weights in O(n 3 = log n) Time Timothy M. Chan
Chan, Timothy M.
is attainable: he gave an algorithm with an impressive-looking time bound of O(n 3 (log log n= log n) 1 log log n= log n) and O(n 3 = p log n) respectively. Just last year, several interesting, independent developments have occurred: #12;rst Han [12] announced an improved O(n 3 (log log n= log n) 5=7 )-time
Roughan, Matthew
in providing realistic network scenarios for other researchers. The Rocketfuel project attempted this process to assess the quality of the weight inference. We used this to test Rocketfuel's algo- rithm, and our tests in properties of large networks (or graphs). The Rocketfuel project [1, 2] suggested techniques for "reverse
Research on Taxiway Path Optimization Based on Conflict Detection
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Research on Taxiway Path Optimization Based on Conflict Detection.
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
NASA Astrophysics Data System (ADS)
2009-05-01
CERN Celebration: CERN marks 20 years of the Web Workshops: Physics Teachers' Day aired live on Web Teacher Programme: Physics Teachers at CERN 2009 leaves attendees thirsty for more GIREP: Registration open for GIREP '09 Science and Creationism: Telegraph headline leads readers down wrong path Recruitment: Is recession proving to be good news for science teaching? Forthcoming Events
Nonclassical paths in quantum interference experiments.
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-19
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. PMID:25279612
Nonclassical Paths in Quantum Interference Experiments
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
THE LENGTH OF THE SHORTEST CLOSED GEODESIC ON A 2 -DIMENSIONAL SPHERE
Nabutovsky, Alexander
by C. Croke [2] and Maeda [4]. 1. Introduction The connection between the length of a shortest closed connected manifold are the results of Croke [2] and Maeda [4]. Croke proved that if a Riemannian manifold M; 9d . The last in- equality was later improved by Maeda who demonstrated that l(M) #20; 5d if M is di
On the Evaluation of Shortest Journeys in Dynamic Networks Afonso Ferreira
Bermond, Jean-Claude
On the Evaluation of Shortest Journeys in Dynamic Networks Afonso Ferreira CNRS - MASCOTTE Project Department of Computer Science, University of Sao Paulo, Brazil {gold,jm}@ime.usp.br Abstract The assessment industry and are widely available in our every day life. A promising type of these networks is the Mobile
Finding Shortest Non-Trivial Cycles in Directed Graphs on Surfaces
Colin de Verdière, Éric
Finding Shortest Non-Trivial Cycles in Directed Graphs on Surfaces Sergio Cabello Department of Mathematics, IMFM Department of Mathematics, FMF University of Ljubljana, Slovenia sergio.cabello or hard copies of all or part of this work for personal or classroom use is granted without fee provided
Show me the (shortest) way to go home Foams, soap films and minimization
Cox, Simon
Simon Cox Show me the (shortest) way to go home Foams, soap films and minimization #12;The force two possible (non-trivial) soap film combinations that touch all edges: Wire Frames foams not be straight. Wire Frames foams@aber.ac.uk #12;Soap films solve the Steiner problem: Given n cities on a plain
Finding shortest and closest vectors in a lattice of Voronoi's first kind
Finding shortest and closest vectors in a lattice of Voronoi's first kind Robby McKilliam Alex;Lattices Lattices of Voronoi's first kind Graphs, cuts, and minimum cuts A series of relevant vectors What will show that the problem is relatively easy to solve for lattices of Voronoi's first kind. 8 / 46 #12;The
NASA Astrophysics Data System (ADS)
Wooster, M. J.; Freeborn, P. H.; Archibald, S.; Oppenheimer, C.; Roberts, G. J.; Smith, T. E. L.; Govender, N.; Burton, M.; Palumbo, I.
2011-11-01
Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150-250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 ?mol mol-1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors for CO2 and CH4 agree well with those from prior studies conducted in the same area using e.g. airborne plume sampling. We also concur with past suggestions that emission factors for formaldehyde in this environment appear substantially underestimated in widely used databases, but see no evidence to support suggestions by Sinha et al. (2003) of a major overestimation in the emission factor of ammonia in works such as Andreae and Merlet (2001) and Akagi et al. (2011). We also measure somewhat higher CO and NH3 emission ratios and factors than are usually reported for this environment, which is interpreted to result from the OP-FTIR ground-based technique sampling a greater proportion of smoke from smouldering processes than is generally the case with methods such as airborne sampling. Finally, our results suggest that the contribution of burning animal (elephant) dung can be a significant factor in the emissions characteristics of certain KNP fires, and that the ability of remotely sensed fire temperatures to provide information useful in tailoring modified combustion efficiency (MCE) and emissions factor estimates maybe rather limited, at least until the generally available precision of such temperature estimates can be substantially improved. One limitation of the OP-FTIR method is its ability to sample only near-ground level smoke, which may limit application at more intense fires where the majority of smoke is released into a vertically rising convection column. Nevertheless, even in such cases the method potentially enables a much better assessment of the emissions contribution of the RSC stage than is typically conducted currently.
The ELM Survey: Finding the Shortest Period Binary White Dwarfs
NASA Astrophysics Data System (ADS)
Canton, Paul; Gianninas, Alexandros; Kilic, Mukremin; Brown, Warren; Kenyon, Scott
2014-08-01
A new discovery space for short period binary white dwarfs has opened up with the availability of 14,600 deg^2 of SDSS Data Release 9 photometry. The Extremely Low-Mass (ELM) Survey takes advantage of this photometry and SDSS spectroscopy to identify compact systems with 1 hour or shorter orbital periods. To significantly increase the number of merging white dwarf systems known, we have proposed to obtain follow- up spectroscopic observations of all candidates with g ? 19 mag and photometric colors consistent with extremely low-mass (? 0.3 M_?) white dwarfs. Most of our 2012A Hale and 2012B KP 4m observing runs were lost to weather, yet we managed to identify at least one new short period binary. Our 2013A run on the KP 4m was successful in identifying many new ELM white dwarfs, and in our 2013B follow-up run we observed two new 3 hour binaries while also obtaining further data on a number of other merging systems. Here we propose to continue our program by observing our fall targets on the KP 4m telescope to constrain their binary orbital periods. Our two major science goals are to discover detached gravitational wave sources for fundamental tests of general relativity, and to constrain the formation rate and space density of merging white dwarfs. The latter is important for constraining the contribution of double degenerates to Type Ia and underluminous supernovae.
Information Spread of Emergency Events: Path Searching on Social Networks
Hu, Hongzhi; Wu, Tunan
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323
Pemberton, Christine C; Zhang, Yao; Saita, Kenichiro; Kirrander, Adam; Weber, Peter M
2015-08-20
All stages of the electrocyclic ring-opening of 1,3-cyclohexadiene (CHD) were observed by time-resolved photoionization-photoelectron spectroscopy. Spectra of the 1B state, previously unobserved using time-resolved methods, were obtained upon optical excitation using ultrashort laser pulses at 4.60 or 4.65 eV, followed by ionization with pulses at 3.81, 3.85, and 4.10 eV, revealing a 1B lifetime of 30 fs. In an experiment using 3.07 eV probe photons and a 4.69 eV pump, we observed a time-sequenced progression of Rydberg states that includes s, p, and d states of the series n = 3 to 6. The sequentiality of the Rydberg signals points to an ionization mechanism that captures the molecule on different points along the reaction path in 2A. A dynamic fit of the Rydberg signals, coupled with MS-CASPT2 calculations, reveals that as the wavepacket moves down the potential energy surface it acquires kinetic energy at a rate of 28 eV/ps before reaching the conical intersection to the 1A ground state. During the reaction, the terminal carbon atoms separate at a speed of 16 Å/ps. A deconvolution of the Rydberg signals from a broad feature assigned to structurally disperse 1,3,5-hexatriene (HT) shows the formation of the open-chain hexatriene structure with an onset 142 fs after the initial absorption of a pump photon. The experimental observations are discussed in the context of recent ultrafast X-ray scattering experiments and theoretical quantum dynamics simulations. PMID:26192201
Walden's Paths - Ensemble Edition
NSDL National Science Digital Library
2011-01-04
Walden?s Paths enables users of digital document collections (e.g. the Web) to exploit these documents by reusing them for previously unintended audiences in an academic setting. Authors of paths (usually educators) overlay a linear, directed meta-structure over the Web documents and recontextualize these by adding explanatory text to achieve their curricular goals. Paths do not modifythe structure or content of the Web resources that they include. The creation of a path over pre-organized content (e.g. books, Web pages) to reorganize and associate related information serves to facilitate easy retrieval and communication. Walden?s Paths displays the information that the path points to in conjunction with the textual annotations added by the author of the path.
Path entanglement of continuous-variable quantum microwaves.
Menzel, E P; Di Candia, R; Deppe, F; Eder, P; Zhong, L; Ihmig, M; Haeberlein, M; Baust, A; Hoffmann, E; Ballester, D; Inomata, K; Yamamoto, T; Nakamura, Y; Solano, E; Marx, A; Gross, R
2012-12-21
Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies. PMID:23368439
Path Planning for Planetary Exploration Ioannis Rekleitis
Rekleitis, Ioannis
Exploration Rovers (MERs) Spirit and Opportunity [16] has open the door for future missions to Mars are capable of planning local paths and avoiding obstacles. Future missions such as the "Mars Sci- ence an experiment. All experiments were performed at the Mars Emulation Terrain located at the CSA's facilities
On the Optimal Path Length for Tor Kevin Bauer1
Borisov, Nikita
On the Optimal Path Length for Tor Kevin Bauer1 , Joshua Juen2 , Nikita Borisov2 , Dirk Grunwald1 that optimally balances security and performance is an open problem. Tor's design decision to build paths frequently involve achieving a correct balance between security and performance. For example, Tor does
Topologies, convergence and uniformities in general hybrid path spaces
Davoren, Jen
to the modified compact-open topology considered by Collins (2005,2006). The uniform topology is metrizable on spaces of hybrid paths (of both finite and infinite length), where the topology derives from a 3 and difference inclusions [1, 2, 3, 4], the solution paths of a hybrid system consist of a sequence of segments
Research Article Characterization of Path-Loss Disparity in Virtual
Ingram, Mary Ann
caused by the path-loss disparity can be characterized equivalently by log-normal distribution. We useResearch Article Characterization of Path-Loss Disparity in Virtual Multiple: Theodoros Tsiftsis Copyright © 2014 H. Jung and M. A. Weitnauer. This is an open access article distributed
Chudnovsky, Maria
the four-edge-path P4 and the cycle C5 of length five as the remaining open cases for graphs on at most 5 in the complement Maria Chudnovsky Department of Industrial Engineering and Operations Research Columbia University vertices that does not contain a four-edge-path or the complement of a five-edge-path as an induced
Christian Fleischhack
2015-03-21
The symmetries of paths in a manifold $M$ are classified with respect to a given pointwise proper action of a Lie group $G$ on $M$. Here, paths are embeddings of a compact interval into $M$. There are at least two types of symmetries: Firstly, paths that are parts of an integral curve of a fundamental vector field on $M$ (continuous symmetry). Secondly, paths that can be decomposed into finitely many pieces, each of which is the translate of some free segment, where possibly the translate is cut at the two ends of the paths (discrete symmetry). Here, a free segment is a path $e$ whose $G$-translates either equal $e$ or intersect it in at most finitely many points. Note that all the statements above are understood up to the parametrization of the paths. We will show, for the category of analytic manifolds, that each path is of exactly one of either types. For the proof, we use that the overlap of a path $\\gamma$ with one of its translates is encoded uniquely in a mapping between subsets of $\\dom\\gamma$. Running over all translates, these mappings form the so-called reparametrization set to $\\gamma$. It will turn out that, up to conjugation with a diffeomorphism, any such set is given by the action of a Lie subgroup of $O(2)$ on $S^1$, restricted in domain and range to some compact interval on $S^1$. Now, the infinite subgroups correspond to the continuous symmetry above, finite ones to the discrete symmetry.
Path Integrals and Hamiltonians
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
NASA Astrophysics Data System (ADS)
Gelfand, I.; Cui, M.; Tao, L.; Sun, K.; Tang, J.; Zondlo, M. A.; Robertson, G. P.
2012-12-01
Nitrous oxide (N2O) is an important greenhouse gas with an atmospheric lifetime of ~ 120 years and a global warming potential ~300 times that of CO2. Atmospheric N2O concentrations have increased from ~270 ppbv during pre-industrial times to ~330 ppbv today. Anthropic emissions are a major source of atmospheric N2O and about half of global anthropic emissions are from the agricultural sector. N2Oemissions from soils exhibit high spatial and temporal variability. Estimation of N2O emissions from agricultural soils is particularly challenging because N2O fluxes are affected by fertilizer type and application rates, land-use history and management, as well as soil biological activity. We studied ecosystem level N2O emissions from agricultural lands using a combination of static chamber methods and continuous N2O exchange measured by a quantum cascade laser-based, open-path analyzer coupled with an eddy-covariance system. We also compared N2O emissions between different static chamber methods, using both laboratory-based gas chromatography (GC) and an in situ quantum cascade (QC) laser for N2O analyses. Finally, we compared emissions estimated by the two static chamber methods to those estimated by eddy-covariance. We examined pre- and post- fertilization N2O fluxes from soils in two no-till continuous corn fields with distinct land-use histories: one field converted from permanent grassland (CRP-C) and the other from conventional corn-soybean rotation (AGR-C). Both fields were fertilized with ~160 kg urea-N ha-1. We compared N2O emissions from these fields to those from an unmanaged grassland (REF). In addition, we examined the potential effect of post-fertilization precipitation on N2O emissions by applying 50 mm of artificial rainfall to the static chambers at all three locations. Measurements of N2O emissions using both GC and QC laser methods with static chambers were in good agreement (R2 = 0.96). Even though average soil N2O fluxes before fertilization were low, they still exhibited high temporal and spatial variability. Fluxes from the CRP-C site were higher than fluxes from the AGR-C site, and fluxes from the REF site were lowest, ranging from 2 - 22, 1 - 3, and ~1 g N2O-N ha-1 day-1, respectively. Post-fertilization fluxes were minor as well due to very dry soil conditions in 2012. However, after applying artificial rain, soil N2O fluxes were distinctly higher in all systems, increasing to 106 - 208 g N2O-N ha-1 day-1 at the CRP-C site, to 36 g N2O-N ha-1 day-1 at Ag-C, and to 5 g N2O-N ha-1 day-1 at the REF site. Fluxes decreased to pre-rain levels 1-2 days after wetting. This single rain event resulted in total emissions of 5, 43, and 251 g N2O-N ha-1 from REF, Ag-C, and CRP-C systems, respectively. A comparison between static chambers and the open-path method at CRP-C system revealed similar diurnal trends in N2O fluxes and similar cumulative N2O-N emissions. Overall, we found a strong relationship between land-use history and soil N2O emissions: soils with higher organic carbon content (CRP-C) exhibited greater fluxes. In addition, we found that N2O emissions increased significantly after a post-fertilization rain event, accounting for a significant proportion of typical total annual emission from these no-till corn fields. We also present the first measurements of ecosystem level N2O fluxes using an open-path N2O analyzer and show the potential of this novel system to study ecosystem level N2O fluxes.
From Path Graphs to Directed Path Graphs Steven Chaplick1
Felsner, Stefan
From Path Graphs to Directed Path Graphs Steven Chaplick1 , Marisa Gutierrez2 , Benjamin LÂ´ev^eque3 time algorithm to greedily orient the edges of a path graph model to obtain a directed path graph model. This algorithm has several interesting conse- quences concerning the relationship between path graphs
NSDL National Science Digital Library
Australian National University
This site features an interactive applet that models the Sun's path from a geocentric view. It calculates and visualizes the position of the Sun based on latitude and time, and allows students to simulate the Sun's position and path for an hour, a day, a month or a year.
Calix[4]pyrroles with Shortest Possible Strap: Exclusively Selective toward Fluoride Ion.
Samanta, Ritwik; Kumar, B Sathish; Panda, Pradeepta K
2015-09-01
Four new calix[4]pyrroles with the shortest possible strap so far through ortho-linking of the aromatic unit have been synthesized, including a naphthalene-derived fluorescent receptor. They show exclusive selectivity toward the fluoride ion as confirmed by (1)H NMR, isothermal titration calorimetry, and fluorescence spectroscopic study. Anion affinity could also be modulated further via functionalization at the strap. Computational analysis displays calix[4]pyrroles binding to fluoride ion in a very unusual 1,3-alternate conformation where the anion resides on the opposite side of the strap. PMID:26313641
Breast Contour Detection with Stable Paths
NASA Astrophysics Data System (ADS)
Cardoso, Jaime S.; Sousa, Ricardo; Teixeira, Luís F.; Cardoso, M. J.
Breast cancer conservative treatment (BCCT), due to its proven oncological safety, is considered, when feasible, the gold standard of breast cancer treatment. However, aesthetic results are heterogeneous and difficult to evaluate in a standardized way, due to the lack of reproducibility of the subjective methods usually applied. The objective assessment methods, considered in the past as being less capable of evaluating all aspects of BCCT, are nowadays being preferred to overcome the drawbacks of the subjective evaluation. A computer-aided medical system was recently developed to objectively and automatically evaluate the aesthetic result of BCCT. In this system, the detection of the breast contour on the patient's digital photograph is a necessary step to extract the features subsequently used in the evaluation process. In this paper an algorithm based on the shortest path on a graph is proposed to detect automatically the breast contour. The proposed method extends an existing semi-automatic algorithm for the same purpose. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.
GED Revision Opens Path to Higher Ed.
ERIC Educational Resources Information Center
Gewertz, Catherine
2011-01-01
The General Educational Development program, or GED, is undergoing the biggest revamping in its 69-year history, driven by mounting recognition that young adults' future success depends on getting more than a high-school-level education. Potent forces have converged to stoke the GED's redesign. A labor market that increasingly seeks some…
OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER
The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...
Advisory Algorithm for Scheduling Open Sectors, Operating Positions, and Workstations
NASA Technical Reports Server (NTRS)
Bloem, Michael; Drew, Michael; Lai, Chok Fung; Bilimoria, Karl D.
2012-01-01
Air traffic controller supervisors configure available sector, operating position, and work-station resources to safely and efficiently control air traffic in a region of airspace. In this paper, an algorithm for assisting supervisors with this task is described and demonstrated on two sample problem instances. The algorithm produces configuration schedule advisories that minimize a cost. The cost is a weighted sum of two competing costs: one penalizing mismatches between configurations and predicted air traffic demand and another penalizing the effort associated with changing configurations. The problem considered by the algorithm is a shortest path problem that is solved with a dynamic programming value iteration algorithm. The cost function contains numerous parameters. Default values for most of these are suggested based on descriptions of air traffic control procedures and subject-matter expert feedback. The parameter determining the relative importance of the two competing costs is tuned by comparing historical configurations with corresponding algorithm advisories. Two sample problem instances for which appropriate configuration advisories are obvious were designed to illustrate characteristics of the algorithm. Results demonstrate how the algorithm suggests advisories that appropriately utilize changes in airspace configurations and changes in the number of operating positions allocated to each open sector. The results also demonstrate how the advisories suggest appropriate times for configuration changes.
Spin up in RX J0806+15 - the shortest period binary
Hakala, P; Wu, K; Hjalmarsdotter, L; Järvinen, S; Järvinen, A; Cropper, M; Hakala, Pasi; Ramsay, Gavin; Wu, Kinwah; Hjalmarsdotter, Linnea; Jarvinen, Silva; Jarvinen, Arto; Cropper, Mark
2003-01-01
RX J0806+15 has recently been identified as the binary system with the shortest known orbital period. We present a series of observations of RX J0806+15 including new optical observations taken one month apart. Using these observations and archival data we find that the period of this system is decreasing over time. Our measurements imply f_dot = 6.11x10^-16 Hz/s, which is in agreement with a rate expected from the gravitational radiation for two white dwarfs orbiting at a given period. However, a smaller value of f_dot = 3.14x10^-16 Hz/s cannot be ruled out. Our result supports the idea that the 321.5 s period is the orbital period and that the system is the shortest period binary known so far and that it is one of the strongest sources of constant gravitational radiation in the sky. Furthermore, the decrease of the period strongly favours the unipolar inductor (or electric star) model rather than the accretion models.
Spin up in RX J0806+15 - the shortest period binary
Pasi Hakala; Gavin Ramsay; Kinwah Wu; Linnea Hjalmarsdotter; Silva Jarvinen; Arto Jarvinen; Mark Cropper
2003-05-15
RX J0806+15 has recently been identified as the binary system with the shortest known orbital period. We present a series of observations of RX J0806+15 including new optical observations taken one month apart. Using these observations and archival data we find that the period of this system is decreasing over time. Our measurements imply f_dot = 6.11x10^-16 Hz/s, which is in agreement with a rate expected from the gravitational radiation for two white dwarfs orbiting at a given period. However, a smaller value of f_dot = 3.14x10^-16 Hz/s cannot be ruled out. Our result supports the idea that the 321.5 s period is the orbital period and that the system is the shortest period binary known so far and that it is one of the strongest sources of constant gravitational radiation in the sky. Furthermore, the decrease of the period strongly favours the unipolar inductor (or electric star) model rather than the accretion models.
Rotation Periods of Late-Type Stars in the Young Open Cluster IC 2602
Sydney A. Barnes; Sabatino Sofia; Charles F. Prosser; John R. Stauffer
1999-01-01
We present the results of a monitoring campaign aimed at deriving rotation periods for a representative sample of stars in the young (30 Myr) open cluster IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The periods derived range from 0.2 days (one of the shortest known rotation periods of any single open cluster star) to about
ERIC Educational Resources Information Center
Stegemoller, William; Stegemoller, Rebecca
2004-01-01
The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)
Tortuous path chemical preconcentrator
Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
NSDL National Science Digital Library
In this lesson, younger students will be introduced to the various orbital paths that are used for satellites. Using a globe and a satellite model or a large picture of Earth, the teacher will introduce three types of orbital paths (polar, elliptical, and geosynchronous). The students should be able to define 'satellite', define the three types of orbits, describe how satellites orbit the Earth, and understand how they are slowed down by drag from the atmosphere.
A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance
NASA Astrophysics Data System (ADS)
Dash, S.; Mishra, G. P.
2015-09-01
A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.
Monochromatic paths and path squares in infinite graphs
Mildenberger, Heike
Monochromatic paths and path squares in infinite graphs Lajos Soukup AlfrÃ©d RÃ©nyi Institute disjoint monochromatic paths with different colours which cover all vertices of K. #12;The beginning complete graph K is coloured with r colors. Then there are r disjoint monochromatic paths with different
Atmospheric Science Data Center
2014-12-08
... is natural to name each of these different trajectories or paths. For MISR, the path is the generic name (actually the numeric label) of ... that are close to each other in longitude will be covered by paths with similar numbers. The path number is also included in the file name ...
X-ray counterpart of the shortest activity cycle found to date
NASA Astrophysics Data System (ADS)
Sanz-Forcada, Jorge
2011-10-01
Activity cycles are commonly found among late type stars through the chromospheric Ca II emission. Their coronal counterpart, remains elusive in most cases, despite of the clear cycle observed in the solar corona, spanning as much as 1.7 dex in Lx. The recent discovery of a Ca II cycle in HR 810 of just 1.6 yr, the shortest to date, offers a unique opportunity to test the existence of an X-ray counterpart of the cycle within two XMM-Newton observing periods. The star offers two more interesting properties: it represents a young (500 Myr) solar analog, and a 1.9 Mj planet orbits the star at 0.9 a.u. We started our search for the cycle of HR 810 in AO 10 and we intend to make 5 new snapshots during XMM-Newton AO 11, for a total of 25 ks, to complete the coverage of the cycle.
A load-balance path selection algorithm in automatically swiched optical network (ASON)
NASA Astrophysics Data System (ADS)
Gao, Fei; Lu, Yueming; Ji, Yuefeng
2007-11-01
In this paper, a novel load-balance algorithm is proposed to provide an approach to optimized path selection in automatically swiched optical network (ASON). By using this algorithm, improved survivability and low congestion can be achieved. The static nature of current routing algorithms, such as OSPF or IS-IS, has made the situation worse since the traffic is concentrated on the "least-cost" paths which causes the congestion for some links while leaving other links lightly loaded. So, the key is to select suitable paths to balance the network load to optimize network resource utilization and traffic performance. We present a method to provide the capability to control traffic engineering so that the carriers can define their own strategies for optimizations and apply them to path selection for dynamic load balancing. With considering load distribution and topology information, capacity utilization factor is introduced into Dijkstra (shortest path selection) for path selection to achieve balancing traffic over network. Routing simulations have been done over mesh networks to compare the two different algorithms. With the simulation results, a conclusion can be made on the performance of different algorithms.
arXiv:1005.1035v1[math.PR]6May2010 DIFFUSION LIMITS FOR SHORTEST REMAINING
Puha, Amber
, that is, the job with the shortest remaining processing time. More Research supported in part by NSF Remaining Processing Time (SRPT) policy, preemptive priority is given to the job that can be completed first.i.d. service times, and let I(t) index those jobs that are in the queue at time t. For i I(t), let wi
Min-cuts and Shortest Cycles in Planar Graphs in O(n log log n) Time
\\L\\kacki, Jakub
2011-01-01
We present a deterministic O(n log log n) time algorithm for finding shortest cycles and minimum cuts in planar graphs. The algorithm improves the previously known fastest algorithm by Italiano et al. in STOC'11 by a factor of log n. This speedup is obtained through the use of dense distance graphs combined with a divide-and-conquer approach.
Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang
2015-09-15
Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930
Sullivan, Blair D; Seymour, Dr. Paul Douglas
2010-01-01
Say a digraph is k-free if it has no directed cycles of length at most k, for k {element_of} Z{sup +}. Thomasse conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most (n-1)n(n+1)/15. We present an unpublished result of Bondy proving there are at most 2n{sup 3}/25 such paths, and prove that for the class of circular interval digraphs, an upper bound of n{sup 3}/16 holds. We also study the problem of bounding the number of (non-induced) 4-vertex paths in 3-free digraphs. We show an upper bound of 4n{sup 4}/75 using Bondy's result for Thomasse's conjecture.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…
DNA Computing Hamiltonian path
Hagiya, Masami
2014 DNA DNA #12;DNA Computing · Feynman · Adleman · DNASIMD · ... · · · · · DNADNA #12;DNA · DNA · · · · DNA · · #12;2000 2005 2010 1995 Hamiltonian path DNA tweezers DNA tile DNA origami DNA box Sierpinski DNA tile self assembly DNA logic gates Whiplash PCR DNA automaton DNA spider MAYA
ERIC Educational Resources Information Center
Coleman, Toni
2012-01-01
A growing number of institutions are being more deliberate about bringing in fundraisers who fit the culture of the development department and about assessing skills and providing training that fill specific needs. Development shops are paying more attention to cultivating their staffs, staying attuned to employees' needs and creating career paths…
NSDL National Science Digital Library
CareerPath offers a searchable index of employment ads from six major newspapers: The Boston Globe, Chicago Tribune, Los Angeles Times, The New York Times, The San Jose Mercury News, and The Washington Post. The total ads available on October 21 was 21,442. The site is attractive and easy to use.
ERIC Educational Resources Information Center
Grimm, Karen
1999-01-01
Describes "Off the Beaten Path", a program that takes at-risk students out of the traditional classroom and puts them into a camping atmosphere in order to increase academic achievement, improve self-esteem, and promote better social skills. (WRM)
ERIC Educational Resources Information Center
Rodia, Becky
2004-01-01
This article profiles Diane Stanley, an author and illustrator of children's books. Although she was studying to be a medical illustrator in graduate school, Stanley's path changed when she got married and had children. As she was raising her children, she became increasingly enamored of the colorful children's books she would check out of the…
NASA Technical Reports Server (NTRS)
Bill, R. C.; Johnson, R. D. (inventors)
1979-01-01
A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.
2013-03-05
where j a differential 1-form on some vector space V and t/Xt is a path in V not necessarily of .... Let C be the algebra of bounded continuous functions from R to R and ... Let OC g be the subspace of elements XAOC such that. jjXjjg :¼ sup t;
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm. PMID:26367673
A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2014-12-01
Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.
Modeling DNA Dynamics by Path Integrals
NASA Astrophysics Data System (ADS)
Zoli, Marco
2013-02-01
Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (bps). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The bps displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal geometry peculiar of B-DNA. I discuss the interplay between twisting of the double helix and anharmonic stacking along the molecule backbone suggesting an interesting relation between intrinsic nonlinear character of the microscopic interactions and molecular topology.
Tunable path centrality: Quantifying the importance of paths in networks
NASA Astrophysics Data System (ADS)
Pu, Cun-Lai; Cui, Wei; Yang, Jian
2014-07-01
Centrality is a fundamental measure in network analysis. Specifically, centrality of a path describes the importance of the path with respect to the remaining part of the network. In this paper, we propose a tunable path centrality (TPC) measure, which quantifies the centrality of a path by integrating the path degree (PD) (number of neighbors of the path) and the path bridge (PB) (number of bridges in the path) with a control parameter ?. Considering the complexity of large-scale and dynamical topologies of many real-world networks, both PD and PB are computed with only the local topological structure of a path. We demonstrate the distribution of the three path centralities (TPC, PD and PB) in computer-generated networks and real-world networks. Furthermore, we apply the three path centralities to the network fragility problem, and exploit the distribution of the optimal control parameter ? through simulation and analysis. Finally, the simulation results show that generally TPC is more efficient than PD and PB in the network fragility problem. These path centralities are also applicable in many other network problems including spread, control, prediction and so on.
NASA Astrophysics Data System (ADS)
Peng, Jinmin; Yan, He; Li, Taifu
2005-12-01
The focus of this study is path selection for manufacturing processing, such as finding the shortest processing path, in an application of such a printed circuit board in the electronic industry. This paper models this kind of processing path optimization problem by application of a GA algorithm. First, the related problem of math modeling is discussed, such as coding methods, selection of fitness functions, and choice of genetic operators such as a selection operator, crossover operator, reverse operator, mutation operator and related parameters. All of these are used to build a solving model. Then related factor of genetic optimization algorithm such as initial generation, fitness evaluation, computing steps and so on was designed. The results of simulation and comparisons with practical application show that GA is feasible and valid.
Broadband Phase Spectroscopy over Turbulent Air Paths.
Giorgetta, Fabrizio R; Rieker, Gregory B; Baumann, Esther; Swann, William C; Sinclair, Laura C; Kofler, Jon; Coddington, Ian; Newbury, Nathan R
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70?000 comb teeth spanning 233??cm^{-1} across hundreds of near-infrared rovibrational resonances of CO_{2}, CH_{4}, and H_{2}O with submilliradian uncertainty, corresponding to a 10^{-13} refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO_{2}. While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing. PMID:26382677
Broadband Phase Spectroscopy over Turbulent Air Paths
NASA Astrophysics Data System (ADS)
Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.
Geoffrey F. Chew
2008-02-21
Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.
Louis Fishman
2006-01-01
The multidimensional, scalar Helmholtz equation of mathematical physics is addressed. Rather than pursuing traditional approaches for the representation and computation of the fundamental solution, path integral representations, originating in quantum physics, are considered. Constructions focusing on the global, two-way nature of the Helmholtz equation, such as the Feynman\\/Fradkin, Feynman\\/Garrod, and Feynman\\/DeWitt-Morette representations, are reviewed, in addition to the complementary phase
Studness, C.M.
1995-05-01
The financial community`s focus on utility competition has been riveted on the proceedings now in progress at state regulatory commissions. The fear that something immediately damaging will come out of these proceedings seems to have diminished in recent months, and the stock market has reacted favorably. However, regulatory developments are only one of four paths leading to competition; the others are the marketplace, the legislatures, and the courts. Each could play a critical role in the emergence of competition.
MINIMUM WEIGHT PATHS TIMEDEPENDENT NETWORKS
Orda, Ariel
MINIMUM WEIGHT PATHS in TIMEDEPENDENT NETWORKS Ariel Orda Raphael Rom Department of Electrical) ABSTRACT We investigate the minimum weight path problem in networks whose link weights and link delays are both functions of time. We demonstrate that in general there exist cases in which no finite path
PATHS groundwater hydrologic model
Nelson, R.W.; Schur, J.A.
1980-04-01
A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.
Chakraborty, Swati
2015-04-27
the path generation with the SAT solvers. The techniques presented are circuit simplification, Dynamic SAT Solving (DSS), Circuit Observability Don’t Cares (Cir- ODC) and Approximate Observability Don’t Cares (AODC). In DSS, the structural information.... But generation of compatible ODCs is complex. An efficient algorithm to find approximate ODCs is presented in [26]. 1.5.1 MiniSat MiniSat is a minimalistic, open-source SAT solver [27]. It has been used in CodGen because of its modifiability, efficiency...
PathVisio 3: an extendable pathway analysis toolbox.
Kutmon, Martina; van Iersel, Martijn P; Bohler, Anwesha; Kelder, Thomas; Nunes, Nuno; Pico, Alexander R; Evelo, Chris T
2015-02-01
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel. PMID:25706687
PathVisio 3: An Extendable Pathway Analysis Toolbox
Kutmon, Martina; van Iersel, Martijn P.; Bohler, Anwesha; Kelder, Thomas; Nunes, Nuno; Pico, Alexander R.; Evelo, Chris T.
2015-01-01
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel. PMID:25706687
Time-Optimal Control of Robotic Manipulators Along Specified Paths
J. E. Bobrow; S. Dubowsky; J. S. Gibson
1985-01-01
The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles
Tracking the Career Paths of Marketing and Business Education Graduates
ERIC Educational Resources Information Center
Mooney, Carol; Haltinner, Urs; Stanislawski, Debbie
2006-01-01
Marketing and business education faculty at the University of Wisconsin-Stout (UW-Stout) recently conducted a longitudinal study, spanning the entire 35 years of the program's existence, describing and analyzing its graduates' career paths. Data was collected through a questionnaire that utilized a combination of Likert-type responses, open-ended…
New Paths in Early Literacy Teaching and Learning.
ERIC Educational Resources Information Center
Peterson, Shelley
2003-01-01
Offers ideas for opening up new paths in literacy teaching in early childhood settings. Focuses on the role of phonics in everyday classroom instruction, working with dyslexic children, home reading programs, special concerns about boys' literacy, the impact of inequities in social status in the classroom on children's literacy opportunities, and…
NASA Technical Reports Server (NTRS)
Prabhakaran, Nagarajan; Rishe, Naphtali; Athauda, Rukshan
1997-01-01
The South East coastal region experiences hurricane threat for almost six months in every year. To improve the accuracy of hurricane forecasts, meteorologists would need the storm paths of both the present and the past. A hurricane path can be established if we could identify the correct position of the storm at different times right from its birth to the end. We propose a method based on both spatial and temporal image correlations to locate the position of a storm from satellite images. During the hurricane season, the satellite images of the Atlantic ocean near the equator are examined for the hurricane presence. This is accomplished in two steps. In the first step, only segments with more than a particular value of cloud cover are selected for analysis. Next, we apply image processing algorithms to test the presence of a hurricane eye in the segment. If the eye is found, the coordinate of the eye is recorded along with the time stamp of the segment. If the eye is not found, we examine adjacent segments for the existence of hurricane eye. It is probable that more than one hurricane eye could be found from different segments of the same period. Hence, the above process is repeated till the entire potential area for hurricane birth is exhausted. The subsequent/previous position of each hurricane eye will be searched in the appropriate adjacent segments of the next/previous period to mark the hurricane path. The temporal coherence and spatial coherence of the images are taken into account by our scheme in determining the segments and the associated periods required for analysis.
NASA Technical Reports Server (NTRS)
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
Bleakley, Hoyt; Lin, Jeffrey
2012-05-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
NSDL National Science Digital Library
The well known Berkeley Digital Library SunSite, discussed in the February 9, 1996 Scout Report, has recently added a new resource to its collection. The PATH database, maintained by the Harmer E. Davis Transportation Library at the University of California, is "the world's largest bibliographical database pertaining to Intelligent Transportation Systems (ITS)." It is searchable and browsable (Browse by ITS Thesaurus Term), and contains over 9,000 records and abstracts "including monographs, journal articles, conference papers, technical reports, theses and selected media coverage," dating back to the 1940s.
Bleakley, Hoyt; Lin, Jeffrey
2012-01-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
AH Cam: A metal-rich RR Lyrae star with the shortest known Blazhko period
NASA Technical Reports Server (NTRS)
Smith, Horace A.; Matthews, Jaymie M.; Lee, Kevin M.; Williams, Jeffrey; Silbermann, N. A.; Bolte, Michael
1994-01-01
Analysis of 746 new V-band observations of the RR Lyrae star AH Cam obtained during 1989 - 1992 clearly show that its light curve cannot be described by a single period. In fact, at first glance, the Fourier spectrum of the photometry resembles that of a double-mode pulsator, with peaks at a fundamental period of 0.3686 d and an apparent secondary period of 0.2628 d. Nevertheless, the dual-mode solution is a poor fit to the data. Rather, we believe that AH Cam is a single-mode RR Lyrae star undergoing the Blazhko effect: periodic modulation of the amplitude and shape of its light curve. What was originally taken to be the period of the second mode is instead the 1-cycle/d alias of a modulation sidelobe in the Fourier spectrum. The data are well described by a modulation period of just under 11 d, which is the shortest Blazhko period reported to date in the literature and confirms the earlier suggestion by Goranskii. A low-resolution spectrum of AH Cam indicates that it is relatively metal rich, with delta-S less than or = 2. Its high metallicity and short modulation period may provide a critical test of at least one theory for the Blazhko effect. Moskalik's internal resonance model makes specific predictions of the growth rate of the fundamental model vs fundamental period. AH Cam falls outside the regime of other known Blazhko variables and resonance model predictions, but these are appropriate for metal-poor RR Lyrae stars. If the theory matches the behavior of AH Cam for a metal-rich stellar model, this would bolster the resonance hypothesis.
Shortest Loops are Pacemakers in Random Networks of Electrically Coupled Axons
Vladimirov, Nikita; Tu, Yuhai; Traub, Roger D.
2012-01-01
High-frequency oscillations (HFOs) are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bi-directional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100–200?Hz) are predicted to be caused by spontaneously spiking axons in a network with strong (high conductance) gap junctions. Type II oscillations (200–300?Hz) require no spontaneous spiking and relatively weak (low-conductance) gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network’s loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate. The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples. PMID:22514532
Iwamoto, Takahiro; Slanina, Zdenek; Mizorogi, Naomi; Guo, Jingdong; Akasaka, Takeshi; Nagase, Shigeru; Takaya, Hikaru; Yasuda, Nobuhiro; Kato, Tatsuhisa; Yamago, Shigeru
2014-10-27
[11]Cycloparaphenylene ([11]CPP) selectively encapsulates La@C82 to form the shortest possible metallofullerene-carbon nanotube (CNT) peapod, La@C82 ?[11]CPP, in solution and in the solid state. Complexation in solution was affected by the polarity of the solvent and was 16?times stronger in the polar solvent nitrobenzene than in the nonpolar solvent 1,2-dichlorobenzene. Electrochemical analysis revealed that the redox potentials of La@C82 were negatively shifted upon complexation from free La@C82 . Furthermore, the shifts in the redox potentials increased with polarity of the solvent. These results are consistent with formation of a polar complex, (La@C82 )(?-) ?[11]CPP(?+) , by partial electron transfer from [11]CPP to La@C82 . This is the first observation of such an electronic interaction between a fullerene pea and CPP pod. Theoretical calculations also supported partial charge transfer (0.07) from [11]CPP to La@C82 . The structure of the complex was unambiguously determined by X-ray crystallographic analysis, which showed the La atom inside the C82 near the periphery of the [11]CPP. The dipole moment of La@C82 was projected toward the CPP pea, nearly perpendicular to the CPP axis. The position of the La atom and the direction of the dipole moment in La@C82 ?[11]CPP were significantly different from those observed in La@C82 ?CNT, thus indicating a difference in orientation of the fullerene peas between fullerene-CPP and fullerene-CNT peapods. These results highlight the importance of pea-pea interactions in determining the orientation of the metallofullerene in metallofullerene-CNT peapods. PMID:25224281
Counting Depth Zero Patterns in Ballot Paths
Niederhausen, Heinrich
Counting Depth Zero Patterns in Ballot Paths Heinrich Niederhausen and Shaun Sullivan Florida it to the enu- meration of certain lattice paths. The lattice paths we consider are ballot paths. A ballot path is a path that stays weakly above the diagonal y = x, starts at the origin, and takes steps from the set f
Daniel, Rosenfeld
Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey closed to open cells. It was found that the negative cloud radiative effect (CRE) over the closed cells
Felner, Ariel
2004-01-01
tile puzzle and Rubik's Cube (Korf, 1999) are examples of the c fl2004 AI Access Foundation. All rights unknown territory. We introduce the PhysicalA* algorithm (PHA*) for solving this problem. PHA* expands. However, due to the physical nature of the problem, the complexity of the algorithm is measured
Zhu, Xiaoyan
2007-04-25
is acyclic, only one resource constraint is involved, and all resource requirements and costs are positive (Dumitrescu and Boland (2003)). Hassin (1992) showed that SRCSP is polynomial solvable if arc costs or arc resource requirements are bounded. Dror... (1988a) presented a primal-dual reoptimization approach for SPPTW and Desrochers (1988) generalized it to solve SPPRW. Dumitrescu and Boland (2003) investigated variants of the label-setting algorithm of Desrochers and Soumis (1988b) for both SRCSP...
Robust optimization of OSPF\\/ISIS weights
Bernard Fortz; Mikkel Thorup
2003-01-01
In this paper, we adapt the heuristic of Fortz and Thorup for optimizing the weights of Shortest Path First protocols such as Open Shortest Path First (OSPF) or Intermediate System-Intermediate System (IS-IS), in order to take into account failure scenarios. More precisely, we want to find a set of weights that is robust to all single link failures. A direct
PathVisio-Faceted Search: an exploration tool for multi-dimensional navigation of large pathways
Fried, Jake Y.; Luna, Augustin
2013-01-01
Purpose: The PathVisio-Faceted Search plugin helps users explore and understand complex pathways by overlaying experimental data and data from webservices, such as Ensembl BioMart, onto diagrams drawn using formalized notations in PathVisio. The plugin then provides a filtering mechanism, known as a faceted search, to find and highlight diagram nodes (e.g. genes and proteins) of interest based on imported data. The tool additionally provides a flexible scripting mechanism to handle complex queries. Availability: The PathVisio-Faceted Search plugin is compatible with PathVisio 3.0 and above. PathVisio is compatible with Windows, Mac OS X and Linux. The plugin, documentation, example diagrams and Groovy scripts are available at http://PathVisio.org/wiki/PathVisioFacetedSearchHelp. The plugin is free, open-source and licensed by the Apache 2.0 License. Contact: augustin@mail.nih.gov or jakeyfried@gmail.com PMID:23547033
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on the image for movie of Phoenix's Path to Mars
This artist's animation shows the route NASA's Phoenix Mars Lander took to get from Earth to Mars. The spacecraft's path is shown in yellow, and the orbits of Mars and Earth are shown in red and blue, respectively.
Phoenix was launched from Cape Canaveral Air Force Station, Fla., on Aug. 4, 2007, when Earth and Mars were 195 million kilometers (121 million miles) apart. It will have traveled a total of 679 million kilometers (422 million miles) when it is scheduled to reach Mars on May 25, 2008. At that time, Earth and Mars will be farther apart, at 276 million kilometers (171 million miles).
The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver
Path Models of Vocal Emotion Communication
Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R.
2015-01-01
We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076
Path integrals on curved manifolds
NASA Astrophysics Data System (ADS)
Grosche, C.; Steiner, F.
1987-12-01
A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ?V˜ h 2 from the classical Lagrangian ?, i.e. the correct effective Lagrangian to be used in the path integral is ?eff = ?- ?V. A general prescription for calculating the quantum correction ? V is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1, the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential.
Iterative path attacks on networks
NASA Astrophysics Data System (ADS)
Pu, Cunlai; Li, Siyuan; Michaelson, Andrew; Yang, Jian
2015-08-01
We investigate a path-attack process on model networks and real-world networks. Based on the local topological structure of a path, we propose an attack centrality measure with a control parameter ? for quantifying the influence of a path. In the path-attack process, we iteratively remove the path with the largest attack centrality from a network. Results demonstrate that, for a specific network, there is an optimal ? which results in maximum attack efficiency. The denser and more homogeneous the networks, the more robust the networks are against iterative path attacks. Our work helps to explain the vulnerability of networks and provides some clues about the protection and design of real complex systems.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Handbook of Feynman Path Integrals
NASA Astrophysics Data System (ADS)
Grosche, Christian, Steiner, Frank
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
Path Integration in Conical Space
Akira Inomata; Georg Junker
2011-11-24
Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schr\\"odinger equation modified with the Gaussian and the mean curvature.
MultiPath TCP -Architecture MultiPath TCP -Receive-Buffer
Bonaventure, Olivier
MultiPath TCP - Architecture MultiPath TCP - Receive-Buffer MultiPath TCP - Congestion Control MultiPath TCP - Live-Demo MultiPath TCP: From Theory to Practice S´ebastien Barr´e Christoph Paasch - Olivier Bonaventure MultiPath TCP: From Theory to Practice 1 / 17 #12;MultiPath TCP - Architecture Multi
Thermoalgebras and path integral
Khanna, F.C. [Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2J1 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada)], E-mail: khanna@phys.ualberta.ca; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180 Rio de Janeiro, RJ (Brazil)], E-mail: adolfo@cbpf.br; Malbouisson, J.M.C. [Instituto de Fisicas, Universidade Federal da Bahia, 40210-340 Salvador, BA (Brazil)], E-mail: jmalboui@ufba.br; Santana, A.E. [Instituto de Fisicas, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)], E-mail: asantana@fis.unb.br
2009-09-15
Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S{sup 1}){sup d}xR{sup D-d} topology is addressed.
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
Restoration by Path Concatenation: Fast Recovery of MPLS Paths
Bremler-Barr, Anat
Restoration by Path Concatenation: Fast Recovery of MPLS Paths Yehuda Afek Anat Bremler techniques in MPLS (multiprotocol label switching), to achieve powerful schemes for restoration in MPLS based networks. We thus transform MPLS into a flexible and robust method for forward ing packets
Restoration by Path Concatenation: Fast Recovery of MPLS Paths
Kaplan, Haim
Restoration by Path Concatenation: Fast Recovery of MPLS Paths Yehuda Afek Anat Bremler-Barr Haim techniques in MPLS (multi-protocol label switching), to achieve powerful schemes for restoration in MPLS based networks. We thus transform MPLS into a flexible and robust method for forward- ing packets
Finding Good Paths: Applications of Least Cost Caloric Path Computations
Wood, Zoë J.
for crowds and individuals. 1 Introduction Humans have been traveling by foot for thousands of years and the task of finding good foot-paths to travel from point A to point B is something we all think about with disabilities, an individual planning out his or her path in a freeform race or even in arche- ology, to model
Path Integral Methods Nancy Makri
Makri, Nancy
attractions can be summarized as follows: the path integral formulation offers an ideal way of obtaining approach to many-body problems; and it leads to powerful influence functional meth- ods for studying this expression with the same weight. In the classical limit 0 small variations of a path generally result
Cosmological Perturbations from the No Boundary Euclidean Path Integral
Steven Gratton; Neil Turok
1999-02-18
We compute, from first principles, the quantum fluctuations about instanton saddle points of the Euclidean path integral for Einstein gravity coupled to a scalar field. The Euclidean two-point correlator is analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations in the state described by no boundary proposal initial conditions. We concentrate on the density perturbations in open inflationary universes produced from cosmological instantons, describing the differences between non-singular Coleman-De Luccia and singular Hawking-Turok instantons. We show how the Euclidean path integral uniquely specifies the fluctuations in both cases.
Initial Studies Toward Real-Time Transmission Path Rating
Singh, Ruchi; Diao, Ruisheng; Cai, Niannian; Huang, Zhenyu; Tuck, Brian; Guo, Xinxin
2012-07-26
Demand continues to increase while transmission line construction is being constrained by multiple factors— economic, environmental, and political. Effective and efficient utilization of transmission lines is thus of great importance in an open access environment. Large blocks of power are transferred from areas with inexpensive generation to heavy load demand areas or areas with high generation costs. This results in some transmission paths being loaded closer to their path ratings, which limits further power transfer between areas. Traditionally, rating of important paths was determined off line by assuming the worst-case study scenario; once determined, it could be used for years. With increasing uncertainty arising from rapid growth of renewable energy and smart technologies, path rating studies are needed in near-real time to account for the latest system status and support a reliable and economic power grid. This paper adopts a simplified procedure based on standards of the North American Electric Reliability Corporation (NERC) to determine total transfer capability (TTC) or transfer limit for the purpose of demonstrating the benefits and necessity of real-time path rating. Initial studies are conducted to compute TTC of a two-area test system and a 39-bus test system. Results indicate that path rating can be significantly affected by loading conditions, generator schedules, system topology and other factors.
Path Integrals for Photonic Crystals
Dimant, Yair
2009-01-01
We develop a path integrals approach for analyzing stationary light propagation appropriate for photonic crystals. The hermitian form of the stationary Maxwell equations is transformed into a quantum mechanical problem of a spin 1 particle with spin-orbit coupling and position dependent mass. After appropriate ordering several path integral representations of a solution are constructed. One leaves the propagation of polarization degrees of freedom in an operator form integrated over paths in coordinate space. The use of spin 1 coherent states allows to represent this part as a path integral over such states. Finally a path integral in transversal momentum space with explicit transversality enforced at every time slice is also given. As an example the geometrical optics limit is discussed and the ray equation is recovered together with the Rytov rotation of the polarization vector.
Rotation periods of late-type stars in the young open cluster IC 2602
Sydney A. Barnes; Sabatino Sofia; Charles F. Prosser; John R. Stauffer
1998-01-01
We present the results of a monitoring campaign aimed at deriving rotation\\u000aperiods for a representative sample of stars in the young (30 Myr) open cluster\\u000aIC 2602. Rotation periods were derived for 29 of 33 stars monitored. The\\u000aperiods derived range from 0.2d (one of the shortest known rotation periods of\\u000aany single open cluster star) to about 10d
Optimal Path to a Laser Fusion Energy Power Plant
NASA Astrophysics Data System (ADS)
Bodner, Stephen
2013-10-01
There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.
Reasoning with Temporal Logic on Truncated Paths
Francalanza, Adrian
Reasoning with Temporal Logic on Truncated Paths Cindy Eisner1 Dana Fisman1,2 John Havlicek3 Yoad of reasoning with linear temporal logic on truncated paths. A truncated path is a path which is finite, but not necessarily maximal. Truncated paths arise naturally in several areas, among which are incomplete verification
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
NASA Astrophysics Data System (ADS)
Sasada, Mahito; Uemura, Makoto; Arai, Akira; Fukazawa, Yasushi; Kawabata, Koji S.; Ohsugi, Takashi; Yamashita, Takuya; Isogai, Mizuki; Sato, Shuji; Kino, Masaru
2008-12-01
We present the results of near-infrared and optical observations of the BL Lac object S5 0716 + 714, carried out with the KANATA telescope. S5 0716 + 714 has both a long-term, high-amplitude variability and a short-term variability within one night. The shortest variability (microvariability) time-scale is important for understanding the geometry of jets and the magnetic field, because it provides a possible minimum size of variation sources. Here, we report on the detection of 15-min variability in S5 0716 + 714, which is one of the shortest time scales in optical and near-infrared variations observed in blazars. The detected microvariation had an amplitude of 0.061 ± 0.005mag in the V band and a blue color of ? (V - J) = - 02025 ± 0.011. Furthermore, we successfully detected an unprecedented, short time-scale polarimetric variation, which correlated with the brightness change. We revealed that the microvariation had a specific polarization component. The polarization degree of the variation component was higher than that of the total flux. These results suggest that the microvariability originated from a small and local region where the magnetic field was aligned.
Path planning for mobile robots based on visibility graphs and A* algorithm
NASA Astrophysics Data System (ADS)
Contreras, Juan D.; Martínez S., Fernando; Martínez S., Fredy H.
2015-07-01
One of most worked issues in the last years in robotics has been the study of strategies to path planning for mobile robots in static and observable conditions. This is an open problem without pre-defined rules (non-heuristic), which needs to measure the state of the environment, finds useful information, and uses an algorithm to select the best path. This paper proposes a simple and efficient geometric path planning strategy supported in digital image processing. The image of the environment is processed in order to identify obstacles, and thus the free space for navigation. Then, using visibility graphs, the possible navigation paths guided by the vertices of obstacles are produced. Finally the A* algorithm is used to find a best possible path. The alternative proposed is evaluated by simulation on a large set of test environments, showing in all cases its ability to find a free collision plausible path.
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S
2015-07-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints
2011-01-01
Background The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats. Results We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al. Conclusions jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining. PMID:21219648
Path Integral over Reparametrizations: Levy Flights versus Random Walks
Buividovich, Pavel
2009-01-01
We investigate the properties of the path integral over reparametrizations (= the boundary value of the Liouville field in open string theory). Discretizing the path integral, we apply the Metropolis-Hastings algorithm to numerical simulations of a proper (subordinator) stochastic process and find that typical trajectories are not Brownian but rather have discontinuities of the type of Levy's flights. We study a fractal structure of these trajectories and show that their Hausdorff dimension is zero. We confirm thereby the discretization and heuristic consideration of QCD scattering amplitudes by analytical and numerical calculations. We also perform Monte Carlo simulations of the path integral over reparametrization in the effective-string ansatz for a circular Wilson loop and discuss their subtleties associated with the discretization of Douglas' functional.
Hespos, Susan J.
To code in Matlab Open Matlab Set up path in the Current Folder following the graph below to the `Matlab' folder and see if there is a folder called `Data'. Your data should be in that `Data' folder. 2
An Introduction to Path Analysis
ERIC Educational Resources Information Center
Wolfe, Lee M.
1977-01-01
The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)
COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS
Hristidis, Vagelis
COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS AND RESEARCH CHALLENGES School of Computing Undergraduate Student) #12;Computer Science Misconceptions Intro to Computer Science - Florida International University 2 Some preconceived ideas & stereotypes about Computer Science (CS) are quite common
Survivable paths in multilayer networks
Parandehgheibi, Marzieh
We consider the problem of protection in multilayer networks. In single-layer networks, a pair of disjoint paths can be used to provide protection for a source-destination pair. However, this approach cannot be directly ...
Yong Seung Cho; Soon-Tae Hong
2007-06-01
We consider the path space of a curved manifold on which a point particle is introduced in a conservative physical system with constant total energy to formulate its action functional and geodesic equation together with breaks on the path. The second variation of the action functional is exploited to yield the geodesic deviation equation and to discuss the Jacobi fields on the curved manifold. We investigate the topology of the path space using the action functional on it and its physical meaning by defining the gradient of the action functional, the space of bounded flow energy solutions and the moduli space associated with the critical points of the action functional. We also consider the particle motion on the $n$-sphere $S^{n}$ in the conservative physical system to discuss explicitly the moduli space of the path space and the corresponding homology groups.
Path Planner With Vision Capability
NASA Astrophysics Data System (ADS)
Distante, Arcangelo; Attolico, Giovanni; Radicci, Maria G.; Stella, Ettore
1990-03-01
In this paper we are going to describe an ongoing research project intended to integrate a full vision system in a flexible robot programming environment. The use of the vision system sensors, allows the robot to derive a description of the work cell. This description is used for the collision avoidance problem of robot manipulators. The work cell in assembly context can include moving objects. Without any previous knowledge of the work space, the vision system thus immediately determines the work cell map in its entirely. Successively this map is used as input for the path planner process to find the collision-free path. During the assembly robot operation, the vision system is activated to reflect any changes in the robot environment. In this way the path planner works recursively, updating the collision free path until the goal is reached.
Survivable paths in multilayer networks
Parandehgheibi, Marzieh
2012-01-01
We consider the problem of protection in multilayer networks. In single-layer net- works, a pair of disjoint paths can be used to provide protection for a source-destination pair. However, this approach cannot be directly ...
Semiclassical wavefunctions for open quantum billiards
Fabian Lackner; Iva Brezinova; Florian Libisch; Joachim Burgdörfer
2013-03-15
We present a semiclassical approximation to the scattering wavefunction $\\Psi(\\mathbf{r},k)$ for an open quantum billiard which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wavefunction to the full quantum state is controlled by the path length or equivalently the dwell time. Possible applications include leaky billiards and systems with decoherence present.
Characterizing Reactive Flow Paths in Fractured Cement
NASA Astrophysics Data System (ADS)
Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.
2011-12-01
Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.
3. Aerial view of turnpike path showing realignment of 1917. ...
3. Aerial view of turnpike path showing realignment of 1917. Modernized Orange Turnpike visible running diagonally up from lower left to open area where it veers to the west around the Migel Estate. The beginning of the realignment is located by the cluster of white trailers. Original alignment visible as a row of trees cutting through the base landscape. View looking northwest. - Orange Turnpike, Parallel to new Orange Turnpike, Monroe, Orange County, NY
Paths for Z_k parafermionic models
P. Jacob; P. Mathieu
2007-07-03
We present a simple bijection between restricted (Bressoud) lattice paths and RSOS paths in regime II. Both types of paths describe states in Z_k parafermionic irreducible modules. The bijection implies a direct correspondence between a RSOS path and a parafermionic state in a quasi-particle basis.
Disjoint paths in tournaments Maria Chudnovsky1
Scott, Alexander Alexander
Disjoint paths in tournaments Maria Chudnovsky1 Columbia University, New York, NY 10027, USA Alex) (1 i k) of a digraph G, how can we test whether there exist k vertex-disjoint directed paths from G. The k vertex-disjoint paths problem is to determine whether there exist vertex-disjoint paths P1
Reactive Path Deformation for Nonholonomic Mobile Robots
Lamiraux, Florent
. A collision-free initial path being given for a robot, obstacles detected while following this path can make, [21] proposed a method that enables him to deform on line the path to be fol- lowed by the robot1 Reactive Path Deformation for Nonholonomic Mobile Robots F. Lamiraux, D. Bonnafous, and O
Arithmetic area for m planar Brownian paths
Jean Desbois; Stephane Ouvry
2012-02-04
We pursue the analysis made in [1] on the arithmetic area enclosed by m closed Brownian paths. We pay a particular attention to the random variable S{n1,n2, ...,n} (m) which is the arithmetic area of the set of points, also called winding sectors, enclosed n1 times by path 1, n2 times by path 2, ...,nm times by path m. Various results are obtained in the asymptotic limit m->infinity. A key observation is that, since the paths are independent, one can use in the m paths case the SLE information, valid in the 1-path case, on the 0-winding sectors arithmetic area.
Path Integral Invariance under Point Canonical Transformations
Jordan, A; Jordan, Andres; Libedinsky, Matias
1997-01-01
It is often stated in the literature on path integrals that naive changes of coordinates might in general give inequivalent theories. The discrepancy is presumably connected to subtleties in the discretization, to the stochastic nature of quantum paths, or to operator order ambiguities in the canonical quantization. Here we argue that in order to define a path integral one needs not only a Lagrangian but also a set of paths that join succesive points in the discretized paths. If the set of paths is maintained when performing a point canonical transformation the path integral does not change. We explicitly show this with the calculation of the free particle kernel in polar coordinates.
Micciancio, Daniele
vector problem. Nearest vector problem. Minimum distance problem. 1 PROBLEM DEFINITION A point lattice. Definition 1 (Shortest Vector Problem, SVP # ). Given a lattice L(B), find a nonzero lattice vector Bx (where x # Z n \\ {0}) such that #Bx# # # · #By# for any y # Z n \\ {0}. Definition 2 (Closest Vector Problem
Semiclassical wave functions for open quantum billiards
NASA Astrophysics Data System (ADS)
Lackner, Fabian; B?ezinová, Iva; Burgdörfer, Joachim; Libisch, Florian
2013-08-01
We present a semiclassical approximation to the scattering wave function ?(r,k) for an open quantum billiard, which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state. In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell time ?max included implies a finite energy resolution ?E˜?max-1. Possible applications include leaky billiards and systems with decoherence present.
Semiclassical wave functions for open quantum billiards.
Lackner, Fabian; B?ezinová, Iva; Burgdörfer, Joachim; Libisch, Florian
2013-08-01
We present a semiclassical approximation to the scattering wave function ?(r,k) for an open quantum billiard, which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state. In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell time ?(max) included implies a finite energy resolution ?E~?(max)(-1). Possible applications include leaky billiards and systems with decoherence present. PMID:24032910
Orthogonal Scan Paths for Data Path Logic Robert B. Norwood* and Edward J. McCluskey
Stanford University
Orthogonal Scan Paths for Data Path Logic Robert B. Norwood* and Edward J. McCluskey Center Abstract We have implemented a synthesis-for-test algorithm to implement orthogonal scan paths in data path logic. Orthogonal scan paths [Avra 92] facilitate the sharing of the functional and the test logic
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
Improved gas-path seals are needed for better fuel economy, longer performance retention, and lower maintenance, particularly in advanced, high-performance gas turbine engines. Problems encountered in gas-path sealing are described, as well as new blade-tip sealing approaches for high-pressure compressors and turbines. These include a lubricant coating for conventional, porous-metal, rub-strip materials used in compressors. An improved hot-press metal alloy shows promise to increase the operating surface temperatures of high-pressure-turbine, blade-tip seals to 1450 K (2150 F). Three ceramic seal materials are also described that have the potential to allow much higher gas-path surface operating temperatures than are possible with metal systems.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
Horbez, Camille
2012-01-01
We prove that a collection of paths defined in the sphere model of outer space using a surgery process are uniform quasi-geodesics, provided they remain in some thick part of outer space. To do so, we relate the Lipschitz metric on outer space to a notion of intersection numbers.
Immigration: Rubio's path to presidency?
Fernandez, Eduardo
Immigration: Rubio's path to presidency? In media blitz retorting conservative critics, he aims Writer Of the four Democratic and four Republican senators who wrote the immigration reform proposal now, both in Congress and nationwide, need more convincing on immigration reform than Democrats. And Rubio
E J Janse van Rensburg; T Prellberg; A Rechnitzer
2007-06-28
Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplified versions of the self-avoiding walk, but they do nevertheless give insight into the phase behaviour of a polymer, and also serve as a tool to study the effects of conformational degrees of freedom in the behaviour of a linear polymer. In this paper we examine a directed path model of a linear polymer in a confining geometry (a wedge). The main focus of our attention is $c_n$, the number of directed lattice paths of length $n$ steps which takes steps in the North-East and South-East directions and which is confined to the wedge $Y=\\pm X/p$, where $p$ is an integer. In this paper we examine the case $p=2$ in detail, and we determine the generating function using the iterated kernel method. We also examine the asymtotics of $c_n$. In particular, we show that $$ c_n = [0.67874...]\\times 2^{n-1}(1+(-1)^n) + O((4/3^{3/4})^{n+o(n)}) + o((4/3^{3/4})^n) $$ where we can determine the constant $0.67874...$ to arbitrary accuracy with little effort.
van Rensburg, E J J; Rechnitzer, A
2007-01-01
Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplified versions of the self-avoiding walk, but they do nevertheless give insight into the phase behaviour of a polymer, and also serve as a tool to study the effects of conformational degrees of freedom in the behaviour of a linear polymer. In this paper we examine a directed path model of a linear polymer in a confining geometry (a wedge). The main focus of our attention is $c_n$, the number of directed lattice paths of length $n$ steps which takes steps in the North-East and South-East directions and which is confined to the wedge $Y=\\pm X/p$, where $p$ is an integer. In this paper we examine the case $p=2$ in detail, and we determine the generating function using the iterated kernel method. We also examine the asymtotics of $c_n$. In particular, we show th...
Critical Path-Based Thread Placement for NUMA Systems
Su, C Y; Li, D; Nikolopoulos, D S; Grove, M; Cameron, K; de Supinski, B R
2011-11-01
Multicore multiprocessors use a Non Uniform Memory Architecture (NUMA) to improve their scalability. However, NUMA introduces performance penalties due to remote memory accesses. Without efficiently managing data layout and thread mapping to cores, scientific applications, even if they are optimized for NUMA, may suffer performance loss. In this paper, we present algorithms and a runtime system that optimize the execution of OpenMP applications on NUMA architectures. By collecting information from hardware counters, the runtime system directs thread placement and reduces performance penalties by minimizing the critical path of OpenMP parallel regions. The runtime system uses a scalable algorithm that derives placement decisions with negligible overhead. We evaluate our algorithms and runtime system with four NPB applications implemented in OpenMP. On average the algorithms achieve between 8.13% and 25.68% performance improvement compared to the default Linux thread placement scheme. The algorithms miss the optimal thread placement in only 8.9% of the cases.
Aircraft flight path angle display system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1991-01-01
A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.
Modeling Growth Paths of Interacting Crack Pairs in Elastic Media
Ramin Ghelichi; Ken Kamrin
2015-08-14
The problem of predicting the growth of a system of cracks, each crack influencing the growth of the others, arises in multiple fields. We develop an analytical framework toward this aim, which we apply to the `En-Passant' family of crack growth problems, in which a pair of initially parallel, offset cracks propagate nontrivially toward each other under far-field opening stress. We utilize boundary integral and perturbation methods of linear elasticity, Linear Elastic Fracture Mechanics, and common crack opening criteria to calculate the first analytical model for curved En-Passant crack paths. The integral system is reduced under a hierarchy of approximations, producing three methods of increasing simplicity for computing crack paths. The last such method is a major highlight of this work, using an asymptotic matching argument to predict crack paths based on superposition of simple, single-crack fields. Within the corresponding limits of the three methods, all three are shown to agree with each other. We provide comparisons to exact results and existing experimental data to verify certain approximation steps.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms
NASA Astrophysics Data System (ADS)
Tleis, Mohamed; Verbeek, Fons J.
2014-04-01
Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.
Succinct Indices for Path Minimum, with Applications to Path Reporting
Chan, Timothy M.
in O((m, n)) time, and occupies O(m) bits of space in addition to the space required for the input tree weights are within a query range. We achieve three different time/space tradeoffs for path reporting by designing (a) an O(n)-word structure with O(lg n + occ · lg n) query time, where occ is the number of nodes
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Cottage View Ct. Pedestrian/Bike Path
Kostic, Milivoje M.
51N Buses Only Miles Cottage View Ct. Pedestrian/Bike Path Commuter Students ( white circled lots Resources Barsema Hall NIU Convocation Center To NIU Broadcast Center via Bike Path NIU Center for the Study
Visualization of Ant Pheromone Based Path Following
Sutherland, Benjamin T.
2010-07-14
This thesis develops a simulation and visualization of a path finding algorithm based on ant pheromone paths created in 3D space. The simulation is useful as a demonstration of a heuristic approach to NP-complete problems ...
Electron Inelastic-Mean-Free-Path Database
National Institute of Standards and Technology Data Gateway
SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge) This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.
Model for Delay Faults Based upon Paths
Gordon L. Smith
1985-01-01
Delay testing of combinational logic in a clocked environment is analyzed. A model based upon paths is introduced for delay faults. Any path with a total delay exceeding the clock interval is called a \\
Wada, Taeko; Koyama, Daisuke; Kikuchi, Jiro; Honda, Hiroaki; Furukawa, Yusuke
2015-06-11
Recent investigations indicate that epigenetic regulators act at the initial step of myeloid leukemogenesis by forming preleukemic hematopoietic stem cells (HSCs), which possess the increased self-renewal potential but retain multidifferentiation ability, and synergize with genetic abnormalities in later stages to develop full-blown acute myeloid leukemias. However, it is still unknown whether this theory is applicable to other malignancies. In this study, we demonstrate that lysine-specific demethylase 1 (LSD1) overexpression is a founder abnormality for the development of T-cell lymphoblastic leukemia/lymphoma (T-LBL) using LSD1 transgenic mice. LSD1 expression is tightly regulated via alternative splicing and transcriptional repression in HSCs and is altered in most leukemias, especially T-LBL. Overexpression of the shortest isoform of LSD1, which is specifically repressed in quiescent HSCs and demethylates histone H3K9 more efficiently than other isoforms, increases self-renewal potential via upregulation of the HoxA family but retains multidifferentiation ability with a skewed differentiation to T-cell lineages at transcriptome levels in HSCs. Transgenic mice overexpressing LSD1 in HSCs did not show obvious abnormalities but developed T-LBL at very high frequency after ?-irradiation. LSD1 overexpression appears to be the first hit in T-cell leukemogenesis and provides an insight into novel strategies for early diagnosis and effective treatment of the disease. PMID:25904247
Qian, S.-B.; Zhang, J.; Wang, J.-J.; Zhu, L.-Y.; Liu, L.; Zhao, E. G.; Li, L.-J.; He, J.-J., E-mail: qsb@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China)
2013-08-15
We discovered that the O-C curve of V753 Mon shows an upward parabolic change while undergoing a cyclic variation with a period of 13.5 yr. The upward parabolic change reveals a long-term period increase at a rate of P-dot = +7.8 x 10{sup -8} days yr{sup -1}. Photometric solutions determined using the Wilson-Devinney method confirm that V753 Mon is a semi-detached binary system where the slightly less massive, hotter component star is transferring mass to the more massive one. This is in agreement with the long-term increase of the orbital period. The increase of the orbital period, the mass ratio very close to unity, and the semi-detached configuration with a less massive lobe-filling component all suggest that V753 Mon is on a key evolutionary stage just after the evolutionary stage with the shortest period during mass transfer. The results in this paper will shed light on the formation of massive contact binaries and the evolution of binary stars. The cyclic oscillation in the O-C diagram indicates that V753 Mon may be a triple system containing an extremely cool stellar companion that may play an important role for the formation and evolution in the binary system.
Reynolds, Andy M; Dutta, Tushar K; Curtis, Rosane H C; Powers, Stephen J; Gaur, Hari S; Kerry, Brian R
2011-04-01
It has long been recognized that chemotaxis is the primary means by which nematodes locate host plants. Nonetheless, chemotaxis has received scant attention. We show that chemotaxis is predicted to take nematodes to a source of a chemo-attractant via the shortest possible routes through the labyrinth of air-filled or water-filled channels within a soil through which the attractant diffuses. There are just two provisos: (i) all of the channels through which the attractant diffuses are accessible to the nematodes and (ii) nematodes can resolve all chemical gradients no matter how small. Previously, this remarkable consequence of chemotaxis had gone unnoticed. The predictions are supported by experimental studies of the movement patterns of the root-knot nematodes Meloidogyne incognita and Meloidogyne graminicola in modified Y-chamber olfactometers filled with Pluronic gel. By providing two routes to a source of the attractant, one long and one short, our experiments, the first to demonstrate the routes taken by nematodes to plant roots, serve to test our predictions. Our data show that nematodes take the most direct route to their preferred hosts (as predicted) but often take the longest route towards poor hosts. We hypothesize that a complex of repellent and attractant chemicals influences the interaction between nematodes and their hosts. PMID:20880854
Reichard, M; Polacik, M; Sedlácek, O
2009-01-01
Intensive collection in southern Mozambique across and outside the potential range of Nothobranchius furzeri, the species with the shortest recorded life span among vertebrates used as a model in ageing research, revealed that, contrary to previous data, it is a widespread species. It occurs in small freshwater pools south of the Save River and north of the Incomati River, including basins of the Limpopo, Changane, Chefu, Mazimechopes and Vaneteze Rivers. During collection in February 2008 (the second part of the rainy season), populations were strongly female biased (mean, 28% of males across 19 populations), and there was a spatial pattern in female bias among metapopulations. Populations varied in the proportion of male colour morphs. Fourteen populations were composed exclusively of the red male phenotype, three populations of the yellow male phenotype and 12 populations were mixed. Overall, the red phenotype was more common, but there was strong geographical variation in morph proportion, with yellow males more abundant at the periphery and red male dominance in the centre of the range of N. furzeri in the Limpopo basin. Nothobranchius furzeri was sympatric with Nothobranchius orthonotus (35% of investigated pools) and Nothobranchius rachovii (27% of sites). Analysis of habitat use of N. furzeri is presented; N. furzeri was associated with pools containing a soft muddy substratum and turbid water. PMID:20735533
Measuring Continuous-Path Accuracies of Robots
NASA Technical Reports Server (NTRS)
Allison, T. A.; Arnold, G. A.
1986-01-01
Sensors yield data on deviation from predetermined path and speed. Accuracy and repeatability of continuous-path robot motion measured with new method. Determines ability of robot to maintain tool orientation. Used with any type of manipulator arm and with separate, coordinated part positioner. Noncontacting eddy-current sensors measure distance from tool to aluminum path plate as robot end effector moves tool at prescribed distance from plate. Flat, sloped, curved, and other shapes used for path plate.
Geodesics on path spaces and double category
Saikat Chatterjee
2015-09-16
Let $M$ be a Riemannian manifold and ${\\mathcal P}M$ be the space of all smooth paths on $M$. We describe geodesics on path space ${\\mathcal P}M$. Normal neighbourhood structure on ${\\mathcal P}M$ has been discussed. We identify paths on $M$ under "back-track" equivalence. Under this identification we show that if $M$ is complete, then geodesics on path space yield a double category.We gave a physical interpretation of this double category.
Path entanglement of surface plasmons
NASA Astrophysics Data System (ADS)
Fakonas, James S.; Mitskovets, Anna; Atwater, Harry A.
2015-02-01
Metals can sustain traveling electromagnetic waves at their surfaces supported by the collective oscillations of their free electrons in unison. Remarkably, classical electromagnetism captures the essential physics of these ‘surface plasma’ waves using simple models with only macroscopic features, accounting for microscopic electron–electron and electron–phonon interactions with a single, semi-empirical damping parameter. Nevertheless, in quantum theory these microscopic interactions could be important, as any substantial environmental interactions could decohere quantum superpositions of surface plasmons, the quanta of these waves. Here we report a measurement of path entanglement between surface plasmons with 95% contrast, confirming that a path-entangled state can indeed survive without measurable decoherence. Our measurement suggests that elastic scattering mechanisms of the type that might cause pure dephasing in plasmonic systems must be weak enough not to significantly perturb the state of the metal under the experimental conditions we investigated.
Spacetime path formalism: localized states
Ed Seidewitz
2010-11-14
This note is an addendum to quant-ph/0507115. In that paper, I present a formalism for relativistic quantum mechanics in which the spacetime paths of particles are considered fundamental, reproducing the standard results of the traditional formulation of relativistic quantum mechanics and quantum field theory. Now, it is well known that there are issues with the ability to localize the position of particles in the usual formulation of relativistic quantum mechanics. The present note shows how, in the spacetime path formalism, the natural representation of on-shell 3-momentum states is effectively a Foldy-Wouthuysen transformation of the traditional representation, addressing the localization issues of position states and, further, providing a straightforward non-relativistic limit.
Squeezed states and path integrals
NASA Technical Reports Server (NTRS)
Daubechies, Ingrid; Klauder, John R.
1992-01-01
The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.
Free Space Path Loss of UWB Communications
Pichaya Supanakoon; Sathit Aroonpraparat; Sathaporn Promwong; Jun-ichi Takada
Although the Friis' formula is widely used to calculate the free space path loss of narrowband communications, it is considered only single frequency. Therefore, it should be extended to calculate the free space path loss of ultra wideband (UWB) communications by considering the frequency bandwidth. In this paper, the free space path loss of UWB communications is studies. The Friis'
The area determined by underdiagonal lattice paths
Merlini, Donatella
The area determined by underdiagonal lattice paths Donatella Merlini, Renzo Sprugnoli, M. Cecilia of underdiagonal lattice paths and the main diagonal. This area is important because it is connected to the number of inversions in permutations and to the internal path length in various types of trees. We obtain
Powers of Hamiltonian Paths in Interval Graphs
Isaak, Garth
Powers of Hamiltonian Paths in Interval Graphs Garth Isaak* DEPARTMENT OF MATHEMATICS LEHIGH of a Hamiltonian path are sufficient for the class of interval graphs. The proof is based on showing that a greedy algorithm tests for the existence of Hamiltonian path powers in interval graphs. We will also discuss covers
Realistic Human Walking Paths David C. Brogan
Brogan, David
Realistic Human Walking Paths David C. Brogan Department of Computer Science University of Virginia are influenced by kinematic and dynami- cal constraints. A realistic model of human walking paths is an important model of path planning that extends previous models through its significant use of pedestrian
Chip layout optimization using critical path weighting
A. E. Dunlop; V. D. Agrawal; D. N. Deutsch; M. F. Jukl; P. Kozak; M. Wiesel
1984-01-01
A chip layout procedure for optimizing the performance of critical timing paths in a synchronous digital circuit is presented. The procedure uses the path analysis data produced by a static timing analysis program to generate weights for critical nets on clock and data paths. These weights are then used to bias automatic placement and routing in the layout program. This
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…
Adaptive Path Planner for Highly Dynamic Environments
Baltes, Jacky
://www.citr.auckland.ac.nz/~jacky Abstract. This paper describes adaptive path planning, a novel ap- proach to path planning for car a collision free path through a set of obstacles from an initial to a goal position. A simple example through objects moving. In fact, RoboCup features an active opponent that tries #12;2 to prevent a robot
Path optimization for oil probe
NASA Astrophysics Data System (ADS)
Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian
2014-05-01
We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.
Opening back up a path to participation in exoplanet science
NASA Astrophysics Data System (ADS)
Taylor, Stuart F.
2015-08-01
We present a long pursuit of participating in exoplanet science that after making good progress, has been blocked while others are caused by supervisors to misrepresent a group of authors as being one less person than the actual contributors.We present first a long period of preparation to join a project such as the private global telescope observatory followed by setting up observational programs that have been presented as successes by those allowed to finish these projects while leaving out the first astronomer.We present subsequent efforts to recover from being ostracized by both seeking alternative routes to participation as well as seeking means to take back the participation cut off without cause.This is a campaign for support from the community to go around the obstructive group by restoring memberships to those groups from which the target of ostracism has been kept out.We present the ideas and contributions given to colleagues to support the observatory being a member institution of the Kepler project, including starting the observatory's first planet confirmation observations and first transit timing observations. Contributed techniques for which credit was taken include weighting the reference stars. Contributions include demonstrating the importance of a wider FOV camera and obtaining better photometric stability.Replacement efforts include transients from planet destruction and using the location of the falloff to measure the rate of planets migrating into stars.We specifically seek for the planet-finding groups supported by this observatory to support restore the opportunity for membership in their collaborations.The long effort to join the Kepler and TESS science teams is well documented. We publicly campaign for these groups to not tolerate ostracism and discrimination by require this observatory to provide due access to its due members order to restore allowing the target of ostracism to take back earned roles in confirming and characterizing the planets found by these groups.
Model Checking Almost All Paths Can Be Less Expensive than Checking All Paths
Varacca, Daniele - Laboratoire Preuves, Programmes et SystÃ¨mes, UniversitÃ© Paris 7
Model Checking Almost All Paths Can Be Less Expensive than Checking All Paths Matthias Schmalz 1 model checking problems: checking whether a linear-time formula is satised by all paths (which we call universal model checking) and checking whether a formula is satised by almost all paths (which we call fair
Random paths and current fluctuations in nonequilibrium statistical mechanics
Gaspard, Pierre
2014-07-15
An overview is given of recent advances in nonequilibrium statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for nonequilibrium systems. In this approach, relationships have been established between nonequilibrium properties such as the transport coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.
Characterizing the evolutionary path(s) to early Homo.
Schroeder, Lauren; Roseman, Charles C; Cheverud, James M; Ackermann, Rebecca R
2014-01-01
Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus-Au. sediba-Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus-Au. sediba-Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780
At-Speed Test for Path Delay Faults Using Practical Techniques Wangqi Qiu*
Shi, Weiping "Peter"
opens are one of the major defect types which cause delay faults [2], and that small delay faults cannot of each gate (KLPG) for both slow-to-rise and slow-to-fall faults on the lines are generated. Two atAt-Speed Test for Path Delay Faults Using Practical Techniques Wangqi Qiu* , Jing Wang* , Xiang Lu
LONG-PATH FTIR MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS IN AN INDUSTRIAL SETTING
As part of a Superfund Innovative Technology Evaluation (SITE) field program, a Fourier transform infrared (FTIR) spectrometer vas used to make open path measurements of volatile organic compounds in the New Castle, Delaware, area. he SITE program requires that new technologies b...
Model-based interactive path planning for surface following robot tasks
NASA Astrophysics Data System (ADS)
Heikkila, Tapio A.; Ferrer-Argote, Luis G.; Annala, Matti
1997-09-01
Programming of frequently introduced new tasks becomes often a bottleneck for robotized surface treatment from the point of view of production performance. We have developed off-line programming tools relying on CAD product models, and, in more detail, on the surface and solid models of the products. Our system creates surface following paths over the parts or products automatically, or interactively guided by an operator. In automatic planning the paths are derived by decomposing the model into open surface segments over which the paths are created. In interactive planning a set of planar profiles are projected on the surfaces of the part model, composing the basis for the paths. We have implemented the planning system in WindowsNT(TM) environment and confirmed the feasibility of the planning results for some demonstration products with tests in an IRB 1400 robot system.
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Intellimotion: California PATH's Quarterly Newsletter
NSDL National Science Digital Library
The California Partners for Advanced Transit and Highways (PATH) researches methods for increasing highway safety, reducing congestion, and minimizing pollution and energy consumption. Intellimotion is one of its publications that highlights some of the current projects. Although it is labeled as a quarterly newsletter, Intellimotion is released on a very irregular basis. The 2002 issue covers several stories, including a project that makes vehicle navigation with the Global Positioning System extremely accurate. Another article looks at intelligent transportation systems and the issues regarding Bus Rapid Transit. Many past issues of Intellimotion are available on this Web site. This site is also reviewed in the October 25, 2002 Scout Report.
Gibbs Ensembles of Nonintersecting Paths
Alexei Borodin; Senya Shlosman
2008-04-03
We consider a family of determinantal random point processes on the two-dimensional lattice and prove that members of our family can be interpreted as a kind of Gibbs ensembles of nonintersecting paths. Examples include probability measures on lozenge and domino tilings of the plane, some of which are non-translation-invariant. The correlation kernels of our processes can be viewed as extensions of the discrete sine kernel, and we show that the Gibbs property is a consequence of simple linear relations satisfied by these kernels. The processes depend on infinitely many parameters, which are closely related to parametrization of totally positive Toeplitz matrices.
Multiple order common path spectrometer
NASA Technical Reports Server (NTRS)
Newbury, Amy B. (Inventor)
2010-01-01
The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.
Staff detection with stable paths.
Dos Santos Cardoso, Jaime; Capela, Artur; Rebelo, Ana; Guedes, Carlos; Pinto da Costa, Joaquim
2009-06-01
The preservation of musical works produced in the past requires their digitalization and transformation into a machine-readable format. The processing of handwritten musical scores by computers remains far from ideal. One of the fundamental stages to carry out this task is the staff line detection. We investigate a general-purpose, knowledge-free method for the automatic detection of music staff lines based on a stable path approach. Lines affected by curvature, discontinuities, and inclination are robustly detected. Experimental results show that the proposed technique consistently outperforms well-established algorithms. PMID:19372615
Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths
Chen, Bill
Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths William Y.C. Chen1, Carol J. Wang2 1)-Motzkin paths, where a (3, 2)-Motzkin path can be viewed as a Motzkin path for which there are three types of horizontal steps and two types of down steps. A large (3, 2)- Motzkin path is a (3, 2)-Motzkin path for which
NASA Astrophysics Data System (ADS)
Bishop, Kevin P.; Constable, Steve; Faruk, Nabil F.; Roy, Pierre-Nicholas
2015-06-01
In this work, we provide an interface developed to link the Molecular Modelling toolkit (MMTK) with OpenMM in order to take advantage of the fast evaluation techniques of OpenMM. This interface allows MMTK scripts using the Langevin dynamics integrator, for both classical and path integral simulations, to be executed on a variety of hardware including graphical processing units via OpenMM. The interface has been developed using Python and Cython to take advantage of the high level abstraction thanks to the MMTK and OpenMM software packages. We have tested the interface on a number of systems to observe which systems benefit most from the acceleration libraries of OpenMM.
Paths - What Are They and Who Makes Them?
NSDL National Science Digital Library
2013-02-12
Students will complete several activities in which they will describe, draw, examine and explore paths. Activities range from describing, drawing and exploring local paths (roads/sidewalks to school, hiking trails, trails in the local school environment, etc.) to comparing and contrasting larger-scale paths (streets, bridges, runways, rivers) on maps and in satellite images of three major world cities. NASA satellite images of Boston, Paris and Houston are included in the lesson. This investigation also introduces students to the need for "ground truthing." The URL opens to the investigation directory, with links to teacher and student materials, lesson extensions, resources, teaching tips, and assessment strategies. The teacher's guide will begin with a two-page module overview and list of all standards addressed. This is Investigation 1 of four found in the Grades K-4 Module 4 of Mission Geography. The Mission Geography curriculum integrates data and images from NASA missions with the National Geography Standards. Each of the four investigations in Module 4, while related, can be done independently.
ANALYSIS OF CROSSING PATH CRASH COUNTERMEASURE SYSTEMS
Wassim G. Najm; Jonathan A. Koopmann; David L. Smith
This paper summarizes the results of an analysis of promising countermeasure systems for crossing path crashes, and thus provides a foundation for setting research priorities under the United States (U.S.) Department of Transportation's Intelligent Vehicle Initiative. Crossing path crashes involve one moving vehicle cutting across the path of another, which amounted to 1.72 million police-reported crashes in the U.S. based
Path Deviation Equations in AP-Geometry
NASA Astrophysics Data System (ADS)
Wanas, M. I.; Kahil, M. E.
2006-02-01
Recently, it has been shown that Absolute Parallelism (AP) geometry admits paths that are naturally quantized. These paths have been used to describe the motion of spinning particles in a background gravitational field. In case of a weak static gravitational field limits, the paths are applied successfully to interpret the discrepancy in the motion of thermal neutrons in the Earth's gravitational field (COW-experiment). The aim of the present work is to explore the properties of the deviation equations corresponding to these paths. In the present work the deviation equations are derived and compared to the geodesic deviation equation of the Riemannian geometry.
Revealing genuine optical-path entanglement.
Monteiro, F; Caprara Vivoli, V; Guerreiro, T; Martin, A; Bancal, J-D; Zbinden, H; Thew, R T; Sangouard, N
2015-05-01
How can one detect entanglement between multiple optical paths sharing a single photon? We address this question by proposing a scalable protocol, which only uses local measurements where single photon detection is combined with small displacement operations. The resulting entanglement witness does not require postselection, nor assumptions about the photon number in each path. Furthermore, it guarantees that entanglement lies in a subspace with at most one photon per optical path and reveals genuinely multipartite entanglement. We demonstrate its scalability and resistance to loss by performing various experiments with two and three optical paths. We anticipate applications of our results for quantum network certification. PMID:25978215
Revealing Genuine Optical-Path Entanglement
NASA Astrophysics Data System (ADS)
Monteiro, F.; Vivoli, V. Caprara; Guerreiro, T.; Martin, A.; Bancal, J.-D.; Zbinden, H.; Thew, R. T.; Sangouard, N.
2015-05-01
How can one detect entanglement between multiple optical paths sharing a single photon? We address this question by proposing a scalable protocol, which only uses local measurements where single photon detection is combined with small displacement operations. The resulting entanglement witness does not require postselection, nor assumptions about the photon number in each path. Furthermore, it guarantees that entanglement lies in a subspace with at most one photon per optical path and reveals genuinely multipartite entanglement. We demonstrate its scalability and resistance to loss by performing various experiments with two and three optical paths. We anticipate applications of our results for quantum network certification.
Escaping path approach for speckle noise reduction
NASA Astrophysics Data System (ADS)
Szczepanski, Marek; Radlak, Krystian
2015-02-01
A novel fast filtering technique for multiplicative noise removal in ultrasound images was presented in this paper. The proposed algorithm utilizes concept of digital paths created on the image grid presented in [1] adapted to the needs of multiplicative noise reduction. The new approach uses special type of digital paths so called Escaping Path Model and modified path length calculation based on topological as well as gray-scale distances. The experiments confirmed that the proposed algorithm achieves a comparable results with the existing state-of-the-art denoising schemes in suppressing multiplicative noise in ultrasound images.
Path Deviation Equations in AP-Geometry
M. I. Wanas; M. E. Kahil
2006-05-06
Recently, it has been shown that Absolute Parallelism (AP) geometry admits paths that are naturally quantized. These paths have been used to describe the motion of spinning particles in a background gravitational field. In case of a weak static gravitational field limits, the paths are applied successfully to interpret the discrepancy in the motion of thermal neutrons in the Earth's gravitational field (COW-experiment). The aim of the present work is to explore the properties of the deviation equations corresponding to these paths. In the present work the deviation equations are derived and compared to the geodesic deviation equation of the Riemannian geometry.
Investigation of leakage current paths in n-GaN by conductive atomic force microscopy
Kim, Bumho; Park, Yongjo E-mail: eyoon@snu.ac.kr; Moon, Daeyoung; Nanishi, Yasushi; Joo, Kisu; Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 ; Oh, Sewoung; Lee, Young Kuk; Yoon, Euijoon E-mail: eyoon@snu.ac.kr; WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742; Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270; Department of Materials Science and Engineering, Seoul National University, Seoul 151-742
2014-03-10
We have investigated electrical characteristics of leakage current paths in n-GaN layer grown by metal-organic chemical vapor deposition with conductive-atomic force microscopy (C-AFM). The C-AFM mapping shows two kinds of leakage current paths existing in the n-GaN layer: open-core dislocation and pure screw dislocation. From the localized I-V curves measured by C-AFM, we confirmed that the open-core screw dislocation shows more significant leakage current. We explained these results in terms of a modified Schottky band model based on donor states formed by oxygen segregation at the (10?10) sidewall of the open-core screw dislocation.
Janssen, Hans-Karl; Stenull, Olaf
2012-01-01
Long linear polymers in strongly disordered media are well described by self-avoiding walks (SAWs) on percolation clusters and a lot can be learned about the statistics of these polymers by studying the length distribution of SAWs on percolation clusters. This distribution encompasses 2 distinct averages, viz., the average over the conformations of the underlying cluster and the SAW conformations. For the latter average, there are two basic options, one being static and one being kinetic. It is well known for static averaging that if the disorder of the underlying medium is weak, this disorder is redundant in the sense the renormalization group; i.e., differences to the ordered case appear merely in nonuniversal quantities. Using dynamical field theory, we show that the same holds true for kinetic averaging. Our main focus, however, lies on strong disorder, i.e., the medium being close to the percolation point, where disorder is relevant. Employing a field theory for the nonlinear random resistor network in conjunction with a real-world interpretation of the corresponding Feynman diagrams, we calculate the scaling exponents for the shortest, the longest, and the mean or average SAW to 2-loop order. In addition, we calculate to 2-loop order the entire family of multifractal exponents that governs the moments of the the statistical weights of the elementary constituents (bonds or sites of the underlying fractal cluster) contributing to the SAWs. Our RG analysis reveals that kinetic averaging leads to renormalizability whereas static averaging does not, and hence, we argue that the latter does not lead to a well-defined scaling limit. We discuss the possible implications of this finding for experiments and numerical simulations which have produced widespread results for the exponent of the average SAW. To corroborate our results, we also study the well-known Meir-Harris model for SAWs on percolation clusters. We demonstrate that the Meir-Harris model leads back up to 2-loop order to the renormalizable real-world formulation with kinetic averaging if the replica limit is consistently performed at the first possible instant in the course of the calculation. PMID:22400528
Path integral for Koenigs spaces
Grosche, C., E-mail: Christian.Grosche@desy.d [II Institut fuer Theoretische Physik Universitaet Hamburg (Germany)
2008-05-15
I discuss a path-integral approach for the quantum motion on two-dimensional spaces according to Koenigs, for short 'Koenigs spaces'. Their construction is simple: one takes a Hamiltonian from a two-dimensional flat space and divides it by a two-dimensional superintegrable potential. These superintegrable potentials are the isotropic singular oscillator, the Holt potential, and the Coulomb potential. In all cases, a nontrivial space of nonconstant curvature is generated. We can study free motion and the motion with an additional superintegrable potential. For possible bound-state solutions, we find in all three cases an equation of the eighth order in the energy E. The special cases of the Darboux spaces are easily recovered by choosing the parameters accordingly.
Fragmentation paths in dynamical models
M. Colonna; A. Ono; J. Rizzo
2010-11-05
We undertake a quantitative comparison of multi-fragmentation reactions, as modeled by two different approaches: the Antisymmetrized Molecular Dynamics (AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment observables and pre-equilibrium (nucleon and light cluster) emission are analyzed, in connection to the underlying compression-expansion dynamics in each model. Considering reactions between neutron-rich systems, observables related to the isotopic properties of emitted particles and fragments are also discussed, as a function of the parametrization employed for the isovector part of the nuclear interaction. We find that the reaction path, particularly the mechanism of fragmentation, is different in the two models and reflects on some properties of the reaction products, including their isospin content. This should be taken into account in the study of the density dependence of the symmetry energy from such collisions.
Free path lengths in quasicrystals
Jens Marklof; Andreas Strömbergsson
2013-04-07
Previous studies of kinetic transport in the Lorentz gas have been limited to cases where the scatterers are distributed at random (e.g. at the points of a spatial Poisson process) or at the vertices of a Euclidean lattice. In the present paper we investigate quasicrystalline scatterer configurations, which are non-periodic, yet strongly correlated. A famous example is the vertex set of the Penrose tiling. Our main result proves the existence of a limit distribution of the free path length, which answers a question of Wennberg. The limit distribution is characterised by a certain random variable on the space of higher dimensional lattices, and is distinctly different from the exponential distribution observed for random scatterer configurations. The key ingredients in the proofs are equidistribution theorems on homogeneous spaces, which follow from Ratner's measure classification.
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Open Recreation Open Recreation Policy
Thomas, David D.
Open Recreation Open Recreation Policy These policies apply to all indoor and outdoor University Open Recreation. During Open Recreation some spaces may be scheduled to give priority to a specific abusive language, etc. Other Open Recreation policies are posted outside the North and South Gymnasium
Noppamas Pukkhem; Martha Evens; Wiwat Vatanawood
2006-01-01
Personalized learning paths are becoming more common in adaptive learning systems. In this paper we extend our earlier work by developing the Content Path Combination Model (CPCM) for integrating the design paths obtained from different instructional designers and making a strongly recommended course object sequence; presenting methodologies for handling two central tasks: (i) creating the linear sequence extensions that are
A Random Sampling Scheme for Path Planning
Latombe, Jean-Claude
precludes any useful application. This negative result has led some researchers to seek heuristic algorithms path planners have been proposed during the last few years. Their at tractiveness stems from for future research. 1 Introduction Robot path planning has been proven a hard problem [40]. There is strong
FESAC Development Path Meeting Draft Agenda
FESAC Development Path Meeting Draft Agenda October 28, 2002 9:00 - 9:35: 1) Structural Materials Development for MFE and IFE - Steve Zinkle What options could be possible for a 35-year Demo? ODS steels Development Path - Mohamed Abdou / Mike Ulrickson Speak about what a blanket is. Range of blanket options
Euclidean path modeling for video surveillance
Imran N. Junejo; Hassan Foroosh
2008-01-01
In this paper, we address the issue of Euclidean path modeling in a single camera for activity monitoring in a multi-camera video surveillance system. The method consists of a path building training phase and a testing phase. During the unsupervised training phase, after auto-calibrating a camera and thereafter metric rectifying the input trajectories, a weighted graph is constructed with trajectories
10 Metric Path Planning Chapter objectives
Sukthankar, Gita Reese
between continuous and event-driven replanning. 10.1 Objectives and Overview Metric path planning navigation focused on subgoals which are gateways or locations where the robot could change its primary heading. The terms "optimal" and "best" have serious ramifications for robotics. In order to say a path
Global path planning for Mars rover exploration
Paul Tompkins; Anthony Stentz; David Wettergreen
2004-01-01
TEMPEST is a planner for long-range planetary navigation that bridges the gap between path planning and classical planning and scheduling. In addition to planning routes, our approach yields the timing and placement of actions to conserve and restore expendable resources and that abide by operational constraints. TEMPEST calls upon the incremental search engine (ISE) to enable heuristic path planning and
Clearance Based Path Optimization for Motion Planning
Utrecht, Universiteit
of information and computing sciences, utrecht university technical report UUCS2003039 www.cs.uu.nl #12Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars institute; Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars Institute of Information
Clearance Based Path Optimization for Motion Planning
Utrecht, Universiteit
of information and computing sciences, utrecht university technical report UU-CS-2003-039 www.cs.uu.nl #12Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars institute;Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars Institute of Information
Learning Omnidirectional Path Following Using Dimensionality Reduction
Kolter, J. Zico
. INTRODUCTION In this paper we consider the task of omnidirectional path following: moving a four-legged robot in a circle while facing the circle's center, following a straight line while spinning around, or any otherLearning Omnidirectional Path Following Using Dimensionality Reduction J. Zico Kolter and Andrew Y
PARALLEL EVOLUTIONARY ALGORITHMS FOR UAV PATH PLANNING
PARALLEL EVOLUTIONARY ALGORITHMS FOR UAV PATH PLANNING Dong Jia Post-Doctoral Research Associate vehicles (UAVs). Premature convergence prevents evolutionary-based algorithms from reaching global optimal. To overcome this problem, this paper presents a framework of parallel evolutionary algorithms for UAV path
Lattice path combinatorics for multiple product identities
Larry Ericksen
2010-01-01
Lattice paths are enumerated as walks on a lattice under the Delannoy criterion of vertical, horizontal and upward diagonal steps. Delannoy recursions are generalized for arbitrary weights in each of these directions, where the row elements of the Delannoy triangles correspond to lattice paths for all walks at a given length.This paper surveys known connections between generating functions for Delannoy
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
Stable Billiard Paths on Polygons Yilong Yang
Varadarajan, Veeravalli S.
Stable Billiard Paths on Polygons Yilong Yang April 29, 2013 #12;Contents 1 Preface 2 2 Introduction to Mathematical Billiards 3 2.1 Basic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Space of Labeled n-gons and Stable Periodic Billiard Path
NASA Astrophysics Data System (ADS)
Kruijt, Bastiaan; Kascakova, Slavka; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Robinson, Dominic J.; Amelink, Arjen
2009-05-01
We present an optical method based on fluorescence spectroscopy for measuring chromophore concentrations in vivo. Fluorescence differential path length spectroscopy (FPDS) determines chromophore concentration based on the fluorescence intensity corrected for absorption. The concentration of the photosensitizer m-THPC (Foscan®) was studied in vivo in normal rat liver, which is highly vascularized and therefore highly absorbing. Concentration estimates of m-THPC measured by FDPS on the liver are compared with chemical extraction. Twenty-five rats were injected with 0.3 mg/kg m-THPC. In vivo optical concentration measurements were performed on tissue 3, 24, 48, and 96 h after m-THPC administration to yield a 10-fold variation in tissue concentration. After the optical measurements, the liver was harvested for chemical extraction. FDPS showed good correlation with chemical extraction. FDPS also showed a correlation between m-THPC fluorescence and blood volume fraction at the two shortest drug-light intervals. This suggests different compartmental localization of m-THPC for different drug-light intervals that can be resolved using fluorescence spectroscopy. Differences in measured m-THPC concentration between FDPS and chemical extraction are related to the interrogation volume of each technique; ~0.2 mm3 and ~102 mm3, respectively. This indicates intra-animal variation in m-THPC distribution in the liver on the scale of the FDPS sampling volume.
Improving WCET by Applying Worst-Case Path Optimizations
Mueller, Frank
the WCET by adapting and applying optimizations designed for frequent paths to the worst-case (WC) paths a timing analyzer to detect the WC paths in a function. Since these path-based optimizations may increase evaluate these WC path optimizations and present results showing the decrease in WCET versus the increase
On Third-party Addresses in Traceroute Paths
California at San Diego, University of
On Third-party Addresses in Traceroute Paths Young Hyun, Andre Broido, kc claffy CAIDA, San Diego relative to path beginning distribution relative to path end multihoming Conclusions #12;Motivation) BGP tables at RouteViews and RIPE AS paths derived from traceroute paths #12;Traceroute advantages
Issues and Paths to Magnetic Confinement Fusion Energy
Issues and Paths to Magnetic Confinement Fusion Energy Hutch Neilson Princeton Plasma Physics #12;Issues and Paths to MFE: Outline 2 Issues & Paths to MFE / H. Neilson / AAAS Meeting / 16 February are planning major facilities and next steps beyond ITER on the path to DEMO. Issues & Paths to MFE / H
Weighted Lattice Paths Coworkers: R. Brak, A. J. Guttmann,
Essam, John W.
Weighted Lattice Paths Coworkers: R. Brak, A. J. Guttmann, A. L. Owczarek and H. Lonsdale #12;Binomial Paths and the constant term method Method due to P A MacMahon ,Combinatory Analysis Vol. 2 1916 #12;Dyck and Ballot paths Â· A Dyck path is a lattice path which starts and ends on the x- axis
Periodic billiard paths in right triangles are W. Patrick Hooper
Hooper, Patrick
Periodic billiard paths in right triangles are unstable W. Patrick Hooper January 24, 2007 A billiard path in a triangle T is a bi-infinite path consisting of line segments in the interior of reflection. Billiard paths must never intersect the vertices of T. A periodic billiard path is a billiard
Periodic billiard paths in right triangles are W. Patrick Hooper
Hooper, Patrick
Periodic billiard paths in right triangles are unstable W. Patrick Hooper January 24, 2007 A billiard path ## in a triangle T is a biÂinfinite path consisting of line segments in the interior of reflection. Billiard paths must never intersect the vertices of T . A periodic billiard path is a billiard
Decision paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Gerbertian paths for the Jubilee
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2015-04-01
Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.
Half-lattice paths and Virasoro characters
Olivier B. -Fournier; Pierre Mathieu; Trevor A. Welsh
2011-09-03
We first briefly review the role of lattice paths in the derivation of fermionic expressions for the M(p,p') minimal model characters of the Virasoro Lie algebra. We then focus on the recently introduced half-lattice paths for the M(p,2p+/-1) characters, reformulating them in such a way that the two cases may be treated uniformly. That the generating functions of these half-lattice paths are indeed M(p,2p+/-1) characters is proved by describing weight preserving bijections between them and the corresponding RSOS lattice paths. Here, the M(p,2p-1) case is derived for the first time. We then apply the methods of Bressoud and Warnaar to these half-lattice paths to derive fermionic expressions for the Virasoro characters X^{p,2p+/-1}_{1,2} that differ from those obtained from the RSOS paths. This work is an extension of that presented by the third author at the "7th International Conference on Lattice Path Combinatorics and Applications", Siena, Italy, July 2010.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2011 CFR
2011-01-01
...2011-01-01 false Glide path automatic monitor system. 171.267 Section 171...171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment must provide an automatic monitor system that transmits a...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2013 CFR
2013-01-01
...2013-01-01 false Glide path automatic monitor system. 171.267 Section 171...171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment must provide an automatic monitor system that transmits a...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2012 CFR
2012-01-01
...2012-01-01 false Glide path automatic monitor system. 171.267 Section 171...171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment must provide an automatic monitor system that transmits a...