Sample records for open water fraction

  1. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  2. Nootropic Effects of Filipendula Vulgaris Moench Water Extract Fractions.

    PubMed

    Shilova, I V; Suslov, N I; Amelchenko, V P

    2015-07-01

    Nootropic activity of water extract fractions from aerial parts of Filipendula vulgaris Moench was demonstrated on the models of hermetic volume hypoxia, conditioned passive avoidance response, open field test, and forced swimming with a load. The fractions stimulated hypoxic resistance, normalized orientation and exploratory behavior, improved conditioned response reproduction during testing after hypoxic injury, and increased exercise tolerance. Fractionation of the extract led to dissociation of the effect components, which suggests that individual constituents have specific characteristics. Ethylacetate fraction exhibited most pronounced nootropic activity and was superior to plant extract by some characteristics. The detected effects seemed to be caused by modulation of the hippocampus activity the under the effects of phenol and triterpene compounds.

  3. Water dynamics in different biochar fractions.

    PubMed

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. Copyright © 2015 John Wiley & Sons, Ltd.

  4. X-ray backscatter radiography with lower open fraction coded masks

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.

  5. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water,more » local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.« less

  6. Trade Openness and Domestic Water Use

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Konar, Megan

    2018-01-01

    We contribute to the debate over globalization and the environment by asking, what is the impact of trade on national water use? To address this question, we employ econometric methods to quantify the causal relationship between trade openness and water use. Specifically, we use the instrumental variables methodology to evaluate the impact of trade openness on domestic water withdrawals in agriculture and industry. We find that trade openness does not have a significant impact on total or industrial water withdrawals. However, we show that one percentage point increase in trade openness leads to a 5.21% decrease in agricultural water withdrawals. We find that trade openness reduces water use in agriculture primarily through the intensive margin effect, by leading farmers to produce more with less water, such as through the adoption of technology. We do not find evidence for extensive margin or crop mix impacts on agricultural water withdrawals. Significantly, these results demonstrate that trade openness leads to less water use in agriculture. This finding has broad scientific and policy relevance as we endeavor to untangle causal relationships in the complex global food system and develop policies to achieve water and food security.

  7. Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions

    DOE PAGES

    Sadeghifar, Hasan; Wells, Tyrone; Le, Rosemary Khuu; ...

    2016-11-07

    In this study, lignin fractions with different molecular weight were prepared using a simple and almost green method from switchgrass and pine organosolv lignin. Different proportions of acetone in water, ranging from 30 to 60%, were used for lignin fractionation. A higher concentration of acetone dissolved higher molecular weight fractions of the lignin. Fractionated organosolv lignin showed different molecular weight and functional groups. Higher molecular weight fractions exhibited more aliphatic and less phenolic OH than lower molecular weight fractions. Lower molecular weight fractions lead to more homogeneous structure compared to samples with a higher molecular weight. In conclusion, all fractionsmore » showed strong antioxidant activity.« less

  8. Kinetic isotopic fractionation during diffusion of ionic species in water

    NASA Astrophysics Data System (ADS)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso, Abelardo D.

    2006-01-01

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine DLi/DK,D/D,D/D,D/D,andD/D. The measured ratio of the diffusion coefficients for Li and K in water (D Li/D K = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D/D=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D/D=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D/D=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.

  9. Water holding capacities of fly ashes: Effect of size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by themore » one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.« less

  10. Characteristics of elite open-water swimmers.

    PubMed

    VanHeest, Jaci L; Mahoney, Carrie E; Herr, Larry

    2004-05-01

    Open-water swimming (5, 10, and 25 km) has many unique challenges that separate it from other endurance sports, like marathon running and cycling. The characteristics of a successful open-water swimmer are unclear. The purpose of this study was to determine the physical and metabolic characteristics of a group of elite-level open-water swimmers. The open-water swimmers were participating in a 1-week training camp. Anthropometric, metabolic, and blood chemistry assessments were performed on the athletes. The swimmers had a VO(2)peak of 5.51 +/- 0.96 and 5.06 +/- 0.57 ml.kg(-1).min(-1) for males and females, respectively. Their lactate threshold (LT) occurred at a pace equal to 88.75% of peak pace for males and 93.75% for females. These elite open-water swimmers were smaller and lighter than competitive pool swimmers. They possess aerobic metabolic alterations that resulted in enhanced performance in distance swimming. Trainers and coaches should develop dry-land programs that will improve the athlete's muscular endurance. Furthermore, programs should be designed to increase the LT velocity as a percentage of peak swimming velocity.

  11. Study of natural organic matter fractions in water sources of Tehran.

    PubMed

    Zazouli, M A; Nasseri, S; Mahvi, A H; Mesdaghinia, A R; Gholami, M

    2007-05-15

    Natural Organic Matters (NOMs) are abundant in natural water resources and in many ways may affect the unit operations in water treatment. Although, NOMs are considered harmless but they have been recognized disinfection by-products precursors (DBP(s)) during the chlorination process. Formation of DBP(s) highly depends on the composition and concentration of NOM, which can be broadly divided into two fractions of hydrophobic (humic) and hydrophilic (non-humic) substances. The objective of this study was to determine Natural organic matter and its fractions concentration in the surface water sources of Tehran. Water sampling was conducted monthly between May to July 2006 in three rivers Lar, Jajrood and Karaj as the main drinking water supplying sources in Tehran. Quantitative parameters of pH, EC, UV254 and DOC were studied based on to standard methods. The XAD-7 resin method was used for fractionation of NOM. Results showed that NOM concentrations in Lar, Jajrood and Karaj rivers were 8.53, 12.9 and 11.3 mg L(-1), respectively. The HPO (hydrophobic) fraction was predominant compared to the HPI (hydrophilic) fraction in the all of water samples. The mean of total percent of HPO and HPI fractions were about 57 and 43%, respectively. Since the hydrophobic NOM fraction exhibits higher trihalomethane formation potential (THMFP) than hydrophilic NOM, Tehran water chlorination exhibits higher THMFP than haloacetic acid formation potential (HAAFP). The information obtained from this study may be further employed in the design of the control technique and management strategies for the water treatment plant, especially for DBP(s) reduction.

  12. Oxygen isotope fractionation between analcime and water - An experimental study

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  13. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  14. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  15. Composition of the water-soluble fraction of different cheeses.

    PubMed

    Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes

    2003-01-01

    Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.

  16. [Collagen fractions, obtained by water-salt extraction from animal fats].

    PubMed

    Nekliudov, A D; Berdutina, A V; Ivankin, A N; Mitaleva, S I; Evstaf'eva, E A

    2003-01-01

    Collagen fractions have been isolated by water-salt extraction from raw materials of animal origin (various tendon types or subcutaneous tissues of cattle, or porcine skin). Collagen fractions with maximum capacity for water and fat retention were isolated with high efficiency by water-salt solutions containing 1-10% sodium chloride at temperatures below 50 degrees C. The values of the effective constant of extraction rate (min-1) at pH 6.5, 9.0, and 12.0 were equal to (2.7 +/- 0.1) x 10(-3), (6.2 +/- 0.5) x 10(-3), and (15.4 +/- 0.7) x 10(-3), respectively. The optimum conditions found made it possible to isolate collagen those proteinaceous fractions that are of practical use in food industry.

  17. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  18. Using Open-Response Fraction Items to Explore the Relationship between Instructional Modalities and Students' Solution Strategies

    ERIC Educational Resources Information Center

    Shumway, Jessica F.; Moyer-Packenham, Patricia S.; Baker, Joseph M.; Westenskow, Arla; Anderson-Pence, Katie L.; Tucker, Stephen I.; Boyer-Thurgood, Jennifer; Jordan, Kerry E.

    2016-01-01

    The purpose of this study was to explore the relationship between instructional modality used for teaching fractions and third- and fourth-grade students' responses and strategies to open-response fraction items. The participants were 155 third-grade and 200 fourth-grade students from 17 public school classrooms. Students within each class were…

  19. An analysis of water data systems to inform the Open Water Data Initiative

    USGS Publications Warehouse

    Blodgett, David L.; Read, Emily K.; Lucido, Jessica M.; Slawecki, Tad; Young, Dwane

    2016-01-01

    Improving access to data and fostering open exchange of water information is foundational to solving water resources issues. In this vein, the Department of the Interior's Assistant Secretary for Water and Science put forward the charge to undertake an Open Water Data Initiative (OWDI) that would prioritize and accelerate work toward better water data infrastructure. The goal of the OWDI is to build out the Open Water Web (OWW). We therefore considered the OWW in terms of four conceptual functions: water data cataloging, water data as a service, enriching water data, and community for water data. To describe the current state of the OWW and identify areas needing improvement, we conducted an analysis of existing systems using a standard model for describing distributed systems and their business requirements. Our analysis considered three OWDI-focused use cases—flooding, drought, and contaminant transport—and then examined the landscape of other existing applications that support the Open Water Web. The analysis, which includes a discussion of observed successful practices of cataloging, serving, enriching, and building community around water resources data, demonstrates that we have made significant progress toward the needed infrastructure, although challenges remain. The further development of the OWW can be greatly informed by the interpretation and findings of our analysis.

  20. Chromium fractionation and speciation in natural waters.

    PubMed

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  1. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.

    PubMed

    Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri

    2016-07-28

    The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.

  2. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankovikj, Filip; McDonald, Armando G.; Helms, Gregory L.

    This paper reports a study of the chemical composition of the water soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt. % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC/MS, hydrolysable sugars and total carbohydrates), it is possible to quantify only between 45 and 50 wt. % of it. Our results confirm that most of the total carbohydrates (hydrolysable sugars and non-hydrolysable) are soluble in water. The ion chromatography hydrolysismore » method showed that between 11.6 and 17.3 wt. % of these oils were hydrolysable sugars. A small quantity of phenols detectable by GC/MS (between 2.5 and 3.9 wt. %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt. %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl and phenolic compounds in the WS fraction were quantified by titration, Folin-Ciocalteu, 31P-NMR and 1H-NMR. The WS fraction contains between 5.5 and 6.2 mmol/g of carbonyl groups, between 0.4 and 1.0 mmol/g of carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water soluble phenols, carbonyl and carboxyl groups and we estimated the content of WS phenols (21-27 wt. %), carbonyl (5-14 wt.%), and carboxyl (0-4 wt.%). Together with the total carbohydrates (23-27 wt.%), this approach leads to > 90 wt. % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolysable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and

  3. Mapping the future expansion of Arctic open water

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.

    2016-03-01

    Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.

  4. Evaporative fractionation of marine water isotopes in the Arctic Ocean help understand a changing Arctic water cycle

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Welker, J. M.

    2017-12-01

    Most of the global hydrologic cycle occurs in oceanic waters. This oceanic derived moisture is critical to the precipitation and evapotranspiration regimes that influence terrestrial Earth systems. Thus understanding oceanic water processes has important global implications for our knowledge of modern and past hydrologic cycles. As they are influenced by environmental variables such as sea surface temperature and atmospheric humidity, water isotope ratios (e.g., δ18O, δ2H) can help understand the patterns driving the water cycle. However, our knowledge of marine isotopes is relatively limited. In particular, the fractionation of water isotopes during evaporation of oceanic water, essentially the start of the hydrologic cycle, is largely based on theoretical relationships derived from spatially and temporally limited data sets. This constrained understanding of oceanic evaporation fractionation patterns is especially pronounced in the rapidly changing Arctic Ocean. These changes are associated with reduced sea ice coverage, which is increasing the amount of local Artic Ocean sourced moisture in atmospheric and terrestrial systems and amplifying the Arctic hydrologic cycle. Here we present new data revealing the nuances of evaporative fractionation of Arctic Ocean water isotopes with the first collection of continuous, contemporaneous sea water and vapor isotopes. These data, collected in situ aboard the icebreaker Healy, show that the difference between actual ocean vapor isotope values and vapor values estimated by the closure equation increases progressively with latitude (especially beyond 70°) and varies between δ18O and δ2H. These differences are likely due to more isotopic mixing in the troposphere and/or closure equation assumptions inapplicable to Arctic regions. Moreover, we find: 1) a positive relationship between fractionation magnitude and latitude; and 2) the influence of evaporative fractionation from environmental variables such as wind and

  5. Fraction of the global water cycle observed by SMAP

    NASA Astrophysics Data System (ADS)

    Mccoll, K. A.; Entekhabi, D.; Alemohammad, S. H.; Akbar, R.; Konings, A. G.; Yueh, S. H.

    2016-12-01

    Sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture (SSM). Using a full year of global observations from NASA's Soil Moisture Active Passive (SMAP) mission, we show here that SSM - a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces - plays a very significant role in the water cycle, retaining a median 16% of precipitation falling on land after 3 days. Furthermore, the retained fraction of the SSM storage after 3 days is highest (lowest) over arid (wet) regions, and in regions where drainage to groundwater storage is lowest (highest). The retained fraction decreases monotonically with increasing mean SSM. Regions of low retained fraction broadly correspond spatially with regions where groundwater recharge and groundwater storage are both largest. These analyses are the first global estimates - derived from measurements rather than models - of both the mean magnitude and memory time scales of the SSM storage. Beyond the fundamental importance of characterizing the magnitude and response time scales of Earth's water storages, a key application of these results is in identifying regions with strong land-atmosphere coupling. Significant soil moisture memory is a necessary condition for land-atmosphere feedbacks. These results may therefore have particularly important implications for short-term weather forecasting of extreme precipitation events and floods.

  6. Wind energy input into the upper ocean over a lengthening open water season

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  7. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  8. The Open Water Data Initiative: Water information for a thirsty nation

    USGS Publications Warehouse

    Rea, Alan; Clark, Edward; Adams, Angela; Samuels, William B.

    2015-01-01

    Initial efforts of the Open Water Data Initiative have focused on three use cases covering flooding, drought, and contaminant spill response, with a goal of identifying critical water data resources and making them more accessible. Significant progress has been made in the past year, although much remains to be done.

  9. Relationship between the water-exchangeable fraction of PAH and the organic matter composition of sediments.

    PubMed

    Belles, Angel; Alary, Claire; Mamindy-Pajany, Yannick; Abriak, Nor-Edine

    2016-12-01

    The sorption of PAH on 12 different sediments was investigated and was correlated to their corresponding organic matter (OM) content and quality. For this purpose, the OM was precisely characterized using thermal analysis consisting in the successive combustion and quantification of the increasingly thermostable fractions of the OM. Simultaneously, the water-exchangeable fraction of the sorbed PAH defined as the amount of PAH freely exchanged between the water and the sediment (by opposition to the PAH harshly sorbed to the sediments particles) was determined using a passive sampler methodology recently developed. The water concentrations, when the sediment-water system is equilibrated, were also assessed which allows the determination of the sediment-water distribution coefficients without artifacts introduced by the non water-exchangeable fraction of PAH. Hence, the present study provides the distribution coefficients of PAH between the water and 4 different OM fractions combusted at a specific temperature range. The calculated distribution coefficients demonstrate that the sedimentary OM combusted at the intermediate temperature range (between 300 °C and 450 °C) drives the reversible sorption of PAH while the inferred sorption to the OM combusted at a lower and higher temperature range does not dominate the partitioning process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China.

    PubMed

    Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao

    2008-06-01

    Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.

  11. Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.

    2013-07-01

    The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.

  12. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    USGS Publications Warehouse

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  13. 75 FR 13454 - Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...-AA08 Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY AGENCY: Coast... navigable waters of Huntington Bay, New York due to the annual Fran Schnarr Open Water Championships. The..., ``Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY'' (Docket number USCG...

  14. Microwave Determination of Water Mole Fraction in Humid Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.

    2012-09-01

    A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.

  15. Open data for water-related operational services, the SWITCH-ON approach

    NASA Astrophysics Data System (ADS)

    Mazzoli, Paolo; Bagli, Stefano; Valerio, Luzzi; Broccoli, Davide; Piccinini, Francesca

    2017-04-01

    Recently, a collaborative project started called SWITCH-ON (EU FP7 project No 603587) coordinated by SMHI (http://water-switch-on.eu/) as part of the contemporary European movement imposed by the INSPIRE directive and the Open Data Strategy. Among It's R&D activities GECOsistema develops and expands inside SWITCH-ON a set of online services to tackle major water related issues, from reservoir and irrigation supply, to hydrological change adaptation and hydropower potential mapping. Here we present major releases of APRIL, HyCAW and High-resolution European HydroPower Atlas; all of which make intense use of open data. APRIL is a tool for seasonal run-off forecasts, that takes advantage of open datasets or low-cost data and performs forecasts through calibrated machine learning algorithms. HyCAW is a wizard that supports the assessment of adaptation options to cope with change in the temporal distribution of water availability as well as in the total water quantity. EU HPA provides all relevant information necessary to appraise the feasibility of a micro-hydropower plant at a specific site, taking into account hydrological as well as technical and economic factors. All the tools share a common vision of the project to address water concerns and currently untapped potential of open data for improved water management across the EU. Users are guided through a Web GIS interface, created using open source Web Mapping Applications, Open-Layers and Map Server, to explore available hydrological information in the area of interest, plot available data, perform analysis, and get reports and statistics.

  16. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions.

    PubMed

    Castaldi, Paola; Garau, Giovanni; Melis, Pietro

    2008-01-01

    In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.

  17. Heat stroke risk for open-water swimmers during long-distance events.

    PubMed

    Macaluso, Filippo; Barone, Rosario; Isaacs, Ashwin W; Farina, Felicia; Morici, Giuseppe; Di Felice, Valentina

    2013-12-01

    Open-water swimming is a rapidly growing sport discipline worldwide, and clinical problems associated with long-distance swimming are now better recognized and managed more effectively. The most prevalent medical risk associated with an open-water swimming event is hypothermia; therefore, the Federation Internationale De Natation (FINA) has instituted 2 rules to reduce this occurrence related to the minimum water temperature and the time taken to complete the race. Another medical risk that is relevant to open-water swimmers is heat stroke, a condition that can easily go unnoticed. The purpose of this review is to shed light on this physiological phenomenon by examining the physiological response of swimmers during long-distance events, to define a maximum water temperature limit for competitions. We conclude that competing in water temperatures exceeding 33°C should be avoided. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  18. Nutrition considerations for open-water swimming.

    PubMed

    Shaw, Gregory; Koivisto, Anu; Gerrard, David; Burke, Louise M

    2014-08-01

    Open-water swimming (OWS) is a rapidly developing discipline. Events of 5-25 km are featured at FINA World Championships, and the international circuit includes races of 5-88 km. The Olympic OWS event, introduced in 2008, is contested over 10 km. Differing venues present changing environmental conditions, including water and ambient temperatures, humidity, solar radiation, and unpredictable tides. Furthermore, the duration of most OWS events (1-6 hr) creates unique physiological challenges to thermoregulation, hydration status, and muscle fuel stores. Current nutrition recommendations for open-water training and competition are either an extension of recommendations from pool swimming or are extrapolated from other athletic populations with similar physiological requirements. Competition nutrition should focus on optimizing prerace hydration and glycogen stores. Although swimmers should rely on self-supplied fuel and fluid sources for shorter events, for races of 10 km or greater, fluid and fuel replacement can occur from feeding pontoons when tactically appropriate. Over the longer races, feeding pontoons should be used to achieve desirable targets of up to 90 g/ hr of carbohydrates from multitransportable sources. Exposure to variable water and ambient temperatures will play a significant role in determining race nutrition strategies. For example, in extreme environments, thermoregulation may be assisted by manipulating the temperature of the ingested fluids. Swimmers are encouraged to work with nutrition experts to develop effective and efficient strategies that enhance performance through appropriate in-competition nutrition.

  19. Changes in sub-soil river water quality upon its open storage-a case study.

    PubMed

    Mohanty, A K; Satpathy, K K; Prasad, M V R

    2017-08-01

    A study was carried out to investigate the changes in the physicochemical and biological properties of sub-soil river water upon its storage in a man-made reservoir. Palar sub-soil and reservoir water samples were collated fortnightly for a period of 5 years (2010-2014). The open reservoir is used as a reliable raw water source for condenser cooling systems and for the demineralizing (DM) plant input of Fast Breeder Test Reactor (FBTR), Madras Atomic Power Station (MAPS), and other laboratories at Kalpakkam, southeast coast of India. Relatively high nutrient concentration was observed in the Palar sub-soil water, and a significant reduction in average concentration (μmol l -1 ) of phosphate (Palar 1.92; open reservoir 1.54) and nitrate (Palar 9.78; open reservoir 5.67) was observed from Palar to open reservoir. Substantial increase in pH (Palar 8.05; open reservoir 8.45), dissolved oxygen (mg l -1 ) (Palar 6.07; open reservoir 8.47), and chlorophyll-a (mg m -3 ) (Palar 1.66; open reservoir 8.43) values were noticed from the Palar sub-soil water to open reservoir water. It is concluded that sub-soil water with higher nutrient concentrations when stored openly, exposing to the sun, resulted in growth of plants, planktonic, and macrophytes, which led to substantial deterioration in water quality from its utility point of view as a condenser cooling medium and raw water input for DM plant.

  20. Factors influencing the dissolved iron input by river water to the open ocean

    NASA Astrophysics Data System (ADS)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  1. Factors influencing the dissolved iron input by river water to the open ocean

    NASA Astrophysics Data System (ADS)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  2. 43 CFR 2091.5-4 - Segregative effect and opening: Water power withdrawals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Segregative effect and opening: Water power withdrawals. 2091.5-4 Section 2091.5-4 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.5-4 Segregative effect and opening: Water power...

  3. 43 CFR 2091.5-4 - Segregative effect and opening: Water power withdrawals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Segregative effect and opening: Water power withdrawals. 2091.5-4 Section 2091.5-4 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.5-4 Segregative effect and opening: Water power...

  4. 43 CFR 2091.5-4 - Segregative effect and opening: Water power withdrawals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Segregative effect and opening: Water power withdrawals. 2091.5-4 Section 2091.5-4 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.5-4 Segregative effect and opening: Water power...

  5. The effect of aggregation on visibility in open water

    PubMed Central

    2016-01-01

    Aggregation is a common life-history trait in open-water taxa. Qualitative understanding of how aggregation by prey influences their encounter rates with predators is critical for understanding pelagic predator–prey interactions and trophic webs. We extend a recently developed theory on underwater visibility to predict the consequences of grouping in open-water species in terms of increased visual detection of groups by predators. Our model suggests that enhanced visibility will be relatively modest, with maximum detection distance typically only doubling for a 100-fold increase in the number of prey in a group. This result suggests that although larger groups are more easily detected, this cost to aggregation will in many cases be dominated by benefits, especially through risk dilution in situations where predators cannot consume all members of a discovered group. This, in turn, helps to explain the ubiquity of grouping across a great variety of open-water taxa. PMID:27655767

  6. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but

  7. Moving in extreme environments: open water swimming in cold and warm water

    PubMed Central

    2014-01-01

    Open water swimming (OWS), either ‘wild’ such as river swimming or competitive, is a fast growing pastime as well as a part of events such as triathlons. Little evidence is available on which to base high and low water temperature limits. Also, due to factors such as acclimatisation, which disassociates thermal sensation and comfort from thermal state, individuals cannot be left to monitor their own physical condition during swims. Deaths have occurred during OWS; these have been due to not only thermal responses but also cardiac problems. This paper, which is part of a series on ‘Moving in Extreme Environments’, briefly reviews current understanding in pertinent topics associated with OWS. Guidelines are presented for the organisation of open water events to minimise risk, and it is concluded that more information on the responses to immersion in cold and warm water, the causes of the individual variation in these responses and the precursors to the cardiac events that appear to be the primary cause of death in OWS events will help make this enjoyable sport even safer. PMID:24921042

  8. In Situ Mo Isotope Fractionation in the Water Columns of Euxinic Basins

    NASA Astrophysics Data System (ADS)

    Neubert, N.; Nägler, T. F.; Böttcher, M. E.

    2007-12-01

    The present study investigates for the first time the overall process of molybdenum (Mo) scavenging in modern euxinic systems using Mo concentration and stable isotope measurements. We analyzed samples from three different sites: The Black Sea, the largest permanently euxinic basin, and two anoxic basins of the Baltic Sea, the Gotland Deep and the Landsort Deep which have maximum water depths of 247 m and 459 m, respectively. Water column profiles, as well as surface sediment samples, were recovered from different water depths. Mo is a redox-sensitive trace metal which is soluble as the molybdate oxyanion in oxic seawater with a residence time of about 800 ka. The isotope signature of Mo is a relatively new proxy used to reconstruct the paleo-redox conditions of the Earth's atmosphere and the oceanic system. The Mo isotope composition in seawater is homogeneous (Siebert et al. 2003). Scavenging of Mo under euxinic conditions is related to the amount of free sulfide in the water column. Near total removal of Mo from the water column is reached at aquatic sulfide concentration of c. 11 μM (Erickson and Helz 2000). In the Black Sea this corresponds to a water depth of about 400 m. Sediment samples of the Black Sea from more then 400 m water depth show seawater isotopic composition, in line with the assumption of bulk Mo removal. However, shallower sediments deposited under lower aquatic sulfide concentrations show significant Mo isotope fractionation. The Baltic Sea oceanographic conditions, including temporary bottom water oxygenation due to sporadic North Sea water inflows, are more complex than in the Black Sea. The aquatic sulfide concentration in the water column is less than 5 μM in the two anoxic troughs. As expected from this lower sulfidity, the surface sediments show Mo fractionation similar to the oxic to slightly euxinic sediments of the Black Sea. Our new results on the Mo isotopic composition in euxinic water columns clearly indicate in situ

  9. Open Data, Open Specifications and Free and Open Source Software: A powerful mix to create distributed Web-based water information systems

    NASA Astrophysics Data System (ADS)

    Arias, Carolina; Brovelli, Maria Antonia; Moreno, Rafael

    2015-04-01

    We are in an age when water resources are increasingly scarce and the impacts of human activities on them are ubiquitous. These problems don't respect administrative or political boundaries and they must be addressed integrating information from multiple sources at multiple spatial and temporal scales. Communication, coordination and data sharing are critical for addressing the water conservation and management issues of the 21st century. However, different countries, provinces, local authorities and agencies dealing with water resources have diverse organizational, socio-cultural, economic, environmental and information technology (IT) contexts that raise challenges to the creation of information systems capable of integrating and distributing information across their areas of responsibility in an efficient and timely manner. Tight and disparate financial resources, and dissimilar IT infrastructures (data, hardware, software and personnel expertise) further complicate the creation of these systems. There is a pressing need for distributed interoperable water information systems that are user friendly, easily accessible and capable of managing and sharing large volumes of spatial and non-spatial data. In a distributed system, data and processes are created and maintained in different locations each with competitive advantages to carry out specific activities. Open Data (data that can be freely distributed) is available in the water domain, and it should be further promoted across countries and organizations. Compliance with Open Specifications for data collection, storage and distribution is the first step toward the creation of systems that are capable of interacting and exchanging data in a seamlessly (interoperable) way. The features of Free and Open Source Software (FOSS) offer low access cost that facilitate scalability and long-term viability of information systems. The World Wide Web (the Web) will be the platform of choice to deploy and access these systems

  10. Aggregation in environmental systems - Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-01-01

    Methods for estimating mean transit times from chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) commonly assume that catchments are stationary (i.e., time-invariant) and homogeneous. Real catchments are neither. In a companion paper, I showed that catchment mean transit times estimated from seasonal tracer cycles are highly vulnerable to aggregation error, exhibiting strong bias and large scatter in spatially heterogeneous catchments. I proposed the young water fraction, which is virtually immune to aggregation error under spatial heterogeneity, as a better measure of transit times. Here I extend this analysis by exploring how nonstationarity affects mean transit times and young water fractions estimated from seasonal tracer cycles, using benchmark tests based on a simple two-box model. The model exhibits complex nonstationary behavior, with striking volatility in tracer concentrations, young water fractions, and mean transit times, driven by rapid shifts in the mixing ratios of fluxes from the upper and lower boxes. The transit-time distribution in streamflow becomes increasingly skewed at higher discharges, with marked increases in the young water fraction and decreases in the mean water age, reflecting the increased dominance of the upper box at higher flows. This simple two-box model exhibits strong equifinality, which can be partly resolved by simple parameter transformations. However, transit times are primarily determined by residual storage, which cannot be constrained through hydrograph calibration and must instead be estimated by tracer behavior. Seasonal tracer cycles in the two-box model are very poor predictors of mean transit times, with typical errors of several hundred percent. However, the same tracer cycles predict time-averaged young water fractions (Fyw) within a few percent, even in model catchments that are both nonstationary and spatially heterogeneous (although they may be biased by roughly 0.1-0.2 at sites where strong

  11. Addressing Open Water Data Challenges in the Bureau of Reclamation

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Danner, A.; Nagode, J.; Rocha, J.; Poulton, S.; Anderson, A.

    2017-12-01

    The Bureau of Reclamation is largest wholesaler of water in the United States. Located in the 17 western states, Reclamation serves water to 31 million people, provides irrigated water to 20 percent of Western farmers, and is the second largest producer of hydroelectric power in the United States. Through these activities, Reclamation generates large amounts of water and water-related data, describing reservoirs and river system conditions, hydropower, environmental compliance activities, infrastructure assets, and other aspects of Reclamation's mission activities. Reclamation aims to make water and water-related data sets more easily found, accessed, and used in decision-making activities in order to benefit the public, private sector, and research communities. Historically, there has not been an integrated, bureau-wide system to store data in machine-readable formats; nor a system to permit centralized browsing, open access, and web-services. Reclamation began addressing these limitations by developing the Reclamation Water Information System (RWIS), released in Spring 2017 (https://water.usbr.gov/). A bureau-wide team contributed to RWIS development, including water data stewards, database administrators, and information technology (IT) specialists. The first RWIS release publishes reservoir time series data from Reclamation's five regions and includes a map interface for sites identification, a query interface for data discovery and access, and web-services for automated retrieval. As RWIS enhancement continues, the development team is developing a companion system - the Reclamation Information Sharing Environment (RISE) - to provide access to the other data subjects and types (geospatial, documents). While RWIS and RISE are promising starts, Reclamation continues to face challenges in addressing open water data goals: making data consolidation and open publishing a value-added activity for programs that publish data locally, going beyond providing open access

  12. Instrumenting free-swimming dolphins echolocating in open water.

    PubMed

    Martin, Stephen W; Phillips, Michael; Bauer, Eric J; Moore, Patrick W; Houser, Dorian S

    2005-04-01

    Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation.

  13. Instrumenting free-swimming dolphins echolocating in open water

    NASA Astrophysics Data System (ADS)

    Martin, Stephen W.; Phillips, Michael; Bauer, Eric J.; Moore, Patrick W.; Houser, Dorian S.

    2005-04-01

    Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation. .

  14. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus.

    PubMed

    Zhang, Mei; Zhu, Lin; Cui, Steve W; Wang, Qi; Zhou, Ting; Shen, Hengsheng

    2011-01-01

    Fractionation and purification of mushroom polysaccharides is a critical process for mushroom clinical application. After a hot-water treatment, the crude Pleurotus geesteranus (PG) was further fractionated into four fractions (PG-1, -2, -3, -4) using gradient precipitation with water and ammonia sulphate. By controlling the initial polymer concentration and ratio of solvents, this process produced PG fractions with high chemical uniformity and narrow Mw distribution without free proteins. Structurally, PG-1 and PG-2 are pure homopolysaccharide mainly composed of glucose; and PG-3 and PG-4 are heteropolysaccharide-protein complexes. PG-2, a high M(w) fraction mainly composed of glucose presented significant cytotoxicity at the concentration of 200 and 100 μg/ml to human breast cancer cells. Here, we report a new mushroom polysaccharides extraction and fractionation method, with which we produced four fractions of PG with PG-2 appearing effective anti-tumour activity. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  15. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.

    PubMed

    Cruz-Hernández, Yusniel; Ruiz-García, Mismel; Villalobos, Mario; Romero, Francisco Martin; Meza-Figueroa, Diana; Garrido, Fernando; Hernández-Alvarez, Elizabeth; Pi-Puig, Teresa

    2018-06-01

    Mining and metallurgy generate residues that may contain thallium (Tl), a highly toxic metal, for which it is currently not feasible to determine its geochemical speciation through X-ray absorption spectroscopy due to a combination of very low contents and the interference of accompanying high arsenic contents. Therefore, fractionation studies in residues and soils are required to analyze the mobility and bioavailability of this metal, which in turn provide information to infer its speciation. For this purpose, in this work a modification of the BCR procedure was applied to residues and contaminated soils from three mining zones of Mexico and two mining zones of Spain, spanning samples with acidic to alkaline pH values. The Tl extraction procedure consisted of the following fractions: (1) water-extractable, (2) easily exchangeable and associated to carbonates, associated to (3) poorly-crystalline and (4) crystalline Fe and Mn oxyhydroxides, and (5) associated to organic matter and sulfides; and finally a residual fraction as associated to refractory primary and other secondary minerals. The extracted contents were analyzed by Inductively-Coupled Plasma with Mass Spectrometry. Surprisingly, water-soluble, in Tl(I) oxidation state, was detected in most areas, regardless of the pH, a fact that has not been reported before in these environments, and alerts to potential health risks not previously identified. Most of the samples from a metallurgy area showed high levels of Tl in non-residual fractions and a strong correlation was obtained between extracted Mn and Tl in the third fraction, suggesting its association to poorly crystalline manganese oxides. In the majority of samples from purely mining environments, most of the Tl was found in the residual fraction, most probably bound to alumino-silicate minerals. The remaining Tl fractions were extracted mainly associated to the reducible mineral fractions, and in one case also in the oxidizable fraction (presumably

  16. Assessment of the urban water system with an open ...

    EPA Pesticide Factsheets

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest

  17. Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells

    PubMed Central

    Li, Chunmei

    2011-01-01

    The hawthorn fruit (Crataegus pinnatifida Bunge var. typica Schneider) is used as a traditional medicine in Korea. The objective of this study was to understand the mechanisms of the anti-inflammatory effects of the water fractionated portion of hawthorn fruit on a lipopolysaccharide (LPS)-stimulated RAW 264.7 cellular model. The level of nitric oxide (NO) production in the water fraction and LPS-treated RAW 264.7 cells were determined with an ELISA. The cytotoxicity of the water fraction and LPS was measured with an MTT assay. Expression of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), and interleukin 1β (IL-1β) mRNA were analyzed with a reverse transcription polymerase chain reaction (RT-PCR). The water fraction of hawthorn fruit was determined to be safe and significantly inhibited NO production in LPS-stimulated RAW 264.7 cells and suppressed COX-2, TNF-α, IL-1β, and IL-6 expression. The observed anti-inflammatory effects of the water fraction of hawthorn fruit might be attributed to the down-regulation of COX-2, TNF-α, IL-1β, and IL-6 expression in LPS-stimulated RAW 264.7 cells. PMID:21556222

  18. Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 °C, 50 MPa

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    2009-01-01

    Oxygen and hydrogen isotope fractionation factors in the talc–water and serpentine–water systems have been determined by laboratory experiment from 250 to 450 °C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450 °C. For serpentine, D–H exchange was much more rapid than 18O–16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O–16O exchange with the coexisting aqueous phase. Oxygen isotope fractionation factors in both the talc–water and serpentine–water systems decrease with increasing temperature and can be described from 250 to 450 °C by the relationships: 1000 ln  = 11.70 × 106/T2 − 25.49 × 103/T + 12.48 and 1000 ln  = 3.49 × 106/T2 − 9.48 where T is temperature in Kelvin. Over the same temperature interval at 50 MPa, talc–water D–H fractionation is only weakly dependent on temperature, similar to brucite and chlorite, and can be described by the equation: 1000 ln  = 10.88 × 106/T2 − 41.52 × 103/T + 5.61 where T is temperature in Kelvin. Our D–H serpentine–water fractionation factors calibrated by experiment decrease with temperature and form a consistent trend with fractionation factors derived from lower temperature field calibrations. By regression of these data, we have refined and extended the D–H fractionation curve from 25 to 450 °C, 50 MPa as follows: 1000 ln  = 3.436 × 106/T2 − 34.736 × 103/T + 21.67 where T is temperature in Kelvin. These new data should improve the application of D–H and 18O–16O isotopes to constrain the temperature and origin of hydrothermal fluids responsible for serpentine formation in a variety of geologic settings.

  19. Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1

    PubMed Central

    Santakumari, Mane; Berkowitz, Gerald A.

    1989-01-01

    Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983

  20. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil.

    PubMed

    Ray, Phoebe Z; Chen, Huan; Podgorski, David C; McKenna, Amy M; Tarr, Matthew A

    2014-09-15

    In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid-liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O5), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O2). Higher-order oxygen classes (O5-O9) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N1) concurrent with an increased abundance of N1Ox classes after irradiation. The predominance of higher-order oxygen classes indicates that multiple photochemical pathways exist that result in oxidation of petroleum compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sedimentary denitrification: Isotope fractionation and its impact on water column nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Dähnke, K.; Thamdrup, B.

    2012-04-01

    The global marine nitrogen cycle is constrained by one major source and two processes that act as nitrogen sinks: nitrogen fixation on the one side and denitrification or anammox on the other. These processes with their respective isotope effecst set the marine nitrate 15N-isotope value to a relatively constant average of 5 per mil. This value can be used to better assess the magnitude of these source and sink terms, but the underlying assumption at present is that sedimentary denitrification, a process responsible for approximately one third of global nitrogen removal, has little to no isotope effect on the water column. We tested this hypothesis in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, Northern Germany). We found tremendously high denitrification rates, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 19 per mil for nitrogen and 11 per mil for oxygen in nitrate. These results potentially challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculation may need to consider this variability. Furthermore, the ratio of fractionation factors for nitrogen and oxygen is distinct from the 1 : 1 ratio otherwise found in marine systems, and suggests that isotope kinetics of sedimentary denitrification might be entirely different from water column denitrification. Acknowledgements: This work was funded by the German Research Foundation (DFG) and in parts by the Danish National Research Foundation.

  3. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  4. Performance of a pervaporation system for the separation of an ethanol-water mixture using fractional condensation.

    PubMed

    Liu, Jie; Li, Jiding; Chen, Quan; Li, Xiaoduan

    2018-04-01

    Polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes were fabricated and subsequently applied in ethanol recovery from an ethanol-water mixture by pervaporation (PV) using fractional condensation. The effects of feed temperature and feed flow velocity on the pervaporative properties of PDMS/PVDF composite membranes were investigated. Scanning electron microscopy (SEM) results showed that PDMS was coated uniformly on the surface of porous PVDF substrate, and the PDMS separation layer was dense with a thickness of 1.7 µm. Additionally, it was found that with increasing feed temperature, the total flux of the composite membrane increased, whereas the separation factor decreased. As the feed flow velocity increased, the total flux and separation factor increased. Besides, the permeate vapor was condensed by a two-stage fractional condenser maintained at different temperatures. The effects of the condensation conditions on fractions of ethanol-water vapor were studied to concentrate ethanol in product. The fractional condensers proved to be an effective way to enhance the separation efficiency. Under the optimum fractional condensation conditions, the second condenser showed a flux of 1,329 g/m 2 h and the separation factor was increased to 17.2. Furthermore, the long-term operation stability was verified, indicating that the PV system incorporating fractional condensation was a promising approach to separate ethanol from the ethanol-water mixture.

  5. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Using fractional polynomials to estimate the safety threshold of fluoride in drinking water].

    PubMed

    Pan, Shenling; An, Wei; Li, Hongyan; Yang, Min

    2014-01-01

    To study the dose-response relationship between fluoride content in drinking water and prevalence of dental fluorosis on the national scale, then to determine the safety threshold of fluoride in drinking water. Meta-regression analysis was applied to the 2001-2002 national endemic fluorosis survey data of key wards. First, fractional polynomial (FP) was adopted to establish fixed effect model, determining the best FP structure, after that restricted maximum likelihood (REML) was adopted to estimate between-study variance, then the best random effect model was established. The best FP structure was first-order logarithmic transformation. Based on the best random effect model, the benchmark dose (BMD) of fluoride in drinking water and its lower limit (BMDL) was calculated as 0.98 mg/L and 0.78 mg/L. Fluoride in drinking water can only explain 35.8% of the variability of the prevalence, among other influencing factors, ward type was a significant factor, while temperature condition and altitude were not. Fractional polynomial-based meta-regression method is simple, practical and can provide good fitting effect, based on it, the safety threshold of fluoride in drinking water of our country is determined as 0.8 mg/L.

  7. Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI

    EPA Science Inventory

    Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...

  8. The fractional urinary fluoride excretion of adults consuming naturally and artificially fluoridated water and the influence of water hardness: a randomized trial.

    PubMed

    Villa, A; Cabezas, L; Anabalón, M; Rugg-Gunn, A

    2009-09-01

    To assess whether there was any significant difference in the average fractional urinary fluoride excretion (FUFE) values among adults consuming (NaF) fluoridated Ca-free water (reference water), naturally fluoridated hard water and an artificially (H2SiF6) fluoridated soft water. Sixty adult females (N=20 for each treatment) participated in this randomized, double-blind trial. The experimental design of this study provided an indirect estimation of the fluoride absorption in different types of water through the assessment of the fractional urinary fluoride excretion of volunteers. Average daily FUFE values (daily amount of fluoride excreted in urine/daily total fluoride intake) were not significantly different between the three treatments (Kruskal-Wallis; p = 0.62). The average 24-hour FUFE value (n=60) was 0.69; 95% C.I. 0.65-0.73. The results of this study suggest that the absorption of fluoride is not affected by water hardness.

  9. Biochemical and hematological changes following the 120-km open-water marathon swim.

    PubMed

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  10. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    NASA Astrophysics Data System (ADS)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  11. An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-08-01

    As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.

  12. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

  14. Chemical Analysis of Water-accommodated Fractions of Crude Oil Spills Using TIMS-FT-ICR MS.

    PubMed

    Benigni, Paolo; Marin, Rebecca; Sandoval, Kathia; Gardinali, Piero; Fernandez-Lima, Francisco

    2017-03-03

    Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.

  15. Effect of Land Cover Type and Structure on Water Cycling Dynamics for Agricultural and Wetland Sites in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Eichelmann, E.; Hemes, K. S.; Baldocchi, D. D.

    2016-12-01

    The Sacramento/San Joaquin river delta is an important source of fresh water for California. To reverse soil subsidence, which is linked to draining the natural wetlands for agriculture, parts of the Sacramento/San Joaquin river delta have been restored to managed wetlands. While these restored wetlands provide greenhouse gas benefits compared to agricultural use of the land, implications for the water balance of these ecosystems, specifically evapotranspiration, are not well known. Based on multiple years of eddy covariance measurements of water, CO2, and sensible energy fluxes we explored the water cycling dynamics for several sites under different land use covers in the Sacramento/San Joaquin river delta. We investigated four sites under agricultural use (rice, corn, and alfalfa crops and cow pasture) and three restored wetland sites of varying ages and structures to examine the influence of land cover type and structure on evapotranspiration, sensible energy flux, and water use efficiency. While the wetland and the rice sites are usually flooded for the majority of the year, the alfalfa, corn, and pasture sites have a water table that is maintained to be below ground level throughout the year. The three wetland sites also have different fractions of open water to vegetation, covering a gradient from very dense vegetation with no open water to a fairly open structure with large pools of open water. These differences in land cover (dry vs flooded and fraction of open water to vegetation) have an effect on the patterns of evapotranspiration on diurnal to annual timescales. Although the flooded sites (wetland sites and rice) tend to have larger annual evapotranspiration than the drained sites (cow pasture, alfalfa, and corn), the fraction of open water to vegetation affects the extend to which the flooded sites' evapotranspiration exceeds that of drained sites. On diurnal timescales, we found that flooded sites with a larger fraction of open water to vegetation

  16. High resolution microprofiling, fractionation and speciation at sediment water interfaces

    NASA Astrophysics Data System (ADS)

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.

    2016-04-01

    Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (<500 μL) at a spatial high resolution of a few millimetres to sub-millimetres [2]. Via the application of different sample preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also

  17. Peatland Open-water Pool Biogeochemistry: The Influence of Hydrology and Vegetation

    NASA Astrophysics Data System (ADS)

    Arsenault, J.; Talbot, J.; Moore, T. R.

    2017-12-01

    Peatland open-water pools are net sources of carbon to the atmosphere. However, their interaction with the surrounding peat remains poorly known. In a previous study, we showed that shallow pools are richer in nutrients than deep pools. While depth was the main driver of biogeochemistry variations across time and space, analyses also showed that pool's adjacent vegetation may have an influence on water chemistry. Our goal is to understand the relationship between the biogeochemistry of open-water pools and their surroundings in a subboreal ombrotrophic peatland of southern Quebec (Canada). To assess the influence of vegetation on pool water chemistry, we compare two areas covered with different types of vegetation: a forested zone dominated by spruce trees and an open area mostly covered by Sphagnum spp. To evaluate the direction of water (in or out of the pools), we installed capacitance water level probes in transects linking pools in the two zones. Wells were also installed next to each probe to collect peat pore water samples. Samples were taken every month during summer 2017 and analyzed for dissolved organic carbon, nitrogen and phosphorus, pH and specific UV absorbance. Preliminary results show differences in peat water chemistry depending on the dominant vegetation. In both zones, water levels fluctuations are disconnected between peat and the pools, suggesting poor horizontal water movement. Pool water chemistry may be mostly influenced by the immediate surrounding vegetation than by the local vegetation pattern. Climate and land-use change may affect the vegetation structure of peatlands, thus affecting pool biogeochemistry. Considering the impact of pools on the overall peatland capacity to accumulate carbon, our results show that more focus must be placed on pools to better understand peatland stability over time.

  18. Control of water erosion and sediment in open cut coal mines in tropical areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, T.; Nugraha, C.; Matsui, K.

    2005-07-01

    The purpose is to reduce the environmental impacts from open cut mining in tropical areas, such as Indonesia and Vietnam. Research conducted on methods for the control of water erosion and sediment from open cut coal mines is described. Data were collected on climate and weathering in tropical areas, mechanism of water erosion and sedimentation, characteristics of rocks in coal measures under wet conditions, water management at pits and haul roads and ramps, and construction of waste dumps and water management. The results will be applied to the optimum control and management of erosion and sediments in open cut mining.more » 6 refs., 8 figs.« less

  19. Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology.

    PubMed

    Krám, Pavel; Hruska, Jakub; Driscoll, Charles T; Johnson, Chris E; Oulehle, Filip

    2009-11-01

    Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 micromol L(-1)) and inorganic monomeric Al (Ali) concentrations (27 micromol L(-1)) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 micromol L(-1) (Alt) and 13 micromol L(-1) (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al.

  20. Characteristics and Challenges of Open-Water Swimming Performance: A Review.

    PubMed

    Baldassarre, Roberto; Bonifazi, Marco; Zamparo, Paola; Piacentini, Maria Francesca

    2017-11-01

    Although the popularity of open-water swimming (OWS) events has significantly increased in the last decades, specific studies regarding performance of elite or age-group athletes in these events are scarce. To analyze the existing literature on OWS. Relevant literature was located via computer-generated citations. During August 2016, online computer searches on PubMed and Scopus databases were conducted to locate published research. The number of participants in ultraendurance swimming events has substantially increased in the last 10 y. In elite athletes there is a higher overall competitive level of women than of men. The body composition of female athletes (different percentage and distribution of fat tissue) shows several advantages (more buoyancy and less drag) in aquatic conditions that determine the small difference between males and females. The main physiological characteristics of open-water swimmers (OW swimmers) are the ability to swim at high percentage of [Formula: see text] (80-90%) for many hours. Furthermore, to sustain high velocity for many hours, endurance swimmers need a high propelling efficiency and a low energy cost. Open-water races may be characterized by extreme environmental conditions (water temperature, tides, currents, and waves) that have an overall impact on performance, influencing tactics and pacing. Future studies are needed to study OWS in both training and competition.

  1. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel fractionation approach for water constituents - distribution of storm event metals.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-05-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.

  3. Tensions between opening up and closing down moments in transdisciplinary water research

    NASA Astrophysics Data System (ADS)

    Krueger, Tobias; Maynard, Carly; Carr, Gemma; Bruns, Antje; Mueller, Eva; Lane, Stuart

    2016-04-01

    Research on water is carried out by many disciplines that do not really talk to each other much, despite critical interactions of multiple social and biophysical processes in shaping how much and what kind of water is where, at what time and for whom. What is more, water has meaning to more than those who are scientists. And scientists are not so removed from the things they study as one might commonly believe. All these observations call for a transdisciplinary research agenda that brings together different scientific disciplines with the knowledge that other groups in society hold and that tries to be aware of its own limitations. The transdisciplinary perspective is especially pertinent to the scientific decade 2013-2022 of the International Association of Hydrological Sciences (IAHS) on change in hydrology and society, 'Panta Rhei,' for a balanced conceptualization and study of human-water relations. Transdisciplinarity is inherently about opening up traditional modes of knowledge production; in terms of framing the research problem, the methodology and the knowledge that is considered permissible. This should open up the range of options for management intervention, too. While decisions on how to intervene will inevitably close down the issue periodically, the point here is to leave alternative routes of action open long enough, or reopen them again, so as to counter unsustainable and inequitable path-dependencies and lock-ins. However, opening up efforts are frequently in conflict with factors that work to close down knowledge production. Among those are framings, path-dependencies, vested interests, researchers' positionalities, power, and scale. In this presentation, based on Krueger et al. (2016), we will reflect on the tensions between opening up and closing down moments in transdisciplinary water research and draw important practical lessons. References Krueger, T., Maynard, C.M., Carr, G., Bruns, A., Mueller, E.N. and Lane, S.N. (forthcoming in 2016) A

  4. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    PubMed

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  5. Web Mapping Architectures Based on Open Specifications and Free and Open Source Software in the Water Domain

    NASA Astrophysics Data System (ADS)

    Arias Muñoz, C.; Brovelli, M. A.; Kilsedar, C. E.; Moreno-Sanchez, R.; Oxoli, D.

    2017-09-01

    The availability of water-related data and information across different geographical and jurisdictional scales is of critical importance for the conservation and management of water resources in the 21st century. Today information assets are often found fragmented across multiple agencies that use incompatible data formats and procedures for data collection, storage, maintenance, analysis, and distribution. The growing adoption of Web mapping systems in the water domain is reducing the gap between data availability and its practical use and accessibility. Nevertheless, more attention must be given to the design and development of these systems to achieve high levels of interoperability and usability while fulfilling different end user informational needs. This paper first presents a brief overview of technologies used in the water domain, and then presents three examples of Web mapping architectures based on free and open source software (FOSS) and the use of open specifications (OS) that address different users' needs for data sharing, visualization, manipulation, scenario simulations, and map production. The purpose of the paper is to illustrate how the latest developments in OS for geospatial and water-related data collection, storage, and sharing, combined with the use of mature FOSS projects facilitate the creation of sophisticated interoperable Web-based information systems in the water domain.

  6. Fractionation and removal of dissolved organic carbon in a full-scale granular activated carbon filter used for drinking water production.

    PubMed

    Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Pons, Marc

    2013-05-15

    The removal of natural organic matter (NOM) and, more particularly, its individual fractions by two different GACs was investigated in full-scale filters in a drinking water treatment plant (DWTP). Fractionation of NOM was performed by high performance size exclusion chromatography (HPSEC) into biopolymers, humic substances, building blocks and low molecular weight organics. The sorption capacity of GAC in terms of iodine number (IN) and apparent surface area (SBET), as well as the filling of narrow- and super-microporosity were monitored over the 1-year operation of the filters. Both GACs demonstrated to be effective at removing NOM over a wide range of fractions, especially the low and intermediate molecular weight fractions. TOC removal initially occurred via adsorption, and smaller (lighter) fractions were more removed as they could enter and diffuse more easily through the pores of the adsorbent. As time progressed, biodegradation also played a role in the TOC removal, and lighter fractions continued to be preferentially removed due to their higher biodegradability. The gained knowledge would assist drinking water utilities in selecting a proper GAC for the removal of NOM from water and, therefore, complying more successfully the latest water regulations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance.

    PubMed

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor

    2007-01-01

    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.

  8. Threshold groundwater ages and young water fractions estimated from 3H, 3He, and 14C

    NASA Astrophysics Data System (ADS)

    Kirchner, James; Jasechko, Scott

    2016-04-01

    It is widely recognized that a water sample taken from a running stream is not described by a single age, but rather by a distribution of ages. It is less widely recognized that the same principle holds true for groundwaters, as indicated by the commonly observed discordances between model ages obtained from different tracers (e.g., 3H vs 14C) in the same sample. Water age distributions are often characterized by their mean residence times (MRT's). However, MRT estimates are highly uncertain because they depend on the shape of the assumed residence time distribution (in particular on the thickness of the long-time tail), which is difficult or impossible to constrain with data. Furthermore, because MRT's are typically nonlinear functions of age tracer concentrations, they are subject to aggregation bias. That is, MRT estimates derived from a mixture of waters with different ages (and thus different tracer concentrations) will systematically underestimate the mixture's true mean age. Here, building on recent work with stable isotope tracers in surface waters [1-3], we present a new framework for using 3H, 3He and 14C to characterize groundwater age distributions. Rather than describing groundwater age distributions by their MRT, we characterize them by the fraction of the distribution that is younger or older than a threshold age. The threshold age that separates "young" from "old" water depends on the characteristics of the specific tracer, including its history of atmospheric inputs. Our approach depends only on whether a given slice of the age distribution is younger or older than the threshold age, but not on how much younger or older it is. Thus our approach is insensitive to the tails of the age distribution, and is therefore relatively unaffected by uncertainty in the distribution's shape. Here we show that concentrations of 3H, 3He, and 14C are almost linearly related to the fractions of water that are younger or older than specified threshold ages. These

  9. Iodine distribution in natural waters of different chemical composition in relation to water-bearing soils and rocks and water fractions in areas subjected to radioiodine contamination

    NASA Astrophysics Data System (ADS)

    Kolmykova, Liudmila; Korobova, Elena

    2017-04-01

    Iodine is an essential microelement required for normal functioning of thyroid gland. Natural deficiency of stable iodine is compensated by its active intake by thyroid and provokes its higher irradiation in case of radiation accidents and contamination of the environment by radioiodine isotopes. The bioavailability of both stable and radioactive iodine and the specificity of its uptake by living organisms largely depends on geochemical parameters of the environment related to natural conditions of water migration. The goal of the study was to investigate spatial distribution of iodine in natural water of different chemical composition in relation to typical water-bearing soils and rocks and water fractions in Bryansk areas subjected to radioiodine contamination after the Chernobyl accident and to evaluate contribution of this factor to the occurrence of endemic thyroid diseases among local population inhabiting geochemically different areas of fluvioglacial and loess-like sedimentary rocks. The highest content of iodine (Me=13.3 µg/l) was observed in surface water of landscapes with H-Ca, Ca and H-Ca-Fe classes of water migration. The lowest microelement level (Me=5.25 µg/l) was noted in groundwater of landscapes with H, H-Fe classes of water migration in areas of Paleogene water bearing rocks. Regardless of the type of source and class of water migration up to 90% of the total content of iodide is present in the fraction <0.45 µm (as determined by membrane filtration). Up to 50% of iodine pass to solution containing particles < 0.1 µm and increases up to 80% in absence of roughly dispersed sorbents in this fraction. The surface water in areas of loess-like sedimentary rocks hosts the highest levels of iodine where its associated with calcium mineral aquatic complexes and the suspended particles. The obtained data is believed to be useful in explanation of mobility and intake of iodine and its radioactive analogues by rural population living in different

  10. Open inlet conversion: Water quality benefits of two designs

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  11. Open data used in water sciences - Review of access, licenses and understandability

    NASA Astrophysics Data System (ADS)

    Falkenroth, Esa; Lagerbäck Adolphi, Emma; Arheimer, Berit

    2016-04-01

    The amount of open data available for hydrology research is continually growing. In the EU-funded project SWITCH-ON (Sharing Water-related Information to Tackle Changes in the Hydrosphere - for Operational Needs: www.water-switch-on.eu), we are addressing water concerns by exploring and exploiting the untapped potential of these new open data. This work is enabled by many ongoing efforts to facilitate the use of open data. For instance, a number of portals provide the means to search for open data sets and open spatial data services (such as the GEOSS Portal, INSPIRE community geoportal or various Climate Services and public portals). However, in general, many research groups in water sciences still hesitate in using this open data. We therefore examined some limiting factors. Factors that limit usability of a dataset include: (1) accessibility, (2) understandability and (3) licences. In the SWITCH-ON project we have developed a search tool for finding and accessing data with relevance to water science in Europe, as the existing ones are not addressing data needs in water sciences specifically. The tool is filled with some 9000 sets of metadata and each one is linked to water related key-words. The keywords are based on the ones developed within the CUAHSI community in USA, but extended with non-hydrosphere topics, additional subclasses and only showing keywords actually having data. Access to data sets: 78% of the data is directly accessible, while the rest is either available after registration and request, or through a web client for visualisation but without direct download. However, several data sets were found to be inaccessible due to server downtime, incorrect links or problems with the host database management system. One possible explanation for this could be that many datasets have been assembled by research project that no longer are funded. Hence, their server infrastructure would be less maintained compared to large-scale operational services

  12. Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C

    NASA Astrophysics Data System (ADS)

    van Dijk, Joep; Fernandez, Alvaro; Müller, Inigo A.; Lever, Mark; Bernasconi, Stefano M.

    2018-01-01

    The oxygen isotope composition of siderites can be used to deduce the temperature and/or oxygen isotope composition of the fluids from which they precipitated. Previous siderite-water oxygen isotope fractionation calibrations are not well constrained at temperatures below 33 °C where most of the siderite forms at the Earth's surface. Moreover, the few experimental low temperature calibration points available are possibly inaccurate as the corresponding siderites may not have formed in equilibrium with the solution. In this study, we synthesized siderite in the laboratory from 8.5 to 62 °C, using both active-degassing experiments and microbial cultures. We used the enzyme carbonic anhydrase, which significantly reduces the equilibration time of oxygen isotopes among all dissolved inorganic carbon (DIC) species and water to minimize siderite formation out of equilibrium. Our calibration is based on many more data points than previous calibrations and significantly reduces the uncertainty in siderite-water oxygen isotope fractionation in natural siderites formed at low temperatures. The best fit equation is 1000 * ln α = 19.67 ± 0.42(103/T) -36.27 ± 1.34 where α (1000+δ18Osiderite/1000+δ18Owater) is the fractionation factor and T is the temperature in Kelvin.

  13. The spatial-temporal dynamics of open surface water bodies in CONUS during 1984-2016

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.; Menarguez, M.; Wang, J.

    2017-12-01

    Open surface water bodies provided 80% of the total water withdrawals in the Contiguous United States (CONUS) in 1985-2010. The inter-annual variability and changing trends of surface water body areas have various impacts on the human society and ecosystems. This study made use of all Landsat 5, 7, and 8 surface reflectance archives ( 370,000 images) during 1984-2016 and a water index- and pixel-based approach to detect and map open surface water bodies in the cloud-based platform of Google Earth Engine. The year-long water body area and annual average water body area were calculated for each of the last 33 years and their inter-annual variations during 1984-2016 were analyzed through anomaly analysis while their changing trends were analyzed through linear regressions. The national annual average water body areas varied from 265,000 to 281,000 km2 during 1984-2016, which is 3% below to 3% above the mean value 274,000 km2. In state level, significant decreasing trends were found in both year-long and annual average water body areas in some states of dry climates in west and southwest U.S., including Oregon, Nevada, Utah, Arizona, New Mexico, and Oklahoma. In comparison, significant increasing trends were found in some states of wet climates in the southeast and north U.S., including Indiana, Ohio, New Jersey, Delaware, Virginia, Tennessee, North Carolina, South Carolina, Louisiana, Alabama, Georgia, North Dakota and South Dakota. Open surface water body areas in CONUS decreased in relatively dry areas but increased in relatively wet areas. The relationships between open surface water body area variability and climate factors (precipitation, temperature) and human impacts (water exploitation) were also analyzed.

  14. A novel fractionation approach for water constituents – distribution of storm event metals

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2014-01-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891

  15. Water intake in domestic rabbits (Oryctolagus cuniculus) from open dishes and nipple drinkers under different water and feeding regimes.

    PubMed

    Tschudin, A; Clauss, M; Codron, D; Liesegang, A; Hatt, J-M

    2011-08-01

    Rabbits (Oryctolagus cuniculus) are often presented suffering from urolithiasis. A high water intake is important in the prophylaxis of uroliths. We investigated the influence factors for water intake using 12 rabbits subjected to different feed and water regimes with practical relevance: Hay, fresh parsley, a seed mix and two different pelleted feed were offered in diverse combinations. Water was provided either by open dish or nipple drinker. Water was accessible ad libitum except for four treatments with 6 h or 12 h water access. Under the different feeding regimes, the drinker had no influence on water intake, but faecal dry matter content was significantly higher with nipple drinkers [60.0 ± 2.1 vs. 57.2 ± 2.1% of wet weight (mean ± 95% confidence interval), p = 0.003]. Dry food led to a higher drinking water intake but total water intake was still lower than with addition of 'fresh' food. With restricted water access, rabbits exhibited a significantly higher water intake with open dishes compared with nipple drinkers (54.9 ± 9.8 vs. 48.1 ± 8.2 g/kg(0.75) /day (mean ± 95% confidence interval), p = 0.04). High proportions of fresh parsley or hay in the diet enhanced total water intake and urine output, and led to lower urinary dry matter content and lower urinary calcium concentrations. Restricted access to drinkers led to a decreased total daily water intake and increased dry matter content of urine and faeces. For optimal water provision and urolith prophylaxis, we recommend a diet with a high 'fresh food' proportion as well as additionally hay ad libitum with free water access, offered in an open bowl. © 2010 Blackwell Verlag GmbH.

  16. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  17. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid

    NASA Astrophysics Data System (ADS)

    Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.

    2018-01-01

    In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.

  18. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid

    NASA Astrophysics Data System (ADS)

    Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.

    2018-06-01

    In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.

  19. Collaboration using open standards and open source software (examples of DIAS/CEOS Water Portal)

    NASA Astrophysics Data System (ADS)

    Miura, S.; Sekioka, S.; Kuroiwa, K.; Kudo, Y.

    2015-12-01

    The DIAS/CEOS Water Portal is a part of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) systems for data distribution for users including, but not limited to, scientists, decision makers and officers like river administrators. One of the functions of this portal is to enable one-stop search and access variable water related data archived multiple data centers located all over the world. This portal itself does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Our system mainly relies on the open source software GI-cat (http://essi-lab.eu/do/view/GIcat) and open standards such as OGC-CSW, Opensearch and OPeNDAP protocol to enable the above functions. Details on how it works will be introduced during the presentation. Although some data centers have unique meta data format and/or data search protocols, our portal's brokering function enables users to search across various data centers at one time. And this portal is also connected to other data brokering systems, including GEOSS DAB (Discovery and Access Broker). As a result, users can search over thousands of datasets, millions of files at one time. Users can access the DIAS/CEOS Water Portal system at http://waterportal.ceos.org/.

  20. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    PubMed

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Evolution of volume fractions and droplet sizes by analysis of electrical conductance curves during destabilization of oil-in-water emulsions.

    PubMed

    Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D

    2010-09-01

    Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region: Insights from dissolved and particulate isotopic composition

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Chung; Zhang, Jing; Sohrin, Yoshiki; Ho, Tung-Yuan

    2018-07-01

    We measured dissolved and particulate Cd isotopic composition in the water column of a meridional transect across the Kuroshio-Oyashio Extension region in a Japanese GEOTRACES cruise to investigate the relative influence of physical and biogeochemical processes on Cd cycling in the Northwestern Pacific Ocean. Located at 30-50°N along 165°E, the transect across the extension region possesses dramatic hydrographic contrast. Cold surface water and a relatively narrow and shallow thermocline characterizes the Oyashio Extension region in contrast to a relatively warm and highly stratified surface water and thermocline in the Kuroshio Extension region. The contrasting hydrographic distinction at the study site provides us with an ideal platform to investigate the spatial variations of Cd isotope fractionation systems in the ocean. Particulate samples demonstrated biologically preferential uptake of light Cd isotopes, and the fractionation effect varied dramatically in the surface water of the two regions, with relatively large fractionation factors in the Oyashio region. Based on the relationship of dissolved Cd concentrations and isotopic composition, we found that a closed system fractionation model can reasonably explain the relationship in the Kuroshio region. However, using dissolved Cd isotopic data, either a closed system or steady-state open system fractionation model may explain the relationship in the surface water of the Oyashio region. Particulate δ114/110Cd data further supports that the surface water of the Oyashio region matches a steady-state open system model more closely. Contrary to the surface water, the distribution of potential density exhibits comparable patterns with Cd elemental and isotopic composition in the thermocline and deep water in the two extension regions, showing that physical processes are the dominant forcing controlling Cd cycling in the deep waters. The results demonstrate that Cd isotope fractionation can match either a closed

  3. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    NASA Astrophysics Data System (ADS)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  4. Runoff generation processes and fraction of young water for streamflow and groundwater in a pre-alpine forested catchment

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco

    2017-04-01

    Understanding of runoff generation mechanisms and storage dynamics is needed for sustainable management of water resources, particularly in catchments characterized by marked seasonality in rainfall. However, temporal and spatial variability of hydrological processes can hinder a detailed comprehension of catchment functioning. In this study, we use hydrometric data and stable isotope data from a 2-ha forested catchment in the Italian pre-Alps to i) identify seasonal changes in runoff generation, ii) determine the factors that affect the hysteretic relations between streamflow and soil moisture and between streamflow and shallow groundwater, and iii) estimate the fraction of young water in stream water and shallow groundwater. Streamflow, soil moisture and groundwater levels were measured continuously between August 2012 and December 2015. Soil moisture was measured at 0-30 cm depth by four time domain reflectometers installed at different locations along a riparian-hillslope transect. Depth to water table was measured in two piezometers installed at a depth of 2.0 and 1.8 m in the riparian zone. Water samples for isotopic analysis were taken monthly from bulk precipitation and approximately biweekly from stream water and groundwater. The relations between streamflow (independent variable), soil moisture and depth to water table (dependent variables) were analyzed by computing a hysteresis index that provides information on the direction, the extent and the shape of the loops for 103 rainfall-runoff events. The temporal variability of the hysteresis index was related to event characteristics (mean and maximum rainfall intensity, rainfall amount and total stormflow) and antecedent soil moisture conditions. We observed threshold-like relations between stormflow and the sum of rainfall and the antecedent soil moisture index and an exponential relation between the change in groundwater level and stormflow. Clockwise hysteretic relations were common between streamflow

  5. A review of surface-water sediment fractions and their interactions with persistent manmade organic compounds

    USGS Publications Warehouse

    Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.

    1987-01-01

    This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the

  6. Tracking the behavior of different size fractions of dissolved organic matter in a full-scale advanced drinking water treatment plant.

    PubMed

    Quang, Viet Ly; Choi, Ilhwan; Hur, Jin

    2015-11-01

    In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.

  7. 43 CFR 2091.5-4 - Segregative effect and opening: Water power withdrawals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect and opening: Water power withdrawals. 2091.5-4 Section 2091.5-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of...

  8. Development of a web application for water resources based on open source software

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.

    2014-01-01

    This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.

  9. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  10. Water selenium speciation and sediment fractionation in a California flow-through wetland system

    USGS Publications Warehouse

    Gao, S.; Tanii, K.K.; Peters, D.W.; Herbel, M.J.

    2000-01-01

    A flow-through wetland system was established in the Tulare Lake Drainage District (TLDD) in California to determine if selenium (Se) from saline irrigation drainage can be removed prior to impoundment in evaporation basins to reduce potential toxicity to waterbirds. The objective of this research was to evaluate Se speciation, accumulation, and fractionation in the waters and sediments of the newly developed wetland system. The inlet water was dominated by selenate [Se(VI), 92%], with smaller percentages of selenite [Se(IV), 5%] and organic Se [org-Se(-II), 3%]. For the outflow water, the average percentage of Se(VI) was 72% in November 1997 and 59% in February 1999. This change may be due to an increase in either residence time and/or accumulation of organic detrital matter, which may enhance Se(VI) reduction processes. Selenium accumulation, transformation, and incorporation with the solid phase were all intensified in the surface sediment (<20 cm). The highest total Se concentrations in the sediments were found in the top 5 cm and concentrations dramatically decreased with depth. Elemental Se [Se(0)], as extracted by Na2SO3, was the largest fraction (average of 46%) of the total sediment Se, followed by organic matter-associated Se (OM-Se) extracted by NaOH (average of 34%). Soluble, adsorbed, and carbonate-associated Se, as extracted by KCl, K2HPO4 (pH 8.0), and NaOAc (pH 5.0), were about 3, 10, and 3% of the total sediment Se, respectively. After establishing the wetland for 2 yr, significant Se removal from the flowing water was observed. The major sink mechanisms in the sediment are reduction to Se(0) and immobilization into the organic phase.A flow-through wetland system was established in the Tulare Lake Drainage District (TLDD) in California to determine if selenium (Se) from saline irrigation drainage can be removed prior to impoundment in evaporation basins to reduce potential toxicity to waterbirds. The objective of this research was to evaluate Se

  11. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    PubMed

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m 3 and 1500-5600 Bq/m 3 , respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  13. Risk assessment for produced water discharges to Louisiana Open Bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks frommore » radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.« less

  14. Portable platforms for setting rocket nets in open-water areas

    USGS Publications Warehouse

    Cox, R.R.; Afton, A.D.

    1994-01-01

    Rocket-netting of aquatic birds is generally done from permanent sites that are free of vegetation and debris to allow visibility and unobstructed projection of nets. We developed a technique for setting rocket nets on portable platforms to capture waterfowl in open-water habitats.

  15. Risk assessment for produced water discharges to Louisiana open bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1995-11-01

    Potential human health and environmental impacts from discharge of produced water to the Gulf of Mexico concern regulators at the State and Federal levels, environmental interest groups, industry and the public. Current regulations in the United States require or propose azero discharge limit for coastal facilities based primarily on studies performed in low energy,poorly flushed environments. Produced water discharges in coastal Louisiana, however,include a number located in open bays, where potential and impacts are likely to be larger than the minimal impacts associated with offshore discharges, but smaller than those demonstrated in low-energy canal environments. This paper summarizes results ofmore » a conservative screening-level health and ecological assessment for contaminants discharged in produced water to open bays in Louisiana, and reports results of a probabilistic human health risk assessment for radium and lead. The initial human health and ecological risk assessments consisted of conservative screening analyses that identified potentially important contaminants and excluded others from further consideration. A more quantitative probabilistic risk assessment was completed for the human health effects of the two contaminants identified in this screen: radium and lead. This work is part of a series of studies on the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the United States Department of Energy (USDOE).« less

  16. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    PubMed Central

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  17. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    USDA-ARS?s Scientific Manuscript database

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  18. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  19. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  20. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  1. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  2. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    PubMed

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  3. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system.

    PubMed

    Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita

    2007-06-16

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.

  4. Analytical method for dissolved-organic carbon fractionation

    USGS Publications Warehouse

    Leenheer, Jerry A.; Huffman, Edward W. D.

    1979-01-01

    A standard procedure for analytical-scale dissolved organic carbon fractionation is presented, whereby dissolved organic carbon in water is first fractionated by a nonionic macroreticular resin into acid, base, and neutral hydrophobic organic solute fractions, and next fractionated by ion-exchange resins into acid, base, and neutral hydrophilic solute fractions. The hydrophobic solutes are defined as those sorbed on a nonionic, acrylic-ester macroreticular resin and are differentiated into acid, base, and nautral fractions by sorption/desorption controlled by pH adjustment. The hydrophilic bases are next sorbed on strong-acid ion-exchange resin, followed by sorption of hydrophilic acids on a strong-base ion-exchange resin. Hydrophilic neutrals are not sorbed and remain dissolved in the deionized water at the end of the fractionation procedure. The complete fractionation can be performed on a 200-milliliter filtered water sample, whose dissolved organic carbon content is 5-25 mg/L and whose specific conductance is less than 2,000 μmhos/cm at 25°C. The applications of dissolved organic carbon fractionation analysis range from field studies of changes of organic solute composition with synthetic fossil fuel production, to fundamental studies of the nature of sorption processes.

  5. Does access to open water affect the health of Pekin ducks (Anas platyrhynchos)?

    PubMed

    O'Driscoll, K K M; Broom, D M

    2011-02-01

    Access to open water is considered good for the welfare of Pekin ducks. These studies investigated the effect that the type of water resource, provided over either straw bedding or a rubber mesh, had on measures of duck health. Pekin strain ducklings (n = 2,600) were managed in pens of 100 on straw over a solid concrete floor. In study 1, one of two water resources (nipple, n = 5 pens; wide-lip bell drinker, n = 5 pens), was located directly over the straw. In study 2, one of three water resources (narrow-lip bell drinker, n = 6 pens; trough, n = 5 pens; and bath, n = 5 pens) was located over a rubber mesh. On d 16, 24, 29, 35, and 43, (study 1) or d 21, 29, 35, and 43 posthatch (study 2), 10 birds were selected from each pen and weighed, and then feather hygiene, footpad dermatitis, eye health, gait score, and nostril condition scores were taken. Treatment had no effect on BW in either study, but in study 2, ducks in the open water treatments had higher scores (P < 0.001) than those in the narrow-lip bell drinker treatment by d 43. In study 1, treatment had no effect on hygiene scores, but scores increased over time (P < 0.001). In study 2, ducks in the narrow-lip bell drinker treatment were dirtier than those in the bath treatment (P = 0.01), with those in the trough treatment being intermediate. In both studies, ducks with bell drinkers had worse gait scores than those in the other treatments (study 1, P < 0.01; study 2, P < 0.05). Treatment had no effect on eye health scores. However, ducks were less likely to have dirty nostrils when provided with more open water resources in both studies (P < 0.01), or were less likely to have blocked nostrils in the trough and bath treatments than in the narrow-lip bell drinker treatment in study 2 (P = 0.01). Provision of open water, particularly over a properly constructed drainage area, improved some aspects of duck health (improved feather hygiene and BW, and fewer dirty and blocked nostrils). However, further work is

  6. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... at Patriots Point on the Cooper River. Approximately 600 swimmers will be participating in the swim... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant...

  7. 75 FR 38710 - Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Regulation on the navigable waters of Huntington Bay, New York due to the annual Fran Schnarr Open Water..., New York that excludes all unauthorized persons and vessels from approaching within 100 yards of any... Championships, Huntington Bay, New York. (a) Regulated area. All navigable waters of Huntington Bay, NY within...

  8. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  9. Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Pakbin, Payam; Shafer, Martin M.; Antkiewicz, Dagmara; Schauer, James J.; Sioutas, Constantinos

    2013-10-01

    This study describes an investigation of the relative contributions of water-soluble and water-insoluble portions of ambient particulate matter (PM) to cellular redox activity. Size-fractionated ambient PM samples (coarse, PM2.5 and ultrafine PM) were collected in August-September of 2012 at an urban site in Los Angeles, using the Versatile Aerosol Concentration Enrichment System (VACES)/BioSampler tandem system. In this system, size-fractionated ambient PM was concentrated and collected directly into an aqueous suspension, thereby eliminating the need for solvent extraction required for PM collected on filter substrates. Separation of water-soluble and water-insoluble fractions of PM was achieved by 10 kilo-Delton ultra-filtration of the collected suspension slurries. Chemical analysis, including organic carbon, metals and trace elements, and inorganic ions, as well as measurement of macrophage reactive oxygen species (ROS) activity were performed on the slurries. Correlation between ROS activity and different chemical components of PM was evaluated to identify the main drivers of PM toxicity. Results from this study illustrate that both water-soluble and water-insoluble portions of PM play important roles in influencing potential cellular toxicity. While the water-soluble species contribute the large majority of the ROS activity per volume of sampled air, the highest intrinsic ROS activity (i.e. expressed per PM mass) is observed for the water-insoluble portions. Organic compounds in both water-soluble and water-insoluble portions of ambient PM, as well as transition metals, several with recognized redox activity (Mn, V, Cu and Zn), are highly correlated with ROS activity. These results may underscore the potential of these chemicals in driving the toxicity of ambient PM. Results from this study also suggest that collection of particles directly into a liquid suspension for toxicological analysis may be superior to conventional filtration by eliminating the need

  10. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  11. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    PubMed

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The impact of urban open space and 'lift-up' building design on building intake fraction and daily pollutant exposure in idealized urban models.

    PubMed

    Sha, Chenyuan; Wang, Xuemei; Lin, Yuanyuan; Fan, Yifan; Chen, Xi; Hang, Jian

    2018-08-15

    Sustainable urban design is an effective way to improve urban ventilation and reduce vehicular pollutant exposure to urban residents. This paper investigated the impacts of urban open space and 'lift-up' building design on vehicular CO (carbon monoxide) exposure in typical three-dimensional (3D) urban canopy layer (UCL) models under neutral atmospheric conditions. The building intake fraction (IF) represents the fraction of total vehicular pollutant emissions inhaled by residents when they stay at home. The building daily CO exposure (E t ) means the extent of human beings' contact with CO within one day indoor at home. Computational fluid dynamics (CFD) simulations integrating with these two concepts were performed to solve turbulent flow and assess vehicular CO exposure to urban residents. CFD technique with the standard k-ε model was successfully validated by wind tunnel data. The initial numerical UCL model consists of 5-row and 5-column (5×5) cubic buildings (building height H=street width W=30m) with four approaching wind directions (θ=0°, 15°, 30°, 45°). In Group I, one of the 25 building models is removed to attain urban open space settings. In Group II, the first floor (Lift-up1), or second floor (Lift-up2), or third floor (Lift-up3) of all buildings is elevated respectively to create wind pathways through buildings. Compared to the initial case, urban open space can slightly or significantly reduce pollutant exposure for urban residents. As θ=30° and 45°, open space settings are more effective to reduce pollutant exposure than θ=0° and 15°.The pollutant dilution near or surrounding open space and in its adjacent downstream regions is usually enhanced. Lift-up1 and Lift-up2 experience much greater pollutant exposure reduction in all wind directions than Lift-up3 and open space. Although further investigations are still required to provide practical guidelines, this study is one of the first attempts for reducing urban pollutant exposure by

  13. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  14. Water binding of proteins in the processing frankfurter-type sausages. Part. 1. Water-binding ability of freeze-dried meat fractions containing myofibrillar and stromal proteins.

    PubMed

    Heinevetter, L; Gassmann, B; Kroll, J

    1987-01-01

    As soon as possible and 48 h after slaughter respectively, from both blade-bone muscle groups of cattle and pig carcasses the "thick pieces" were excised, extracted, and fractionated. Residues and precipitates from water and salt extracts resulted were freeze-dried, and an improved Baumann capillary suction apparatus was used to measure their water binding capacity (WBC) with and without addition of 2% sodium chloride and/or heating to 80 degrees C. With one exception the WBC results followed a relative pattern demonstrating the final residues (stromal proteins and leavings of myofibrillar proteins) binding the highest amount of added water, precipitates of dialysis (mainly containing myofibrillar proteins) a remarkable amount and powdered meats the least. As scanning electron micrographs confirmed, there were no fibrous structures in the precipitates resulted from dialysis of salt solutions (1.0 mol/1). Heating decreased the spontaneous water uptake of all fractions. Addition of sodium chloride had only a noticeable capillary-suction and swelling effect on unheated samples. Hence swelling of undissolved protein structures (extraction of myosin and possibly of actomyosin) is therefore not the only way for water binding in frankfurter-type sausages.

  15. Land area change and fractional water maps in the Chenier Plain, Louisiana, following hurricane Rita

    NASA Astrophysics Data System (ADS)

    Palaseanu-Lovejoy, M.; Kranenburg, C.; Brock, J. C.

    2009-12-01

    The objective of this study is to develop a fractional water map at 30-m resolution scale using QuickBird and/or IKONOS high-resolution imagery as dependent variable to investigate the impact of hurricane Rita in the Chenier Plain, Louisiana. Eleven different indices were tested to obtain a high-resolution land / water classification on QuickBird (acquired on 05/23/2003) and IKONOS (acquired on 03/25/2006) images. The percent area covered by water in the high resolution images varied from 22 to 26% depending on the index used , with the simple ratio index (red band / NIR band) accounting for the lowest percent and the blue ratio index (blue band / sum(all bands)) for the highest percent. Using the ERDAS NLCD (National Land Cover Data) Mapping tool module, 100, 000 stratified random sample points with minimum 1000 points per stratum were selected from the high resolution dependent variable as training information for the independent variable layers. The rules for the regression tree were created using the data mining software Rulequest Cubist v. 2.05. This information was used to generate a fractional water map for the entire Landsat scene. The increase in water areas of about 10 - 15% between 2003 to 2006, as well as temporary changes in the water - land configurations are attributed to remnant flooding and removal of aquatic vegetation caused by hurricane Rita, and water level variations caused by tidal and / or meteorological variations between the acquisition dates of the satellite images. This analysis can assist in monitoring post-hurricane wetland recovery and assess trends in land loss due to extreme storm events, although estimation of permanent land loss cannot be made until wetland areas have the opportunity to recover from hurricane impacts.

  16. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    , besides the detailed geochemical analyses along downstream sections, we present new evidences of non-equilibrium calcite-water fractionation in lower temperature range (13.3 to 51.3 °C). Our measurements and calculations on natural hot water travertine precipitations at Pamukkale and Egerszalók revealed that the δ 18O travertine is equal with the δ 18O HCO3 at the orifice of the thermal springs, which means that practically there is no oxygen isotope fractionation between these two phases. High rate of CO 2 degassing with rapid precipitation of carbonate could be responsible for this as it was theoretically supposed by O'Neil et al. (1969). Thus, for the determination of the deposition temperature of a fossil travertine deposit we propose to use the water-bicarbonate oxygen isotope equilibrium fractionation instead of the water-travertine fractionation, which can result 8-9 °C difference in the calculated values. Our study is the first detailed empirical proof of O'Neil's hypothesis on a natural carbonate depositing system. The presented observations can be used to identify more precisely the deposition temperature of fossil travertines during paleoclimate studies.

  17. OpenMP performance for benchmark 2D shallow water equations using LBM

    NASA Astrophysics Data System (ADS)

    Sabri, Khairul; Rabbani, Hasbi; Gunawan, Putu Harry

    2018-03-01

    Shallow water equations or commonly referred as Saint-Venant equations are used to model fluid phenomena. These equations can be solved numerically using several methods, like Lattice Boltzmann method (LBM), SIMPLE-like Method, Finite Difference Method, Godunov-type Method, and Finite Volume Method. In this paper, the shallow water equation will be approximated using LBM or known as LABSWE and will be simulated in performance of parallel programming using OpenMP. To evaluate the performance between 2 and 4 threads parallel algorithm, ten various number of grids Lx and Ly are elaborated. The results show that using OpenMP platform, the computational time for solving LABSWE can be decreased. For instance using grid sizes 1000 × 500, the speedup of 2 and 4 threads is observed 93.54 s and 333.243 s respectively.

  18. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    PubMed

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  19. 75 FR 2159 - Notice of an Open Meeting of the Advisory Committee on Water Information (ACWI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Advisory Committee on Water Information (ACWI) AGENCY: United States Geological Survey. ACTION: Notice of an open meeting of the Advisory Committee on Water Information (ACWI). SUMMARY: Notice is hereby... national water initiatives, and the development and dissemination of water information, through reports...

  20. Chromium isotope fractionation in ferruginous sediments

    NASA Astrophysics Data System (ADS)

    Bauer, Kohen W.; Gueguen, Bleuenn; Cole, Devon B.; Francois, Roger; Kallmeyer, Jens; Planavsky, Noah; Crowe, Sean A.

    2018-02-01

    Ferrous Fe is a potent reductant of Cr(VI), and while a number of laboratory studies have characterized Cr isotope fractionation associated with Cr(VI) reduction by ferrous iron, the expression of this fractionation in real-world ferrous Fe-rich environments remains unconstrained. Here we determine the isotope fractionation associated with Cr(VI) reduction in modern ferrous Fe-rich sediments obtained from the previously well studied Lake Matano, Indonesia. Whole core incubations demonstrate that reduction of Cr(VI) within ferruginous sediments provides a sink for Cr(VI) leading to Cr(VI) concentration gradients and diffusive Cr(VI) fluxes across the sediment water interface. As reduction proceeded, Cr(VI) remaining in the overlying lake water became progressively enriched in the heavy isotope (53Cr), increasing δ53Cr by 2.0 ± 0.1‰ at the end of the incubation. Rayleigh distillation modelling of the evolution of Cr isotope ratios and Cr(VI) concentrations in the overlying water yields an effective isotope fractionation of εeff = 1.1 ± 0.2‰ (53Cr/52Cr), whereas more detailed diagenetic modelling implies an intrinsic isotope fractionation of εint = 1.80 ± 0.04‰. Parallel slurry experiments performed using anoxic ferruginous sediment yield an intrinsic isotope fractionation of εint = 2.2 ± 0.1‰. These modelled isotope fractionations are corroborated by direct measurement of the δ53Cr composition on the upper 0.5 cm of Lake Matano sediment, revealing an isotopic offset from the lake water of Δ53Cr = 0.21-1.81‰. The data and models reveal that effective isotope fractionations depend on the depth at which Cr(VI) reduction takes place below the sediment water interface-the deeper the oxic non-reactive zone, the smaller the effective fractionation relative to the intrinsic fractionation. Based on the geochemistry of the sediment we suggest the electron donors responsible for reduction are a combination of dissolved Fe(II) and 0.5 M HCl extractable (solid

  1. How young water fractions can delineate travel time distributions in contrasting catchments

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Zink, Matthias; Merz, Ralf

    2017-04-01

    Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.

  2. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo

    NASA Astrophysics Data System (ADS)

    Unal, Mustafa; Akkus, Ozan

    2018-01-01

    Water loss is an early onset indicator of osteoarthritis. Although Raman spectroscopy (RS) holds the potential for measurement of cartilage hydration, the knowledge of Raman OH-stretch bands of biological tissue is very limited. We assesed here the sensitivity of RS to identify and classify water types in the cartilage. Raman spectrum measurements over the high wavenumber range were employed to identify different water fractions in articular cartilage. Raman spectra were collected from wet and sequentially dehydrated cartilage along with pure collagen type II and chondroitin sulfate standards. OH-stretch band of cartilage is dominated by mobile water, up to 95% of total intensities. We identified six peaks in cartilage spectrum using second-derivative analysis: peaks at 3200 and 3650 cm-1 are associated with organic matrix (both collagen and proteglycan) and matrix-bound water molecules. Peaks at 3250, 3453, and 3630 cm-1 are associated with collagen and collagen-related water molecules, whereas the peak at 3520 cm-1 is associated with proteoglycan (PG) and PG-related water molecules. The current work is the first thorough analysis of the Raman OH-stretch band of the cartilage and with the knowledge generated by this study, it may now be possible to study on cartilage hydration by RS.

  3. 76 FR 38409 - Notice of an Open Meeting of the Advisory Committee on Water Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF THE INTERIOR Notice of an Open Meeting of the Advisory Committee on Water... Committee on Water Information (ACWI). SUMMARY: Notice is hereby given of a meeting of the ACWI. This meeting is to discuss broad policy-related topics relating to national water initiatives, and the...

  4. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  5. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  6. Composition of the C6+ Fraction of Natural Gas by Multiple Porous Layer Open Tubular Capillaries Maintained at Low Temperatures*

    PubMed Central

    Burger, Jessica L.; Lovestead, Tara M.; Bruno, Thomas J.

    2017-01-01

    As the sources of natural gas become more diverse, the trace constituents of the C6+ fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C6+ fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C6+ fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C6+ fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one “bundle,” or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes. PMID:29332993

  7. Composition of the C6+ Fraction of Natural Gas by Multiple Porous Layer Open Tubular Capillaries Maintained at Low Temperatures.

    PubMed

    Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J

    2016-03-17

    As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.

  8. Quantifying new water fractions and water age distributions using ensemble hydrograph separation

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2017-04-01

    Catchment transit times are important controls on contaminant transport, weathering rates, and runoff chemistry. Recent theoretical studies have shown that catchment transit time distributions are nonstationary, reflecting the temporal variability in precipitation forcing, the structural heterogeneity of catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. Long, high-frequency tracer time series are now becoming available, creating new opportunities to study how rainfall becomes streamflow on timescales of minutes to days following the onset of precipitation. Here I show that the conventional formula used for hydrograph separation can be converted into an equivalent linear regression equation that quantifies the fraction of current rainfall in streamflow across ensembles of precipitation events. These ensembles can be selected to represent different discharge ranges, different precipitation intensities, or different levels of antecedent moisture, thus quantifying how the fraction of "new water" in streamflow varies with forcings such as these. I further show how this approach can be generalized to empirically determine the contributions of precipitation inputs to streamflow across a range of time lags. In this way the short-term tail of the transit time distribution can be directly quantified for an ensemble of precipitation events. Benchmark testing with a simple, nonlinear, nonstationary catchment model demonstrates that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. High-frequency tracer time series

  9. The OPEnSampler: A Low-Cost, Low-Weight, Customizable and Modular Open Source 24-Unit Automatic Water Sampler

    NASA Astrophysics Data System (ADS)

    Nelke, M.; Selker, J. S.; Udell, C.

    2017-12-01

    Reliable automatic water samplers allow repetitive sampling of various water sources over long periods of time without requiring a researcher on site, reducing human error as well as the monetary and time costs of traveling to the field, particularly when the scale of the sample period is hours or days. The high fixed cost of buying a commercial sampler with little customizability can be a barrier to research requiring repetitive samples, such as the analysis of septic water pre- and post-treatment. DIY automatic samplers proposed in the past sacrifice maximum volume, customizability, or scope of applications, among other features, in exchange for a lower net cost. The purpose of this project was to develop a low-cost, highly customizable, robust water sampler that is capable of sampling many sources of water for various analytes. A lightweight aluminum-extrusion frame was designed and assembled, chosen for its mounting system, strength, and low cost. Water is drawn from two peristaltic pumps through silicone tubing and directed into 24 foil-lined 250mL bags using solenoid valves. A programmable Arduino Uno microcontroller connected to a circuit board communicates with a battery operated real-time clock, initiating sampling stages. Period and volume settings are programmable in-field by the user via serial commands. The OPEnSampler is an open design, allowing the user to decide what components to use and the modular theme of the frame allows fast mounting of new manufactured or 3D printed components. The 24-bag system weighs less than 10kg and the material cost is under $450. Up to 6L of sample water can be drawn at a rate of 100mL/minute in either direction. Faster flowrates are achieved by using more powerful peristaltic pumps. Future design changes could allow a greater maximum volume by filling the unused space with more containers and adding GSM communications to send real time status information.

  10. FREEWAT: an HORIZON 2020 project to build open source tools for water management.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-04-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU water related Directives. Specific objectives of the FREEWAT project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (in primis policy and decision makers) in designing scenarios for the proper application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum" (looking for inclusion of other entities), as further research institutions, private developers etc. may contribute to the platform development. The core of the FREEWAT platform will be the SID&GRID framework in its version ported to the QGIS desktop. SID&GRID (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) is an open source and public domain modelling platform firstly developed within the EU-POR FSE 2007-2013 Regione Toscana - Italy and then ported to the QGIS desktop through a dedicated fund by Regione Toscana. SID&GRID will be complemented by June 2015 with solute transport (also density dependent) capabilities in aquifers within the MARSOL (2014) EU FPVII project. Activities will be mainly carried out on two branches: (i) integration of modules, so that the software will fit the end-users requirements, including

  11. Social.Water--Open Source Citizen Science Software for CrowdHydrology

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Lowry, C.

    2013-12-01

    CrowdHydrology is a crowd-sourced citizen science project in which passersby near streams are encouraged to read a gage and send an SMS (text) message with the water level to a number indicated on a sign. The project was initially started using free services such as Google Voice, Gmail, and Google Maps to acquire and present the data on the internet. Social.Water is open-source software, using Python and JavaScript, that automates the acquisition, categorization, and presentation of the data. Open-source objectives pervade both the project and the software as the code is hosted at Github, only free scripting codes are used, and any person or organization can install a gage and join the CrowdHydrology network. In the first year, 10 sites were deployed in upstate New York, USA. In the second year, expansion to 44 sites throughout the upper Midwest USA was achieved. Comparison with official USGS and academic measurements have shown low error rates. Citizen participation varies greatly from site to site, so surveys or other social information is sought for insight into why some sites experience higher rates of participation than others.

  12. Assimilation of Remotely Sensed Evaporative Fraction for Improved Agricultural Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.

    2017-12-01

    Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.

  13. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river-water

  14. Cadmium in the waters off South Morocco: Nature of particles hosting Cd and insights into the mechanisms fractionating Cd from phosphate

    NASA Astrophysics Data System (ADS)

    Waeles, Matthieu; Planquette, Hélène; Afandi, Imane; Delebecque, Nina; Bouthir, Fatimazohra; Donval, Anne; Shelley, Rachel U.; Auger, Pierre-Amaël.; Riso, Ricardo D.; Tito de Morais, Luis

    2016-05-01

    In this study, we report the distributions of total dissolvable cadmium and particulate cadmium from 27 stations in southern Moroccan coastal waters (22°N-30°N), which is part of the North-West African upwelling system. These distributions were predominantly controlled by upwelling of the North Atlantic Central Waters (NACWs) and uptake by primary production. Atmospheric inputs and phosphogypsum slurry inputs from the phosphate industry at Jorf Lasfar (33°N), recently estimated as an important source of dissolved cadmium (240 t Cd yr-1), are at best of minor importance for the studied waters. Our study provides new insights into the mechanisms fractionating cadmium from phosphate. In the upper 30 m, the anomalies observed in terms of Cd:P ratios in both the particulate and total dissolvable fractions were related to an overall preferential uptake of phosphate. We show that the type of phytoplanktonic assemblage (diatoms versus dinoflagellates) is also a determinant of the fractionation intensity. In subsurface waters (30-60 m), a clear preferential release of P (versus Cd) was observed indicating that remineralization in Oxygen Minimum Zones is a key process in sequestering Cd.

  15. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    PubMed

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  16. How does subsurface retain and release stored water? An explicit estimation of young water fraction and mean transit time

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin

    2017-04-01

    The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure

  17. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous

  18. Pathway fraction of bromate formation during O₃ and O₃/H₂O₂ processes in drinking water treatment.

    PubMed

    Qi, Shengqi; Mao, Yuqin; Lv, Miao; Sun, Lili; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F

    2016-02-01

    Ozone process has been widely used for drinking water treatment recently. In the oxidation process, bromate is formed by three pathways, i.e., the direct pathway, the direct-indirect pathway and the indirect-direct pathway. This study developed a method to calculate the percentage of these three pathways for bromate formation during O3 process and O3/H2O2 process. Two kinds of water, distilled water containing bromide (DW) and surface water from the Yellow River (SW) were selected as raw rater. The result showed that in natural water systems, the direct-indirect pathway was dominant for bromate formation during the oxidation process. When 3 mg L(-1) O3 was used as the only oxidant, nearly 26% of bromide ion was transferred into bromate in two kinds of water after 80 min. The dominant pathway in DW was the direct pathway (48.5%) and the direct-indirect pathway (46.5%), while that was the direct-indirect pathway (68.9%) in SW. When O3/H2O2 were used as oxidants, as the H2O2 dosage increased, the fractions of bromate formation by direct pathway and direct-indirect pathway decreased, while that by indirect-direct pathway increased. The conversion ratio from bromide to bromate first kept stable or increased, then decreased and reached its minimum when [H2O2]/[O3] ratio was 1.0 in DW and 1.5 in SW. Under this condition the indirect-direct pathway took the largest fraction of 70.7% in DW and 64.0% in SW, respectively. Copyright © 2015. Published by Elsevier Ltd.

  19. A multiresidue method by high performance liquid chromatography-based fractionation and gas chromatographic determination of trace levels of pesticides in air and water.

    PubMed

    Seiber, J N; Glotfelty, D E; Lucas, A D; McChesney, M M; Sagebiel, J C; Wehner, T A

    1990-01-01

    A multiresidue analytical method is described for pesticides, transformation products, and related toxicants based upon high performance liquid chromatographic (HPLC) fractionation of extracted residue on a Partisil silica gel normal phase column followed by selective-detector gas chromatographic (GC) determination of components in each fraction. The HPLC mobile phase gradient (hexane to methyl t-butyl ether) gave good chromatographic efficiency, resolution, reproducibility and recovery for 61 test compounds, and allowed for collection in four fractions spanning polarities from low polarity organochlorine compounds (fraction 1) to polar N-methylcarbamates and organophosphorus oxons (fraction 4). The multiresidue method was developed for use with air samples collected on XAD-4 and related trapping agents, and water samples extracted with methylene chloride. Detection limits estimated from spiking experiments were generally 0.3-1 ng/m3 for high-volume air samples, and 0.01-0.1 microgram/L for one-liter water samples. Applications were made to determination of pesticides in fogwater and air samples.

  20. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.

  1. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    PubMed

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from themore » biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.« less

  3. Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A

    NASA Astrophysics Data System (ADS)

    Liu, F.-C.; Parise, B.; Kristensen, L.; Visser, R.; van Dishoeck, E. F.; Güsten, R.

    2011-03-01

    Context. Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star forming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. Aims: In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Methods: Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30 m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T > 100 K) and outer cold (T < 100 K) regions of the protostellar envelope. Results: The inner and outer abundance of HDO is found to be well constrained at the 3σ level. The obtained HDO inner and outer fractional abundances are xHDO_in = 6.6 × 10-8-1.0 × 10-7(3σ) and x^{HDO}out=9×10-11= 9 × 10-11-1.0-1.8 × 10-9(3σ). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly onstrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is ≥1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. Conclusions: The H2O inner fractional

  4. Open Defaecation and Its Effects on the Bacteriological Quality of Drinking Water Sources in Isiolo County, Kenya.

    PubMed

    Okullo, Joab Odhiambo; Moturi, Wilkister Nyaora; Ogendi, George Morara

    2017-01-01

    The post-2015 Sustainable Development Goals for sanitation call for universal access to adequate and equitable sanitation and an end to open defaecation by 2030. In Isiolo County, a semi-arid region lying in the northern part of Kenya, poor sanitation and water shortage remain a major problem facing the rural communities. The overall aim of the study was to assess the relationship between sanitation practices and the bacteriological quality of drinking water sources. The study also assessed the risk factors contributing to open defaecation in the rural environments of the study area. A cross-sectional study of 150 households was conducted to assess the faecal disposal practices in open defaecation free (ODF) and open defaecation not free (ODNF) areas. Sanitary surveys and bacteriological analyses were conducted for selected community water sources to identify faecal pollution sources, contamination pathways, and contributory factors. Analysis of data was performed using SPSS (descriptive and inferential statistics at α = .05 level of significance). Open defaecation habit was reported in 51% of the study households in ODNF villages and in 17% households in ODF villages. Higher mean colony counts were recorded for water samples from ODNF areas 2.0, 7.8, 5.3, and 7.0 (×10 3 ) colony-forming units (CFUs)/100 mL compared with those of ODF 1.8, 6.4, 3.5, and 6.1 (×10 3 ) areas for Escherichia coli , faecal streptococci, Salmonella typhi , and total coliform, respectively. Correlation tests revealed a significant relationship between sanitary surveys and contamination of water sources ( P  = .002). The water sources exhibited high levels of contamination with microbial pathogens attributed to poor sanitation. Practising safe faecal disposal in particular is recommended as this will considerably reverse the situation and thus lead to improved human health.

  5. Open Defaecation and Its Effects on the Bacteriological Quality of Drinking Water Sources in Isiolo County, Kenya

    PubMed Central

    Okullo, Joab Odhiambo; Moturi, Wilkister Nyaora; Ogendi, George Morara

    2017-01-01

    Background information: The post-2015 Sustainable Development Goals for sanitation call for universal access to adequate and equitable sanitation and an end to open defaecation by 2030. In Isiolo County, a semi-arid region lying in the northern part of Kenya, poor sanitation and water shortage remain a major problem facing the rural communities. Objective: The overall aim of the study was to assess the relationship between sanitation practices and the bacteriological quality of drinking water sources. The study also assessed the risk factors contributing to open defaecation in the rural environments of the study area. Methods: A cross-sectional study of 150 households was conducted to assess the faecal disposal practices in open defaecation free (ODF) and open defaecation not free (ODNF) areas. Sanitary surveys and bacteriological analyses were conducted for selected community water sources to identify faecal pollution sources, contamination pathways, and contributory factors. Analysis of data was performed using SPSS (descriptive and inferential statistics at α = .05 level of significance). Results: Open defaecation habit was reported in 51% of the study households in ODNF villages and in 17% households in ODF villages. Higher mean colony counts were recorded for water samples from ODNF areas 2.0, 7.8, 5.3, and 7.0 (×103) colony-forming units (CFUs)/100 mL compared with those of ODF 1.8, 6.4, 3.5, and 6.1 (×103) areas for Escherichia coli, faecal streptococci, Salmonella typhi, and total coliform, respectively. Correlation tests revealed a significant relationship between sanitary surveys and contamination of water sources (P = .002). Conclusions: The water sources exhibited high levels of contamination with microbial pathogens attributed to poor sanitation. Practising safe faecal disposal in particular is recommended as this will considerably reverse the situation and thus lead to improved human health. PMID:29051705

  6. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Treesearch

    Qingren Wang; Yuncong Li; Ying Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  7. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    PubMed

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  8. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics

    PubMed Central

    Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.

    2015-01-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657

  9. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  10. Effect of water availability in opening containers of breeding site on Aedes aegypti life cycle

    NASA Astrophysics Data System (ADS)

    Tokachil, Najir; Yusoff, Nuraini; Saaid, Alif; Appandi, Najwa; Harun, Farhana

    2017-11-01

    The distribution of rainfall is one of the factors which contribute to the development of Aedes aegypti life cycle. The fluctuation of rainfall might influence the acceleration of Aedes aegypti growth by providing sufficient breeding sites. In this research, the availability of water in an opening container of the breeding site is considered as a significant variable which affects the distinct stages structure in mosquito life cycle which egg, larva, pupa, and adult. A stage-structured Lefkovitch matrix model was used by considering the quantity of water contains in an opening container and life cycle of Aedes aegypti. The maximum depth of water in the container was also taken into account in order to find the time duration of mosquito life cycle to complete. We found that the maximum depth of water availability in mosquito breeding site influenced the abundance of the mosquito population. Hence, the containers are filled with sufficient water be able to stand from hot temperature for several days before drying out might continue to provide mosquito breeding site. In the future, it is recommended to consider other factors which affect the quantity of water in mosquito breeding sites such as heavy rain and wind blows.

  11. Combining Quantitative Susceptibility Mapping with Automatic Zero Reference (QSM0) and Myelin Water Fraction Imaging to Quantify Iron-Related Myelin Damage in Chronic Active MS Lesions.

    PubMed

    Yao, Y; Nguyen, T D; Pandya, S; Zhang, Y; Hurtado Rúa, S; Kovanlikaya, I; Kuceyeski, A; Liu, Z; Wang, Y; Gauthier, S A

    2018-02-01

    A hyperintense rim on susceptibility in chronic MS lesions is consistent with iron deposition, and the purpose of this study was to quantify iron-related myelin damage within these lesions as compared with those without rim. Forty-six patients had 2 longitudinal quantitative susceptibility mapping with automatic zero reference scans with a mean interval of 28.9 ± 11.4 months. Myelin water fraction mapping by using fast acquisition with spiral trajectory and T2 prep was obtained at the second time point to measure myelin damage. Mixed-effects models were used to assess lesion quantitative susceptibility mapping and myelin water fraction values. Quantitative susceptibility mapping scans were on average 6.8 parts per billion higher in 116 rim-positive lesions compared with 441 rim-negative lesions ( P < .001). All rim-positive lesions retained a hyperintense rim over time, with increasing quantitative susceptibility mapping values of both the rim and core regions ( P < .001). Quantitative susceptibility mapping scans and myelin water fraction in rim-positive lesions decreased from rim to core, which is consistent with rim iron deposition. Whole lesion myelin water fractions for rim-positive and rim-negative lesions were 0.055 ± 0.07 and 0.066 ± 0.04, respectively. In the mixed-effects model, rim-positive lesions had on average 0.01 lower myelin water fraction compared with rim-negative lesions ( P < .001). The volume of the rim at the initial quantitative susceptibility mapping scan was negatively associated with follow-up myelin water fraction ( P < .01). Quantitative susceptibility mapping rim-positive lesions maintained a hyperintense rim, increased in susceptibility, and had more myelin damage compared with rim-negative lesions. Our results are consistent with the identification of chronic active MS lesions and may provide a target for therapeutic interventions to reduce myelin damage. © 2018 by American Journal of Neuroradiology.

  12. Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City

    NASA Astrophysics Data System (ADS)

    Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios

    2010-05-01

    We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.

  13. Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost fish.

    PubMed

    Claireaux, Guy; Quéau, Pierre; Marras, Stefano; Le Floch, Stéphane; Farrell, Anthony P; Nicolas-Kopec, Annabelle; Lemaire, Philippe; Domenici, Paolo

    2018-03-01

    When oil spills occur, behavior is the first line of defense for a fish to avoid being contaminated. We determined the avoidance threshold of the European seabass (Dicentrarchus labrax) to the water-soluble fraction (WSF) of oil using a dual-flow choice box. The results showed that a plume of 20%-diluted WSF (total polycyclic aromatic hydrocarbon [PAH] concentration: 8.54 μg L -1 ) triggered a significant avoidance response that was detected within 7.5 min of introducing WSF-contaminated water into the experimental setup. However, the ecological relevance of seabass capacity to detect and avoid WSF remains to be established. In the short term, such a response is indeed liable to reduce seabass contact time with oil-contaminated water and thus preserve their functional integrity. In the long term, however, avoidance may contribute to the displacement of a population into a possibly less auspicious environment, with consequences very similar to those of contaminant exposure, that is, disturbed population dynamics and demography. Environ Toxicol Chem 2018;37:854-859. © 2017 SETAC. © 2017 SETAC.

  14. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    NASA Astrophysics Data System (ADS)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  15. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  16. Isotopomer fractionation during N2O consumption within soil mesocosms as a function of water filled pore space

    NASA Astrophysics Data System (ADS)

    Jinuntuya, M.; Ostrom, N. E.; Ostrom, P.; Sutka, R.

    2005-12-01

    Our prior research has demonstrated that the intramolecular distribution of 15N within the N2O molecule can be used to distinguish N2O derived from nitrification and denitrification. For this approach to be successful, however, the affect of fractionation during consumption of N2O by denitrification must be understood. Stable isotope and isotopomer analysis of soil mesocosm experiments were used to investigate fractionation of N2O during consumption at four different levels of water filled pores space (WFPS) 60, 80, 100 and 110% Uncultivated soil from the Long Term Ecological Research Site at Kellogg Biological Station was used to establish that the fractionation factors for δ15N, δ18O-N2O, δ15Nα and δ15Nβ ranged from -4.2 to -7.8 ‰, -12.5 to -19.1 ‰,-5.3 to -9.7‰ and -2.0 to -6.0 ‰, respectively. Lower fractionation factors were observed at higher WFPS demonstrating the importance of diffusion in limiting the expression of fractionation. The small degree of fractionation for δ15Nα and δ15Nβ indicates that consumption must be marked (e.g. >50%) before a significant isotope effect is observed. Our characterization of fractionation factors as a function of WFPS provides a basis to apportion the origins of N2O even when consumption is evident.

  17. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    NASA Astrophysics Data System (ADS)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  18. Development of an efficient fractionation method for the preparative separation of sesquiterpenoids from Tussilago farfara by counter-current chromatography.

    PubMed

    Song, Kwangho; Lee, Kyoung Jin; Kim, Yeong Shik

    2017-03-17

    A novel application of counter-current chromatography (CCC) to enrich plant extracts using direct and continuous injection (CCC-DCI) was developed to fractionate sesquiterpenoids from the buds of Tussilago farfara L. In this study, an n-hexane-acetonitrile-water (HAcW) solvent system was separately pumped into the CCC column, and an extraction solution (45% acetonitrile) was directly and continuously injected into the CCC column. Since the extraction solution was used as a mobile phase in this method, solvent consumption could be greatly reduced. To enrich the extraction solution (315.9g/5.4L), only 4.2L water, 4.6L acetonitrile, and 1.2L n-hexane were used, including the extraction step. Finally, 6.8g of a sesquiterpenoid-enriched (STE) fraction was obtained from the crude extract (315.9g) of Tussilago farfara (1kg) in a single CCC run with a separation time of 8.5h. The sample injection capacity of CCC-DCI was greater than 300g; this amount of sample could not be handled in conventional CCC or other fractionation methods with the same column volume. Moreover, three major sesquiterpenoids (1: tussilagone, 2: 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-1α-(2'-methylburyryloxy)-notonipetranone, and 3: 7β-(3'-ethyl cis-crotonoyloxy)-1α-(2'-methylburyryloxy)-3, 14-dehydro-Z-notonipetranone) were purified from the STE fraction by CCC, and their chemical structures were elucidated by 1 H NMR and 13 C NMR. A quantification study was conducted, and the contents of compounds 1-3 in the CCC-DCI fraction were higher than those of conventional multi-step fractionations performed in series: solvent partitioning and open column chromatography. Furthermore, the average CCC-DCI recoveries were 96.1% (1), 96.9% (2), and 94.6% (3), whereas the open column chromatography recoveries were 77.7% (1), 66.5% (2), and 58.4% (3). The developed method demonstrates that CCC is a useful technique for enriching target components from natural products. Copyright © 2017 Elsevier B.V. All

  19. FREEWAT: an HORIZON 2020 project to build open source tools for water management.

    NASA Astrophysics Data System (ADS)

    Foglia, L.; Rossetto, R.; Borsi, I.; Mehl, S.; Velasco Mansilla, V.

    2015-12-01

    FREEWAT is an HORIZON 2020 EU project. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Specific objectives of the project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum", as further institutions or developers may contribute to the development. Core of the platform is the SID&GRID framework (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) in its version ported to QGIS desktop. Activities are carried out on two lines: (i) integration of modules to fulfill the end-users requirements, including tools for producing feasibility and management plans; (ii) a set of activities to fix bugs and to provide a well-integrated interface for the different tools implemented. Further capabilities to be integrated are: - module for water management and planning; - calibration, uncertainty and sensitivity analysis; - module for solute transport in unsaturated zone; - module for crop growth and water requirements in agriculture; - tools for groundwater quality issues and for the analysis, interpretation and visualization of hydrogeological data. Through creating a common environment among water research/professionals, policy makers and

  20. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    NASA Astrophysics Data System (ADS)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  1. Transfer of lipid molecules and polycyclic aromatic hydrocarbons to open marine waters by dense water cascading events

    NASA Astrophysics Data System (ADS)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2017-12-01

    Settling particles were collected by a set of moored sediment traps deployed during one year in the western Gulf of Lion along Cap de Creus and Lacaze-Duthiers submarine canyons and on the adjacent southern open slope. These traps collected particles during periods of pelagic settling and also during events of deep water flushing by dense shelf water cascading (DSWC). Analyses of lipid biomarkers (n-alkanes, n-alkan-1-ols, sterols and C37-C38 alkenones) and polycyclic aromatic hydrocarbons (PAHs) showed much higher transfer of terrestrial lipids and PAHs to open deep waters during DSWC than in the absence of cascading. The area of highest lateral fluxes was mostly located at 1000 m depth but also at 1500 m depth and extended along the canyons and to the adjacent slope. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water over the continental shelf, and its transport through the canyons towards the continental slope and deep basin. DSWC involved the highest settling fluxes of terrestrial lipids and PAHs ever described in marine continental slopes and the pelagic domain, as illustrated by peak values of C23-C33 odd carbon numbered alkanes (405 ng m-2 d-1), C22-C32 even carbon numbered alkan-1-ols (850 ng m-2 d-1), β-sitosterol+sitostanol (4800 ng m-2 d-1) and PAHs (55 μg m-2 d-1). The algal lipids also showed higher transfer to deep waters during DSWC but to a lower extent than the terrigenous compounds. However, the C37-C38 alkenones constituted an exception and their settling fluxes were not influenced by DSWC. The lack of influence of the DSWC on the C37-C38 alkenone settling is consistent with absence of haptophyte algal inputs from the continental shelf and reinforces the reliability of these molecules for palaeothermometry and palaeoproductivity measurements in pelagic systems.

  2. Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea.

    PubMed

    Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh

    2016-11-01

    Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.

  3. Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves

    NASA Astrophysics Data System (ADS)

    Salamah, N.; Ningsih, D. S.

    2017-11-01

    Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.

  4. RELATIONS BETWEEN BACTERIAL NITROGEN METABOLISM AND GROWTH EFFICIENCY IN AN ESTUARINE AND AN OPEN-WATER ECOSYSTEM

    EPA Science Inventory

    Bacterial uptake or release of dissolved nitrogen compounds (amino nitrogen, urea, ammonium and nitrate) were examined in 0.8 |m filtered water from an estuary (Santa Rosa Sound [SRS], northwestern Florida) and an open-water location in the Gulf of Mexico [GM]. The bacterial nutr...

  5. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  6. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    USGS Publications Warehouse

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  7. Long term monitoring of water basin of an abandoned copper open pit mine

    NASA Astrophysics Data System (ADS)

    Nikolov, H.; Borisova, D.

    2012-04-01

    Nonoperating open pit mines, very often as a matter of fact abandoned, create serious ecological risk for the region of their location especially for the quality of the water since the rainfall fills the bottom of the pit forming water body having different depth. This water as a rule has very high concentration of the metals in it and is highly toxic. One example for such opencast, idle copper mine is Medet located in the central part of Bulgaria who was started for exploitation in 1964 and at that moment being the largest in Europe for production of copper concentrate. In the vicinity of it after autumn and spring rains there are many cases reported for water contamination by heavy metals such as arsenic, copper, cadmium in the rivers running close to this open pit mine. This justifies the need for long term and sustainable monitoring of the area of the water basin of this idle mine in order to estimate its acid drainage and imaging spectroscopy combined with is-situ investigations is proved to provide reliable results about the area of the water table. In the course of this study we have investigated historical data gathered by remote sensing which allowed us to make conclusions about the year behavior of this area. Our expectations are that the results of this research will help in the rehabilitation process of this idle mine and will provide the local authorities engaged in water quality monitoring with a tool to estimate the possible damage caused to the local rivers and springs. With this research we also would like to contribute to the fulfillment of the following EU Directives: Directive 2006/21/°C on the Management of Waste from the Extractive Industries and Directive 2004/35/ °C on Environmental Liability with regard to the Prevention and Remedying of Environmental Damage.

  8. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol.

    PubMed

    Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos; Thomsen, Mette Hedegaard

    2017-02-01

    In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).

  9. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.

    PubMed

    Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip

    2014-06-01

    Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  11. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor.

    PubMed

    Sultan, Tipu

    2016-07-01

    This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Efficient fractionation of spruce by SO(2)-ethanol-water treatment: closed mass balances for carbohydrates and sulfur.

    PubMed

    Iakovlev, Mikhail; van Heiningen, Adriaan

    2012-08-01

    SO(2)-ethanol-water (SEW) lignocellulosic fractionation has the potential to overcome the present techno-economic barriers that hinder the commercial implementation of renewable transportation fuel production. In this study, SEW fractionation of spruce wood chips is examined for its ability to separate the main wood components, hemicelluloses, lignin, and cellulose, and the potential to recover SO(2) and ethanol from the spent fractionation liquid. Therefore, overall sulfur and carbohydrate mass balances are established. 95-97 % of the charged SO(2) remains in the liquid and can be fully recovered by distillation. During fractionation, hemicelluloses and lignin are effectively dissolved, whereas cellulose is preserved in the solid (fibre) phase. Hemicelluloses are hydrolysed, producing up to 50 % monomeric sugars, whereas dehydration and oxidation of carbohydrates are insignificant. The latter is proven by the closed carbohydrate material balances as well as by the near absence of corresponding by-products (furfural, hydroxymethylfurfural (HMF) and aldonic acids). In addition, acid methanolysis/GC and acid hydrolysis/high performance anion exchange chromatography (HPAEC) methods for the carbohydrate determination are compared. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measuring memory with the order of fractional derivative

    NASA Astrophysics Data System (ADS)

    Du, Maolin; Wang, Zaihua; Hu, Haiyan

    2013-12-01

    Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.

  14. Fractional conversion of microalgae from water blooms.

    PubMed

    Zhou, Yingdong; Li, Linling; Zhang, Rui; Hu, Changwei

    2017-09-21

    Fractional conversion of natural algae cyanobacteria from Taihu Lake was conducted. The raw Taihu Lake algae (TLA) and pretreated samples were pyrolyzed at 290 °C and 450 °C according to the TGA results. Extraction of lipids or saccharides from the TLA was performed as a pretreatment to obtain lipid extracted algae (LEA) or saccharide extracted algae (SEA). The total yields of bio-oil from fractional pyrolysis were 40.9 wt% from TLA, 42.3 wt% from LEA, and 48.5 wt% from SEA. From TLA, the major components of the bio-oil were fatty acids, amides and hydrocarbons (heptadecane) at 290 °C whereas those at 450 °C were phenols and C 10 -C 15 hydrocarbons. Following the lipid extraction, acids, amides and indoles accounted for a large proportion at 290 °C, while the main products obtained at 450 °C were phenols, indoles and pyrroles. It is worth mentioning that the yield of bio-oil from the LEA had increased, and the composition of the bio-oil was simplified. Moreover, the average molecular weight of the bio-oil obtained from LEA had decreased. Interestingly, the extraction of saccharides inhibited pyrolysis of the lipids, so the distribution of the bio-oil from SEA changed only a little. Fractional pyrolysis of pretreated microalgae not only increased the bio-oil yield but also improved the quality of the bio-oil.

  15. Primary Student Teachers' Perspectives of the Teaching of Fractions

    ERIC Educational Resources Information Center

    Savas Basturk

    2016-01-01

    The aim of this study was to investigate primary student teachers' perspectives of the teaching of fractions, i.e. their PCK of fractions. The research design used for the study was a descriptive survey method. As data collection instrument, we conducted a questionnaire composing of 14 open and closed-ended questions. The questionnaire was…

  16. The effect of particle volume fraction and temperature on the enhancement of thermal conductivity of maghemite (γ-Fe2O3) water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Nurdin, Irwan; Satriananda

    2017-03-01

    Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.

  17. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  18. MHD natural convection of hybrid nanofluid in an open wavy cavity

    NASA Astrophysics Data System (ADS)

    Ashorynejad, Hamid Reza; Shahriari, Alireza

    2018-06-01

    In this paper, natural convection heat transfer of Al2O3-Cu/water hybrid nanofluid within open wavy cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann method scheme. The left wavy wall is heated sinusoidal, while the right wall is open and maintained to the ambient conditions. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of solid volume fraction of nanoparticles (φ = 0, 0.02, 0.04), Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0, 30, 60, 90) and phase deviation (Φ = 0, π/4, π/2, 3π/4) are investigated on flow and heat transfer fields. The results proved that the Nusselt number decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field rises or falls the effect produced by the presence of nanoparticles with respect to Rayleigh number. At Ra = 103, the effect of the raising phase deviation on heat transfer is erratic while it has a positive role in the improvement of nanoparticles effect at Ra = 105.

  19. A Progression of Fraction Schemes Common to Chinese and U.S. Students

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.; Xu, Cong ze

    2018-01-01

    Through their work on the Fractions Project, Steffe and Olive (2010) identified a progression of fraction schemes that describes students' development toward more and more sophisticated ways of operating with fractions. Although several quantitative studies have affirmed this progression, the question has remained open as to whether it is specific…

  20. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  1. Antiinflammatory effect of Forsythia suspensa Vahl and its active fraction.

    PubMed

    Ozaki, Y; Rui, J; Tang, Y; Satake, M

    1997-08-01

    This study was carried out to elucidate the antiinflammatory effect of 70% methanol extract obtained from the dried fruit of Forsythia suspensa Vahl and its active principles. F. suspensa was extracted with 70% methanol and freeze-dried to give a powdered extract. The methanol extract was then dissolved in water and extracted with n-hexane, and the n-hexane fraction was evaporated to dryness under vacuum; the water fraction was freeze-dried to give a powdered extract. The antiinflammatory activity of the extract and fractions was investigated on acetic acid-induced vascular permeability and writhing symptoms in mice, as well as on carrageenin-induced edema and cotton pellet-induced granuloma formation in rats. The methanol extract and the n-hexane fraction (p.o.) showed the antiinflammatory effect and analgesic effect, but the water fraction did not. These results suggested that the antiinflammatory and analgesic activity induced by the methanol extract shifted to the n-hexane fraction and the active principles may be lipophilic compounds.

  2. Effects of Atmospheric Dynamics and Aerosols on the Fraction of Supercooled Water Clouds

    NASA Astrophysics Data System (ADS)

    Li, J.

    2016-12-01

    Based on the 8 years (2007-2015) of data of cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO, and meteorological parameters from the ERA-Interim products, this study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) under different aerosol loadings at a global scale in order to better understand the conditions under which supercooled liquid water will gradually transform to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low IN aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, we find that the impacts of different meteorological factors on SCFs contain obvious regional differences. In the tropics, obvious positive correlations between SCFs and vertical velocity and relative humidity indicate that high vertical velocity and relative humidity suppress ice formation. However, the impacts of LTSS, skin temperature and horizontal wind on SCFs are relatively complex than those of vertical velocity and humidity. But, their effects are predominantly located in middle and high latitudes, and the temporal correlations with SCFs depend on latitude or surface type. In addition, this study also indicates that strong horizontal wind inhibits the glaciation of supercooled droplets in the middle and high latitudes. Our results verify the importance and regional of dynamical factors on the changes of supercooled water cloud fraction, thus have potential implications for further improving the parameterization of the cloud phase and determining the climate feedbacks.

  3. Hydrologic Geospatial Fabric as Community Cyberinfrastructure: International standardization best practices and the U.S. Open Water Data Initiative implementation.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.

    2016-12-01

    Recent prolonged droughts, catastrophic flooding, and the need to protect and restore aquatic ecosystems, has increased the emphasis on information sharing in the water resources science and engineering domains. Internationally the joint World Meteorological Organization (WMO) and Open Geospatial Consortium (OGC) Hydrology Domain Working Group (HDWG) has been working toward a comprehensive system of standards and best practices for the Hydrology Domain. In the U.S. the multi-agency led and open to all U.S. Advisory Committee on Water Information (ACWI) was tasked to implement an Open Water Data Initiative (OWDI), "that will integrate currently fragmented water information into a connected, national water data framework"[1]. The status of both will be presented with focus on a community hydrologic geospatial fabric. Hydrology observations data standardization was the emphasis of the first 5 years of the HDWG. This work included WaterML 2.0 parts 1 - timeseries and part 2 - ratings and gagings. In 2016, the first of two new hydrographic feature models, GroundwaterML2, was completed and the second, for surface water features, was in active development. The WMO Commission for Hydrology is considering adoption of all these standards and their adoption is central to the U.S. OWDI. OWDI participants have produced a special collection in the Journal of American Water Resources Association and several initiative working groups have concluded their activities. One early deliverable from the OWDI was a new easier to use structure for the NHDPlus dataset. Building on this, a project to create a national Network Linked Data Index (NLDI) is being undertaken as an open-source community endeavor. The NLDI centralizes river network data, network navigation tools, crawlers that index data to the network, and utilities to register or remove data from the network. Research that informed the design of the NLDI will be presented along with recent development and findings of the project

  4. Determination of kinetic isotopic fractionation of water during bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri

    2017-04-01

    A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal

  5. Improved Management of Water and Natural Resources Requires Open, Cognizant, Adaptive Science and Policy

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.; Jenni, K. E.

    2017-12-01

    Water issues impact the availability and use of other natural resources as well as environmental conditions. In an increasingly populated hyper-connected world, water issues are increasingly "wicked problems": complex problems with high uncertainties and no independent observers. Water is essential to life, and life affects water quality and availability. Scientists, managers, decision-makers, and the greater public all have a stake in improving the management of water resources. In turn, they are part of the systems that they are studying, deciding on, affecting, or trying to improve. Governance of water issues requires greater accessibility, traceability, and accountability (ATA) in science and policy. Water-related studies and decision-making need transdisciplinary science, inclusive participatory processes, and consideration and acceptance of multiple perspectives. Biases, Beliefs, Heuristics, and Values (BBHV) shape much of our perceptions and knowledge, and inevitably, affect both science and policy. Understanding the role of BBHV is critical to (1) understanding individual and group judgments and choices, (2) recognizing potential differences between societal "wants" and societal "needs", and (3) identifying "winners" and "losers" of policy decisions. Societal acceptance of proposed policies and actions can be fostered by enhancing participatory processes and by providing greater ATA in science, in policy, and in development of the laws, rules, and traditions that constrain decision-making. An adaptive science-infused governance framework is proposed that seeks greater cognizance of the role of BBHV in shaping science and policy choices and decisions, and that also seeks "Open Traceable Accountable Policy" to complement "Open Science". We discuss the limitations of the governance that we suggest, as well as tools and approaches to help implementation.

  6. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    NASA Astrophysics Data System (ADS)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while

  7. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.

    PubMed Central

    Mazur, P; Rall, W F; Rigopoulos, N

    1981-01-01

    As suspensions of cells freeze, the electrolytes and other solutes in the external solution concentrate progressively, and the cells undergo osmotic dehydration if cooling is slow. The progressive concentration of solute comes about as increasing amounts of pure ice precipitate out of solution and cause the liquid-filled channels in which the cells are sequestered to dwindle in size. The consensus has been that slow freezing injury is related to the composition of the solution in these channels and not to the amount of residual liquid. The purpose of the research reported here was to test this assumption on human erythrocytes. Ordinarily, solute concentration and the amount of liquid in the unfrozen channels are inversely coupled. To vary them independently, one must vary the initial solute concentration. Two solutes were used here: NaCl and the permeating protective additive glycerol. To vary the total initial solute concentration while holding the mass ratio of glycerol to NaCl constant, we had to allow the NaCl tonicity to depart from isotonic. Specifically, human red cells were suspended in solutions with weight ratios of glycerol to NaCl of either 5.42 or 11.26, where the concentrations of NaCl were 0.6, 0.75, 1.0, 2.0, 3.0, or 4.0 times isotonic. Samples were then frozen to various subzero temperatures, which were chosen to produce various molalities of NaCl (0.24-3.30) while holding the fraction of unfrozen water constant, or conversely to produce various unfrozen fractions (0.03-0.5) while holding the molality of salt constant. (Not all combinations of these values were possible). The following general findings emerged: (a) few cells survived the freezing of greater than 90% of the extracellular water regardless of the salt concentration in the residual unfrozen portion. (b) When the fraction of frozen water was less than 75% the majority of the cells survived even when the salt concentration in the unfrozen portion exceeded 2 molal. (c) Salt concentration

  8. An OpenMI Implementation of a Water Resources System using Simple Script Wrappers

    NASA Astrophysics Data System (ADS)

    Steward, D. R.; Aistrup, J. A.; Kulcsar, L.; Peterson, J. M.; Welch, S. M.; Andresen, D.; Bernard, E. A.; Staggenborg, S. A.; Bulatewicz, T.

    2013-12-01

    This team has developed an adaption of the Open Modelling Interface (OpenMI) that utilizes Simple Script Wrappers. Code is made OpenMI compliant through organization within three modules that initialize, perform time steps, and finalize results. A configuration file is prepared that specifies variables a model expects to receive as input and those it will make available as output. An example is presented for groundwater, economic, and agricultural production models in the High Plains Aquifer region of Kansas. Our models use the programming environments in Scilab and Matlab, along with legacy Fortran code, and our Simple Script Wrappers can also use Python. These models are collectively run within this interdisciplinary framework from initial conditions into the future. It will be shown that by applying model constraints to one model, the impact may be accessed on changes to the water resources system.

  9. Studies on the precursors of strong mutagen [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone]MX by chlorination of fractions from different waters.

    PubMed

    Xu, X; Liang, L; Zou, H; Liu, Y; Wang, L; Zhang, J

    1997-10-01

    The strong mutagen, [3-chloro-4-(dichloromethyl)-5-hydroxy- 2(5H)-furanone] MX, was found to be one of the most potent mutagens in drinking water. In this study, dissolved organic matters from river water and lake water were separated into several compound classes by sorbtion on a series of resin absorbents. After chlorine treatment of the fractions, MX was determined with GC/MS in the selected ion monitoring mode. Humic substances produced more MX on a TOC-basis than other fractions and contributed more to MX formation in the chlorinated natural waters. Some phenols were detected in the oxidation products of humic substances and therefore formation of MX may occur when some phenolic precursor structures in humic substances are treated with chlorine.

  10. Using Support Vector Machines to Automatically Extract Open Water Signatures from POLDER Multi-Angle Data Over Boreal Regions

    NASA Technical Reports Server (NTRS)

    Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)

    2002-01-01

    This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.

  11. Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer

    NASA Astrophysics Data System (ADS)

    Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Renner, A. H. H.; Gerland, S.

    2015-02-01

    The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70-90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.

  12. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  13. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell.

    PubMed

    Yao, Zeng-Yu; Qi, Jian-Hua

    2016-04-22

    Chestnut shell melanin can be used as a colorant and antioxidant, and fractionated into three fractions (Fr. 1, Fr. 2, and Fr. 3) with different physicochemical properties. Antioxidant activities of the fractions were comparatively evaluated for the first time. The fractions exhibited different antioxidative potential in different evaluation systems. Fr. 1, which is only soluble in alkaline water, had the strongest peroxidation inhibition and superoxide anion scavenging activity; Fr. 2, which is soluble in alkaline water and hydrophilic organic solvents but insoluble in neutral and acidic water, had the greatest power to chelate ferrous ions; and Fr. 3, which is soluble both in hydrophilic organic solvents and in water at any pH conditions, had the greatest hydroxyl (·OH) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH·) radicals scavenging abilities, reducing power, and phenolic content. The pigment fractions were superior to butylated hydroxytolune (BHT) in ·OH and DPPH· scavenging and to ethylene diamine tetraacetic acid (EDTA) in the Fe(2+)-chelation. They were inferior to BHT in peroxidation inhibition and O₂·(-) scavenging and reducing power. However, BHT is a synthetic antioxidant and cannot play the colorant role. The melanin fractions might be used as effective biological antioxidant colorants.

  14. Three dimensional display of underground water-supplying network by combining VTK with SiCAD/open GIS system

    NASA Astrophysics Data System (ADS)

    Chen, Shaobin; Zhang, Xubo; Wang, Wenyuan; Zhou, Chengping; Ding, Mingyue

    2007-11-01

    Nowadays many Geographic Information System (GIS) have been widely used in many municipal corporations. Water-supplying corporations in many cities developed GIS application system based on SiCAD/Open GIS platform several years ago for their daily management and engineering construction. With the increasing of commercial business, many corporations now need to add the functionality of three dimensional to display to their GIS System without too much financial cost. Because of the expensiveness of updating SiCAD/Open GIS system to the up-to-date version, the introduction of a third-part 3D display technology is considered. In our solution, Visualization Toolkit (VTK) is used to achieve three dimensional display of underground water-supplying network on the basis of an existing SiCAD/Open GIS system. This paper addresses on the system architecture and key implementation technologies of this solution.

  15. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  16. Water/magma mass fractions in phreatomagmatic eruption plumes - constraints from the Grímsvötn 2011 eruption

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Pálsson, F.; Thordarson, T.; Hoskuldsson, A.; Larsen, G.; Hognadottir, T.; Oddsson, B.; Oladottir, B. A.; Gudnason, J.

    2014-12-01

    Explosive interaction of magma and water leads to vaporization and introduces external water vapor to volcanic plumes. Theoretical considerations on the effect of external water magma ratio on volcanic plumes indicate that plume buoyancy should be enhanced by external water fractions up to at least 30%, while fractions reaching 40% should lead to plume collapse. The basaltic VEI 4 eruption of Grímsvötn in May 2011 produced a 15-20 km high eruption plume and over 100 km wide umbrella cloud. External water interacted with the magma and entered the plume from the melting out of a 100-150 m deep ice cauldron that had acquired a volume of 0.1 km3 at the end of the eruption. About 0.7 km3 of tephra was produced in the eruption whereof about half was erupted in phreatomagmatic phases and the other half in magmatic phases. During the dry, magmatic phases melting was apparently not fast enough to supply sufficient external water to the vents to control the style of activity. The only source of external water was the melting out of the ice cauldron since no changes took place in the level of the larger, subglacial lake in the center of the Grímsvötn caldera, and no meltwater was drained from the caldera. The eruption site therefore had little or no hydrological connection with the adjacent subglacial lake. Water remaining at the eruption site at the end of the eruption was miniscule compared to the amount of ice melted. Hence, most of the meltwater was vaporized and carried away as a part of the eruption plume. About one third of the thermal energy of the magma erupted was used to melt, heat up and vaporize water. A large part of this water was released from the plume through condensation and re-freezing, manifested in hail-rich tephra deposited out to several kilometers from the vent. The data indicate that the external water/tephra mass ratio in the phreatomagmatic phases was 20-25%, but similar to 5% for the predominantly magmatic phases.

  17. Water Velocity as a Driver of Stream Metabolism: a Parallel Application of the Open Water and Eddy Correlation Techniques

    NASA Astrophysics Data System (ADS)

    Koopmans, D.; Berg, P.

    2013-12-01

    Inland waters respire or store a large portion of net terrestrial ecosystem production. As a result their metabolism is significant to the global carbon budget. The proximal drivers of aquatic respiration are organic matter availability, temperature, nutrients, and water velocity. Among these water velocity may be the least quantified. A partial explanation is that the footprint of the open water technique is typically hundreds of meters of river length, while the effect of a change in velocity may be specific to a local benthic environment, e.g., a riffle. With the eddy correlation technique oxygen flux is calculated from the turbulent fluctuation of vertical velocity and the oxygen concentration at a point in the water column. The footprint of the technique scales with the height of the point of measurement allowing an investigation of the in situ oxygen flux at the scale of a riffle. The combination of techniques, then, can be used to investigate the coupling of hydrodynamic conditions and benthic environments in driving aquatic ecosystem metabolism. This parallel approach was applied seasonally to examine the drivers of metabolism in a nutrient-rich, sand-bed coastal stream on the Eastern Shore of Virginia. An ecosystem-scale oxygen flux was calculated with the open water technique while pool-, run-, riffle-, and freshwater tidal-scale oxygen fluxes were calculated with the eddy correlation technique. At the ecosystem scale the stream bed functioned as an effective biocatalytic filter with an average annual net oxygen consumption of 300 mmol m^-2 d^-1. Prior to a stage-discharge shift water velocity explained 90% of the variance in ecosystem respiration (n = 63 days). After the stage-discharge shift water velocity explained 96 % of it (n = 40 days). Hyporheic exchange supported respiration in this system, contributing to its close correlation with water velocity. Among the physically similar benthic environments of the run, riffle, and freshwater tidal sites

  18. Warm water deuterium fractionation in IRAS 16293-2422. The high-resolution ALMA and SMA view

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.

    2013-01-01

    Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large Millimeter/submillimeter Array (ALMA) as well as the 31,3 - 22,0 of H218O at 203.40752 GHz and the 31,2 - 22,1 transition of HDO at 225.89672 GHz from the Submillimeter Array (SMA) are presented. Results: The 692 GHz H218O line is seen toward both components of the binary protostar. Toward one of the components, "source B", the line is seen in absorption toward the continuum, slightly red-shifted from the systemic velocity, whereas emission is seen off-source at the systemic velocity. Toward the other component, "source A", the two HDO and H218O lines are detected as well with the SMA. From the H218O transitions the excitation temperature is estimated at 124 ± 12 K. The calculated HDO/H2O ratio is (9.2 ± 2.6) × 10-4 - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Conclusions: Our observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low HDO/H2O ratio deduced here suggests that the differences between the inner regions of the protostars and the Earth's oceans and comets are smaller than previously thought

  19. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    PubMed

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  20. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  1. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  2. Numerical and experimental analysis of a ducted propeller designed by a fully automated optimization process under open water condition

    NASA Astrophysics Data System (ADS)

    Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa

    2015-10-01

    A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.

  3. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Treesearch

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  4. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter

    PubMed Central

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for

  5. The Water Fraction of Calendula officinalis Hydroethanol Extract Stimulates In Vitro and In Vivo Proliferation of Dermal Fibroblasts in Wound Healing.

    PubMed

    Dinda, Manikarna; Mazumdar, Swagata; Das, Saurabh; Ganguly, Durba; Dasgupta, Uma B; Dutta, Ananya; Jana, Kuladip; Karmakar, Parimal

    2016-10-01

    The active fraction and/or compounds of Calendula officinalis responsible for wound healing are not known yet. In this work we studied the molecular target of C. officinalis hydroethanol extract (CEE) and its active fraction (water fraction of hydroethanol extract, WCEE) on primary human dermal fibroblasts (HDF). In vivo, CEE or WCEE were topically applied on excisional wounds of BALB/c mice and the rate of wound contraction and immunohistological studies were carried out. We found that CEE and only its WCEE significantly stimulated the proliferation as well as the migration of HDF cells. Also they up-regulate the expression of connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in vitro. In vivo, CEE or WCEE treated mice groups showed faster wound healing and increased expression of CTGF and α-SMA compared to placebo control group. The increased expression of both the proteins during granulation phase of wound repair demonstrated the potential role of C. officinalis in wound healing. In addition, HPLC-ESI MS analysis of the active water fraction revealed the presence of two major compounds, rutin and quercetin-3-O-glucoside. Thus, our results showed that C. officinalis potentiated wound healing by stimulating the expression of CTGF and α-SMA and further we identified active compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  7. Benthic foraminiferal assemblages in the Cap de Creus canyon and adjacent open slope: Potential influence of dense shelf water cascading and open-ocean convection

    NASA Astrophysics Data System (ADS)

    Nardelli, M. P.; Sabbatini, A.; Bonnot, E.; Mea, M.; Pusceddu, A.; Danovaro, R.; Durrieu de Madron, X.; Negri, A.; Bicchi, E.

    2018-06-01

    The NW Mediterranean Sea is subjected to episodically intense events of dense shelf water cascading (DSWC) and open-ocean convection (OOC) that ventilate the seafloor and also have important consequences on organic matter inputs to the seabed and sediment dynamics. The influence of the massive physico-chemical disturbance driven by these events on deep-sea ecosystems is poorly known, and, to date, no information is available on the response of benthic foraminiferal assemblages. To provide insights on these gaps of knowledge, in April 2009 we investigated the foraminiferal faunas along the major axis of the Cap de Creus canyon (at 1000, 1900 and 2400 m depth) and at two additional stations located on the adjacent open slope (at 1000 and 1900 m). The area under scrutiny was hit by intense DSWC and OOC events in winters 2005 and 2006, and during winter 2009 an intense OOC event occurred, with detectable consequences observed at > 1500 m depth. We report here foraminiferal faunas characterized by low densities but relatively high levels of biodiversity at 1000-m depth stations. On the contrary, at the deeper depths, very high densities (associated with low organic matter contents) and strong dominance of the disaster species Usbekistania charoides were observed in the > 63 μm fraction. The comparison of our results - obtained immediately after an OOC event - to those previously described in spring 2004, before DSWC and OOC events, reveals the presence of largely different foraminiferal assemblages in the two periods. Based on a detailed analysis of the ecological traits of the faunas encountered in the two sampling periods, we suggest that either DSWC or OOC can have a role in shaping deep-sea foraminiferal faunas. Moreover, we contend that, at 1000 m depth, the composition of the foraminiferal assemblages in spring 2009 is suggestive of a resilient stage following the major DSWC events in 2005/2006, whereas the low evenness of faunas at ≥ 1900 m depth is, most

  8. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  9. A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN

    PubMed Central

    Caldeira, Cecilio F.; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture. PMID:24420931

  10. COMPONENT-BASED AND WHOLE-MIXTURE ASSESSMENTS IN ADDRESSING THE UNIDENTIFIED FRACTION OF COMPLEX MIXTURES: DRINKING WATER AS AN EXAMPLE

    EPA Science Inventory


    Component-Based and Whole-Mixtures Assessments in Addressing the Unidentified Fraction of Complex Mixtures: Drinking Water as an Example

    J. E. Simmons; L. K. Teuschler; C. Gennings; T. F. Speth; S. D. Richardson; R. J. Miltner; M. G. Narotsky; K. D. Schenck; G. Rice

  11. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  12. Effect of Impurities on the Triple Point of Water: Experiments with Doped Cells at Different Liquid Fractions

    NASA Astrophysics Data System (ADS)

    Dobre, M.; Peruzzi, A.; Kalemci, M.; Van Geel, J.; Maeck, M.; Uytun, A.

    2018-05-01

    Recent international comparisons showed that there is still room for improvement in triple point of water (TPW) realization uncertainty. Large groups of cells manufactured, maintained and measured in similar conditions still show a spread in the realized TPW temperature that is larger than the best measurement uncertainties (25 µK). One cause is the time-dependent concentration of dissolved impurities in water. The origin of such impurities is the glass/quartz envelope dissolution during a cell lifetime. The effect is a difference in the triple point temperature proportional to the impurities concentration. In order to measure this temperature difference and to investigate the effect of different types of impurities, we manufactured doped cells with different concentrations of silicon (Si), boron (B), sodium (Na) and potassium (K), the glass main chemical components. To identify any influence of the filling process, two completely independent manufacturing procedures were followed in two different laboratories, both national metrology institutes (VSL, Netherlands and UME, Turkey). Cells glass and filling water were also different while the doping materials were identical. Measuring the temperature difference as a function of the liquid fraction is a method to obtain information about impurities concentrations in TPW. Only cells doped with 1 µmol·mol-1 B, Na and K proved to be suitable for measurements at different liquid fractions. We present here the results with related uncertainties and discuss the critical points in this experimental approach.

  13. Experimental Evidence for Fast Lithium Diffusion and Isotope Fractionation in Water-bearing Rhyolitic Melts at Magmatic Conditions

    NASA Astrophysics Data System (ADS)

    Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.

    2015-12-01

    The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.

  14. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  15. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  16. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  17. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  18. Using carbon isotope fractionation for an improved quantification of CH4 oxidation efficiency in Arctic peatlands

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2012-04-01

    Much research effort is focused on identifying global CH4 sources and sinks to estimate their current and potential strength in response to land-use change and global warming. Aerobic CH4 oxidation is regarded as the key process reducing the strength of CH4 emissions in wetlands, but is hitherto difficult to quantify. Recent studies quantify the efficiency of CH4 oxidation based on CH4 stable isotope signatures. The approach utilizes the fact that a significant isotope fractionation occurs when CH4 is oxidized. Moreover, it also considers isotope fractionation by diffusion. For field applications the 'open-system equation' is applied to determine the CH4 oxidation efficiency: fox = (δE - δP)/ (αox - αtrans) where fox is the fraction of CH4 oxidized; δE is δ13C of emitted CH4; δP is δ13C of produced CH4; αox is the isotopic fractionation factor of oxidation; αtrans is the isotopic fractionation factor of transport. We quantified CH4 oxidation in polygonal tundra soils of Russia's Lena River Delta analyzing depth profiles of CH4 concentrations and stable isotope signatures. Therefore, both fractionation factors αox and αtrans were determined for three polygon centers with differing water table positions and a polygon rim. While most previous studies on landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1), other CH4 transport mechanisms as diffusion have to be considered in peatlands and αtrans exceeds a value of 1. At our study we determined αtrans = 1.013 ± 0.003 for CH4 when diffusion is the predominant transport mechanism. Furthermore, results showed that αox differs widely between sites and horizons (αox = 1.013 ± 0.012) and has to be determined for each case. The impact of both fractionation factors on the quantification of CH4 oxidation was estimated by considering both the potential diffusion rate at different water contents and potential oxidation rates. Calculations for a water saturated tundra soil

  19. In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta

    PubMed Central

    2012-01-01

    Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity

  20. How should we build a generic open-source water management simulator?

    NASA Astrophysics Data System (ADS)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  1. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves.

    PubMed

    Arndt, Stefan K; Irawan, Andi; Sanders, Gregor J

    2015-12-01

    Relative water content (RWC) and the osmotic potential (π) of plant leaves are important plant traits that can be used to assess drought tolerance or adaptation of plants. We estimated the magnitude of errors that are introduced by dilution of π from apoplastic water in osmometry methods and the errors that occur during rehydration of leaves for RWC and π in 14 different plant species from trees, grasses and herbs. Our data indicate that rehydration technique and length of rehydration can introduce significant errors in both RWC and π. Leaves from all species were fully turgid after 1-3 h of rehydration and increasing the rehydration time resulted in a significant underprediction of RWC. Standing rehydration via the petiole introduced the least errors while rehydration via floating disks and submerging leaves for rehydration led to a greater underprediction of RWC. The same effect was also observed for π. The π values following standing rehydration could be corrected by applying a dilution factor from apoplastic water dilution using an osmometric method but not by using apoplastic water fraction (AWF) from pressure volume (PV) curves. The apoplastic water dilution error was between 5 and 18%, while the two other rehydration methods introduced much greater errors. We recommend the use of the standing rehydration method because (1) the correct rehydration time can be evaluated by measuring water potential, (2) overhydration effects were smallest, and (3) π can be accurately corrected by using osmometric methods to estimate apoplastic water dilution. © 2015 Scandinavian Plant Physiology Society.

  2. Water as foaming agent for open cell polyurethane structures.

    PubMed

    Haugen, H; Ried, V; Brunner, M; Will, J; Wintermantel, E

    2004-04-01

    The problem of moisture in polymer processing is known to any polymer engineer, as air bubbles may be formed. Hence granulates are generally dried prior to manufacturing. This study tried to develop a novel processing methods for scaffolds with controlled moisture content in thermoplastic polyurethane. The common foaming agents for polyurethane are organic solvents, whose residues remaining in the scaffold may be harmful to adherent cells, protein growth factors or nearby tissues. Water was used as a foaming agent and NaCl was used as porogens to achieve an open-cell structure. The polyether-polyurethane samples were processed in a heated press, and achieved a porosity of 64%. The pore size ranged between 50 and 500 microm. Human fibroblasts adhered and proliferate in the scaffold. A non-toxic production process was developed to manufacture a porous structure with a thermoplastic polyether-polyurethane. The process enables a mass-production of samples with adjustable pore size and porosity. In contrast to an existing method (solvent casting), the processing of the samples was not limited by its thickness. The process parameters, which attribute mostly to the pore building, were filling volume, temperature, NaCl-concentration and water-uptake rate.

  3. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  4. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  5. Molybdenum isotope fractionation and speciation in a euxinic lake—Testing ways to discern isotope fractionation processes in a sulfidic setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Tais W.; Wirth, Stefanie B.

    The molybdenum (Mo) isotope composition in euxinic shales has been used as a proxy for the global distribution of anoxic conditions in ancient oceans, and since more recently also as a proxy for sulfide concentrations in depositional environments. However, there is currently no way to distinguish isotope fractionation at low bottom water sulfide concentrations in ‘local’ basins from ‘global’ secular isotope variations associated with changing seawater composition. This uncertainty is challenging the use of Mo isotopes for paleoceanographic reconstructions. To explore this further, we present new data from sediments deposited over the past ~ 9800 years in one of themore » best studied euxinic localities in the world: Lake Cadagno in Switzerland. The sample set allows us to test ways to discern isotope fractionation processes at play in a highly restricted euxinic basin. Most of our drill core samples (n = 18) show high δ98Mo values similar to previously studied shallow sediments, indicative of quantitative Mo removal from the water column (Dahl et al. 2010a). However, a few samples (n = 3) deposited between about 1200 and 3400 years ago carry low δ98Mo values and have been isotopically fractionated in the lake. Sedimentological and geochemical characterizations show that these δ98Mo-fractionated sediments formed during times of frequent injection of O2- and sediment-rich river water into the deep sulfidic water column. A positive correlation between δ98Mo and sedimentary Mo contents suggests that isotope fractionation occurred during times of non-quantitative Mo removal, although Mn-oxide cycling at the chemocline might also contribute a subordinate proportion of (98Mo-depleted) molybdenum into the sulfidic zone. Sedimentary Mo/U enrichments relative to oxic lake water further supports the hypothesis that a particulate Mo shuttle was most efficient during times of quantitative Mo removal. Therefore, periods with inefficient Mo capture are ascribed to

  6. Dean's Great Discovery: Multiplication, Division and Fractions

    ERIC Educational Resources Information Center

    Vale, Colleen; Davies, Anne

    2007-01-01

    Multiplication, division and fractions are "hotspots" for students in the middle years with many students experiencing difficulty with these concepts. Arrays effectively model multiplication and help children develop multiplicative thinking and learn multiplication facts. In this article the authors show how an open-ended array problem…

  7. Developmental Toxicity of the Organic Fraction from Hydraulic Fracturing Flowback and Produced Waters to Early Life Stages of Zebrafish ( Danio rerio).

    PubMed

    He, Yuhe; Sun, Chenxing; Zhang, Yifeng; Folkerts, Erik J; Martin, Jonathan W; Goss, Greg G

    2018-03-20

    Hydraulic fracturing (HF) has emerged as a major recovery method of unconventional oil and gas reservoirs and concerns have been raised regarding the environmental impact of releases of Flowback and Produced Water (FPW) to aquatic ecosystems. To investigate potential effects of HF-FPW on fish embryo development, HF-FPW samples were collected from two different wells and the organic fractions were isolated from both aqueous and particle phases to eliminate the confounding effects of high salinity. Each organic extract was characterized by non-target analysis with HPLC-Orbitrap-MS, with targeted analysis for polycyclic aromatic hydrocarbons provided as markers of petroleum-affected water. The organic profiles differed between samples, including PAHs and alkyl PAHs, and major substances identified by non-target analysis included polyethylene glycols, alkyl ethoxylates, octylphenol ethoxylates, and other high molecular weight (C 49-79 ) ethylene oxide polymeric material. Zebrafish embryos were exposed to various concentrations of FPW organic extracts to investigate acute (7-day) and developmental toxicity in early life stages. The acute toxicity (LD 50 ) of the extracted FPW fractions ranged from 2.8× to 26× the original organic content. Each extracted FPW fraction significantly increased spinal malformation, pericardial edema, and delayed hatch in exposed embryos and altered the expression of a suite of target genes related to biotransformation, oxidative stress, and endocrine-mediation in developing zebrafish embryos. These results provide novel information on the variation of organic profiles and developmental toxicity among different sources and fractions of HF-FPWs.

  8. Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo.

    PubMed

    Murakami, Michio; Takada, Hideshige

    2008-11-01

    We investigated perfluorinated surfactants (PFSs) in size-fractionated street dust to identify their occurrence, contributions from traffic, and potential routes of entry into waters. Street dust was collected from residential areas and heavily trafficked areas in Tokyo and sorted into fine (<63 microm) and coarse fractions (63-2000 microm). Five PFS species were analyzed by liquid chromatography-tandem mass spectrometry: perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUA). In fine fractions, PFS contents were significantly higher in heavily trafficked street dust than in residential street dust, but in coarse fractions, no significant differences were observed. Additionally, in heavily trafficked areas, PFS contents were significantly higher in fine fractions than in coarse fractions, but in residential areas, no significant differences were observed. PFS compositions differed between size fractions, not locations, indicating differences in sources between size fractions. Fine particles from traffic contributed to PFSs in street dust. Street dust possibly acts as the origin of PFSs in street runoff and eventually enters waters. This is the first report of PFSs in street dust.

  9. Thermal Dose Fractionation Affects Tumor Physiologic Response

    PubMed Central

    Thrall, Donald E; Maccarini, Paolo; Stauffer, Paul; MacFall, James; Hauck, Marlene; Snyder, Stacey; Case, Beth; Linder, Keith; Lan, Lan; McCall, Linda; Dewhirst, Mark W.

    2013-01-01

    Purpose It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this, we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T90, in 1 versus 3–4 fractions per week, over 5 weeks. Materials and Methods Canine sarcomas were randomized to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumor response was based on changes in tumor volume, oxygenation, water diffusion quantified using MRI, and a panel of histologic and immunohistochemical endpoints. Results There was a greater reduction in tumor volume and water diffusion at the end of therapy In tumors receiving 1 hyperthermia fraction per week. There was a weak but significant association between improved tumor oxygenation 24 hours after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF 1α and CA IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA IX. There were no significant changes in interstitial fluid pressure, VEGF, wVf, apoptosis or necrosis as a function of treatment group or temperature. Conclusions We did not identify an advantage to a 3–4/week hyperthermia prescription and response data pointed to a 1/week prescription being superior. PMID:22804741

  10. Derivative with two fractional orders: A new avenue of investigation toward revolution in fractional calculus

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon

    2016-10-01

    In order to describe more complex problems using the concept of fractional derivatives, we introduce in this paper the concept of fractional derivatives with orders. The new definitions are based upon the concept of power law together with the generalized Mittag-Leffler function. The first order is included in the power law function and the second one is in the generalized Mittag-Leffler function. Each order therefore plays an important role while modeling, for instance, problems with two layers with different properties. This is the case, for instance, in thermal science for a reaction diffusion within a media with two different layers with different properties. Another case is that of groundwater flowing within an aquifer where geological formation is formed with two layers with different properties. The paper presents new fractional operators that will open new doors for research and investigations in modeling real world problems. Some useful properties of the new operators are presented, in particular their relationship with existing integral transforms, namely the Laplace, Sumudu, Mellin and Fourier transforms. The numerical approximation of the new fractional operators are presented. We apply the new fractional operators on the model of groundwater plume with degradation and limited sorption and solve the new model numerically with some numerical simulations. The numerical simulation leaves no doubt in believing that the new fractional operators are powerfull mathematical tools able to portray complexes real world problems.

  11. Fractional noise destroys or induces a stochastic bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qigui, E-mail: qgyang@scut.edu.cn; Zeng, Caibin, E-mail: zeng.cb@mail.scut.edu.cn; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640

    2013-12-15

    Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework.

  12. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  13. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline.

    PubMed

    Bettim, Franciele Lima; Galvan, Gabrieli Limberger; Cestari, Marta Margarete; Yamamoto, Carlos Itsuo; de Assis, Helena Cristina Silva

    2016-02-01

    The water-soluble fraction of gasoline (WSFG) is a complex mixture of mono-polycyclic aromatic hydrocarbons. The study aimed to evaluate the effects of WSFG diluted 1.5% on freshwater fish. Astyanax altiparanae were exposed to the WSFG for 96 h, under a semi-static system, with renewal of 25% of the gasoline test solution every 24 h. In addition, a decay of the contamination (DC) was carried out. During DC, the fish was exposed to the WSFG for 8 d, followed by another 7 d with renewal of 25% of volume aquaria with clean water every 24 h. For depuration, fish were transferred to aquaria with clean water, and in addition, 25% of the water was replaced every 24 h. The liver and kidney biotransformation, antioxidant defenses and lipid peroxidation (LPO) levels were evaluated. In the liver, the WSFG 1.5% caused reduction of glutathione S-transferase (GST) after 96 h and DC. In the kidney, only in depuration an increased GST activity was observed, and after DC a higher LPO levels. An increase of the superoxide dismutase (SOD) activity occurred at 96 h in both tissues; however, in the liver was also observed during the depuration. In WSFG 96 h, the glutathione peroxidase (GPx) activity in the kidney increased. As biomarkers of neurotoxicity, the brain and muscle acetylcholinesterase activities were measured, but the WSFG 1.5% did not change them. Therefore, this study brought forth more data about WSFG effects on freshwater fish after lower concentrations exposure and a DC, simulating an environmental contamination. Copyright © 2015. Published by Elsevier Ltd.

  14. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  15. The Experience of Implementation of Innovative Technology of Quarry Waste Water Purifying in Kuzbass Open Pit

    NASA Astrophysics Data System (ADS)

    Lesin, Yu V.; Hellmer, M. C.

    2016-08-01

    Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.

  16. Adsorption characterizations of fulvic acid fractions onto kaolinite.

    PubMed

    Li, Aimin; Xu, Minjuan; Li, Wenhui; Wang, Xuejun; Dai, Jingyu

    2008-01-01

    Fulvic acids extracted from a typical rice-production region near Taihu Lake of China were fractionated into three fractions including F4.8, F7.0 and F11.0 (eluted by pH 4.8 buffer, pH 7.0 buffer and pH 11.0 buffer, respectively). Sorption of fulvic acid (FA) fractions onto kaolinite was studied by batch adsorption experiments, and characterizations of kaolinite before and after adsorption were investigated using scanning electron microscopy (SEM). Adsorption isotherms of kaolinite for three FA fractions fit well with the Langmuir adsorption model. The adsorption density of the three fractions was positively correlated with the ratio of the amount of the alkyl carbon to that of carboxyl and carbonyl carbon in FA fractions and followed an order of F11.0 > F7.0 > F4.8. Hydrophobic interaction was one of the control mechanisms for the sorption of FA fraction onto kaolinite. SEM images confirmed that compared to blank kaolinite samples, kaolinite samples coated by a FA fraction displayed an opener and more dispersed conformation resulting from the disruption of the floc structure in complex. Dispersion of kaolinite after adsorption was due to the repulsion between negatively charged FA-coated particles, which is closely related to the amount of FA fractions absorbed on kaolinite.

  17. The open sea as the main source of methylmercury in the water column of the Gulf of Lions (Northwestern Mediterranean margin)

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel; Durrieu de Madron, Xavier; Schäfer, Jörg; Lanceleur, Laurent; Guédron, Stéphane; Buscail, Roselyne; Thomas, Bastien; Castelle, Sabine; Naudin, Jean-Jacques

    2017-02-01

    Despite the ecologic and economical importance of coastal areas, the neurotoxic bioaccumulable monomethylmercury (MMHg) fluxes within the ocean margins and exchanges with the open sea remain unassessed. The aim of this paper is to address the questions of the abundance, distribution, production and exchanges of methylated mercury species (MeHgT), including MMHg and dimethylmercury (DMHg), in the waters, atmosphere and sediments of the Northwestern Mediterranean margin including the Rhône River delta, the continental shelf and its slope (Gulf of Lions) and the adjacent open sea (North Gyre). Concentrations of MeHgT ranged from <0.02 to 0.48 pmol L-1 with highest values associated with the oxygen-deficient zone of the open sea. The methylated mercury to total mercury proportion (MeHgT/HgT) increased from 2% to 4% in the Rhône River to up to 30% (averaging 18%) in the North Gyre waters, whereas, within the shelf waters, MeHgT/HgT proportions were the lowest (1-3%). We calculate that the open sea is the major source of MeHgT for the shelf waters, with an annual flux estimated at 0.68 ± 0.12 kmol a-1 (i.e., equivalent to 12% of the HgT flux). This MeHgT influx is more than 80 times the direct atmospheric deposition or the in situ net production, more than 40 times the estimated "maximum potential" annual efflux from shelf sediment, and more than 7 times that of the continental sources. In the open sea, ratios of MMHg/DMHg in waters were always <1 and minimum in the oxygen deficient zones of the water column, where MeHg concentrations are maximum. This observation supports the idea that MMHg could be a degradation product of DMHg produced from inorganic divalent Hg.

  18. Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity.

    PubMed

    Chai, Tsun-Thai; Kwek, Meng-Tee; Ong, Hean-Chooi; Wong, Fai-Chu

    2015-11-01

    This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  20. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    PubMed

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  1. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil.

    PubMed

    Rao, B R Rajeswara; Kaul, P N; Syamasundar, K V; Ramesh, S

    2002-09-01

    The essential oil of rose-scented geranium (Pelargonium species, family: Geraniaceae) obtained through steam or water plus steam distillation of shoot biomass is extensively used in the fragrance industry and in aromatherapy. During distillation, a part of the essential oil becomes dissolved in the distillation water (hydrosol) and is lost as this hydrosol is discarded. In this investigation, hydrosol was shaken for 30 min with hexane (10:1 proportion) and the hexane was distilled to yield 'secondary' or 'recovered' essential oil. The chemical composition of secondary oil was compared with that of 'primary' oil (obtained directly by distilling shoot biomass of the crop). Primary oil accounted for 93.0% and secondary oil 7.0% of the total oil yield (100.2 ml from 100 kg green shoot biomass). Fifty-two compounds making up 95.0-98.5% of the primary and the secondary oils were characterized through gas chromatography (GC) and gas chromatography-mass spectroscopy (GC--MS). Primary oil was richer in hydrocarbons (8.5-9.4%), citronellyl formate (6.2-7.5%), geranyl formate (4.1-4.7%), citronellyl propionate (1.0-1.2%), alpha-selinene (1.8-2.2%), citronellyl butyrate (1.4-1.7%), 10-epi-gamma-eudesmol (4.9-5.5%) and geranyl tiglate (1.8-2.1%). Recovered oil was richer in organoleptically important oxygenated compounds (88.9-93.9%), commercial rhodinol fraction (74.3-81.2%), sabinene (0.4-6.2%), cis-linool oxide (furanoid) (0.7-1.2%), linalool (14.7-19.6%), alpha-terpineol (3.3-4.8%) and geraniol (21.3-38.4%). Blending of recovered oil with primary oil is recommended to enhance the olfactory value of the primary oil of rose-scented geranium. Distillation water stripped of essential oil through hexane extraction can be recycled for distilling the next batch of rose-scented geranium.

  2. Quantification of skeletal fraction volume of a soil pit by means of photogrammetry

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens

    2015-04-01

    The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.

  3. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    PubMed

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  4. Detection of Sea Ice and Open Water from RADARSAT-2 Images for Data Assimilation

    NASA Astrophysics Data System (ADS)

    Komarov, A.; Buehner, M.

    2016-12-01

    Automated detection of sea ice and open water from SAR data is very important for further assimilation into coupled ocean-sea ice-atmosphere numerical models, such as the Regional Ice-Ocean Prediction System being implemented at the Environment and Climate Change Canada. Conventional classification approaches based on various learning techniques are found to be limited by the fact that they typically do not indicate the level of confidence for ice and water retrievals. Meanwhile, only ice/water retrievals with a very high level of confidence are allowed to be assimilated into the sea ice model to avoid propagating and magnifying errors into the numerical prediction system. In this study we developed a new technique for ice and water detection from dual-polarization RADARSAT-2 HH-HV images which provides the probability of ice/water at a given location. We collected many hundreds of thousands of SAR signatures over various sea ice types (i.e. new, grey, first-year, and multi-year ice) and open water from all available RADARSAT-2 images and the corresponding Canadian Ice Service Image Analysis products over the period from November 2010 to May 2016. Our analysis of the dataset revealed that ice/water separation can be effectively performed in the space of SAR-based variables independent of the incidence angle and noise floor (such as texture measures) and auxiliary Global Environmental Multiscale Model parameters (such as surface wind speed). Choice of the parameters will be specifically discussed in the presentation. An ice probability empirical model as a function of the selected predictors was built in a form of logistic regression, based on the training dataset from 2012 to 2016. The developed ice probability model showed very good performance on the independent testing subset (year 2011). With the ice/water probability threshold of 0.95 reflecting a very high level of confidence, 79% of the testing ice and water samples were classified with the accuracy of 99

  5. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  6. Pelagic Biocarbonates: Assessing the "Forgotten" Fine Fraction

    NASA Astrophysics Data System (ADS)

    Brummer, G. J. A.

    2016-02-01

    Biocarbonates play an important role in the global carbon cycle and cover over half of the ocean floor. Biocarbonates in the open ocean are best known from planktonic foraminifera, which are relatively large (>150µm), heavy and few and coccoliths, which are very small (<32µm), light and abundant. Both of these components are relatively well studied. The size fraction in between adult foraminifera and coccoliths (32-150µm: the so-called fine fraction) consists of a large but poorly known mixture of particles, which is genarlly assumed to consist primarily of "juvenile" planktonic foraminifera, with minor amounts of calcareous dinoflagellates and various others less well-known microfossils. Abundance, diversity, mass and composition within the fine fraction are poorly constrained, as is the response to acidification/dissolution. This lack of knowledge primarily reflects the gap in size fraction studied by the different disciplinary approaches and techniques, which are not suited for identifying and quantifying these intermediate groups. Comparative ontogeny of planktonic foraminifera now shows that this fine fraction in sediments does not consist of "juveniles" as in the living plankton, but is dominated by mature specimens of small-sized species. First estimates indicate that these small species not only account for about one third of the number of species of planktonic foraminifera but also form about one third of their shell flux and global carbonate production in weight. Still, we hardly know anything on seasonality, depth habitat, shell composition (isotopes, trace metal incorporation), potential autotrophic symbionts, molecular genetics and geological range of these clearly very important species. Estimates from well-preserved sediments, show that the important role of these minute foraminiferal planktonic species may hold for much of the 180Ma long fossil record, opening a new research field pertaining to both modern and past pelagic ecosystems and the role

  7. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  8. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  9. An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.

    2013-12-01

    Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.

  10. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay

    NASA Astrophysics Data System (ADS)

    Koch, Marguerite S.; Kletou, Demetris C.; Tursi, Rosanna

    2009-08-01

    Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006-April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2-1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (˜2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic

  11. Paradoxical Long-Timespan Opening of the Hole in Self-Supported Water Films of Nanometer Thickness.

    PubMed

    Barkay, Z; Bormashenko, E

    2017-05-16

    The opening of holes in self-supported thin (nanoscaled) water films has been investigated in situ with the environmental scanning electron microscope. The opening of a hole occurs within a two-stage process. In the first stage, the rim surrounding a hole is formed, resembling the process that is observed under the puncturing of soap bubbles. In the second stage, the exponential growth of the hole is observed, with a characteristic time of a dozen seconds. We explain the exponential kinetics of hole growth by the balance between inertia (gravity) and viscous dissipation. The kinetics of opening a microscaled hole is governed by the processes taking place in the nanothick bulk of the self-supported liquid film. Nanoparticles provide markers for the visualization of the processes occurring in self-supported thin nanoscale liquid films.

  12. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    DOE PAGES

    Johansson, Ann-Christine; Lisa, Kristiina; Sandström, Linda; ...

    2016-12-06

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. Our objective was to characterize the oil fractions producedmore » from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. But, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. Furthermore, this promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle

  13. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, Ann-Christine; Lisa, Kristiina; Sandström, Linda

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. Our objective was to characterize the oil fractions producedmore » from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. But, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. Furthermore, this promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle

  14. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    NASA Astrophysics Data System (ADS)

    Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.

    2017-09-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  15. Stable isotopes in water vapor and rainwater over Indian sector of Southern Ocean and estimation of fraction of recycled moisture.

    PubMed

    Rahul, P; Prasanna, K; Ghosh, Prosenjit; Anilkumar, N; Yoshimura, Kei

    2018-05-15

    Stable Hydrogen and Oxygen isotopic composition of water vapor, rainwater and surface seawater show a distinct trend across the latitude over the Southern Indian Ocean. Our observations on isotopic composition of surface seawater, water vapor and rainwater across a transect covering the tropical Indian Ocean to the regions of the Southern Ocean showed a strong latitudinal dependency; characterized by the zonal process of evaporation and precipitation. The sampling points were spread across diverse zones of SST, wind speed and rainfall regimes. The observed physical parameters such as sea surface temperature, wind speed and relative humidity over the oceanic regions were used in a box model calculation across the latitudes to predict the isotopic composition of water vapor under equilibrium and kinetic conditions, and compared with results from isotope enabled global spectral model. Further, we obtained the average fraction of recycled moisture across the oceanic transect latitudes as 13.4 ± 7.7%. The values of recycled fraction were maximum at the vicinity of the Inter Tropical Convergence Zone (ITCZ), while the minimum values were recorded over the region of subsidence and evaporation, at the Northern and Southern latitudes of the ITCZ. These estimates are consistent with the earlier reported recyling values.

  16. Patterns of Genetic Diversity and Co-Existence in Open Ocean Diatoms: the Effects of Water Mass Structure, Selection and Sex

    NASA Astrophysics Data System (ADS)

    Rynearson, T. A.; Chen, G.

    2016-02-01

    The open ocean North Atlantic spring bloom influences regional ecology and global biogeochemistry. Diatoms dominate the peak of the bloom and significantly impact productivity and export of organic carbon from the bloom. Despite their key role in a yearly event with global impacts, the genetic diversity and population structure of diatoms that comprise this open ocean bloom are unknown. Here we investigated the population genetics of the diatom Thalassiosira gravida sampled during the 2008 North Atlantic Bloom Experiment using newly-developed microsatellite markers. Here, we show that the genetic diversity of open ocean diatoms is high and that their population structure differs dramatically from coastal diatoms. High levels of genetic diversity were observed across all water samples and did not change during the bloom. Four genetically distinct populations were identified but were not associated with different water masses, depths or time points during the bloom. Instead, all four populations co-existed within samples, spanning different water masses, stages of the bloom and depths of over >300 m. The pattern of genetically distinct, co-existing populations in the open ocean contrasts dramatically with coastal habitats, where distinct populations have not been observed to co-exist at the same time and place. It is likely that populations originate via transport from disparate locations combined with overwintering capacity in the water column or sediments. The pattern of co-existence suggests that the open ocean may serve as a gene pool that harbors different populations that are then available for selection to act upon, which may contribute to the ecological and biogeochemical success of diatoms and influence their long-term evolutionary survival.

  17. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and microorganisms collected from Twilight Zone waters around Guam.

    PubMed

    Schupp, Peter J; Kohlert-Schupp, Claudia; Whitefield, Susanna; Engemann, Anna; Rohde, Sven; Hemscheidt, Thomas; Pezzuto, John M; Kondratyuk, Tamara P; Park, Eun-Jung; Marler, Laura; Rostama, Bahman; Wright, Anthony D

    2009-12-01

    The cancer chemopreventive and cytotoxic properties of 50 extracts derived from Twilight Zone (50-150 m) sponges, gorgonians and associated bacteria, together with 15 extracts from shallow water hard corals, as well as 16 fractions derived from the methanol solubles of the Twilight Zone sponge Suberea sp, were assessed in a series of bioassays. These assays included: Induction of quinone reductase (QR), inhibition of TNF-alpha activated nuclear factor kappa B (NFkappaB), inhibition of aromatase, interaction with retinoid X receptor (RXR), inhibition of nitric oxide (NO) synthase, inhibition 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), and inhibition of HL-60 and MCF-7 cell proliferation. The results of these assays showed that at least 10 extracts and five fractions inhibited NFkappaB by greater than 60%, two extracts and two fractions inhibited DPPH by more than 50%, nine extracts and two fractions affected the survival of HL-60 cells, no extracts or fractions affected RXR, three extracts and six fractions affected quinone reductase (QR), three extracts and 12 fractions significantly inhibited aromatase, four extracts and five fractions inhibited nitric oxide synthase, and one extract and no fractions inhibited the growth of MCF-7 cells by more than 95%. These data revealed the tested samples to have many and varied activities, making them, as shown with the extract of the Suberea species, useful starting points for further fractionation and purification. Moreover, the large number of samples demonstrating activity in only one or sometimes two assays accentuates the potential of the Twilight Zone, as a largely unexplored habitat, for the discovery of selectively bioactive compounds. The overall high hit rate in many of the employed assays is considered to be a significant finding in terms of "normal" hit rates associated with similar samples from shallower depths.

  18. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  19. Visible and thermal imaging of sea ice and open water from Coast Guard Arctic Domain Awareness flights

    NASA Astrophysics Data System (ADS)

    Chickadel, C. C.; Lindsay, R. W.; Clark, D.

    2014-12-01

    An uncooled thermal camera (microbolometer) and RGB camera were mounted in the tail section of a US Coast Guard HC-130 to observe sea ice, open water, and cloud tops through the open rear cargo doors during routine Arctic Domain Awareness (ADA) flights. Recent flights were conducted over the Beaufort Sea in June, July, and August of 2014, with flights planned for September and October. Thermal and visible images were collected at low altitude (100m) during times when the cargo doors were open and recorded high resolution information on ice floes, melt ponds, and surface temperature variability associated with the marginal ice zone (MIZ). These observations of sea ice conditions and surface water temperatures will be used to characterize floe size development and the temperature and albedo of ice ponds and leads. This information will allow for a detailed characterization of sea ice that can be used in process studies and for model evaluation, calibration of satellite remote sensing products, and initialization of sea ice prediction schemes.

  20. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  1. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  2. 238U and 235U isotope fractionation upon oxidation of uranium-bearing rocks by fracture waters

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.; Mandzhieva, G. V.

    2016-10-01

    The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC-ICP-MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].

  3. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task.

    PubMed

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P

    2017-09-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.

  4. Satellite Observed Variability in Antarctic and Arctic Surface Temperatures and Their Correlation to Open Water Areas

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recent studies using meterological station data have indicated that global surface air temperature has been increasing at a rate of 0.05 K/decade. Using the same set of data but for stations in the Antarctic and Arctic regions (>50 N) only, the increases in temperature were 0.08, and 0.22 K/decade, when record lengths of 100 and 50 years, respectively, were used. To gain insights into the increasing rate of warming, satellite infrared and passive microwave observations over the Arctic region during the last 20 years were processed and analyzed. The results show that during this period, the ice extent in the Antarctic has been increasing at the rate of 1.2% per decade while the surface temperature has been decreasing at about 0.08 K per decade. Conversely, in the Northern Hemisphere, the ice extent has been decreasing at a rate of 2.8% per decade, while the surface temperatures have been increasing at the rate of 0.38 K per decade. In the Antarctic, it is surprising that there is a short term trend of cooling during a global period of warming. Very large anomalies in open water areas in the Arctic were observed especially in the western region, that includes the Beaufort Sea, where the observed open water area was about 1x10(exp 6) sq km, about twice the average for the region, during the summer of 1998. In the eastern region, that includes the Laptev Sea, the area of open water was also abnormally large in the summer of 1995. Note that globally, the warmest and second warmest years in this century, were 1998 and 1995, respectively. The data, however, show large spatial variability with the open water area distribution showing a cyclic periodicity of about ten years, which is akin to the North Atlantic and Arctic Oscillations. This was observed in both western and eastern regions but with the phase of one lagging the other by about two years. This makes it difficult to interpret what the trends really mean. But although the record length of satellite data is still

  5. Methods And Apparatus For Acoustic Fiber Fractionation

    DOEpatents

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  6. Mapping inter-annual dynamics of open surface water bodies in Oklahoma from Landsat images in 1984 to 2015 at 30-m spatial resolution

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Xiao, X.; Menarguez, M.; Dong, J.; Qin, Y.

    2016-12-01

    Open surface water bodies are important water resource for public supply, irrigation, livestock, and wildlife in Oklahoma. The inter-annual variation of Oklahoma water bodies directly affect the water availability for public supply, irrigation and cattle industry. In this study, tens of thousands of Landsat TM/ETM+ images from 1984 to 2015 were used to track the dynamics of open surface water bodies. Both water-related spectral indices and vegetation indices were used to map water bodies for individual images. The resultant maps show that Oklahoma year-long open surface water bodies varied significantly over the last 32 years, with an average annual water body area equals to 2300 km2, accounting for 1.27 % of the Oklahoma state area (181,037 km2). 4.3 million year-long water body pixels were detected in the 32-year accumulated water frequency map, corresponding to 3100 km2. Only 45% ( 1400 km2) of the those pixels had water throughout the 32 years, while the rest 55% pixels had a dry-up period. The smaller water bodies have a higher risk to dry up and a lower probability to have water throughout the years. Drought years could significantly decrease the number of small water bodies and shrink the area of large water bodies, while pluvial years could create large number of small seasonal water bodies. The significant influencing factors of current year water bodies include the precipitation and temperature of current year and the water body condition of the previous year. This water body dynamics study could be used to support water resource management, crop and livestock production, and biodiversity conservation in Oklahoma.

  7. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir.

    PubMed

    Han, Chaonan; Zheng, Binghui; Qin, Yanwen; Ma, Yingqun; Yang, Chenchen; Liu, Zhichao; Cao, Wei; Chi, Minghui

    2018-01-01

    The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms

    NASA Astrophysics Data System (ADS)

    Sun, Xiaole; Olofsson, Martin; Andersson, Per S.; Fry, Brian; Legrand, Catherine; Humborg, Christoph; Mörth, Carl-Magnus

    2014-04-01

    Studies of silicon (Si) isotope fractionation during diatom growth in open ocean systems have documented lower Si isotopic values (δ30Si) in the biogenic silica of diatom frustules compared to dissolved silicon. Recent findings also indicate that Si isotope fractionation occurs during dissolution of diatom frustules, producing higher δ30Si values in the remaining biogenic silica. This study focuses on diatoms from high production areas in estuarine and coastal areas that represent approximately 30-50% of the global marine primary production. Two species of diatoms, Thalassiosira baltica and Skeletonema marinoi, were isolated from the brackish Baltic Sea, one of the largest estuarine systems in the world. These species were used for laboratory investigations of Si isotope fractionation during diatom growth and the subsequent dissolution of the diatom frustules. Both species of diatoms give an identical Si isotope fractionation factor during growth of -1.50 ± 0.36‰ (2σ) for 30Si, which falls in the range of -2.09‰ to -0.55‰ of published data. Our results also suggest a dissolution-induced Si isotope fractionation factor of -0.86‰ at early stage of dissolution, but this effect was observed only in DSi and no significant Si isotope change was observed for BSi. The growth and dissolution results are applied to a Baltic Sea sediment core to reconstruct DSi utilization by diatoms, and found to be in agreement with the observed DSi uptake rates in the overlying water column during diatom growth.

  9. Swimming performances in long distance open-water events with and without wetsuit

    PubMed Central

    2014-01-01

    Background Existing literature showed improved swimming performances for swimmers wearing wetsuits competing under standardized conditions in races held in pools on short to middle distances. Data about the influence of wetsuits on swimming performances in long and ultra-long open-water swimming races are missing. It is unknown whether the benefit of wearing wetsuits is comparable in men and women. The aim of this study was to investigate the influence of wearing a wetsuit on open-water swimming performances at the 26.4 km ‘Marathon Swim in Lake Zurich’ in Lake Zurich, Switzerland, and the 3.8 km Lake Ontario Swim Team-Race (LOST-Race) in Lake Ontario, Canada. Methods Race times of the fastest female and male swimmers competing with and without wetsuit were compared using multi-level regression analyses and analysis of variance. Results In the ‘Marathon Swim’ in Lake Zurich, wearing a wetsuit had no effect on race time regarding the gender where athletes wearing a wetsuit were not faster than athletes without wetsuit. However, the ten fastest men wearing a wetsuit (410.6 ± 26.7 min) were faster (32.7%, p < 0.01) than the ten fastest women without wetsuit (544.9 ± 81.3 min). In the ‘LOST-Race’, the top ten men wearing a wetsuit (51.7 ± 2.5 min) were faster (13.2%, p < 0.01) than the top ten women wearing a wetsuit (58.5 ± 3.2 min). Additionally, the top ten men without wetsuit (52.1 ± 2.4 min) were faster (19.6%, p < 0.01) than the top ten women without wetsuit (62.3 ± 2.5 min). The top ten women wearing a wetsuit (58.5 ± 3.2 min) were faster (6.5%, p < 0.01) than top ten women without a wetsuit (62.3 ± 25 min). Conclusions These results suggest that wearing a wetsuit had a positive influence on swimming speed for both women and men but the benefit of the use of wetsuits seemed to depend on additional factors (i.e. race distance). Women seemed to benefit more from wearing wetsuits than men in longer

  10. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.

    2017-01-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  11. When does 1/2 = 1/3?: Modelling with Wet Fractions

    ERIC Educational Resources Information Center

    Fitzallen, Noleine

    2015-01-01

    Many fraction activities rely on the use of area models for developing partitioning skills. These models, however, are limited in their ability to assist students to visualise a fraction of an object when the whole changes. This article describes a fraction modelling activity that requires the transfer of water from one container to another. The…

  12. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  13. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    PubMed

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. SU-E-T-65: A Prospective Trial of Open Face Masks for Head and Neck Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, D; Squire, S; Maurer, J

    Purpose: Open face head and neck masks allow for active patient monitoring during treatment and may reduced claustrophobia and anxiety compared to closed masks. The ability of open masks to limit intrafraction motion and to preserve the patient shape/position from simulation over protracted treatments should be considered. Methods: Thirty-two head and neck patients were prospectively randomized to treatment in a closed mask or a novel open face mask. All patients received daily volumetric imaging. The daily images were automatically rigidly registered to the planning CT’s offline using a commercial image processing tool. The shifts needed to optimize the registration, themore » mutual information coefficient (MI), and the Pearson correlation (PC) coefficients were recorded to evaluate shape preservation. The open group was set-up and monitored with surface imaging at treatment. The real time surface imaging information was recorded to evaluate intrafraction motion. Results: Sixteen patients were included in each group. Evaluations were made over a total of 984 fractions. The mean MI and PC showed significantly higher shape preservation for the open group than for the closed group (p = 0). The mean rotations for the open group were smaller or < 0.15° larger versus the closed group. The mean intrafraction motion for the open group was 0.93 +/−0.99 mm (2 SD). The maximum single fraction displacement was 3.2 mm. Fourteen of 16 patients showed no significant correlation of motion with fraction number (p > 0.05). Conclusion: The open masks preserved shape as well as the closed masks, and they limited motion to < 2 mm for 95% of the treated fractions. These results are consistent over treatment courses of up to 35 fractions. The open mask is suitable for treatment with or without active monitoring. This work was partially supported by Qfix.« less

  15. Cadmium Isotope Fractionation of the Surface Waters in a Mining Area Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Yang, W.; Chen, Y.; Tang, Y.

    2016-12-01

    The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the behaviors of transportation and transformation of metals like Cd in mountain area are poorly understood, the complicated hydro-geomorphic settings of mountain catchments are difficult to access . And few reports have been reported about the effects of. In this study, the concentration and the isotopic composition of Cd selected filtered stream samples from the Hengshi river affected by AMD have been determined. The Cd concentrations were determined for collected sediments samples, which cover the entire river valley from upstream to the downstream regions. Results showed that reducing concentrations for Cd were found in the river water from upstream to downstream, and also high enrichment factor for Cd in all the sediments, suggest that Cd mainly is derived from Liwu dam and easily enter into solid phase. The isotopic data show that the dissolved Cd in rivers is characterized by δ114/110Cd, ranged from 0.09 ‰ to 0.40 ‰ in term of δ114/110Cd , the mean is 0.25 ± 0.06 ‰, and the content of Cd from the sediments is 0.18 to 39.85 μg/g. The river isotope values are similar to the isotope signature of Liwu dam, which contain significant amounts of contaminants under a deep water cover, such as mine tailings, sulfide-rich rocks and minerals. Large fractionated Cd (δ114/110Cd = 0.40 ± 0.09 ‰) was found in water sample collected from midstream near a farmland, which imply there is a new source different from the LIWU dam depend on the heavier Cd signature. We hypothesize that this shift results from either hydrology changes over time in the main and tributaries stream, and some new pollution source imported. The change in the behavior of sorption of cadmium on oxides and hydroxides in the sediment system under low pH cause indistinguishable fractionation. Our result is encouraging for

  16. A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1998-01-01

    A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.

  17. Open Ocean Assessments for Management in the GEF Transboundary Waters Assessment Project (TWAP)

    NASA Astrophysics Data System (ADS)

    Fischer, A. S.; Alverson, K. D.

    2010-12-01

    A methodology for a thematic and scientifically-credible assessment of Open Ocean waters as a part of the Global Environment Facility (GEF) Transboundary Waters Assessment Project (TWAP) has been developed in the last 18 months by the Intergovernmental Oceanographic Commission of UNESCO, and is presented for feedback and comment. While developed to help the GEF International Waters focal area target investment to manage looming environmental threats in interlinked freshwater and marine systems (a very focused decision support system), the assessment methodology could contribute to other assessment and management efforts in the UN system and elsewhere. Building on a conceptual framework that describes the relationships between human systems and open ocean natural systems, and on mapping of the human impact on the marine environment, the assessment will evaluate and make projections on a thematic basis, identifying key metrics, indices, and indicators. These themes will include the threats on key ecosystem services of climate change through sea level rise, changed stratification, warming, and ocean acidification; vulnerabilities of ecosystems, habitats, and living marine resources; the impact and sustainability of fisheries; and pollution. Global-level governance arrangements will also be evaluated, with an eye to identifying scope for improved global-level management. The assessment will build on sustained ocean observing systems, model projections, and an assessment of scientific literature, as well as tools for combining knowledge to support identification of priority concerns and in developing scenarios for management. It will include an assessment of key research and observing needs as one way to deal with the scientific uncertainty inherent in such an exercise, and to better link policy and science agendas.

  18. Ecological monitoring for assessing the state of the nearshore and open waters of the Great Lakes

    USGS Publications Warehouse

    Neilson, Melanie A.; Painter, D. Scott; Warren, Glenn; Hites, Ronald A.; Basu, Ilora; Weseloh, D.V. Chip; Whittle, D. Michael; Christie, Gavin; Barbiero, Richard; Tuchman, Marc; Johannsson, Ora E.; Nalepa, Thomas F.; Edsall, Thomas A.; Fleischer, Guy; Bronte, Charles; Smith, Stephen B.; Baumann, Paul C.

    2003-01-01

    The Great Lakes Water Quality Agreement stipulates that the Governments of Canada and the United States are responsible for restoring and maintaining the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. Due to varying mandates and areas of expertise, monitoring to assess progress towards this objective is conducted by a multitude of Canadian and U.S. federal and provincial/state agencies, in cooperation with academia and regional authorities. This paper highlights selected long-term monitoring programs and discusses a number of documented ecological changes that indicate the present state of the open and nearshore waters of the Great Lakes.

  19. Rate dependent fractionation of sulfur isotopes in through-flowing systems

    NASA Astrophysics Data System (ADS)

    Giannetta, M.; Sanford, R. A.; Druhan, J. L.

    2017-12-01

    The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient

  20. A Reexamination of Deuterium Fractionation on Mars

    NASA Astrophysics Data System (ADS)

    Pathare, A.; Paige, D. A.

    1997-07-01

    The ratio of deuterium to hydrogen in the Martian atmosphere is enhanced by a factor of 5 with respect to the terrestrial value, probably due to fractionation associated with thermal Jeans escape from the top of the atmosphere. Theoretical analyses of the relative efficiency of H and D escape have suggested that the deuterium enrichment implies Mars has outgassed the vast majority of its H2O and that the Martian atmosphere is presently not exchanging water with a juvenile reservoir. However, measurements of high and variable D/H values within hydrous minerals in SNC meteorites strongly suggest that mixing between the atmosphere and juvenile water has taken place. Furthermore, the lack of any observed enrichment of atmospheric (18) O with respect to (16) O, in spite of fractionating nonthermal escape mechanisms, indicates buffering by some juvenile source of oxygen, most probably in the form of a surface or subsurface reservoir of water. We propose that this apparent paradox in the interpretation of isotopic hydrogen and oxygen fractionation --or lack thereof-- can be resolved by re-examining the standard model of deuterium fractionation efficiency on Mars. Specifically, we demonstrate the importance of using upper atmospheric temperatures more representative of the range experienced by the Martian exosphere over the course of the solar cycle. Preliminary calculations involving changes in effusion velocity and diffusive separation as a function of exospheric temperature indicate that incorporating these more representative lower exospheric temperatures will reduce the relative efficiency of D escape, in which case the observed enrichment of deuterium can indeed result from exchange with a juvenile source of water. We are in the process of confirming these computations with a one-dimensional upper atmospheric photochemical model that considers the effects of changing solar activity and exospheric temperature on ionospheric composition. If our initial calculations are

  1. Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ(25-35) induced amnesia in mice.

    PubMed

    Hanish Singh, J C; Alagarsamy, V; Diwan, Prakash V; Sathesh Kumar, S; Nisha, J C; Narsimha Reddy, Y

    2011-10-31

    The rhizomes of Alpinia galanga (L.) Willd (Zingiberaceae), a ginger substitute for flavouring food was traditionally used as nervine tonic and stimulant. This investigation is designed to screen cognitive improvement of Alpinia galanga (AG) fractions in Alzheimer's type of amnesia in mice induced by Aβ((25-35)). Alzheimer's disease induced mice treated with fractions (n-hexane, chloroform and ethyl acetate) of AG in 200 and 400mg/kg. Neurotoxicity was induced by intracerebroventricular injection of Aβ((25-35)) on the 14th day of 21 days drug treatment. Open field and water maze were carried to determine habituation memory and hippocampal memory. Na(+)/K(+)-ATPase, acetylcholinesterase (AChE) and antioxidant enzymes (SOD, GPx, catalase and vitamin C) were determined in brain tissue homogenate to estimate the brain biochemical changes and its anti-amnesic potential with intensity of oxidative stress signaling. Further bioactive (chloroform) fraction was eluted through column chromatography to identify the lead molecules. Increased habituation memory and decreased escape latency in behavioral parameter are the indicative of the cognitive enhancement after treatment with Alpinia galanga fractions. Increment in Na(+)/K(+)-ATPase and antioxidant activity depicts brain membrane integrity improvement and free radical scavenging property. AChE level was decreased to improve the cognition by enhancing cholinergic transmission. Anti-amnesic effect was exerted by various fractions of Alpinia galanga. Among all fractions, preeminent neuroprotection was exerted by chloroform fraction, which has compound, 1'δ-1'-acetoxyeugenol acetate and it may be a potential therapeutic agent for Alzheimer's type of amnesia. These results further motivate us to explore the activity of lead compound's anti-amnesic effect on transgenic mice model of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  3. Evaluation and Validation of the Messinger Freezing Fraction

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    One of the most important non-dimensional parameters used in ice-accretion modeling and scaling studies is the freezing fraction defined by the heat-balance analysis of Messinger. For fifty years this parameter has been used to indicate how rapidly freezing takes place when super-cooled water strikes a solid body. The value ranges from 0 (no freezing) to 1 (water freezes immediately on impact), and the magnitude has been shown to play a major role in determining the physical appearance of the accreted ice. Because of its importance to ice shape, this parameter and the physics underlying the expressions used to calculate it have been questioned from time to time. Until now, there has been no strong evidence either validating or casting doubt on the current expressions. This paper presents experimental measurements of the leading-edge thickness of a number of ice shapes for a variety of test conditions with nominal freezing fractions from 0.3 to 1.0. From these thickness measurements, experimental freezing fractions were calculated and compared with values found from the Messinger analysis as applied by Ruff. Within the experimental uncertainty of measuring the leading-edge thickness, agreement of the experimental and analytical freezing fraction was very good. It is also shown that values of analytical freezing fraction were entirely consistent with observed ice shapes at and near rime conditions: At an analytical freezing fraction of unity, experimental ice shapes displayed the classic rime shape, while for conditions producing analytical freezing fractions slightly lower than unity, glaze features started to appear.

  4. Antitumor activity of fermented noni exudates and its fractions

    PubMed Central

    LI, JINHUA; CHANG, LENG-CHEE; WALL, MARISA; WONG, D.K.W.; YU, XIANZHONG; WEI, YANZHANG

    2013-01-01

    Noni has been extensively used in folk medicine by Polynesians for over 2000 year. Recent studies have shown that noni has a wide spectrum of therapeutic activities including inhibition of angiogenesis, anti-inflammatory effects and anti-cancer activities. Intraperitoneal (i.p.) injection of fermented noni exudates (fNE) were previously found to induce significant tumor rejection in a S180 mouse sarcoma tumor model, while natural killer (NK) cells were demonstrated to be markedly involved in fNE-induced antitumor activity. In this study, fNE was partitioned into three fractions and their antitumor effects were examined using i.p. injection or as water supplement. The in vivo animal study results showed that when delivered by i.p. injection, n-butanol fraction of fNE (BuOH) effectively rejected (100%) tumor challenge and eradicated existing tumors (75%). When delivered as a water supplement, 62.5% of the mice receiving the n-butanol or ethyl acetate fractions resisted tumor cells. The tumor-resistant mice effectively rejected more and higher doses of tumor challenge, indicating that the immune system was activated. The findings confirm those of an earlier study showing fNE to have anti-tumor activity and demonstrating that the n-butanol fraction of fNE contains active antitumor components, to be further identified. More importantly, the antitumor effect of fNE and its fractions as water supplements renders a significant potential for identifying novel and powerful new dietary products for cancer prevention. PMID:24649140

  5. Antitumor activity of fermented noni exudates and its fractions.

    PubMed

    Li, Jinhua; Chang, Leng-Chee; Wall, Marisa; Wong, D K W; Yu, Xianzhong; Wei, Yanzhang

    2013-01-01

    Noni has been extensively used in folk medicine by Polynesians for over 2000 year. Recent studies have shown that noni has a wide spectrum of therapeutic activities including inhibition of angiogenesis, anti-inflammatory effects and anti-cancer activities. Intraperitoneal (i.p.) injection of fermented noni exudates (fNE) were previously found to induce significant tumor rejection in a S180 mouse sarcoma tumor model, while natural killer (NK) cells were demonstrated to be markedly involved in fNE-induced antitumor activity. In this study, fNE was partitioned into three fractions and their antitumor effects were examined using i.p. injection or as water supplement. The in vivo animal study results showed that when delivered by i.p. injection, n-butanol fraction of fNE (BuOH) effectively rejected (100%) tumor challenge and eradicated existing tumors (75%). When delivered as a water supplement, 62.5% of the mice receiving the n-butanol or ethyl acetate fractions resisted tumor cells. The tumor-resistant mice effectively rejected more and higher doses of tumor challenge, indicating that the immune system was activated. The findings confirm those of an earlier study showing fNE to have anti-tumor activity and demonstrating that the n-butanol fraction of fNE contains active antitumor components, to be further identified. More importantly, the antitumor effect of fNE and its fractions as water supplements renders a significant potential for identifying novel and powerful new dietary products for cancer prevention.

  6. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+, F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42-, K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show

  7. Characterizing Open Water Bodies and Their Color Properties Through Optical Remote Sensing to Identify Areas of Vector-Borne Disease Risk

    NASA Astrophysics Data System (ADS)

    Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.

    2014-12-01

    Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  8. Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season.

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-01-01

    Baobab trees (Adansonia, Bombacaceae) are widely thought to store water in their stems for use when water availability is low. We tested this hypothesis by assessing the role of stored water during the dry season in three baobab species in Madagascar. In the dry season, leaves are present only during and after leaf flush. We quantified the relative contributions of stem and soil water during this period through measures of stem water content, sap flow and stomatal conductance. Rates of sap flow at the base of the trunk were near zero, indicating that leaf flushing was almost entirely dependent on stem water. Stem water content declined by up to 12% during this period, yet stomatal conductance and branch sap flow rates remained very low. Stem water reserves were used to support new leaf growth and cuticular transpiration, but not to support stomatal opening before the rainy season. Stomatal opening coincided with the onset of sap flow at the base of the trunk and occurred only after significant rainfall.

  9. Zirconium(IV)-Catalyzed Ring Opening of on-DNA Epoxides in Water.

    PubMed

    Fan, Lijun; Davie, Christopher P

    2017-05-04

    DNA-encoded library technology (ELT) has spurred wide interest in the pharmaceutical industry as a powerful tool for hit and lead generation. In recent years a number of "DNA-compatible" chemical modifications have been published and used to synthesize vastly diverse screening libraries. Herein we report a newly developed, zirconium tetrakis(dodecyl sulfate) [Zr(DS) 4 ] catalyzed ring-opening of on-DNA epoxides in water with amines, including anilines. Subsequent cyclization of the resulting on-DNA β-amino alcohols leads to a variety of biologically interesting, nonaromatic heterocycles. Under these conditions, a library of 137 million on-DNA β-amino alcohols and their cyclization products was assembled. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Open Software Tools Applied to Jordan's National Multi-Agent Water Management Model

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Harou, Julien; Yoon, Jim; Selby, Philip; Lachaut, Thibaut; Klassert, Christian; Avisse, Nicolas; Khadem, Majed; Tilmant, Amaury; Gorelick, Steven

    2016-04-01

    Jordan is the fourth most water scarce country in the world, where demand exceeds supply in a politically and demographically unstable context. The Jordan Water Project (JWP) aims to perform policy evaluation by modelling the hydrology, economics, and governance of Jordan's water resource system. The multidisciplinary nature of the project requires a modelling software system capable of integrating submodels from multiple disciplines into a single decision making process and communicating results to stakeholders. This requires a tool for building an integrated model and a system where diverse data sets can be managed and visualised. The integrated Jordan model is built using Pynsim, an open-source multi-agent simulation framework implemented in Python. Pynsim operates on network structures of nodes and links and supports institutional hierarchies, where an institution represents a grouping of nodes, links or other institutions. At each time step, code within each node, link and institution can executed independently, allowing for their fully autonomous behaviour. Additionally, engines (sub-models) perform actions over the entire network or on a subset of the network, such as taking a decision on a set of nodes. Pynsim is modular in design, allowing distinct modules to be modified easily without affecting others. Data management and visualisation is performed using Hydra (www.hydraplatform.org), an open software platform allowing users to manage network structure and data. The Hydra data manager connects to Pynsim, providing necessary input parameters for the integrated model. By providing a high-level portal to the model, Hydra removes a barrier between the users of the model (researchers, stakeholders, planners etc) and the model itself, allowing them to manage data, run the model and visualise results all through a single user interface. Pynsim's ability to represent institutional hierarchies, inter-network communication and the separation of node, link and

  11. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J.-F.

    2012-12-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea, Canadian Arctic Ocean, with a particular focus on free-living vs. particle-attached communities. Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between particle-attached (PA) and free-living (FL) bacterial communities in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (proxy of DOC and CDOM), suspended particles, amino acids and chlorophyll a. 16S rRNA genes pyrosequencing of selected samples confirmed these significant differences from river to sea and also between PA and FL fractions only in open sea samples, and PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, the coast and river samples, both PA and FL fractions, were dominated by Betaproteobacteria, Alphaproteobacteria and Actinobacteria. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a~basis to predict further changes in bacterial communities should climate change lead to further

  12. Central depressant activity of butanol fraction of Securinega virosa root bark in mice.

    PubMed

    Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte

    2012-05-07

    Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (P<0.001) reduced the mean onset of sleep in mice and doubled the mean duration of sleep in mice at the dose of 75mg/kg. The butanol fraction and diazepam (0.5mg/kg) significantly (P<0.01-0.001) reduced the number of head dips in the hole-board test suggesting sedative effect. The sedative effect of the butanol fraction was further corroborated by its significant (P<0.01-0.001) reduction of the number of step climbed and rearing in the staircase test. The butanol fraction did not significantly increase the time taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (P<0

  13. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  14. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    PubMed

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  15. Do Leached Authigenic Fractions Reflect the Neodymium Seawater Composition?

    NASA Astrophysics Data System (ADS)

    Pimbert, A.; Gourlan, A. T.; Chauvel, C.

    2016-12-01

    Leaching of marine sediment is often used to recover past Nd seawater composition and reconstruct past ocean circulation. It is assumed to reliably extract REE from the authigenic fraction of sediment [1]. However, while most studies assume that the recovered signal is that of past seawater, very few report complete isotopic and trace element data that clearly demonstrate it is the case. We present new ɛNd values and REE contents measured on leachates of sediments from two Cretaceous marine sections deposited at shallow water depth (Taghazoute in Morocco) and at greater depth in the Atlantic (DSDP Site 367). REE patterns of leachates vary according to lithology: bell-shaped patterns or positive Ce anomalies for organic-poor samples and seawater-like patterns (negative Ce anomaly, low Nd/Yb ratio) for black shales. ɛNd values also vary: between -5.6 and -9.6 at Taghazoute and between -10 and -8.1 at Site 367. Interestingly, ɛNd values correlate with Ce anomalies for Taghazoute black shales. Samples with the largest Ce negative anomalies have the highest ɛNd while samples with no Ce anomalies have much lower ɛNd. This suggests the presence in the leached material of detritus mixed up with the authigenic fraction for sediments deposited in shallow environment. This confirms the findings made by Huck et al. [2] for fish teeth in a similar environment. In such environment, recovering the pristine seawater signal requires (a) the acquisition of both Nd isotopes and trace element contents, and (b) selection of the only Nd isotopic compositions associated to clear seawater trace element characteristics. For sediments deposited in open-ocean setting (Site 367), no detrital contamination affects leached fractions. The REE patterns vary depending on the nature of authigenic fraction but ɛNd remains constant. Here, ɛNd values can be used to discuss oceanic reconstructions. [1] Martin et al. (2010), Chem. Geol, 269, 414-431. [2] Huck et al. (2016), G3, 17, 679-698.

  16. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.

    PubMed

    Cornelissen, E R; Moreau, N; Siegers, W G; Abrahamse, A J; Rietveld, L C; Grefte, A; Dignum, M; Amy, G; Wessels, L P

    2008-01-01

    Early elimination of natural organic matter (NOM) by ion exchange (IEX) in water treatment is expected to improve subsequent water treatment processes and the final drinking water quality. Nine anionic exchange resins were investigated to remove NOM and specific NOM fractions determined by liquid chromatography in combination with organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (EEM). Breakthrough of NOM was predicted by model calculations using Freundlich isotherms and IEX rate experiments. The time to breakthrough varied from 4 to 38 days. Removal of specific NOM fractions proved to vary considerably for the different types of IEX resins, ranging from 1% to almost 60%. The removal of NOM fractions, specifically humic substances, increased with an increase in water content of the investigated IEX resins and with a decrease in resin size. The best-performing IEX resins consisted of the smallest resins and/or those with the highest water content. The worst-performing IEX resins reflected the highest exchanging capacities and the lowest water contents.

  17. Coupling asymmetric flow-field flow fractionation and fluorescence parallel factor analysis reveals stratification of dissolved organic matter in a drinking water reservoir.

    PubMed

    Pifer, Ashley D; Miskin, Daniel R; Cousins, Sarah L; Fairey, Julian L

    2011-07-08

    Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 x 10⁻⁶ cm² s⁻¹, which corresponded to a molecular weight range of 680-1950 Da and a size of 1.6-2.5 nm. Fluorescence excitation-emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  19. Reactive transport modeling of Li isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Sonnenthal, E. L.

    2013-12-01

    The fractionation of Li isotopes has been used as a proxy for interaction processes between silicate rocks and any kind of fluids. In particular, Li isotope measurements are powerful because Li is almost exclusively found in silicate minerals. Moreover, the two stable Li isotopes, 6Li and 7Li, differ by 17% in mass introducing a large mass dependent isotope fractionation even at high temperature. Typical applications include Li isotope measurements along soil profiles and of river waters to track silicate weathering patterns and Li isotope measurements of geothermal wells and springs to assess water-rock interaction processes in geothermal systems. For this contribution we present a novel reactive transport modeling approach for the simulation of Li isotope fractionation using the code TOUGHREACT [1]. It is based on a 6Li-7Li solid solution approach similar to the one recently described for simulating Cr isotope fractionation [2]. Model applications include the simulation of granite weathering along a 1D flow path as well as the simulation of a column experiment related to an enhanced geothermal system. Results show that measured δ7Li values are mainly controlled by (i) the degree of interaction between Li bearing primary silicate mineral phases (e.g., micas, feldspars) and the corresponding fluid, (ii) the Li isotope fractionation factor during precipitation of secondary mineral phases (e.g., clays), (iii) the Li concentration in primary and secondary Li bearing mineral phases and (iv) the proportion of dissolved Li that adsorbs to negatively charged surfaces (e.g., clays, Fe/Al-hydroxides). To date, most of these parameters are not very well constrained. Reactive transport modeling thus currently has to rely on many assumptions. Nevertheless, such models are powerful because they are the only viable option if individual contributions of all potential processes on the resulting (i.e., measured) Li isotopic ratio have to be quantitatively assessed. Accordingly, we

  20. UNESCO's HOPE Initiative—Providing Free and Open-Source Hydrologic Software for Effective and Sustainable Management of Africa's Water Resources Temporary Title

    NASA Astrophysics Data System (ADS)

    Barlow, P. M.; Filali-Meknassi, Y.; Sanford, W. E.; Winston, R. B.; Kuniansky, E.; Dawson, C.

    2015-12-01

    UNESCO's HOPE Initiative—the Hydro Free and (or) Open-source Platform of Experts—was launched in June 2013 as part of UNESCO's International Hydrological Programme. The Initiative arose in response to a recognized need to make free and (or) open-source water-resources software more widely accessible to Africa's water sector. A kit of software is being developed to provide African water authorities, teachers, university lecturers, and researchers with a set of programs that can be enhanced and (or) applied to the development of efficient and sustainable management strategies for Africa's water resources. The Initiative brings together experts from the many fields of water resources to identify software that might be included in the kit, to oversee an objective process for selecting software for the kit, and to engage in training and other modes of capacity building to enhance dissemination of the software. To date, teams of experts from the fields of wastewater treatment, groundwater hydrology, surface-water hydrology, and data management have been formed to identify relevant software from their respective fields. An initial version of the HOPE Software Kit was released in late August 2014 and consists of the STOAT model for wastewater treatment developed by the Water Research Center (United Kingdom) and the MODFLOW-2005 model for groundwater-flow simulation developed by the U.S. Geological Survey. The Kit is available on the UNESCO HOPE website (http://www.hope-initiative.net/).Training in the theory and use of MODFLOW-2005 is planned in southern Africa in conjunction with UNESCO's study of the Kalahari-Karoo/Stampriet Transboundary Aquifer, which extends over an area that includes parts of Botswana, Namibia, and South Africa, and in support of the European Commission's Horizon 2020 FREEWAT project (FREE and open source software tools for WATer resource management; see the UNESCO HOPE website).

  1. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.

    PubMed

    Dupouy, Cécile; Neveux, Jacques; Ouillon, Sylvain; Frouin, Robert; Murakami, Hiroshi; Hochard, Sébastien; Dirberg, Guillaume

    2010-01-01

    The retrieval of chlorophyll-a concentration from remote sensing reflectance (Rrs) data was tested with the NASA OC4v4 algorithm on the inner New Caledonian lagoon (Case 2) and adjacent open ocean (Case 1) waters. The input to OC4v4 was Rrs measured in situ or modeled from water's inherent optical properties (2001-2007). At open ocean stations, backscattering and absorption coefficients were correlated with chlorophyll (R(2)=0.31-0.51, respectively), in agreement with models for Case 1 waters. Taking spectrofluorometric measurement as reference, the OC4v4 model leads to an average underestimation of 33% of the chlorophyll concentration. For the lagoon waters, OC4v4 performed inadequately because the backscattering coefficient, highly correlated with turbidity and suspended matter (R(2)=0.98), was poorly correlated to chlorophyll (R(2)=0.42). The OC4v4 performance was better in deep lagoon waters for stations with a TDT index (Tchla x depth/turbidity) higher than 19 mg m(-2) NTU(-1) (R(2)=0.974, bias=10.2%). Global Imager Rrs provided a good estimate of Tchla (R(2)=0.79, N=28) in the deeper part of the lagoon. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. On the evolution of jet energy and opening angle in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-01

    We calculate how the energy and the opening angle of jets in {N} = 4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet /dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet /dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that {N} = 4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the {N} = 4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  4. Impact of lengthening open water season on food security in Alaska coastal communities: Global impacts may outweigh local "frontline" effects

    NASA Astrophysics Data System (ADS)

    Rolph, R.; Mahoney, A. R.

    2015-12-01

    Using ice concentration data from the Alaska Sea Ice Atlas from 1953-2013 for selected communities in Alaska, we find a consistent trend toward later freeze up and earlier breakup, leading a lengthened open water period. Such changes are often considered to bring a variety of "frontline" local impacts to Arctic coastal communities such as increased rates of coastal erosion. However, direct consequences of these changes to local food security (e.g. through impacts on subsistence activities and marine transport of goods) may be outweighed at least in the short term by the effects of large scale Arctic sea ice change coupled with global oil markets. For example, a later freeze-up might delay local hunters' transition from boats to snow-machines, but whether this trend will affect hunting success, especially in the next few years, is uncertain. Likewise, the magnitude of change in open water season length is unlikely to be sufficient to increase the frequency with which communities are served by barges. However, an expanding open water season throughout the Arctic has implications for the global economy, which can have indirect effects on local communities. In the Chukchi and Beaufort Seas, where rapid sea ice change has been accompanied by increased interest in oil and gas development, the U.S. Bureau of Ocean Energy Management currently requires drilling operations to cease 38 days prior to freeze up. Taking this into account, the lengthening open water season has effectively extended the drilling season for oil companies by 184% since the 1950s. If oil development goes ahead, local communities will likely experience a range of indirect impacts on food security due to increased vessel traffic and demand on infrastructure coupled with changes in local economies and employment opportunities. Increased likelihood of an oil spill in coastal waters also poses a significant threat to local food security. Thus, while Arctic coastal communities are already experiencing

  5. Intercomparison of Open-Path Trace Gas Measurements with Two Dual Frequency Comb Spectrometers

    PubMed Central

    Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; Giorgetta, Fabrizio R.; Swann, William C.; Coburn, Sean; Wright, Robert J.; Rieker, Gregory B.; Coddington, Ian; Newbury, Nathan R.

    2017-01-01

    We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm−1 (1565 to 1661 nm), corresponding to a 367 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5×10−4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14% (0.57 ppm) for CO2, 0.35% (7 ppb) for CH4, and 0.40% (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4. PMID:29276547

  6. Comparison of hyporheic flow and water quality in open and tree-covered banks downstream of Xin'an River dam, China

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.

  7. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D. Kirk; Böhlke, J.K.; McCleskey, R. Blaine; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  8. The effect of ratio between rigid plant height and water depth on the manning’s coefficient in open channel

    NASA Astrophysics Data System (ADS)

    Rizalihadi, M.; Ziana; Shaskia, Nina; Asharly, H.

    2018-05-01

    One of the important factors in channel dimension is the Manning’s coefficient ( n ). This coefficient is influenced not only by the channel roughness but also by the presence of plants in the channel. The aim of the study is to see the effect of the ratio between the height of the rigid plant and water depth on the Manning’s coefficient (n) in open channel. The study was conducted in open channel with 15.5 m long, 0.5 m wide and 1.0 m high, in which at the center of the channel is planted with the rigid plants with a density of 42 plants/m2. The flow was run with a discharge of 0.013 m3/s at 6 ratios of Hplants/Hwater, namely: 0; 0.2; 0.6; 0.8; 1,0 and 1,2, to obtain the velocity and water profiles. Then the value of n is analyzed using Manning’s equation. The results showed that the mean velocity becomes decrease 17.81-34.01% as increase the ratio of Hplants/Hwater. This results in increasing n value to become 1.22-1.52 times compared to the unplanted channel ( no =0.038). So, it can be concluded that the ratio between the rigid plant’s height and water depth in the open channel can affect the value of Manning coefficient.

  9. Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles.

    PubMed

    Koh, Haeng-Deog; Kang, Nam-Goo; Lee, Jae-Suk

    2007-12-18

    Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.

  10. Easy to open? Exploring the 'openability' of hospital food and beverage packaging by older adults.

    PubMed

    Bell, Alison F; Walton, Karen L; Tapsell, Linda C

    2016-03-01

    Food is increasingly a packaged commodity, both in the community and in institutionalised settings such as hospitals, where many older people are malnourished. Previous research with patients aged over 65 years in NSW public hospitals identified difficulties opening milk, water, juices, cereal and tetra packs. The aim of this paper was to assess the ability of well older people living in the community to open food and beverage items routinely used in NSW hospitals in order to gain further insights into the older person/pack interaction and the role of hand and finger strength in pack opening. A sample of 40 older people in good health aged over 65 years from 3 community settings participated in the study. The attempts at pack opening were observed, the time taken to open the pack was measured and the correlation between grip and pinch strengths with opening times was determined. Tetra packs, water bottles, cereal, fruit cups, desserts, biscuits and cheese portions appeared to be the most difficult food products to open. Ten percent of the sample could not open the water bottles and 39% could not open cheese portions. The results were consistent with the previous research involving hospitalised older adults, adding emphasis to the conclusion that food and beverage packaging can be a potential barrier to adequate nutrition when particular types of packaged products are used in hospitals or the community. The ageing population is rapidly becoming a larger and more important group to consider in the provision of goods and services. Designers, manufacturers and providers of food and beverage products need to consider the needs and abilities of these older consumers to ensure good 'openability' and promote adequate nutritional intakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Outgassing From Open And Closed Magma Foams

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  12. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    USGS Publications Warehouse

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    Water allocation in the Upper Klamath Basin has become difficult in recent years due to the increase in occurrence of drought coupled with continued high water demand. Upper Klamath Lake is a central component of water distribution, supplying water downstream to the Klamath River, supplying water for irrigation diversions, and providing habitat for various species within the lake and surrounding wetlands. Evapotranspiration (ET) is a major component of the hydrologic budget of the lake and wetlands, and yet estimates of ET have been elusive—quantified only as part of a lumped term including other substantial water-budget components. To improve understanding of ET losses from the lake and wetlands, measurements of ET were made from May 2008 through September 2010. The eddy-covariance method was used to monitor ET at two wetland sites continuously during this study period and the Bowen-ratio energy-balance method was used to monitor open-water lake evaporation at two sites during the warmer months of the 3 study years. Vegetation at one wetland site (the bulrush site) consists of a virtual monoculture of hardstem bulrush (formerly Scirpus acutus, now Schoenoplectus acutus), and at the other site (the mixed site) consists of a mix of about 70 percent bulrush, 15 percent cattail (Typha latifolia), and 15 percent wocus (Nuphar polysepalum). Measured ET at these two sites was very similar (means were ±2.5 percent) and mean wetland ET is computed as a 70 to 30 percent weighted average of the bulrush and mixed sites, respectively, based on community-type distribution estimated from satellite imagery. Biweekly means of wetland ET typically vary from maximum values of around 6 to 7 millimeters per day during midsummer, to minimum values of less than 1 mm/d during midwinter. This strong annual signal primarily reflects life-cycle changes in the wetland vegetation, and the annual variation of radiative input to the surface and resulting temperature. The perennial vegetation

  13. Towards a palaeosalinity proxy: hydrogen isotopic fractionation between source water and lipids produced via different biosynthetic pathways in haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Heinzelmann, Sandra M.; Kasper, Sebastian; Sinke-Schoen, Daniëlle; Sininnghe-Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-05-01

    Palaeosalinity is one of the most important oceanographic parameters that cannot currently be quantified with reasonable accuracy from sedimentary records. Hydrogen isotopic fractionation between water and alkenones is dependent, amongst other factors, upon the salinity in which alkenone-producing haptophyte algae grow and is represented by the fractionation factor, α, increasing with salinity.1 As such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. Understanding the mechanism behind the sensitivity of fractionation to salinity is important for the correct application of the proxy, however this mechanism is currently unknown. Here we present hydrogen isotopic compositions of lipids produced via different biosynthetic pathways from batch cultures of Emiliania huxleyi CCMP 1516 and Isochrysis galbana CCMP 1323 grown over a range of salinities and discuss the possible sources of the sensitivity of hydrogen isotope fractionation to salinity. α for C37 alkenones (produced via an unknown biosynthetic pathway but assumed to be acetogenic; e.g.2) and that for C14:0, C16:0, and C18:1 fatty acids (acetogenic) from exponential growth phase I. galbana show a similar sensitivity to salinity, increasing at 0.0013-0.0019 per salinity unit (S-1). Meanwhile, in exponential growth phase E. huxleyi, α for C37 alkenones and α for brassicasterol (mevalonate pathway) increase at 0.0015-0.0022 S-1, but α for phytol (methylerythritol pathway) shows no significant relationship with salinity. These results suggest that fractionation is sensitive to salinity for lipids formed both in the chloroplast and cytosol. They also suggest that the sensitivity may either originate in glyceralde-3-phosphate or pyruvate but is then lost through hydrogen exchange with cell water during sugar rearrangements in the methylerythritol pathway or sensitivity originates with the production and consumption of acetate. References Schouten, S., Ossebaar, J., Schreiber

  14. Deuterium fractionation of water in the Solar nebula

    NASA Astrophysics Data System (ADS)

    Albertsson, Tobias; Semenov, Dmitry; Henning, Thomas

    2013-07-01

    Water evaporates in the inner regions of protoplanetary disks and is frozen onto grains in the outer regions. Therefore its presence in vast quantities on Earth is puzzling. Subsequent delivery through bombardment by primitive bodies formed in the outer icy regions is the favored mechanism. By studying water D/H ratios one hopes to understand whether the water was mainly delivered by comets or asteroids. Using an extended deuterium chemistry network coupled to a 2D chemo-dynamical disk model, we investigate the evolution of the D/H ratio of water in the young Solar nebula. We find that both the laminar and mixing Solar nebula models show the Earth's ocean water D/H ratio at 2-3 AU. In addition, the 2D-mixing model explains better the water D/H values observed in the Oort- and Jupiter-family comets.

  15. Pore-scale distribution of mucilage affecting water repellency in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Zarebanadkouki, Mohsen; Hedwig, Clemens; Holz, Maire; Ahmed, Mutez; Carminati, Andrea

    2017-04-01

    The hydraulic properties of the rhizosphere are altered by plants, fungi and microorganism. Plant roots release different compounds into the soil. One of these substances is mucilage, a gel which turns water repellent upon drying. We introduce a conceptual model of mucilage deposition during soil drying and its impact on the soil wettability. As the soil dries, water menisci recede and draw mucilage towards the contact region between particles where it is deposited. At high mucilage content, mucilage deposits expand into the open pore space and finally block water infiltration when a critical fraction of the pore space is blocked. To test this hypothesis, we mixed mucilage and particles of different grain size, we let them dry and measured the contact angle using the sessile drop method. Mucilage deposition was visualized by light microscopy imaging. Contact angle measurements showed a distinct threshold-like behavior with a sudden increase in apparent contact angle at high mucilage concentrations. Particle roughness induced a more uniform distribution of mucilage. The observed threshold corresponds to the concentration when mucilage deposition occupies a critical fraction of the pore space, as visualized with the microscope images. In conclusion, water repellency is critically affected by the distribution of mucilage on the pore-scale. This microscopic heterogeneity has to be taken into account in the description of macroscopic processes, like water infiltration or rewetting of water repellent soil.

  16. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2017-08-01

    Diesel is a commonly used fuel and a key pollutant on water surface through leaks and accidental spills, thus creating risk directly to planktons as well as other aquatic organisms. We assessed the toxicty of diesel and its water accommodated fraction (WAF) towards two microalgal species, Pseudokirchneriella subcapitata and Chlorella sp. MM3. The toxicity criteria included were: chlorophyll a content as a growth parameter and induction of enzyme activities linked to oxidative stress. Increase in concentrations of diesel or its WAF significantly increased toxicity towards growth, measured in terms of chlorophyll a content in both the algae. Activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in response to addition of diesel or diesel WAF to the microalgal cultures were dose-dependent. Diesel WAF was more toxic than diesel itself, suggesting that use of WAF may be more relevant for environmental risk assessment of diesel. The overall response of the antioxidant enzymes to toxicants' stress followed the order: POX≥SOD>CAT. The present study clearly demonstrated the use of SOD, POX and CAT as suitable biomarkers for assessing diesel pollution in aquatic ecosystem. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels

    NASA Astrophysics Data System (ADS)

    Qian, Shouguo; Li, Gang; Shao, Fengjing; Xing, Yulong

    2018-05-01

    We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed methods are well-balanced for the still water steady state solution, and can preserve the non-negativity of wet cross section numerically. The well-balanced property is obtained via a novel source term separation and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust simulations near the wetting and drying fronts. Numerical examples are performed to verify the well-balanced property, the non-negativity of the wet cross section, and good performance for both continuous and discontinuous solutions.

  18. Recent developments from the OPEnS Lab

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Good, S. P.; Higgins, C. W.; Sayde, C.; Buskirk, B.; Lopez, M.; Nelke, M.; Udell, C.

    2016-12-01

    The Openly Published Environmental Sensing (OPEnS) lab is a facility that is open to all from around the world to use (http://agsci.oregonstate.edu/open-sensing). With 3-D CAD, electronics benches, 3-D printers and laser cutters, and a complete precision metal shop, the lab can build just about anything. Electronic platforms such as the Arduino are combined with cutting edge sensors, and packaged in rugged housing to address critical environmental sensing needs. The results are published in GITHub and in the AGU journal Earth and Space Sciences under the special theme of "Environmental Sensing." In this poster we present advancements including: A ultra-precise isotopic sampler for rainfall; an isotopic sampler for soil gas; a data-logging wind vane that can be mounted on the tether of a balloon; a rain-gage calibrator with three rates of constant application; a <$20 dissolved O2 probe for water; a stream-bed permeameter that gives rapid quantification of permeability. You can use the OPEnS lab! Just sketch your idea on a white board and send it in. The conversation is started, and your prototype can be ready in a few weeks. We have a staff of three engineers ready to help, where you are working remotely, or decide to spend some time with the team in Corvallis.

  19. Identification of a Phosphodiesterase-Inhibiting Fraction from Roasted Coffee (Coffea arabica) through Activity-Guided Fractionation.

    PubMed

    Röhrig, Teresa; Liesenfeld, David; Richling, Elke

    2017-05-17

    Recent reports that coffee can significantly inhibit cAMP phosphodiesterases (PDEs) in vitro, as well as in vivo, have described another beneficial effect of coffee consumption. However, the PDE-inhibiting substances remain mostly unknown. We chose activity-guided fractionation and an in vitro test system to identify the coffee components that are responsible for PDE inhibition. This approach indicated that a fraction of melanoidins reveals strong PDE-inhibiting potential (IC 50 = 130 ± 42 μg/mL). These melanoidins were characterized as water-soluble, low-molecular weight melanoidins (<3 kDa) with a nitrogen content of 4.2% and a carbohydrate content lower than those of other melanoidins. Fractions containing known PDE inhibitors such as chlorogenic acids, alkylpyrazines, or trigonelline as well as N-caffeoyl-tryptophan and N-p-coumaroyl-tryptophan did not exert PDE-inhibiting activity. We also observed that the known PDE inhibitor caffeine does not contribute to the PDE-inhibiting effects of coffee.

  20. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  1. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  2. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  3. Contaminants of emerging concern in the open sea waters of the Western Mediterranean.

    PubMed

    Brumovský, Miroslav; Bečanová, Jitka; Kohoutek, Jiří; Borghini, Mireno; Nizzetto, Luca

    2017-10-01

    Pollution by chemical substances is of concern for the maintenance of healthy and sustainable aquatic environments. While the occurrence and fate of numerous emerging contaminants, especially pharmaceuticals, is well documented in freshwater, their occurrence and behavior in coastal and marine waters is much less studied and understood. This study investigates the occurrence of 58 chemicals in the open surface water of the Western Mediterranean Sea for the first time. 70 samples in total were collected in 10 different sampling areas. 3 pesticides, 11 pharmaceuticals and personal care products and 2 artificial sweeteners were detected at sub-ng to ng/L levels. Among them, the herbicide terbuthylazine, the pharmaceuticals caffeine, carbamazepine, naproxen and paracetamol, the antibiotic sulfamethoxazole, the antibacterial triclocarban and the two artificial sweeteners acesulfame and saccharin were detected in all samples. The compound detected at the highest concentration was saccharin (up to 5.23 ng/L). Generally small spatial differences among individual sampling areas point to a diffuse character of sources which are likely dominated by WWTP effluents and runoffs from agricultural areas or even, at least for pharmaceuticals and artificial food additives, from offshore sources such as ferries and cruising ships. The implications of the ubiquitous presence in the open sea of chemicals that are bio-active or toxic at low doses on photosynthetic organisms and/or bacteria (i.e., terbuthylazine, sulfamethoxazole or triclocarban) deserve scientific attention, especially concerning possible subtle impacts from chronic exposure of pelagic microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-11-09

    Recently, considerable attention has been focused on exploring the potential antioxidant properties of plant extracts or isolated products of plant origin. Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it continues to be used to treat inflammation, eye pain, headache, and dizziness. However, reports on the antioxidant activities of P. vulgaris var. lilacina are limited, particularly concerning the relationship between its phenolic content and antioxidant capacity. In this study, we investigated the antioxidant and anticancer activities of an ethanol extract from P. vulgaris var. lilacina and its fractions. Dried powder of P. vulgaris var. lilacina was extracted with ethanol, and the extract was fractionated to produce the hexane fraction, butanol fraction, chloroform fraction and residual water fraction. The phenolic content was assayed using the Folin-Ciocalteu colorimetric method. Subsequently, the antioxidant activities of the ethanol extract and its fractions were analyzed employing various antioxidant assay methods including DPPH, FRAP, ABTS, SOD activity and production of reactive oxygen species. Additionally, the extract and fractions were assayed for their ability to exert cytotoxic activities on various cancer cells using the MTT assay. We also investigated the expression of genes associated with apoptotic cell death by RT-PCR. The total phenolic contents of the ethanol extract and water fraction of P. vulgaris var. lilacina were 303.66 and 322.80 mg GAE/g dry weight (or fractions), respectively. The results showed that the ethanol extract and the water fraction of P. vulgaris var. lilacina had higher antioxidant content than other solvent fractions, similar to their total phenolic content. Anticancer activity was also tested using the HepG2, HT29, A549, MKN45 and HeLa cancer cell lines. The results clearly demonstrated that the P. vulgaris var. lilacina ethanol extract induced significant cytotoxic effects

  5. On the evolution of jet energy and opening angle in strongly coupled plasma

    DOE PAGES

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-17

    We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say themore » opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.« less

  6. Waterbird use of saltmarsh ponds created for open marsh water management

    USGS Publications Warehouse

    Erwin, R.M.; Hatfield, J.S.; Howe, M.A.; Klugman, S.K.

    1994-01-01

    Open Marsh Water Management (OMWM) as an alternative to pesticides for mosquito control in saltmarshes along the Atlantic Coast has created debate among biologists. We designed an experiment to determine waterbird (American black duck (Anas rubripes) and other waterfowl, wading birds, shorebirds, gulls, and terns) use (during daylight) of ponds created for mosquito control compared with use of pre-existing water bodies (i.e., natural tidal ponds, creeks, old ditches) and refuge impoundments. We also evaluated the influence of pond size and depth on waterbird use of wetlands. We documented bird use of different habitats for 1 year. The highest densities of waterfowl, in autumn, occurred in 0.030.06ha ponds (P lt 0.05) versus ponds either lt 0.02 ha or gt 0.08 ha; highest shorebird densities occurred in summer in ponds gt 0.10 ha (P lt 0.05). Pond depth affected shorebird and other waterfowl use in some seasons. Comparisons of mean number of birds using created (OMWM) ponds with mean number of birds using other water bodies revealed that most species showed no pattern (P gt 0.05) of disproportionate use versus availability. At high tidal levels, most species groups used OMWM ponds in the marsh more often (P lt 0.05) than other water bodies. Black ducks and other waterfowl used nearby refuge impoundments in higher densities than they did OMWM ponds, for nesting and during autumn-winter (all Ps lt 0.05). Creating small ( lt 0.1 ha) ponds for mosquito control does not enhance waterbird habitat, at least not where large impoundments are in close proximity. We recommend that in areas where OMWM practices seem appropriate, fewer large ( gt 0.10 ha) ponds be constructed with shallow ( lt 15 cm) basins and sloping sides.

  7. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  8. Sulfur Isotope Fractionation in Marine Pore waters from the Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, T. L.; Chen, N. C.; Wang, B. S.; Lin, L. H.; Yang, T. F.; Chen, Y. G.; Shen, C. C.

    2017-12-01

    In this study, we selected two marine sediment cores, 474cm C11 and 252cm EN1, with different sulfate reduction rate due to anaerobic oxidation of methane (AOM) in offshore southwestern Taiwan, to clarify the regional sulfur biogeochemical process. Sulfur isotopic composition in pore waters was determined on a multi-collector inductively coupled mass spectrometer, Thermo NEPTUNE, with 2-sigma reproducibility of ±0.18‰. Our results show that correlation between δ34S values of 21.7-40.6‰ and 21.5-54.3‰, and sulfate contents of 7.1-26.6 and 1.2-27.6mM follows a closed system Rayleigh fractionation model above the sulfate-methane transition zone (SMTZ) at depths of 172.5 cm for core C11 and 212.5 cm for core EN1 below sea floor. At the SMTZ, δ34S reaches the summit of 40.6 ‰, followed by a decreasing trend to 16-20‰ at depth of 172.5-470.0 cm for core C11. Our results suggest that sulfur in pore fluids offshore southwestern Taiwan is controlled by multiple processes including microbial sulfate reduction, barite dissolution and clay dehydration.

  9. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers

    DOE PAGES

    Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; ...

    2017-09-11

    We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at  ∼  30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less

  10. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing

    We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at  ∼  30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less

  11. Water-soluble fractions from defatted sesame seeds protect human neuroblast cells against peroxyl radicals and hydrogen peroxide-induced oxidative stress.

    PubMed

    Ben Othman, Sana; Katsuno, Nakako; Kitayama, Akemi; Fujimura, Makoto; Kitaguchi, Kohji; Yabe, Tomio

    2016-09-01

    Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.

  12. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes. © 2016 by the Ecological Society of America.

  13. Isotopic fractionation of gases during its migration: experiments and 2D numerical simulation

    NASA Astrophysics Data System (ADS)

    Kara, S.; Prinzhofer, A.

    2003-04-01

    Several works have been developed in the last decade on the experimental isotope fractionation of gases during migration (Prinzhofer et al., 1997 and Zhang &Krooss, 2001 among others). We add to these results new experiments on diffusion of CO_2, which becomes currently a crucial subject for environmental purpose. Our experiments showed that transport by diffusion of CO_2 through a water saturated shale induces a significant and systematic carbon isotopic fractionation with heavier (13C enriched) CO_2 migrating first. In all experiments, significant isotope fractionation was found but still remains without quantitative interpretation. To interpret these data, we developed a 2D numerical model at the pore scale. The general principle of this model is the study of transport by water solubilization/diffusion of gas in a capillary saturated with water with two different media : a mobile zone representing free water and a immobile zone representing bounded water. The model takes also into account solubilization coefficients of gas in water, as well as the migration distance and the volume of upstream and downstream reservoirs. Using our numerical model, we could reproduce the evolution of isotopic fractionations and the velocity of CO_2 migration versus the production factor F (proportion of diffused gas). We determined some physical parameters of the porous medium (bentonite) which are not directly measurable at the present time. Furthermore, we used these parameters to reproduce the curves of isotopic fractionation obtained by Pernaton (1998) on methane migration with the same porous rock. We used also a modified version of this model with infinite reservoirs to reproduce the curves of isotopic fractionation of Zhang &Krooss (2001). Application of this model to geological scale is under progress, in order to implement it into sedimentary basins modelling. REFERENCES: Zhang T. and Krooss M. (2001). Geochim. Cosmochim. Acta, Vol. 65, No.16, pp. 2723-2742. Pernaton E

  14. Characterization of pigments from different high speed countercurrent chromatography wine fractions.

    PubMed

    Salas, Erika; Dueñas, Montserrat; Schwarz, Michael; Winterhalter, Peter; Cheynier, Véronique; Fulcrand, Hélène

    2005-06-01

    A red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water.

  15. Preparative free-flow electrophoresis as a method of fractionation of natural organic materials

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.

  16. Fractional vector calculus for fractional advection dispersion

    NASA Astrophysics Data System (ADS)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  17. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Axelman, J.; Bandh, C.

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over watermore » and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.« less

  18. Open hydrology courseware using the United States Geological Survey’s National Water Census Data Portal

    USGS Publications Warehouse

    Nelson, Jake; Ames, Daniel P.; Blodgett, David L.

    2018-01-01

    The U.S. Geological Survey (USGS) is the primary U.S. Government agency for water data collection and dissemination. In this role, the USGS has recently created and deployed a National Water Census Data Portal (NWC-DP) which provides access to streamflow, evapotransporation, precipitation, aquatic biology and other data at the national level. Recognizing the value of these data sets for hydrologic science education, this paper presents an effort to bridge the gap between pencil–and-paper-based hydrology curriculum and the USGS NWC-DP resource. Specifically, we have developed an R package, National Water Census Education (NWCEd), and five associated laboratory exercises that integrate R- and web-services-based access to the NWC-DP data sets. Using custom functions built into the NWCEd, students are able to access unprecedented amounts of hydrologic data from the NWC-DP, which can be applied to current hydrology curriculum and analyzed using NWCEd and a number of other open-source R tools.

  19. Chromium Stable Isotope Fractionation - An Indicator of Hexavalent Chromium Reduction.

    NASA Astrophysics Data System (ADS)

    Ellis, A.; Johnson, T. M.; Bullen, T. D.

    2001-12-01

    Chromium is a common anthropogenic contaminant in surface water and ground water, and is also of interest in oceanography. It is redox-active; the two common valences in natural waters are Cr(VI), which is highly soluble and toxic, and Cr(III), which is relatively insoluble. Redox reactions thus control Cr mobility in aqueous solutions, and reduction of Cr(VI) to Cr(III) is the most important reaction controlling attenuation of Cr in groundwater. Our results show that Cr(VI) reduction favors the lighter isotopes and leads to enrichment of heavier isotopes in the remaining Cr(VI). Cr isotope measurements thus show great promise as indicators of Cr(VI) reduction. We report here the first measurements of the magnitude of Cr isotope fractionation during Cr(VI) reduction and variations in δ 53Cr values obtained from three contaminated sites. Experiments were conducted to measure Cr isotope fractionation during Cr(VI) reduction by suspensions of magnetite and unamended sediments from a local pond, Urbana, IL and San Francisco Estuary near Martinez, CA. Suspensions were incubated anaerobically with constant shaking, and complete Cr(VI) reduction occurred within a few days. Cr(VI) from intermediate time points in the experiments was purified via ion exchange and 53Cr/52Cr ratios were measured via TIMS with a double isotope spike. The instantaneous per mil fractionation, ɛ , was calculated assuming a Rayleigh fractionation model. The ɛ for Cr(VI) reduction on magnetite surfaces yielded a fractionation of -3.5 ‰ . The ɛ values for the pond and estuary sediments were -3.5 ‰ and -3.3 ‰ respectively. The size of this Cr isotope fractionation is encouraging, as current precision is 0.2 \\permil. δ 53Cr values in dissolved Cr(VI) from three contaminated sites range from 1.1 ‰ to 5.8 ‰ , suggesting that Cr(VI) reduction has occurred and has induced isotopic fractionation in these settings. δ 53Cr values measured from Cr(VI) in plating baths show little or no

  20. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater.

    PubMed

    Solimine, Jessica; Garo, Eliane; Wedler, Jonas; Rusanov, Krasimir; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2016-01-01

    During the water steam distillation process of rose flowers, the non-volatile phenolic compounds remain in the waste. We recently developed a strategy to separate rose oil distillation water (RODW) into a polyphenol depleted water fraction and a polyphenol enriched fraction (RF20-SP207). Bioassay-guided investigation of RF20-SP207 led to the isolation of quercetin, kaempferol and ellagic acid. Their structures were elucidated by spectroscopic analysis as well as by comparison with literature data. Tyrosinase inhibition studies were performed with RF20-SP207, fractions I-IV, and the isolated compounds of the most active fraction. RF20-SP207 strongly inhibited the enzyme with an IC50 of 0.41 μg/mL. From the tested fractions only fraction IV (IC50=5.81 μg/mL) exhibited strong anti-tyrosinase activities. Quercetin, kaempferol and ellagic acid were identified in fraction IV and inhibited mushroom tyrosinase with IC50 values of 4.2 μM, 5.5 μM and 5.2 μM, respectively, which is approximately 10 times more potent than that of the positive control kojic acid (56.1μM). The inhibition kinetics, analyzed by Lineweaver-Burk plots, indicated that RF20-SP207 and fraction IV are uncompetitive inhibitors of tyrosinase when l-tyrosine is used as a substrate. A mixed inhibition was determined for ellagic acid, and a competitive inhibition for quercetin and kaempferol. In conclusion, the recovered polyphenol fraction RF20-SP207 from RODW was found to be a potent tyrosinase inhibitor. This value-added product could be used as an active ingredient in cosmetic products related to hyperpigmentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-10-21

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies.

  2. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  3. Mass-independent fractionation of oxygen isotopes during H2O2 formation by gas-phase discharge from water vapour

    NASA Astrophysics Data System (ADS)

    Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.

    2016-11-01

    Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.

  4. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    NASA Astrophysics Data System (ADS)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  5. Major Evolutionary Trends in Hydrogen Isotope Fractionation of Vascular Plant Leaf Waxes

    PubMed Central

    Gao, Li; Edwards, Erika J.; Zeng, Yongbo; Huang, Yongsong

    2014-01-01

    Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences. PMID:25402476

  6. Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.

    PubMed

    Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P

    1999-09-30

    water (colloids included) these radionuclides were below detection limits, may be accounted for the conspicuous quantity of iron oxy-hydroxides present in the particulate fraction that under the appropriate redox conditions may be interacting selectively with elements in solution (scavenging) resulting in the enhanced transuranic signal. While transuranics have been found in places of their origin, radionuclides with low Kd values (3H, 90Sr, 137Cs) have already been transported to monitoring wells, as well as to the atolls' lagoons and the open ocean.

  7. Effects of irrigation water salinity on evapotranspiration modified by leaching fractions in hot pepper plants.

    PubMed

    Qiu, Rangjian; Liu, Chunwei; Wang, Zhenchang; Yang, Zaiqiang; Jing, Yuanshu

    2017-08-03

    We investigated whether leaching fraction (LF) is able to modify the effects of irrigation water salinity (EC iw ) on evapotranspiration (ET). We conducted an experiment with a completely randomized block design using five levels of EC iw and two LFs. Results showed that the electrical conductivity of drainage water (EC dw ) in an LF of 0.29 was considerably higher during the 21-36 days after transplanting (DAT), and considerably lower after 50 DAT than in an LF of 0.17. The hourly, nighttime, daily, cumulative and seasonal ET all decreased considerably as a result of an increase in the EC iw . The daily ET started to be considerably higher in the LF of 0.29 than in the LF of 0.17 from 65 DAT. Compared with the LF of 0.17, the seasonal ET in the LF of 0.29 under various EC iw levels increased by 4.8%-8.7%. The Maas and Hoffman and van Genuchten and Hoffman models both corresponded well with the measured relative seasonal ET and the LF had no marked effects on these model parameters. Collectively, an increase in the level of EC iw always decreased the ET substantially. An increase in the LF increased the ET considerably, but there was a time lag.

  8. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J. F.

    2013-04-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea in the Canadian Arctic Ocean, with a particular focus on free-living (FL) vs. particle-attached (PA) communities. Capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between PA and FL bacterial community structure in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (a proxy of dissolved organic carbon and chromophoric dissolved organic matter), suspended particles, amino acids and chlorophyll a. Pyrosequencing of 16S rRNA genes from selected samples confirmed significant differences between river, coastal and sea samples. The PA fraction was only different (15.7% similarity) from the FL one in the open sea sample. Furthermore, PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, for the coast and river samples and both PA and FL fractions, Betaproteobacteria, Alphaproteobacteria and Actinobacteria were dominant. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also

  9. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org

  10. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    three basins displayed seasonal differences in water quality. Most of the annual yield occurred during early spring as a result of snowmelt runoff.Data collected from the Stevens Creek sites showed that an open-water wetland was very effective in removing sediment and total phosphorus but was not as effective in removing dissolved orthophosphate phosphorus and nitrogen. The wetland removed more than 96 percent of the sediment.

  11. 18 CFR 1301.43 - Open meetings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Open meetings. 1301.43... in the Sunshine Act § 1301.43 Open meetings. Members shall not jointly conduct or dispose of TVA... every meeting of the agency shall be open to public observation, and TVA shall provide suitable...

  12. 18 CFR 1301.43 - Open meetings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Open meetings. 1301.43... in the Sunshine Act § 1301.43 Open meetings. Members shall not jointly conduct or dispose of TVA... every meeting of the agency shall be open to public observation, and TVA shall provide suitable...

  13. 18 CFR 1301.43 - Open meetings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Open meetings. 1301.43... in the Sunshine Act § 1301.43 Open meetings. Members shall not jointly conduct or dispose of TVA... every meeting of the agency shall be open to public observation, and TVA shall provide suitable...

  14. 18 CFR 1301.43 - Open meetings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Open meetings. 1301.43... in the Sunshine Act § 1301.43 Open meetings. Members shall not jointly conduct or dispose of TVA... every meeting of the agency shall be open to public observation, and TVA shall provide suitable...

  15. 18 CFR 1301.43 - Open meetings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Open meetings. 1301.43... in the Sunshine Act § 1301.43 Open meetings. Members shall not jointly conduct or dispose of TVA... every meeting of the agency shall be open to public observation, and TVA shall provide suitable...

  16. Portable water filtration system for oil well fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, D. L.

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which ismore » obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.« less

  17. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  18. Fractional Number Operator and Associated Fractional Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Rguigui, Hafedh

    2018-03-01

    In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.

  19. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  20. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    NASA Astrophysics Data System (ADS)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  1. Final Report: Risk assessment for produced water discharges to Louisiana open bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-01

    Potential human health and environmental impacts from discharges of produced water to the Gulf of Mexico are of concern to regulators at the State and Federal levels, the public, environmental interest groups and industry. Current and proposed regulations require a zero discharge limit for coastal facilities, based primarily on studies in low energy, poorly flushed environments. However, produced water discharges in coastal Louisiana include a number of open bay sites, where potential human health and environmental impacts are likely to be smaller than those demonstrated for low energy canal environments, but greater than the minimal impacts associated with offshore discharges.more » Additional data and assessments are needed to support risk managers at the State and Federal levels in the development of regulations that protect human health and the environment without unnecessary cost to the economic welfare of the region and the nation. This project supports the Natural Gas and Oil Initiative objectives to: (1) improve coordination on environmental research; (2) streamline State and Federal regulation; (3) enhance State, and Federal regulatory decision making capability; (4) enhance dialogue through industry/government/public partnerships; and (5) work with States and Native American Tribes.« less

  2. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  3. Online open-tubular fractionation scheme coupled with push-pull perfusion sampling for profiling extravasation of gold nanoparticles in a mouse tumor model.

    PubMed

    Su, Cheng-Kuan; Tseng, Po-Jen; Lin, Meng-Han; Chiu, Hsien-Ting; del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang

    2015-07-10

    The extravasation of administered nano-drug carriers is a critical process for determining their distributions in target and non-target organs, as well as their pharmaceutical efficacies and side effects. To evaluate the extravasation behavior of gold nanoparticles (AuNPs), currently the most popular drug delivery system, in a mouse tumor model, in this study we employed push-pull perfusion (PPP) as a means of continuously sampling tumor extracellular AuNPs. To facilitate quantification of the extravasated AuNPs through inductively coupled plasma mass spectrometry, we also developed a novel online open-tubular fractionation scheme to allow interference-free determination of the sampled extracellular AuNPs from the coexisting biological matrix. After optimizing the flow-through volume and flow rate of this proposed fractionation scheme, we found that (i) the system's temporal resolution was 7.5h(-1), (ii) the stability presented by the coefficient of variation was less than 10% (6-h continuous measurement), and (iii) the detection limits for the administered AuNPs were in the range 0.057-0.068μgL(-1). Following an intravenous dosage of AuNPs (0.3mgkg(-1) body weight), in vivo acquired profiles indicated that the pegylated AuNPs (PEG-AuNPs) had greater tendency toward extravasating into the tumor extracellular space. We also observed that the accumulation of nanoparticles in the whole tumor tissues was higher for PEG-AuNPs than for non-pegylated ones. Overall, pegylation appears to promote the extravasation and accumulation of AuNPs for nano-drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Prediction of inspired oxygen fraction for targeted arterial oxygen tension following open heart surgery in non-smoking and smoking patients.

    PubMed

    Bou-Khalil, Pierre; Zeineldine, Salah; Chatburn, Robert; Ayyoub, Chakib; Elkhatib, Farouk; Bou-Akl, Imad; El-Khatib, Mohamad

    2017-10-01

    Simple and accurate expressions describing the P a O 2 -F i O 2 relationship in mechanically ventilated patients are lacking. The current study aims to validate a novel mathematical expression for accurate prediction of the fraction of inspired oxygen that will result in a targeted arterial oxygen tension in non-smoking and smoking patients receiving mechanical ventilation following open heart surgeries. One hundred P a O 2 -F i O 2 data pairs were obtained from 25 non-smoking patients mechanically ventilated following open heart surgeries. One data pair was collected at each of F i O 2 of 40, 60, 80, and 100% while maintaining same mechanical ventilation support settings. Similarly, another 100 hundred P a O 2 -F i O 2 data pairs were obtained from 25 smoking patients mechanically ventilated following open heart surgeries. The utility of the new mathematical expression in accurately describing the P a O 2 -F i O 2 relationship in these patients was assessed by the regression and Bland-Altman analyses. Significant correlations were seen between the true and estimated F i O 2 values in non-smoking (r 2  = 0.9424; p < 0.05) and smoking (r 2  = 0.9466; p < 0.05) patients. Tight biases between the true and estimated F i O 2 values for non-smoking (3.1%) and smoking (4.1%) patients were observed. Also, significant correlations were seen between the true and estimated P a O 2 /F i O 2 ratios in non-smoking (r 2  = 0.9530; p < 0.05) and smoking (r 2  = 0.9675; p < 0.05) patients. Tight biases between the true and estimated P a O 2 /F i O 2 ratios for non-smoking (-18 mmHg) and smoking (-16 mmHg) patients were also observed. The new mathematical expression for the description of the P a O 2 -F i O 2 relationship is valid and accurate in non-smoking and smoking patients who are receiving mechanical ventilation for post cardiac surgery.

  5. 78 FR 33700 - Special Local Regulations for Marine Events, Pleasantville Aquatics 15th Annual 5K Open Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ...-AA08 Special Local Regulations for Marine Events, Pleasantville Aquatics 15th Annual 5K Open Water Swim... from operating while a swim event is taking place. This special local regulation is necessary to... Docket Management Facility in Room W12-140 on the ground floor of the Department of Transportation West...

  6. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  7. On the local fractional derivative of everywhere non-differentiable continuous functions on intervals

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-shi

    2017-01-01

    We first prove that for a continuous function f(x) defined on an open interval, the Kolvankar-Gangal's (or equivalently Chen-Yan-Zhang's) local fractional derivative f(α)(x) is not continuous, and then prove that it is impossible that the KG derivative f(α)(x) exists everywhere on the interval and satisfies f(α)(x) ≠ 0 in the same time. In addition, we give a criterion of the nonexistence of the local fractional derivative of everywhere non-differentiable continuous functions. Furthermore, we construct two simple nowhere differentiable continuous functions on (0, 1) and prove that they have no the local fractional derivatives everywhere.

  8. Uranium in mining water of kaolin open pit in Zarów (Lower Silesia); methodology of determination and genetic remarks.

    PubMed

    Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A

    1999-11-01

    In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.

  9. [Three-dimensional Fluorescence Spectral Characteristics of Different Molecular Weight Fractionations of Dissolved Organic Matter in the Water-level Fluctuation Zones of Three Gorges Reservoir Areas].

    PubMed

    Chen, Xue-shuang; Jiang, Tao; Lu, Song; Wei, Shi-qiang; Wang, Ding-yong; Yan, Jin-long

    2016-03-15

    The study of the molecular weight (MW) fractions of dissolved organic matter (DOM) in aquatic environment is of interests because the size plays an important role in deciding the biogeochemical characteristics of DOM. Thus, using ultrafiltration ( UF) technique combined with three-dimensional fluorescence spectroscopy, DOM samples from four sampling sites in typical water-level fluctuation zones of Three Gorge Reservoir areas were selected to investigate the differences of properties and sources of different DOM MW fractions. The results showed that in these areas, the distribution of MW fractions was highly dispersive, but the approximately equal contributions from colloidal (Mr 1 x 10³-0.22 µm) and true dissolved fraction (Mr < 1 x 10³) to the total DOC concentration were found. Four fluorescence signals (humic-like A and C; protein-like B and T) were observed in all MW fractions including bulk DOM, which showed the same distribution trend: true dissolved > low MW (Mr 1 x 10³-10 x 10³) > medium MW (Mr 10 x 10³-30 x 10³) > high MW (Mr 30 x 10³-0.22 µm). Additionally, with decreasing MW fraction, fluorescence index (FI) and freshness index (BIX) increased suggesting enhanced signals of autochthonous inputs, whereas humification index ( HIX) decreased indicating lowe humification degree. It strongly suggested that terrestrial input mainly affected the composition and property of higher MW fractions of DOM, as compared to lower MW and true dissolved fractions that were controlled by autochthonous sources such as microbial and alga activities, instead of allochthonous sources. Meanwhile, the riparian different land-use types also affected obviously on the characteristics of DOM. Therefore, higher diversity of land-use types, and also higher complexity of ecosystem and landscapes, induced higher heterogeneity of fluorescence components in different MW fraction of DOM.

  10. Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages

    PubMed Central

    Nielsen, Karina J.

    2003-01-01

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities. PMID:12796509

  11. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages.

    PubMed

    Nielsen, Karina J

    2003-06-24

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities.

  12. The behaviour of REE and Zr-Hf fractionation in the volcanic waters of Nevado del Ruiz system (Colombia)

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Claudio; Censi, Paolo; Zuddas, Pierpaolo; Makario Londoño, John; Chacón, Zoraida; Alzate, Diego; Brusca, Lorenzo; D'Alessandro, Walter

    2015-04-01

    The geochemical behaviour of Rare Earth Element (REE), Zr and Hf have been investigated in the thermal waters of Nevado del Ruiz volcanic system. These fluids are characterised by a wide range of pH ranging between 1.0 and 8.8. The acidic waters are sulphate dominated with different Cl/SO4 ratios. The Nevado del Ruiz waters allowed to investigate the behaviour of investigated elements in a wide spectrum of pH and chemical composition of water. The important role of the pH and the ionic complexes have been evidenced in the distribution of REE, Zr and Hf in the aqueous phase. The pH rules the precipitation of authigenic oxyhydroxides of Fe, Al producing changes in REE, Zr, Hf amount and strong anomalies of Cerium and Europium. Y-Ho and Zr-Hf (twin pairs) have different behaviour in strong acidic waters with respect to the water with higher pH. Yttrium and Ho have the same behaviour of Zr and Hf in waters with pH near neutral-to-neutral, showing super-chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate suggesting an enhanced scavenging of Ho and Hf respect to Y and Zr, leading to super-chondritic ratios. In acidic waters a different behaviour of twin pairs occurs with chondritic Y/Ho ratios (reflecting the Y/Ho ratio of average local rock) and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf have been investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anions chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH<3.6. In strong acidic waters, a different fractionation of Zr and Hf have been recognised as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.

  13. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater: Molecular weight, hydrophobicity/hydrophily and fluorescence.

    PubMed

    Han, Qi; Yan, Han; Zhang, Feng; Xue, Nan; Wang, Yan; Chu, Yongbao; Gao, Baoyu

    2015-10-30

    Due to concerns over health risk of disinfection byproducts (DBPs), removal of trihalomethanes (THMs) precursor from bio-treated wastewater by coagulation and adsorption was investigated in this study. Ultrafiltration (UF) membranes and nonionic resins were applied to fractionate THMs precursor into various molecular weight (MW) fractions and hydrophobic/hydrophilic fractions. Characteristics of coagulated water and adsorbed water were evaluated by the three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy. Results showed that coagulation and adsorption were suitable for removing different hydrophobic/hydrophilic and fluorescent fractions. Coagulation decreased THMs concentration in hydrophobic acids (HoA) fraction from 59 μg/L to 39 μg/L, while the lowest THMs concentration (9 μg/L) in hydrophilic substances (HiS) fraction was obtained in adsorbed water. However, both coagulation and adsorption were ineffective for removing fractions with MW<5 kDa. Although coagulation and adsorption processes could reduce THMs formation, some specific THMs formation potential (STHMFP) in residual dissolved organic matter (DOM) fractions increased in this study. Hydrophobic acid and hydrophilic fractions increased after coagulation treatment, and low MW and hydrophobic fractions increased after adsorption treatment. In addition, active carbon adsorbed more organic matter than coagulant, but brominated disinfection byproducts (Br-DBPs) in adsorbed water turned to the major THMs species after chlorination. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  15. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  16. The macromolecular properties of blood-group-specific glycoproteins. Characterization of a series of fractions obtained by solvent fractionation

    PubMed Central

    Creeth, J. Michael; Bhaskar, K. Ramakrishnan; Donald, Alastair S. R.; Morgan, Walter T. J.

    1974-01-01

    1. The glycoprotein components of a human ovarian-cyst fluid were isolated by a solvent [95% (w/w) phenol]-extraction procedure; the phenol-insoluble water-soluble glycoprotein was further fractionated by (NH4)2SO4 and by ethanol to yield eight fractions. 2. The fractions were analysed in terms of amino acids, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. Variations occurred, particularly in the proportion of peptide; these were partly correlated with varying extent of serological activity. 3. The fractions were characterized physicochemically in terms of buoyant density and degree of spreading in a density gradient, sedimentation velocity and molecular weight; their partial specific volumes and specific refraction increments were also determined. 4. The fractions showed wide variations in their sedimentation-velocity and density-gradient patterns, and gave evidence of pauci-dispersity in density. The fraction regarded as the most typical blood-group-specific glycoprotein sedimented as a single rapidly spreading peak and was of high molecular weight. 5. Significant correlations were observed between the physical properties of the glycoprotein fractions and the amount of their peptide component. The buoyant densities and sedimentation coefficients varied in a manner that suggested the existence of two families of glycoproteins. 6. It is suggested that variability in the extent of glycosylation, or in the degree of cross-linking, might account for the two families of glycoproteins, and that the extent of cross-linkage might also be a factor determining the solubility of these glycoproteins in hot saturated (NH4)2SO4. ImagesFig. 1.PLATE 1 PMID:4219280

  17. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  18. New insight into California’s drought through open data

    USGS Publications Warehouse

    Read, Emily K.; Bucknell, Mary; Hines, Megan K.; Kreft, James M.; Lucido, Jessica M.; Read, Jordan S.; Schroedl, Carl; Sibley, David M.; Stephan, Shirley; Suftin, Ivan; Thongsavanh, Phethala; Van Den Hoek, Jamon; Walker, Jordan I.; Wernimont, Martin R; Winslow, Luke A.; Yan, Andrew N.

    2015-01-01

    Historically unprecedented drought in California has brought water issues to the forefront of the nation’s attention. Crucial investigations that concern water policy, management, and research, in turn, require extensive information about the quality and quantity of California’s water. Unfortunately, key sources of pertinent data are unevenly distributed and frequently hard to find. Thankfully, the vital importance of integrating water data across federal, state, and tribal, academic, and private entities, has recently been recognized and addressed through federal initiatives such as the Climate Data Initiative of President Obama’s Climate Action Plan and the Advisory Committee on Water Information’sOpen Water Data Initiative. Here, we demonstrate an application of integrated open water data, visualized and made available online using open source software, for the purpose of exploring the impact of the current California drought. Our collaborative approach and technical tools enabled a rapid, distributed development process. Many positive outcomes have resulted: the application received recognition within and outside of the Federal Government, inspired others to visualize open water data, spurred new collaborations for our group, and strengthened the collaborative relationships within the team of developers. In this article, we describe the technical tools and collaborative process that enabled the success of the application. 

  19. Isotopic fractionation of tritium in biological systems.

    PubMed

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Anthropometric Profiles of Elite Open-Water Swimmers.

    PubMed

    Shaw, Gregory; Mujika, Iñigo

    2018-01-01

    Reports detailing the physiques of open-water (OW) swimmers are limited. Data from anthropometric screening around competition provides a unique opportunity to describe the current physical attributes of elite OW swimmers peaking for international competition. Anthropometric screening was undertaken on a group of Australian and French OW swimmers as part of performance monitoring within 2 wk of the 2015 FINA World Championships. Height, mass, and sum of 7 skinfolds were measured using ISAK standardized measurement techniques by 2 trained anthropometrists. Data were collated and compared with previously published data on OW and pool swimmers. French swimmers had lower skinfolds (57.3 ± 6.1 vs 80.5 ± 21.3 mm, P = .0258), were lighter (64.7 ± 10.8 vs 74.6 ± 11.8 kg, P = .013), and had lower lean-mass index (LMI) (34.7 ± 7.3 vs 38.2 ± 8.8, P = .035) than Australian swimmers. Male and female OW swimmers had skinfolds similar to their contemporary OW swimmers but were lower than earlier reports of OW swimmers; however, they were higher than those of pool swimmers. Male and female OW swimmers had 9% and 6% lower LMI, respectively, than pool swimmers. Lower body mass and LMI were correlated with better World Championships finishing positions (R 2  = .46, P = .0151, and R 2  = .45, P = .0177, respectively). These data are a unique report of elite OW swimmers' physiques around international competition and demonstrate a potential morphological optimization in OW swimmers that warrants further investigation in larger populations.

  1. Wet-milling transgenic maize seed for fraction enrichment of recombinant subunit vaccine.

    PubMed

    Moeller, Lorena; Taylor-Vokes, Raye; Fox, Steve; Gan, Qinglei; Johnson, Lawrence; Wang, Kan

    2010-01-01

    The production of recombinant proteins in plants continues to be of great interest for prospective large-scale manufacturing of industrial enzymes, nutrition products, and vaccines. This work describes fractionation by wet-milling of transgenic maize expressing the B subunit of the heat-labile enterotoxin of Escherichia coli (LT-B), a potent immunogen and candidate for oral vaccine and vaccine components. The LT-B gene was directed to express in seed by an endosperm specific promoter. Two steeping treatments, traditional steeping (TS, 0.2% SO(2) + 0.5% lactic acid) and water steeping (WS, water only), were evaluated to determine effects on recovery of functional LT-B in wet-milled fractions. The overall recovery of the LT-B protein from WS treatment was 1.5-fold greater than that from TS treatment. In both steeping types, LT-B was distributed similarly among the fractions, resulting in enrichment of functional LT-B in fine fiber, coarse fiber and pericarp fractions by concentration factors of 1.5 to 8 relative to the whole kernels on a per-mass basis. Combined with endosperm-specific expression and secretory pathway targeting, wet-milling enables enrichment of high-value recombinant proteins in low-value fractions, such as the fine fiber, and co-utilization of remaining fractions in alternative industrial applications.

  2. Measuring the fraction of pool volume filled with fine sediment

    Treesearch

    Sue Hilton; Thomas E. Lisle

    1993-01-01

    The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...

  3. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    PubMed

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which < 3% of Cr was in the form of CrVI. Subsequent ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. <0.45 microm, < 100 kDa, <30 kDa and < 1 kDa by the tangential-flow method. As this appeared related more to concentrations of humic substances than of TOC per se, horizontal bed gel electrophoresis of freeze-dried ultrafilter retentates was carried out to further characterise the CrIII-organic complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce

  4. Tilt angle dependence of backscattering enhancements from organ pipe modes of open water-filled cylinders: Measurements and models

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.

    2003-04-01

    A simple target for simulating narrow low-frequency resonances of cylinders is an open metal pipe completely filled with water. We have previously described how the high-Q organ-pipe modes having a pressure node near each end are easily observed in backscattering experiments with small cylinders [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. The resonance occurs because of the strong reflection of internal acoustic waves from the open ends of the pipe [H. Levine and J. Schwinger, Phys. Rev. 73, 383-406 (1948)]. In the present research, the dependence of the backscattering amplitude on the orientation of the cylinder is measured and modeled. The tilt angle dependence is affected by the symmetry of the organ pipe mode. An approximation was also developed for the backscattering amplitude at high Q resonances based on energy conservation, reciprocity, and the optical theorem. While this analysis applies to cylinders suspended in water away from boundaries, the organ-pipe modes studied may be useful for investigating scattering processes for buried or partially buried cylinders. [Research supported in part by ONR.

  5. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Open-framework gallium borate with boric and metaboric acid molecules inside structural channels showing photocatalysis to water splitting.

    PubMed

    Gao, Wenliang; Jing, Yan; Yang, Jia; Zhou, Zhengyang; Yang, Dingfeng; Sun, Junliang; Lin, Jianhua; Cong, Rihong; Yang, Tao

    2014-03-03

    An open-framework gallium borate with intrinsic photocatalytic activities to water splitting has been discovered. Small inorganic molecules, H3BO3 and H3B3O6, are confined inside structural channels by multiple hydrogen bonds. It is the first example to experimentally show the structural template effect of boric acid in flux synthesis.

  7. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  8. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  9. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  10. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  11. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  12. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    PubMed

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  13. Simultaneous determination of molecular weights and contents of water-soluble polysaccharides and their fractions from Lycium barbarum collected in China.

    PubMed

    Wu, Ding-Tao; Lam, Shing-Chung; Cheong, Kit-Leong; Wei, Feng; Lin, Peng-Cheng; Long, Ze-Rong; Lv, Xiao-Jie; Zhao, Jing; Ma, Shuang-Cheng; Li, Shao-Ping

    2016-09-10

    Molecular weights and contents of water-soluble polysaccharides and their fractions in fifty batches of fruits of Lycium barbarum (wolfberry) collected from different regions of China, including Qinghai, Ningxia, Inner Mongolia, Xinjiang, and Gansu, were simultaneously determined using high performance size exclusion chromatography (HPSEC) coupled with multi angle laser light scattering (MALLS) and refractive index detector (RID) with the refractive index increment (dn/dc). Results showed that HPSEC chromatograms and molecular weight distributions of polysaccharides in L. barbarum collected from different regions of China were similar. Furthermore, the average contents of each polysaccharide fraction (peaks 1, 2, and 3) in crude polysaccharides of L. barbarum collected from Ningxia were similar with those of Inner Mongolia, Xinjiang, and Gansu, respectively. However, significant difference was found between polysaccharides in L. barbarum collected from Ningxia and Qinghai. Moreover, the average amounts of total polysaccharide fractions (peaks 1, 2, and 3) in the raw material of L. barbarum collected from Ningxia were significantly higher than that of Qinghai. These results may contribute to the rational usage of L. barbarum produced in China, and are beneficial for the improvement of their quality control. Results suggested that HPSEC-MALLS-RID with the dn/dc method could be used as a routine method for the quality evaluation of polysaccharides from natural resources and their products. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover.

    PubMed

    Alencar, Bárbara Ribeiro Alves; Reis, Alexandre Libanio Silva; de Souza, Raquel de Fatima Rodrigues; Morais, Marcos Antônio; Menezes, Rômulo Simões Cezar; Dutra, Emmanuel Damilano

    2017-10-01

    The aim of this study was to evaluate the influence of recycling the liquid fraction of pretreatment with alkaline hydrogen peroxide (AHP) on the hydrolysis of corn stover. Corn stover was pretreated in the traditional condition with 7.5% v/v H 2 O 2 . After pretreatment, the solids were separated from the liquid fraction and five successive reuse cycles of the liquid fraction were tested. The solid fraction from pretreatment in each recycle was submitted to enzymatic hydrolysis. The number of recycles had a linear negative effect (R 2 =0.98) on biomass delignification efficiency and also affected negatively the enzymatic conversion efficiency. Despite the decrease in efficiency after each recycling step, reuse of the liquid fraction leads to reduction in water, H 2 O 2 and NaOH consumption of up to 57.6%, 59.6% and 57.6%, respectively. These findings point to an efficient recycling technology, which may reduce costs and save water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

    NASA Astrophysics Data System (ADS)

    Daniels, William C.; Russell, James M.; Giblin, Anne E.; Welker, Jeffrey M.; Klein, Eric S.; Huang, Yongsong

    2017-09-01

    Leaf wax hydrogen isotopes (δDwax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δDwax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (εapp) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δDwax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to εapp at the watershed scale. Source water and εapp were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants' xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The εapp determined for our study species average -89 ± 14‰ and -106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and -182 ± 10‰ and -154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the εapp of related species in temperate and tropical

  16. Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season

    PubMed Central

    Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki

    2013-01-01

    A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259

  17. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    NASA Technical Reports Server (NTRS)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  18. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    USGS Publications Warehouse

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  19. 18 CFR 157.33 - Requirement for open season.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Requirement for open... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.33 Requirement for open... applicant has conducted an open season for capacity on its proposed project, in accordance with the...

  20. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  1. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  2. 18 CFR 157.33 - Requirement for open season.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Requirement for open... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.33 Requirement for open... applicant has conducted an open season for capacity on its proposed project, in accordance with the...

  3. 18 CFR 157.33 - Requirement for open season.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Requirement for open... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.33 Requirement for open... applicant has conducted an open season for capacity on its proposed project, in accordance with the...

  4. 18 CFR 157.33 - Requirement for open season.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Requirement for open... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.33 Requirement for open... applicant has conducted an open season for capacity on its proposed project, in accordance with the...

  5. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  6. 18 CFR 157.33 - Requirement for open season.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Requirement for open... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.33 Requirement for open... applicant has conducted an open season for capacity on its proposed project, in accordance with the...

  7. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  8. Chlorine isotope fractionation during supergene enrichment of copper

    NASA Astrophysics Data System (ADS)

    Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.

    2017-12-01

    Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. The Cu-hydroxychloride atacamite is a major component of supergene zones in this region whereas in similar deposits elsewhere it is rare. Atacamite requires saline water to form and dissolves rapidly when exposed to fresh, meteoric water. Previous chlorine stable isotope data [1] for atacamite mineralization at the Radomiro Tomic, Chuquicamata and Mina Sur Cu deposits show δ37Cl values that range from -0.1 to +0.2‰, indicating a similar nonmagmatic source for the introduction of chloride. However, distal atacamite mineralization on the periphery of these orebodies show more fractionated and lighter δ37Cl values (-3.2 to -0.1‰). Although little disagreement currently exists about the involvement of saline groundwater during the formation of atacamite [2], no δ37Cl data are currently available for atacamite within a single deposit and/or supergene enrichment profile that allow explaining the aforementioned differences in the observed δ37Cl values. Furthermore, no experimental data for chlorine isotope fractionation between Cu-hydroxychloride minerals and water exist that help evaluate possible mechanisms of fractionation along the groundwater flow path. Here we present a new database that combines detailed mineralogical observations with δ37Cl data of atacamite along a thick ( 100 m) supergene enrichment profile at the Barreal Seco IOCG deposit in the Atacama Desert of northern Chile. Chlorine stable isotope data of atacamite vary between -0.62 and +2.1 ‰ and show a well-defined trend where δ37Cl values progressively decrease (become lighter) with depth. These data, when combined with new experimental determinations of chlorine isotope fractionation between atacamite and water, point to changes triggered by the progressive deepening of groundwater tables during Andean uplift and the extreme desiccation of

  9. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  10. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  11. Risk assessment for produced water discharges to Louisiana open bays. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-22

    The US Department of Energy (USDOE) has a program of research in the environmental aspects of oil and gas extraction. This sampling project will characterize the environmental impacts associated with the discharge of naturally occurring radioactive materials (NORM), metals and organics in produced water. This report is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the USDOE. These assessments are being coordinated with the field study, using the collected data to perform human health and ecological risk assessments. These assessments will provide input tomore » regulators in the development of guidelines and permits, and to industry in the development and use of appropriate discharge practices. The initial human health and ecological risk assessments consist of conservative screening analyses meant to identify potentially important contaminants, and to eliminate others from further consideration. More quantitative assessments were done for contaminants identified, in the screening analysis, as being of potential concern. Section 2 gives an overview of human health and ecological risk assessment to help put the analyses presented here in perspective. Section 3 provides the hazard assessment portion of the risk assessment, and identifies the important receptors and pathways of concern. Section 3 also outlines the approach taken to the risk assessments presented in the rest of the report. The remaining sections (4 through 9) present the human health and ecological risk assessments for discharges of produced water to open bays in Louisiana.« less

  12. An Open Software Platform for Sharing Water Resource Models, Code and Data

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Mohamed, Khaled; Korteling, Brett; Matrosov, Evgenii; Huskova, Ivana; Harou, Julien; Rosenberg, David; Tilmant, Amaury; Medellin-Azuara, Josue; Wicks, Jon

    2016-04-01

    The modelling of managed water resource systems requires new approaches in the face of increasing future uncertainty. Water resources management models, even if applied to diverse problem areas, use common approaches such as representing the problem as a network of nodes and links. We propose a data management software platform, called Hydra, that uses this commonality to allow multiple models using a node-link structure to be managed and run using a single software system. Hydra's user interface allows users to manage network topology and associated data. Hydra feeds this data directly into a model, importing from and exporting to different file formats using Apps. An App connects Hydra to a custom model, a modelling system such as GAMS or MATLAB or to different file formats such as MS Excel, CSV and ESRI Shapefiles. Hydra allows users to manage their data in a single, consistent place. Apps can be used to run domain-specific models and allow users to work with their own required file formats. The Hydra App Store offers a collaborative space where model developers can publish, review and comment on Apps, models and data. Example Apps and open-source libraries are available in a variety of languages (Python, Java and .NET). The App Store can act as a hub for water resource modellers to view and share Apps, models and data easily. This encourages an ecosystem of development using a shared platform, resulting in more model integration and potentially greater unity within resource modelling communities. www.hydraplatform.org www.hydraappstore.com

  13. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  14. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  15. A prospective evaluation of open face masks for head and neck radiation therapy.

    PubMed

    Wiant, David; Squire, Sarah; Liu, Han; Maurer, Jacqueline; Lane Hayes, T; Sintay, Benjamin

    Head and neck (HN) radiation therapy patients are typically immobilized with closed thermoplastic masks that cover the face and may cause discomfort. In this work, we examine the use of open masks for HN radiation therapy. Fifty HN patients were prospectively randomized into 2 groups (25 closed masks, 25 open masks). The open-mask group was monitored with surface imaging to evaluate intrafraction motion. Both groups underwent daily volumetric imaging. All daily images were rigidly registered to their respective planning images to evaluate spinal canal and mandible position as a check for interfraction posture change. Posture changes were determined by the amount the spinal canal and mandible contours from the planning images had to be expanded to cover the structures on each daily image set. The vector length (VL) of the intrafraction linear translations, spine, and mandible positions for each open-mask patient were checked for correlation with fraction number using the Pearson r value. All patients were given a weekly survey ranking anxiety and claustrophobia from 0 to 10 (0 = no issue, 10 = extreme issue). The mean VL for all open-mask patients was 0.9 ± 0.5 mm (1 standard deviation). Only 1 patient showed significant correlation between VL and fraction number. The mean contour expansions to cover the spine and mandible were 1.5 ± 0.9 mm and 1.8 ± 1.3 mm for the closed-mask group, and 1.6 ± 0.8 mm and 1.8 ± 1.1 mm for the open-mask group. Both groups showed similar behavior relative to fraction number. The mean anxiety and claustrophobia scores were 1.63 and 1.44 for the closed-mask group, and 0.81 and 0.63 for the open-mask group. The groups were not significantly different. Open masks provide comparable immobilization and posture preservation to closed masks for HN radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. Copper isotope fractionation in acid mine drainage

    USGS Publications Warehouse

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? < ??65Cu < 1???). These mineral samples show lower ??65Cu values than stream waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures

  17. In vivo antiplasmodial activities of ethanolic extract and fractions of Eleucine indica.

    PubMed

    Ettebong, E O; Nwafor, P A; Okokon, J E

    2012-09-01

    To evaluate the in vivo antiplasmodial activities of the extract and fractions (n-hexane, chloroform, ethylacetate, butanol, aqueous) of the whole plant in Plasmodium berghei berghei infected mice. Oral administrations of the extract (200, 400, and 600 mg/kg) of Eleucine indica and fractions (400 mg/kg) were screened in the 4-day, repository and curative tests. Chloroquine (5 mg/kg), pyrimethamine (1.2 mg/kg) and artesunate (5 mg/kg) were used as controls. The extract showed significant (P< 0.05-0.001) dose-dependent, antiplasmodial activity in the 4-day, repository and curative tests and increased the survival times of the infected mice. All the fractions exhibited significant antiplasmodial activity with the highest being ethylacetate fraction. Eleucine indica extract and fractions possess antimalarial activity which confirms the ethnobotanical use of this plant as a malarial remedy and opens a new highway to further investigate its potentials in the on-going fight against malaria. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Augmented water binding and low cellular water content in erythrocytes of camel and camelids.

    PubMed

    Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A

    1998-12-01

    We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments.

  19. Site-specific equilibrium isotopic fractionation of oxygen, carbon and calcium in apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne

    2017-12-01

    The stable isotope composition of biogenic apatite is an important geochemical marker that can record environmental parameters and is widely used to infer past climates, biomineralization processes, dietary preferences and habitat of vertebrates. In this study, theoretical equilibrium isotopic fractionation of oxygen, carbon and calcium in hydroxyapatite and carbonate-bearing hydroxyapatite is investigated using first-principles methods based on density-functional theory and compared to the theoretical isotopic fractionation properties of calcite, CO2 and H2O. Considering the variability of apatite crystal-chemistry, special attention is given to specific contributions of crystal sites to isotopic fractionation. Significant internal fractionation is calculated for oxygen and carbon isotopes in CO3 between the different structural sites occupied by carbonate groups in apatite (typically 7‰ for both 18O/16O and 13C/12C fractionation at 37 °C). Compared with calcite-water oxygen isotope fractionation, occurrence of A-type substitution in apatite structure, in addition to the main B-type substitution, could explain the larger temperature dependence of oxygen isotope fractionation measured at low temperature between carbonate in apatite and water. Theoretical internal fractionation of oxygen isotopes between carbonate and phosphate in B-type carbonated apatite (∼8‰ at 37 °C) is consistent with experimental values obtained from modern and well-preserved fossil bio-apatites. Concerning calcium, theoretical results suggest a small fractionation between apatite and calcite (-0.17‰ at 37 °C). Internal fractionation reaching 0.8‰ at 37 °C occurs between the two Ca sites in hydroxyapatite. Furthermore, the Ca isotopic fractionation properties of apatite are affected by the occurrence of carbonate groups, which could contribute to the variability observed on natural samples. Owing to the complexity of apatite crystal-chemistry and in light of the theoretical

  20. Discrete Fractional Component Monte Carlo Simulation Study of Dilute Nonionic Surfactants at the Air-Water Interface.

    PubMed

    Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J

    2017-09-26

    We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 -5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C 10 E 4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.

  1. 33 CFR 117.11 - Unnecessary opening of the draw.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Unnecessary opening of the draw. 117.11 Section 117.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.11 Unnecessary opening of the draw. No...

  2. Rheology of water and ammonia-water ices

    NASA Technical Reports Server (NTRS)

    Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.

    1993-01-01

    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.

  3. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    Silica fluxes to soil solutions and water streams are controlled by both abiotic and biotic processes occurring in a Si soil-plant cycle that can be significant in comparison with Si weathering input and hydrological output. The quantification of Si-isotopic fractionation by these processes is highly promising to study the Si soil-plant cycle. Therein, the fate of aqueous monosilicic acid H4SiO4, as produced by silicate weathering, may take four paths: (1) uptake by plants and recycling through falling litter, (2) formation of clay minerals, (3) specific adsorption onto Al and Fe oxides, (4) leaching in drainage waters and export from watersheds. Here we report on detailed Si-isotopic compositions of various Si pools in a tropical soil-plant system involving old stands of banana (Musa acuminata Colla, cv Grande Naine) cropped on a weathering sequence of soils derived from andesitic volcanic ash and pumice deposits in Cameroon, West Africa. Si-isotopic compositions were measured by MC-ICP-MS in dry plasma mode with external Mg doping with a reproducibility of 0.08 permil (2stdev). Results were expressed as delta29Si vs NBS28. The compositions were determined in plant parts, bulk soils, clay fractions (less than 2um) and stream waters used for crop irrigation. Of the weathering sequence, we selected young (Y) and old (O) volcanic soils (vs). Yvs are rich in weatherable minerals, and contain large amounts of pumice gravels; their clay fraction (10-35 percent) contains allophane, halloysite and ferrihydrite. Oppositely, Ovs are strongly weathered and fine clayey soils (75-96 percent clay) rich in halloysite, kaolinite, gibbsite and goethite. Intra-plant fractionation between roots and shoots and within shoots confirmed our previous data measured on banana plants grown in hydroponics. The bulk plant isotopic composition was heavier at Ovs than at Yvs giving a fractionation factor per atomic mass unit between plants and their irrigation water Si source (+0.61 permil) of

  4. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06) due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter) for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08), whereas the acacia burning particles have a mediate κ value (0.04). These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC), as demonstrated by a correlation analysis (R = 0.65). κ of water-soluble organic matter is also quantified, incorporating the 1-octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics

  5. Open water scuba diving accidents at Leicester: five years' experience.

    PubMed Central

    Hart, A J; White, S A; Conboy, P J; Bodiwala, G; Quinton, D

    1999-01-01

    OBJECTIVES: The aim of this study was to determine the incidence, type, outcome, and possible risk factors of diving accidents in each year of a five year period presenting from one dive centre to a large teaching hospital accident and emergency (A&E) department. METHODS: All patients included in this study presented to the A&E department at a local teaching hospital in close proximity to the largest inland diving centre in the UK. Our main outcome measures were: presenting symptoms, administration of recompression treatment, mortality, and postmortem examination report where applicable. RESULTS: Overall, 25 patients experienced a serious open water diving accident at the centre between 1992 and 1996 inclusive. The percentage of survivors (n = 18) with symptoms of decompression sickness receiving recompression treatment was 52%. All surviving patients received medical treatment for at least 24 hours before discharge. The median depth of diving accidents was 24 metres (m) (range 7-36 m). During the study period, 1992-96, the number of accidents increased from one to 10 and the incidence of diving accidents increased from four per 100,000 to 15.4 per 100,000. Over the same time period the number of deaths increased threefold. CONCLUSIONS: The aetiology of the increase in the incidence of accidents is multifactorial. Important risk factors were thought to be: rapid ascent (in 48% of patients), cold water, poor visibility, the number of dives per diver, and the experience of the diver. It is concluded that there needs to be an increased awareness of the management of diving injuries in an A&E department in close proximity to an inland diving centre. PMID:10353047

  6. Oxygen isotope fractionation between bird bone phosphate and drinking water.

    PubMed

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ 18 O p ) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ 18 O p values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ 18 O w values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ 18 O w  = 1.119 (±0.040) δ 18 O p  - 24.222 (±0.644); R 2  = 0.98. The δ 18 O p -δ 18 O w couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ 18 O w value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  7. Oxygen isotope fractionation between bird bone phosphate and drinking water

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  8. Effects of increase in temperature and open water on transmigration and access to health care by the Nenets reindeer herders in northern Russia

    PubMed Central

    Amstislavski, Philippe; Zubov, Leonid; Chen, Herman; Ceccato, Pietro; Pekel, Jean-Francois; Weedon, Jeremy

    2013-01-01

    Background The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets’ traditional way of life because the presence of new water in the tundra reduces the Nenets’ ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. Objectives We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. Design Correlational and time series analyses were completed. Methods The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal

  9. Effects of increase in temperature and open water on transmigration and access to health care by the Nenets reindeer herders in northern Russia.

    PubMed

    Amstislavski, Philippe; Zubov, Leonid; Chen, Herman; Ceccato, Pietro; Pekel, Jean-Francois; Weedon, Jeremy

    2013-01-01

    The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets' traditional way of life because the presence of new water in the tundra reduces the Nenets' ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. Correlational and time series analyses were completed. The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal temperature anomalies over time. We also created

  10. Effect of gelatinized flour fraction on thermal and rheological properties of wheat-based dough and bread.

    PubMed

    Carrillo-Navas, H; Guadarrama-Lezama, A Y; Vernon-Carter, E J; García-Díaz, S; Reyes, I; Alvarez-Ramírez, J

    2016-11-01

    This work considered gelatinized wheat flour fraction with properties similar to hydrocolloid to enhance the strength of dough network by improving water retention and rheological characteristics. The gelatinized (90 °C) fraction of the wheat flour was incorporated in the dough formulation at different levels (5, 10, and 20% w/w). The effects of the gelatinized flour (GF) fraction on the dough rheology and thermal properties were studied. The incorporation of GF induced a moderate increase of dough viscoelasticity and reduced the freezing and melting enthalpies. On the other hand, the changes in bread textural properties brought by incorporation of GF were insignificant, indicating that the gelatinized fraction acted as a binder that enhanced water trapping in the structure. SEM images showed a more heterogeneous crumb microstructure (e.g., gas cells, porous, etc.) bread prepared using GF. Drying kinetics obtained from TGA indicated that the water diffusivity decreased with the incorporation of GF, which suggested that the bread had a compact microstructure.

  11. Effect of citronella essential oil fractions as oil phase on emulsion stability

    NASA Astrophysics Data System (ADS)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  12. Antioxidant capacity of different fractions of vegetables and correlation with the contents of ascorbic acid, phenolics, and flavonoids.

    PubMed

    Ji, Linlin; Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Guo, Changjiang

    2011-01-01

    The antioxidant capacity of different fractions of 17 vegetables were analyzed using ferric reducing antioxidant power assay (FRAP assay) after water and acetone extractions. The contents of ascorbic acid, phenolics, and flavonoids were determined and their correlations with FRAP value were investigated. The results showed that the peel or leaf fractions of vegetables were stronger than the pulp or stem fractions in antioxidant capacity based on total FRAP value. Lotus root peel was the highest and cucumber pulp the lowest in total FRAP value among the vegetable fractions analyzed. All water extracts were higher in FRAP value than the acetone extracts. The FRAP value was significantly correlated with the contents of ascorbic acid, phenolics, or flavonoids in water extracts, in which the phenolics contributed most based on multivariate regression analysis. We conclude that different vegetable fractions were remarkably different in antioxidant capacity. The phenolics are responsible mostly for the antioxidant capacity of vegetables in vitro. © 2011 Institute of Food Technologists®

  13. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  14. Daily Course of CO2 Fluxes in the Atmosphere-Water System and Variable Fluorescence of Phytoplankton during the Open-Water Period for Lake Baikal according to Long-Term Measurements

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Panchenko, M. V.

    2018-04-01

    The process of gas exchange of CO2 in the atmosphere-water system and its relation to the daily course of variable fluorescence of phytoplankton is studied on the basis of long-term (2004-2014) measurements during the open water period for Lake Baikal. It is found that the decrease in photosynthetic activity of plankton is almost synchronous to the increase in the CO2 flux from atmosphere to water. It follows from comparison of the spring and summer data with December measurements that the daily decrease in variable fluorescence of phytoplankton is caused by the internal daily rhythm of the photosynthetic activity of plankton.

  15. One year water chemistry monitoring of the flooding of the Meirama open pit (NW Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, J.; Juncosa, R.; Vázquez, A.; Fernández-Bogo, S.

    2009-04-01

    In December, 2007, after 30 years of operations, the mine of Meirama finished the extraction of brown lignite. Starting in April 2008, the flooding of the open pit has started and this is leading to the formation of a large mining lake (~2 km2 surface and up to 180 m depth) in which surface (river and rain water) and ground waters are involved. Since the beginning of the flooding, lake waters are weekly sampled and analyzed for temperature, pH, redox, EC, TDS, TSS, DO,DIC, DOC, turbidity, alkalinity/acidity as well as nearly 40 inorganic chemical components. Stable water isotopes (deuterium and oxygen) are also being recorded. In order to better understand the dynamic chemical evolution of lake waters, the chemical characteristics of rain water as well as a series of lake tributaries and ground waters are also being measured. Since the beginning of the flooding process, the chemical quality of lake water has experienced an interesting evolution that obeys to a variety of circumstances. The silicic geologic substratum of the catchment determines that both ground and surface waters have a rather low alkalinity. Moreover, the presence of disseminated sulfides (mainly pyrite) within the schistous materials of the mine slopes and internal rock dumps provokes a significant acidic load. From April to October 2008, the lake waters had only the contribution of rain and ground waters. Since the beginning of October, a significant volume of surface waters has been derived to the mine hole. Taking pH as indicator, the first water body had a rather acidic pH (~3) which was progressively amended with the addition of a certain amount of lime to reach an upper value of ~8 by late August. The diminution in the addition of lime up to its elimination, in December, has conducted to the progressive acidification of the lake. At present, an instrumented floating deck is being deployed in the lake. This device will serve as a base point where it is planned to locate a series of

  16. Mutagenic effect of extracts from particulate matter collected with sediment traps in the archipelago of Stockholm and the open northern Baltic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Naef, C.; Rannug, U.

    The load of various hydrophobic organic compounds (HOCs) on the Baltic Sea aquatic environment is considerable. This investigation samples the water area around Stockholm, of special concern since it is one of the most densely populated urban areas in the Baltic region. Stockholm also houses several power plants, municipal waste incinerators, waste water treatment plants, ports and oil terminals. The runoff from a large lake also passes through the estuarine-like archipelago of Stockholm. Due to the high particulate-water partition coefficients (K[sub p]) of most ecotoxicologically relevant HOCs, particulate matter (PM) becomes very important for occurrence and distribution in the aquaticmore » environment. This PM is the basic food source for important organisms in the benthic, pelagic and littoral parts of the aquatic ecosystem. The load of various HOCs such as petrogenic hydrocarbons (PHCs), various polynuclear aromatic compounds (PACs), and chlorinated hydrocarbons such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in association with PM in the aquatic environment of the Stockholm area is well documented. However, the ecotoxicological relevance of organic extracts of PM, including the above identified compounds and various unidentified HOCs, is not fully evaluated. To evaluate the genotoxic potential of extracts of PM, collected with sediment traps in the Stockholm water area and in the open northern Baltic, we used the Ames test on Salmonella typhimurium strain TA100, with and without a metabolizing system. After extraction and before the mutagenicity tests all PM samples were fractionated on an HPLC-system into three fractions containing aliphatic/monoaromatic-, diaromatic, (containing, e.g., PCDD/Fs and PCBs) and polyaromatic compounds (containing various PACs). The relative mutagenic potential of these fractions at the different sediment trap sampling stations are discussed and evaluated. 13 refs., 1

  17. Desorption of water from hydrophilic MCM-41 mesopores: positron annihilation, FTIR and MD simulation studies.

    PubMed

    Maheshwari, Priya; Dutta, D; Muthulakshmi, T; Chakraborty, B; Raje, N; Pujari, P K

    2017-02-08

    The desorption mechanism of water from the hydrophilic mesopores of MCM-41 was studied using positron annihilation lifetime spectroscopy (PALS) and attenuated total reflection Fourier transform infrared spectroscopy supplemented with molecular dynamics (MD) simulation. PALS results indicated that water molecules do not undergo sequential evaporation in a simple layer-by-layer manner during desorption from MCM-41 mesopores. The results suggested that the water column inside the uniform cylindrical mesopore become stretched during desorption and induces cavitation (as seen in the case of ink-bottle type pores) inside it, keeping a dense water layer at the hydrophilic pore wall, as well as a water plug at both the open ends of the cylindrical pore, until the water was reduced to a certain volume fraction where the pore catastrophically empties. Before being emptied, the water molecules formed clusters inside the mesopores. The formation of molecular clusters below a certain level of hydration was corroborated by the MD simulation study. The results are discussed.

  18. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  19. Partitioning of Dissolved Metals (Fe, Mn, Cu, Cd, Zn, Ni, and Pb) into Soluble and Colloidal Fractions in Continental Shelf and Offshore Waters, Northern California

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.

    2016-02-01

    The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.

  20. Effect of the Pacing Strategies on the Open Water 10km World Swimming Championships Performances.

    PubMed

    Rodriguez, Luis; Veiga, Santiago

    2017-10-16

    The aim of the present research was 1) to compare the pacing strategies of different level open water swimmers during the 10km race of the FINA 2015 World Swimming Championships (WCH), and 2) to relate these pacing strategies to the race performance. Final and intermediate split times as well as intermediate race positions from the 10-kilometer race participants (69 men and 51 women) were collected from the public domain and were divided into five groups (G1 to G5) depending on their finishing positions. Medalists and finalists (G1 and G2, respectively) presented an even pacing profile with similar swimming velocities to the less successful swimmers (G3 to G5) on the initial and mid stages of the race but a 1.5-3% increase in swimming velocity in the last quarter of the race. This fast end spurt was largely related to the race performance and was not observed in the G3 and G4 (even-paced profile) or in the G5 (positive pacing profile) groups. Intermediate race positions and lap rankings were negatively related to finishing position indicating a delayed positioning of the most successful swimmers at 25%, 50% and 75% of race distance. The adoption of a conservative starting strategy by open water swimmers with a negative pacing profile and delayed partial positioning seems to increase the chances of overall race success as it allows a fast end spurt that is highly related to successful finishing race positions.

  1. Carbon and oxygen isotope fractionation in non-marine ostracods: results from a 'natural culture' environment

    NASA Astrophysics Data System (ADS)

    Keatings, K. W.; Heaton, T. H. E.; Holmes, J. A.

    2002-05-01

    Carbon and oxygen isotope analysis of ostracods living in the near-constant conditions of spring-fed ponds in southern England allowed accurate determination of the ostracod's calcite-water 13C/12C and 18O/16O fractionations. The 13C/12C fractionations of two species, Candona candida and Pseudocandona rostrata, correspond to values expected for isotopic equilibrium with the pond's dissolved inorganic carbon at the measured temperature (11°C) and pH (6.9), whilst those of a third species, Herpetocypris reptans, would represent equilibrium at a slightly higher pH (7.1). The 18O/16O fractionations confirm two previous studies in being larger, by up to 3‰, than those 'traditionally' regarded as representing equilibrium. When the measured fractionations are considered in the context of more recent work, however, they can be explained in terms of equilibrium if the process of calcite formation at the ostracod lamella occurs at a relatively low pH (≤7) irrespective of the pH of the surrounding water. The pH of calcite formation, and therefore the calcite-water 18O/16O fractionation, may be species and stage (adult versus juvenile) specific, and related to the rate of calcification.

  2. The role of fractional time-derivative operators on anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Tateishi, Angel A.; Ribeiro, Haroldo V.; Lenzi, Ervin K.

    2017-10-01

    The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating anomalous diffusive processes.

  3. Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L.

    PubMed

    Yan, Yeong-Yu; Wang, Yue-Wen; Chen, Su-Lin; Zhuang, Shu-Ru; Wang, Chin-Kun

    2013-06-01

    Corchorus olitorius L. is grown in Taiwan during summer. Tender leaves are crushed and washed by running water before eating. Five fractions including crude phenolic extracts (using 80 per cent aqueous acetone) of whole plant, leaf, stem, washed leaf (WL) and dried water washing material (WW) were used in this study. Linoleic acid autoxidation inhibitions on all fractions were higher than that on α-tocopherol. Except for WL and WW, other fractions also showed DPPH radical scavenging efficiency. The effect of all fractions on the regulation of inflammatory responses in lipopolysaccharide (LPS)-stimulated J774A.1 macrophage cells was investigated. All fractions diminished LPS-induced protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Nitric oxide (NO) and prostaglandin E2 (PGE(2)), downstream products, were also suppressed in dose-dependent manners, except for WL and WW. Oxidative modification and loss of leaf phenolics after kneading and washing greatly affected DPPH radical scavenging and inflammatory responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. How Does Leaf Anatomy Influence Water Transport outside the Xylem?1[OPEN

    PubMed Central

    Buckley, Thomas N.; Scoffoni, Christine; Sack, Lawren

    2015-01-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. PMID:26084922

  5. Changes in carbon fractions during composting and maturation of organic wastes

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Costa, Francisco

    1991-05-01

    Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGES

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  7. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  8. Self-assembly of thin, triangular prisms into open networks at a flat air-water interface

    NASA Astrophysics Data System (ADS)

    Solomon, Michael; Ferrar, Joseph; Bedi, Deshpreet; Zhou, Shangnan; Mao, Xiaoming

    We observe capillary-driven binding between thin, equilateral triangle microprisms at a flat air-water interface. The triangles are fabricated from epoxy resin via SU-8 photolithography. For small thickness to length (T/L) ratios, two distinct pairwise particle-particle binding events occur with roughly equal frequency, and optical and environmental scanning electron microscopy (eSEM) demonstrate that these two distinct binding events are driven by the specific manner in which the interface is pinned to the particle surface. Additionally, particle bending is observed for the lowest T/L ratios, which leads to enhanced interface curvature and thus enhanced strength of capillary-driven attractions, and may also play a pivotal role in the dichotomy in particle-particle binding. Dichotomy in particle-particle binding is not observed at thicker T/L ratios, although capillary-driven binding still occurs. Ultimately, the particles self-assemble into space-spanning open networks, and the results suggest design parameters for the fabrication of building blocks of ordered open structures, such as the Kagome lattice.

  9. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  10. THE EFFECT OF AMOUNT OF CRUDE OIL ON EXTENT OF ITS BIODEGRADATION IN OPEN WATER- AND SANDY BEACH- LABORATORY SIMULATIONS

    EPA Science Inventory

    Lepo, J.E., C. R. Cripe, J.L. Kavanaugh, S. Zhang and G.P. Norton. 2003. Effect of Amount of Crude Oil on Extent of Its Biodegradation in Open Water- and Sandy Beach-Laboratory Simulations. Environ. Technol. 24(10):1291-1302. (ERL,GB 1109).

    We examined the biodegradation ...

  11. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates.

    PubMed

    Richardson, Claire; Rutherford, Shannon; Agranovski, Igor

    2018-06-01

    Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open

  12. Augmented water binding and low cellular water content in erythrocytes of camel and camelids.

    PubMed Central

    Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A

    1998-01-01

    We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments. PMID:9826628

  13. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    ERIC Educational Resources Information Center

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)

  14. Anti-fertility effects of different fractions of Anethum graveolens L. extracts on female rats.

    PubMed

    Malihezaman, Monsefi; Mojaba, Masoudi; Elham, Hosseini; Farnaz, Gramifar; Ramin, Miri

    2012-01-01

    Our previous studies showed the effects of aqueous and ethanol extracts of Anethum graveolens L. (dill) on female infertility. In the present study we investigated whether different fractions of this herb extract can cause infertility in rats. Female rats were divided into the control groups, the groups receiving either a low (0.5 g/kg)) or a high dose (5g/kg) of water, N-butanol, chloroform and ether fractions of the aqueous plant extract, and the groups receiving either a low (0.045 g/kg) or a high dose (0.45 g/kg) of the same fractions of ethanol extract. The mentioned doses were gavaged in 1mL for 10 days. Vaginal smears were prepared daily. Estradiol and progesterone levels were measured. The left oviduct and ovary were removed, their tissue subsequently being prepared in form of histology slides and stained using haematoxylin-eosin and Masson's trichrome. Female rats assigned to each group were mated with males; after that, crown-rump lengths and weights of newborn rats were measured. Results showed that each fraction produced some changes such as hormonal level reduction (chloroform fraction), diestrus phase prolongation and infertility (water fraction), and increase in pregnancy duration (chloroform and ether fractions). We concluded that each fraction comprises only some of the mentioned components and therefore recommended the usage of crude extract, especially the aqueous one, in case infertility aims to be induced.

  15. Phase III integrated water recovery testing at MSFC - Partially closed hygiene loop and open potable loop results and lessons learned

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.

    1991-01-01

    A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

  16. Operational use of open satellite data for marine water quality monitoring

    NASA Astrophysics Data System (ADS)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  17. Supporting diverse data providers in the open water data initiative: Communicating water data quality and fitness of use

    USGS Publications Warehouse

    Larsen, Sara; Hamilton, Stuart; Lucido, Jessica M.; Garner, Bradley D.; Young, Dwane

    2016-01-01

    Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well-established, and trusted agencies with a history of providing well-documented, standardized, and archive-ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data-sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short- and long-term participation in the OWDI.

  18. Tempered fractional calculus

    NASA Astrophysics Data System (ADS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  19. Tempered fractional calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less

  20. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    DTIC Science & Technology

    2014-07-01

    a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We...leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We evaluated the influence of gains from open and...34gain" on ocean color products. These products include the spectral Remote Sensing Reflectance (RRS), chlorophyll concentration, and Inherent Optical

  1. Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel

    NASA Astrophysics Data System (ADS)

    Matsushita, D.; Moriyama, R.; Nakashima, K.; Watanabe, S.; Okuma, K.; Furukawa, A.

    2014-03-01

    The development of small hydropower is one of the realistic and preferable utilizations of renewable energy, but the extra-low head hydropower less than 2 m is almost undeveloped yet for some reasons. The authors have developed several types of Darrieus-type hydro-turbine system, and among them, the Darrieus-turbine with a wear and a nozzle installed upstream of turbine is so far in success to obtain more output power, i.e. more shaft torque, by gathering all water into the turbine. However, there can several cases exist, in which installing the wear covering all the flow channel width is unrealistic. Then, in the present study, the hydraulic performances of Darrieus-type hydro-turbine with the inlet nozzle is investigated, putting alone in a small open channel without upstream wear. In the experiment, the five-bladed Darrieus-type runner with the pitch-circle diameter of 300 mm and the blade span of 300 mm is vertically installed in the open channel with the width of 1,200 mm. The effectiveness of the shape of the inlet nozzle is also examined using two types of two-dimensional symmetric nozzle, the straight line nozzle (SL nozzle) with the converging angle of 45 degrees and the half diameter curved nozzle (HD nozzle) whose radius is a half diameter of runner pitch circle. Inlet and outlet nozzle widths are in common for the both nozzles, which are 540 mm and 240 mm respectively. All the experiments are carried out under the conditions with constant flow rate and downstream water level, and performances are evaluated by measured output torque and the measured head difference between the water levels upstream and downstream of the turbine. As a result, it is found that the output power is remarkably increased by installing the inlet nozzle, and the turbine with SL nozzle produces larger power than that with HD nozzle. However, the peak efficiency is deteriorated in both cases. The speed ratio defined by the rotor speed divided by the downstream water velocity at

  2. Ligand induced change of β2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis.

    PubMed

    Bai, Qifeng; Pérez-Sánchez, Horacio; Zhang, Yang; Shao, Yonghua; Shi, Danfeng; Liu, Huanxiang; Yao, Xiaojun

    2014-08-14

    The reported crystal structures of β2 adrenergic receptor (β2AR) reveal that the open and closed states of the water channel are correlated with the inactive and active conformations of β2AR. However, more details about the process by which the water channel states are affected by the active to inactive conformational change of β2AR remain illusive. In this work, molecular dynamics simulations are performed to study the dynamical inactive and active conformational change of β2AR induced by inverse agonist ICI 118,551. Markov state model analysis and free energy calculation are employed to explore the open and close states of the water channel. The simulation results show that inverse agonist ICI 118,551 can induce water channel opening during the conformational transition of β2AR. Markov state model (MSM) analysis proves that the energy contour can be divided into seven states. States S1, S2 and S5, which represent the active conformation of β2AR, show that the water channel is in the closed state, while states S4 and S6, which correspond to the intermediate state conformation of β2AR, indicate the water channel opens gradually. State S7, which represents the inactive structure of β2AR, corresponds to the full open state of the water channel. The opening mechanism of the water channel is involved in the ligand-induced conformational change of β2AR. These results can provide useful information for understanding the opening mechanism of the water channel and will be useful for the rational design of potent inverse agonists of β2AR.

  3. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  4. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    PubMed

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12

  5. Oxygen isotope fractionation between chlorite and water from 170 to 350 C: A preliminary assessment based on partial exchange and fluid/rock experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, D.R.; Ripley, E.M.

    1999-02-01

    Oxygen isotope fractionations in laboratory systems have been determined between chlorite and water at 170--350 C. In one series of experiments, the Northrop-Clayton partial exchange method was used where three (sometimes four) isotopically different waters were reacted with chlorite. The percents of exchange determined for the four times from shortest to longest are 4.4, 6.5, 8.0, and 11.9. The fractionations calculated from the Northrop and Clayton method are in modest agreement for the four run durations: 0.13, 0.26, {minus}0.46, and {minus}0.55 per mil. Errors associated with each of these fractionations are quite large (e.g. {+-}1.2 per mil for the longestmore » run). The value determined for the longest run of {approximately}20 weeks is the most reliable of the group and compares very closely with a value of {approximately}{minus}0.7 per mil estimated by Wenner and Taylor based on natural chlorides. Good agreement is also observed with the estimates, {minus}1.2 and {minus}1.3% calculated at 350 C for chlorite compositions with [({Sigma}Fe)/{Sigma}Fe + Mg] = 0.313 and 0.444, respectively, from equations given by Savin and Lee based on their empirical bond-type method. Additional fractionation data have been estimated from hydrothermal granite-fluid experiments where chlorite formed from biotite. Detailed thin section, scanning electron microscope (SEM), x-ray diffraction (XRD), and electron microprobe analyses demonstrate that biotite is altered exclusively to chlorite in 13 granite-fluid experiments conducted at the following conditions: T = 170--300 C, P = vapor saturation - 200 b, salinity = H{sub 2}O, 0.1 and 1 m NaCl, fluid/biotite mass ratios = 3--44, run durations = 122--772 h. The amount of chlorite, quantified through point counting and XRD, increased with increasing temperature, salinity, and time. The isotope compositions of chlorite were calculated from mass balance and compared to the final measured {delta}{sup 18}O of the fluids. The 10{sup 3

  6. Acute toxicity of crude oil water accommodated fraction on marine copepods: the relative importance of acclimatization temperature and body size.

    PubMed

    Jiang, Zhibing; Huang, Yijun; Chen, Quanzhen; Zeng, Jiangning; Xu, Xiaoqun

    2012-10-01

    Recent oil spillage accidents around the world greatly increase harmful risks to marine ecology. This study evaluated the influences of petroleum water accommodated fraction (WAF) on 15 typical species of marine copepods collected from a subtropical bay in East China Sea at different seasons. Copepods showed impaired swimming ability, restlessness, loss of balance, anoxic coma, and even death when they were acutely exposed to the crude oil WAF under laboratory conditions. The LC(50) values (expressed in total petroleum hydrocarbon concentration) indicated that the tolerances of copepods to WAF decreased significantly (P < 0.05) with increased exposure duration and natural water temperatures (acclimatization temperature). The sensitivity of the copepods was species-specific (P < 0.01), and there was a significant (P < 0.05) positive correlation between the 48-h LC(50) and body size. Therefore, the small copepod species confront more survival challenges under oil contamination stress, especially in the warm months or regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fractional solubility of aerosol iron: Synthesis of a global-scale data set

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.

    2012-07-01

    Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.

  8. 46 CFR 131.520 - Hatches and other openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hatches and other openings. 131.520 Section 131.520..., Drills, and Inspections § 131.520 Hatches and other openings. Before any vessel leaves protected waters, the master shall ensure that the vessel's exposed cargo hatches and other openings in the hull are...

  9. 46 CFR 131.520 - Hatches and other openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hatches and other openings. 131.520 Section 131.520..., Drills, and Inspections § 131.520 Hatches and other openings. Before any vessel leaves protected waters, the master shall ensure that the vessel's exposed cargo hatches and other openings in the hull are...

  10. 46 CFR 131.520 - Hatches and other openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hatches and other openings. 131.520 Section 131.520..., Drills, and Inspections § 131.520 Hatches and other openings. Before any vessel leaves protected waters, the master shall ensure that the vessel's exposed cargo hatches and other openings in the hull are...

  11. 46 CFR 131.520 - Hatches and other openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hatches and other openings. 131.520 Section 131.520..., Drills, and Inspections § 131.520 Hatches and other openings. Before any vessel leaves protected waters, the master shall ensure that the vessel's exposed cargo hatches and other openings in the hull are...

  12. 46 CFR 131.520 - Hatches and other openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hatches and other openings. 131.520 Section 131.520..., Drills, and Inspections § 131.520 Hatches and other openings. Before any vessel leaves protected waters, the master shall ensure that the vessel's exposed cargo hatches and other openings in the hull are...

  13. Fractionation and Characterization of Biologically-active Polysaccharides from Artemisia tripartita

    PubMed Central

    Xie, Gang; Schepetkin, Igor A.; Siemsen, Daniel W.; Kirpotina, Liliya N.; Wiley, James A.; Quinn, Mark T.

    2008-01-01

    The leaves of Artemisia species have been traditionally used for prevention and treatment of a number of diseases. In this study, five polysaccharide fractions (designated A-I to A-V) were isolated from the leaves of Artemisia tripartita Rydb. by the sequential use of hot-water extraction, ethanol precipitation, ultra-filtration, and chromatography. The homogeneity and average molecular weight of each fraction were determined by high performance size-exclusion chromatography. Sugar composition analysis revealed that Artemisia polysaccharides consisted primarily of xylose, glucose, arabinose, galactose, and galactosamine. Moreover, all fractions contained at least 3.4% sulfate, and fractions A-II through A-V contained an arabinogalactan type II structure. All fractions exhibited macrophage-activating activity, enhancing production of intracellular reactive oxygen species and release of nitric oxide, interleukin 6, interleukin 10, tumor necrosis factor α, and monocyte chemotactic protein-1. In addition, all fractions exhibited scavenging activity for reactive oxygen species generated enzymatically or produced extracellularly by human neutrophils. Finally, fractions A-I and A-V exhibited complement-fixing activity. Taken together, our results provide a molecular basis to explain at least part of the beneficial therapeutic effects of Artemisia extracts, and suggest the possibility of using Artemisia polysaccharides as an immunotherapeutic adjuvant. PMID:18325553

  14. Nonlinear fractional waves at elastic interfaces

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.

    2017-11-01

    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.

  15. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    PubMed

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modeling of biomass fractionation in a lab-scale biorefinery: Solubilization of hemicellulose and cellulose from holm oak wood using subcritical water.

    PubMed

    Cabeza, A; Piqueras, C M; Sobrón, F; García-Serna, J

    2016-01-01

    Lignocellulose fractionation is a key biorefinery process that need to be understood. In this work, a comprehensive study on hydrothermal-fractionation of holm oak in a semi-continuous system was conducted. The aim was to develop a physicochemical model in order to reproduce the role of temperature and water flow over the products composition. The experiments involved two sets: at constant flow (6mL/min) and two different ranges of temperature (140-180 and 240-280°C) and at a constant temperature range (180-260°C) and different flows: 11.0, 15.0 and 27.9mL/min. From the results, temperature has main influence and flow effect was observed only if soluble compounds were produced. The kinetic model was validated against experimental data, reproducing the total organic carbon profile (e.g. deviation of 33%) and the physicochemical phenomena observed in the process. In the model, it was also considered the variations of molecular weight of each biopolymer, successfully reproducing the biomass cleaving. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    PubMed

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  18. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Smith, Ryan; Wright, Mark

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of amore » series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.« less

  19. Safety of spray-dried powder formulated Pseudomonas fluorescens strain CL145A exposure to subadult/adult unionid mussels during simulated open-water treatments

    USGS Publications Warehouse

    Luoma, James A.; Weber, Kerry L.; Waller, Diane L.; Wise, Jeremy K.; Mayer, Denise A.; Aloisi, Douglas B.

    2015-01-01

    After exposure, the mussels were consolidated into wire mesh cages and placed in the Black River for a 27-28 day postexposure period, after which time survival of mussels was assessed. Of the 1,170 mussels tested in the study, 3 were confirmed dead and 5 were not recovered and treated as mortalities in the analysis. The effect and interactions of species, SDP exposure concentration, and SDP exposure duration were analyzed and did not affect mussel survival (p > 0.98). The results from this study indicate that SDP exposure at the maximum approved open-water concentration of 100 mg/L for up to 3 times the maximum approved open-water exposure duration of 8 hours (in other words for 24 hours of exposure) is unlikely to reduce survival of subadult or adult mussels.

  20. Rise Time Reduction of Thermal Actuators Operated in Air and Water through Optimized Pre-Shaped Open-Loop Driving.

    PubMed

    Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L

    2017-01-01

    Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.