Sample records for open-source cross-platform multi-modal

  1. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  2. A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.

    PubMed

    Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud

    2011-01-01

    In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.

  3. A multi-purpose open-source triggering platform for magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ruytenberg, T.; Webb, A. G.; Beenakker, J. W. M.

    2014-10-01

    Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points.

  4. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segre, Daniel

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  5. A multi-purpose open-source triggering platform for magnetic resonance.

    PubMed

    Ruytenberg, T; Webb, A G; Beenakker, J W M

    2014-10-01

    Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. OpenStereo: Open Source, Cross-Platform Software for Structural Geology Analysis

    NASA Astrophysics Data System (ADS)

    Grohmann, C. H.; Campanha, G. A.

    2010-12-01

    Free and open source software (FOSS) are increasingly seen as synonyms of innovation and progress. Freedom to run, copy, distribute, study, change and improve the software (through access to the source code) assure a high level of positive feedback between users and developers, which results in stable, secure and constantly updated systems. Several software packages for structural geology analysis are available to the user, with commercial licenses or that can be downloaded at no cost from the Internet. Some provide basic tools of stereographic projections such as plotting poles, great circles, density contouring, eigenvector analysis, data rotation etc, while others perform more specific tasks, such as paleostress or geotechnical/rock stability analysis. This variety also means a wide range of data formating for input, Graphical User Interface (GUI) design and graphic export format. The majority of packages is built for MS-Windows and even though there are packages for the UNIX-based MacOS, there aren't native packages for *nix (UNIX, Linux, BSD etc) Operating Systems (OS), forcing the users to run these programs with emulators or virtual machines. Those limitations lead us to develop OpenStereo, an open source, cross-platform software for stereographic projections and structural geology. The software is written in Python, a high-level, cross-platform programming language and the GUI is designed with wxPython, which provide a consistent look regardless the OS. Numeric operations (like matrix and linear algebra) are performed with the Numpy module and all graphic capabilities are provided by the Matplolib library, including on-screen plotting and graphic exporting to common desktop formats (emf, eps, ps, pdf, png, svg). Data input is done with simple ASCII text files, with values of dip direction and dip/plunge separated by spaces, tabs or commas. The user can open multiple file at the same time (or the same file more than once), and overlay different elements of

  7. OpenMS: a flexible open-source software platform for mass spectrometry data analysis.

    PubMed

    Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver

    2016-08-30

    High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.

  8. Alternative Fuels Data Center: Multi-Modal Transportation

    Science.gov Websites

    examples of resources to help travelers use multi-modal transportation. OpenTripPlanner Map - an online transportation modes including transit (bus or train), walking, and bicycling 511 - a one-stop source from the of alternative transportation modes. A 2010 evaluation by the Oregon Transportation Research and

  9. A new, open-source, multi-modality digital breast phantom

    NASA Astrophysics Data System (ADS)

    Graff, Christian G.

    2016-03-01

    An anthropomorphic digital breast phantom has been developed with the goal of generating random voxelized breast models that capture the anatomic variability observed in vivo. This is a new phantom and is not based on existing digital breast phantoms or segmentation of patient images. It has been designed at the outset to be modality agnostic (i.e., suitable for use in modeling x-ray based imaging systems, magnetic resonance imaging, and potentially other imaging systems) and open source so that users may freely modify the phantom to suit a particular study. In this work we describe the modeling techniques that have been developed, the capabilities and novel features of this phantom, and study simulated images produced from it. Starting from a base quadric, a series of deformations are performed to create a breast with a particular volume and shape. Initial glandular compartments are generated using a Voronoi technique and a ductal tree structure with terminal duct lobular units is grown from the nipple into each compartment. An additional step involving the creation of fat and glandular lobules using a Perlin noise function is performed to create more realistic glandular/fat tissue interfaces and generate a Cooper's ligament network. A vascular tree is grown from the chest muscle into the breast tissue. Breast compression is performed using a neo-Hookean elasticity model. We show simulated mammographic and T1-weighted MRI images and study properties of these images.

  10. Implementing Open Source Platform for Education Quality Enhancement in Primary Education: Indonesia Experience

    ERIC Educational Resources Information Center

    Kisworo, Marsudi Wahyu

    2016-01-01

    Information and Communication Technology (ICT)-supported learning using free and open source platform draws little attention as open source initiatives were focused in secondary or tertiary educations. This study investigates possibilities of ICT-supported learning using open source platform for primary educations. The data of this study is taken…

  11. Open-Source 3-D Platform for Low-Cost Scientific Instrument Ecosystem.

    PubMed

    Zhang, C; Wijnen, B; Pearce, J M

    2016-08-01

    The combination of open-source software and hardware provides technically feasible methods to create low-cost, highly customized scientific research equipment. Open-source 3-D printers have proven useful for fabricating scientific tools. Here the capabilities of an open-source 3-D printer are expanded to become a highly flexible scientific platform. An automated low-cost 3-D motion control platform is presented that has the capacity to perform scientific applications, including (1) 3-D printing of scientific hardware; (2) laboratory auto-stirring, measuring, and probing; (3) automated fluid handling; and (4) shaking and mixing. The open-source 3-D platform not only facilities routine research while radically reducing the cost, but also inspires the creation of a diverse array of custom instruments that can be shared and replicated digitally throughout the world to drive down the cost of research and education further. © 2016 Society for Laboratory Automation and Screening.

  12. Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software

    NASA Astrophysics Data System (ADS)

    Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph

    2015-01-01

    Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).

  13. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  14. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for

  15. On modal cross-coupling in the asymptotic modal limit

    NASA Astrophysics Data System (ADS)

    Culver, Dean; Dowell, Earl

    2018-03-01

    The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.

  16. Social network of PESCA (Open Source Platform for eHealth).

    PubMed

    Sanchez, Carlos L; Romero-Cuevas, Miguel; Lopez, Diego M; Lorca, Julio; Alcazar, Francisco J; Ruiz, Sergio; Mercado, Carmen; Garcia-Fortea, Pedro

    2008-01-01

    Information and Communication Technologies (ICTs) are revolutionizing how healthcare systems deliver top-quality care to citizens. In this way, Open Source Software (OSS) has demonstrated to be an important strategy to spread ICTs use. Several human and technological barriers in adopting OSS for healthcare have been identified. Human barriers include user acceptance, limited support, technical skillfulness, awareness, resistance to change, etc., while Technological barriers embrace need for open standards, heterogeneous OSS developed without normalization and metrics, lack of initiatives to evaluate existing health OSS and need for quality control and functional validation. The goals of PESCA project are to create a platform of interoperable modules to evaluate, classify and validate good practices in health OSS. Furthermore, a normalization platform will provide interoperable solutions in the fields of healthcare services, health surveillance, health literature, and health education, knowledge and research. Within the platform, the first goal to achieve is the setup of the collaborative work infrastructure. The platform is being organized as a Social Network which works to evaluate five scopes of every existing open source tools for eHealth: Open Source Software, Quality, Pedagogical, Security and privacy and Internationalization/I18N. In the meantime, the knowledge collected from the networking will configure a Good Practice Repository on eHealth promoting the effective use of ICT on behalf of the citizen's health.

  17. Mashup Scheme Design of Map Tiles Using Lightweight Open Source Webgis Platform

    NASA Astrophysics Data System (ADS)

    Hu, T.; Fan, J.; He, H.; Qin, L.; Li, G.

    2018-04-01

    To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.

  18. Multi-Source Learning for Joint Analysis of Incomplete Multi-Modality Neuroimaging Data

    PubMed Central

    Yuan, Lei; Wang, Yalin; Thompson, Paul M.; Narayan, Vaibhav A.; Ye, Jieping

    2013-01-01

    Incomplete data present serious problems when integrating largescale brain imaging data sets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. We address this problem by proposing two novel learning methods where all the samples (with at least one available data source) can be used. In the first method, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. Our second method learns a base classifier for each data source independently, based on which we represent each source using a single column of prediction scores; we then estimate the missing prediction scores, which, combined with the existing prediction scores, are used to build a multi-source fusion model. To illustrate the proposed approaches, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 Normal), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithms. Comprehensive experiments show that our proposed methods yield stable and promising results. PMID:24014189

  19. ImTK: an open source multi-center information management toolkit

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.

    2008-03-01

    The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.

  20. GeolOkit 1.0: a new Open Source, Cross-Platform software for geological data visualization in Google Earth environment

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Bastin, Christophe; Watlet, Arnaud

    2016-04-01

    GIS software suites are today's essential tools to gather and visualise geological data, to apply spatial and temporal analysis and in fine, to create and share interactive maps for further geosciences' investigations. For these purposes, we developed GeolOkit: an open-source, freeware and lightweight software, written in Python, a high-level, cross-platform programming language. GeolOkit software is accessible through a graphical user interface, designed to run in parallel with Google Earth. It is a super user-friendly toolbox that allows 'geo-users' to import their raw data (e.g. GPS, sample locations, structural data, field pictures, maps), to use fast data analysis tools and to plot these one into Google Earth environment using KML code. This workflow requires no need of any third party software, except Google Earth itself. GeolOkit comes with large number of geosciences' labels, symbols, colours and placemarks and may process : (i) multi-points data, (ii) contours via several interpolations methods, (iii) discrete planar and linear structural data in 2D or 3D supporting large range of structures input format, (iv) clustered stereonets and rose diagram, (v) drawn cross-sections as vertical sections, (vi) georeferenced maps and vectors, (vii) field pictures using either geo-tracking metadata from a camera built-in GPS module, or the same-day track of an external GPS. We are looking for you to discover all the functionalities of GeolOkit software. As this project is under development, we are definitely looking to discussions regarding your proper needs, your ideas and contributions to GeolOkit project.

  1. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data.

    PubMed

    Wenig, Philip; Odermatt, Juergen

    2010-07-30

    Today, data evaluation has become a bottleneck in chromatographic science. Analytical instruments equipped with automated samplers yield large amounts of measurement data, which needs to be verified and analyzed. Since nearly every GC/MS instrument vendor offers its own data format and software tools, the consequences are problems with data exchange and a lack of comparability between the analytical results. To challenge this situation a number of either commercial or non-profit software applications have been developed. These applications provide functionalities to import and analyze several data formats but have shortcomings in terms of the transparency of the implemented analytical algorithms and/or are restricted to a specific computer platform. This work describes a native approach to handle chromatographic data files. The approach can be extended in its functionality such as facilities to detect baselines, to detect, integrate and identify peaks and to compare mass spectra, as well as the ability to internationalize the application. Additionally, filters can be applied on the chromatographic data to enhance its quality, for example to remove background and noise. Extended operations like do, undo and redo are supported. OpenChrom is a software application to edit and analyze mass spectrometric chromatographic data. It is extensible in many different ways, depending on the demands of the users or the analytical procedures and algorithms. It offers a customizable graphical user interface. The software is independent of the operating system, due to the fact that the Rich Client Platform is written in Java. OpenChrom is released under the Eclipse Public License 1.0 (EPL). There are no license constraints regarding extensions. They can be published using open source as well as proprietary licenses. OpenChrom is available free of charge at http://www.openchrom.net.

  2. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    PubMed

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  3. Open source hardware and software platform for robotics and artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  4. Web accessibility and open source software.

    PubMed

    Obrenović, Zeljko

    2009-07-01

    A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.

  5. Cross-Modal Retrieval With CNN Visual Features: A New Baseline.

    PubMed

    Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng

    2017-02-01

    Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.

  6. Psynteract: A flexible, cross-platform, open framework for interactive experiments.

    PubMed

    Henninger, Felix; Kieslich, Pascal J; Hilbig, Benjamin E

    2017-10-01

    We introduce a novel platform for interactive studies, that is, any form of study in which participants' experiences depend not only on their own responses, but also on those of other participants who complete the same study in parallel, for example a prisoner's dilemma or an ultimatum game. The software thus especially serves the rapidly growing field of strategic interaction research within psychology and behavioral economics. In contrast to all available software packages, our platform does not handle stimulus display and response collection itself. Instead, we provide a mechanism to extend existing experimental software to incorporate interactive functionality. This approach allows us to draw upon the capabilities already available, such as accuracy of temporal measurement, integration with auxiliary hardware such as eye-trackers or (neuro-)physiological apparatus, and recent advances in experimental software, for example capturing response dynamics through mouse-tracking. Through integration with OpenSesame, an open-source graphical experiment builder, studies can be assembled via a drag-and-drop interface requiring little or no further programming skills. In addition, by using the same communication mechanism across software packages, we also enable interoperability between systems. Our source code, which provides support for all major operating systems and several popular experimental packages, can be freely used and distributed under an open source license. The communication protocols underlying its functionality are also well documented and easily adapted to further platforms. Code and documentation are available at https://github.com/psynteract/ .

  7. Managing multicentre clinical trials with open source.

    PubMed

    Raptis, Dimitri Aristotle; Mettler, Tobias; Fischer, Michael Alexander; Patak, Michael; Lesurtel, Mickael; Eshmuminov, Dilmurodjon; de Rougemont, Olivier; Graf, Rolf; Clavien, Pierre-Alain; Breitenstein, Stefan

    2014-03-01

    Multicentre clinical trials are challenged by high administrative burden, data management pitfalls and costs. This leads to a reduced enthusiasm and commitment of the physicians involved and thus to a reluctance in conducting multicentre clinical trials. The purpose of this study was to develop a web-based open source platform to support a multi-centre clinical trial. We developed on Drupal, an open source software distributed under the terms of the General Public License, a web-based, multi-centre clinical trial management system with the design science research approach. This system was evaluated by user-testing and well supported several completed and on-going clinical trials and is available for free download. Open source clinical trial management systems are capable in supporting multi-centre clinical trials by enhancing efficiency, quality of data management and collaboration.

  8. ERDDAP: Reducing Data Friction with an Open Source Data Platform

    NASA Astrophysics Data System (ADS)

    O'Brien, K.

    2017-12-01

    Data friction is not just an issue facing interdisciplinary research. Often times, even within disciplines, significant data friction can exist. Issues of differing formats, limited metadata and non-existent machine-to-machine data access are all issues that exist within disciplines and make it that much harder for successful interdisciplinary cooperation. Therefore, reducing data friction within disciplines is crucial first step in providing better overall collaboration. ERDDAP, an open source data platform developed at NOAA's Southwest Fisheries Center, is well poised to improve data useability and understanding and reduce data friction, both in single and multi-disciplinary research. By virtue of its ability to integrate data of varying formats and provide RESTful-based user access to data and metadata, use of ERDDAP has grown substantially throughout the ocean data community. ERDDAP also supports standards such as the DAP data protocol, the Climate and Forecast (CF) metadata conventions and the Bagit document standard for data archival. In this presentation, we will discuss the advantages of using ERDDAP as a data platform. We will also show specific use cases where utilizing ERDDAP has reduced friction within a single discipline (physical oceanography) and improved interdisciplinary collaboration as well.

  9. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.

    PubMed

    Siegle, Joshua H; López, Aarón Cuevas; Patel, Yogi A; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard 'open-loop' visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  10. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  11. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology

    NASA Astrophysics Data System (ADS)

    Siegle, Joshua H.; Cuevas López, Aarón; Patel, Yogi A.; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Objective. Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. Approach. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard ‘open-loop’ visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. Main results. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. Significance. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  12. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  13. Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis

    NASA Astrophysics Data System (ADS)

    Koymans, Mathijs R.; Langereis, Cor G.; Pastor-Galán, Daniel; van Hinsbergen, Douwe J. J.

    2016-08-01

    This contribution provides an overview of Paleomagnetism.org, an open-source, multi-platform online environment for paleomagnetic data analysis. Paleomagnetism.org provides an interactive environment where paleomagnetic data can be interpreted, evaluated, visualized, and exported. The Paleomagnetism.org application is split in to an interpretation portal, a statistics portal, and a portal for miscellaneous paleomagnetic tools. In the interpretation portal, principle component analysis can be performed on visualized demagnetization diagrams. Interpreted directions and great circles can be combined to find great circle solutions. These directions can be used in the statistics portal, or exported as data and figures. The tools in the statistics portal cover standard Fisher statistics for directions and VGPs, including other statistical parameters used as reliability criteria. Other available tools include an eigenvector approach foldtest, two reversal test including a Monte Carlo simulation on mean directions, and a coordinate bootstrap on the original data. An implementation is included for the detection and correction of inclination shallowing in sediments following TK03.GAD. Finally we provide a module to visualize VGPs and expected paleolatitudes, declinations, and inclinations relative to widely used global apparent polar wander path models in coordinates of major continent-bearing plates. The tools in the miscellaneous portal include a net tectonic rotation (NTR) analysis to restore a body to its paleo-vertical and a bootstrapped oroclinal test using linear regressive techniques, including a modified foldtest around a vertical axis. Paleomagnetism.org provides an integrated approach for researchers to work with visualized (e.g. hemisphere projections, Zijderveld diagrams) paleomagnetic data. The application constructs a custom exportable file that can be shared freely and included in public databases. This exported file contains all data and can later be

  14. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java*

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Coughlan, J.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  15. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    PubMed

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  16. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  17. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. OpenSesame: an open-source, graphical experiment builder for the social sciences.

    PubMed

    Mathôt, Sebastiaan; Schreij, Daniel; Theeuwes, Jan

    2012-06-01

    In the present article, we introduce OpenSesame, a graphical experiment builder for the social sciences. OpenSesame is free, open-source, and cross-platform. It features a comprehensive and intuitive graphical user interface and supports Python scripting for complex tasks. Additional functionality, such as support for eyetrackers, input devices, and video playback, is available through plug-ins. OpenSesame can be used in combination with existing software for creating experiments.

  19. MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.

    PubMed

    Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M

    2002-05-30

    Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.

  20. Fiji: an open-source platform for biological-image analysis.

    PubMed

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  1. Open source posturography.

    PubMed

    Rey-Martinez, Jorge; Pérez-Fernández, Nicolás

    2016-12-01

    The proposed validation goal of 0.9 in intra-class correlation coefficient was reached with the results of this study. With the obtained results we consider that the developed software (RombergLab) is a validated balance assessment software. The reliability of this software is dependent of the used force platform technical specifications. Develop and validate a posturography software and share its source code in open source terms. Prospective non-randomized validation study: 20 consecutive adults underwent two balance assessment tests, six condition posturography was performed using a clinical approved software and force platform and the same conditions were measured using the new developed open source software using a low cost force platform. Intra-class correlation index of the sway area obtained from the center of pressure variations in both devices for the six conditions was the main variable used for validation. Excellent concordance between RombergLab and clinical approved force platform was obtained (intra-class correlation coefficient =0.94). A Bland and Altman graphic concordance plot was also obtained. The source code used to develop RombergLab was published in open source terms.

  2. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network

  3. Multi-Modality Phantom Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less

  4. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    NASA Technical Reports Server (NTRS)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  5. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kuehnel, F.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  6. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    PubMed Central

    2010-01-01

    Background Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to analyze various cross-platform

  7. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    PubMed

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering

  8. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.

    PubMed

    Chiu, Shih-Hao; Urban, Pawel L

    2015-02-15

    Mass spectrometry (MS) is an important analytical technique with numerous applications in clinical analysis, biochemistry, environmental analysis, geology and physics. Its success builds on the ability of MS to determine molecular weights of analytes, and elucidate their structures. However, sample handling prior to MS requires a lot of attention and labor. In this work we were aiming to automate processing samples for MS so that analyses could be conducted without much supervision of experienced analysts. The goal of this study was to develop a robotics and information technology-oriented platform that could control the whole analysis process including sample delivery, reaction-based assay, data acquisition, and interaction with the analyst. The proposed platform incorporates a robotic arm for handling sample vials delivered to the laboratory, and several auxiliary devices which facilitate and secure the analysis process. They include: multi-relay board, infrared sensors, photo-interrupters, gyroscopes, force sensors, fingerprint scanner, barcode scanner, touch screen panel, and internet interface. The control of all the building blocks is achieved through implementation of open-source electronics (Arduino), and enabled by custom-written programs in C language. The advantages of the proposed system include: low cost, simplicity, small size, as well as facile automation of sample delivery and processing without the intervention of the analyst. It is envisaged that this simple robotic system may be the forerunner of automated laboratories dedicated to mass spectrometric analysis of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning.

    PubMed

    Huang, Yawen; Shao, Ling; Frangi, Alejandro F

    2018-03-01

    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.

  10. Associative learning changes cross-modal representations in the gustatory cortex

    PubMed Central

    Vincis, Roberto; Fontanini, Alfredo

    2016-01-01

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations. DOI: http://dx.doi.org/10.7554/eLife.16420.001 PMID:27572258

  11. Open Source Platform Application to Groundwater Characterization and Monitoring

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  12. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  13. Open-source telemedicine platform for wireless medical video communication.

    PubMed

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  14. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    PubMed Central

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  15. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  16. Multi-modal spectroscopic imaging with synchrotron light to study mechanisms of brain disease

    NASA Astrophysics Data System (ADS)

    Summers, Kelly L.; Fimognari, Nicholas; Hollings, Ashley; Kiernan, Mitchell; Lam, Virginie; Tidy, Rebecca J.; Takechi, Ryu; George, Graham N.; Pickering, Ingrid J.; Mamo, John C.; Harris, Hugh H.; Hackett, Mark J.

    2017-04-01

    The international health care costs associated with Alzheimer's disease (AD) and dementia have been predicted to reach $2 trillion USD by 2030. As such, there is urgent need to develop new treatments and diagnostic methods to stem an international health crisis. A major limitation to therapy and diagnostic development is the lack of complete understanding about the disease mechanisms. Spectroscopic methods at synchrotron light sources, such as FTIR, XRF, and XAS, offer a "multi-modal imaging platform" to reveal a wealth of important biochemical information in situ within ex vivo tissue sections, to increase our understanding of disease mechanisms.

  17. Utilizing Multi-Modal Literacies in Middle Grades Science

    ERIC Educational Resources Information Center

    Saurino, Dan; Ogletree, Tamra; Saurino, Penelope

    2010-01-01

    The nature of literacy is changing. Increased student use of computer-mediated, digital, and visual communication spans our understanding of adolescent multi-modal capabilities that reach beyond the traditional conventions of linear speech and written text in the science curriculum. Advancing technology opens doors to learning that involve…

  18. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  19. Cross-modal face recognition using multi-matcher face scores

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2015-05-01

    The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.

  20. mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets.

    PubMed

    Dalke, Andrew; Hert, Jérôme; Kramer, Christian

    2018-05-29

    Matched molecular pair analysis (MMPA) enables the automated and systematic compilation of medicinal chemistry rules from compound/property data sets. Here we present mmpdb, an open-source matched molecular pair (MMP) platform to create, compile, store, retrieve, and use MMP rules. mmpdb is suitable for the large data sets typically found in pharmaceutical and agrochemical companies and provides new algorithms for fragment canonicalization and stereochemistry handling. The platform is written in Python and based on the RDKit toolkit. It is freely available from https://github.com/rdkit/mmpdb .

  1. CROPPER: a metagene creator resource for cross-platform and cross-species compendium studies.

    PubMed

    Paananen, Jussi; Storvik, Markus; Wong, Garry

    2006-09-22

    Current genomic research methods provide researchers with enormous amounts of data. Combining data from different high-throughput research technologies commonly available in biological databases can lead to novel findings and increase research efficiency. However, combining data from different heterogeneous sources is often a very arduous task. These sources can be different microarray technology platforms, genomic databases, or experiments performed on various species. Our aim was to develop a software program that could facilitate the combining of data from heterogeneous sources, and thus allow researchers to perform genomic cross-platform/cross-species studies and to use existing experimental data for compendium studies. We have developed a web-based software resource, called CROPPER that uses the latest genomic information concerning different data identifiers and orthologous genes from the Ensembl database. CROPPER can be used to combine genomic data from different heterogeneous sources, allowing researchers to perform cross-platform/cross-species compendium studies without the need for complex computational tools or the requirement of setting up one's own in-house database. We also present an example of a simple cross-platform/cross-species compendium study based on publicly available Parkinson's disease data derived from different sources. CROPPER is a user-friendly and freely available web-based software resource that can be successfully used for cross-species/cross-platform compendium studies.

  2. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote

  3. Open-source mobile digital platform for clinical trial data collection in low-resource settings.

    PubMed

    van Dam, Joris; Omondi Onyango, Kevin; Midamba, Brian; Groosman, Nele; Hooper, Norman; Spector, Jonathan; Pillai, Goonaseelan Colin; Ogutu, Bernhards

    2017-02-01

    Governments, universities and pan-African research networks are building durable infrastructure and capabilities for biomedical research in Africa. This offers the opportunity to adopt from the outset innovative approaches and technologies that would be challenging to retrofit into fully established research infrastructures such as those regularly found in high-income countries. In this context we piloted the use of a novel mobile digital health platform, designed specifically for low-resource environments, to support high-quality data collection in a clinical research study. Our primary aim was to assess the feasibility of a using a mobile digital platform for clinical trial data collection in a low-resource setting. Secondarily, we sought to explore the potential benefits of such an approach. The investigative site was a research institute in Nairobi, Kenya. We integrated an open-source platform for mobile data collection commonly used in the developing world with an open-source, standard platform for electronic data capture in clinical trials. The integration was developed using common data standards (Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model), maximising the potential to extend the approach to other platforms. The system was deployed in a pharmacokinetic study involving healthy human volunteers. The electronic data collection platform successfully supported conduct of the study. Multidisciplinary users reported high levels of satisfaction with the mobile application and highlighted substantial advantages when compared with traditional paper record systems. The new system also demonstrated a potential for expediting data quality review. This pilot study demonstrated the feasibility of using a mobile digital platform for clinical research data collection in low-resource settings. Sustainable scientific capabilities and infrastructure are essential to attract and support clinical research studies. Since many research structures

  4. Investigating common coding of observed and executed actions in the monkey brain using cross-modal multi-variate fMRI classification.

    PubMed

    Fiave, Prosper Agbesi; Sharma, Saloni; Jastorff, Jan; Nelissen, Koen

    2018-05-19

    Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  6. An open-source platform to study uniaxial stress effects on nanoscale devices

    NASA Astrophysics Data System (ADS)

    Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.

    2017-05-01

    We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.

  7. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    NASA Technical Reports Server (NTRS)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  8. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    NASA Astrophysics Data System (ADS)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  9. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    NASA Astrophysics Data System (ADS)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the

  10. OpenCFU, a new free and open-source software to count cell colonies and other circular objects.

    PubMed

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net.

  11. RMS: a platform for managing cross-disciplinary and multi-institutional research project collaboration.

    PubMed

    Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang

    2014-11-30

    Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and

  12. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations.

    PubMed

    Stropahl, Maren; Chen, Ling-Chia; Debener, Stefan

    2017-01-01

    With the advances of cochlear implant (CI) technology, many deaf individuals can partially regain their hearing ability. However, there is a large variation in the level of recovery. Cortical changes induced by hearing deprivation and restoration with CIs have been thought to contribute to this variation. The current review aims to identify these cortical changes in postlingually deaf CI users and discusses their maladaptive or adaptive relationship to the CI outcome. Overall, intra-modal and cross-modal reorganization patterns have been identified in postlingually deaf CI users in visual and in auditory cortex. Even though cross-modal activation in auditory cortex is considered as maladaptive for speech recovery in CI users, a similar activation relates positively to lip reading skills. Furthermore, cross-modal activation of the visual cortex seems to be adaptive for speech recognition. Currently available evidence points to an involvement of further brain areas and suggests that a focus on the reversal of visual take-over of the auditory cortex may be too limited. Future investigations should consider expanded cortical as well as multi-sensory processing and capture different hierarchical processing steps. Furthermore, prospective longitudinal designs are needed to track the dynamics of cortical plasticity that takes place before and after implantation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis

    PubMed Central

    2015-01-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  14. Analyzing huge pathology images with open source software.

    PubMed

    Deroulers, Christophe; Ameisen, David; Badoual, Mathilde; Gerin, Chloé; Granier, Alexandre; Lartaud, Marc

    2013-06-06

    Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer's memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. The virtual slide(s) for this article can be found here

  15. Analyzing huge pathology images with open source software

    PubMed Central

    2013-01-01

    Background Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer’s memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. Results We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. Conclusions Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. Virtual slides The virtual slide(s) for this article can be found here: http

  16. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  17. OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects

    PubMed Central

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net. PMID:23457446

  18. Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

    PubMed Central

    Wang, Hongzhi; Yushkevich, Paul A.

    2013-01-01

    Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427

  19. openECA Platform and Analytics Alpha Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  20. openECA Platform and Analytics Beta Demonstration Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  1. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  2. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-10-21

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies.

  3. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  4. One bout of open skill exercise improves cross-modal perception and immediate memory in healthy older adults who habitually exercise.

    PubMed

    O'Brien, Jessica; Ottoboni, Giovanni; Tessari, Alessia; Setti, Annalisa

    2017-01-01

    One single bout of exercise can be associated with positive effects on cognition, due to physiological changes associated with muscular activity, increased arousal, and training of cognitive skills during exercise. While the positive effects of life-long physical activity on cognitive ageing are well demonstrated, it is not well established whether one bout of exercise is sufficient to register such benefits in older adults. The aim of this study was to test the effect of one bout of exercise on two cognitive processes essential to daily life and known to decline with ageing: audio-visual perception and immediate memory. Fifty-eight older adults took part in a quasi-experimental design study and were divided into three groups based on their habitual activity (open skill exercise (mean age = 69.65, SD = 5.64), closed skill exercise, N = 18, 94% female; sedentary activity-control group, N = 21, 62% female). They were then tested before and after their activity (duration between 60 and 80 minutes). Results showed improvement in sensitivity in audio-visual perception in the open skill group and improvements in one of the measures of immediate memory in both exercise groups, after controlling for baseline differences including global cognition and health. These findings indicate that immediate benefits for cross-modal perception and memory can be obtained after open skill exercise. However, improvements after closed skill exercise may be limited to memory benefits. Perceptual benefits are likely to be associated with arousal, while memory benefits may be due to the training effects provided by task requirements during exercise. The respective role of qualitative and quantitative differences between these activities in terms of immediate cognitive benefits should be further investigated. Importantly, the present results present the first evidence for a modulation of cross-modal perception by exercise, providing a plausible avenue for rehabilitation of cross-modal

  5. Cross-modal versus within-modal recall: differences in behavioral and brain responses.

    PubMed

    Butler, Andrew J; James, Karin H

    2011-10-31

    Although human experience is multisensory in nature, previous research has focused predominantly on memory for unisensory as opposed to multisensory information. In this work, we sought to investigate behavioral and neural differences between the cued recall of cross-modal audiovisual associations versus within-modal visual or auditory associations. Participants were presented with cue-target associations comprised of pairs of nonsense objects, pairs of nonsense sounds, objects paired with sounds, and sounds paired with objects. Subsequently, they were required to recall the modality of the target given the cue while behavioral accuracy, reaction time, and blood oxygenation level dependent (BOLD) activation were measured. Successful within-modal recall was associated with modality-specific reactivation in primary perceptual regions, and was more accurate than cross-modal retrieval. When auditory targets were correctly or incorrectly recalled using a cross-modal visual cue, there was re-activation in auditory association cortex, and recall of information from cross-modal associations activated the hippocampus to a greater degree than within-modal associations. Findings support theories that propose an overlap between regions active during perception and memory, and show that behavioral and neural differences exist between within- and cross-modal associations. Overall the current study highlights the importance of the role of multisensory information in memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A Platform for Innovation and Standards Evaluation: a Case Study from the OpenMRS Open-Source Radiology Information System.

    PubMed

    Gichoya, Judy W; Kohli, Marc; Ivange, Larry; Schmidt, Teri S; Purkayastha, Saptarshi

    2018-05-10

    Open-source development can provide a platform for innovation by seeking feedback from community members as well as providing tools and infrastructure to test new standards. Vendors of proprietary systems may delay adoption of new standards until there are sufficient incentives such as legal mandates or financial incentives to encourage/mandate adoption. Moreover, open-source systems in healthcare have been widely adopted in low- and middle-income countries and can be used to bridge gaps that exist in global health radiology. Since 2011, the authors, along with a community of open-source contributors, have worked on developing an open-source radiology information system (RIS) across two communities-OpenMRS and LibreHealth. The main purpose of the RIS is to implement core radiology workflows, on which others can build and test new radiology standards. This work has resulted in three major releases of the system, with current architectural changes driven by changing technology, development of new standards in health and imaging informatics, and changing user needs. At their core, both these communities are focused on building general-purpose EHR systems, but based on user contributions from the fringes, we have been able to create an innovative system that has been used by hospitals and clinics in four different countries. We provide an overview of the history of the LibreHealth RIS, the architecture of the system, overview of standards integration, describe challenges of developing an open-source product, and future directions. Our goal is to attract more participation and involvement to further develop the LibreHealth RIS into an Enterprise Imaging System that can be used in other clinical imaging including pathology and dermatology.

  7. A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management.

    PubMed

    Neinstein, Aaron; Wong, Jenise; Look, Howard; Arbiter, Brandon; Quirk, Kent; McCanne, Steve; Sun, Yao; Blum, Michael; Adi, Saleh

    2016-03-01

    Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  8. A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management

    PubMed Central

    Wong, Jenise; Look, Howard; Arbiter, Brandon; Quirk, Kent; McCanne, Steve; Sun, Yao; Blum, Michael; Adi, Saleh

    2016-01-01

    Objective Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. Materials and Methods An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. Results Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application (“app”), Blip, to visualize the data. Tidepool’s software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. Discussion By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. Conclusion The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool’s open source, cloud model for health data interoperability is applicable to other healthcare use cases. PMID:26338218

  9. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  10. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  11. Open-source platform to benchmark fingerprints for ligand-based virtual screening

    PubMed Central

    2013-01-01

    Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and the similarity measure used. Comparing new methods to existing ones in any systematic way is rather difficult due to the lack of standard data sets and evaluation procedures. Here, we present a standard platform for the benchmarking of 2D fingerprints. The open-source platform contains all source code, structural data for the actives and inactives used (drawn from three publicly available collections of data sets), and lists of randomly selected query molecules to be used for statistically valid comparisons of methods. This allows the exact reproduction and comparison of results for future studies. The results for 12 standard fingerprints together with two simple baseline fingerprints assessed by seven evaluation methods are shown together with the correlations between methods. High correlations were found between the 12 fingerprints and a careful statistical analysis showed that only the two baseline fingerprints were different from the others in a statistically significant way. High correlations were also found between six of the seven evaluation methods, indicating that despite their seeming differences, many of these methods are similar to each other. PMID:23721588

  12. Mapping snow cover using multi-source satellite data on big data platforms

    NASA Astrophysics Data System (ADS)

    Lhermitte, Stef

    2017-04-01

    Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.

  13. Sharing Lessons-Learned on Effective Open Data, Open-Source Practices from OpenAQ, a Global Open Air Quality Community.

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2017-12-01

    Increasingly, open data, open-source projects are unearthing rich datasets and tools, previously impossible for more traditional avenues to generate. These projects are possible, in part, because of the emergence of online collaborative and code-sharing tools, decreasing costs of cloud-based services to fetch, store, and serve data, and increasing interest of individuals to contribute their time and skills to 'open projects.' While such projects have generated palpable enthusiasm from many sectors, many of these projects face uncharted paths for sustainability, visibility, and acceptance. Our project, OpenAQ, is an example of an open-source, open data community that is currently forging its own uncharted path. OpenAQ is an open air quality data platform that aggregates and universally formats government and research-grade air quality data from 50 countries across the world. To date, we make available more than 76 million air quality (PM2.5, PM10, SO2, NO2, O3, CO and black carbon) data points through an open Application Programming Interface (API) and a user-customizable download interface at https://openaq.org. The goal of the platform is to enable an ecosystem of users to advance air pollution efforts from science to policy to the private sector. The platform is also an open-source project (https://github.com/openaq) and has only been made possible through the coding and data contributions of individuals around the world. In our first two years of existence, we have seen requests for data to our API skyrocket to more than 6 million datapoints per month, and use-cases as varied as ingesting data aggregated from our system into real-time models of wildfires to building open-source statistical packages (e.g. ropenaq and py-openaq) on top of the platform to creating public-friendly apps and chatbots. We will share a whirl-wind trip through our evolution and the many lessons learned so far related to platform structure, community engagement, organizational model type

  14. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  15. PACS for Bhutan: a cost effective open source architecture for emerging countries.

    PubMed

    Ratib, Osman; Roduit, Nicolas; Nidup, Dechen; De Geer, Gerard; Rosset, Antoine; Geissbuhler, Antoine

    2016-10-01

    This paper reports the design and implementation of an innovative and cost-effective imaging management infrastructure suitable for radiology centres in emerging countries. It was implemented in the main referring hospital of Bhutan equipped with a CT, an MRI, digital radiology, and a suite of several ultrasound units. They lacked the necessary informatics infrastructure for image archiving and interpretation and needed a system for distribution of images to clinical wards. The solution developed for this project combines several open source software platforms in a robust and versatile archiving and communication system connected to analysis workstations equipped with a FDA-certified version of the highly popular Open-Source software. The whole system was implemented on standard off-the-shelf hardware. The system was installed in three days, and training of the radiologists as well as the technical and IT staff was provided onsite to ensure full ownership of the system by the local team. Radiologists were rapidly capable of reading and interpreting studies on the diagnostic workstations, which had a significant benefit on their workflow and ability to perform diagnostic tasks more efficiently. Furthermore, images were also made available to several clinical units on standard desktop computers through a web-based viewer. • Open source imaging informatics platforms can provide cost-effective alternatives for PACS • Robust and cost-effective open architecture can provide adequate solutions for emerging countries • Imaging informatics is often lacking in hospitals equipped with digital modalities.

  16. Enhancing resource coordination for multi-modal evacuation planning.

    DOT National Transportation Integrated Search

    2013-01-01

    This research project seeks to increase knowledge about coordinating effective multi-modal evacuation for disasters. It does so by identifying, evaluating, and assessing : current transportation management approaches for multi-modal evacuation planni...

  17. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects.

    PubMed

    Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi

    2018-05-16

    Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual

  18. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on

  19. OMPC: an Open-Source MATLAB®-to-Python Compiler

    PubMed Central

    Jurica, Peter; van Leeuwen, Cees

    2008-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577

  20. OMPC: an Open-Source MATLAB-to-Python Compiler.

    PubMed

    Jurica, Peter; van Leeuwen, Cees

    2009-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.

  1. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results

  2. OpenHealth Platform for Interactive Contextualization of Population Health Open Data.

    PubMed

    Almeida, Jonas S; Hajagos, Janos; Crnosija, Ivan; Kurc, Tahsin; Saltz, Mary; Saltz, Joel

    The financial incentives for data science applications leading to improved health outcomes, such as DSRIP (bit.ly/dsrip), are well-aligned with the broad adoption of Open Data by State and Federal agencies. This creates entirely novel opportunities for analytical applications that make exclusive use of the pervasive Web Computing platform. The framework described here explores this new avenue to contextualize Health data in a manner that relies exclusively on the native JavaScript interpreter and data processing resources of the ubiquitous Web Browser. The OpenHealth platform is made publicly available, and is publicly hosted with version control and open source, at https://github.com/mathbiol/openHealth. The different data/analytics workflow architectures explored are accompanied with live applications ranging from DSRIP, such as Hospital Inpatient Prevention Quality Indicators at http://bit.ly/pqiSuffolk, to The Cancer Genome Atlas (TCGA) as illustrated by http://bit.ly/tcgascopeGBM.

  3. Open-source colorimeter.

    PubMed

    Anzalone, Gerald C; Glover, Alexandra G; Pearce, Joshua M

    2013-04-19

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories.

  4. Open-Source Colorimeter

    PubMed Central

    Anzalone, Gerald C.; Glover, Alexandra G.; Pearce, Joshua M.

    2013-01-01

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories. PMID:23604032

  5. Development of a web application for water resources based on open source software

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.

    2014-01-01

    This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.

  6. ProteoCloud: a full-featured open source proteomics cloud computing pipeline.

    PubMed

    Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart

    2013-08-02

    We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Students' Multi-Modal Re-Presentations of Scientific Knowledge and Creativity

    ERIC Educational Resources Information Center

    Koren, Yitzhak; Klavir, Rama; Gorodetsky, Malka

    2005-01-01

    The paper brings the results of a project that passed on to students the opportunity for re-presenting their acquired knowledge via the construction of multi-modal "learning resources". These "learning resources" substituted for lectures and books and became the official learning sources in the classroom. The rational for the…

  8. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools.

    PubMed

    Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D

    2012-10-01

    The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.

  9. Cross-modal working memory binding and word recognition skills: how specific is the link?

    PubMed

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  10. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration.

    PubMed

    Stropahl, Maren; Debener, Stefan

    2017-01-01

    There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI) users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users ( n  = 18), untreated mild to moderately hearing impaired individuals (n = 18) and normal hearing controls ( n  = 17). Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the auditory system

  11. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  12. The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes.

    PubMed

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

  13. The Connectome Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize Connectomes

    PubMed Central

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/ PMID:21713110

  14. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    PubMed

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks

  15. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    PubMed Central

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350

  16. Open-Source Learning Management System and Web 2.0 Online Social Software Applications as Learning Platforms for an Elementary School in Singapore

    ERIC Educational Resources Information Center

    Tay, Lee Yong; Lim, Cher Ping; Lye, Sze Yee; Ng, Kay Joo; Lim, Siew Khiaw

    2011-01-01

    This paper analyses how an elementary-level future school in Singapore implements and uses various open-source online platforms, which are easily available online and could be implemented with minimal software cost, for the purpose of teaching and learning. Online platforms have the potential to facilitate students' engagement for independent and…

  17. Open-Source 3D-Printable Optics Equipment

    PubMed Central

    Zhang, Chenlong; Anzalone, Nicholas C.; Faria, Rodrigo P.; Pearce, Joshua M.

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods. PMID:23544104

  18. Open-source 3D-printable optics equipment.

    PubMed

    Zhang, Chenlong; Anzalone, Nicholas C; Faria, Rodrigo P; Pearce, Joshua M

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  19. Multi-Sensory, Multi-Modal Concepts for Information Understanding

    DTIC Science & Technology

    2004-04-01

    September 20022-2 Outline • The modern dilemma of knowledge acquisition • A vision for information access and understanding • Emerging concepts for...Multi-Sensory, Multi-Modal Concepts for Information Understanding David L. Hall, Ph.D. School of Information Sciences and Technology The... understanding . INTRODUCTION Historically, information displays for display and understanding of data fusion products have focused on the use of vision

  20. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  1. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  2. Open Source in Education

    ERIC Educational Resources Information Center

    Lakhan, Shaheen E.; Jhunjhunwala, Kavita

    2008-01-01

    Educational institutions have rushed to put their academic resources and services online, beginning the global community onto a common platform and awakening the interest of investors. Despite continuing technical challenges, online education shows great promise. Open source software offers one approach to addressing the technical problems in…

  3. Multi-Modal Hallucinations and Cognitive Function in Parkinson's Disease

    PubMed Central

    Katzen, Heather; Myerson, Connie; Papapetropoulos, Spiridon; Nahab, Fatta; Gallo, Bruno; Levin, Bonnie

    2010-01-01

    Background/Aims Hallucinations have been linked to a constellation of cognitive deficits in Parkinson's disease (PD), but it is not known whether multi-modal hallucinations are associated with greater neuropsychological dysfunction. Methods 152 idiopathic PD patients were categorized based on the presence or absence of hallucinations and then were further subdivided into visual-only (VHonly; n = 35) or multi-modal (VHplus; n = 12) hallucination groups. All participants underwent detailed neuropsychological assessment. Results Participants with hallucinations performed more poorly on select neuropsychological measures and exhibited more mood symptoms. There were no differences between VHonly and VHplus groups. Conclusions PD patients with multi-modal hallucinations are not at greater risk for neuropsychological impairment than those with single-modal hallucinations. PMID:20689283

  4. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments.

    PubMed

    Dickson, B M; Cornett, E M; Ramjan, Z; Rothbart, S B

    2016-01-01

    Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. © 2016 Elsevier Inc. All rights reserved.

  5. Open source OCR framework using mobile devices

    NASA Astrophysics Data System (ADS)

    Zhou, Steven Zhiying; Gilani, Syed Omer; Winkler, Stefan

    2008-02-01

    Mobile phones have evolved from passive one-to-one communication device to powerful handheld computing device. Today most new mobile phones are capable of capturing images, recording video, and browsing internet and do much more. Exciting new social applications are emerging on mobile landscape, like, business card readers, sing detectors and translators. These applications help people quickly gather the information in digital format and interpret them without the need of carrying laptops or tablet PCs. However with all these advancements we find very few open source software available for mobile phones. For instance currently there are many open source OCR engines for desktop platform but, to our knowledge, none are available on mobile platform. Keeping this in perspective we propose a complete text detection and recognition system with speech synthesis ability, using existing desktop technology. In this work we developed a complete OCR framework with subsystems from open source desktop community. This includes a popular open source OCR engine named Tesseract for text detection & recognition and Flite speech synthesis module, for adding text-to-speech ability.

  6. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.

    PubMed

    Heinrich, Mattias P; Jenkinson, Mark; Bhushan, Manav; Matin, Tahreema; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A

    2012-10-01

    Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Amanzi: An Open-Source Multi-process Simulator for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.

    2014-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.

  8. SmartR: an open-source platform for interactive visual analytics for translational research data

    PubMed Central

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-01-01

    Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291

  9. SmartR: an open-source platform for interactive visual analytics for translational research data.

    PubMed

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-07-15

    In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Hybrid-modality high-resolution imaging: for diagnostic biomedical imaging and sensing for disease diagnosis

    NASA Astrophysics Data System (ADS)

    Murukeshan, Vadakke M.; Hoong Ta, Lim

    2014-11-01

    Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.

  11. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

    PubMed

    Altini, Marco; Del Din, Silvia; Patel, Shyamal; Schachter, Steven; Penders, Julien; Bonato, Paolo

    2011-01-01

    Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

  12. The taste-visual cross-modal Stroop effect: An event-related brain potential study.

    PubMed

    Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L

    2014-03-28

    Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Targeted exploration and analysis of large cross-platform human transcriptomic compendia

    PubMed Central

    Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.

    2016-01-01

    We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801

  14. Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozacik, Stephen

    Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.

  15. Development of an IHE MRRT-compliant open-source web-based reporting platform.

    PubMed

    Pinto Dos Santos, Daniel; Klos, G; Kloeckner, R; Oberle, R; Dueber, C; Mildenberger, P

    2017-01-01

    To develop a platform that uses structured reporting templates according to the IHE Management of Radiology Report Templates (MRRT) profile, and to implement this platform into clinical routine. The reporting platform uses standard web technologies (HTML / JavaScript and PHP / MySQL) only. Several freely available external libraries were used to simplify the programming. The platform runs on a standard web server, connects with the radiology information system (RIS) and PACS, and is easily accessible via a standard web browser. A prototype platform that allows structured reporting to be easily incorporated into the clinical routine was developed and successfully tested. To date, 797 reports were generated using IHE MRRT-compliant templates (many of them downloaded from the RSNA's radreport.org website). Reports are stored in a MySQL database and are easily accessible for further analyses. Development of an IHE MRRT-compliant platform for structured reporting is feasible using only standard web technologies. All source code will be made available upon request under a free license, and the participation of other institutions in further development is welcome. • A platform for structured reporting using IHE MRRT-compliant templates is presented. • Incorporating structured reporting into clinical routine is feasible. • Full source code will be provided upon request under a free license.

  16. Open-source do-it-yourself multi-color fluorescence smartphone microscopy

    PubMed Central

    Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan

    2017-01-01

    Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104

  17. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration.

    PubMed

    Dryden, Michael D M; Wheeler, Aaron R

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as "black boxes," giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat's voltammetric measurements are much more sensitive than those of "CheapStat" (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial "black box" potentiostat. Likewise, in head-to-head tests, DStat's potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the "open source" movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.

  18. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  19. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband

  20. Cross-modal decoupling in temporal attention.

    PubMed

    Mühlberg, Stefanie; Oriolo, Giovanni; Soto-Faraco, Salvador

    2014-06-01

    Prior studies have repeatedly reported behavioural benefits to events occurring at attended, compared to unattended, points in time. It has been suggested that, as for spatial orienting, temporal orienting of attention spreads across sensory modalities in a synergistic fashion. However, the consequences of cross-modal temporal orienting of attention remain poorly understood. One challenge is that the passage of time leads to an increase in event predictability throughout a trial, thus making it difficult to interpret possible effects (or lack thereof). Here we used a design that avoids complete temporal predictability to investigate whether attending to a sensory modality (vision or touch) at a point in time confers beneficial access to events in the other, non-attended, sensory modality (touch or vision, respectively). In contrast to previous studies and to what happens with spatial attention, we found that events in one (unattended) modality do not automatically benefit from happening at the time point when another modality is expected. Instead, it seems that attention can be deployed in time with relative independence for different sensory modalities. Based on these findings, we argue that temporal orienting of attention can be cross-modally decoupled in order to flexibly react according to the environmental demands, and that the efficiency of this selective decoupling unfolds in time. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Cross-modal perceptual load: the impact of modality and individual differences.

    PubMed

    Sandhu, Rajwant; Dyson, Benjamin James

    2016-05-01

    Visual distractor processing tends to be more pronounced when the perceptual load (PL) of a task is low compared to when it is high [perpetual load theory (PLT); Lavie in J Exp Psychol Hum Percept Perform 21(3):451-468, 1995]. While PLT is well established in the visual domain, application to cross-modal processing has produced mixed results, and the current study was designed in an attempt to improve previous methodologies. First, we assessed PLT using response competition, a typical metric from the uni-modal domain. Second, we looked at the impact of auditory load on visual distractors, and of visual load on auditory distractors, within the same individual. Third, we compared individual uni- and cross-modal selective attention abilities, by correlating performance with the visual Attentional Network Test (ANT). Fourth, we obtained a measure of the relative processing efficiency between vision and audition, to investigate whether processing ease influences the extent of distractor processing. Although distractor processing was evident during both attend auditory and attend visual conditions, we found that PL did not modulate processing of either visual or auditory distractors. We also found support for a correlation between the uni-modal (visual) ANT and our cross-modal task but only when the distractors were visual. Finally, although auditory processing was more impacted by visual distractors, our measure of processing efficiency only accounted for this asymmetry in the auditory high-load condition. The results are discussed with respect to the continued debate regarding the shared or separate nature of processing resources across modalities.

  2. An Open Source Model for Open Access Journal Publication

    PubMed Central

    Blesius, Carl R.; Williams, Michael A.; Holzbach, Ana; Huntley, Arthur C.; Chueh, Henry

    2005-01-01

    We describe an electronic journal publication infrastructure that allows a flexible publication workflow, academic exchange around different forms of user submissions, and the exchange of articles between publishers and archives using a common XML based standard. This web-based application is implemented on a freely available open source software stack. This publication demonstrates the Dermatology Online Journal's use of the platform for non-biased independent open access publication. PMID:16779183

  3. MMX-I: A data-processing software for multi-modal X-ray imaging and tomography

    NASA Astrophysics Data System (ADS)

    Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.

    2017-06-01

    Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.

  4. Quantitative multi-modal NDT data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heideklang, René; Shokouhi, Parisa

    2014-02-18

    A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less

  5. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    PubMed

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  6. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    PubMed

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  7. Do early sensory cortices integrate cross-modal information?

    PubMed

    Kayser, Christoph; Logothetis, Nikos K

    2007-09-01

    Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.

  8. OpenQuake, a platform for collaborative seismic hazard and risk assessment

    NASA Astrophysics Data System (ADS)

    Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben

    2013-04-01

    Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental

  9. Open-source software platform for medical image segmentation applications

    NASA Astrophysics Data System (ADS)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  10. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  11. Open Source Service Agent (OSSA) in the intelligence community's Open Source Architecture

    NASA Technical Reports Server (NTRS)

    Fiene, Bruce F.

    1994-01-01

    The Community Open Source Program Office (COSPO) has developed an architecture for the intelligence community's new Open Source Information System (OSIS). The architecture is a multi-phased program featuring connectivity, interoperability, and functionality. OSIS is based on a distributed architecture concept. The system is designed to function as a virtual entity. OSIS will be a restricted (non-public), user configured network employing Internet communications. Privacy and authentication will be provided through firewall protection. Connection to OSIS can be made through any server on the Internet or through dial-up modems provided the appropriate firewall authentication system is installed on the client.

  12. ProteoWizard: open source software for rapid proteomics tools development.

    PubMed

    Kessner, Darren; Chambers, Matt; Burke, Robert; Agus, David; Mallick, Parag

    2008-11-01

    The ProteoWizard software project provides a modular and extensible set of open-source, cross-platform tools and libraries. The tools perform proteomics data analyses; the libraries enable rapid tool creation by providing a robust, pluggable development framework that simplifies and unifies data file access, and performs standard proteomics and LCMS dataset computations. The library contains readers and writers of the mzML data format, which has been written using modern C++ techniques and design principles and supports a variety of platforms with native compilers. The software has been specifically released under the Apache v2 license to ensure it can be used in both academic and commercial projects. In addition to the library, we also introduce a rapidly growing set of companion tools whose implementation helps to illustrate the simplicity of developing applications on top of the ProteoWizard library. Cross-platform software that compiles using native compilers (i.e. GCC on Linux, MSVC on Windows and XCode on OSX) is available for download free of charge, at http://proteowizard.sourceforge.net. This website also provides code examples, and documentation. It is our hope the ProteoWizard project will become a standard platform for proteomics development; consequently, code use, contribution and further development are strongly encouraged.

  13. Cross-modal illusory conjunctions between vision and touch.

    PubMed

    Cinel, Caterina; Humphreys, Glyn W; Poli, Riccardo

    2002-10-01

    Cross-modal illusory conjunctions (ICs) happen when, under conditions of divided attention, felt textures are reported as being seen or vice versa. Experiments provided evidence for these errors, demonstrated that ICs are more frequent if tactile and visual stimuli are in the same hemispace, and showed that ICs still occur under forced-choice conditions but do not occur when attention to the felt texture is increased. Cross-modal ICs were also found in a patient with parietal damage even with relatively long presentations of visual stimuli. The data are consistent with there being cross-modal integration of sensory information, with the modality of origin sometimes being misattributed when attention is constrained. The empirical conclusions from the experiments are supported by formal models.

  14. Linear Subspace Ranking Hashing for Cross-Modal Retrieval.

    PubMed

    Li, Kai; Qi, Guo-Jun; Ye, Jun; Hua, Kien A

    2017-09-01

    Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance. Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two groups of linear subspaces, one for each modality, so that features' ranking orders in different linear subspaces maximally preserve the cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with only moderate training and testing time.

  15. Mobile service for open data visualization on geo-based images

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon; Kim, Kwangseob; Kang, Sanggoo

    2015-12-01

    Since the early 2010s, governments in most countries have adopted and promoted open data policy and open data platform. Korea are in the same situation, and government and public organizations have operated the public-accessible open data portal systems since 2011. The number of open data and data type have been increasing every year. These trends are more expandable or extensible on mobile environments. The purpose of this study is to design and implement a mobile application service to visualize various typed or formatted public open data with geo-based images on the mobile web. Open data cover downloadable data sets or open-accessible data application programming interface API. Geo-based images mean multi-sensor satellite imageries which are referred in geo-coordinates and matched with digital map sets. System components for mobile service are fully based on open sources and open development environments without any commercialized tools: PostgreSQL for database management system, OTB for remote sensing image processing, GDAL for data conversion, GeoServer for application server, OpenLayers for mobile web mapping, R for data analysis and D3.js for web-based data graphic processing. Mobile application in client side was implemented by using HTML5 for cross browser and cross platform. The result shows many advantageous points such as linking open data and geo-based data, integrating open data and open source, and demonstrating mobile applications with open data. It is expected that this approach is cost effective and process efficient implementation strategy for intelligent earth observing data.

  16. Going "open" with mesoscopy: a new dimension on multi-view imaging.

    PubMed

    Gualda, Emilio; Moreno, Nuno; Tomancak, Pavel; Martins, Gabriel G

    2014-03-01

    OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.

  17. The EDRN knowledge environment: an open source, scalable informatics platform for biological sciences research

    NASA Astrophysics Data System (ADS)

    Crichton, Daniel; Mahabal, Ashish; Anton, Kristen; Cinquini, Luca; Colbert, Maureen; Djorgovski, S. George; Kincaid, Heather; Kelly, Sean; Liu, David

    2017-05-01

    We describe here the Early Detection Research Network (EDRN) for Cancer's knowledge environment. It is an open source platform built by NASA's Jet Propulsion Laboratory with contributions from the California Institute of Technology, and Giesel School of Medicine at Dartmouth. It uses tools like Apache OODT, Plone, and Solr, and borrows heavily from JPL's Planetary Data System's ontological infrastructure. It has accumulated data on hundreds of thousands of biospecemens and serves over 1300 registered users across the National Cancer Institute (NCI). The scalable computing infrastructure is built such that we are being able to reach out to other agencies, provide homogeneous access, and provide seamless analytics support and bioinformatics tools through community engagement.

  18. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Generic HRTFs May be Good Enough in Virtual Reality. Improving Source Localization through Cross-Modal Plasticity.

    PubMed

    Berger, Christopher C; Gonzalez-Franco, Mar; Tajadura-Jiménez, Ana; Florencio, Dinei; Zhang, Zhengyou

    2018-01-01

    Auditory spatial localization in humans is performed using a combination of interaural time differences, interaural level differences, as well as spectral cues provided by the geometry of the ear. To render spatialized sounds within a virtual reality (VR) headset, either individualized or generic Head Related Transfer Functions (HRTFs) are usually employed. The former require arduous calibrations, but enable accurate auditory source localization, which may lead to a heightened sense of presence within VR. The latter obviate the need for individualized calibrations, but result in less accurate auditory source localization. Previous research on auditory source localization in the real world suggests that our representation of acoustic space is highly plastic. In light of these findings, we investigated whether auditory source localization could be improved for users of generic HRTFs via cross-modal learning. The results show that pairing a dynamic auditory stimulus, with a spatio-temporally aligned visual counterpart, enabled users of generic HRTFs to improve subsequent auditory source localization. Exposure to the auditory stimulus alone or to asynchronous audiovisual stimuli did not improve auditory source localization. These findings have important implications for human perception as well as the development of VR systems as they indicate that generic HRTFs may be enough to enable good auditory source localization in VR.

  20. Multi-Modalities Sensor Science

    DTIC Science & Technology

    2015-02-28

    enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance

  1. Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor devices and provides some built-in functions such as simple data visualization or data transmission via e-mail whereas the web service provides the visualization of the data and tools for data processing. In an initial field experiment, a methane monitoring based on our sensor integration platform was performed in the city area of Leipzig (Germany) in late June 2015. The study has shown that an urban monitoring can be conducted based on open source components. Moreover, the system enabled the detection of hot spots and methane emission sources. In September 2015, a larger scaled city monitoring based on the mobile monitoring platform was performed by five independently driving cyclists through the city center of Leipzig (Germany). As a result we were able to instantly show a heat and humidity map of the inner city center as well as an exposure map for each cyclist. This emphasizes the feasibility and high potential of open source based monitoring approaches for future research in the field of urban area monitoring in general, citizen science or the validation of remote sensing data.

  2. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  3. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.

    PubMed

    Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael

    2015-08-01

    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

  4. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multi-modal myocontrol: Testing combined force- and electromyography.

    PubMed

    Nowak, Markus; Eiband, Thomas; Castellini, Claudio

    2017-07-01

    Myocontrol, that is control of prostheses using bodily signals, has proved in the decades to be a surprisingly hard problem for the scientific community of assistive and rehabilitation robotics. In particular, traditional surface electromyography (sEMG) seems to be no longer enough to guarantee dexterity (i.e., control over several degrees of freedom) and, most importantly, reliability. Multi-modal myocontrol is concerned with the idea of using novel signal gathering techniques as a replacement of, or alongside, sEMG, to provide high-density and diverse signals to improve dexterity and make the control more reliable. In this paper we present an offline and online assessment of multi-modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol. A total number of twenty sEMG and FMG sensors were used simultaneously, in several combined configurations, to predict opening/closing of the hand and activation of two degrees of freedom of the wrist of ten intact subjects. The analysis was targeted at determining the optimal sensor combination and control parameters; the experimental results indicate that sEMG sensors alone perform worst, yielding a nRMSE of 9.1%, while mixing FMG and sEMG or using FMG only reduces the nRMSE to 5.2-6.6%. To validate these results, we engaged the subject with median performance in an online goal-reaching task. Analysis of this further experiment reveals that the online behaviour is similar to the offline one.

  6. Behold the voice of wrath: cross-modal modulation of visual attention by anger prosody.

    PubMed

    Brosch, Tobias; Grandjean, Didier; Sander, David; Scherer, Klaus R

    2008-03-01

    Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined within-modality effects, most frequently using pictures of emotional stimuli to modulate visual attention. In this study, we used simultaneously presented utterances with emotional and neutral prosody as cues for a visually presented target in a cross-modal dot probe task. Response times towards targets were faster when they appeared at the location of the source of the emotional prosody. Our results show for the first time a cross-modal attentional modulation of visual attention by auditory affective prosody.

  7. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research

    PubMed Central

    Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692

  8. Pre-Motor Response Time Benefits in Multi-Modal Displays

    DTIC Science & Technology

    2013-11-12

    when animals are presented with stimuli from two sensory modalities as compared with stimulation from only one modality. The combinations of two...modality attention and orientation behaviors (see also Wallace, Meredith, & Stein, 609 !998). Multi-modal stimulation in the world is not always...perceptually when the stimuli are congruent. In another study, Craig (2006) had participants judge the direction of apparent motion by stimulating

  9. Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography

    PubMed Central

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-01-01

    -to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330

  10. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    . In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.

  11. Sensei: A Multi-Modal Framework for Assessing Stress Resiliency

    DTIC Science & Technology

    2013-04-30

    DATE MAY2013 2. REPORT TYPE 4. TITLE AND SUBTITLE Sensei: A Multi-Modal Framework for Assessing Stress Resiliency 6. AUTHOR(S) 7. PERFORMING...Report: Distribution A Page 1 of 3 SRI International (Sarnoff) Document Sensei: A Multi-Modal Framework for Assessing Stress Resiliency (April... Stress Markers in Real-Time in Lab Environment with graded exposure to ICT’s scenarios MAC 1-6 During this reporting period, we established

  12. Open-Source GIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Burk, Thomas E; Lime, Steve

    2012-01-01

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explainedmore » in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.« less

  13. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  14. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  15. BYMUR software: a free and open source tool for quantifying and visualizing multi-risk analyses

    NASA Astrophysics Data System (ADS)

    Tonini, Roberto; Selva, Jacopo

    2013-04-01

    The BYMUR software aims to provide an easy-to-use open source tool for both computing multi-risk and managing/visualizing/comparing all the inputs (e.g. hazard, fragilities and exposure) as well as the corresponding results (e.g. risk curves, risk indexes). For all inputs, a complete management of inter-model epistemic uncertainty is considered. The BYMUR software will be one of the final products provided by the homonymous ByMuR project (http://bymur.bo.ingv.it/) funded by Italian Ministry of Education, Universities and Research (MIUR), focused to (i) provide a quantitative and objective general method for a comprehensive long-term multi-risk analysis in a given area, accounting for inter-model epistemic uncertainty through Bayesian methodologies, and (ii) apply the methodology to seismic, volcanic and tsunami risks in Naples (Italy). More specifically, the BYMUR software will be able to separately account for the probabilistic hazard assessment of different kind of hazardous phenomena, the relative (time-dependent/independent) vulnerabilities and exposure data, and their possible (predefined) interactions: the software will analyze these inputs and will use them to estimate both single- and multi- risk associated to a specific target area. In addition, it will be possible to connect the software to further tools (e.g., a full hazard analysis), allowing a dynamic I/O of results. The use of Python programming language guarantees that the final software will be open source and platform independent. Moreover, thanks to the integration of some most popular and rich-featured Python scientific modules (Numpy, Matplotlib, Scipy) with the wxPython graphical user toolkit, the final tool will be equipped with a comprehensive Graphical User Interface (GUI) able to control and visualize (in the form of tables, maps and/or plots) any stage of the multi-risk analysis. The additional features of importing/exporting data in MySQL databases and/or standard XML formats (for

  16. Cross-modal individual recognition in wild African lions.

    PubMed

    Gilfillan, Geoffrey; Vitale, Jessica; McNutt, John Weldon; McComb, Karen

    2016-08-01

    Individual recognition is considered to have been fundamental in the evolution of complex social systems and is thought to be a widespread ability throughout the animal kingdom. Although robust evidence for individual recognition remains limited, recent experimental paradigms that examine cross-modal processing have demonstrated individual recognition in a range of captive non-human animals. It is now highly relevant to test whether cross-modal individual recognition exists within wild populations and thus examine how it is employed during natural social interactions. We address this question by testing audio-visual cross-modal individual recognition in wild African lions (Panthera leo) using an expectancy-violation paradigm. When presented with a scenario where the playback of a loud-call (roaring) broadcast from behind a visual block is incongruent with the conspecific previously seen there, subjects responded more strongly than during the congruent scenario where the call and individual matched. These findings suggest that lions are capable of audio-visual cross-modal individual recognition and provide a useful method for studying this ability in wild populations. © 2016 The Author(s).

  17. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation.

    PubMed

    Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie

    2016-01-01

    Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children

  18. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research.

    PubMed

    Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike

    2013-01-01

    tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

  19. Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.

    PubMed

    Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong

    2017-05-01

    Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.

  20. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration

    PubMed Central

    Dryden, Michael D. M.; Wheeler, Aaron R.

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as “black boxes,” giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat’s voltammetric measurements are much more sensitive than those of “CheapStat” (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial “black box” potentiostat. Likewise, in head-to-head tests, DStat’s potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the “open source” movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools. PMID:26510100

  1. Performance of the High Sensitivity Open Source Multi-GNSS Assisted GNSS Reference Server.

    NASA Astrophysics Data System (ADS)

    Sarwar, Ali; Rizos, Chris; Glennon, Eamonn

    2015-06-01

    The Open Source GNSS Reference Server (OSGRS) exploits the GNSS Reference Interface Protocol (GRIP) to provide assistance data to GPS receivers. Assistance can be in terms of signal acquisition and in the processing of the measurement data. The data transfer protocol is based on Extensible Mark-up Language (XML) schema. The first version of the OSGRS required a direct hardware connection to a GPS device to acquire the data necessary to generate the appropriate assistance. Scenarios of interest for the OSGRS users are weak signal strength indoors, obstructed outdoors or heavy multipath environments. This paper describes an improved version of OSGRS that provides alternative assistance support from a number of Global Navigation Satellite Systems (GNSS). The underlying protocol to transfer GNSS assistance data from global casters is the Networked Transport of RTCM (Radio Technical Commission for Maritime Services) over Internet Protocol (NTRIP), and/or the RINEX (Receiver Independent Exchange) format. This expands the assistance and support model of the OSGRS to globally available GNSS data servers connected via internet casters. A variety of formats and versions of RINEX and RTCM streams become available, which strengthens the assistance provisioning capability of the OSGRS platform. The prime motivation for this work was to enhance the system architecture of the OSGRS to take advantage of globally available GNSS data sources. Open source software architectures and assistance models provide acquisition and data processing assistance for GNSS receivers operating in weak signal environments. This paper describes test scenarios to benchmark the OSGRSv2 performance against other Assisted-GNSS solutions. Benchmarking devices include the SPOT satellite messenger, MS-Based & MS-Assisted GNSS, HSGNSS (SiRFstar-III) and Wireless Sensor Networks Assisted-GNSS. Benchmarked parameters include the number of tracked satellites, the Time to Fix First (TTFF), navigation availability

  2. OSIRIX: open source multimodality image navigation software

    NASA Astrophysics Data System (ADS)

    Rosset, Antoine; Pysher, Lance; Spadola, Luca; Ratib, Osman

    2005-04-01

    The goal of our project is to develop a completely new software platform that will allow users to efficiently and conveniently navigate through large sets of multidimensional data without the need of high-end expensive hardware or software. We also elected to develop our system on new open source software libraries allowing other institutions and developers to contribute to this project. OsiriX is a free and open-source imaging software designed manipulate and visualize large sets of medical images: http://homepage.mac.com/rossetantoine/osirix/

  3. The Open Microscopy Environment: open image informatics for the biological sciences

    NASA Astrophysics Data System (ADS)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  4. Feature-based Alignment of Volumetric Multi-modal Images

    PubMed Central

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  5. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  6. Cross-Modal Correspondence Among Vision, Audition, and Touch in Natural Objects: An Investigation of the Perceptual Properties of Wood.

    PubMed

    Kanaya, Shoko; Kariya, Kenji; Fujisaki, Waka

    2016-10-01

    Certain systematic relationships are often assumed between information conveyed from multiple sensory modalities; for instance, a small figure and a high pitch may be perceived as more harmonious. This phenomenon, termed cross-modal correspondence, may result from correlations between multi-sensory signals learned in daily experience of the natural environment. If so, we would observe cross-modal correspondences not only in the perception of artificial stimuli but also in perception of natural objects. To test this hypothesis, we reanalyzed data collected previously in our laboratory examining perceptions of the material properties of wood using vision, audition, and touch. We compared participant evaluations of three perceptual properties (surface brightness, sharpness of sound, and smoothness) of the wood blocks obtained separately via vision, audition, and touch. Significant positive correlations were identified for all properties in the audition-touch comparison, and for two of the three properties regarding in the vision-touch comparison. By contrast, no properties exhibited significant positive correlations in the vision-audition comparison. These results suggest that we learn correlations between multi-sensory signals through experience; however, the strength of this statistical learning is apparently dependent on the particular combination of sensory modalities involved. © The Author(s) 2016.

  7. An Open Source modular platform for hydrological model implementation

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2010-05-01

    : Write or compile computer code, handle file IO for each modules, • Routine implementation and testing. Implementation of new process-simulating methods/equations, specialised objective functions or quality control routines, testing of these in an existing framework. o Need not: Implement user or model interface for the new routine, IO handling, administration of model setup and run, calibration and validation routines etc. From being developed for Norway's largest hydropower producer Statkraft, ENKI is now being turned into an Open Source project. At the time of writing, the licence and the project administration is not established. Also, it remains to port the application to other compilers and computer platforms. However, we hope that ENKI will prove useful for both academic and operational users.

  8. Cross-modal links among vision, audition, and touch in complex environments.

    PubMed

    Ferris, Thomas K; Sarter, Nadine B

    2008-02-01

    This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.

  9. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.

    PubMed

    Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J

    2018-05-08

    Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .

  10. RadMAP: The Radiological Multi-sensor Analysis Platform

    NASA Astrophysics Data System (ADS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  11. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  12. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  13. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  14. A Versatile Integrated Ambient Ionization Source Platform.

    PubMed

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-30

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.

  15. A Versatile Integrated Ambient Ionization Source Platform

    NASA Astrophysics Data System (ADS)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  16. Neural substrate of initiation of cross-modal working memory retrieval.

    PubMed

    Zhang, Yangyang; Hu, Yang; Guan, Shuchen; Hong, Xiaolong; Wang, Zhaoxin; Li, Xianchun

    2014-01-01

    Cross-modal working memory requires integrating stimuli from different modalities and it is associated with co-activation of distributed networks in the brain. However, how brain initiates cross-modal working memory retrieval remains not clear yet. In the present study, we developed a cued matching task, in which the necessity for cross-modal/unimodal memory retrieval and its initiation time were controlled by a task cue appeared in the delay period. Using functional magnetic resonance imaging (fMRI), significantly larger brain activations were observed in the left lateral prefrontal cortex (l-LPFC), left superior parietal lobe (l-SPL), and thalamus in the cued cross-modal matching trials (CCMT) compared to those in the cued unimodal matching trials (CUMT). However, no significant differences in the brain activations prior to task cue were observed for sensory stimulation in the l-LPFC and l-SPL areas. Although thalamus displayed differential responses to the sensory stimulation between two conditions, the differential responses were not the same with responses to the task cues. These results revealed that the frontoparietal-thalamus network participated in the initiation of cross-modal working memory retrieval. Secondly, the l-SPL and thalamus showed differential activations between maintenance and working memory retrieval, which might be associated with the enhanced demand for cognitive resources.

  17. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  18. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  19. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less

  20. Open Targets: a platform for therapeutic target identification and validation

    PubMed Central

    Koscielny, Gautier; An, Peter; Carvalho-Silva, Denise; Cham, Jennifer A.; Fumis, Luca; Gasparyan, Rippa; Hasan, Samiul; Karamanis, Nikiforos; Maguire, Michael; Papa, Eliseo; Pierleoni, Andrea; Pignatelli, Miguel; Platt, Theo; Rowland, Francis; Wankar, Priyanka; Bento, A. Patrícia; Burdett, Tony; Fabregat, Antonio; Forbes, Simon; Gaulton, Anna; Gonzalez, Cristina Yenyxe; Hermjakob, Henning; Hersey, Anne; Jupe, Steven; Kafkas, Şenay; Keays, Maria; Leroy, Catherine; Lopez, Francisco-Javier; Magarinos, Maria Paula; Malone, James; McEntyre, Johanna; Munoz-Pomer Fuentes, Alfonso; O'Donovan, Claire; Papatheodorou, Irene; Parkinson, Helen; Palka, Barbara; Paschall, Justin; Petryszak, Robert; Pratanwanich, Naruemon; Sarntivijal, Sirarat; Saunders, Gary; Sidiropoulos, Konstantinos; Smith, Thomas; Sondka, Zbyslaw; Stegle, Oliver; Tang, Y. Amy; Turner, Edward; Vaughan, Brendan; Vrousgou, Olga; Watkins, Xavier; Martin, Maria-Jesus; Sanseau, Philippe; Vamathevan, Jessica; Birney, Ewan; Barrett, Jeffrey; Dunham, Ian

    2017-01-01

    We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org. PMID:27899665

  1. ExpressionDB: An open source platform for distributing genome-scale datasets.

    PubMed

    Hughes, Laura D; Lewis, Scott A; Hughes, Michael E

    2017-01-01

    RNA-sequencing (RNA-seq) and microarrays are methods for measuring gene expression across the entire transcriptome. Recent advances have made these techniques practical and affordable for essentially any laboratory with experience in molecular biology. A variety of computational methods have been developed to decrease the amount of bioinformatics expertise necessary to analyze these data. Nevertheless, many barriers persist which discourage new labs from using functional genomics approaches. Since high-quality gene expression studies have enduring value as resources to the entire research community, it is of particular importance that small labs have the capacity to share their analyzed datasets with the research community. Here we introduce ExpressionDB, an open source platform for visualizing RNA-seq and microarray data accommodating virtually any number of different samples. ExpressionDB is based on Shiny, a customizable web application which allows data sharing locally and online with customizable code written in R. ExpressionDB allows intuitive searches based on gene symbols, descriptions, or gene ontology terms, and it includes tools for dynamically filtering results based on expression level, fold change, and false-discovery rates. Built-in visualization tools include heatmaps, volcano plots, and principal component analysis, ensuring streamlined and consistent visualization to all users. All of the scripts for building an ExpressionDB with user-supplied data are freely available on GitHub, and the Creative Commons license allows fully open customization by end-users. We estimate that a demo database can be created in under one hour with minimal programming experience, and that a new database with user-supplied expression data can be completed and online in less than one day.

  2. Open source Modeling and optimization tools for Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peles, S.

    Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward tomore » complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.« less

  3. Xi-cam: a versatile interface for data visualization and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  4. Xi-cam: a versatile interface for data visualization and analysis

    DOE PAGES

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke; ...

    2018-05-31

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  5. Multi-modal diffuse optical techniques for breast cancer neoadjuvant chemotherapy monitoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.

    2017-02-01

    We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.

  6. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.

    PubMed

    Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram

    2017-11-01

    Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan

  7. radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar.

    PubMed

    Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave

    2010-10-26

    Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.

  8. radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar

    PubMed Central

    2010-01-01

    Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735

  9. Parallel pathways for cross-modal memory retrieval in Drosophila.

    PubMed

    Zhang, Xiaonan; Ren, Qingzhong; Guo, Aike

    2013-05-15

    Memory-retrieval processing of cross-modal sensory preconditioning is vital for understanding the plasticity underlying the interactions between modalities. As part of the sensory preconditioning paradigm, it has been hypothesized that the conditioned response to an unreinforced cue depends on the memory of the reinforced cue via a sensory link between the two cues. To test this hypothesis, we studied cross-modal memory-retrieval processing in a genetically tractable model organism, Drosophila melanogaster. By expressing the dominant temperature-sensitive shibire(ts1) (shi(ts1)) transgene, which blocks synaptic vesicle recycling of specific neural subsets with the Gal4/UAS system at the restrictive temperature, we specifically blocked visual and olfactory memory retrieval, either alone or in combination; memory acquisition remained intact for these modalities. Blocking the memory retrieval of the reinforced olfactory cues did not impair the conditioned response to the unreinforced visual cues or vice versa, in contrast to the canonical memory-retrieval processing of sensory preconditioning. In addition, these conditioned responses can be abolished by blocking the memory retrieval of the two modalities simultaneously. In sum, our results indicated that a conditioned response to an unreinforced cue in cross-modal sensory preconditioning can be recalled through parallel pathways.

  10. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  11. The successes and challenges of open-source biopharmaceutical innovation.

    PubMed

    Allarakhia, Minna

    2014-05-01

    Increasingly, open-source-based alliances seek to provide broad access to data, research-based tools, preclinical samples and downstream compounds. The challenge is how to create value from open-source biopharmaceutical innovation. This value creation may occur via transparency and usage of data across the biopharmaceutical value chain as stakeholders move dynamically between open source and open innovation. In this article, several examples are used to trace the evolution of biopharmaceutical open-source initiatives. The article specifically discusses the technological challenges associated with the integration and standardization of big data; the human capacity development challenges associated with skill development around big data usage; and the data-material access challenge associated with data and material access and usage rights, particularly as the boundary between open source and open innovation becomes more fluid. It is the author's opinion that the assessment of when and how value creation will occur, through open-source biopharmaceutical innovation, is paramount. The key is to determine the metrics of value creation and the necessary technological, educational and legal frameworks to support the downstream outcomes of now big data-based open-source initiatives. The continued focus on the early-stage value creation is not advisable. Instead, it would be more advisable to adopt an approach where stakeholders transform open-source initiatives into open-source discovery, crowdsourcing and open product development partnerships on the same platform.

  12. mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification.

    PubMed

    Razzaq, Muhammad Asif; Villalonga, Claudia; Lee, Sungyoung; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Khattak, Asad Masood; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat

    2017-10-24

    The emerging research on automatic identification of user's contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user's contexts and behaviors can help in controlling lifestyle associated to chronic diseases using context-aware applications. However, availability of cross-domain heterogeneous contexts provides a challenging opportunity for their fusion to obtain abstract information for further analysis. This work demonstrates extension of our previous work from a single domain (i.e., physical activity) to multiple domains (physical activity, nutrition and clinical) for context-awareness. We propose multi-level Context-aware Framework (mlCAF), which fuses the multi-level cross-domain contexts in order to arbitrate richer behavioral contexts. This work explicitly focuses on key challenges linked to multi-level context modeling, reasoning and fusioning based on the mlCAF open-source ontology. More specifically, it addresses the interpretation of contexts from three different domains, their fusioning conforming to richer contextual information. This paper contributes in terms of ontology evolution with additional domains, context definitions, rules and inclusion of semantic queries. For the framework evaluation, multi-level cross-domain contexts collected from 20 users were used to ascertain abstract contexts, which served as basis for behavior modeling and lifestyle identification. The experimental results indicate a context recognition average accuracy of around 92.65% for the collected cross-domain contexts.

  13. mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification

    PubMed Central

    Villalonga, Claudia; Lee, Sungyoung; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Khattak, Asad Masood; Seung, Hyonwoo; Hur, Taeho; Kim, Dohyeong; Ali Khan, Wajahat

    2017-01-01

    The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts and behaviors can help in controlling lifestyle associated to chronic diseases using context-aware applications. However, availability of cross-domain heterogeneous contexts provides a challenging opportunity for their fusion to obtain abstract information for further analysis. This work demonstrates extension of our previous work from a single domain (i.e., physical activity) to multiple domains (physical activity, nutrition and clinical) for context-awareness. We propose multi-level Context-aware Framework (mlCAF), which fuses the multi-level cross-domain contexts in order to arbitrate richer behavioral contexts. This work explicitly focuses on key challenges linked to multi-level context modeling, reasoning and fusioning based on the mlCAF open-source ontology. More specifically, it addresses the interpretation of contexts from three different domains, their fusioning conforming to richer contextual information. This paper contributes in terms of ontology evolution with additional domains, context definitions, rules and inclusion of semantic queries. For the framework evaluation, multi-level cross-domain contexts collected from 20 users were used to ascertain abstract contexts, which served as basis for behavior modeling and lifestyle identification. The experimental results indicate a context recognition average accuracy of around 92.65% for the collected cross-domain contexts. PMID:29064459

  14. A software framework for real-time multi-modal detection of microsleeps.

    PubMed

    Knopp, Simon J; Bones, Philip J; Weddell, Stephen J; Jones, Richard D

    2017-09-01

    A software framework is described which was designed to process EEG, video of one eye, and head movement in real time, towards achieving early detection of microsleeps for prevention of fatal accidents, particularly in transport sectors. The framework is based around a pipeline structure with user-replaceable signal processing modules. This structure can encapsulate a wide variety of feature extraction and classification techniques and can be applied to detecting a variety of aspects of cognitive state. Users of the framework can implement signal processing plugins in C++ or Python. The framework also provides a graphical user interface and the ability to save and load data to and from arbitrary file formats. Two small studies are reported which demonstrate the capabilities of the framework in typical applications: monitoring eye closure and detecting simulated microsleeps. While specifically designed for microsleep detection/prediction, the software framework can be just as appropriately applied to (i) other measures of cognitive state and (ii) development of biomedical instruments for multi-modal real-time physiological monitoring and event detection in intensive care, anaesthesiology, cardiology, neurosurgery, etc. The software framework has been made freely available for researchers to use and modify under an open source licence.

  15. Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaffino, Paolo; Spadea, Maria Francesca

    Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, wheremore » a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing

  16. Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness

    PubMed Central

    Desgent, Sébastien; Ptito, Maurice

    2012-01-01

    Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field. PMID:22720175

  17. Generalization of cross-modal stimulus equivalence classes: operant processes as components in human category formation.

    PubMed Central

    Lane, S D; Clow, J K; Innis, A; Critchfield, T S

    1998-01-01

    This study employed a stimulus-class rating procedure to explore whether stimulus equivalence and stimulus generalization can combine to promote the formation of open-ended categories incorporating cross-modal stimuli. A pretest of simple auditory discrimination indicated that subjects (college students) could discriminate among a range of tones used in the main study. Before beginning the main study, 10 subjects learned to use a rating procedure for categorizing sets of stimuli as class consistent or class inconsistent. After completing conditional discrimination training with new stimuli (shapes and tones), the subjects demonstrated the formation of cross-modal equivalence classes. Subsequently, the class-inclusion rating procedure was reinstituted, this time with cross-modal sets of stimuli drawn from the equivalence classes. On some occasions, the tones of the equivalence classes were replaced by novel tones. The probability that these novel sets would be rated as class consistent was generally a function of the auditory distance between the novel tone and the tone that was explicitly included in the equivalence class. These data extend prior work on generalization of equivalence classes, and support the role of operant processes in human category formation. PMID:9821680

  18. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Denvil, Sebastien; Raciazek, Jerome; Carenton, Nicolas; Levavasseur, Guillame

    2014-05-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output (data and meta-data) are just some of the complexities that CONVERGENCE aims to resolve. The Institut Pierre Simon Laplace (IPSL) is responsible for running climate simulations upon a set of heterogenous HPC environments within France. With heterogeneity comes added complexity in terms of simulation instrumentation and control. Obtaining a global perspective upon the state of all simulations running upon all HPC environments has hitherto been problematic. In this presentation we detail how, within the context of CONVERGENCE, the implementation of the Prodiguer messaging platform resolves complexity and permits the development of real-time applications such as: 1. a simulation monitoring dashboard; 2. a simulation metrics visualizer; 3. an automated simulation runtime notifier; 4. an automated output data & meta-data publishing pipeline; The Prodiguer messaging platform leverages a widely used open source message broker software called RabbitMQ. RabbitMQ itself implements the Advanced Message Queue Protocol (AMPQ). Hence it will be demonstrated that the Prodiguer messaging platform is built upon both open source and open standards.

  19. Temporal and modal characterization of DoD source air toxic emission factors: final report

    EPA Science Inventory

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...

  20. PyGaze: an open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments.

    PubMed

    Dalmaijer, Edwin S; Mathôt, Sebastiaan; Van der Stigchel, Stefan

    2014-12-01

    The PyGaze toolbox is an open-source software package for Python, a high-level programming language. It is designed for creating eyetracking experiments in Python syntax with the least possible effort, and it offers programming ease and script readability without constraining functionality and flexibility. PyGaze can be used for visual and auditory stimulus presentation; for response collection via keyboard, mouse, joystick, and other external hardware; and for the online detection of eye movements using a custom algorithm. A wide range of eyetrackers of different brands (EyeLink, SMI, and Tobii systems) are supported. The novelty of PyGaze lies in providing an easy-to-use layer on top of the many different software libraries that are required for implementing eyetracking experiments. Essentially, PyGaze is a software bridge for eyetracking research.

  1. Multi Modal Anticipation in Fuzzy Space

    NASA Astrophysics Data System (ADS)

    Asproth, Viveca; Holmberg, Stig C.; Hâkansson, Anita

    2006-06-01

    We are all stakeholders in the geographical space, which makes up our common living and activity space. This means that a careful, creative, and anticipatory planning, design, and management of that space will be of paramount importance for our sustained life on earth. Here it is shown that the quality of such planning could be significantly increased with help of a computer based modelling and simulation tool. Further, the design and implementation of such a tool ought to be guided by the conceptual integration of some core concepts like anticipation and retardation, multi modal system modelling, fuzzy space modelling, and multi actor interaction.

  2. OpenAQ: A Platform to Aggregate and Freely Share Global Air Quality Data

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Flasher, J. C.; Veerman, O.; DeWitt, H. L.

    2015-12-01

    Thousands of ground-based air quality monitors around the world publicly publish real-time air quality data; however, researchers and the public do not have access to this information in the ways most useful to them. Often, air quality data are posted on obscure websites showing only current values, are programmatically inaccessible, and/or are in inconsistent data formats across sites. Yet, historical and programmatic access to such a global dataset would be transformative to several scientific fields, from epidemiology to low-cost sensor technologies to estimates of ground-level aerosol by satellite retrievals. To increase accessibility and standardize this disparate dataset, we have built OpenAQ, an innovative, open platform created by a group of scientists and open data programmers. The source code for the platform is viewable at github.com/openaq. Currently, we are aggregating, storing, and making publicly available real-time air quality data (PM2.5, PM10, SO2, NO2, and O3) via an Application Program Interface (API). We will present the OpenAQ platform, which currently has the following specific capabilities: A continuous ingest mechanism for some of the most polluted cities, generalizable to more sources An API providing data-querying, including ability to filter by location, measurement type and value and date, as well as custom sort options A generalized, chart-based visualization tool to explore data accessible via the API At this stage, we are seeking wider participation and input from multiple research communities in expanding our data retrieval sites, standardizing our protocols, receiving feedback on quality issues, and creating tools that can be built on top of this open platform.

  3. Cross-modal Savings in the Contralateral Eyelid Conditioned Response

    PubMed Central

    Campolattaro, Matthew M.; Buss, Eric W.; Freeman, John H.

    2015-01-01

    The present experiment monitored bilateral eyelid responses during eyeblink conditioning in rats trained with a unilateral unconditioned stimulus (US). Three groups of rats were used to determine if cross-modal savings occurs when the location of the US is switched from one eye to the other. Rats in each group first received paired or unpaired eyeblink conditioning with a conditioned stimulus (tone or light; CS) and a unilateral periorbital electrical stimulation US. All rats were subsequently given paired training, but with the US location (Group 1), CS modality (Group 2), or US location and CS modality (Group 3) changed. Changing the location of the US alone resulted in an immediate transfer of responding in both eyelids (Group 1) in rats that received paired training prior to the transfer session. Rats in groups 2 and 3 that initially received paired training showed facilitated learning to the new CS modality during the transfer sessions, indicating that cross-modal savings occurs whether or not the location of the US is changed. All rats that were initially given unpaired training acquired conditioned eyeblink responses similar to de novo acquisition rate during the transfer sessions. Savings of CR incidence was more robust than savings of CR amplitude when the US switched sides, a finding that has implications for elucidating the neural mechanisms of cross-modal savings. PMID:26501170

  4. Drug-related webpages classification based on multi-modal local decision fusion

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Su, Xiaojing; Liu, Yanxin

    2018-03-01

    In this paper, multi-modal local decision fusion is used for drug-related webpages classification. First, meaningful text are extracted through HTML parsing, and effective images are chosen by the FOCARSS algorithm. Second, six SVM classifiers are trained for six kinds of drug-taking instruments, which are represented by PHOG. One SVM classifier is trained for the cannabis, which is represented by the mid-feature of BOW model. For each instance in a webpage, seven SVMs give seven labels for its image, and other seven labels are given by searching the names of drug-taking instruments and cannabis in its related text. Concatenating seven labels of image and seven labels of text, the representation of those instances in webpages are generated. Last, Multi-Instance Learning is used to classify those drugrelated webpages. Experimental results demonstrate that the classification accuracy of multi-instance learning with multi-modal local decision fusion is much higher than those of single-modal classification.

  5. SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, N; Tian, Z; Pompos, A

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less

  6. Early Cross-modal Plasticity in Adults.

    PubMed

    Lo Verde, Luca; Morrone, Maria Concetta; Lunghi, Claudia

    2017-03-01

    It is known that, after a prolonged period of visual deprivation, the adult visual cortex can be recruited for nonvisual processing, reflecting cross-modal plasticity. Here, we investigated whether cross-modal plasticity can occur at short timescales in the typical adult brain by comparing the interaction between vision and touch during binocular rivalry before and after a brief period of monocular deprivation, which strongly alters ocular balance favoring the deprived eye. While viewing dichoptically two gratings of orthogonal orientation, participants were asked to actively explore a haptic grating congruent in orientation to one of the two rivalrous stimuli. We repeated this procedure before and after 150 min of monocular deprivation. We first confirmed that haptic stimulation interacted with vision during rivalry promoting dominance of the congruent visuo-haptic stimulus and that monocular deprivation increased the deprived eye and decreased the nondeprived eye dominance. Interestingly, after deprivation, we found that the effect of touch did not change for the nondeprived eye, whereas it disappeared for the deprived eye, which was potentiated after deprivation. The absence of visuo-haptic interaction for the deprived eye lasted for over 1 hr and was not attributable to a masking induced by the stronger response of the deprived eye as confirmed by a control experiment. Taken together, our results demonstrate that the adult human visual cortex retains a high degree of cross-modal plasticity, which can occur even at very short timescales.

  7. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  8. Multi-modal molecular diffuse optical tomography system for small animal imaging

    PubMed Central

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-01-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977

  9. Large-scale Cross-modality Search via Collective Matrix Factorization Hashing.

    PubMed

    Ding, Guiguang; Guo, Yuchen; Zhou, Jile; Gao, Yue

    2016-09-08

    By transforming data into binary representation, i.e., Hashing, we can perform high-speed search with low storage cost, and thus Hashing has collected increasing research interest in the recent years. Recently, how to generate Hashcode for multimodal data (e.g., images with textual tags, documents with photos, etc) for large-scale cross-modality search (e.g., searching semantically related images in database for a document query) is an important research issue because of the fast growth of multimodal data in the Web. To address this issue, a novel framework for multimodal Hashing is proposed, termed as Collective Matrix Factorization Hashing (CMFH). The key idea of CMFH is to learn unified Hashcodes for different modalities of one multimodal instance in the shared latent semantic space in which different modalities can be effectively connected. Therefore, accurate cross-modality search is supported. Based on the general framework, we extend it in the unsupervised scenario where it tries to preserve the Euclidean structure, and in the supervised scenario where it fully exploits the label information of data. The corresponding theoretical analysis and the optimization algorithms are given. We conducted comprehensive experiments on three benchmark datasets for cross-modality search. The experimental results demonstrate that CMFH can significantly outperform several state-of-the-art cross-modality Hashing methods, which validates the effectiveness of the proposed CMFH.

  10. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications.

    PubMed

    Glick, Hannah; Sharma, Anu

    2017-01-01

    This review explores cross-modal cortical plasticity as a result of auditory deprivation in populations with hearing loss across the age spectrum, from development to adulthood. Cross-modal plasticity refers to the phenomenon when deprivation in one sensory modality (e.g. the auditory modality as in deafness or hearing loss) results in the recruitment of cortical resources of the deprived modality by intact sensory modalities (e.g. visual or somatosensory systems). We discuss recruitment of auditory cortical resources for visual and somatosensory processing in deafness and in lesser degrees of hearing loss. We describe developmental cross-modal re-organization in the context of congenital or pre-lingual deafness in childhood and in the context of adult-onset, age-related hearing loss, with a focus on how cross-modal plasticity relates to clinical outcomes. We provide both single-subject and group-level evidence of cross-modal re-organization by the visual and somatosensory systems in bilateral, congenital deafness, single-sided deafness, adults with early-stage, mild-moderate hearing loss, and individual adult and pediatric patients exhibit excellent and average speech perception with hearing aids and cochlear implants. We discuss a framework in which changes in cortical resource allocation secondary to hearing loss results in decreased intra-modal plasticity in auditory cortex, accompanied by increased cross-modal recruitment of auditory cortices by the other sensory systems, and simultaneous compensatory activation of frontal cortices. The frontal cortices, as we will discuss, play an important role in mediating cognitive compensation in hearing loss. Given the wide range of variability in behavioral performance following audiological intervention, changes in cortical plasticity may play a valuable role in the prediction of clinical outcomes following intervention. Further, the development of new technologies and rehabilitation strategies that incorporate brain

  11. Bioclipse: an open source workbench for chemo- and bioinformatics.

    PubMed

    Spjuth, Ola; Helmus, Tobias; Willighagen, Egon L; Kuhn, Stefan; Eklund, Martin; Wagener, Johannes; Murray-Rust, Peter; Steinbeck, Christoph; Wikberg, Jarl E S

    2007-02-22

    There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no successful attempts have been made to integrate chemo- and bioinformatics into a single framework. Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at http://www.bioclipse.net.

  12. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  13. Plenario: An Open Data Discovery and Exploration Platform for Urban Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catlett, Charlie; Malik, Tanu; Goldstein, Brett J.

    2014-12-01

    The past decade has seen the widespread release of open data concerning city services, conditions, and activities by government bodies and public institutions of all sizes. Hundreds of open data portals now host thousands of datasets of many different types. These new data sources represent enormous po- tential for improved understanding of urban dynamics and processes—and, ultimately, for more livable, efficient, and prosperous communities. However, those who seek to realize this potential quickly discover that discovering and applying those data relevant to any particular question can be extraordinarily dif- ficult, due to decentralized storage, heterogeneous formats, and poor documentation. Inmore » this context, we introduce Plenario, a platform designed to automating time-consuming tasks associated with the discovery, exploration, and application of open city data—and, in so doing, reduce barriers to data use for researchers, policymakers, service providers, journalists, and members of the general public. Key innovations include a geospatial data warehouse that allows data from many sources to be registered into a common spatial and temporal frame; simple and intuitive interfaces that permit rapid discovery and exploration of data subsets pertaining to a particular area and time, regardless of type and source; easy export of such data subsets for further analysis; a user-configurable data ingest framework for automated importing and periodic updating of new datasets into the data warehouse; cloud hosting for elastic scaling and rapid creation of new Plenario instances; and an open source implementation to enable community contributions. We describe here the architecture and implementation of the Plenario platform, discuss lessons learned from its use by several communities, and outline plans for future work.« less

  14. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  15. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  16. Open innovation in health care: analysis of an open health platform.

    PubMed

    Bullinger, Angelika C; Rass, Matthias; Adamczyk, Sabrina; Moeslein, Kathrin M; Sohn, Stefan

    2012-05-01

    Today, integration of the public in research and development in health care is seen as essential for the advancement of innovation. This is a paradigmatic shift away from the traditional assumption that solely health care professionals are able to devise, develop, and disseminate novel concepts and solutions in health care. The present study builds on research in the field of open innovation to investigate the adoption of an open health platform by patients, care givers, physicians, family members, and the interested public. Results suggest that open innovation practices in health care lead to interesting innovation outcomes and are well accepted by participants. During the first three months, 803 participants of the open health platform submitted challenges and solutions and intensively communicated by exchanging 1454 personal messages and 366 comments. Analysis of communication content shows that empathic support and exchange of information are important elements of communication on the platform. The study presents first evidence for the suitability of open innovation practices to integrate the general public in health care research in order to foster both innovation outcomes and empathic support. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Multi-Modal Traveler Information System - Gateway Functional Requirements

    DOT National Transportation Integrated Search

    1997-11-17

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  18. A modal approach based on perfectly matched layers for the forced response of elastic open waveguides

    NASA Astrophysics Data System (ADS)

    Gallezot, M.; Treyssède, F.; Laguerre, L.

    2018-03-01

    This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.

  19. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    NASA Astrophysics Data System (ADS)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  20. Multi-Modal Interaction for Robotic Mules

    DTIC Science & Technology

    2014-02-26

    Multi-Modal Interaction for Robotic Mules Glenn Taylor, Mike Quist, Matt Lanting, Cory Dunham , Patrick Theisen, Paul Muench Abstract...Taylor, Mike Quist, Matt Lanting, Cory Dunham , and Patrick Theisen are with Soar Technology, Inc. (corresponding author: 734-887- 7620; email: glenn...soartech.com; quist@soartech.com; matt.lanting@soartech.com; dunham @soartech.com; patrick.theisen@soartech.com Paul Muench is with US Army TARDEC

  1. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the

  2. An open-source software platform for data management, visualisation, model building and model sharing in water, energy and other resource modelling domains.

    NASA Astrophysics Data System (ADS)

    Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.

    2015-12-01

    Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web

  3. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips

    PubMed Central

    Alistar, Mirela; Gaudenz, Urs

    2017-01-01

    Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care. PMID:28952524

  4. Open-source platforms for navigated image-guided interventions.

    PubMed

    Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor

    2016-10-01

    Navigation technology is changing the clinical standards in medical interventions by making existing procedures more accurate, and new procedures possible. Navigation is based on preoperative or intraoperative imaging combined with 3-dimensional position tracking of interventional tools registered to the images. Research of navigation technology in medical interventions requires significant engineering efforts. The difficulty of developing such complex systems has been limiting the clinical translation of new methods and ideas. A key to the future success of this field is to provide researchers with platforms that allow rapid implementation of applications with minimal resources spent on reimplementing existing system features. A number of platforms have been already developed that can share data in real time through standard interfaces. Complete navigation systems can be built using these platforms using a layered software architecture. In this paper, we review the most popular platforms, and show an effective way to take advantage of them through an example surgical navigation application. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Contemporary Multi-Modal Historical Representations and the Teaching of Disciplinary Understandings in History

    ERIC Educational Resources Information Center

    Donnelly, Debra J.

    2018-01-01

    Traditional privileging of the printed text has been considerably eroded by rapid technological advancement and in Australia, as elsewhere, many History teaching programs feature an array of multi-modal historical representations. Research suggests that engagement with the visual and multi-modal constructs has the potential to enrich the pedagogy…

  6. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less

  7. Comparison of balance assessment modalities in emergency department elders: a pilot cross-sectional observational study.

    PubMed

    Caterino, Jeffrey M; Karaman, Rowan; Arora, Vinay; Martin, Jacqueline L; Hiestand, Brian C

    2009-09-28

    More than one-third of US adults 65 and over fall every year. These falls may cause serious injury including substantial long-term morbidity (due declines in activities of daily living) and death. The emergency department (ED) visit represents an opportunity for identifying high risk elders and potentially instituting falls-related interventions. The unique characteristic of the ED environment and patient population necessitate that risk-assessment modalities be validated in this specific setting. In order to better identify elders at risk of falls, we examined the relationship between patient-provided history of falling and two testing modalities (a balance plate system and the timed up-and-go [TUG] test) in elder emergency department (ED) patients. We conducted a cross-sectional observational study of patients > or = 60 years old being discharged from the ED. Patient history of falls in the past week, month, 6 months, and year was obtained. Balance plate center of pressure excursion (COP) measurements and TUG testing times were recorded. COP was recorded under four conditions: normal stability eyes open (NSEO) and closed (NSEC), and perturbed stability eyes open and closed. Correlation between TUG and COP scores was measured. Univariate logistic regression was used to identify the relationship between patient-provided falls history and the two testing modalities. Proportions, likelihood ratios, and receiver-operating-characteristic (ROC) curves for prediction of previous falls were reported. Fifty-three subjects were enrolled, 11% had fallen in the previous week and 42% in the previous year. There was no correlation between TUG and any balance plate measurements. In logistic regression, neither testing modality was associated with prior history of falls (p > 0.05 for all time periods). Balance plate NSEO and NSEC testing cutoffs could be identified which were 83% sensitive and had a negative likelihood ratio (LR-) of 0.3 for falls in the past week. TUG testing

  8. An open-source framework for testing tracking devices using Lego Mindstorms

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Ibanez, Luis; Enquobahrie, Andinet; Pace, Danielle; Cleary, Kevin

    2009-02-01

    In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

  9. Cross-Modal Binding in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Jones, Manon W.; Branigan, Holly P.; Parra, Mario A.; Logie, Robert H.

    2013-01-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based…

  10. Adaptation of a web-based, open source electronic medical record system platform to support a large study of tuberculosis epidemiology

    PubMed Central

    2012-01-01

    Background In 2006, we were funded by the US National Institutes of Health to implement a study of tuberculosis epidemiology in Peru. The study required a secure information system to manage data from a target goal of 16,000 subjects who needed to be followed for at least one year. With previous experience in the development and deployment of web-based medical record systems for TB treatment in Peru, we chose to use the OpenMRS open source electronic medical record system platform to develop the study information system. Supported by a core technical and management team and a large and growing worldwide community, OpenMRS is now being used in more than 40 developing countries. We adapted the OpenMRS platform to better support foreign languages. We added a new module to support double data entry, linkage to an existing laboratory information system, automatic upload of GPS data from handheld devices, and better security and auditing of data changes. We added new reports for study managers, and developed data extraction tools for research staff and statisticians. Further adaptation to handle direct entry of laboratory data occurred after the study was launched. Results Data collection in the OpenMRS system began in September 2009. By August 2011 a total of 9,256 participants had been enrolled, 102,274 forms and 13,829 laboratory results had been entered, and there were 208 users. The system is now entirely supported by the Peruvian study staff and programmers. Conclusions The information system served the study objectives well despite requiring some significant adaptations mid-stream. OpenMRS has more tools and capabilities than it did in 2008, and requires less adaptations for future projects. OpenMRS can be an effective research data system in resource poor environments, especially for organizations using or considering it for clinical care as well as research. PMID:23131180

  11. Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival.

    PubMed

    Phan, John H; Hoffman, Ryan; Kothari, Sonal; Wu, Po-Yen; Wang, May D

    2016-02-01

    The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we conducted a novel investigation of multi-modal data integration by combining histopathological image and RNA-seq data. We compared the performances of two integrative prediction methods: majority vote and stacked generalization. Results indicate that integration of multiple data modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, a method that integrates multiple data modalities to produce a single prediction result, outperforms both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals the contribution of each data modality (and specific features within each data modality) to the final prediction result and may provide biological insights to explain prediction performance.

  12. Neuronal Correlates of Cross-Modal Transfer in the Cerebellum and Pontine Nuclei

    PubMed Central

    Campolattaro, Matthew M.; Kashef, Alireza; Lee, Inah; Freeman, John H.

    2011-01-01

    Cross-modal transfer occurs when learning established with a stimulus from one sensory modality facilitates subsequent learning with a new stimulus from a different sensory modality. The current study examined neuronal correlates of cross-modal transfer of Pavlovian eyeblink conditioning in rats. Neuronal activity was recorded from tetrodes within the anterior interpositus nucleus (IPN) of the cerebellum and basilar pontine nucleus (PN) during different phases of training. After stimulus pre-exposure and unpaired training sessions with a tone conditioned stimulus (CS), light CS, and periorbital stimulation unconditioned stimulus (US), rats received associative training with one of the CSs and the US (CS1-US). Training then continued on the same day with the other CS to assess cross-modal transfer (CS2-US). The final training session included associative training with both CSs on separate trials to establish stronger cross-modal transfer (CS1/CS2). Neurons in the IPN and PN showed primarily unimodal responses during pre-training sessions. Learning-related facilitation of activity correlated with the conditioned response (CR) developed in the IPN and PN during CS1-US training. Subsequent CS2-US training resulted in acquisition of CRs and learning-related neuronal activity in the IPN but substantially less little learning-related activity in the PN. Additional CS1/CS2 training increased CRs and learning-related activity in the IPN and PN during CS2-US trials. The findings suggest that cross-modal neuronal plasticity in the PN is driven by excitatory feedback from the IPN to the PN. Interacting plasticity mechanisms in the IPN and PN may underlie behavioral cross-modal transfer in eyeblink conditioning. PMID:21411647

  13. Development of an Open Source, Air-Deployable Weather Station

    NASA Astrophysics Data System (ADS)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  14. Unconscious Cross-Modal Priming of Auditory Sound Localization by Visual Words

    ERIC Educational Resources Information Center

    Ansorge, Ulrich; Khalid, Shah; Laback, Bernhard

    2016-01-01

    Little is known about the cross-modal integration of unconscious and conscious information. In the current study, we therefore tested whether the spatial meaning of an unconscious visual word, such as "up", influences the perceived location of a subsequently presented auditory target. Although cross-modal integration of unconscious…

  15. Novel minimally invasive multi-modality monitoring modalities in neurocritical care.

    PubMed

    Al-Mufti, Fawaz; Smith, Brendan; Lander, Megan; Damodara, Nitesh; Nuoman, Rolla; El-Ghanem, Mohammad; Kamal, Naveed; Al-Marsoummi, Sarmad; Alzubaidi, Basim; Nuoaman, Halla; Foreman, Brandon; Amuluru, Krishna; Gandhi, Chirag D

    2018-07-15

    Elevated intracranial pressure (ICP) following brain injury contributes to poor outcomes for patients, primarily by reducing the caliber of cerebral vasculature, and thereby reducing cerebral blood flow. Careful monitoring of ICP is critical in these patients in order to determine prognosis, implement treatment when ICP becomes elevated, and to judge responsiveness to treatment. Currently, the gold standard for monitoring is invasive pressure transducers, usually an intraventricular monitor, which presents significant risk of infection and hemorrhage. These risks made discovering non-invasive methods for monitoring ICP and cerebral perfusion a priority for researchers. Herein we sought to review recent publications on novel minimally invasive multi-modality monitoring techniques that provide surrogate data on ICP, cerebral oxygenation, metabolism and blood flow. While limitations in various forms preclude them from supplanting the use of invasive monitors, these modalities represent useful screening tools within our armamentarium that may be invaluable when the risks of invasive monitoring outweigh the associated benefits. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Missing Modality Transfer Learning via Latent Low-Rank Constraint.

    PubMed

    Ding, Zhengming; Shao, Ming; Fu, Yun

    2015-11-01

    Transfer learning is usually exploited to leverage previously well-learned source domain for evaluating the unknown target domain; however, it may fail if no target data are available in the training stage. This problem arises when the data are multi-modal. For example, the target domain is in one modality, while the source domain is in another. To overcome this, we first borrow an auxiliary database with complete modalities, then consider knowledge transfer across databases and across modalities within databases simultaneously in a unified framework. The contributions are threefold: 1) a latent factor is introduced to uncover the underlying structure of the missing modality from the known data; 2) transfer learning in two directions allows the data alignment between both modalities and databases, giving rise to a very promising recovery; and 3) an efficient solution with theoretical guarantees to the proposed latent low-rank transfer learning algorithm. Comprehensive experiments on multi-modal knowledge transfer with missing target modality verify that our method can successfully inherit knowledge from both auxiliary database and source modality, and therefore significantly improve the recognition performance even when test modality is inaccessible in the training stage.

  17. Empowering open systems through cross-platform interoperability

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    2014-06-01

    Most of the motivations for open systems lie in the expectation of interoperability, sometimes referred to as "plug-and-play". Nothing in the notion of "open-ness", however, guarantees this outcome, which makes the increased interest in open architecture more perplexing. In this paper, we explore certain themes of open architecture. We introduce the concept of "windows of interoperability", which can be used to align disparate portions of architecture. Such "windows of interoperability", which concentrate on a reduced set of protocol and interface features, might achieve many of the broader purposes assigned as benefits in open architecture. Since it is possible to engineer proprietary systems that interoperate effectively, this nuanced definition of interoperability may in fact be a more important concept to understand and nurture for effective systems engineering and maintenance.

  18. OptFlux: an open-source software platform for in silico metabolic engineering.

    PubMed

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.

  19. OptFlux: an open-source software platform for in silico metabolic engineering

    PubMed Central

    2010-01-01

    research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models. PMID:20403172

  20. openBIS ELN-LIMS: an open-source database for academic laboratories.

    PubMed

    Barillari, Caterina; Ottoz, Diana S M; Fuentes-Serna, Juan Mariano; Ramakrishnan, Chandrasekhar; Rinn, Bernd; Rudolf, Fabian

    2016-02-15

    The open-source platform openBIS (open Biology Information System) offers an Electronic Laboratory Notebook and a Laboratory Information Management System (ELN-LIMS) solution suitable for the academic life science laboratories. openBIS ELN-LIMS allows researchers to efficiently document their work, to describe materials and methods and to collect raw and analyzed data. The system comes with a user-friendly web interface where data can be added, edited, browsed and searched. The openBIS software, a user guide and a demo instance are available at https://openbis-eln-lims.ethz.ch. The demo instance contains some data from our laboratory as an example to demonstrate the possibilities of the ELN-LIMS (Ottoz et al., 2014). For rapid local testing, a VirtualBox image of the ELN-LIMS is also available. © The Author 2015. Published by Oxford University Press.

  1. ESTEST: An Open Science Platform for Electronic Structure Research

    ERIC Educational Resources Information Center

    Yuan, Gary

    2012-01-01

    Open science platforms in support of data generation, analysis, and dissemination are becoming indispensible tools for conducting research. These platforms use informatics and information technologies to address significant problems in open science data interoperability, verification & validation, comparison, analysis, post-processing,…

  2. The multiBac protein complex production platform at the EMBL.

    PubMed

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many

  3. Free-access open-source e-learning in comprehensive neurosurgery skills training.

    PubMed

    Jotwani, Payal; Srivastav, Vinkle; Tripathi, Manjul; Deo, Rama Chandra; Baby, Britty; Damodaran, Natesan; Singh, Ramandeep; Suri, Ashish; Bettag, Martin; Roy, Tara Sankar; Busert, Christoph; Mehlitz, Marcus; Lalwani, Sanjeev; Garg, Kanwaljeet; Paul, Kolin; Prasad, Sanjiva; Banerjee, Subhashis; Kalra, Prem; Kumar, Subodh; Sharma, Bhavani Shankar; Mahapatra, Ashok Kumar

    2014-01-01

    Since the end of last century, technology has taken a front seat in dispersion of medical education. Advancements of technology in neurosurgery and traditional training methods are now being challenged by legal and ethical concerns of patient safety, resident work-hour restriction and cost of operating-room time. To supplement the existing neurosurgery education pattern, various e-learning platforms are introduced as structured, interactive learning system. This study focuses on the concept, formulation, development and impact of web based learning platforms dedicated to neurosurgery discipline to disseminate education, supplement surgical knowledge and improve skills of neurosurgeons. 'Neurosurgery Education and Training School (NETS), e-learning platform' has integration of web-based technologies like 'Content Management System' for organizing the education material and 'Learning Management System' for updating neurosurgeons. NETS discussion forum networks neurosurgeons, neuroscientists and neuro-technologists across the globe facilitating collaborative translational research. Multi-authored neurosurgical e-learning material supplements the deficiencies of regular time-bound education. Interactive open-source, global, free-access e-learning platform of NETS has around 1) 425 visitors/month from 73 countries; ratio of new visitors to returning visitors 42.3; 57.7 (2); 64,380 views from 190 subscribers for surgical videos, 3-D animation, graphics based training modules (3); average 402 views per post. The e-Learning platforms provide updated educational content that make them "quick, surf, find and extract" resources. e-Learning tools like web-based education, social interactive platform and question-answer forum will save unnecessary expenditure of time and travel of neurosurgeons seeking knowledge. The need for free access platforms is more pronounced for the neurosurgeons and patients in developing nations.

  4. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  5. MEDCIS: Multi-Modality Epilepsy Data Capture and Integration System

    PubMed Central

    Zhang, Guo-Qiang; Cui, Licong; Lhatoo, Samden; Schuele, Stephan U.; Sahoo, Satya S.

    2014-01-01

    Sudden Unexpected Death in Epilepsy (SUDEP) is the leading mode of epilepsy-related death and is most common in patients with intractable, frequent, and continuing seizures. A statistically significant cohort of patients for SUDEP study requires meticulous, prospective follow up of a large population that is at an elevated risk, best represented by the Epilepsy Monitoring Unit (EMU) patient population. Multiple EMUs need to collaborate, share data for building a larger cohort of potential SUDEP patient using a state-of-the-art informatics infrastructure. To address the challenges of data integration and data access from multiple EMUs, we developed the Multi-Modality Epilepsy Data Capture and Integration System (MEDCIS) that combines retrospective clinical free text processing using NLP, prospective structured data capture using an ontology-driven interface, interfaces for cohort search and signal visualization, all in a single integrated environment. A dedicated Epilepsy and Seizure Ontology (EpSO) has been used to streamline the user interfaces, enhance its usability, and enable mappings across distributed databases so that federated queries can be executed. MEDCIS contained 936 patient data sets from the EMUs of University Hospitals Case Medical Center (UH CMC) in Cleveland and Northwestern Memorial Hospital (NMH) in Chicago. Patients from UH CMC and NMH were stored in different databases and then federated through MEDCIS using EpSO and our mapping module. More than 77GB of multi-modal signal data were processed using the Cloudwave pipeline and made available for rendering through the web-interface. About 74% of the 40 open clinical questions of interest were answerable accurately using the EpSO-driven VISual AGregagator and Explorer (VISAGE) interface. Questions not directly answerable were either due to their inherent computational complexity, the unavailability of primary information, or the scope of concept that has been formulated in the existing Ep

  6. A Cross-Modal Perspective on the Relationships between Imagery and Working Memory

    PubMed Central

    Likova, Lora T.

    2013-01-01

    Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire

  7. An open-source java platform for automated reaction mapping.

    PubMed

    Crabtree, John D; Mehta, Dinesh P; Kouri, Tina M

    2010-09-27

    This article presents software applications that have been built upon a modular, open-source, reaction mapping library that can be used in both cheminformatics and bioinformatics research. We first describe the theoretical underpinnings and modular architecture of the core software library. We then describe two applications that have been built upon that core. The first is a generic reaction viewer and mapper, and the second classifies reactions according to rules that can be modified by end users with little or no programming skills.

  8. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.

    PubMed

    Pelat, Adrien; Felix, Simon; Pagneux, Vincent

    2011-03-01

    In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America

  9. Aerostat-Lofted Instrument Platform and Sampling Method for Determination of Emissions from Open Area Sources

    EPA Science Inventory

    Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...

  10. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    PubMed

    Nuñez, Isaac; Matute, Tamara; Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy; Federici, Fernán

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  11. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering

    PubMed Central

    Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  12. An Embedded Systems Course for Engineering Students Using Open-Source Platforms in Wireless Scenarios

    ERIC Educational Resources Information Center

    Rodriguez-Sanchez, M. C.; Torrado-Carvajal, Angel; Vaquero, Joaquin; Borromeo, Susana; Hernandez-Tamames, Juan A.

    2016-01-01

    This paper presents a case study analyzing the advantages and disadvantages of using project-based learning (PBL) combined with collaborative learning (CL) and industry best practices, integrated with information communication technologies, open-source software, and open-source hardware tools, in a specialized microcontroller and embedded systems…

  13. Probabilistic multi-catalogue positional cross-match

    NASA Astrophysics Data System (ADS)

    Pineau, F.-X.; Derriere, S.; Motch, C.; Carrera, F. J.; Genova, F.; Michel, L.; Mingo, B.; Mints, A.; Nebot Gómez-Morán, A.; Rosen, S. R.; Ruiz Camuñas, A.

    2017-01-01

    Context. Catalogue cross-correlation is essential to building large sets of multi-wavelength data, whether it be to study the properties of populations of astrophysical objects or to build reference catalogues (or timeseries) from survey observations. Nevertheless, resorting to automated processes with limited sets of information available on large numbers of sources detected at different epochs with various filters and instruments inevitably leads to spurious associations. We need both statistical criteria to select detections to be merged as unique sources, and statistical indicators helping in achieving compromises between completeness and reliability of selected associations. Aims: We lay the foundations of a statistical framework for multi-catalogue cross-correlation and cross-identification based on explicit simplified catalogue models. A proper identification process should rely on both astrometric and photometric data. Under some conditions, the astrometric part and the photometric part can be processed separately and merged a posteriori to provide a single global probability of identification. The present paper addresses almost exclusively the astrometrical part and specifies the proper probabilities to be merged with photometric likelihoods. Methods: To select matching candidates in n catalogues, we used the Chi (or, indifferently, the Chi-square) test with 2(n-1) degrees of freedom. We thus call this cross-match a χ-match. In order to use Bayes' formula, we considered exhaustive sets of hypotheses based on combinatorial analysis. The volume of the χ-test domain of acceptance - a 2(n-1)-dimensional acceptance ellipsoid - is used to estimate the expected numbers of spurious associations. We derived priors for those numbers using a frequentist approach relying on simple geometrical considerations. Likelihoods are based on standard Rayleigh, χ and Poisson distributions that we normalized over the χ-test acceptance domain. We validated our theoretical

  14. Multi-source Geospatial Data Analysis with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  15. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  16. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    NASA Astrophysics Data System (ADS)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  17. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    PubMed

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  18. Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes

    PubMed Central

    2015-01-01

    We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011

  19. Cross-modal and modality-specific expectancy effects between pain and disgust

    PubMed Central

    Sharvit, Gil; Vuilleumier, Patrik; Delplanque, Sylvain; Corradi-Dell’ Acqua, Corrado

    2015-01-01

    Pain sensitivity increases when a noxious stimulus is preceded by cues predicting higher intensity. However, it is unclear whether the modulation of nociception by expectancy is sensory-specific (“modality based”) or reflects the aversive-affective consequence of the upcoming event (“unpleasantness”), potentially common with other negative events. Here we compared expectancy effects for pain and disgust by using different, but equally unpleasant, nociceptive (thermal) and olfactory stimulations. Indeed both pain and disgust are aversive, associated with threat to the organism, and processed in partly overlapping brain networks. Participants saw cues predicting the unpleasantness (high/low) and the modality (pain/disgust) of upcoming thermal or olfactory stimulations, and rated the associated unpleasantness after stimuli delivery. Results showed that identical thermal stimuli were perceived as more unpleasant when preceded by cues threatening about high (as opposed to low) pain. A similar expectancy effect was found for olfactory disgust. Critically, cross-modal expectancy effects were observed on inconsistent trials when thermal stimuli were preceded by high-disgust cues or olfactory stimuli preceded by high-pain cues. However, these effects were stronger in consistent than inconsistent conditions. Taken together, our results suggest that expectation of an unpleasant event elicits representations of both its modality-specific properties and its aversive consequences. PMID:26631975

  20. Multi-Modal Traveler Information System - Gateway Interface Control Requirements

    DOT National Transportation Integrated Search

    1997-10-30

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  1. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform

    NASA Astrophysics Data System (ADS)

    Robichaud, Guillaume; Garrard, Kenneth P.; Barry, Jeremy A.; Muddiman, David C.

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  2. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform.

    PubMed

    Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  3. Cross-modal integration of multimodal courtship signals in a wolf spider.

    PubMed

    Kozak, Elizabeth C; Uetz, George W

    2016-11-01

    Cross-modal integration, i.e., cognitive binding of information transmitted in more than one signal mode, is important in animal communication, especially in complex, noisy environments in which signals of many individuals may overlap. Males of the brush-legged wolf spider Schizocosa ocreata (Hentz) use multimodal communication (visual and vibratory signals) in courtship. Because females may be courted by multiple males at the same time, they must evaluate co-occurring male signals originating from separate locations. Moreover, due to environmental complexity, individual components of male signals may be occluded, altering detection of sensory modes by females. We used digital multimodal playback to investigate the effect of spatial and temporal disparity of visual and vibratory components of male courtship signals on female mate choice. Females were presented with male courtship signals with components that varied in spatial location or temporal synchrony. Females responded to spatially disparate signal components separated by ≥90° as though they were separate sources, but responded to disparate signals separated by ≤45° as though they originated from a single source. Responses were seen as evidence for cross-modal integration. Temporal disparity (asynchrony) in signal modes also affected female receptivity. Females responded more to male signals when visual and vibratory modes were in synchrony than either out-of-synch or interleaved/alternated. These findings are consistent with those seen in both humans and other vertebrates and provide insight into how animals overcome communication challenges inherent in a complex environment.

  4. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  5. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    PubMed

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  6. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    NASA Astrophysics Data System (ADS)

    Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.

    2014-03-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  7. Sounds can boost the awareness of visual events through attention without cross-modal integration.

    PubMed

    Pápai, Márta Szabina; Soto-Faraco, Salvador

    2017-01-31

    Cross-modal interactions can lead to enhancement of visual perception, even for visual events below awareness. However, the underlying mechanism is still unclear. Can purely bottom-up cross-modal integration break through the threshold of awareness? We used a binocular rivalry paradigm to measure perceptual switches after brief flashes or sounds which, sometimes, co-occurred. When flashes at the suppressed eye coincided with sounds, perceptual switches occurred the earliest. Yet, contrary to the hypothesis of cross-modal integration, this facilitation never surpassed the assumption of probability summation of independent sensory signals. A follow-up experiment replicated the same pattern of results using silent gaps embedded in continuous noise, instead of sounds. This manipulation should weaken putative sound-flash integration, although keep them salient as bottom-up attention cues. Additional results showed that spatial congruency between flashes and sounds did not determine the effectiveness of cross-modal facilitation, which was again not better than probability summation. Thus, the present findings fail to fully support the hypothesis of bottom-up cross-modal integration, above and beyond the independent contribution of two transient signals, as an account for cross-modal enhancement of visual events below level of awareness.

  8. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis.

    PubMed

    Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús

    2016-10-01

    Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model

    PubMed Central

    Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang

    2017-01-01

    Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185

  11. Open Source Cloud-Based Technologies for Bim

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Karachaliou, E.; Valari, E.; Stylianidis, E.

    2018-05-01

    This paper presents a Cloud-based open source system for storing and processing data from a 3D survey approach. More specifically, we provide an online service for viewing, storing and analysing BIM. Cloud technologies were used to develop a web interface as a BIM data centre, which can handle large BIM data using a server. The server can be accessed by many users through various electronic devices anytime and anywhere so they can view online 3D models using browsers. Nowadays, the Cloud computing is engaged progressively in facilitating BIM-based collaboration between the multiple stakeholders and disciplinary groups for complicated Architectural, Engineering and Construction (AEC) projects. Besides, the development of Open Source Software (OSS) has been rapidly growing and their use tends to be united. Although BIM and Cloud technologies are extensively known and used, there is a lack of integrated open source Cloud-based platforms able to support all stages of BIM processes. The present research aims to create an open source Cloud-based BIM system that is able to handle geospatial data. In this effort, only open source tools will be used; from the starting point of creating the 3D model with FreeCAD to its online presentation through BIMserver. Python plug-ins will be developed to link the two software which will be distributed and freely available to a large community of professional for their use. The research work will be completed by benchmarking four Cloud-based BIM systems: Autodesk BIM 360, BIMserver, Graphisoft BIMcloud and Onuma System, which present remarkable results.

  12. moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization

    ERIC Educational Resources Information Center

    Pardos, Zachary A.; Whyte, Anthony; Kao, Kevin

    2016-01-01

    In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload…

  13. Open Source Hbim for Cultural Heritage: a Project Proposal

    NASA Astrophysics Data System (ADS)

    Diara, F.; Rinaudo, F.

    2018-05-01

    Actual technologies are changing Cultural Heritage research, analysis, conservation and development ways, allowing new innovative approaches. The possibility of integrating Cultural Heritage data, like archaeological information, inside a three-dimensional environment system (like a Building Information Modelling) involve huge benefits for its management, monitoring and valorisation. Nowadays there are many commercial BIM solutions. However, these tools are thought and developed mostly for architecture design or technical installations. An example of better solution could be a dynamic and open platform that might consider Cultural Heritage needs as priority. Suitable solution for better and complete data usability and accessibility could be guaranteed by open source protocols. This choice would allow adapting software to Cultural Heritage needs and not the opposite, thus avoiding methodological stretches. This work will focus exactly on analysis and experimentations about specific characteristics of these kind of open source software (DBMS, CAD, Servers) applied to a Cultural Heritage example, in order to verifying their flexibility, reliability and then creating a dynamic HBIM open source prototype. Indeed, it might be a starting point for a future creation of a complete HBIM open source solution that we could adapt to others Cultural Heritage researches and analysis.

  14. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  15. Design of Control Plane Architecture Based on Cloud Platform and Experimental Network Demonstration for Multi-domain SDON

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan

    2016-02-01

    With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.

  16. Sensor Networks, Dataloggers, and Other Handy Gadgets Using Open-Source Electronics for the Christina River Basin CZO

    NASA Astrophysics Data System (ADS)

    Hicks, S. D.; Aufdenkampe, A. K.; Montgomery, D. S.

    2011-12-01

    The search for biogeochemical "hot spots" and "hot moments" that control ecosystem-level processes requires a rethinking of how we observe the environment. Extensive multi-sensor/measurement arrays are required to realize 2D, 3D, or 4D maps of environmental properties with sufficient spatial and temporal resolution to find and understand hot spots and hot moments. To date, the cost of the data logging and communication infrastructure has been a major limitation to large-scale sensor deployment, especially for near-real-time (NRT) wireless networks. A low-cost, user-friendly alternative is needed so that resources can be prioritized toward sensor hardware rather than data acquisition and communication hardware. A flexible development platform would also allow for easy creation of other useful devices in addition to the already apparent need for economical dataloggers. The recent proliferation of open-source electronics platforms offers an opportunity for environmental observatories to deploy sensors at large scales by reducing data logging and communications costs by more than an order of magnitude. Leading the open-source electronics revolution is the Arduino project, designed to make the process of using electronics in multidisciplinary projects more accessible to hobbyists and professionals alike. A large user community has developed and shared hundreds of practical applications for projects that interface with a variety of sensors and use embedded logic to control external hardware. Likewise, dozens of companies and individuals sell low-cost Arduino-compatible boards that can connect together in a modular framework, allowing the user to quickly create devices for a wide range of applications. Based on these open-source technologies and products, we are designing and building a variety of circuit devices for use in our research watersheds. One Arduino-based device is a multi-channel datalogger that can be used with a variety of analog and digital sensors, such as

  17. Cross-platform validation and analysis environment for particle physics

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    2017-11-01

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.

  18. Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking

    PubMed Central

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715

  19. Online multi-modal robust non-negative dictionary learning for visual tracking.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  20. ADMultiImg: a novel missing modality transfer learning based CAD system for diagnosis of MCI due to AD using incomplete multi-modality imaging data

    NASA Astrophysics Data System (ADS)

    Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing

    2018-02-01

    Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.

  1. Opening Health Data: What Do Researchers Want? Early Experiences With New York's Open Health Data Platform.

    PubMed

    Martin, Erika G; Helbig, Natalie; Birkhead, Guthrie S

    2015-01-01

    Governments are rapidly developing open data platforms to improve transparency and make information more accessible. New York is a leader, with currently the only state platform devoted to health. Although these platforms could build public health departments' capabilities to serve more researchers, agencies have little guidance on releasing meaningful and usable data. Structured focus groups with researchers and practitioners collected stakeholder feedback on potential uses of open health data and New York's open data strategy. Researchers and practitioners attended a 1-day November 2013 workshop on New York State's open health data resources. After learning about the state's open data platform and vision for open health data, participants were organized into 7 focus groups to discuss the essential elements of open data sets, practical challenges to obtaining and using health data, and potential uses of open data. Participants included 33 quantitative health researchers from State University of New York campuses and private partners and 10 practitioners from the New York State Department of Health. There was low awareness of open data, with 67% of researchers reporting never using open data portals prior to the workshop. Participants were interested in data sets that were geocoded, longitudinal, or aggregated to small area granularity and capabilities to link multiple data sets. Multiple environmental conditions and barriers hinder their capacity to use health data for research. Although open data platforms cannot address all barriers, they provide multiple opportunities for public health research and practice, and participants were overall positive about the state's efforts to release open data. Open data are not ideal for some researchers because they do not contain individually identifiable data, indicating a need for tiered data release strategies. However, they do provide important new opportunities to facilitate research and foster collaborations among

  2. Cross-modal learning to rank via latent joint representation.

    PubMed

    Wu, Fei; Jiang, Xinyang; Li, Xi; Tang, Siliang; Lu, Weiming; Zhang, Zhongfei; Zhuang, Yueting

    2015-05-01

    Cross-modal ranking is a research topic that is imperative to many applications involving multimodal data. Discovering a joint representation for multimodal data and learning a ranking function are essential in order to boost the cross-media retrieval (i.e., image-query-text or text-query-image). In this paper, we propose an approach to discover the latent joint representation of pairs of multimodal data (e.g., pairs of an image query and a text document) via a conditional random field and structural learning in a listwise ranking manner. We call this approach cross-modal learning to rank via latent joint representation (CML²R). In CML²R, the correlations between multimodal data are captured in terms of their sharing hidden variables (e.g., topics), and a hidden-topic-driven discriminative ranking function is learned in a listwise ranking manner. The experiments show that the proposed approach achieves a good performance in cross-media retrieval and meanwhile has the capability to learn the discriminative representation of multimodal data.

  3. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  4. Mousetrap: An integrated, open-source mouse-tracking package.

    PubMed

    Kieslich, Pascal J; Henninger, Felix

    2017-10-01

    Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .

  5. Adaptation to faces and voices: unimodal, cross-modal, and sex-specific effects.

    PubMed

    Little, Anthony C; Feinberg, David R; Debruine, Lisa M; Jones, Benedict C

    2013-11-01

    Exposure, or adaptation, to faces or voices biases perceptions of subsequent stimuli, for example, causing faces to appear more normal than they would be otherwise if they are similar to the previously presented stimuli. Studies also suggest that there may be cross-modal adaptation between sound and vision, although the evidence is inconsistent. We examined adaptation effects within and across voices and faces and also tested whether adaptation crosses between male and female stimuli. We exposed participants to sex-typical or sex-atypical stimuli and measured the perceived normality of subsequent stimuli. Exposure to female faces or voices altered perceptions of subsequent female stimuli, and these adaptation effects crossed modality; exposure to voices influenced judgments of faces, and vice versa. We also found that exposure to female stimuli did not influence perception of subsequent male stimuli. Our data demonstrate that recent experience of faces and voices changes subsequent perception and that mental representations of faces and voices may not be modality dependent. Both unimodal and cross-modal adaptation effects appear to be relatively sex-specific.

  6. Enhancing interdisciplinary collaboration and decisionmaking with J-Earth: an open source data sharing, visualization and GIS analysis platform

    NASA Astrophysics Data System (ADS)

    Prashad, L. C.; Christensen, P. R.; Fink, J. H.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2010-12-01

    Our society currently is facing a number of major environmental challenges, most notably the threat of climate change. A multifaceted, interdisciplinary approach involving physical and social scientists, engineers and decisionmakers is critical to adequately address these complex issues. To best facilitate this interdisciplinary approach, data and models at various scales - from local to global - must be quickly and easily shared between disciplines to effectively understand environmental phenomena and human-environmental interactions. When data are acquired and studied on different scales and within different disciplines, researchers and practitioners may not be able to easily learn from each others results. For example, climate change models are often developed at a global scale, while strategies that address human vulnerability to climate change and mitigation/adaptation strategies are often assessed on a local level. Linkages between urban heat island phenomena and global climate change may be better understood with increased data flow amongst researchers and those making policy decisions. In these cases it would be useful have a single platform to share, visualize, and analyze numerical model and satellite/airborne remote sensing data with social, environmental, and economic data between researchers and practitioners. The Arizona State University 100 Cities Project and Mars Space Flight Facility are developing the open source application J-Earth, with the goal of providing this single platform, that facilitates data sharing, visualization, and analysis between researchers and applied practitioners around environmental and other sustainability challenges. This application is being designed for user communities including physical and social scientists, NASA researchers, non-governmental organizations, and decisionmakers to share and analyze data at multiple scales. We are initially focusing on urban heat island and urban ecology studies, with data and users from

  7. Quantification of larval zebrafish motor function in multi-well plates using open-source MATLAB® applications

    PubMed Central

    Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.

    2014-01-01

    This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738

  8. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation.

    PubMed

    Wang, Yu; Helminen, Emily; Jiang, Jingfeng

    2015-09-01

    Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time

  9. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation

    PubMed Central

    Wang, Yu; Helminen, Emily; Jiang, Jingfeng

    2015-01-01

    Purpose: Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. Methods: The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for

  10. Multi-modal trip planning system : Northeastern Illinois Regional Transportation Authority.

    DOT National Transportation Integrated Search

    2013-01-01

    This report evaluates the Multi-Modal Trip Planner System (MMTPS) implemented by the Northeastern Illinois Regional Transportation Authority (RTA) against the specific functional objectives enumerated by the Federal Transit Administration (FTA) in it...

  11. Cross-platform validation and analysis environment for particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for onlinemore » validation of Monte Carlo event samples through a web interface.« less

  12. Detection of relationships among multi-modal brain imaging meta-features via information flow.

    PubMed

    Miller, Robyn L; Vergara, Victor M; Calhoun, Vince D

    2018-01-15

    Neuroscientists and clinical researchers are awash in data from an ever-growing number of imaging and other bio-behavioral modalities. This flow of brain imaging data, taken under resting and various task conditions, combines with available cognitive measures, behavioral information, genetic data plus other potentially salient biomedical and environmental information to create a rich but diffuse data landscape. The conditions being studied with brain imaging data are often extremely complex and it is common for researchers to employ more than one imaging, behavioral or biological data modality (e.g., genetics) in their investigations. While the field has advanced significantly in its approach to multimodal data, the vast majority of studies still ignore joint information among two or more features or modalities. We propose an intuitive framework based on conditional probabilities for understanding information exchange between features in what we are calling a feature meta-space; that is, a space consisting of many individual featurae spaces. Features can have any dimension and can be drawn from any data source or modality. No a priori assumptions are made about the functional form (e.g., linear, polynomial, exponential) of captured inter-feature relationships. We demonstrate the framework's ability to identify relationships between disparate features of varying dimensionality by applying it to a large multi-site, multi-modal clinical dataset, balance between schizophrenia patients and controls. In our application it exposes both expected (previously observed) relationships, and novel relationships rarely considered investigated by clinical researchers. To the best of our knowledge there is not presently a comparably efficient way to capture relationships of indeterminate functional form between features of arbitrary dimension and type. We are introducing this method as an initial foray into a space that remains relatively underpopulated. The framework we propose is

  13. Multi-modal data fusion using source separation: Two effective models based on ICA and IVA and their properties

    PubMed Central

    Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2015-01-01

    Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830

  14. Orthodontic Treatment Timing and Modalities in Anterior Open Bite: Case Series Study

    PubMed Central

    Al Hamadi, Wisam; Saleh, Fayez; Kaddouha, Mohamad

    2017-01-01

    Objective: The purpose of this study was to present early and adult cases of anterior open bite that were treated efficiently using different treatment approaches and mechanics. Materials and Methods: Five patients of different age groups (from 7 to 27 years), suffering from a clear Anterior open bite deformity, were properly diagnosed and relevant treatment modality for each was selected. Results: Positive overbite was efficiently achieved for all patients. Conclusion: Patient compliance is a key factor in using removable habit breakers. However, fixed palatal crib gave the same results but in shorter time. Anterior open bite of skeletal components should be thoroughly evaluated before selecting camouflage or orthognathic surgery treatment modality. PMID:29299074

  15. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging

  16. Cross-modal project prioritization : a TPCB peer exchange.

    DOT National Transportation Integrated Search

    2015-05-01

    This report highlights key recommendations and best practices identified at the peer exchange on Cross-Modal Project Prioritization, held on December 16 and 17, 2014, in Raleigh, North Carolina. This event was sponsored by the Transportation Planning...

  17. Progress in Open-World, Integrative, Collaborative Science Data Platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Fox, P. A.

    2013-12-01

    As collaborative, or network science spreads into more Earth and space science fields, both the participants and their funders have expressed a very strong desire for highly functional data and information capabilities that are a) easy to use, b) integrated in a variety of ways, c) leverage prior investments and keep pace with rapid technical change, and d) are not expensive or time-consuming to build or maintain. In response, and based on our accumulated experience over the last decade and a maturing of several key technical approaches, we have adapted, extended, and integrated several open source applications and frameworks that handle major portions of functionality for these platforms. At minimum, these functions include: an object-type repository, collaboration tools, an ability to identify and manage all key entities in the platform, and an integrated portal to manage diverse content and applications, with varied access levels and privacy options. At a conceptual level, science networks (even small ones) deal with people, and many intellectual artifacts produced or consumed in research, organizational and/our outreach activities, as well as the relations among them. Increasingly these networks are modeled as knowledge networks, i.e. graphs with named and typed relations among the 'nodes'. Nodes can be people, organizations, datasets, events, presentations, publications, videos, meetings, reports, groups, and more. In this heterogeneous ecosystem, it is also important to use a set of common informatics approaches to co-design and co-evolve the needed science data platforms based on what real people want to use them for. In this contribution, we present our methods and results for information modeling, adapting, integrating and evolving a networked data science and information architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present both

  18. ScaMo: Realisation of an OO-functional DSL for cross platform mobile applications development

    NASA Astrophysics Data System (ADS)

    Macos, Dragan; Solymosi, Andreas

    2013-10-01

    The software market is dynamically changing: the Internet is going mobile, the software applications are shifting from the desktop hardware onto the mobile devices. The largest markets are the mobile applications for iOS, Android and Windows Phone and for the purpose the typical programming languages include Objective-C, Java and C ♯. The realization of the native applications implies the integration of the developed software into the environments of mentioned mobile operating systems to enable the access to different hardware components of the devices: GPS module, display, GSM module, etc. This paper deals with the definition and possible implementation of an environment for the automatic application generation for multiple mobile platforms. It is based on a DSL for mobile application development, which includes the programming language Scala and a DSL defined in Scala. As part of a multi-stage cross-compiling algorithm, this language is translated into the language of the affected mobile platform. The advantage of our method lies in the expressiveness of the defined language and the transparent source code translation between different languages, which implies, for example, the advantages of debugging and development of the generated code.

  19. Addressing Hydro-economic Modeling Limitations - A Limited Foresight Sacramento Valley Model and an Open-source Modeling Platform

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hansen, K. M.

    2008-12-01

    Increased scarcity of world water resources is inevitable given the limited supply and increased human pressures. The idea that "some scarcity is optimal" must be accepted for rational resource use and infrastructure management decisions to be made. Hydro-economic systems models are unique at representing the overlap of economic drivers, socio-political forces and distributed water resource systems. They demonstrate the tangible benefits of cooperation and integrated flexible system management. Further improvement of models, quality control practices and software will be needed for these academic policy tools to become accepted into mainstream water resource practice. Promising features include: calibration methods, limited foresight optimization formulations, linked simulation-optimization approaches (e.g. embedding pre-existing calibrated simulation models), spatial groundwater models, stream-aquifer interactions and stream routing, etc.. Conventional user-friendly decision support systems helped spread simulation models on a massive scale. Hydro-economic models must also find a means to facilitate construction, distribution and use. Some of these issues and model features are illustrated with a hydro-economic optimization model of the Sacramento Valley. Carry-over storage value functions are used to limit hydrologic foresight of the multi- period optimization model. Pumping costs are included in the formulation by tracking regional piezometric head of groundwater sub-basins. To help build and maintain this type of network model, an open-source water management modeling software platform is described and initial project work is discussed. The objective is to generically facilitate the connection of models, such as those developed in a modeling environment (GAMS, MatLab, Octave, "), to a geographic user interface (drag and drop node-link network) and a database (topology, parameters and time series). These features aim to incrementally move hydro- economic models

  20. Temporal and modal characterization of DoD source air toxic ...

    EPA Pesticide Factsheets

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for organic air toxics, laser induced breakdown spectroscopy (LIBS) for metallic air toxics, and optical remote sensing (ORS) methods for measurement of criteria pollutants and other hazardous air pollutants (HAPs). Conventional emission measurements were used for verification of the real-time monitoring results. The REMPI-TOFMS system was demonstrated on the following: --a United States U.S. Marine Corps (USMC) diesel generator, --a U.S. Air Force auxiliary power unit (APU), --the waste combustor at the Portsmouth Naval Shipyard, during a multi-monitor environmental technology verification (ETV) test for dioxin monitoring systems, --two dynamometer-driven high mobility multi-purpose wheeled vehicles (HMMWVs), --an idling Abrams battle tank, --a Bradley infantry fighting vehicle (IFV), and --an F-15 and multiple F-22 U.S. Air Force aircraft engines. LIBS was tested and applied solely to the U.S. Marine Corps diesel generator. The high detection limits of LIBS for toxic metals limited its usefulness as a real time analyzer for most DoD sources. ORS was tested only on the APU with satisfactory results for non-condensable combustion products (carbon monoxide [CO], carbon dioxide

  1. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  2. Cross-modal signatures in maternal speech and singing.

    PubMed

    Trehub, Sandra E; Plantinga, Judy; Brcic, Jelena; Nowicki, Magda

    2013-01-01

    We explored the possibility of a unique cross-modal signature in maternal speech and singing that enables adults and infants to link unfamiliar speaking or singing voices with subsequently viewed silent videos of the talkers or singers. In Experiment 1, adults listened to 30-s excerpts of speech followed by successively presented 7-s silent video clips, one from the previously heard speaker (different speech content) and the other from a different speaker. They successfully identified the previously heard speaker. In Experiment 2, adults heard comparable excerpts of singing followed by silent video clips from the previously heard singer (different song) and another singer. They failed to identify the previously heard singer. In Experiment 3, the videos of talkers and singers were blurred to obscure mouth movements. Adults successfully identified the talkers and they also identified the singers from videos of different portions of the song previously heard. In Experiment 4, 6- to 8-month-old infants listened to 30-s excerpts of the same maternal speech or singing followed by exposure to the silent videos on alternating trials. They looked longer at the silent videos of previously heard talkers and singers. The findings confirm the individuality of maternal speech and singing performance as well as adults' and infants' ability to discern the unique cross-modal signatures. The cues that enable cross-modal matching of talker and singer identity remain to be determined.

  3. Cross-modal signatures in maternal speech and singing

    PubMed Central

    Trehub, Sandra E.; Plantinga, Judy; Brcic, Jelena; Nowicki, Magda

    2013-01-01

    We explored the possibility of a unique cross-modal signature in maternal speech and singing that enables adults and infants to link unfamiliar speaking or singing voices with subsequently viewed silent videos of the talkers or singers. In Experiment 1, adults listened to 30-s excerpts of speech followed by successively presented 7-s silent video clips, one from the previously heard speaker (different speech content) and the other from a different speaker. They successfully identified the previously heard speaker. In Experiment 2, adults heard comparable excerpts of singing followed by silent video clips from the previously heard singer (different song) and another singer. They failed to identify the previously heard singer. In Experiment 3, the videos of talkers and singers were blurred to obscure mouth movements. Adults successfully identified the talkers and they also identified the singers from videos of different portions of the song previously heard. In Experiment 4, 6− to 8-month-old infants listened to 30-s excerpts of the same maternal speech or singing followed by exposure to the silent videos on alternating trials. They looked longer at the silent videos of previously heard talkers and singers. The findings confirm the individuality of maternal speech and singing performance as well as adults' and infants' ability to discern the unique cross-modal signatures. The cues that enable cross-modal matching of talker and singer identity remain to be determined. PMID:24198805

  4. What Can OpenEI Do For You?

    ScienceCinema

    None

    2018-02-06

    Open Energy Information (OpenEI) is an open source web platform—similar to the one used by Wikipedia—developed by the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to make the large amounts of energy-related data and information more easily searched, accessed, and used both by people and automated machine processes. Built utilizing the standards and practices of the Linked Open Data community, the OpenEI platform is much more robust and powerful than typical web sites and databases. As an open platform, all users can search, edit, add, and access data in OpenEI for free. The user community contributes the content and ensures its accuracy and relevance; as the community expands, so does the content's comprehensiveness and quality. The data are structured and tagged with descriptors to enable cross-linking among related data sets, advanced search functionality, and consistent, usable formatting. Data input protocols and quality standards help ensure the content is structured and described properly and derived from a credible source. Although DOE/NREL is developing OpenEI and seeding it with initial data, it is designed to become a true community model with millions of users, a large core of active contributors, and numerous sponsors.

  5. Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms. PMID:21574745

  6. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    PubMed

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  8. Open-source Framework for Storing and Manipulation of Plasma Chemical Reaction Data

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Averkin, S. N.; Cary, J. R.; Kruger, S. E.

    2017-10-01

    We present a new open-source framework for storage and manipulation of plasma chemical reaction data that has emerged from our in-house project MUNCHKIN. This framework consists of python scripts and C + + programs. It stores data in an SQL data base for fast retrieval and manipulation. For example, it is possible to fit cross-section data into most widely used analytical expressions, calculate reaction rates for Maxwellian distribution functions of colliding particles, and fit them into different analytical expressions. Another important feature of this framework is the ability to calculate transport properties based on the cross-section data and supplied distribution functions. In addition, this framework allows the export of chemical reaction descriptions in LaTeX format for ease of inclusion in scientific papers. With the help of this framework it is possible to generate corresponding VSim (Particle-In-Cell simulation code) and USim (unstructured multi-fluid code) input blocks with appropriate cross-sections.

  9. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  10. Dissociable identity- and modality-specific neural representations as revealed by cross-modal nonspatial inhibition of return.

    PubMed

    Chi, Yukai; Yue, Zhenzhu; Liu, Yupin; Mo, Lei; Chen, Qi

    2014-08-01

    There are ongoing debates on whether object concepts are coded as supramodal identity-based or modality-specific representations in the human brain. In this fMRI study, we adopted a cross-modal "prime-neutral cue-target" semantic priming paradigm, in which the prime-target relationship was manipulated along both the identity and the modality dimensions. The prime and the target could refer to either the same or different semantic identities, and could be delivered via either the same or different sensory modalities. By calculating the main effects and interactions of this 2 (identity cue validity: "Identity_Cued" vs. "Identity_Uncued") × 2 (modality cue validity: "Modality_Cued" vs. "Modality_Uncued") factorial design, we aimed at dissociating three neural networks involved in creating novel identity-specific representations independent of sensory modality, in creating modality-specific representations independent of semantic identity, and in evaluating changes of an object along both the identity and the modality dimensions, respectively. Our results suggested that bilateral lateral occipital cortex was involved in creating a new supramodal semantic representation irrespective of the input modality, left dorsal premotor cortex, and left intraparietal sulcus were involved in creating a new modality-specific representation irrespective of its semantic identity, and bilateral superior temporal sulcus was involved in creating a representation when the identity and modality properties were both cued or both uncued. In addition, right inferior frontal gyrus showed enhanced neural activity only when both the identity and the modality of the target were new, indicating its functional role in novelty detection. Copyright © 2014 Wiley Periodicals, Inc.

  11. NASA's Earth Imagery Service as Open Source Software

    NASA Astrophysics Data System (ADS)

    De Cesare, C.; Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J.; Cechini, M. F.; Boller, R. A.; Baynes, K.

    2016-12-01

    The NASA Global Imagery Browse Service (GIBS) is a software system that provides access to an archive of historical and near-real-time Earth imagery from NASA-supported satellite instruments. The imagery itself is open data, and is accessible via standards such as the Open Geospatial Consortium (OGC)'s Web Map Tile Service (WMTS) protocol. GIBS includes three core software projects: The Imagery Exchange (TIE), OnEarth, and the Meta Raster Format (MRF) project. These projects are developed using a variety of open source software, including: Apache HTTPD, GDAL, Mapserver, Grails, Zookeeper, Eclipse, Maven, git, and Apache Commons. TIE has recently been released for open source, and is now available on GitHub. OnEarth, MRF, and their sub-projects have been on GitHub since 2014, and the MRF project in particular receives many external contributions from the community. Our software has been successful beyond the scope of GIBS: the PO.DAAC State of the Ocean and COVERAGE visualization projects reuse components from OnEarth. The MRF source code has recently been incorporated into GDAL, which is a core library in many widely-used GIS software such as QGIS and GeoServer. This presentation will describe the challenges faced in incorporating open software and open data into GIBS, and also showcase GIBS as a platform on which scientists and the general public can build their own applications.

  12. Multi-Modal Traveler Information System - GCM Corridor Architecture Functional Requirements

    DOT National Transportation Integrated Search

    1997-11-17

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  13. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    NASA Astrophysics Data System (ADS)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  14. Open Source Hardware for DIY Environmental Sensing

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Hicks, S. D.; Damiano, S. G.; Montgomery, D. S.

    2014-12-01

    The Arduino open source electronics platform has been very popular within the DIY (Do It Yourself) community for several years, and it is now providing environmental science researchers with an inexpensive alternative to commercial data logging and transmission hardware. Here we present the designs for our latest series of custom Arduino-based dataloggers, which include wireless communication options like self-meshing radio networks and cellular phone modules. The main Arduino board uses a custom interface board to connect to various research-grade sensors to take readings of turbidity, dissolved oxygen, water depth and conductivity, soil moisture, solar radiation, and other parameters. Sensors with SDI-12 communications can be directly interfaced to the logger using our open Arduino-SDI-12 software library (https://github.com/StroudCenter/Arduino-SDI-12). Different deployment options are shown, like rugged enclosures to house the loggers and rigs for mounting the sensors in both fresh water and marine environments. After the data has been collected and transmitted by the logger, the data is received by a mySQL-PHP stack running on a web server that can be accessed from anywhere in the world. Once there, the data can be visualized on web pages or served though REST requests and Water One Flow (WOF) services. Since one of the main benefits of using open source hardware is the easy collaboration between users, we are introducing a new web platform for discussion and sharing of ideas and plans for hardware and software designs used with DIY environmental sensors and data loggers.

  15. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  16. Neuroimaging Data Sharing on the Neuroinformatics Database Platform

    PubMed Central

    Book, Gregory A; Stevens, Michael; Assaf, Michal; Glahn, David; Pearlson, Godfrey D

    2015-01-01

    We describe the Neuroinformatics Database (NiDB), an open-source database platform for archiving, analysis, and sharing of neuroimaging data. Data from the multi-site projects Autism Brain Imaging Data Exchange (ABIDE), Bipolar-Schizophrenia Network on Intermediate Phenotypes parts one and two (B-SNIP1, B-SNIP2), and Monetary Incentive Delay task (MID) are available for download from the public instance of NiDB, with more projects sharing data as it becomes available. As demonstrated by making several large datasets available, NiDB is an extensible platform appropriately suited to archive and distribute shared neuroimaging data. PMID:25888923

  17. Prospectus on Multi-Modal Aspects of Human Factors in Transportation

    DOT National Transportation Integrated Search

    1991-02-01

    This prospectus identifies and discusses a series of human factors : issues which are critical to transportation safety and productivity, and : examines the potential benefits that can accrue from taking a multi-modal : approach to human factors rese...

  18. Crossing the Virtual World Barrier with OpenAvatar

    NASA Technical Reports Server (NTRS)

    Joy, Bruce; Kavle, Lori; Tan, Ian

    2012-01-01

    There are multiple standards and formats for 3D models in virtual environments. The problem is that there is no open source platform for generating models out of discrete parts; this results in the process of having to "reinvent the wheel" when new games, virtual worlds and simulations want to enable their users to create their own avatars or easily customize in-world objects. OpenAvatar is designed to provide a framework to allow artists and programmers to create reusable assets which can be used by end users to generate vast numbers of complete models that are unique and functional. OpenAvatar serves as a framework which facilitates the modularization of 3D models allowing parts to be interchanged within a set of logical constraints.

  19. Development and validation of an open source quantification tool for DSC-MRI studies.

    PubMed

    Gordaliza, P M; Mateos-Pérez, J M; Montesinos, P; Guzmán-de-Villoria, J A; Desco, M; Vaquero, J J

    2015-03-01

    This work presents the development of an open source tool for the quantification of dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers to implement their own quantification methods easily and without the need of paying for a development license. This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented tool and with a widely used clinical software package. The resulting perfusion parameters were then compared. Perfusion parameters and the corresponding parametric images were obtained. When no gamma-fitting is used, an excellent agreement with the tool used as a gold-standard was obtained (R(2)>0.8 and values are within 95% CI limits in Bland-Altman plots). An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enhancing image classification models with multi-modal biomarkers

    NASA Astrophysics Data System (ADS)

    Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry

    2011-03-01

    Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.

  1. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma.

    PubMed

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-02-28

    To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P<0.001) and objective tumor response (P=0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P=0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P<0.001). Multivariate analysis identified tumor stage (P<0.001) and tumor type (P=0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P<0.001), surgical treatment (P=0.009), and multi-modal treatment (P=0.002) were identified as independent post-treatment prognostic factors. TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC.

  2. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma

    PubMed Central

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-01-01

    AIM: To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). METHODS: A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. RESULTS: In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P < 0.001) and objective tumor response (P = 0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P = 0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P < 0.001). Multivariate analysis identified tumor stage (P < 0.001) and tumor type (P = 0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P < 0.001), surgical treatment (P = 0.009), and multi-modal treatment (P = 0.002) were identified as independent post-treatment prognostic factors. CONCLUSION: TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC. PMID:25741147

  3. Modality independence of order coding in working memory: Evidence from cross-modal order interference at recall.

    PubMed

    Vandierendonck, André

    2016-01-01

    Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.

  4. The impact of different cross-training modalities on performance and injury-related variables in high school cross country runners.

    PubMed

    Paquette, Max R; Peel, Shelby A; Smith, Ross E; Temme, Mark; Dwyer, Jeffrey N

    2017-11-29

    There are many different types of aerobic cross-training modalities currently available. It is important to consider the effects that these different modalities have on running performance and injury risks. The purpose of this study was to compare movement quality, running economy and performance, injury-related biomechanical variables and, hip muscle strength before and after training with different cross-training modalities in high school runners. Thirty-one high school male runners trained for four weeks in one of three cross-training modalities, in addition to a running-only (RUN, n=9) group, for which training sessions replaced two easy runs per week: cycling (CYCLE; n=6), indoor elliptical (ELLIP; n=7) and, outdoor elliptical bike (EBIKE; n=9). Functional movement screen (FMS), running economy (RE), 3,000m performance, hip kinematics, hip muscle strength were assessed. Paired t-tests and Cohen's d effect sizes were used to assess mean differences for each variable before and after training within each group. EBIKE training was the only modality that improved FMS scores (d = 1.36) and RE before and after training (d = 0.48). All groups showed improvements in 3,000m performance but large effects were only found for the CYCLE (d = 1.50) and EBIKE (d = 1.41) groups. RUN (d = 1.25), CYCLE (d = 1.17) and, EBIKE (d = 0.82) groups showed improvements in maximal hip extensor strength. Outdoor cycling and elliptical bike cross-training may be the most effective cross-training modalities to incorporate in early season training to improve running performance in high school runners.

  5. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility.

    PubMed

    Jaschob, Daniel; Riffle, Michael

    2012-07-30

    Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. JobCenter is a client-server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or "in the cloud") and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/.

  6. An open platform for personal health record apps with platform-level privacy protection.

    PubMed

    Van Gorp, P; Comuzzi, M; Jahnen, A; Kaymak, U; Middleton, B

    2014-08-01

    One of the main barriers to the adoption of Personal Health Records (PHR) systems is their closed nature. It has been argued in the literature that this barrier can be overcome by introducing an open market of substitutable PHR apps. The requirements introduced by such an open market on the underlying platform have also been derived. In this paper, we argue that MyPHRMachines, a cloud-based PHR platform recently developed by the authors, satisfies these requirements better than its alternatives. The MyPHRMachines platform leverages Virtual Machines as flexible and secure execution sandboxes for health apps. MyPHRMachines does not prevent pushing hospital- or patient-generated data to one of its instances, nor does it prevent patients from sharing data with their trusted caregivers. External software developers have minimal barriers to contribute innovative apps to the platform, since apps are only required to avoid pushing patient data outside a MyPHRMachines cloud. We demonstrate the potential of MyPHRMachines by presenting two externally contributed apps. Both apps provide functionality going beyond the state-of-the-art in their application domain, while they did not require any specific MyPHRMachines platform extension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Paleomagnetism.org - An online multi-platform and open source environment for paleomagnetic analysis.

    NASA Astrophysics Data System (ADS)

    Koymans, Mathijs; Langereis, Cor; Pastor-Galán, Daniel; van Hinsbergen, Douwe

    2017-04-01

    This contribution gives an overview of Paleomagnetism.org (Koymans et al., 2016), an online environment for paleomagnetic analysis. The application is developed in JavaScript and is fully open-sourced. It presents an interactive website in which paleomagnetic data can be interpreted, evaluated, visualized, and shared with others. The application has been available from late 2015 and since then has evolved with the addition of a magnetostratigraphic tool, additional input formats, and features that emphasize on the link between geomagnetism and tectonics. In the interpretation portal, principle component analysis (Kirschvink et al., 1981) can be applied on visualized demagnetization data (Zijderveld, 1967). Interpreted directions and great circles are combined using the iterative procedure described by (McFadden and McElhinny, 1988). The resulting directions can be further used in the statistics portal or exported as raw tabulated data and high-quality figures. The available tools in the statistics portal cover standard Fisher statistics for directional data and virtual geomagnetic poles (Fisher, 1953; Butler, 1992; Deenen et al., 2011). Other tools include the eigenvector approach foldtest (Tauxe and Watson, 1994), a bootstrapped reversal test (Tauxe et al., 2009), and the classical reversal test (McFadden and McElhinny, 1990). An implementation exists for the detection and correction of inclination shallowing in sediments (Tauxe and Kent, 2004; Tauxe et al., 2008), and a module to visualize apparent polar wander paths (Torsvik et al., 2012; Kent and Irving, 2010; Besse and Courtillot, 2002) for large continent-bearing plates. A miscellaneous portal exists for a set of tools that include a boostrapped oroclinal test (Pastor-Galán et al., 2016) for assessing possible linear relationships between strike and declination. Another tool that is available completes a net tectonic rotation analysis (after Morris et al., 1999) that restores a dyke to its paleo-vertical and

  8. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  9. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  10. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  11. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  12. NASA's Platform for Cross-Disciplinary Microchannel Research

    NASA Technical Reports Server (NTRS)

    Son, Sang Young; Spearing, Scott; Allen, Jeffrey; Monaco, Lisa A.

    2003-01-01

    A team from the Structural Biology group located at the NASA Marshall Space Flight Center in Huntsville, Alabama is developing a platform suitable for cross-disciplinary microchannel research. The original objective of this engineering development effort was to deliver a multi-user flight-certified facility for iterative investigations of protein crystal growth; that is, Iterative Biological Crystallization (IBC). However, the unique capabilities of this facility are not limited to the low-gravity structural biology research community. Microchannel-based research in a number of other areas may be greatly accelerated through use of this facility. In particular, the potential for gas-liquid flow investigations and cellular biological research utilizing the exceptional pressure control and simplified coupling to macroscale diagnostics inherent in the IBC facility will be discussed. In conclusion, the opportunities for research-specific modifications to the microchannel configuration, control, and diagnostics will be discussed.

  13. XPAT: a toolkit to conduct cross-platform association studies with heterogeneous sequencing datasets.

    PubMed

    Yu, Yao; Hu, Hao; Bohlender, Ryan J; Hu, Fulan; Chen, Jiun-Sheng; Holt, Carson; Fowler, Jerry; Guthery, Stephen L; Scheet, Paul; Hildebrandt, Michelle A T; Yandell, Mark; Huff, Chad D

    2018-04-06

    High-throughput sequencing data are increasingly being made available to the research community for secondary analyses, providing new opportunities for large-scale association studies. However, heterogeneity in target capture and sequencing technologies often introduce strong technological stratification biases that overwhelm subtle signals of association in studies of complex traits. Here, we introduce the Cross-Platform Association Toolkit, XPAT, which provides a suite of tools designed to support and conduct large-scale association studies with heterogeneous sequencing datasets. XPAT includes tools to support cross-platform aware variant calling, quality control filtering, gene-based association testing and rare variant effect size estimation. To evaluate the performance of XPAT, we conducted case-control association studies for three diseases, including 783 breast cancer cases, 272 ovarian cancer cases, 205 Crohn disease cases and 3507 shared controls (including 1722 females) using sequencing data from multiple sources. XPAT greatly reduced Type I error inflation in the case-control analyses, while replicating many previously identified disease-gene associations. We also show that association tests conducted with XPAT using cross-platform data have comparable performance to tests using matched platform data. XPAT enables new association studies that combine existing sequencing datasets to identify genetic loci associated with common diseases and other complex traits.

  14. Message Modality and Source Credibility Can Interact to Affect Argument Processing.

    ERIC Educational Resources Information Center

    Booth-Butterfield, Steve; Gutowski, Christine

    1993-01-01

    Extends previous modality and source cue studies by manipulating argument quality. Randomly assigned college students by class to an argument quality by source attribute by modality factorial experiment. Finds the print mode produces only argument main effects, and audio and video modes produce argument by cue interactions. Finds data inconsistent…

  15. Modeling of fire smoke movement in multizone garments building using two open source platforms

    NASA Astrophysics Data System (ADS)

    Khandoker, Md. Arifur Rahman; Galib, Musanna; Islam, Adnan; Rahman, Md. Ashiqur

    2017-06-01

    Casualty of garment factory workers from factory fire in Bangladesh is a recurring tragedy. Smoke, which is more fatal than fire itself, often propagates through different pathways from lower to upper floors during building fire. Among the toxic gases produced from a building fire, carbon monoxide (CO) can be deadly, even in small amounts. This paper models the propagation and transportation of fire induced smoke (CO) that resulted from the burning of synthetic polyester fibers using two open source platforms, CONTAM and Fire Dynamics Simulator (FDS). Smoke migration in a generic multistoried garment factory building in Bangladesh is modeled using CONTAM where each floor is compartmentalized by different zones. The elevator and stairway shafts are modeled by phantom zones to simulate contaminant (CO) transport from one floor to upper floors. FDS analysis involves burning of two different stacks of polyester jacket of six feet height and with a maximum heat release rate per unit area of 1500kw/m2 over a storage area 50m2 and 150m2, respectively. The resulting CO generation and removal rates from FDS are used in CONTAM to predict fire-borne CO propagation in different zones of the garment building. Findings of the study exhibit that the contaminant flow rate is a strong function of the position of building geometry, location of initiation of fire, amount of burnt material, presence of AHU and contaminant generation and removal rate of CO from the source location etc. The transport of fire-smoke in the building Hallways, stairways and lifts are also investigated in detail to examine the safe egress of the occupants in case of fire.

  16. FloorspaceJS - A New, Open Source, Web-Based Geometry Editor for Building Energy Modeling (BEM): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macumber, Daniel L; Horowitz, Scott G; Schott, Marjorie

    Across most industries, desktop applications are being rapidly migrated to web applications for a variety of reasons. Web applications are inherently cross platform, mobile, and easier to distribute than desktop applications. Fueling this trend are a wide range of free, open source libraries and frameworks that make it incredibly easy to develop powerful web applications. The building energy modeling community is just beginning to pick up on these larger trends, with a small but growing number of building energy modeling applications starting on or moving to the web. This paper presents a new, open source, web based geometry editor formore » Building Energy Modeling (BEM). The editor is written completely in JavaScript and runs in a modern web browser. The editor works on a custom JSON file format and is designed to be integrated into a variety of web and desktop applications. The web based editor is available to use as a standalone web application at: https://nrel.github.io/openstudio-geometry-editor/. An example integration is demonstrated with the OpenStudio desktop application. Finally, the editor can be easily integrated with a wide range of possible building energy modeling web applications.« less

  17. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  18. Multi-Modal Traveler Information System - Alternative GCM Corridor Technologies and Strategies

    DOT National Transportation Integrated Search

    1997-10-24

    The purpose of this working paper is to summarize current and evolving Intelligent Transportation System (ITS) technologies and strategies related to the design, development, and deployment of regional multi-modal traveler information systems. This r...

  19. Visual tracking for multi-modality computer-assisted image guidance

    NASA Astrophysics Data System (ADS)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  20. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  1. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility

    PubMed Central

    2012-01-01

    Background Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. Results JobCenter is a client–server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or “in the cloud”) and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. Conclusions JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/. PMID:22846423

  2. Surface-tension driven open microfluidic platform for hanging droplet culture

    PubMed Central

    de Groot, T. E.; Veserat, K. S.; Berthier, E.; Beebe, D. J.; Theberge, A. B.

    2015-01-01

    The hanging droplet technique for three-dimensional tissue culture has been used for decades in biology labs, with the core technology remaining relatively unchanged. Recently microscale approaches have expanded the capabilities of the hanging droplet method, making it more user-friendly. We present a spontaneously driven, open hanging droplet culture platform to address many limitations of current platforms. Our platform makes use of two interconnected hanging droplet wells, a larger well where cells are cultured and a smaller well for user interface via a pipette. The two-well system results in lower shear stress in the culture well during fluid exchange, enabling shear sensitive or non-adherent cells to be cultured in a droplet. The ability to perform fluid exchanges in-droplet enables long-term culture, treatment, and characterization without disruption of the culture. The open well format of the platform was utilized to perform time-dependent coculture, enabling culture configurations with bone tissue scaffolds and cells grown in suspension. The open nature of the system allowed the direct addition or removal of tissue over the course of an experiment, manipulations that would be impractical in other microfluidic or hanging droplet culture platforms. PMID:26660268

  3. What colour does that feel? Tactile--visual mapping and the development of cross-modality.

    PubMed

    Ludwig, Vera U; Simner, Julia

    2013-04-01

    Humans share implicit preferences for cross-modal mappings (e.g., low pitch sounds are preferentially paired with darker colours). Individuals with synaesthesia experience cross-modal mappings to a conscious degree (e.g., they may see colours when they hear sounds). The neonatal synaesthesia hypothesis claims that all humans may be born with this explicit cross-modal perception, which dies out in most people through childhood, leaving only implicit associations in the average adult. Although there is evidence for decreasing cross-modality throughout early infancy, it is unclear whether this decline continues to take place throughout childhood and adolescence. This large-scale study had two goals. First, we aimed to establish whether human non-synaesthetes systematically map tactile and visual dimensions - a combination that has rarely been studied. Second, we asked whether tactile-visual associations may be more pronounced in younger compared to older participants. 210 participants between the ages of 5-74 years assigned colours to tactile stimuli. Smoothness, softness and roundness of stimuli positively correlated with luminance of the chosen colour; and smoothness and softness also positively correlated with chroma. Moreover, tactile sensations were associated with specific colours (e.g., softness with pink). There were no age differences for luminance effects. Chroma effects, however, were found exclusively in children and adolescents. Our findings are consistent with the neonatal synaesthesia hypothesis which suggests that all humans are born with strong cross-modal perception which is pruned away or inhibited throughout development. Moreover, the findings suggest that a decline of some forms of cross-modality may take place over a much longer time span than previously assumed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. An open source framework for tracking and state estimation ('Stone Soup')

    NASA Astrophysics Data System (ADS)

    Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger

    2017-05-01

    The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,

  5. Multi-Modal Traveler Information System - GCM Corridor Architecture Interface Control Requirements

    DOT National Transportation Integrated Search

    1997-10-31

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  6. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    PubMed

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  7. SysSon: A Sonification Platform for Climate Data

    NASA Astrophysics Data System (ADS)

    Visda, Goudarzi; Hanns Holger, Rutz; Katharina, Vogt

    2014-05-01

    Climate data provide a challenging working basis for sonification. Both model data and measured data are assessed in collaboration with the Wegener Center for Climate and Global Change. The multi dimensionality and multi variety of climate data has a great potential for auditory displays. Furthermore, there is consensus on global climate change and the necessity of intensified climate research today in the scientific community and general public. Sonification provides a new means to communicate scientific results and inform a wider audience. SysSon is a user centered auditory platform for climate scientists to analyze data. It gives scientists broader insights by extracting hidden patterns and features from data that is not possible using a single modal visual interface. A variety of soundscapes to chose from lessens the fatigue that comes with repeated and sustained listening to long streams of data. Initial needs assessments and user tests made the work procedures and the terminology of climate scientists clear and informed the architecture of our system. Furthermore, experiments evaluated the sound design which led to a more advanced soundscape and improvement of the auditory display. We present a novel interactive sonification tool which combines a workspace for the scientists with a development environment for sonification models. The tool runs on different operating systems and is released as open source. In the standalone desktop application, multiple data sources can be imported, navigated and manipulated either via text or a graphical interface, including traditional plotting facilities. Sound models are built from unit generator graphs which are enhanced with matrix manipulation functions. They allow us to systematically experiment with elements known from the visual domain, such as range selections, scaling, thresholding, markers and labels. The models are organized in an extensible library, from which the user can choose and parametrize. Importance is

  8. Open Source, Openness, and Higher Education

    ERIC Educational Resources Information Center

    Wiley, David

    2006-01-01

    In this article David Wiley provides an overview of how the general expansion of open source software has affected the world of education in particular. In doing so, Wiley not only addresses the development of open source software applications for teachers and administrators, he also discusses how the fundamental philosophy of the open source…

  9. An Extensible Sensing and Control Platform for Building Energy Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Anthony; Berges, Mario; Martin, Christopher

    2016-04-03

    The goal of this project is to develop Mortar.io, an open-source BAS platform designed to simplify data collection, archiving, event scheduling and coordination of cross-system interactions. Mortar.io is optimized for (1) robustness to network outages, (2) ease of installation using plug-and-play and (3) scalable support for small to large buildings and campuses.

  10. OPAL: An Open-Source MPI-IO Library over Cray XT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weikuan; Vetter, Jeffrey S; Canon, Richard Shane

    Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a stable code base for application scientists' convenience, it is also very important to the system developers and researchers to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms. We have developed an open-source MPI-IOmore » package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux platforms. Compared to Cray implementation, OPAL provides a number of good features, including arbitrary specification of striping patterns and Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between OPAL and Cray's proprietary implementation. Our evaluation demonstrates that OPAL achieves the performance comparable to the Cray implementation. We also exemplify the benefits of an open source package in revealing the underpinning of the parallel IO performance.« less

  11. [Research on non-rigid registration of multi-modal medical image based on Demons algorithm].

    PubMed

    Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang

    2014-02-01

    Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.

  12. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    PubMed

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  13. A collaborative interaction and visualization multi-modal environment for surgical planning.

    PubMed

    Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot

    2009-01-01

    The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.

  14. Treatment of sentence comprehension and production in aphasia: is there cross-modal generalisation?

    PubMed

    Adelt, Anne; Hanne, Sandra; Stadie, Nicole

    2016-09-09

    Exploring generalisation following treatment of language deficits in aphasia can provide insights into the functional relation of the cognitive processing systems involved. In the present study, we first review treatment outcomes of interventions targeting sentence processing deficits and, second report a treatment study examining the occurrence of practice effects and generalisation in sentence comprehension and production. In order to explore the potential linkage between processing systems involved in comprehending and producing sentences, we investigated whether improvements generalise within (i.e., uni-modal generalisation in comprehension or in production) and/or across modalities (i.e., cross-modal generalisation from comprehension to production or vice versa). Two individuals with aphasia displaying co-occurring deficits in sentence comprehension and production were trained on complex, non-canonical sentences in both modalities. Two evidence-based treatment protocols were applied in a crossover intervention study with sequence of treatment phases being randomly allocated. Both participants benefited significantly from treatment, leading to uni-modal generalisation in both comprehension and production. However, cross-modal generalisation did not occur. The magnitude of uni-modal generalisation in sentence production was related to participants' sentence comprehension performance prior to treatment. These findings support the assumption of modality-specific sub-systems for sentence comprehension and production, being linked uni-directionally from comprehension to production.

  15. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing

    PubMed Central

    Röder, Brigitte; Hanganu-Opatz, Ileana L.

    2015-01-01

    Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123

  16. A Multi-Modal Active Learning Experience for Teaching Social Categorization

    ERIC Educational Resources Information Center

    Schwarzmueller, April

    2011-01-01

    This article details a multi-modal active learning experience to help students understand elements of social categorization. Each student in a group dynamics course observed two groups in conflict and identified examples of in-group bias, double-standard thinking, out-group homogeneity bias, law of small numbers, group attribution error, ultimate…

  17. Farm Management Support on Cloud Computing Platform: A System for Cropland Monitoring Using Multi-Source Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.

    2015-12-01

    Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in

  18. Falcon: a highly flexible open-source software for closed-loop neuroscience.

    PubMed

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real

  19. Falcon: a highly flexible open-source software for closed-loop neuroscience

    NASA Astrophysics Data System (ADS)

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those

  20. Cross-modal representation of spoken and written word meaning in left pars triangularis.

    PubMed

    Liuzzi, Antonietta Gabriella; Bruffaerts, Rose; Peeters, Ronald; Adamczuk, Katarzyna; Keuleers, Emmanuel; De Deyne, Simon; Storms, Gerrit; Dupont, Patrick; Vandenberghe, Rik

    2017-04-15

    The correspondence in meaning extracted from written versus spoken input remains to be fully understood neurobiologically. Here, in a total of 38 subjects, the functional anatomy of cross-modal semantic similarity for concrete words was determined based on a dual criterion: First, a voxelwise univariate analysis had to show significant activation during a semantic task (property verification) performed with written and spoken concrete words compared to the perceptually matched control condition. Second, in an independent dataset, in these clusters, the similarity in fMRI response pattern to two distinct entities, one presented as a written and the other as a spoken word, had to correlate with the similarity in meaning between these entities. The left ventral occipitotemporal transition zone and ventromedial temporal cortex, retrosplenial cortex, pars orbitalis bilaterally, and the left pars triangularis were all activated in the univariate contrast. Only the left pars triangularis showed a cross-modal semantic similarity effect. There was no effect of phonological nor orthographic similarity in this region. The cross-modal semantic similarity effect was confirmed by a secondary analysis in the cytoarchitectonically defined BA45. A semantic similarity effect was also present in the ventral occipital regions but only within the visual modality, and in the anterior superior temporal cortex only within the auditory modality. This study provides direct evidence for the coding of word meaning in BA45 and positions its contribution to semantic processing at the confluence of input-modality specific pathways that code for meaning within the respective input modalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. 49 CFR 231.13 - Passenger-train cars with open-end platforms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Passenger-train cars with open-end platforms. 231... Passenger-train cars with open-end platforms. (a) Hand brakes—(1) Number. Each passenger-train car shall be...) Location. Each hand brake shall be so located that it can be safely operated while car is in motion. (b...

  2. 49 CFR 231.13 - Passenger-train cars with open-end platforms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Passenger-train cars with open-end platforms. 231... Passenger-train cars with open-end platforms. (a) Hand brakes—(1) Number. Each passenger-train car shall be...) Location. Each hand brake shall be so located that it can be safely operated while car is in motion. (b...

  3. 49 CFR 231.13 - Passenger-train cars with open-end platforms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Passenger-train cars with open-end platforms. 231... Passenger-train cars with open-end platforms. (a) Hand brakes—(1) Number. Each passenger-train car shall be...) Location. Each hand brake shall be so located that it can be safely operated while car is in motion. (b...

  4. 49 CFR 231.13 - Passenger-train cars with open-end platforms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Passenger-train cars with open-end platforms. 231... Passenger-train cars with open-end platforms. (a) Hand brakes—(1) Number. Each passenger-train car shall be...) Location. Each hand brake shall be so located that it can be safely operated while car is in motion. (b...

  5. 49 CFR 231.13 - Passenger-train cars with open-end platforms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Passenger-train cars with open-end platforms. 231... Passenger-train cars with open-end platforms. (a) Hand brakes—(1) Number. Each passenger-train car shall be...) Location. Each hand brake shall be so located that it can be safely operated while car is in motion. (b...

  6. Participatory Planning, Monitoring and Evaluation of Multi-Stakeholder Platforms in Integrated Landscape Initiatives.

    PubMed

    Kusters, Koen; Buck, Louise; de Graaf, Maartje; Minang, Peter; van Oosten, Cora; Zagt, Roderick

    2018-07-01

    Integrated landscape initiatives typically aim to strengthen landscape governance by developing and facilitating multi-stakeholder platforms. These are institutional coordination mechanisms that enable discussions, negotiations, and joint planning between stakeholders from various sectors in a given landscape. Multi-stakeholder platforms tend to involve complex processes with diverse actors, whose objectives and focus may be subjected to periodic re-evaluation, revision or reform. In this article we propose a participatory method to aid planning, monitoring, and evaluation of such platforms, and we report on experiences from piloting the method in Ghana and Indonesia. The method is comprised of three components. The first can be used to look ahead, identifying priorities for future multi-stakeholder collaboration in the landscape. It is based on the identification of four aspirations that are common across multi-stakeholder platforms in integrated landscape initiatives. The second can be used to look inward. It focuses on the processes within an existing multi-stakeholder platform in order to identify areas for possible improvement. The third can be used to look back, identifying the main outcomes of an existing platform and comparing them to the original objectives. The three components can be implemented together or separately. They can be used to inform planning and adaptive management of the platform, as well as to demonstrate performance and inform the design of new interventions.

  7. MicMac GIS application: free open source

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Moutinho, O.; Teodoro, A.

    2016-10-01

    The use of Remotely Piloted Aerial System (RPAS) for remote sensing applications is becoming more frequent as the technologies on on-board cameras and the platform itself are becoming a serious contender to satellite and airplane imagery. MicMac is a photogrammetric tool for image matching that can be used in different contexts. It is an open source software and it can be used as a command line or with a graphic interface (for each command). The main objective of this work was the integration of MicMac with QGIS, which is also an open source software, in order to create a new open source tool applied to photogrammetry/remote sensing. Python language was used to develop the application. This tool would be very useful in the manipulation and 3D modelling of a set of images. The main objective was to create a toolbar in QGIS with the basic functionalities with intuitive graphic interfaces. The toolbar is composed by three buttons: produce the points cloud, create the Digital Elevation Model (DEM) and produce the orthophoto of the study area. The application was tested considering 35 photos, a subset of images acquired by a RPAS in the Aguda beach area, Porto, Portugal. They were used in order to create a 3D terrain model and from this model obtain an orthophoto and the corresponding DEM. The code is open and can be modified according to the user requirements. This integration would be very useful in photogrammetry and remote sensing community combined with GIS capabilities.

  8. Datacube Services in Action, Using Open Source and Open Standards

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2016-12-01

    Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.

  9. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping1[C][W][OPEN

    PubMed Central

    Klukas, Christian; Chen, Dijun; Pape, Jean-Michel

    2014-01-01

    High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818

  10. Rhesus macaques recognize unique multi-modal face-voice relations of familiar individuals and not of unfamiliar ones

    PubMed Central

    Habbershon, Holly M.; Ahmed, Sarah Z.; Cohen, Yale E.

    2013-01-01

    Communication signals in non-human primates are inherently multi-modal. However, for laboratory-housed monkeys, there is relatively little evidence in support of the use of multi-modal communication signals in individual recognition. Here, we used a preferential-looking paradigm to test whether laboratory-housed rhesus could “spontaneously” (i.e., in the absence of operant training) use multi-modal communication stimuli to discriminate between known conspecifics. The multi-modal stimulus was a silent movie of two monkeys vocalizing and an audio file of the vocalization from one of the monkeys in the movie. We found that the gaze patterns of those monkeys that knew the individuals in the movie were reliably biased toward the individual that did not produce the vocalization. In contrast, there was not a systematic gaze pattern for those monkeys that did not know the individuals in the movie. These data are consistent with the hypothesis that laboratory-housed rhesus can recognize and distinguish between conspecifics based on auditory and visual communication signals. PMID:23774779

  11. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  12. Conversion of HSPF Legacy Model to a Platform-Independent, Open-Source Language

    NASA Astrophysics Data System (ADS)

    Heaphy, R. T.; Burke, M. P.; Love, J. T.

    2015-12-01

    Since its initial development over 30 years ago, the Hydrologic Simulation Program - FORTAN (HSPF) model has been used worldwide to support water quality planning and management. In the United States, HSPF receives widespread endorsement as a regulatory tool at all levels of government and is a core component of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) system, which was developed to support nationwide Total Maximum Daily Load (TMDL) analysis. However, the model's legacy code and data management systems have limitations in their ability to integrate with modern software, hardware, and leverage parallel computing, which have left voids in optimization, pre-, and post-processing tools. Advances in technology and our scientific understanding of environmental processes that have occurred over the last 30 years mandate that upgrades be made to HSPF to allow it to evolve and continue to be a premiere tool for water resource planners. This work aims to mitigate the challenges currently facing HSPF through two primary tasks: (1) convert code to a modern widely accepted, open-source, high-performance computing (hpc) code; and (2) convert model input and output files to modern widely accepted, open-source, data model, library, and binary file format. Python was chosen as the new language for the code conversion. It is an interpreted, object-oriented, hpc code with dynamic semantics that has become one of the most popular open-source languages. While python code execution can be slow compared to compiled, statically typed programming languages, such as C and FORTRAN, the integration of Numba (a just-in-time specializing compiler) has allowed this challenge to be overcome. For the legacy model data management conversion, HDF5 was chosen to store the model input and output. The code conversion for HSPF's hydrologic and hydraulic modules has been completed. The converted code has been tested against HSPF's suite of "test" runs and shown

  13. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology

    PubMed Central

    Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.

    2014-01-01

    OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also

  14. A Cross-Modal Assessment of Reading Achievement in Children.

    ERIC Educational Resources Information Center

    Webb, Kathryn; And Others

    1982-01-01

    This study examined the ability of the Listen and Look (LL) test of cross-modal perception and the Metropolitan Readiness Test (MRT) to predict reading achievement. Data from 79 first-grade pupils were analyzed. Both the LL and MRT demonstrated predictive validity. (Author/BW)

  15. Use of Multi-Modal Media and Tools in an Online Information Literacy Course: College Students' Attitudes and Perceptions

    ERIC Educational Resources Information Center

    Chen, Hsin-Liang; Williams, James Patrick

    2009-01-01

    This project studies the use of multi-modal media objects in an online information literacy class. One hundred sixty-two undergraduate students answered seven surveys. Significant relationships are found among computer skills, teaching materials, communication tools and learning experience. Multi-modal media objects and communication tools are…

  16. Computer Forensics Education - the Open Source Approach

    NASA Astrophysics Data System (ADS)

    Huebner, Ewa; Bem, Derek; Cheung, Hon

    In this chapter we discuss the application of the open source software tools in computer forensics education at tertiary level. We argue that open source tools are more suitable than commercial tools, as they provide the opportunity for students to gain in-depth understanding and appreciation of the computer forensic process as opposed to familiarity with one software product, however complex and multi-functional. With the access to all source programs the students become more than just the consumers of the tools as future forensic investigators. They can also examine the code, understand the relationship between the binary images and relevant data structures, and in the process gain necessary background to become the future creators of new and improved forensic software tools. As a case study we present an advanced subject, Computer Forensics Workshop, which we designed for the Bachelor's degree in computer science at the University of Western Sydney. We based all laboratory work and the main take-home project in this subject on open source software tools. We found that without exception more than one suitable tool can be found to cover each topic in the curriculum adequately. We argue that this approach prepares students better for forensic field work, as they gain confidence to use a variety of tools, not just a single product they are familiar with.

  17. Openly Published Environmental Sensing (OPEnS) | Advancing Open-Source Research, Instrumentation, and Dissemination

    NASA Astrophysics Data System (ADS)

    Udell, C.; Selker, J. S.

    2017-12-01

    The increasing availability and functionality of Open-Source software and hardware along with 3D printing, low-cost electronics, and proliferation of open-access resources for learning rapid prototyping are contributing to fundamental transformations and new technologies in environmental sensing. These tools invite reevaluation of time-tested methodologies and devices toward more efficient, reusable, and inexpensive alternatives. Building upon Open-Source design facilitates community engagement and invites a Do-It-Together (DIT) collaborative framework for research where solutions to complex problems may be crowd-sourced. However, barriers persist that prevent researchers from taking advantage of the capabilities afforded by open-source software, hardware, and rapid prototyping. Some of these include: requisite technical skillsets, knowledge of equipment capabilities, identifying inexpensive sources for materials, money, space, and time. A university MAKER space staffed by engineering students to assist researchers is one proposed solution to overcome many of these obstacles. This presentation investigates the unique capabilities the USDA-funded Openly Published Environmental Sensing (OPEnS) Lab affords researchers, within Oregon State and internationally, and the unique functions these types of initiatives support at the intersection of MAKER spaces, Open-Source academic research, and open-access dissemination.

  18. A multi-modal training programme to improve physical activity, physical fitness and perceived physical ability in obese children.

    PubMed

    Morano, Milena; Colella, Dario; Rutigliano, Irene; Fiore, Pietro; Pettoello-Mantovani, Massimo; Campanozzi, Angelo

    2014-01-01

    Actual and perceived physical abilities are important correlates of physical activity (PA) and fitness, but little research has explored these relationships over time in obese children. This study was designed: (a) to assess the feasibility of a multi-modal training programme promoting changes in PA, fundamental motor skills and real and perceived physical abilities of obese children; and (b) to explore cross-sectional and longitudinal relationships between real and perceived physical competence in boys and girls. Forty-one participants (9.2 ± 1.2 years) were assessed before and after an 8-month intervention with respect to body composition, physical fitness, self-reported PA and perceived physical ability. After treatment, obese children reported improvements in the body mass index, PA levels, gross motor performance and actual and perceived physical abilities. Real and perceived physical competence was correlated in boys, but not in girls. Results indicate that a multi-modal programme focused on actual and perceived physical competence as associated with the gradual increase in the volume of activity might be an effective strategy to improve adherence of the participants and to increase the lifelong exercise skills of obese children.

  19. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.

    PubMed

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-03-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images

    PubMed Central

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. PMID:25541188

  1. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records.

    PubMed

    Peissig, Peggy L; Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries.

  2. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records

    PubMed Central

    Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    Objective There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. Materials and methods We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. Results An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. Discussion A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. Conclusion We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries. PMID:22319176

  3. An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.

    2013-12-01

    Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.

  4. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    NASA Astrophysics Data System (ADS)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  5. A gantry-based tri-modality system for bioluminescence tomography

    PubMed Central

    Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2012-01-01

    A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540

  6. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state

  7. Visual and cross-modal cues increase the identification of overlapping visual stimuli in Balint's syndrome.

    PubMed

    D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina

    2017-10-01

    Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.

  8. PharmTeX: a LaTeX-Based Open-Source Platform for Automated Reporting Workflow.

    PubMed

    Rasmussen, Christian Hove; Smith, Mike K; Ito, Kaori; Sundararajan, Vijayakumar; Magnusson, Mats O; Niclas Jonsson, E; Fostvedt, Luke; Burger, Paula; McFadyen, Lynn; Tensfeldt, Thomas G; Nicholas, Timothy

    2018-03-16

    Every year, the pharmaceutical industry generates a large number of scientific reports related to drug research, development, and regulatory submissions. Many of these reports are created using text processing tools such as Microsoft Word. Given the large number of figures, tables, references, and other elements, this is often a tedious task involving hours of copying and pasting and substantial efforts in quality control (QC). In the present article, we present the LaTeX-based open-source reporting platform, PharmTeX, a community-based effort to make reporting simple, reproducible, and user-friendly. The PharmTeX creators put a substantial effort into simplifying the sometimes complex elements of LaTeX into user-friendly functions that rely on advanced LaTeX and Perl code running in the background. Using this setup makes LaTeX much more accessible for users with no prior LaTeX experience. A software collection was compiled for users not wanting to manually install the required software components. The PharmTeX templates allow for inclusion of tables directly from mathematical software output as well and figures from several formats. Code listings can be included directly from source. No previous experience and only a few hours of training are required to start writing reports using PharmTeX. PharmTeX significantly reduces the time required for creating a scientific report fully compliant with regulatory and industry expectations. QC is made much simpler, since there is a direct link between analysis output and report input. PharmTeX makes available to report authors the strengths of LaTeX document processing without the need for extensive training. Graphical Abstract ᅟ.

  9. Open Source Software Development

    DTIC Science & Technology

    2011-01-01

    Software, 2002, 149(1), 3-17. 3. DiBona , C., Cooper, D., and Stone, M. (Eds.), Open Sources 2.0, 2005, O’Reilly Media, Sebastopol, CA. Also see, C... DiBona , S. Ockman, and M. Stone (Eds.). Open Sources: Vocides from the Open Source Revolution, 1999. O’Reilly Media, Sebastopol, CA. 4. Ducheneaut, N

  10. Free and open source software for the manipulation of digital images.

    PubMed

    Solomon, Robert W

    2009-06-01

    Free and open source software is a type of software that is nearly as powerful as commercial software but is freely downloadable. This software can do almost everything that the expensive programs can. GIMP (gnu image manipulation program) is the free program that is comparable to Photoshop, and versions are available for Windows, Macintosh, and Linux platforms. This article briefly describes how GIMP can be installed and used to manipulate radiology images. It is no longer necessary to budget large amounts of money for high-quality software to achieve the goals of image processing and document creation because free and open source software is available for the user to download at will.

  11. What Can OpenEI Do For You?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-12-10

    Open Energy Information (OpenEI) is an open source web platform—similar to the one used by Wikipedia—developed by the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to make the large amounts of energy-related data and information more easily searched, accessed, and used both by people and automated machine processes. Built utilizing the standards and practices of the Linked Open Data community, the OpenEI platform is much more robust and powerful than typical web sites and databases. As an open platform, all users can search, edit, add, and access data in OpenEI for free. The user communitymore » contributes the content and ensures its accuracy and relevance; as the community expands, so does the content's comprehensiveness and quality. The data are structured and tagged with descriptors to enable cross-linking among related data sets, advanced search functionality, and consistent, usable formatting. Data input protocols and quality standards help ensure the content is structured and described properly and derived from a credible source. Although DOE/NREL is developing OpenEI and seeding it with initial data, it is designed to become a true community model with millions of users, a large core of active contributors, and numerous sponsors.« less

  12. DCO-VIVO: A Collaborative Data Platform for the Deep Carbon Science Communities

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; West, P.; Erickson, J. S.; Ma, X.; Fox, P. A.

    2014-12-01

    Deep Carbon Observatory (DCO) is a decade-long scientific endeavor to understand carbon in the complex deep Earth system. Thousands of DCO scientists from institutions across the globe are organized into communities representing four domains of exploration: Extreme Physics and Chemistry, Reservoirs and Fluxes, Deep Energy, and Deep Life. Cross-community and cross-disciplinary collaboration is one of the most distinctive features in DCO's flexible research framework. VIVO is an open-source Semantic Web platform that facilitates cross-institutional researcher and research discovery. it includes a number of standard ontologies that interconnect people, organizations, publications, activities, locations, and other entities of research interest to enable browsing, searching, visualizing, and generating Linked Open (research) Data. The DCO-VIVO solution expedites research collaboration between DCO scientists and communities. Based on DCO's specific requirements, the DCO Data Science team developed a series of extensions to the VIVO platform including extending the VIVO information model, extended query over the semantic information within VIVO, integration with other open source collaborative environments and data management systems, using single sign-on, assigning of unique Handles to DCO objects, and publication and dataset ingesting extensions using existing publication systems. We present here the iterative development of these requirements that are now in daily use by the DCO community of scientists for research reporting, information sharing, and resource discovery in support of research activities and program management.

  13. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  14. Influence of auditory spatial attention on cross-modal semantic priming effect: evidence from N400 effect.

    PubMed

    Wang, Hongyan; Zhang, Gaoyan; Liu, Baolin

    2017-01-01

    Semantic priming is an important research topic in the field of cognitive neuroscience. Previous studies have shown that the uni-modal semantic priming effect can be modulated by attention. However, the influence of attention on cross-modal semantic priming is unclear. To investigate this issue, the present study combined a cross-modal semantic priming paradigm with an auditory spatial attention paradigm, presenting the visual pictures as the prime stimuli and the semantically related or unrelated sounds as the target stimuli. Event-related potentials results showed that when the target sound was attended to, the N400 effect was evoked. The N400 effect was also observed when the target sound was not attended to, demonstrating that the cross-modal semantic priming effect persists even though the target stimulus is not focused on. Further analyses revealed that the N400 effect evoked by the unattended sound was significantly lower than the effect evoked by the attended sound. This contrast provides new evidence that the cross-modal semantic priming effect can be modulated by attention.

  15. Open Energy Info (OpenEI) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-12-01

    The Open Energy Information (OpenEI.org) initiative is a free, open-source, knowledge-sharing platform. OpenEI was created to provide access to data, models, tools, and information that accelerate the transition to clean energy systems through informed decisions.

  16. Open Source Vision

    ERIC Educational Resources Information Center

    Villano, Matt

    2006-01-01

    Increasingly, colleges and universities are turning to open source as a way to meet their technology infrastructure and application needs. Open source has changed life for visionary CIOs and their campus communities nationwide. The author discusses what these technologists see as the benefits--and the considerations.

  17. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    PubMed

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  18. Development of a new multi-modal Monte-Carlo radiotherapy planning system.

    PubMed

    Kumada, H; Nakamura, T; Komeda, M; Matsumura, A

    2009-07-01

    A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.

  19. Differences in Funding Sources of Phase III Oncology Clinical Trials by Treatment Modality and Cancer Type.

    PubMed

    Jairam, Vikram; Yu, James B; Aneja, Sanjay; Wilson, Lynn D; Lloyd, Shane

    2017-06-01

    Given the limited resources available to conduct clinical trials, it is important to understand how trial sponsorship differs among different therapeutic modalities and cancer types and to consider the ramifications of these differences. We searched clinicaltrials.gov for a cross-sectional register of active, phase III, randomized controlled trials (RCTs) studying treatment-related endpoints such as survival and recurrence for the 24 most prevalent malignancies. We classified the RCTs into 7 categories of therapeutic modality: (1) chemotherapy/other cancer-directed drugs, (2) targeted therapy, (3) surgery, (4) radiation therapy (RT), (5) RT with other modalities, (6) multimodality therapy without RT, and (7) other. RCTs were categorized as being funded by one or more of the following groups: (1) government, (2) hospital/university, (3) industry, and (4) other. χ analysis was performed to detect differences in funding source distribution between modalities and cancer types. The percentage of multimodality trials (5%) and radiation RCTs (4%) funded by industry was less than that for chemotherapy (32%, P<0.01) or targeted therapy (48%, P<0.01). Trials studying targeted therapy were less likely to have hospital/university funding than any of the other modalities (P<0.01 in each comparison). Trials of chemotherapy were more likely to be funded by industry if they also studied targeted therapy (P<0.01). RCTs studying targeted therapies are more likely to be funded by industry than trials studying multimodality therapy or radiation. The impact of industry funding versus institutional or governmental sources of funding for cancer research is unclear and requires further study.

  20. Applying open source data visualization tools to standard based medical data.

    PubMed

    Kopanitsa, Georgy; Taranik, Maxim

    2014-01-01

    Presentation of medical data in personal health records (PHRs) requires flexible platform independent tools to ensure easy access to the information. Different backgrounds of the patients, especially elder people require simple graphical presentation of the data. Data in PHRs can be collected from heterogeneous sources. Application of standard based medical data allows development of generic visualization methods. Focusing on the deployment of Open Source Tools, in this paper we applied Java Script libraries to create data presentations for standard based medical data.

  1. Age-equivalent top-down modulation during cross-modal selective attention.

    PubMed

    Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam

    2014-12-01

    Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.

  2. Open-Source as a strategy for operational software - the case of Enki

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2014-05-01

    Since 2002, SINTEF Energy has been developing what is now known as the Enki modelling system. This development has been financed by Norway's largest hydropower producer Statkraft, motivated by a desire for distributed hydrological models in operational use. As the owner of the source code, Statkraft has recently decided on Open Source as a strategy for further development, and for migration from an R&D context to operational use. A current cooperation project is currently carried out between SINTEF Energy, 7 large Norwegian hydropower producers including Statkraft, three universities and one software company. Of course, the most immediate task is that of software maturing. A more important challenge, however, is one of gaining experience within the operational hydropower industry. A transition from lumped to distributed models is likely to also require revision of measurement program, calibration strategy, use of GIS and modern data sources like weather radar and satellite imagery. On the other hand, map based visualisations enable a richer information exchange between hydrologic forecasters and power market traders. The operating context of a distributed hydrology model within hydropower planning is far from settled. Being both a modelling framework and a library of plugin-routines to build models from, Enki supports the flexibility needed in this situation. Recent development has separated the core from the user interface, paving the way for a scripting API, cross-platform compilation, and front-end programs serving different degrees of flexibility, robustness and security. The open source strategy invites anyone to use Enki and to develop and contribute new modules. Once tested, the same modules are available for the operational versions of the program. A core challenge is to offer rigid testing procedures and mechanisms to reject routines in an operational setting, without limiting the experimentation with new modules. The Open Source strategy also has

  3. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    PubMed

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  4. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave.

    PubMed

    Oosterhof, Nikolaas N; Connolly, Andrew C; Haxby, James V

    2016-01-01

    SMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA.

  5. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave

    PubMed Central

    Oosterhof, Nikolaas N.; Connolly, Andrew C.; Haxby, James V.

    2016-01-01

    SMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA PMID:27499741

  6. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  7. Latent feature decompositions for integrative analysis of multi-platform genomic data

    PubMed Central

    Gregory, Karl B.; Momin, Amin A.; Coombes, Kevin R.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to, a glioblastoma multiforme dataset from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between

  8. Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances.

    PubMed

    Sáez, Carlos; Robles, Montserrat; García-Gómez, Juan M

    2017-02-01

    Biomedical data may be composed of individuals generated from distinct, meaningful sources. Due to possible contextual biases in the processes that generate data, there may exist an undesirable and unexpected variability among the probability distribution functions (PDFs) of the source subsamples, which, when uncontrolled, may lead to inaccurate or unreproducible research results. Classical statistical methods may have difficulties to undercover such variabilities when dealing with multi-modal, multi-type, multi-variate data. This work proposes two metrics for the analysis of stability among multiple data sources, robust to the aforementioned conditions, and defined in the context of data quality assessment. Specifically, a global probabilistic deviation and a source probabilistic outlyingness metrics are proposed. The first provides a bounded degree of the global multi-source variability, designed as an estimator equivalent to the notion of normalized standard deviation of PDFs. The second provides a bounded degree of the dissimilarity of each source to a latent central distribution. The metrics are based on the projection of a simplex geometrical structure constructed from the Jensen-Shannon distances among the sources PDFs. The metrics have been evaluated and demonstrated their correct behaviour on a simulated benchmark and with real multi-source biomedical data using the UCI Heart Disease data set. The biomedical data quality assessment based on the proposed stability metrics may improve the efficiency and effectiveness of biomedical data exploitation and research.

  9. DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2015-04-01

    Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file

  10. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  11. SPIM-fluid: open source light-sheet based platform for high-throughput imaging

    PubMed Central

    Gualda, Emilio J.; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-01-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  12. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

    PubMed

    Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  13. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    PubMed Central

    Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150

  14. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.

    PubMed

    Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S

    2017-09-06

    The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent

  15. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers.

    PubMed

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  16. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    PubMed Central

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435

  17. An i2b2-based, generalizable, open source, self-scaling chronic disease registry

    PubMed Central

    Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Objective Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Materials and methods Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. Results The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. Discussion We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. Conclusions The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases. PMID:22733975

  18. An i2b2-based, generalizable, open source, self-scaling chronic disease registry.

    PubMed

    Natter, Marc D; Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases.

  19. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording

    NASA Astrophysics Data System (ADS)

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Objective. Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Approach. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. Main results. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Significance. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  20. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.

    PubMed

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  1. Distance education course on spatial multi-hazard risk assessment, using Open Source software

    NASA Astrophysics Data System (ADS)

    van Westen, C. J.; Frigerio, S.

    2009-04-01

    As part of the capacity building activities of the United Nations University - ITC School on Disaster Geo-Information Management (UNU-ITC DGIM) the International Institute for Geoinformation Science and Earth Observation (ITC) has developed a distance education course on the application of Geographic Information Systems for multi-hazard risk assessment. This course is designed for academic staff, as well as for professionals working in (non-) governmental organizations where knowledge of disaster risk management is essential. The course guides the participants through the entire process of risk assessment, on the basis of a case study of a city exposed to multiple hazards, in a developing country. The courses consists of eight modules, each with a guide book explaining the theoretical background, and guiding the participants through spatial data requirements for risk assessment, hazard assessment procedures, generation of elements at risk databases, vulnerability assessment, qualitative and quantitative risk assessment methods, risk evaluation and risk reduction. Linked to the theory is a large set of exercises, with exercise descriptions, answer sheets, demos and GIS data. The exercises deal with four different types of hazards: earthquakes, flooding, technological hazards, and landslides. One important consideration in designing the course is that people from developing countries should not be restricted in using it due to financial burdens for software acquisition. Therefore the aim was to use Open Source software as a basis. The GIS exercises are written for the ILWIS software. All exercises have also been integrated into a WebGIS, using the Open source software CartoWeb (based on GNU License). It is modular and customizable thanks to its object-oriented architecture and based on a hierarchical structure (to manage and organize every package of information of every step required in risk assessment). Different switches for every component of the risk assessment

  2. HELIOS: A new open-source radiative transfer code

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  3. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  4. Eodataservice.org: Big Data Platform to Enable Multi-disciplinary Information Extraction from Geospatial Data

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mantovani, S.; Barboni, D.; Hogan, P.

    2017-12-01

    In 1999, US Vice-President Al Gore outlined the concept of `Digital Earth' as a multi-resolution, three-dimensional representation of the planet to find, visualise and make sense of vast amounts of geo- referenced information on physical and social environments, allowing to navigate through space and time, accessing historical and forecast data to support scientists, policy-makers, and any other user. The eodataservice platform (http://eodataservice.org/) implements the Digital Earth Concept: eodatasevice is a cross-domain platform that makes available a large set of multi-year global environmental collections allowing data discovery, visualization, combination, processing and download. It implements a "virtual datacube" approach where data stored on distributed data centers are made available via standardized OGC-compliant interfaces. Dedicated web-based Graphic User Interfaces (based on the ESA-NASA WebWorldWind technology) as well as web-based notebooks (e.g. Jupyter notebook), deskop GIS tools and command line interfaces can be used to access and manipulate the data. The platform can be fully customized on users' needs. So far eodataservice has been used for the following thematic applications: High resolution satellite data distribution Land surface monitoring using SAR surface deformation data Atmosphere, ocean and climate applications Climate-health applications Urban Environment monitoring Safeguard of cultural heritage sites Support to farmers and (re)-insurances in the agriculturés field In the current work, the EO Data Service concept is presented as key enabling technology; furthermore various examples are provided to demonstrate the high level of interdisciplinarity of the platform.

  5. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.

    PubMed

    Lu, Pei; Xia, Jun; Li, Zhicheng; Xiong, Jing; Yang, Jian; Zhou, Shoujun; Wang, Lei; Chen, Mingyang; Wang, Cheng

    2016-11-08

    Accurate segmentation of blood vessels plays an important role in the computer-aided diagnosis and interventional treatment of vascular diseases. The statistical method is an important component of effective vessel segmentation; however, several limitations discourage the segmentation effect, i.e., dependence of the image modality, uneven contrast media, bias field, and overlapping intensity distribution of the object and background. In addition, the mixture models of the statistical methods are constructed relaying on the characteristics of the image histograms. Thus, it is a challenging issue for the traditional methods to be available in vessel segmentation from multi-modality angiographic images. To overcome these limitations, a flexible segmentation method with a fixed mixture model has been proposed for various angiography modalities. Our method mainly consists of three parts. Firstly, multi-scale filtering algorithm was used on the original images to enhance vessels and suppress noises. As a result, the filtered data achieved a new statistical characteristic. Secondly, a mixture model formed by three probabilistic distributions (two Exponential distributions and one Gaussian distribution) was built to fit the histogram curve of the filtered data, where the expectation maximization (EM) algorithm was used for parameters estimation. Finally, three-dimensional (3D) Markov random field (MRF) were employed to improve the accuracy of pixel-wise classification and posterior probability estimation. To quantitatively evaluate the performance of the proposed method, two phantoms simulating blood vessels with different tubular structures and noises have been devised. Meanwhile, four clinical angiographic data sets from different human organs have been used to qualitatively validate the method. To further test the performance, comparison tests between the proposed method and the traditional ones have been conducted on two different brain magnetic resonance angiography

  6. Engaging older adults in the visualization of sensor data facilitated by an open platform for connected devices.

    PubMed

    Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny

    2016-03-11

    The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.

  7. Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology.

    PubMed

    Siegle, Joshua H; Hale, Gregory J; Newman, Jonathan P; Voigts, Jakob

    2015-06-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is 'open' or 'closed': that is, whether or not the system's schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Sound Symbolism in Infancy: Evidence for Sound-Shape Cross-Modal Correspondences in 4-Month-Olds

    ERIC Educational Resources Information Center

    Ozturk, Ozge; Krehm, Madelaine; Vouloumanos, Athena

    2013-01-01

    Perceptual experiences in one modality are often dependent on activity from other sensory modalities. These cross-modal correspondences are also evident in language. Adults and toddlers spontaneously and consistently map particular words (e.g., "kiki") to particular shapes (e.g., angular shapes). However, the origins of these systematic mappings…

  9. Shipping Science Worldwide with Open Source Containers

    NASA Astrophysics Data System (ADS)

    Molineaux, J. P.; McLaughlin, B. D.; Pilone, D.; Plofchan, P. G.; Murphy, K. J.

    2014-12-01

    Scientific applications often present difficult web-hosting needs. Their compute- and data-intensive nature, as well as an increasing need for high-availability and distribution, combine to create a challenging set of hosting requirements. In the past year, advancements in container-based virtualization and related tooling have offered new lightweight and flexible ways to accommodate diverse applications with all the isolation and portability benefits of traditional virtualization. This session will introduce and demonstrate an open-source, single-interface, Platform-as-a-Serivce (PaaS) that empowers application developers to seamlessly leverage geographically distributed, public and private compute resources to achieve highly-available, performant hosting for scientific applications.

  10. Bonn eXperimental System (BoXS): An open-source platform for interactive experiments in psychology and economics.

    PubMed

    Seithe, Mirko; Morina, Jeronim; Glöckner, Andreas

    2016-12-01

    The increased interest in complex-interactive behavior on the one hand and the cognitive and affective processes underlying behavior on the other are a challenge for researchers in psychology and behavioral economics. Research often necessitates that participants strategically interact with each other in dyads or groups. At the same time, to investigate the underlying cognitive and affective processes in a fine-grained manner, not only choices but also other variables such as decision time, information search, and pupil dilation should be recorded. The Bonn eXperimental System (BoXS) introduced in this article is an open-source platform that allows interactive as well as non-interactive experiments to be conducted while recording process measures very efficiently and completely browser-based. In the current version, BoXS has particularly been extended to enable conducting interactive eye-tracking and mouse-tracking experiments. One core advantage of BoXS is its simplicity. Using BoXS does not require prior installation for both experimenters and participants, which allows for running studies outside the laboratory and over the internet. Learning to program for BoXS is easy even for researchers without previous programming experience.

  11. An Event-Related Potential Study of Cross-modal Morphological and Phonological Priming

    PubMed Central

    Justus, Timothy; Yang, Jennifer; Larsen, Jary; de Mornay Davies, Paul; Swick, Diane

    2009-01-01

    The current work investigated whether differences in phonological overlap between the past- and present-tense forms of regular and irregular verbs can account for the graded neurophysiological effects of verb regularity observed in past-tense priming designs. Event-related potentials were recorded from sixteen healthy participants who performed a lexical-decision task in which past-tense primes immediately preceded present-tense targets. To minimize intra-modal phonological priming effects, cross-modal presentation between auditory primes and visual targets was employed, and results were compared to a companion intra-modal auditory study (Justus, Larsen, de Mornay Davies, & Swick, 2008). For both regular and irregular verbs, faster response times and reduced N400 components were observed for present-tense forms when primed by the corresponding past-tense forms. Although behavioral facilitation was observed with a pseudopast phonological control condition, neither this condition nor an orthographic-phonological control produced significant N400 priming effects. Instead, these two types of priming were associated with a post-lexical anterior negativity (PLAN). Results are discussed with regard to dual- and single-system theories of inflectional morphology, as well as intra- and cross-modal prelexical priming. PMID:20160930

  12. MultiElec: A MATLAB Based Application for MEA Data Analysis.

    PubMed

    Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R

    2015-01-01

    We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.

  13. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things.

    PubMed

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-03-18

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential.

  14. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things

    PubMed Central

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-01-01

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160

  15. KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery

    NASA Astrophysics Data System (ADS)

    Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan

    2013-05-01

    KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.

  16. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  17. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  18. Multistability, cross-modal binding and the additivity of conjoined grouping principles

    PubMed Central

    Kubovy, Michael; Yu, Minhong

    2012-01-01

    We present a sceptical view of multimodal multistability—drawing most of our examples from the relation between audition and vision. We begin by summarizing some of the principal ways in which audio-visual binding takes place. We review the evidence that unambiguous stimulation in one modality may affect the perception of a multistable stimulus in another modality. Cross-modal influences of one multistable stimulus on the multistability of another are different: they have occurred only in speech perception. We then argue that the strongest relation between perceptual organization in vision and perceptual organization in audition is likely to be by way of analogous Gestalt laws. We conclude with some general observations about multimodality. PMID:22371617

  19. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

    PubMed Central

    2016-01-01

    We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules’ local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly’s entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel’s model integration by combining independently developed models of the retina and lamina neuropils in the fly’s visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel’s ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel’s communication performance both over the number of interface ports exposed by an emulation’s constituent modules and the total number of modules comprised by an emulation. PMID:26751378

  20. Graduate Student Perceptions of Multi-Modal Tablet Use in Academic Environments

    ERIC Educational Resources Information Center

    Bryant, Ezzard C., Jr.

    2016-01-01

    The purpose of this study was to explore graduate student perceptions of use and the ease of use of multi-modal tablets to access electronic course materials, and the perceived differences based on students' gender, age, college of enrollment, and previous experience. This study used the Unified Theory of Acceptance and Use of Technology to…

  1. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  2. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  3. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-01-01

    The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725

  4. Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance

    DOE PAGES

    Logan, Nikolas C.; Paz-Soldan, Carlos; Park, Jong-Kyu; ...

    2016-05-03

    Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This paper identifies the measured response fieldsmore » as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multi-modal plasma response field and that these stable modes drive significant resonant current. Finally, this work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.« less

  5. Proactive Time-Rearrangement Scheme for Multi-Radio Collocated Platform

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Shin, Sang-Heon; Park, Sang Kyu

    We present a simple proactive time rearrangement scheme (PATRA) that reduces the interferences from multi-radio devices equipped in one platform and guarantees user-conceived QoS. Simulation results show that the interference among multiple radios in one platform causes severe performance degradation and cannot guarantee the user requested QoS. However, the PATRA can dramatically improve not only the userconceived QoS but also the overall network throughput.

  6. Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    PubMed

    Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas

    2016-01-01

    Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such

  7. Aging and the visual, haptic, and cross-modal perception of natural object shape.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Norman, Hideko F; Moncrief, Brandon K; Herrmann, Molly; Kapley, Noah

    2006-01-01

    One hundred observers participated in two experiments designed to investigate aging and the perception of natural object shape. In the experiments, younger and older observers performed either a same/different shape discrimination task (experiment 1) or a cross-modal matching task (experiment 2). Quantitative effects of age were found in both experiments. The effect of age in experiment 1 was limited to cross-modal shape discrimination: there was no effect of age upon unimodal (ie within a single perceptual modality) shape discrimination. The effect of age in experiment 2 was eliminated when the older observers were either given an unlimited amount of time to perform the task or when the number of response alternatives was decreased. Overall, the results of the experiments reveal that older observers can effectively perceive 3-D shape from both vision and haptics.

  8. A perception theory in mind-body medicine: guided imagery and mindful meditation as cross-modal adaptation.

    PubMed

    Bedford, Felice L

    2012-02-01

    A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.

  9. Integration of Sparse Multi-modality Representation and Anatomical Constraint for Isointense Infant Brain MR Image Segmentation

    PubMed Central

    Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615

  10. Open Source GIS based integrated watershed management

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  11. The scheme and research of TV series multidimensional comprehensive evaluation on cross-platform

    NASA Astrophysics Data System (ADS)

    Chai, Jianping; Bai, Xuesong; Zhou, Hongjun; Yin, Fulian

    2016-10-01

    As for shortcomings of the comprehensive evaluation system on traditional TV programs such as single data source, ignorance of new media as well as the high time cost and difficulty of making surveys, a new evaluation of TV series is proposed in this paper, which has a perspective in cross-platform multidimensional evaluation after broadcasting. This scheme considers the data directly collected from cable television and the Internet as research objects. It's based on TOPSIS principle, after preprocessing and calculation of the data, they become primary indicators that reflect different profiles of the viewing of TV series. Then after the process of reasonable empowerment and summation by the six methods(PCA, AHP, etc.), the primary indicators form the composite indices on different channels or websites. The scheme avoids the inefficiency and difficulty of survey and marking; At the same time, it not only reflects different dimensions of viewing, but also combines TV media and new media, completing the multidimensional comprehensive evaluation of TV series on cross-platform.

  12. How Is Open Source Special?

    ERIC Educational Resources Information Center

    Kapor, Mitchell

    2005-01-01

    Open source software projects involve the production of goods, but in software projects, the "goods" consist of information. The open source model is an alternative to the conventional centralized, command-and-control way in which things are usually made. In contrast, open source projects are genuinely decentralized and transparent. Transparent…

  13. Cpu/gpu Computing for AN Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin

    2016-06-01

    CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.

  14. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  15. Multi-Modal Traveler Information System - Performance Criteria for Evaluating GCM Corridor Strategies & Technologies

    DOT National Transportation Integrated Search

    1997-07-16

    The Gary-Chicago-Milwaukee (GCM) Multi-Modal Traveler Information System (MMTIS) is a complex project involving a wide spectrum of participants. In order to facilitate its implementation it is important to understand the direction of the MMTIS. This ...

  16. Analysis of modal behavior at frequency cross-over

    NASA Astrophysics Data System (ADS)

    Costa, Robert N., Jr.

    1994-11-01

    The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.

  17. Computational method for multi-modal microscopy based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao

    2017-02-01

    In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.

  18. CellProfiler and KNIME: open source tools for high content screening.

    PubMed

    Stöter, Martin; Niederlein, Antje; Barsacchi, Rico; Meyenhofer, Felix; Brandl, Holger; Bickle, Marc

    2013-01-01

    High content screening (HCS) has established itself in the world of the pharmaceutical industry as an essential tool for drug discovery and drug development. HCS is currently starting to enter the academic world and might become a widely used technology. Given the diversity of problems tackled in academic research, HCS could experience some profound changes in the future, mainly with more imaging modalities and smart microscopes being developed. One of the limitations in the establishment of HCS in academia is flexibility and cost. Flexibility is important to be able to adapt the HCS setup to accommodate the multiple different assays typical of academia. Many cost factors cannot be avoided, but the costs of the software packages necessary to analyze large datasets can be reduced by using Open Source software. We present and discuss the Open Source software CellProfiler for image analysis and KNIME for data analysis and data mining that provide software solutions which increase flexibility and keep costs low.

  19. Urban water-quality modelling: implementing an extension to Multi-Hydro platform for real case studies

    NASA Astrophysics Data System (ADS)

    Hong, Yi; Giangola-Murzyn, Agathe; Bonhomme, Celine; Chebbo, Ghassan; Schertzer, Daniel

    2015-04-01

    During the last few years, the physically based and fully distributed numerical platform Multi-Hydro (MH) has been developed to simulate hydrological behaviours in urban/peri-urban areas (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This hydro-dynamical platform is open-access and has a modular structure, which is designed to be easily scalable and transportable, in order to simulate the dynamics and complex interactions of the water cycle processes in urban or peri-urban environment (surface hydrology, urban groundwater infrastructures and infiltration). Each hydrological module relies on existing and widely validated open source models, such as TREX model (Velleux, 2005) for the surface module, SWMM model (Rossman, 2010) for the drainage module and VS2DT model (Lappala et al., 1987) for the soil module. In our recent studies, an extension of MH has been set up by connecting the already available water-quality computational components among different modules, to introduce a pollutant transport modelling into the hydro-dynamical platform. As for the surface module in two-dimensions, the concentration of particles in flow is expressed by sediment advection equation, the settling of suspended particles is calculated with a simplified settling velocity formula, while the pollutant wash-off from a given land-use is represented as a mass rate of particle removal from the bottom boundary over time, based on transport capacity, which is computed by a modified form of Universal Soil Loss Equation (USLE). Considering that the USLE is originally conceived to predict soil losses caused by runoff in agriculture areas, several adaptations were needed to use it for urban areas, such as the alterations of USLE parameters according to different criterions, the definition of the appropriate initial dust thickness corresponding to various land-uses, etc. Concerning the drainage module, water quality routing within pipes assumes that the conduit

  20. Enhancing emotional experiences to dance through music: the role of valence and arousal in the cross-modal bias.

    PubMed

    Christensen, Julia F; Gaigg, Sebastian B; Gomila, Antoni; Oke, Peter; Calvo-Merino, Beatriz

    2014-01-01

    It is well established that emotional responses to stimuli presented to one perceptive modality (e.g., visual) are modulated by the concurrent presentation of affective information to another modality (e.g., auditory)-an effect known as the cross-modal bias. However, the affective mechanisms mediating this effect are still not fully understood. It remains unclear what role different dimensions of stimulus valence and arousal play in mediating the effect, and to what extent cross-modal influences impact not only our perception and conscious affective experiences, but also our psychophysiological emotional response. We addressed these issues by measuring participants' subjective emotion ratings and their Galvanic Skin Responses (GSR) in a cross-modal affect perception paradigm employing videos of ballet dance movements and instrumental classical music as the stimuli. We chose these stimuli to explore the cross-modal bias in a context of stimuli (ballet dance movements) that most participants would have relatively little prior experience with. Results showed (i) that the cross-modal bias was more pronounced for sad than for happy movements, whereas it was equivalent when contrasting high vs. low arousal movements; and (ii) that movement valence did not modulate participants' GSR, while movement arousal did, such that GSR was potentiated in the case of low arousal movements with sad music and when high arousal movements were paired with happy music. Results are discussed in the context of the affective dimension of neuroentrainment and with regards to implications for the art community.

  1. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    PubMed

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  2. Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2006

    2006-01-01

    Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…

  3. Development of Thread-compatible Open Source Stack

    NASA Astrophysics Data System (ADS)

    Zimmermann, Lukas; Mars, Nidhal; Schappacher, Manuel; Sikora, Axel

    2017-07-01

    The Thread protocol is a recent development based on 6LoWPAN (IPv6 over IEEE 802.15.4), but with extensions regarding a more media independent approach, which - additionally - also promises true interoperability. To evaluate and analyse the operation of a Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been extended in order to comply with the Thread specification. The implementation covers Mesh Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under routing mechanism based on MAC short addresses. The development has been verified on a virtualization platform and allows dynamical establishment of network topologies based on Thread’s partitioning algorithm.

  4. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  5. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  6. Simulation studies on multi-mode heat transfer from an open cavity with a flush-mounted discrete heat source

    NASA Astrophysics Data System (ADS)

    Gururaja Rao, C.; Nagabhushana Rao, V.; Krishna Das, C.

    2008-04-01

    Prominent results of a simulation study on conjugate convection with surface radiation from an open cavity with a traversable flush mounted discrete heat source in the left wall are presented in this paper. The open cavity is considered to be of fixed height but with varying spacing between the legs. The position of the heat source is varied along the left leg of the cavity. The governing equations for temperature distribution along the cavity are obtained by making energy balance between heat generated, conducted, convected and radiated. Radiation terms are tackled using radiosity-irradiation formulation, while the view factors, therein, are evaluated using the crossed-string method of Hottel. The resulting non-linear partial differential equations are converted into algebraic form using finite difference formulation and are subsequently solved by Gauss Seidel iterative technique. An optimum grid system comprising 111 grids along the legs of the cavity, with 30 grids in the heat source and 31 grids across the cavity has been used. The effects of various parameters, such as surface emissivity, convection heat transfer coefficient, aspect ratio and thermal conductivity on the important results, including local temperature distribution along the cavity, peak temperature in the left and right legs of the cavity and relative contributions of convection and radiation to heat dissipation in the cavity, are studied in great detail.

  7. Energy Logic (EL): a novel fusion engine of multi-modality multi-agent data/information fusion for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2009-04-01

    The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.

  8. Does working memory capacity predict cross-modally induced failures of awareness?

    PubMed

    Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel

    2016-01-01

    People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.

    PubMed

    Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W

    2016-12-14

    The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we

  10. Modal parameter identification based on combining transmissibility functions and blind source separation techniques

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Sánchez, Jesús Antonio García; Andersen, Palle

    2018-05-01

    Transmissibility-based operational modal analysis is a recent and alternative approach used to identify the modal parameters of structures under operational conditions. This approach is advantageous compared with traditional operational modal analysis because it does not make any assumptions about the excitation spectrum (i.e., white noise with a flat spectrum). However, common methodologies do not include a procedure to extract closely spaced modes with low signal-to-noise ratios. This issue is relevant when considering that engineering structures generally have closely spaced modes and that their measured responses present high levels of noise. Therefore, to overcome these problems, a new combined method for modal parameter identification is proposed in this work. The proposed method combines blind source separation (BSS) techniques and transmissibility-based methods. Here, BSS techniques were used to recover source signals, and transmissibility-based methods were applied to estimate modal information from the recovered source signals. To achieve this combination, a new method to define a transmissibility function was proposed. The suggested transmissibility function is based on the relationship between the power spectral density (PSD) of mixed signals and the PSD of signals from a single source. The numerical responses of a truss structure with high levels of added noise and very closely spaced modes were processed using the proposed combined method to evaluate its ability to identify modal parameters in these conditions. Colored and white noise excitations were used for the numerical example. The proposed combined method was also used to evaluate the modal parameters of an experimental test on a structure containing closely spaced modes. The results showed that the proposed combined method is capable of identifying very closely spaced modes in the presence of noise and, thus, may be potentially applied to improve the identification of damping ratios.

  11. Development of an open-source web-based intervention for Brazilian smokers - Viva sem Tabaco.

    PubMed

    Gomide, H P; Bernardino, H S; Richter, K; Martins, L F; Ronzani, T M

    2016-08-02

    Web-based interventions for smoking cessation available in Portuguese do not adhere to evidence-based treatment guidelines. Besides, all existing web-based interventions are built on proprietary platforms that developing countries often cannot afford. We aimed to describe the development of "Viva sem Tabaco", an open-source web-based intervention. The development of the intervention included the selection of content from evidence-based guidelines for smoking cessation, the design of the first layout, conduction of 2 focus groups to identify potential features, refinement of the layout based on focus groups and correction of content based on feedback provided by specialists on smoking cessation. At the end, we released the source-code and intervention on the Internet and translated it into Spanish and English. The intervention developed fills gaps in the information available in Portuguese and the lack of open-source interventions for smoking cessation. The open-source licensing format and its translation system may help researchers from different countries deploying evidence-based interventions for smoking cessation.

  12. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  13. Literature evidence in open targets - a target validation platform.

    PubMed

    Kafkas, Şenay; Dunham, Ian; McEntyre, Johanna

    2017-06-06

    We present the Europe PMC literature component of Open Targets - a target validation platform that integrates various evidence to aid drug target identification and validation. The component identifies target-disease associations in documents and ranks the documents based on their confidence from the Europe PMC literature database, by using rules utilising expert-provided heuristic information. The confidence score of a given document represents how valuable the document is in the scope of target validation for a given target-disease association by taking into account the credibility of the association based on the properties of the text. The component serves the platform regularly with the up-to-date data since December, 2015. Currently, there are a total number of 1168365 distinct target-disease associations text mined from >26 million PubMed abstracts and >1.2 million Open Access full text articles. Our comparative analyses on the current available evidence data in the platform revealed that 850179 of these associations are exclusively identified by literature mining. This component helps the platform's users by providing the most relevant literature hits for a given target and disease. The text mining evidence along with the other types of evidence can be explored visually through https://www.targetvalidation.org and all the evidence data is available for download in json format from https://www.targetvalidation.org/downloads/data .

  14. The Commercial Open Source Business Model

    NASA Astrophysics Data System (ADS)

    Riehle, Dirk

    Commercial open source software projects are open source software projects that are owned by a single firm that derives a direct and significant revenue stream from the software. Commercial open source at first glance represents an economic paradox: How can a firm earn money if it is making its product available for free as open source? This paper presents the core properties of com mercial open source business models and discusses how they work. Using a commercial open source approach, firms can get to market faster with a superior product at lower cost than possible for traditional competitors. The paper shows how these benefits accrue from an engaged and self-supporting user community. Lacking any prior comprehensive reference, this paper is based on an analysis of public statements by practitioners of commercial open source. It forges the various anecdotes into a coherent description of revenue generation strategies and relevant business functions.

  15. Open source software integrated into data services of Japanese planetary explorations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Otake, H.; Imai, K.; Masuda, K.

    2015-12-01

    Scientific data obtained by Japanese scientific satellites and lunar and planetary explorations are archived in DARTS (Data ARchives and Transmission System). DARTS provides the data with a simple method such as HTTP directory listing for long-term preservation while DARTS tries to provide rich web applications for ease of access with modern web technologies based on open source software. This presentation showcases availability of open source software through our services. KADIAS is a web-based application to search, analyze, and obtain scientific data measured by SELENE(Kaguya), a Japanese lunar orbiter. KADIAS uses OpenLayers to display maps distributed from Web Map Service (WMS). As a WMS server, open source software MapServer is adopted. KAGUYA 3D GIS (KAGUYA 3D Moon NAVI) provides a virtual globe for the SELENE's data. The main purpose of this application is public outreach. NASA World Wind Java SDK is used to develop. C3 (Cross-Cutting Comparisons) is a tool to compare data from various observations and simulations. It uses Highcharts to draw graphs on web browsers. Flow is a tool to simulate a Field-Of-View of an instrument onboard a spacecraft. This tool itself is open source software developed by JAXA/ISAS, and the license is BSD 3-Caluse License. SPICE Toolkit is essential to compile FLOW. SPICE Toolkit is also open source software developed by NASA/JPL, and the website distributes many spacecrafts' data. Nowadays, open source software is an indispensable tool to integrate DARTS services.

  16. MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions.

    PubMed

    Klemm, Martin; Kirchner, Thomas; Gröhl, Janek; Cheray, Dominique; Nolden, Marco; Seitel, Alexander; Hoppe, Harald; Maier-Hein, Lena; Franz, Alfred M

    2017-03-01

    Due to rapid developments in the research areas of medical imaging, medical image processing and robotics, computer-assisted interventions (CAI) are becoming an integral part of modern patient care. From a software engineering point of view, these systems are highly complex and research can benefit greatly from reusing software components. This is supported by a number of open-source toolkits for medical imaging and CAI such as the medical imaging interaction toolkit (MITK), the public software library for ultrasound imaging research (PLUS) and 3D Slicer. An independent inter-toolkit communication such as the open image-guided therapy link (OpenIGTLink) can be used to combine the advantages of these toolkits and enable an easier realization of a clinical CAI workflow. MITK-OpenIGTLink is presented as a network interface within MITK that allows easy to use, asynchronous two-way messaging between MITK and clinical devices or other toolkits. Performance and interoperability tests with MITK-OpenIGTLink were carried out considering the whole CAI workflow from data acquisition over processing to visualization. We present how MITK-OpenIGTLink can be applied in different usage scenarios. In performance tests, tracking data were transmitted with a frame rate of up to 1000 Hz and a latency of 2.81 ms. Transmission of images with typical ultrasound (US) and greyscale high-definition (HD) resolutions of [Formula: see text] and [Formula: see text] is possible at up to 512 and 128 Hz, respectively. With the integration of OpenIGTLink into MITK, this protocol is now supported by all established open-source toolkits in the field. This eases interoperability between MITK and toolkits such as PLUS or 3D Slicer and facilitates cross-toolkit research collaborations. MITK and its submodule MITK-OpenIGTLink are provided open source under a BSD-style licence ( http://mitk.org ).

  17. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  18. Open source electronic health record and patient data management system for intensive care.

    PubMed

    Massaut, Jacques; Reper, Pascal

    2008-01-01

    In Intensive Care Units, the amount of data to be processed for patients care, the turn over of the patients, the necessity for reliability and for review processes indicate the use of Patient Data Management Systems (PDMS) and electronic health records (EHR). To respond to the needs of an Intensive Care Unit and not to be locked with proprietary software, we developed a PDMS and EHR based on open source software and components. The software was designed as a client-server architecture running on the Linux operating system and powered by the PostgreSQL data base system. The client software was developed in C using GTK interface library. The application offers to the users the following functions: medical notes captures, observations and treatments, nursing charts with administration of medications, scoring systems for classification, and possibilities to encode medical activities for billing processes. Since his deployment in February 2004, the PDMS was used to care more than three thousands patients with the expected software reliability and facilitated data management and review processes. Communications with other medical software were not developed from the start, and are realized by the use of the Mirth HL7 communication engine. Further upgrade of the system will include multi-platform support, use of typed language with static analysis, and configurable interface. The developed system based on open source software components was able to respond to the medical needs of the local ICU environment. The use of OSS for development allowed us to customize the software to the preexisting organization and contributed to the acceptability of the whole system.

  19. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2015-01-01

    Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.

  20. Neural ensemble communities: Open-source approaches to hardware for large-scale electrophysiology

    PubMed Central

    Siegle, Joshua H.; Hale, Gregory J.; Newman, Jonathan P.; Voigts, Jakob

    2014-01-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is “open” or “closed”: that is, whether or not the system’s schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614