Sample records for operation supporting system

  1. Operator Performance Support System (OPSS)

    NASA Technical Reports Server (NTRS)

    Conklin, Marlen Z.

    1993-01-01

    In the complex and fast reaction world of military operations, present technologies, combined with tactical situations, have flooded the operator with assorted information that he is expected to process instantly. As technologies progress, this flow of data and information have both guided and overwhelmed the operator. However, the technologies that have confounded many operators today can be used to assist him -- thus the Operator Performance Support Team. In this paper we propose an operator support station that incorporates the elements of Video and Image Databases, productivity Software, Interactive Computer Based Training, Hypertext/Hypermedia Databases, Expert Programs, and Human Factors Engineering. The Operator Performance Support System will provide the operator with an integrating on-line information/knowledge system that will guide expert or novice to correct systems operations. Although the OPSS is being developed for the Navy, the performance of the workforce in today's competitive industry is of major concern. The concepts presented in this paper which address ASW systems software design issues are also directly applicable to industry. the OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator performance.

  2. Operator Support System Design forthe Operation of RSG-GAS Research Reactor

    NASA Astrophysics Data System (ADS)

    Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.

  3. How to guide - transit operations decision support systems (TODSS).

    DOT National Transportation Integrated Search

    2014-12-01

    Transit Operations Decision Support Systems (TODSS) are decision support systems designed to support dispatchers in real-time bus operations management in response to incidents, special events, and other changing conditions in order to restore servic...

  4. RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.

    2008-08-01

    RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.

  5. EXODUS: Integrating intelligent systems for launch operations support

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1991-01-01

    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described.

  6. Satellite operations support expert system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Satellite Operations Support Expert System is an effort to identify aspects of satellite ground support activity which could profitably be automated with artificial intelligence (AI) and to develop a feasibility demonstration for the automation of one such area. The hydrazine propulsion subsystems (HPS) of the International Sun Earth Explorer (ISEE) and the International Ultraviolet Explorer (IUS) were used as applications domains. A demonstration fault handling system was built. The system was written in Franz Lisp and is currently hosted on a VAX 11/750-11/780 family machine. The system allows the user to select which HPS (either from ISEE or IUE) is used. Then the user chooses the fault desired for the run. The demonstration system generates telemetry corresponding to the particular fault. The completely separate fault handling module then uses this telemetry to determine what and where the fault is and how to work around it. Graphics are used to depict the structure of the HPS, and the telemetry values displayed on the screen are continually updated. The capabilities of this system and its development cycle are described.

  7. Development of lung cancer CT screening operating support system

    NASA Astrophysics Data System (ADS)

    Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2009-02-01

    In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.

  8. A Proposed Operational Concept for the Defense Communications Operations Support System.

    DTIC Science & Technology

    1986-01-01

    Artificial Intelligence AMA Automatic Message Accounting AMIE AUTODIN Management Index System AMPE Automated Message Processing Exchange ANCS AUTOVON Network...Support IMPRESS Inpact/Restoral System INFORM Information Retrieval System 1OC Initial Operational Capability IRU Intellegent Remote Unit I-S/A AMPE

  9. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  10. Systems engineering considerations for operational support systems

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.

    1993-01-01

    Operations support as considered here is the infrastructure of people, procedures, facilities and systems that provide NASA with the capability to conduct space missions. This infrastructure involves most of the Centers but is concentrated principally at the Johnson Space Center, the Kennedy Space Center, the Goddard Space Flight Center, and the Jet Propulsion Laboratory. It includes mission training and planning, launch and recovery, mission control, tracking, communications, data retrieval and data processing.

  11. Transit Operations Decision Support System (TODSS) core requirements evaluation and update recommendations.

    DOT National Transportation Integrated Search

    2009-10-01

    Transit Operations Decision Support Systems (TODSS) are systems designed to support dispatchers and others in real-time operations : management in response to incidents, special events, and other changing conditions in order to improve operating spee...

  12. Decision Support Systems for Launch and Range Operations Using Jess

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  13. Decision support systems for transportation system management and operations (TSM&O).

    DOT National Transportation Integrated Search

    2015-12-01

    There is a need for the development of tools and methods to support off-line and real-time : planning and operation decisions associated with the Transportation System Management and : Operations (TSM&O) program. The goal of this proposed project is ...

  14. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  15. Space station operations task force. Panel 2 report: Ground operations and support systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.

  16. Hardware enabled performance counters with support for operating system context switching

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W.

    2015-06-30

    A device for supporting hardware enabled performance counters with support for context switching include a plurality of performance counters operable to collect information associated with one or more computer system related activities, a first register operable to store a memory address, a second register operable to store a mode indication, and a state machine operable to read the second register and cause the plurality of performance counters to copy the information to memory area indicated by the memory address based on the mode indication.

  17. Program operational summary: Operational 90 day manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.

    1972-01-01

    An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.

  18. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  19. Operating Characteristics of the Implicit Learning System Supporting Serial Interception Sequence Learning

    ERIC Educational Resources Information Center

    Sanchez, Daniel J.; Reber, Paul J.

    2012-01-01

    The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the…

  20. Data collection operational support system, part 1. [collected from satellite terminals operating as part of the ATS 6 project

    NASA Technical Reports Server (NTRS)

    Woughter, W. R., Jr.

    1975-01-01

    The Data Collection Operational Support system has been shown to be a usable means of transmitting numerical data over a 2-way VHF satellite link. It is also capable of supporting educational applications. The design, operation, use, results, and recommendations of the system are discussed.

  1. Electronic Performance Support for Operational Systems: A Case Study of the Link Monitor and Control Operator Assistant

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Cooper, Lynne P.

    1993-01-01

    For complex operational systems, help needs to come from the inside out. It is often not realistic to call a help desk for problems that need immediate attention, especially for tasks that put a heavy cognitive load on the system operator. This session addresses the issues associated with providing electronic performance support for operational systems, including situations where the system is already fielded and can only change through evolution rather than revolution. We present a case study based on our experiences in developing the Link Monitor and Control Operator Assistant for NASA's Deep Space Network (DSN). The goals of the Operator Assistant are to improve the operability of the system and increase the efficiency of mission operations.

  2. Intelligence Decision Support System for the Republic of Korea Army Engineer Operation.

    DTIC Science & Technology

    1987-06-01

    34.:L;’:Ce mnechanism and prUnin2 -must be collected in a computer program for it to -’’, nroerlx escribed as possessing Artificial Intelligence (AI). [Ref...At84 128 INTELLIGENCE DECISION SUPPORT SYSTEM FOR THE REPUBLIC I/i OF KOREA ARMY ENGINEER OPERATION(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA C K...POSTGRADUATE SCHOOL q~J.00 ’Monterey, California THESIS INTELLIGENCE DECISION SUPPORT SYSTEM FOR THE REPUBLIC OF KOREA ARMY ENGINEER OPERATION by Jang

  3. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  4. Considerations for a design and operations knowledge support system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Crouse, Kenneth H.; Wechsler, Donald B.; Flaherty, Douglas R.

    1989-01-01

    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF.

  5. RTEMS Centre - Support and Maintenance Centre to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Freitas, D.; Coutinho, M.; Faustino, S.; Mota, M.; Colaço, P.; Sousa, J.; Dias, L.; Damjanovic, B.; Zulianello, M.; Rufino, J.

    2009-05-01

    RTEMS CENTRE - Support and Maintenance Centre to RTEMS Operating System is a joint ESA/Portuguese Task Force initiative to develop a support and maintenance centre to the Real-Time Executive for Multiprocessor Systems (RTEMS). This paper gives a high level visibility of the progress, the results obtained and the future work in the RTEMS CENTRE [6] and in the RTEMS Improvement [7] projects. RTEMS CENTRE started officially in November 2006, with the RTEMS 4.6.99.2 version. A full analysis of RTEMS operating system was produced. The architecture was analysed in terms of conceptual, organizational and operational concepts. The original objectives [1] of the centre were primarily to create and maintain technical expertise and competences in this RTOS, to develop a website to provide the European Space Community an entry point for obtaining support (http://rtemscentre.edisoft.pt), to design, develop, maintain and integrate some RTEMS support tools (Timeline Tool, Configuration and Management Tools), to maintain flight libraries and Board Support Packages, to develop a strong relationship with the World RTEMS Community and finally to produce some considerations in ARINC-653, DO-178B and ECSS E-40 standards. RTEMS Improvement is the continuation of the RTEMS CENTRE. Currently the RTEMS, version 4.8.0, is being facilitated for a future qualification. In this work, the validation material is being produced following the Galileo Software Standards Development Assurance Level B [5]. RTEMS is being completely tested, errors analysed, dead and deactivated code removed and tests produced to achieve 100% statement and decision coverage of source code [2]. The SW to exploit the LEON Memory Management Unit (MMU) hardware will be also added. A brief description of the expected implementations will be given.

  6. Battlefield Contractors: Operational Risk and System Support Contractors

    DTIC Science & Technology

    2010-10-27

    incentive for the use of contractors is the proven cost savings when compared to similarly trained active duty military forces. The Office of...no military or government civilian is trained to do. The reality is that “modern military operations now depend heavily on high-tech weapons systems...squadrons that rely exclusively on contracted line maintenance, with no military personnel trained to support the aircraft. Defense supplemental funds

  7. ARES: A System for Real-Time Operational and Tactical Decision Support

    DTIC Science & Technology

    1986-12-01

    In B]LE LCLGf. 9 NAVAL POSTGRADUATE SCHOOL Monterey, California Vi,-. %*.. THESIS - ’ A RE S A SYSTEM -OR REAL- 1I I .-.. --- OPERATIONAL AND...able) aval Postgraduate School 54 Naval Postgraduate School NN DRESS (City,. State,. and ZIP Code) 7b ADDRESS (City,. State,. and ZIP Code...SUBJECT TERMS (Continue on reverse if necessaty and identify by block number) LD GROUP SUB-GROUP Decision Support System, Logistics Model, Operational

  8. Transit Operations Decision Support System (TODSS) core requirements prototype development case study and lessons learned.

    DOT National Transportation Integrated Search

    2010-02-01

    Transit Operations Decision Support Systems (TODSS) are systems designed to support dispatchers and others in real-time operations : management in response to incidents, special events, and other changing conditions. As part of a joint Federal Transi...

  9. Influence of a new generation of operations support systems on current spacecraft operations philosophy: The users feedback

    NASA Technical Reports Server (NTRS)

    Darroy, Jean Michel

    1993-01-01

    Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.

  10. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  11. System analysis for the Huntsville Operational Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, E. M.

    1983-01-01

    A simulation model was developed and programmed in three languages BASIC, PASCAL, and SLAM. Two of the programs are included in this report, the BASIC and the PASCAL language programs. SLAM is not supported by NASA/MSFC facilities and hence was not included. The statistical comparison of simulations of the same HOSC system configurations are in good agreement and are in agreement with the operational statistics of HOSC that were obtained. Three variations of the most recent HOSC configuration was run and some conclusions drawn as to the system performance under these variations.

  12. HL-20 operations and support requirements for the Personnel Launch System mission

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, Nancy H.; Caldwell, Ronald G.

    1993-01-01

    The processing, mission planning, and support requirements were defined for the HL-20 lifting-body configuration that can serve as a Personnel Launch System. These requirements were based on the assumption of an operating environment that incorporates aircraft and airline support methods and techniques that are applicable to operations. The study covered the complete turnaround process for the HL-20, including landing through launch, and mission operations, but did not address the support requirements of the launch vehicle except for the integrated activities. Support is defined in terms of manpower, staffing levels, facilities, ground support equipment, maintenance/sparing requirements, and turnaround processing time. Support results were drawn from two contracted studies, plus an in-house analysis used to define the maintenance manpower. The results of the contracted studies were used as the basis for a stochastic simulation of the support environment to determine the sufficiency of support and the effect of variance on vehicle processing. Results indicate the levels of support defined for the HL-20 through this process to be sufficient to achieve the desired flight rate of eight flights per year.

  13. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  14. Decision Support Systems for Operational Level Command and Control

    DTIC Science & Technology

    1990-04-30

    business -based. These definitions still have applicability to military command and control - the business of military operations. A synthesis of the...other hand, there are such studies that were conducted in business environments. An eight week empincal study39 was 37 bd, pp 8-1 I. 38 Ranesh Shada...pp 139-158. 19 conducted and the groups with access to decision support system made significantly more effective decisions :n a business simulation

  15. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  16. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  17. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    NASA Astrophysics Data System (ADS)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  18. System analysis for the Huntsville Operation Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1986-01-01

    A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.

  19. Operational and support considerations in standardization

    NASA Astrophysics Data System (ADS)

    Oreilly, W. T.

    Military applications in the era of the 1990's and beyond, require capabilities beyond those available in most existing systems. These capabilities must be provided in a manner that will achieve a low logistic support cost and that can be maintained with relatively inexperienced personnel. This paper presents the design considerations that must be addressed in each of the standardized subsystems and modules that will provide the operational and support needs for tomorrow and beyond. Advanced maintenance concepts, such as two and one level maintenance, are described together with the operational and life cycle cost benefits that will be achieved. A new operation concept called deferred maintenance, which provides sustained operation without maintenance support, is presented. The fault tolerant architecture which will permit a standardized modular design to efficiently accommodate a variety of system applications is presented. The concerns discussed include combat damage survivability, fail safe and fail operational needs, as well as high availability for long life applications as is required for systems employed in the Space Defense Initiative (SDI).

  20. System analysis for the Huntsville Operational Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mauldin, J.

    1984-01-01

    The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading.

  1. Payload Operations Support Team Tools

    NASA Technical Reports Server (NTRS)

    Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David; hide

    2007-01-01

    Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations

  2. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  3. Online model-based diagnosis to support autonomous operation of an advanced life support system.

    PubMed

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  4. Online model-based diagnosis to support autonomous operation of an advanced life support system

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  5. Decision Support System for Reservoir Management and Operation in Africa

    NASA Astrophysics Data System (ADS)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  6. Management of Operational Support Requirements for Manned Flight Missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  7. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  8. A Systems Engineering Process Supporting the Development of Operational Requirements Driven Federations

    DTIC Science & Technology

    2008-12-01

    A SYSTEMS ENGINEERING PROCESS SUPPORTING THE DEVELOPMENT OF OPERATIONAL REQUIREMENTS DRIVEN FEDERATIONS Andreas Tolk & Thomas G. Litwin ...c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Tolk, Litwin and Kewley Executive Office (PEO...capabilities and their relative changes 1297 Tolk, Litwin and Kewley based on the system to be evaluated as well, in particular when it comes to

  9. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  10. Supporting Operational Data Assimilation Capabilities to the Research Community

    NASA Astrophysics Data System (ADS)

    Shao, H.; Hu, M.; Stark, D. R.; Zhou, C.; Beck, J.; Ge, G.

    2017-12-01

    The Developmental Testbed Center (DTC), in partnership with the National Centers for Environmental Prediction (NCEP) and other operational and research institutions, provides operational data assimilation capabilities to the research community and helps transition research advances to operations. The primary data assimilation system supported currently by the DTC is the Gridpoint Statistical Interpolation (GSI) system and the National Oceanic and Atmospheric Administration (NOAA) Ensemble Kalman Filter (EnKF) system. GSI is a variational based system being used for daily operations at NOAA, NCEP, the National Aeronautics and Space Administration, and other operational agencies. Recently, GSI has evolved into a four-dimensional EnVar system. Since 2009, the DTC has been releasing the GSI code to the research community annually and providing user support. In addition to GSI, the DTC, in 2015, began supporting the ensemble based EnKF data assimilation system. EnKF shares the observation operator with GSI and therefore, just as GSI, can assimilate both conventional and non-conventional data (e.g., satellite radiance). Currently, EnKF is being implemented as part of the GSI based hybrid EnVar system for NCEP Global Forecast System operations. This paper will summarize the current code management and support framework for these two systems. Following that is a description of available community services and facilities. Also presented is the pathway for researchers to contribute their development to the daily operations of these data assimilation systems.

  11. Self-Operated Auditory Prompting Systems: Creating and Using Them to Support Students with Disabilities

    ERIC Educational Resources Information Center

    Savage, Melissa N.

    2014-01-01

    Some students with disabilities develop a dependence on others for support and can benefit from self-management strategies to increase independence. Self-operated auditory prompting systems are an effective self-management intervention used to increase independence for students with disabilities while continuing to provide the support that they…

  12. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    NASA Astrophysics Data System (ADS)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  13. Expert system decision support for low-cost launch vehicle operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  14. Controlled Ecological Life Support System. Life Support Systems in Space Travel

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)

    1985-01-01

    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.

  15. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  16. Towards an integral computer environment supporting system operations analysis and conceptual design

    NASA Technical Reports Server (NTRS)

    Barro, E.; Delbufalo, A.; Rossi, F.

    1994-01-01

    VITROCISET has in house developed a prototype tool named System Dynamic Analysis Environment (SDAE) to support system engineering activities in the initial definition phase of a complex space system. The SDAE goal is to provide powerful means for the definition, analysis, and trade-off of operations and design concepts for the space and ground elements involved in a mission. For this purpose SDAE implements a dedicated modeling methodology based on the integration of different modern (static and dynamic) analysis and simulation techniques. The resulting 'system model' is capable of representing all the operational, functional, and behavioral aspects of the system elements which are part of a mission. The execution of customized model simulations enables: the validation of selected concepts with respect to mission requirements; the in-depth investigation of mission specific operational and/or architectural aspects; and the early assessment of performances required by the system elements to cope with mission constraints and objectives. Due to its characteristics, SDAE is particularly tailored for nonconventional or highly complex systems, which require a great analysis effort in their early definition stages. SDAE runs under PC-Windows and is currently used by VITROCISET system engineering group. This paper describes the SDAE main features, showing some tool output examples.

  17. A Support System for Mouse Operations Using Eye-Gaze Input

    NASA Astrophysics Data System (ADS)

    Abe, Kiyohiko; Nakayama, Yasuhiro; Ohi, Shoichi; Ohyama, Minoru

    We have developed an eye-gaze input system for people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS) patients. This system utilizes a personal computer and a home video camera to detect eye-gaze under natural light. The system detects both vertical and horizontal eye-gaze by simple image analysis, and does not require special image processing units or sensors. Our conventional eye-gaze input system can detect horizontal eye-gaze with a high degree of accuracy. However, it can only classify vertical eye-gaze into 3 directions (up, middle and down). In this paper, we propose a new method for vertical eye-gaze detection. This method utilizes the limbus tracking method for vertical eye-gaze detection. Therefore our new eye-gaze input system can detect the two-dimension coordinates of user's gazing point. By using this method, we develop a new support system for mouse operation. This system can move the mouse cursor to user's gazing point.

  18. 45 CFR 307.13 - Security and confidentiality for computerized support enforcement systems in operation after...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENFORCEMENT SYSTEMS § 307.13 Security and confidentiality for computerized support enforcement systems in... systems in operation after October 1, 1997. (a) Information integrity and security. Have safeguards... 45 Public Welfare 2 2010-10-01 2010-10-01 false Security and confidentiality for computerized...

  19. System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Massey, D.

    1985-01-01

    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.

  20. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  1. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  2. Agent-based paradigm for integration of interactive cable television operations and business support systems

    NASA Astrophysics Data System (ADS)

    Wattawa, Scott

    1995-11-01

    Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.

  3. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  4. The determination of operational and support requirements and costs during the conceptual design of space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles; Beasley, Kenneth D.

    1992-01-01

    The first year of research to provide NASA support in predicting operational and support parameters and costs of proposed space systems is reported. Some of the specific research objectives were (1) to develop a methodology for deriving reliability and maintainability parameters and, based upon their estimates, determine the operational capability and support costs, and (2) to identify data sources and establish an initial data base to implement the methodology. Implementation of the methodology is accomplished through the development of a comprehensive computer model. While the model appears to work reasonably well when applied to aircraft systems, it was not accurate when used for space systems. The model is dynamic and should be updated as new data become available. It is particularly important to integrate the current aircraft data base with data obtained from the Space Shuttle and other space systems since subsystems unique to a space vehicle require data not available from aircraft. This research only addressed the major subsystems on the vehicle.

  5. Columbus system support for telescience operations

    NASA Technical Reports Server (NTRS)

    Lytton, David W.; Schulze, Rolf

    1993-01-01

    With the given constraints of the space environment, the telescience concept aims at providing a space mission user with optimum flexibility and responsiveness for spaceborne investigations. The concept includes automated system management functions, which allocate and monitor planned resources and time windows, within which the investigator can perform his science interactively responding 'on-line' to experimental data. During the telescience operation, the user is given the capability to send telecommands to the payload from the User Home Base with transparency to the rest of the system. Any violation of the 'booked' time and resources will be detected by the system and reported back to the user for appropriate action. Ultimately, the system will react to maintain the integrity of the system and its payload. Upon completion of the telescience session, the system management function reverses the system configuration and deallocates resources automatically.

  6. The embedded operating system project

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.

    1984-01-01

    This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.

  7. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  8. Operating characteristics of the implicit learning system supporting serial interception sequence learning.

    PubMed

    Sanchez, Daniel J; Reber, Paul J

    2012-04-01

    The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.

  9. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    PubMed

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  10. The embedded operating system project

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.

    1985-01-01

    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  11. Decision support tools to support the operations of traffic management centers (TMC)

    DOT National Transportation Integrated Search

    2011-01-31

    The goal of this project is to develop decision support tools to support traffic management operations based on collected intelligent transportation system (ITS) data. The project developments are in accordance with the needs of traffic management ce...

  12. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  13. DSOM - Decision Support for Operations and Maintenance - Application to a USMC Base Centralized Energy System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Richard J.; Hatley, Darrel D.

    2004-06-01

    PNNL DSOM technology coordinates efficient steam plant operation with EMCS and SCADA systems, providing generation support and automated load shedding to meet peak demand limits saving over $1M in two years.

  14. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  15. MSFC Skylab operations support summary

    NASA Technical Reports Server (NTRS)

    Martin, J. R.

    1974-01-01

    A summary of the actions and problems involved in preparing the Skylab-one vehicle is presented. The subjects discussed are: (1) flight operations support functions and organization, (2) launch operations and booster flight support functions and organization, (3) Skylab launch vehicle support teams, (4) Skylab orbital operations support performance analysis, (5) support manning and procedures, and (6) data support and facilities.

  16. Maintenance and operations decision support tool : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    Weather affects almost all maintenance activity decisions. The Federal Highway Administration (FHWA) tested a new decision support system for maintenance in Iowa, Indiana, and Illinois called the Maintenance and Operations Decision Support System (MO...

  17. An Evolutionary Complex Systems Decision-Support Tool for the Management of Operations

    NASA Astrophysics Data System (ADS)

    Baldwin, J. S.; Allen, P. M.; Ridgway, K.

    2011-12-01

    This research aimed to add both to the development of complex systems thinking in the subject area of Operations and Production Management and to the limited number of applications of computational models and simulations from the science of complex systems. The latter potentially offer helpful decision-support tools for operations and production managers. A mechanical engineering firm was used as a case study where a combined qualitative and quantitative methodological approach was employed to extract the required data from four senior managers. Company performance measures as well as firm technologies, practices and policies, and their relation and interaction with one another, were elicited. The data were subjected to an evolutionary complex systems model resulting in a series of simulations. The findings included both reassuring and some unexpected results. The simulation based on the CEO's opinions led the most cohesive and synergistic collection of practices describing the firm, closely followed by the Marketing and R&D Managers. The Manufacturing Manager's responses led to the most extreme evolutionary trajectory where the integrity of the entire firm came into question particularly when considering how employees were utilised. By drawing directly from the opinions and views of managers rather than from logical 'if-then' rules and averaged mathematical representations of agents that characterise agent-based and other self-organisational models, this work builds on previous applications by capturing a micro-level description of diversity and a learning effect that has been problematical not only in terms of theory but also in application. This approach can be used as a decision-support tool for operations and other managers providing a forum with which to explore a) the strengths, weaknesses and consequences of different decision-making capacities within the firm; b) the introduction of new manufacturing technologies, practices and policies; and, c) the

  18. Tracking and data system support for the Viking 1975 mission to Mars. Volume 3: Planetary operations

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.

    1977-01-01

    The support provided by the Deep Space Network to the 1975 Viking Mission from the first landing on Mars July 1976 to the end of the Prime Mission on November 15, 1976 is described and evaluated. Tracking and data acquisition support required the continuous operation of a worldwide network of tracking stations with 64-meter and 26-meter diameter antennas, together with a global communications system for the transfer of commands, telemetry, and radio metric data between the stations and the Network Operations Control Center in Pasadena, California. Performance of the deep-space communications links between Earth and Mars, and innovative new management techniques for operations and data handling are included.

  19. Enhanced methods for determining operational capabilities and support costs of proposed space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This report documents the work accomplished during the first two years of research to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. The first year's research developed a methodology for deriving reliability and maintainability (R & M) parameters based upon the use of regression analysis to establish empirical relationships between performance and design specifications and corresponding mean times of failure and repair. The second year focused on enhancements to the methodology, increased scope of the model, and software improvements. This follow-on effort expands the prediction of R & M parameters and their effect on the operations and support of space transportation vehicles to include other system components such as booster rockets and external fuel tanks. It also increases the scope of the methodology and the capabilities of the model as implemented by the software. The focus is on the failure and repair of major subsystems and their impact on vehicle reliability, turn times, maintenance manpower, and repairable spares requirements. The report documents the data utilized in this study, outlines the general methodology for estimating and relating R&M parameters, presents the analyses and results of application to the initial data base, and describes the implementation of the methodology through the use of a computer model. The report concludes with a discussion on validation and a summary of the research findings and results.

  20. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  1. Medical Operations Support for ISS Operations - The Role of the BME Operations Team Leads

    NASA Technical Reports Server (NTRS)

    Janney, Rob; Sabatier, Veronica

    2010-01-01

    This slide presentation reviews the role of the biomedical flight controllers (BMEs), and BME Operations Team Leads (OTLs) in providing medical support for personnel on the International Space Station. This presentation will concentrate on role of the BME OTLs, who provide the integration function across the integration function across all Crew Health Care System (CHeCS) disciplines for operational products and medical procedures.

  2. Decision support system for the operating room rescheduling problem.

    PubMed

    van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J

    2012-12-01

    Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.

  3. The X-15/HL-20 operations support comparison

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas

    1993-01-01

    During the 1960's, the United States X-15 rocket-plane research program successfully demonstrated the ability to support a reusable vehicle operating in a near-space environment. The similarity of the proposed HL-20 lifting body concept in general size, weight, and subsystem composition to that of the X-15 provided an opportunity for a comparison of the predicted support manpower and turnaround times with those experienced in the X-15 program. Information was drawn from both reports and discussions with X-15 program personnel to develop comparative operations and support data. Based on the assumption of comparability between the two systems, the predicted staffing levels, skill mix, and refurbishment times of an operational HL-20 appear to be similar to those experienced by the X-15 for ground support. However, safety, environmental, and support requirements have changed such that the HL-20 will face a different operating environment than existed at Edwards during the 1950's and 1960's. Today's operational standards may impose additional requirements on the HL-20 that will add to the maintenance and support burden estimate based on the X-15 analogy.

  4. Functional Design of an Automated Instructional Support System for Operational Flight Trainers. Final Report, June 1976 through September 1977.

    ERIC Educational Resources Information Center

    Semple, Clarence A.; And Others

    Functional requirements for a highly automated, flexible, instructional support system for aircrew training simulators are presented. Automated support modes and associated features and capabilities are described, along with hardware and software functional requirements for implementing a baseline system in an operational flight training context.…

  5. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features

  6. The Impact of Computer-Based Training on Operating and Support Costs for the AN/SQQ-89 (v) Sonar System

    DTIC Science & Technology

    2013-04-01

    Visibility and Management of Operating and Support Costs (VAMOSC), under Unit Level Consumption and Manhours—Organizational Corrective Maintenance...2007). LCMS Knowledgebase 2007: A comparison of 30+ Enterprise Learning Content Management Systems. Sunnyvale, CA: Brandon Hall Research. Chatham, R...School. IBM. (2011). Naval visibility and management of operating and support costs (VAMOSC; 10.3, ships, user manual). IBM. (2011). Naval

  7. Use of LOGIC to support lidar operations

    NASA Astrophysics Data System (ADS)

    Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd

    1999-10-01

    The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.

  8. IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.

  9. The determination of operational and support requirements and costs during the conceptual design of space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1991-01-01

    The primary objective is to develop a methodology for predicting operational and support parameters and costs of proposed space systems. The first phase consists of: (1) the identification of data sources; (2) the development of a methodology for determining system reliability and maintainability parameters; (3) the implementation of the methodology through the use of prototypes; and (4) support in the development of an integrated computer model. The phase 1 results are documented and a direction is identified to proceed to accomplish the overall objective.

  10. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  11. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  12. ORATOS: ESA's future flight dynamics operations system

    NASA Astrophysics Data System (ADS)

    Dreger, Frank; Fertig, Juergen; Muench, Rolf

    The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.

  13. Operational Management System for Regulated Water Systems

    NASA Astrophysics Data System (ADS)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  14. Planning and Estimation of Operations Support Requirements

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Barley, Bryan; Bacskay, Allen; Clardy, Dennon

    2010-01-01

    Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D

  15. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  16. Expert system verification concerns in an operations environment

    NASA Technical Reports Server (NTRS)

    Goodwin, Mary Ann; Robertson, Charles C.

    1987-01-01

    The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.

  17. Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.

  18. Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.

  19. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  20. PC-based automation system streamlines operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, J.

    1995-10-01

    The continued emergence of PC-based automation systems in the modern compressor station is driving the need for personnel who have the special skills need to support them. However, the dilemma is that operating budget restraints limit the overall number of people available to operate and maintain compressor stations. An ideal solution is to deploy automation systems which can be easily understood and supported by existing compressor station personnel. This paper reviews such a system developed by Waukesha-Pearce Industries, Inc.

  1. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division

  2. 78 FR 72572 - Operational Contract Support

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... 0790-AI48 Operational Contract Support AGENCY: Department of Defense (DoD). ACTION: Final rule. SUMMARY: This rule establishes policy, assigns responsibilities, and provides procedures for operational contract support (OCS), including OCS program management, contract support integration, and integration of...

  3. On the assessment of biological life support system operation range

    NASA Astrophysics Data System (ADS)

    Bartsev, Sergey

    Biological life support systems (BLSS) can be used in long-term space missions only if well-thought-out assessment of the allowable operating range is obtained. The range has to account both permissible working parameters of BLSS and the critical level of perturbations of BLSS stationary state. Direct approach to outlining the range by statistical treatment of experimental data on BLSS destruction seems to be not applicable due to ethical, economical, and saving time reasons. Mathematical model is the unique tool for the generalization of experimental data and the extrapolation of the revealed regularities beyond empirical experience. The problem is that the quality of extrapolation depends on the adequacy of corresponding model verification, but good verification requires wide range of experimental data for fitting, which is not achievable for manned experimental BLSS. Possible way to improve the extrapolation quality of inevitably poorly verified models of manned BLSS is to extrapolate general tendency obtained from unmanned LSS theoretical-experiment investigations. Possibilities and limitations of such approach are discussed.

  4. Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light

  5. OFMTutor: An operator function model intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    1989-01-01

    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.

  6. Assessment of Emerging Networks to Support Future NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Younes, Badri; Chang, Susan; Berman, Ted; Burns, Mark; LaFontaine, Richard; Lease, Robert

    1998-01-01

    Various issues associated with assessing emerging networks to support future NASA space operations are presented in viewgraph form. Specific topics include: 1) Emerging commercial satellite systems; 2) NASA LEO satellite support through commercial systems; 3) Communications coverage, user terminal assessment and regulatory assessment; 4) NASA LEO missions overview; and 5) Simulation assumptions and results.

  7. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  8. Meteorological support for space operations: Review and recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The current meteorological support provided to NASA by NOAA, Air Weather Service, and other contractors is reviewed and suggestions are offered for its improvement. These recommendations include improvement in NASA's internal management organizational structure that would accommodate continued improvement in operational weather support, installation of new observing systems, improvement in analysis and forecasting procedures, and the establishment of an Applied Research and Forecasting Facility.

  9. Autonomous Operations System: Development and Application

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  10. Operational Performance Risk Assessment in Support of A Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.

    Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less

  11. AQUATOOL, a generalized decision-support system for water-resources planning and operational management

    NASA Astrophysics Data System (ADS)

    Andreu, J.; Capilla, J.; Sanchís, E.

    1996-04-01

    This paper describes a generic decision-support system (DSS) which was originally designed for the planning stage of dicision-making associated with complex river basins. Subsequently, it was expanded to incorporate modules relating to the operational stage of decision-making. Computer-assisted design modules allow any complex water-resource system to be represented in graphical form, giving access to geographically referenced databases and knowledge bases. The modelling capability includes basin simulation and optimization modules, an aquifer flow modelling module and two modules for risk assessment. The Segura and Tagus river basins have been used as case studies in the development and validation phases. The value of this DSS is demonstrated by the fact that both River Basin Agencies currently use a version for the efficient management of their water resources.

  12. Operational Models Supporting Manned Space Flight

    NASA Astrophysics Data System (ADS)

    Johnson, A. S.; Weyland, M. D.; Lin, T. C.; Zapp, E. N.

    2006-12-01

    The Space Radiation Analysis Group (SRAG) at Johnson Space Center (JSC) has the primary responsibility to provide real-time radiation health operational support for manned space flight. Forecasts from NOAA SEC, real-time space environment data and radiation models are used to infer changes in the radiation environment due to space weather. Unlike current operations in low earth orbit which are afforded substantial protection from the geomagnetic field, exploration missions will have little protection and require improved operational tools for mission support. The current state of operational models and their limitations will be presented as well as an examination of needed tools to support exploration missions.

  13. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1988-01-01

    The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.

  14. Test, Control and Monitor System (TCMS) operations plan

    NASA Technical Reports Server (NTRS)

    Macfarlane, C. K.; Conroy, M. P.

    1993-01-01

    The purpose is to provide a clear understanding of the Test, Control and Monitor System (TCMS) operating environment and to describe the method of operations for TCMS. TCMS is a complex and sophisticated checkout system focused on support of the Space Station Freedom Program (SSFP) and related activities. An understanding of the TCMS operating environment is provided and operational responsibilities are defined. NASA and the Payload Ground Operations Contractor (PGOC) will use it as a guide to manage the operation of the TCMS computer systems and associated networks and workstations. All TCMS operational functions are examined. Other plans and detailed operating procedures relating to an individual operational function are referenced within this plan. This plan augments existing Technical Support Management Directives (TSMD's), Standard Practices, and other management documentation which will be followed where applicable.

  15. Development of a decision support tool for seasonal water supply management incorporating system uncertainties and operational constraints

    NASA Astrophysics Data System (ADS)

    Wang, H.; Asefa, T.

    2017-12-01

    A real-time decision support tool (DST) for water supply system would consider system uncertainties, e.g., uncertain streamflow and demand, as well as operational constraints and infrastructure outage (e.g., pump station shutdown, an offline reservoir due to maintenance). Such DST is often used by water managers for resource allocation and delivery for customers. Although most seasonal DST used by water managers recognize those system uncertainties and operational constraints, most use only historical information or assume deterministic outlook of water supply systems. This study presents a seasonal DST that incorporates rainfall/streamflow uncertainties, seasonal demand outlook and system operational constraints. Large scale climate-information is captured through a rainfall simulator driven by a Bayesian non-homogeneous Markov Chain Monte Carlo model that allows non-stationary transition probabilities contingent on Nino 3.4 index. An ad-hoc seasonal demand forecasting model considers weather conditions explicitly and socio-economic factors implicitly. Latin Hypercube sampling is employed to effectively sample probability density functions of flow and demand. Seasonal system operation is modelled as a mixed-integer optimization problem that aims at minimizing operational costs. It embeds the flexibility of modifying operational rules at different components, e.g., surface water treatment plants, desalination facilities, and groundwater pumping stations. The proposed framework is illustrated at a wholesale water supplier in Southeastern United States, Tampa Bay Water. The use of the tool is demonstrated in proving operational guidance in a typical drawdown and refill cycle of a regional reservoir. The DST provided: 1) probabilistic outlook of reservoir storage and chance of a successful refill by the end of rainy season; 2) operational expectations for large infrastructures (e.g., high service pumps and booster stations) throughout the season. Other potential use

  16. Lessons Learned for Planning and Estimating Operations Support Requirements

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn

    2011-01-01

    Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead projects to focus on hardware development schedules and costs, de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations, and any LCC growth can directly impact the programs ability to fund new missions. The D&NF Program Office at Marshall Space Flight Center recently studied cost overruns for 7 D&NF missions related to phase C/D development of operational capabilities and phase E mission operations. The goal was to identify the underlying causes for the overruns and develop practical mitigations to assist the D&NF projects in identifying potential operations risks and controlling the associated impacts to operations development and execution costs. The study found that the drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This presentation summarizes the study and the results, providing a set of lessons NASA can use to improve early estimation and validation of operations costs.

  17. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  18. Intelligent transportation systems (ITS) operational support contracts : final report.

    DOT National Transportation Integrated Search

    2005-01-31

    The New Jersey Department of Transportation (NJDOT) is currently facing a significant challenge : in keeping Intelligent Transportation Systems (ITS) at a high level of availability at the : Transportation Operation Center North (TOC North) and Trans...

  19. Network operating system focus technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.

  20. Ergonomically neutral arm support system

    DOEpatents

    Siminovitch, Michael J; Chung, Jeffrey Y; Dellinges, Steven; Lafever, Robin E

    2005-08-02

    An ergonomic arm support system maintains a neutral position for the forearm. A mechanical support structure attached to a chair or other mounting structure supports the arms of a sitting or standing person. The system includes moving elements and tensioning elements to provide a dynamic balancing force against the forearms. The support structure is not fixed or locked in a rigid position, but is an active dynamic system that is maintained in equipoise by the continuous operation of the opposing forces. The support structure includes an armrest connected to a flexible linkage or articulated or pivoting assembly, which includes a tensioning element such as a spring. The pivoting assembly moves up and down, with the tensioning element providing the upward force that balances the downward force of the arm.

  1. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  2. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  3. Training and certification program of the operating staff for a 90-day test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.

  4. The Launch Systems Operations Cost Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  5. Mars outpost - System and operations challenges

    NASA Technical Reports Server (NTRS)

    Roberts, Barney; Guerra, Lisa

    1990-01-01

    The paper addresses the challenges inherent in establishing an outpost on the planet Mars. For background purposes, the unique, remote Martian environment and the developmental phases of a settlement in such an environment are discussed. Challenges are identified in terms of surface systems and operations. Due to its importance to habitability, the life support system (LSS) is highlighted with various options identified. Operations for the Mars outpost, earth-based and local, are characterized by a decentralized concept. The challenge of integrating logistics analysis early in system design and operations strategy is also addressed. In order to understand and reduce the system and operations challenges, the application of terrestrial and lunar testbeds is explained.

  6. Computer Maintenance Operations Center (CMOC), additional computer support equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  8. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  9. Decision support systems for transportation system management and operations (TSM&O) : [summary].

    DOT National Transportation Integrated Search

    2016-01-01

    The Transportation System Management and Operations (TSM&O) program of the Florida : Department of Transportation (FDOT) has seven objectives, which are listed in the TSM&O : Tier 2 business plan. Two important objectives of the program are to con...

  10. Planning Systems for Distributed Operations

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  11. Support System for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    Hinged split-ring mounts insure safe support of heavy receivers. In addition to safer operation and damage-free mounting system provides more accurate focusing, and small incremental adjustments of ring more easily made.

  12. Space station operating system study

    NASA Technical Reports Server (NTRS)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  13. Integrated Simulation Design Challenges to Support TPS Repair Operations

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John

    2005-01-01

    During the Orbiter Repair Maneuver (ORM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSRMS during the ORM, simulation tools used for previous 'nominal' mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.

  14. Transit operations decision support systems (TODSS) : core functional requirements for identification of service disruptions and provision of service restoration options 1.0

    DOT National Transportation Integrated Search

    2004-03-15

    The Transit Operations Decision Support System (TODSS) Project was initiated to address concerns raised by transit agencies that have implemented and are using Automated Vehicle Location (AVL) and Computer Aided Dispatch Systems (CAD). This document ...

  15. Time Warp Operating System, Version 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; hide

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  16. NASA Customer Data and Operations System

    NASA Technical Reports Server (NTRS)

    Butler, Madeline J.; Stallings, William H.

    1991-01-01

    In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.

  17. A scientific operations plan for the large space telescope. [ground support system design

    NASA Technical Reports Server (NTRS)

    West, D. K.

    1977-01-01

    The paper describes an LST ground system which is compatible with the operational requirements of the LST. The goal of the approach is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of LST science. Attention is given to cost constraints and guidelines, the telemetry operations processing systems (TELOPS), the image processing facility, ground system planning and data flow, and scientific interfaces.

  18. JPSS Common Ground System Multimission Support

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2013-12-01

    NOAA & NASA jointly acquire the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). JPSS contributes the afternoon orbit & restructured NPOESS ground system (GS) to replace the current Polar-orbiting Operational Environmental Satellite (POES) system run by NOAA. JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical observations of the earth, atmosphere & space. The JPSS GS is the Common Ground System (CGS), consisting of Command, Control, & Communications (C3S) and Interface Data Processing (IDPS) segments, both developed by Raytheon Intelligence, Information & Services (IIS). CGS now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers its mission data between ground facilities and processes its data into Environmental Data Records for NOAA & Defense (DoD) weather centers. CGS will expand to support JPSS-1 in 2017. The JPSS CGS currently does data processing (DP) for S-NPP, creating multiple TBs/day across over two dozen environmental data products (EDPs). The workload doubles after JPSS-1 launch. But CGS goes well beyond S-NPP & JPSS mission management & DP by providing data routing support to operational centers & missions worldwide. The CGS supports several other missions: It also provides raw data acquisition, routing & some DP for GCOM-W1. The CGS does data routing for numerous other missions & systems, including USN's Coriolis/Windsat, NASA's SCaN network (including EOS), NSF's McMurdo Station communications, Defense Meteorological Satellite Program (DMSP), and NOAA's POES & EUMETSAT's MetOp satellites. Each of these satellite systems orbits the Earth 14 times/day, downlinking data once or twice/orbit at up to 100s of MBs/second, to support the creation of 10s of TBs of data/day across 100s of EDPs. Raytheon and the US government invested much in Raytheon's mission-management, command & control and data-processing products & capabilities. CGS's flexible

  19. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  20. Implications of Using Computer-Based Training with the AN/SQQ-89(v) Sonar System: Operating and Support Costs

    DTIC Science & Technology

    2012-06-01

    Visibility and Management of Operating and Support Costs (VAMOSC...VAMOSC Visibility and Management of Operating and Support Costs VMA Variant Manning Average WAP Weapons Alternate Processor WCS Work Center...Visibility and Management of Operating and Support Costs (VAMOSC), under Unit Level Consumption and Manhours—Organizational Corrective Maintenance. C

  1. Telemedicine in support of peacekeeping operations overseas: an audit.

    PubMed

    Navein, J; Hagmann, J; Ellis, J

    1997-01-01

    Since 1993, the Department of Defense has augmented the medical support for Army units on peacekeeping operations in Macedonia through the medium of telemedicine. This project, known as Operation Primetime 1, was the first satellite-based telemedicine system deployed in support of remote primary-care physician in the U.S. military. Its declared aims are: (1) to improve the standard of care; (2) to reduce evacuations; (3) to support junior physicians in the field; and (4) to improve the military effectiveness of the deployed units. This paper audits the success in attaining those goals for the period January 1994 to April 1995. A log was collated from the referring units and questionnaires completed by both referring and consulting physicians. The referring physicians were interviewed on their return from Macedonia, and a more detailed study was undertaken of cases in which a change in outcome was noted. Follow-up interview of consultants was not possible. A total of 53 consults were undertaken on 47 patients. The use of telemedicine affected the decision to evacuate 13 times (13/47), with a net reduction of 9 evacuations. Management of individual cases was changed in 30 of the 47 cases in which telemedicine was used. Physician confidence and military effectiveness were also improved. The level of utilization of the system was largely dependent on a training and sustainment program. Units and General Medical Officers who were trained in the clinical use of telemedicine and the technical sustainment of the equipment used the system; those who were not, did not. Most patients (45/47) were treated satisfactorily with a single consult. Telemedicine under these circumstances seems to be cost effective. The deployed sites chose the referral centers that provided the best service. Telemedicine is a valuable tool capable of augmenting medical support to deployed military units. A successful deployed telemedicine project requires an integrated support package that includes

  2. Spacelab Operations Support Room Space Engineering Support Team in the SL POCC During the IML-1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Spacelab Operations Support Room Space Engineering Support team in the SL POCC during STS-42, IML-1 mission.

  3. Preparing for a decision support system.

    PubMed

    Callan, K

    2000-08-01

    The increasing pressure to reduce costs and improve outcomes is driving the health care industry to view information as a competitive advantage. Timely information is required to help reduce inefficiencies and improve patient care. Numerous disparate operational or transactional information systems with inconsistent and often conflicting data are no longer adequate to meet the information needs of integrated care delivery systems and networks in competitive managed care environments. This article reviews decision support system characteristics and describes a process to assess the preparedness of an organization to implement and use decision support systems to achieve a more effective, information-based decision process. Decision support tools included in this article range from reports to data mining.

  4. An approach to the design of operations systems

    NASA Technical Reports Server (NTRS)

    Chafin, Roy L.; Curran, Patrick S.

    1993-01-01

    The MultiMission Control Team (MMCT) consists of mission controllers which provides Real-Time operations support for the Mars Observer project. The Real-Time Operations task is to insure the integrity of the ground data system, to insure that the configuration is correct to support the mission, and to monitor the spacecraft for the Spacecraft Team. Operations systems are typically developed by adapting operations systems from previous projects. Problems tend to be solved empirically when they are either anticipated or observed in testing. This development method has worked in the past when time was available for extensive Ops testing. In the present NASA budget environment, a more cost conscious design approach has become necessary. Cost is a concern because operations is an ongoing, continuous activity. Reducing costs entails reducing staff. Reducing staffing levels potentially increases the risk of mission failure. Therefore, keeping track of the risk level is necessary.

  5. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  6. Supporting Students' Constructions of the Splitting Operation

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2013-01-01

    Previous research has demonstrated the effectiveness of particular instructional practices that support students' constructions of the partitive unit fraction scheme and measurement concepts for fractions. Another body of research has demonstrated the power of a particular mental operation--the splitting operation--in supporting students'…

  7. Operational support considerations in Space Shuttle prelaunch processing

    NASA Technical Reports Server (NTRS)

    Schuiling, Roelof L.

    1991-01-01

    This paper presents an overview of operational support for Space Shuttle payload processing at the John F. Kennedy Space Center. The paper begins with a discussion of the Shuttle payload processing operation itself. It discusses the major organizational roles and describes the two major classes of payload operations: Spacelab mission payload and vertically-installed payload operations. The paper continues by describing the Launch Site Support Team and the Payload Processing Test Team. Specific areas of operational support are then identified including security and access, training, transport and handling, documentation and scheduling. Specific references for further investigatgion are included.

  8. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  9. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  10. The Controlled Ecological Life Support Systems (CELSS) research program

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1990-01-01

    The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.

  11. Space Shuttle life support systems - A status report

    NASA Technical Reports Server (NTRS)

    Faget, M. A.; Guy, W. W.

    1981-01-01

    The Space Shuttle Program has two independent life support systems. One provides the basic environmental control for the Orbiter cabin while the second enables the crewmen to function outside the spacecraft for extravehicular operation. Although both of these systems were developed and fabricated under contract to NASA, all system-level testing was conducted at the Johnson Space Center. The paper will discuss the results of this testing which, in part, includes: (1) certification of the Orbiter cabin atmospheric pressure and composition control system at three operational pressures (8 psia, 9 psia and 14.7 psia); (2) certification of the Orbiter atmospheric revitalization system at 9 psia and 14.7 psia; (3) manrating of the Orbiter airlock at 14.7 psia, 9 psia and vacuum; and (4) certification of the space suit/life support system in the airlock and at deep space thermal/vacuum conditions. In addition, pertinent flight information from the on-orbit performance of the Shuttle life support systems will be presented.

  12. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  13. Operator Performance Support System (OPSS)

    DTIC Science & Technology

    1992-02-01

    both the military and the industry. The OPSS will propose practical application’ in how to more closely align the relationships between technical...industry. The OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator...commercial programs provide flexibility to suppori existing and futurc kourscware and "hardware enhancements. In the development process of the OPSS

  14. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less

  15. 48 CFR 206.303-70 - Acquisitions in support of operations in Iraq or Afghanistan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operations in Iraq or Afghanistan. 206.303-70 Section 206.303-70 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE ACQUISITION PLANNING COMPETITION REQUIREMENTS Other Than Full and Open Competition 206.303-70 Acquisitions in support of operations in Iraq or...

  16. A distributed computing approach to mission operations support. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1975-01-01

    Computing mission operation support includes orbit determination, attitude processing, maneuver computation, resource scheduling, etc. The large-scale third-generation distributed computer network discussed is capable of fulfilling these dynamic requirements. It is shown that distribution of resources and control leads to increased reliability, and exhibits potential for incremental growth. Through functional specialization, a distributed system may be tuned to very specific operational requirements. Fundamental to the approach is the notion of process-to-process communication, which is effected through a high-bandwidth communications network. Both resource-sharing and load-sharing may be realized in the system.

  17. Language and System Support for Concurrent Programming

    DTIC Science & Technology

    1990-04-01

    language. We give suggestions on how to avoid polling programs , and suggest changes to the rendezvous facilities to eliminate the polling bias. The...concerned with support for concurrent pro- Capsule gramming provided to the application programmer by operating Description systems and programming ...of concurrent programming has widened Philosophy from "pure" operating system applications to a multitude of real-time and distributed programs . Since

  18. Ground Support Network for Operational Radio Occultation Missions

    NASA Astrophysics Data System (ADS)

    Zandbergen, R.; Enderle, W.; Marquardt, C.; Wollenweber, F.

    2012-04-01

    The EUMETSAT/ESA Metop/EPS GRAS radio occultation mission stands out for its operational nature. From the beginning, EUMETSAT has decided to rely on an operational system for provision of the auxiliary GPS products that are needed in the occultation processing. This system is the GRAS Ground Support Network (GSN), operated in the Navigation Facility of ESOC in Darmstadt, which was first presented at EGU in 2008. The GRAS GSN is driven primarily by timeliness, availability and accuracy requirements. The performance of the GSN, measured on a monthly basis, has not only consistently met these requirements since the start of its operations, but has also been improved through several system enhancements. Currently, an additional service is being delivered on an experimental basis, consisting of a near-real time Navigation Bit Stream product, which will allow the processing of open-loop data, further increasing the scientific return of the GRAS instrument, or any other radio occultation mission using this data. This paper will present the GRAS GSN in its current configuration, and demonstrate its excellent performance in terms of accuracy, availability and timeliness. The application of the bit stream data will be shown. Some future evolution perspectives of the GRAS GSN will also be addressed. It will be demonstrated that the GRAS GSN has the potential of serving also other present and future radio occultation missions.

  19. Challenges in building intelligent systems for space mission operations

    NASA Technical Reports Server (NTRS)

    Hartman, Wayne

    1991-01-01

    The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.

  20. Advancing satellite operations with intelligent graphical monitoring systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1993-01-01

    For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.

  1. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    DTIC Science & Technology

    2017-06-01

    designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily

  2. Analysis characteristics determination of electrohydraulic control system operation to reduce the operation time of a powered roof support

    NASA Astrophysics Data System (ADS)

    Szurgacz, Dawid

    2018-01-01

    The article discusses basic functions of a powered roof support in a longwall unit. The support function is to provide safety by protecting mine workings against uncontrolled falling of rocks. The subject of the research includes the measures to shorten the time of roof support shifting. The roof support is adapted to transfer, in hazard conditions of rock mass tremors, dynamic loads caused by mining exploitation. The article presents preliminary research results on the time reduction of the unit advance to increase the extraction process and thus reduce operating costs. Conducted stand tests showed the ability to increase the flow for 3/2-way valve cartridges. The level of fluid flowing through the cartridges is adequate to control individual actuators.

  3. A Learning Support System Regarding Motion Trigger for Repetitive Motion Having an Operating Instrument

    ERIC Educational Resources Information Center

    Toyooka, Hiroshi; Matsuura, Kenji; Gotoda, Naka

    2016-01-01

    In the learning support for repetitive motions having an operating instrument, it is necessary for learners to control not only their own body motions but also an instrument corresponding to the body. This study focuses on the repetitive motion learning using single operation instrument without the movement in space; i.e. jump-rope and hula-hoop.…

  4. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  5. An Investigation of Network Enterprise Risk Management Techniques to Support Military Net-Centric Operations

    DTIC Science & Technology

    2009-09-01

    this information supports the decison - making process as it is applied to the management of risk. 2. Operational Risk Operational risk is the threat... reasonability . However, to make a software system fault tolerant, the system needs to recognize and fix a system state condition. To detect a fault, a fault...Tracking ..........................................51 C. DECISION- MAKING PROCESS................................................................51 1. Risk

  6. Visual management support system

    Treesearch

    Lee Anderson; Jerry Mosier; Geoffrey Chandler

    1979-01-01

    The Visual Management Support System (VMSS) is an extension of an existing computer program called VIEWIT, which has been extensively used by the U. S. Forest Service. The capabilities of this program lie in the rapid manipulation of large amounts of data, specifically opera-ting as a tool to overlay or merge one set of data with another. VMSS was conceived to...

  7. The New York City Operations Support Tool: Supporting Water Supply Operations for Millions in an Era of Changing Patterns in Hydrological Extreme Events

    NASA Astrophysics Data System (ADS)

    Matonse, A. H.; Porter, J. H.; Frei, A.

    2015-12-01

    Providing an average 1.1 billion gallons (~ 4.2 x 106 cubic meters) of drinking water per day to approximately nine million people in New York City (NYC) and four upstate counties, the NYC water supply is among the world's largest unfiltered systems. In addition to providing a reliable water supply in terms of water quantity and quality, the city has to fulfill other flow objectives to serve downstream communities. At times, such as during extreme hydrological events, water quality issues may restrict water usage for parts of the system. To support a risk-based water supply decision making process NYC has developed the Operations Support Tool (OST). OST combines a water supply systems model with reservoir water quality models, near real time data ingestion, data base management and an ensemble hydrological forecast. A number of reports have addressed the frequency and intensities of extreme hydrological events across the continental US. In the northeastern US studies have indicated an increase in the frequency of extremely large precipitation and streamflow events during the most recent decades. During this presentation we describe OST and, using case studies we demonstrate how this tool has been useful to support operational decisions. We also want to motivate a discussion about how undergoing changes in patterns of hydrological extreme events elevate the challenge faced by water supply managers and the role of the scientific community to integrate nonstationarity approaches in hydrologic forecast and modeling.

  8. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Guariniello, Cesare

    assess the behavior of each system based on its internal status and on the topology of its dependencies on systems connected to it. Designers and decision makers can therefore quickly analyze and explore the behavior of complex systems and evaluate different architectures under various working conditions. The methods support educated decision making both in the design and in the update process of systems architecture, reducing the need to execute extensive simulations. In particular, in the phase of concept generation and selection, the information given by the methods can be used to identify promising architectures to be further tested and improved, while discarding architectures that do not show the required level of global features. The methods, when used in conjunction with appropriate metrics, also allow for improved reliability and risk analysis, as well as for automatic scheduling and re-scheduling based on the features of the dependencies and on the accepted level of risk. This dissertation illustrates the use of the two methods in sample aerospace applications, both in the operational and in the developmental domain. The applications show how to use the developed methodology to evaluate the impact of failures, assess the criticality of systems, quantify metrics of interest, quantify the impact of delays, support informed decision making when scheduling the development of systems and evaluate the achievement of partial capabilities. A larger, well-framed case study illustrates how the Systems Operational Dependency Analysis method and the Systems Developmental Dependency Analysis method can support analysis and decision making, at the mid and high level, in the design process of architectures for the exploration of Mars. The case study also shows how the methods do not replace the classical systems engineering methodologies, but support and improve them.

  9. Operation quality assessment model for video conference system

    NASA Astrophysics Data System (ADS)

    Du, Bangshi; Qi, Feng; Shao, Sujie; Wang, Ying; Li, Weijian

    2018-01-01

    Video conference system has become an important support platform for smart grid operation and management, its operation quality is gradually concerning grid enterprise. First, the evaluation indicator system covering network, business and operation maintenance aspects was established on basis of video conference system's operation statistics. Then, the operation quality assessment model combining genetic algorithm with regularized BP neural network was proposed, which outputs operation quality level of the system within a time period and provides company manager with some optimization advice. The simulation results show that the proposed evaluation model offers the advantages of fast convergence and high prediction accuracy in contrast with regularized BP neural network, and its generalization ability is superior to LM-BP neural network and Bayesian BP neural network.

  10. IEP (Individualized Educational Program) Co-operation between Optimal Support of Students with Special Needs

    NASA Astrophysics Data System (ADS)

    Ogoshi, Yasuhiro; Nakai, Akio; Ogoshi, Sakiko; Mitsuhashi, Yoshinori; Araki, Chikahiro

    A key aspect of the optimal support of students with special needs is co-ordination and co-operation between school, home and specialized agencies. Communication between these entities is of prime importance and can be facilitated through the use of a support system implementing ICF guidelines as outlined. This communication system can be considered to be a preventative rather than allopathic support.

  11. [Comparison of perforated metal ceiling systems (supported airflow ceilings) with laminar airflow ceilings in type A (DIN 1946 T.4) operating rooms under surgical conditions].

    PubMed

    Bischoff, W E; Kindermann, A; Sander, U; Sander, J

    1995-10-01

    In eleven centrally ventilated operating theatres the concentration of particles and airborne germs in wound vicinity was measured on three workdays. Five theatres were equipped with air supply ceilings with supporting flow outlets (supporting flow ceilings), five with laminar air flow ceilings and one with an air supply ceiling, a body exhaust system and a partition wall between the anesthetic and operating areas. Under routine conditions the air supply of the laminar air flow ceiling with its lower turbulence shielded the operating field from the largely staff-related air contamination in the rest of the theatre better than in the case of the supporting flow ceilings. Particles and airborne germs were removed from the endangered wound area faster. A spatial separation between the anesthetic and the operating areas as well as a body exhaust system lead to a considerable reduction of the contamination. Two theatres were conspicuous by reason of their considerably raised values due to defective control engineering and the wrongly positioning of the operating table. From the point of view of ventilation technique the laminar air flow ceilings with lower turbulence are superior to air supply ceilings with supporting flow outlets in the working day of an operating theatre. In order to minimize the influence of the staff, which up till now has been neglected in testing specifications, constructional possibilities such as the size of ceiling, the partitioning off of operating and anaesthetic areas and the positioning of the operating table in relation to the incoming air should be coordinated rationally. Taking measurements regularly during operations can provide the impulse for considerable improvements in both operational and planning phases.

  12. Field Artillery And Fire Support At The Operational Level: An Analysis Of Operation Desert Storm and Operation Iraqi Freedom

    DTIC Science & Technology

    2017-05-25

    Field Artillery and Fire Support at the Operational Level: An Analysis of Operation Desert Storm and Operation Iraqi Freedom A Monograph...Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204...AND SUBTITLE Field Artillery and Fire Support at the Operational Level: An Analysis of Operation Desert Storm and Operation Iraqi Freedom 5a

  13. Cognitive Task Analysis and Work-Centered Support System Recommendations for a Deployed Network Operations Support Center (NOSC-D)

    DTIC Science & Technology

    2001-08-01

    This report presents the results of a preliminary Cognitive Task Analysis (CTA) of the deployed Network Operations Support Center (NOSC-D), and the...conducted Cognitive Task Analysis interviews with four (4) NOSC-D personnel. Because of the preliminary nature of the finding, the analysis is

  14. Surface Operations Systems Improve Airport Efficiency

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  15. Mariner Mars 1971 science operational support equipment

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Mariner Mars 1971 science operational support equipment (SOSE) was developed to support the checkout of the proof test model and flight spacecraft. The test objectives of the SOSE and how these objectives were implemented are discussed. Attention is focused on the computer portion of the SOSE, since incorporation of a computer in ground checkout equipment represents a major departure from the support equipment concepts previously used. A functional description of the major hardware elements contained in the SOSE is also included, along with the operational performance of the SOSE during spacecraft testing.

  16. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  17. ASUD2- decision support system on Dnieper reservoirs operations taking into account environmental priorities

    NASA Astrophysics Data System (ADS)

    Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.

    2003-04-01

    On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the

  18. Operation plan for the data 100/LARS terminal system

    NASA Technical Reports Server (NTRS)

    Bowen, A. J., Jr.

    1980-01-01

    The Data 100/LARS terminal system provides an interface for processing on the IBM 3031 computer system at Purdue University's Laboratory for Applications of Remote Sensing. The environment in which the system is operated and supported is discussed. The general support responsibilities, procedural mechanisms, and training established for the benefit of the system users are defined.

  19. Using task analysis to understand the Data System Operations Team

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.

    1994-01-01

    The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.

  20. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  1. Shuttle remote manipulator system mission preparation and operations

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E., Jr.

    1989-01-01

    The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.

  2. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  3. Flawed Execution: A Case Study on Operational Contract Support

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT June 2016...applied project 4. TITLE AND SUBTITLE FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT 5. FUNDING NUMBERS 6. AUTHOR(S) Scott F...unlimited FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT Scott F. Taggart, Captain, United States Marine Corps Jacob Ledford

  4. Operator assistant to support deep space network link monitor and control

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Desai, Rajiv; Martinez, Elmain

    1992-01-01

    Preparing the Deep Space Network (DSN) stations to support spacecraft missions (referred to as pre-cal, for pre-calibration) is currently an operator and time intensive activity. Operators are responsible for sending and monitoring several hundred operator directivities, messages, and warnings. Operator directives are used to configure and calibrate the various subsystems (antenna, receiver, etc.) necessary to establish a spacecraft link. Messages and warnings are issued by the subsystems upon completion of an operation, changes of status, or an anomalous condition. Some points of pre-cal are logically parallel. Significant time savings could be realized if the existing Link Monitor and Control system (LMC) could support the operator in exploiting the parallelism inherent in pre-cal activities. Currently, operators may work on the individual subsystems in parallel, however, the burden of monitoring these parallel operations resides solely with the operator. Messages, warnings, and directives are all presented as they are received; without being correlated to the event that triggered them. Pre-cal is essentially an overhead activity. During pre-cal, no mission is supported, and no other activity can be performed using the equipment in the link. Therefore, it is highly desirable to reduce pre-cal time as much as possible. One approach to do this, as well as to increase efficiency and reduce errors, is the LMC Operator Assistant (OA). The LMC OA prototype demonstrates an architecture which can be used in concert with the existing LMC to exploit parallelism in pre-cal operations while providing the operators with a true monitoring capability, situational awareness and positive control. This paper presents an overview of the LMC OA architecture and the results from initial prototyping and test activities.

  5. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  6. GODAE Systems in Operation

    DTIC Science & Technology

    2009-10-09

    Ocean Data Assimilation Scientist, Met Office, Exeter, UK. Shan Mei is Research Scientist, National Marine Environment Forecast Center, Beijing ...An MFS-MEDSLICK coupled system is operationally used for oil spill fore- casting in support of Regional Marine Pollution Emergency Response Centre...configura- tion with 11-km to 16-km horizontal resolution and 22 hybrid vertical layers. HYCOM is coupled to an Elastic Viscous Plastic dynamic and

  7. Operation management system evaluation in the central Finland health care district - end users' view of system implementation.

    PubMed

    Lemmetty, Kaisa; Häyrinen, Eija

    2005-01-01

    In this paper we evaluate the implementation of the operation management system in the Central Finland Health Care District. The implementation of the operation management system changed the practice of operation management for the surgical clinic and concerned 500 personnel in total. A survey was carried out to investigate the end users' views on the system's usefulness, usability and the training and user support provided. The users' possibilities to accomplish their tasks and the kind of obstacles they face in operation management were explored. The assessment revealed that more end support is needed after the system implementation, even though a generally positive attitude towards the system was manifested among the staff.

  8. Study on the Preliminary Design of ARGO-M Operation System

    NASA Astrophysics Data System (ADS)

    Seo, Yoon-Kyung; Lim, Hyung-Chul; Rew, Dong-Young; Jo, Jung Hyun; Park, Jong-Uk; Park, Eun-Seo; Park, Jang-Hyun

    2010-12-01

    Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.

  9. The middleware architecture supports heterogeneous network systems for module-based personal robot system

    NASA Astrophysics Data System (ADS)

    Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun

    2005-12-01

    On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general

  10. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Moore, Michael; Bielski, Paul; Crues, Edwin Z.

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions and assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  11. SIRTF Science Operations System Design

    NASA Technical Reports Server (NTRS)

    Green, William

    1999-01-01

    SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data

  12. Features of computerized clinical decision support systems supportive of nursing practice: a literature review.

    PubMed

    Lee, Seonah

    2013-10-01

    This study aimed to organize the system features of decision support technologies targeted at nursing practice into assessment, problem identification, care plans, implementation, and outcome evaluation. It also aimed to identify the range of the five stage-related sequential decision supports that computerized clinical decision support systems provided. MEDLINE, CINAHL, and EMBASE were searched. A total of 27 studies were reviewed. The system features collected represented the characteristics of each category from patient assessment to outcome evaluation. Several features were common across the reviewed systems. For the sequential decision support, all of the reviewed systems provided decision support in sequence for patient assessment and care plans. Fewer than half of the systems included problem identification. There were only three systems operating in an implementation stage and four systems in outcome evaluation. Consequently, the key steps for sequential decision support functions were initial patient assessment, problem identification, care plan, and outcome evaluation. Providing decision support in such a full scope will effectively help nurses' clinical decision making. By organizing the system features, a comprehensive picture of nursing practice-oriented computerized decision support systems was obtained; however, the development of a guideline for better systems should go beyond the scope of a literature review.

  13. Methodology and Assumptions of Contingency Shuttle Crew Support (CSCS) Calculations Using ISS Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Prokhorov, Kimberlee; Shkedi, Brienne

    2006-01-01

    The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.

  14. Support for User Interfaces for Distributed Systems

    NASA Technical Reports Server (NTRS)

    Eychaner, Glenn; Niessner, Albert

    2005-01-01

    An extensible Java(TradeMark) software framework supports the construction and operation of graphical user interfaces (GUIs) for distributed computing systems typified by ground control systems that send commands to, and receive telemetric data from, spacecraft. Heretofore, such GUIs have been custom built for each new system at considerable expense. In contrast, the present framework affords generic capabilities that can be shared by different distributed systems. Dynamic class loading, reflection, and other run-time capabilities of the Java language and JavaBeans component architecture enable the creation of a GUI for each new distributed computing system with a minimum of custom effort. By use of this framework, GUI components in control panels and menus can send commands to a particular distributed system with a minimum of system-specific code. The framework receives, decodes, processes, and displays telemetry data; custom telemetry data handling can be added for a particular system. The framework supports saving and later restoration of users configurations of control panels and telemetry displays with a minimum of effort in writing system-specific code. GUIs constructed within this framework can be deployed in any operating system with a Java run-time environment, without recompilation or code changes.

  15. Life support systems for Mars transit.

    PubMed

    MacElroy, R D; Kliss, M; Straight, C

    1992-01-01

    The long-held human dream of travel to the stars and planets will probably be realized within the next quarter century. Preliminary analyses by U.S. scientists and engineers suggests that a first trip to Mars could begin as early as 2016. A proposal by U.S.S.R. space planners has suggested that an effort involving the cooperation and collaboration of many nations could begin by 2011. Among the major considerations that must be made in preparation for such an excursion are solidification of the scientific, economic and philosophical rationales for such a trip made by humans, and realistic evaluations of current and projected technical capabilities. Issues in the latter category include launch and propulsion systems, long term system stability and reliability, the psychological and physiological consequences of long term exposure to the space environment, the development and use of countermeasures to deleterious human physiological responses to the space environment, and life support systems that are both capable of the immense journey and reliable enough to assure their continued operation for the duration of the voyage. Many of the issues important in the design of a life support system for a Mars trip are based on reasonably well understood data: the human requirements for food, oxygen and water. However, other issues are less well-defined, such as the demands that will be made on the system for personal cleanliness and hygiene, environmental cleanliness, prevention or reduction of environmental toxins, and psychological responses to the environment and to the diet. It is much too early to make final decisions about the characteristics of the long-duration life support system needed for travel to Mars, or for use on its surface. However, it is clear that life support systems will evolve during the next few decades form the relatively straightforward systems that are used on Shuttle and Soyuz, to increasingly more complex and regenerative systems. The Soviet Union

  16. Conceptual design of a piloted Mars sprint life support system

    NASA Technical Reports Server (NTRS)

    Cullingford, H. S.; Novara, M.

    1988-01-01

    This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.

  17. Locating Portable Stations to Support the Operation of Bike Sharing Systems

    DOT National Transportation Integrated Search

    2017-12-26

    Redistributing bikes has been a major challenge for the daily operation of bike sharing system around the world. Existing literature explore solution strategies that rely on pick-up-and-delivery routing as well as user incentivization approaches. The...

  18. Environmental Control and Life Support Integration Strategy for 6-Crew Operations

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Tressler, Chad H.

    2010-01-01

    The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station

  19. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  20. Development of a support software system for real-time HAL/S applications

    NASA Technical Reports Server (NTRS)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  1. 14 CFR 460.11 - Environmental control and life support systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Environmental control and life support... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric conditions adequate to sustain life and consciousness for all inhabited areas within a vehicle. The operator...

  2. 14 CFR 460.11 - Environmental control and life support systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Environmental control and life support... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric conditions adequate to sustain life and consciousness for all inhabited areas within a vehicle. The operator...

  3. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  4. Making adaptable systems work for mission operations: A case study

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.; Levesque, Michael E.

    1993-01-01

    The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.

  5. Piping support system for liquid-metal fast-breeder reactor

    DOEpatents

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  6. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  7. Space shuttle environmental control/life support systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study analyzes and defines a baseline Environmental Control/Life Support System (EC/LSS) for a four-man, seven-day orbital shuttle. In addition, the impact of various mission parameters, crew size, mission length, etc. are examined for their influence on the selected system. Pacing technology items are identified to serve as a guide for application of effort to enhance the total system optimization. A fail safe-fail operation philosophy was utilized in designing the system. This has resulted in a system that requires only one daily routine operation. All other critical item malfunctions are automatically resolved by switching to redundant modes of operation. As a result of this study, it is evident that a practical, flexible, simple and long life, EC/LSS can be designed and manufactured for the shuttle orbiter within the time phase required.

  8. Analysis of rock mass dynamic impact influence on the operation of a powered roof support control system

    NASA Astrophysics Data System (ADS)

    Szurgacz, Dawid; Brodny, Jaroław

    2018-01-01

    A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.

  9. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control system, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions, and to assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  10. Domestic Event Support Operations (DESO)

    DTIC Science & Technology

    2012-02-01

    Examples include EOD Technicians, doctors, nurses , and signalers. The capability also needed dedicated support from DSTO, which eventually became...attacks led to the postponement of CHOGM 2001 and the suspension of Operation GUARDIAN. The activity was rescheduled for March 2002 to be held in the

  11. Logistical Support of a Multiple Launch Rocket System (MLRS) Battalion During Operations Desert Shield/Storm

    DTIC Science & Technology

    1993-04-25

    assembly area (AA) was located approximately 5 km due south of the Corps’ most Forward Operating Base (FOB) Bastone . FOB Bastone was located along the...area again was 5 km south of FOB Bastone . The battalion was finally in a tactical position from which we could quickly support combat operations, if...wheel vehicles operational. We coordinated with the 12th Avn Bde headquarters, stationed at FOB Bastone , to send two NCO’s on their log bird going to

  12. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  13. A survey of life support system automation and control

    NASA Technical Reports Server (NTRS)

    Finn, Cory K.

    1993-01-01

    The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.

  14. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  15. Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The

  16. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  17. Recommendations for Secure Initialization Routines in Operating Systems

    DTIC Science & Technology

    2004-12-01

    monolithic design is used. This term is often used to distinguish the operating system from supporting software, e.g. “The Linux kernel does not specify...give the operating system structure and organization. Yet the overall monolithic design of the kernel still falls under Tannenbaum and Woodhull’s “Big...modules that handle initialization tasks. Any further subdivision would complicate interdependencies that are a result of having a monolithic kernel

  18. Operational Contract Support: Economic Impact Evaluation and Measures of Effectiveness

    DTIC Science & Technology

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT OPERATIONAL CONTRACT SUPPORT: ECONOMIC IMPACT EVALUATION AND MEASURES...DATES COVERED MBA professional report 4. TITLE AND SUBTITLE OPERATIONAL CONTRACT SUPPORT: ECONOMIC IMPACT EVALUATION AND MEASURES OF EFFECTIVENESS 5...evaluation, expeditionary economics , operational contract support, measure of effectiveness 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY

  19. 2016 National Census of Ferry Operators [supporting datasets

    DOT National Transportation Integrated Search

    2018-03-06

    The Bureau of Transportation Statistics (BTS) conducted the National Census of Ferry Operators (NCFO) from April through November 2016, collecting the operational characteristics of the 2015 calendar year ferry operations. : The supporting zip file c...

  20. The UNIX Operating System: A Model for Software Design.

    PubMed

    Kernighan, B W; Morgan, S P

    1982-02-12

    The UNIX operating system, a general-purpose time-sharng system, has, without marketing, advertising, or technical support, become widely used by universities and scientific research establishments. It is the de facto standard of comparison for such systems and has spawned a small industry of suppliers of UNIX variants and look-alikes. This article attempts to uncover the reasons for its success and to draw some lessons for the future of operating systems.

  1. Expert operator's associate: A knowledge based system for spacecraft control

    NASA Technical Reports Server (NTRS)

    Nielsen, Mogens; Grue, Klaus; Lecouat, Francois

    1991-01-01

    The Expert Operator's Associate (EOA) project is presented which studies the applicability of expert systems for day-to-day space operations. A prototype expert system is developed, which operates on-line with an existing spacecraft control system at the European Space Operations Centre, and functions as an 'operator's assistant' in controlling satellites. The prototype is demonstrated using an existing real-time simulation model of the MARECS-B2 telecommunication satellite. By developing a prototype system, the extent to which reliability and effectivens of operations can be enhanced by AI based support is examined. In addition the study examines the questions of acquisition and representation of the 'knowledge' for such systems, and the feasibility of 'migration' of some (currently) ground-based functions into future spaceborne autonomous systems.

  2. Environmental Control and Life Support Integration Strategy for 6-Crew Operations

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The International Space Station (ISS) crew compliment will be increasing in size from 3 to 6 crew members in the summer of 2009. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). A critical step in advancing to a 6Crew support capability on ISS is a full checkedout and verification of the Regenerative ECLS hardware. With a successful checkout, the ISS will achieve full redundancy in its onorbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offers additional challenges. These challenges create the need for a higher level of onorbit consumables reserve to ensure crewmember life support during a system failure. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6Crew on ISS, as well as the continued work which will be necessary to ensure the support of crew and ISS Program objectives through the life of station.

  3. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  4. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  5. Development of a Space Station Operations Management System

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  6. Development of a Space Station Operations Management System

    NASA Astrophysics Data System (ADS)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  7. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  8. Alpha: A real-time decentralized operating system for mission-oriented system integration and operation

    NASA Technical Reports Server (NTRS)

    Jensen, E. Douglas

    1988-01-01

    Alpha is a new kind of operating system that is unique in two highly significant ways. First, it is decentralized transparently providing reliable resource management across physically dispersed nodes, so that distributed applications programming can be done largely as though it were centralized. And second, it provides comprehensive, high technology support for real-time system integration and operation, an application area which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality, performance, and cost. Alpha is the first systems effort of the Archons Project, and the prototype was created at Carnegie-Mellon University directly on modified Sun multiprocessor workstation hardware. It has been demonstrated with a real-time C(sup 2) application. Continuing research is leading to a series of enhanced follow-ons to Alpha; these are portable but initially hosted on Concurrent's MASSCOMP line of multiprocessor products.

  9. Support systems of the orbiting quarantine facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  10. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  11. Operating Systems.

    ERIC Educational Resources Information Center

    Denning, Peter J.; Brown, Robert L.

    1984-01-01

    A computer operating system spans multiple layers of complexity, from commands entered at a keyboard to the details of electronic switching. In addition, the system is organized as a hierarchy of abstractions. Various parts of such a system and system dynamics (using the Unix operating system as an example) are described. (JN)

  12. Regenerative life support system research and concepts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.

  13. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  14. The Clouds distributed operating system - Functional description, implementation details and related work

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.

    1988-01-01

    Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.

  15. Laboratory Information Systems Management and Operations.

    PubMed

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 20 CFR 670.970 - What are the reporting requirements for center operators and operational support service providers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... center operators and operational support service providers? 670.970 Section 670.970 Employees' Benefits... INVESTMENT ACT Administrative and Management Provisions § 670.970 What are the reporting requirements for center operators and operational support service providers? The Secretary establishes procedures to...

  17. Optimization of life support systems and their systems reliability

    NASA Technical Reports Server (NTRS)

    Fan, L. T.; Hwang, C. L.; Erickson, L. E.

    1971-01-01

    The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.

  18. Intelligent command and control systems for satellite ground operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1994-01-01

    The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.

  19. Identifying Fixed Support Costs in Air Force Visibility and Management of Operating and Support Costs (VAMOSC).

    DTIC Science & Technology

    1983-04-01

    Algorithms I: Overview," Technical Report No. 115-2, Desmatics, Inc., 1983. 6. C. T. Horngren , Cost Accounting : A Managerial Emphasis, Prentice-Hall Inc...CHART NATIONA BUREAUJ OF STAf4DARO-I% 3-A S . . . . . . . . . . I.I i ". ’ 1).N’r1F𔃻I."U FmiXE Sc’pioir COSTS IN A VA,(),C * by Robert L. Gardner Dennis...operations and support (O& S ) costs for Air Force aircraft weapon systems and ground communications-electronics (C-E) systems. Included are fuel, materiel, pay

  20. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    NASA Technical Reports Server (NTRS)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  1. Smart Operations in Distributed Energy Resources System

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  2. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  3. PCOS - An operating system for modular applications

    NASA Technical Reports Server (NTRS)

    Tharp, V. P.

    1986-01-01

    This paper is an introduction to the PCOS operating system for the MC68000 family processors. Topics covered are: development history; development support; rational for development of PCOS and salient characteristics; architecture; and a brief comparison of PCOS to UNIX.

  4. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  5. Advanced Technology Training System on Motor-Operated Valves

    NASA Technical Reports Server (NTRS)

    Wiederholt, Bradley J.; Widjaja, T. Kiki; Yasutake, Joseph Y.; Isoda, Hachiro

    1993-01-01

    This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course.

  6. Extended Operation Testing of Stirling Convertors in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffre G.; Wilson, Scott D.; oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas

    2008-01-01

    100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hours of TDC testing and 40,000 hours of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.

  7. Extended Operation Testing of Stirling Convertors in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas

    2009-01-01

    100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.

  8. [Comprehensive system integration and networking in operating rooms].

    PubMed

    Feußner, H; Ostler, D; Kohn, N; Vogel, T; Wilhelm, D; Koller, S; Kranzfelder, M

    2016-12-01

    A comprehensive surveillance and control system integrating all devices and functions is a precondition for realization of the operating room of the future. Multiple proprietary integrated operation room systems are currently available with a central user interface; however, they only cover a relatively small part of all functionalities. Internationally, there are at least three different initiatives to promote a comprehensive systems integration and networking in the operating room: the Japanese smart cyber operating theater (SCOT), the American medical device plug-and-play interoperability program (MDPnP) and the German secure and dynamic networking in operating room and hospital (OR.NET) project supported by the Federal Ministry of Education and Research. Within the framework of the internationally advanced OR.NET project, prototype solution approaches were realized, which make short-term and mid-term comprehensive data retrieval systems probable. An active and even autonomous control of the medical devices by the surveillance and control system (closed loop) is expected only in the long run due to strict regulatory barriers.

  9. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  10. Intelligent Command and Control Systems for Satellite Ground Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1999-01-01

    This grant, Intelligent Command and Control Systems for Satellite Ground Operations, funded by NASA Goddard Space Flight Center, has spanned almost a decade. During this time, it has supported a broad range of research addressing the changing needs of NASA operations. It is important to note that many of NASA's evolving needs, for example, use of automation to drastically reduce (e.g., 70%) operations costs, are similar requirements in both government and private sectors. Initially the research addressed the appropriate use of emerging and inexpensive computational technologies, such as X Windows, graphics, and color, together with COTS (commercial-off-the-shelf) hardware and software such as standard Unix workstations to re-engineer satellite operations centers. The first phase of research supported by this grant explored the development of principled design methodologies to make effective use of emerging and inexpensive technologies. The ultimate performance measures for new designs were whether or not they increased system effectiveness while decreasing costs. GT-MOCA (The Georgia Tech Mission Operations Cooperative Associate) and GT-VITA (Georgia Tech Visual and Inspectable Tutor and Assistant), whose latter stages were supported by this research, explored model-based design of collaborative operations teams and the design of intelligent tutoring systems, respectively. Implemented in proof-of-concept form for satellite operations, empirical evaluations of both, using satellite operators for the former and personnel involved in satellite control operations for the latter, demonstrated unequivocally the feasibility and effectiveness of the proposed modeling and design strategy underlying both research efforts. The proof-of-concept implementation of GT-MOCA showed that the methodology could specify software requirements that enabled a human-computer operations team to perform without any significant performance differences from the standard two-person satellite

  11. Space Operations Center system analysis study extension. Volume 4, book 2: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.

  12. Launch processing system transition from development to operation

    NASA Technical Reports Server (NTRS)

    Paul, H. C.

    1977-01-01

    The Launch Processing System has been under development at Kennedy Space Center since 1973. A prototype system was developed and delivered to Marshall Space Flight Center for Solid Rocket Booster checkout in July 1976. The first production hardware arrived in late 1976. The System uses a distributed computer network for command and monitoring and is supported by a dual large scale computer system for 'off line' processing. A high level of automation is anticipated for Shuttle and Payload testing and launch operations to gain the advantages of short turnaround capability, repeatability of operations, and minimization of operations and maintenance (O&M) manpower. Learning how to efficiently apply the system is our current problem. We are searching for more effective ways to convey LPS system performance characteristics from the designer to a large number of users. Once we have done this, we can realize the advantages of LPS system design.

  13. Operations management system

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  14. Design of inventory pools in spare part support operation systems

    NASA Astrophysics Data System (ADS)

    Mo, Daniel Y.; Tseng, Mitchell M.; Cheung, Raymond K.

    2014-06-01

    The objective of a spare part support operation is to fulfill the part request order with different service contracts in the agreed response time. With this objective to achieve different service targets for multiple service contracts and the considerations of inventory investment, it is not only important to determine the inventory policy but also to design the structure of inventory pools and the order fulfilment strategies. In this research, we focused on two types of inventory pools: multiple inventory pool (MIP) and consolidated inventory pool (CIP). The idea of MIP is to maintain separated inventory pools based on the types of service contract, while CIP solely maintains a single inventory pool regardless of service contract. Our research aims to design the inventory pool analytically and propose reserve strategies to manage the order fulfilment risks in CIP. Mathematical models and simulation experiments would be applied for analysis and evaluation.

  15. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Technical Reports Server (NTRS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-01-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  16. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Astrophysics Data System (ADS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  17. Commonality of Ground Systems in Launch Operations

    NASA Technical Reports Server (NTRS)

    Quinn, Shawn M.

    2008-01-01

    NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront development and long-term operations and maintenance costs, success in real, large-scale engineering systems used to support launch operations is relatively unknown. A broad literature review conducted for this paper did not yield a single paper specifically addressing the application of commonality for ground systems at any launch site in the United States or abroad. This paper provides a broad overview of the ground systems, captures historical and current application of commonality at the launch site, and offers suggestions for additional research to further develop commonality approaches.

  18. New Directions in Space Operations Services in Support of Interplanetary Exploration

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2005-01-01

    To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will

  19. The Aegean Sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-05-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  20. The Aegean sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-10-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order to support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  1. End effector monitoring system: An illustrated case of operational prototyping

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll

    1994-01-01

    Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.

  2. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.

    PubMed

    Koók, László; Nemestóthy, Nándor; Bakonyi, Péter; Zhen, Guangyin; Kumar, Gopalakrishnan; Lu, Xueqin; Su, Lianghu; Saratale, Ganesh Dattatraya; Kim, Sang-Hyoun; Gubicza, László

    2017-05-01

    In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion ® proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C 6 mim][PF 6 ] or [Bmim][NTf 2 ] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion ® and the same substrate. Furthermore, the MFC operated with [Bmim][NTf 2 ]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g -1 COD in m -2  h -1 ) than the one with the polymeric Nafion ® N115 (59 J g -1 COD in m -2  h -1 ). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Using Visualization in Cockpit Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  4. Operational Experience of the Upgraded Cryogenic Systems at the Nscl

    NASA Astrophysics Data System (ADS)

    McCartney, A. H.; Laumer, H. L.; Jones, S. A.

    2010-04-01

    The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.

  5. Axiomatic Design of Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  6. Agent-Supported Mission Operations Teamwork

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    This slide presentation reviews the development of software agents to support of mission operations teamwork. The goals of the work was to make automation by agents easy to use, supervise and direct, manage information and communication to decrease distraction, interruptions, workload and errors, reduce mission impact of off-nominal situations and increase morale and decrease turnover. The accomplishments or the project are: 1. Collaborative agents - mixed initiative and creation of instructions for mediating agent 2. Methods for prototyping, evaluating and evolving socio-technical systems 3. Technology infusion: teamwork tools in mISSIons 4. Demonstrations in simulation testbed An example of the use of agent is given, the use of an agent to monitor a N2 tank leak. An incomplete instruction to the agent is handled with mediating assistants, or Intelligent Briefing and Response Assistant (IBRA). The IBRA Engine also watches data stream for triggers and executes Act-Whenever actions. There is also a Briefing and Response Instruction (BRI) which is easy for a discipline specialist to create through a BRI editor.

  7. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  8. Should drivers be operating within an automation-free bandwidth? Evaluating haptic steering support systems with different levels of authority.

    PubMed

    Petermeijer, Sebastiaan M; Abbink, David A; de Winter, Joost C F

    2015-02-01

    The aim of this study was to compare continuous versus bandwidth haptic steering guidance in terms of lane-keeping behavior, aftereffects, and satisfaction. An important human factors question is whether operators should be supported continuously or only when tolerance limits are exceeded. We aimed to clarify this issue for haptic steering guidance by investigating costs and benefits of both approaches in a driving simulator. Thirty-two participants drove five trials, each with a different level of haptic support: no guidance (Manual); guidance outside a 0.5-m bandwidth (Band1); a hysteresis version of Band1, which guided back to the lane center once triggered (Band2); continuous guidance (Cont); and Cont with double feedback gain (ContS). Participants performed a reaction time task while driving. Toward the end of each trial, the guidance was unexpectedly disabled to investigate aftereffects. All four guidance systems prevented large lateral errors (>0.7 m). Cont and especially ContS yielded smaller lateral errors and higher time to line crossing than Manual, Band1, and Band2. Cont and ContS yielded short-lasting aftereffects, whereas Band1 and Band2 did not. Cont yielded higher self-reported satisfaction and faster reaction times than Band1. Continuous and bandwidth guidance both prevent large driver errors. Continuous guidance yields improved performance and satisfaction over bandwidth guidance at the cost of aftereffects and variability in driver torque (indicating human-automation conflicts). The presented results are useful for designers of haptic guidance systems and support critical thinking about the costs and benefits of automation support systems.

  9. Program Support Communications Network (PSCN) facsimile system directory

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This directory provides a system description, a station listing, and operating procedures for the Program Support Communications Network (PSCN) NASA Facsimile System. The NASA Facsimile System is a convenient and efficient means of spanning the distance, time, and cost of transmitting documents from one person to another. In the spectrum of communication techniques, facsimile bridges the gap between mail and data transmission. Facsimile can transmit in a matter of minutes or seconds what would take a day or more by mail delivery. The NASA Facsimile System is composed of several makes and models of facsimile machines. The system also supports the 3M FaxXchange network controllers located at Marshall Space Flight Center (MSFC).

  10. Design and development of a mobile system for supporting emergency triage.

    PubMed

    Michalowski, W; Slowinski, R; Wilk, S; Farion, K J; Pike, J; Rubin, S

    2005-01-01

    Our objective was to design and develop a mobile clinical decision support system for emergency triage of different acute pain presentations. The system should interact with existing hospital information systems, run on mobile computing devices (handheld computers) and be suitable for operation in weak-connectivity conditions (with unstable connections between mobile clients and a server). The MET (Mobile Emergency Triage) system was designed following an extended client-server architecture. The client component, responsible for triage decision support, is built as a knowledge-based system, with domain ontology separated from generic problem solving methods and used for the automatic creation of a user interface. The MET system is well suited for operation in the Emergency Department of a hospital. The system's external interactions are managed by the server, while the MET clients, running on handheld computers are used by clinicians for collecting clinical data and supporting triage at the bedside. The functionality of the MET client is distributed into specialized modules, responsible for triaging specific types of acute pain presentations. The modules are stored on the server, and on request they can be transferred and executed on the mobile clients. The modular design provides for easy extension of the system's functionality. A clinical trial of the MET system validated the appropriateness of the system's design, and proved the usefulness and acceptance of the system in clinical practice. The MET system captures the necessary hospital data, allows for entry of patient information, and provides triage support. By operating on handheld computers, it fits into the regular emergency department workflow without introducing any hindrances or disruptions. It supports triage anytime and anywhere, directly at the point of care, and also can be used as an electronic patient chart, facilitating structured data collection.

  11. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    NASA Astrophysics Data System (ADS)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-11-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  12. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  13. Operation Joint Endeavor in Bosnia: telemedicine systems and case reports.

    PubMed

    Calcagni, D E; Clyburn, C A; Tomkins, G; Gilbert, G R; Cramer, T J; Lea, R K; Ehnes, S G; Zajtchuk, R

    1996-01-01

    For the last several years the U.S. Department of Defense (DoD) has operated a telemedicine test bed at the U.S. Army Medical Research and Material Command's Medical Advanced Technology Management Office. The goal of this test bed is to reengineer the military health service system from the most forward deployed forces to tertiary care teaching medical centers within the United States by exploiting emerging telemedicine technologies. The test bed has conducted numerous proof-of-concept telemedicine demonstrations as part of military exercises and in support of real-world troop deployments. The most ambitious of those demonstrations is Primetime III, an ongoing effort to provide telemedicine and other advanced technology support to medical units supporting Operation Joint Endeavor in Bosnia. Several of the first instances of the clinical use of the Primetime III systems are presented as case reports in this paper. These reports demonstrate capabilities and limitations of telemedicine. The Primetime III system demonstrates the technical ability to provide current telecommunications capabilities to medical units stationed in the remote, austere, difficult-to-serve environment of Bosnia. Telemedicine capabilities cannot be used without adequate training, operations, and sustainment support. Video consultations have eliminated the need for some evacuations. The system has successfully augmented the clinical capability of physicians assigned to these medical units. Fullest clinical utilization of telemedicine technologies requires adjustment of conventional clinical practice patterns.

  14. A Framework for Adaptable Operating and Runtime Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Thomas

    The emergence of new classes of HPC systems where performance improvement is enabled by Moore’s Law for technology is manifest through multi-core-based architectures including specialized GPU structures. Operating systems were originally designed for control of uniprocessor systems. By the 1980s multiprogramming, virtual memory, and network interconnection were integral services incorporated as part of most modern computers. HPC operating systems were primarily derivatives of the Unix model with Linux dominating the Top-500 list. The use of Linux for commodity clusters was first pioneered by the NASA Beowulf Project. However, the rapid increase in number of cores to achieve performance gain throughmore » technology advances has exposed the limitations of POSIX general-purpose operating systems in scaling and efficiency. This project was undertaken through the leadership of Sandia National Laboratories and in partnership of the University of New Mexico to investigate the alternative of composable lightweight kernels on scalable HPC architectures to achieve superior performance for a wide range of applications. The use of composable operating systems is intended to provide a minimalist set of services specifically required by a given application to preclude overheads and operational uncertainties (“OS noise”) that have been demonstrated to degrade efficiency and operational consistency. This project was undertaken as an exploration to investigate possible strategies and methods for composable lightweight kernel operating systems towards support for extreme scale systems.« less

  15. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Detect and Avoid Display Evaluations in Support of SC-228 Minimum Operational Performance Standards Development

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn

    2017-01-01

    The primary activity for the UAS-NAS Human Systems Integration (HSI) sub-project in Phase 1 was support of RTCA Special Committee 228 Minimum Operational Performance Standards (MOPS). We provide data on the effect of various Detect and Avoid (DAA) display features with respect to pilot performance of the remain well clear function in order to determine the minimum requirements for DAA displays.

  16. Distributed operating system for NASA ground stations

    NASA Technical Reports Server (NTRS)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  17. Orbital operations study. Volume 2: Interfacing activities analysis. Part 4: Support operations activity group

    NASA Technical Reports Server (NTRS)

    Steinwachs, W. L.; Patrick, J. W.; Galvin, D. M.; Turkel, S. H.

    1972-01-01

    The findings of the support operations activity group of the orbital operations study are presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) crew transfer, (2) cargo transfer, (3) propellant transfer, (4) attached element operations, and (5) attached element transport.

  18. Development and operations of the astrophysics data system

    NASA Technical Reports Server (NTRS)

    Murray, S. S.

    1996-01-01

    Monthly progress reports are given for the period April 1994 through September 1994. Each month's progress includes a general summary and overviews of Administrative functions, Systems Engineering, User Committee, User Support, Test and QA, System Integration, Development, Operations, and Suppliers of Data. These overviews include user and query statistics for the month.

  19. Development and operations of the astrophysics data system

    NASA Technical Reports Server (NTRS)

    Murray, S. S.

    1996-01-01

    Monthly progress reports are given for the period October 1993 through March 1994. Each month's progress includes a general summary and overviews of Administrative functions, Systems Engineering, User Committee, User Support, Test and QA, System Integration, Development, Operations, and Suppliers of Data. These overviews include user and query statistics for the month.

  20. The IUE Science Operations Ground System

    NASA Technical Reports Server (NTRS)

    Pitts, Ronald E.; Arquilla, Richard

    1994-01-01

    The International Ultraviolet Explorer (IUE) Science Operations System provides full realtime operations capabilities and support to the operations staff and astronomer users. The components of this very diverse and extremely flexible hardware and software system have played a major role in maintaining the scientific efficiency and productivity of the IUE. The software provides the staff and user with all the tools necessary for pre-visit and real-time planning and operations analysis for any day of the year. Examples of such tools include the effects of spacecraft constraints on target availability, maneuver times between targets, availability of guide stars, target identification, coordinate transforms, e-mail transfer of Observatory forms and messages, and quick-look analysis of image data. Most of this extensive software package can also be accessed remotely by individual users for information, scheduling of shifts, pre-visit planning, and actual observing program execution. Astronomers, with a modest investment in hardware and software, may establish remote observing sites. We currently have over 20 such sites in our remote observers' network.

  1. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  2. MSFC Skylab airlock module, volume 2. [systems design and performance, systems support activity, and reliability and safety programs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.

  3. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  4. Equatorial scintillation and systems support

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Basu, S.; Weber, E. J.; Smitham, M.; Kuenzler, H.; Valladares, C. E.; Sheehan, R.; MacKenzie, E.; Secan, J. A.; Ning, P.; McNeill, W. J.; Moonan, D. W.; Kendra, M. J.

    1997-09-01

    The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, the major component of scintillation is observed during magnetically quiet periods. In view of the day-to-day variability of the occurrence and intensity of scintillating regions, their latitude extent, and their zonal motion, a regional specification and short-term forecast system based on real-time measurements has been developed. This system, named the Scintillation Network Decision Aid, consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites. The scintillation index and zonal irregularity drift are processed on-line and are retrieved by a remote operator on the Internet. At the operator terminal the data are combined with an empirical plasma bubble model to generate three-dimensional maps of irregularity structures and two-dimensional outage maps for the region.

  5. Telescience Support Center Data System Software

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan

    2010-01-01

    The Telescience Support Center (TSC) team has developed a databasedriven, increment-specific Data Require - ment Document (DRD) generation tool that automates much of the work required for generating and formatting the DRD. It creates a database to load the required changes to configure the TSC data system, thus eliminating a substantial amount of labor in database entry and formatting. The TSC database contains the TSC systems configuration, along with the experimental data, in which human physiological data must be de-commutated in real time. The data for each experiment also must be cataloged and archived for future retrieval. TSC software provides tools and resources for ground operation and data distribution to remote users consisting of PIs (principal investigators), bio-medical engineers, scientists, engineers, payload specialists, and computer scientists. Operations support is provided for computer systems access, detailed networking, and mathematical and computational problems of the International Space Station telemetry data. User training is provided for on-site staff and biomedical researchers and other remote personnel in the usage of the space-bound services via the Internet, which enables significant resource savings for the physical facility along with the time savings versus traveling to NASA sites. The software used in support of the TSC could easily be adapted to other Control Center applications. This would include not only other NASA payload monitoring facilities, but also other types of control activities, such as monitoring and control of the electric grid, chemical, or nuclear plant processes, air traffic control, and the like.

  6. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  7. Operations-oriented performance measures for freeway management systems : final report.

    DOT National Transportation Integrated Search

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  8. A Mechanized Decision Support System for Academic Scheduling.

    DTIC Science & Technology

    1986-03-01

    an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will

  9. Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.

    2009-01-01

    The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.

  10. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  11. Mission Operations and Data Systems Directorate's operational/development network (MODNET) at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.

  12. Filter parameter tuning analysis for operational orbit determination support

    NASA Technical Reports Server (NTRS)

    Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.

    1994-01-01

    The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.

  13. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble

  14. Common spaceborne multicomputer operating system and development environment

    NASA Technical Reports Server (NTRS)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  15. GNSS Wristwatch Device for Networked Operations Supporting Location Based Services

    DTIC Science & Technology

    2008-09-01

    Coordinates, Volume 4, Issue 9, Sep 2008 GNSS WRISTWATCH DEVICE FOR NETWORKED OPERATIONS SUPPORTING LOCATION BASED SERVICES Alison Brown...TITLE AND SUBTITLE GNSS Wristwatch Device for Networked Operations Supporting Location Based Services 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...LocatorNet Portal also supports Location Based Services (LBS) based on the TIDGET solution data using an Oracle Mapping Server with an open architecture

  16. Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin

    2002-01-01

    Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.

  17. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  18. Resourcing interventions enhance psychology support capabilities in special operations forces.

    PubMed

    Myatt, Craig A; Auzenne, J W

    2012-01-01

    This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. 2012.

  19. Supporting Common Ground Development in the Operation Room through Information Display Systems

    PubMed Central

    Feng, Yuanyuan; Mentis, Helena M.

    2016-01-01

    Effective information sharing is crucial for clinical team coordination. Most information display systems have been designed to replace verbal communication. However, information may not be available for capture before a communication event and information needs often become clear and evident through an evolving discourse. Thus, to build tools to support clinical team in situ information sharing, we need a better understanding of how evolving information needs are identified and satisfied. In this study, we used sequential analysis techniques to explore the ways communication and information sharing events between an attending surgeon and a resident change throughout a laparoscopic surgery. We demonstrate how common ground is developed and maintained, and how information needs change through the efforts of grounding. From our findings, we suggest that the design for information display systems could encourage communication and support the articulation work that is necessary to accomplish the information sharing. PMID:28269936

  20. Supporting Common Ground Development in the Operation Room through Information Display Systems.

    PubMed

    Feng, Yuanyuan; Mentis, Helena M

    2016-01-01

    Effective information sharing is crucial for clinical team coordination. Most information display systems have been designed to replace verbal communication. However, information may not be available for capture before a communication event and information needs often become clear and evident through an evolving discourse. Thus, to build tools to support clinical team in situ information sharing, we need a better understanding of how evolving information needs are identified and satisfied. In this study, we used sequential analysis techniques to explore the ways communication and information sharing events between an attending surgeon and a resident change throughout a laparoscopic surgery. We demonstrate how common ground is developed and maintained, and how information needs change through the efforts of grounding. From our findings, we suggest that the design for information display systems could encourage communication and support the articulation work that is necessary to accomplish the information sharing.

  1. Automation of the Environmental Control and Life Support System

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, J. Ray

    1990-01-01

    The objective of the Environmental Control and Life Support System (ECLSS) Advanced Automation Project is to recommend and develop advanced software for the initial and evolutionary Space Station Freedom (SSF) ECLS system which will minimize the crew and ground manpower needed for operations. Another objective includes capturing ECLSS design and development knowledge for future missions. This report summarizes our results from Phase I, the ECLSS domain analysis phase, which we broke down into three steps: 1) Analyze and document the baselined ECLS system, 2) envision as our goal an evolution to a fully automated regenerative life support system, built upon an augmented baseline, and 3) document the augmentations (hooks and scars) and advanced software systems which we see as necessary in achieving minimal manpower support for ECLSS operations. In addition, Phase I included development of an advanced software life cycle testing tools will be used in the development of the software. In this way, we plan in preparation for phase II and III, the development and integration phases, respectively. Automated knowledge acquisition, engineering, verification, and can capture ECLSS development knowledge for future use, develop more robust and complex software, provide feedback to the KBS tool community, and insure proper visibility of our efforts.

  2. A water management decision support system contributing to sustainability

    NASA Astrophysics Data System (ADS)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  3. An operation support expert system based on on-line dynamics simulation and fuzzy reasoning for startup schedule optimization in fossil power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, H.; Eki, Y.; Kaji, A.

    1993-12-01

    An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.

  4. Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.

    2013-12-01

    Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail

  5. Need for Cost Optimization of Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  6. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    NASA Technical Reports Server (NTRS)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  7. An Operational Computational Terminal Area PBL Prediction System

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.; Weglarz, Ronald P.; Hamilton, David W.

    1997-01-01

    There are two fundamental goals of this research project. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS). The secondary goal is to perform indepth diagnostic analyses of the meteorological conditions affecting the Memphis field experiment held during August 1995. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis deployment will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. The secondary goal occupied much of the first year of the research project. This involved extensive data acquisition and indepth analyses of a spectrum of atmospheric observational data sets. Concerning the primary goal, the first part of the four-stage prognostic system in support of AVOSS entitled: Terminal Area PBL Prediction System (TAPPS) was also formulated and tested in a research environment during 1996. We describe this system, and the three stages which are planned to follow. This first part of a software system designed to meet the primary goal of this research project is relatively inexpensive to implement and run operationally.

  8. Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob

    Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less

  9. Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids

    DOE PAGES

    Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob; ...

    2018-03-07

    Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less

  10. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    NASA Technical Reports Server (NTRS)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  11. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  12. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  13. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  14. Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2006-01-01

    Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.

  15. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  16. Network operating system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  17. Medical support for law enforcement-extended operations incidents.

    PubMed

    Levy, Matthew J; Tang, Nelson

    2014-01-01

    As the complexity and frequency of law enforcement-extended operations incidents continue to increase, so do the opportunities for adverse health and well-being impacts on the responding officers. These types of clinical encounters have not been well characterized nor have the medical response strategies which have been developed to effectively manage these encounters been well described. The purpose of this article is to provide a descriptive epidemiology of the clinical encounters reported during extended law enforcement operations, as well as to describe a best practices approach for their effective management. This study retrospectively examined the clinical encounters of the Maryland State Police (MSP) Tactical Medical Unit (TMU) during law enforcement extended operations incidents lasting 8 or more hours. In addition, a qualitative analysis was performed on clinical data collected by federal law enforcement agencies during their extended operations. Forty-four percent of missions (455/1,047) supported by the MSP TMU lasted 8 or more hours. Twenty-six percent of these missions (117/455) resulted in at least one patient encounter. Nineteen percent of patient chief complaints (45/238) were related to heat illness/ dehydration. Fifteen percent of encounters (36/238) were for musculoskeletal injury/pain. Eight percent of patients (19/238) had nonspecific sick call (minor illness) complaints. The next most common occurring complaints were cold-related injuries, headache, sinus congestion, and wound/laceration, each of which accounted for 7 percent of patients (16/238), respectively. Analysis of federal law enforcement agencies' response to such events yielded similar clinical encounters. A wide range of health problems are reported by extended law enforcement operations personnel. Timely and effective treatment of these problems can help ensure that the broader operations mission is not compromised. An appropriate operational strategy for managing health complaints

  18. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

  19. Wireless networks of opportunity in support of secure field operations

    NASA Astrophysics Data System (ADS)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  20. A Computer-Managed Instruction Support System for Large Group Individualized Instruction.

    ERIC Educational Resources Information Center

    Countermine, Terry; Singh, Jane M.

    1977-01-01

    The Pennsylvania State University College of Education's Instruction Support System (ISS) was developed to manage the logistical operation of large group individualized competency-based instruction. Software and hardware charting, operational procedures, and data from student opinion questionnaires are cited. (RAO)

  1. Mathematical Modelling-Based Energy System Operation Strategy Considering Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-Hyung; Hodge, Bri-Mathias

    2016-06-25

    Renewable energy resources are widely recognized as an alternative to environmentally harmful fossil fuels. More renewable energy technologies will need to penetrate into fossil fuel dominated energy systems to mitigate the globally witnessed climate changes and environmental pollutions. It is necessary to prepare for the potential problems with increased proportions of renewable energy in the energy system, to prevent higher costs and decreased reliability. Motivated by this need, this paper addresses the operation of an energy system with an energy storage system in the context of developing a decision-supporting framework.

  2. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  3. Key Features of the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) System Architecture

    NASA Astrophysics Data System (ADS)

    Pela, F.; Tsugawa, R. K.; Andreoli, L. J.

    2004-12-01

    The National Polar-Orbiting NPOESS, a tri-agency program, supports missions of the Department of Commerce (DOC)/National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA). NPOESS provides a critical, timely, reliable, and high quality space-based sensing capability to acquire and process global and regional environmental imagery and specialized meteorological, climatic, terrestrial, oceanographic, solar-geophysical, and other data products. These products are delivered to national weather and environmental facilities operated by NOAA and DoD, to NASA, and to environmental remote sensing science community users to support civil and military functions. These data are also provided in real time to field terminals deployed worldwide. The NPOESS architecture is built on a foundation of affordability, and the three pillars of data quality, latency, availability. Affordability refers to an over-arching awareness of cost to provide the best value to the government for implementing a converged system; some dimensions of cost include the cost for system development and implementation, the balance between development costs and operation and maintenance costs, and the fiscal year expenditure plans that meet schedule commitments. Data quality is characterized in terms of the attributes associated with Environmental Data Records (EDRs), and the products that are delivered to the four US Operational Centrals and field users. These EDRs are generated by the system using raw data from the space-borne sensors and spacecraft, in conjunction with science algorithms and calibration factors. Data latency refers to the time period between the detection of energy by a space-borne sensor to the delivery of a corresponding EDR. The system was designed to minimize data latency, and hence provide users with timely data. Availability refers to both data availability and system operational availability

  4. Earth orbital operations supporting manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  5. Earth orbital operations supporting manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    1989-01-01

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  6. The National Polar-orbiting Operational Environmental Satellite System

    NASA Astrophysics Data System (ADS)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  7. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  8. A Legal Negotiatiton Support System Based on A Diagram

    NASA Astrophysics Data System (ADS)

    Nitta, Katsumi; Shibasaki, Masato; Yasumura, Yoshiaki; Hasegawa, Ryuzo; Fujita, Hiroshi; Koshimura, Miyuki; Inoue, Katsumi; Shirai, Yasuyuki; Komatsu, Hiroshi

    We present an overview of a legal negotiation support system, ANS (Argumentation based Negotiation support System). ANS consists of a user interface, three inference engines, a database of old cases, and two decision support modules. The ANS users negotiates or disputes with others via a computer network. The negotiation status is managed in the form of the negotiation diagram. The negotiation diagram is an extension of Toulmin’s argument diagram, and it contains all arguments insisted by participants. The negotiation protocols are defined as operations to the negotiation diagram. By exchanging counter arguments each other, the negotiation diagram grows up. Nonmonotonic reasoning using rule priorities are applied to the negotiation diagram.

  9. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  10. The structure of the clouds distributed operating system

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data

  11. Integrated Simulation Design Challenges to Support TPS Repair Operations

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John

    2006-01-01

    During the Orbiter Repair Maneuver (OM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSMS during the ORM, simulation tools used for previous nominal mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. Prevalent throughout this ORM operation is a dynamically varying topology. In other words, the ORM starts with the SRMS grappled to the mated Shuttle/ISS stack (closed loop topology), moves to an open loop chain topology consisting of the Shuttle, SRMS, and ISS, and then, at the repair configuration, extends the chain topology to one consisting of the Shuttle, SMS, ISS, and SSRMS/EVA crewman. The resulting long dynamic chain of vehicles and manipulators may exhibit significant motion between the Shuttle worksite and the EVA crewman due to the system flexibility throughout the topology (particularly within the SRMS/SSRMS joints and links). Since the attachment points of both manipulators span the flexible structure of the ISS, simulation analysis may also need to take that into consideration. Moreover, due to the lengthy time duration associated with the maneuver and repair, orbital effects become a factor and require the ISS vehicle control system to maintain active attitude control. Several facets of the ORM operation make the associated analytical

  12. 3d Operational Hydrodinamic Modelling System as a Support to Oil Spill Responses in the Ligurian Sea (North-Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Del Giudice, T.; Quagliati, M.; Bertolotto, R.; Pedroncini, A.; Cusati, L. A.

    2014-12-01

    Accidental oil spills have a significant impact on marine ecosystems reminding us the importance of an efficiency emergency planning to ensure a quick and proper response. In this phase, the numerical modelling approach emerges as a useful tool in order to simulate the scenarios and addresses the issue of oil dispersion in the case of a spill. The 3D operational hydrodynamic modelling system of the Ligurian Sea (North-Western Mediterranean) is used as a base to predict the possible oil trajectory and to track the path and fate of spilled oil under the prevailing hydrodynamic and meteorological conditions. The operative chain of the hydrodynamic model was developed by DHI Italia for the Regional Environment Protection Agency (ARPAL) operating in the Ligurian region (Italy) with the objective to preserve the environment, support the activities of the Civil Protection Department and promote a sustainable, healthy and safety management of the local resources. In this chain the MFS Mediterranean 3D model (operated within MyOcean EU Project - Copernicus Programme) was downscaled from 6.5 km to finer nearshore mesh (500 m). The increased spatial resolution allows the correct simulation of current developments in the vicinity of morphological discontinuities such as the promontory of Portofino on the Ligurian coast. The meteorological forcing is provided by MOLOCH, a LAM model operated by ARPAL together with fresh water discharges from the main rivers through hydrological modelling. Since the Ligurian Sea recently hosted the transfer of wreck Costa Concordia some real time simulations of hypothetical oil spill were performed to support the crisis unit of the Genoa Coast Guard. Simulations led to interesting results concerning the importance of updated weather conditions, which strongly influence current trends, focusing on the importance of the continuity of the modelling chain.

  13. Outsourcing critical financial system operations.

    PubMed

    Cox, Nora; Pilbauer, Jan

    2018-01-01

    Payments Canada provides Canada's national payments systems and is responsible for the clearing and settlement infrastructure, processes and rules that underpin the exchange of billions of dollars each day through the Canadian economy. Strategic sourcing is a reality for this small organisation with a broad scope of national regulations and global standards to comply with. This paper outlines Payments Canada's approach to outsourcing its critical financial system operations, which centres on four key principles: strong relationship management; continuous learning, recording and reporting; evaluating the business landscape; and a commitment to evolving the organisation to greater resilience. This last point is covered in detail with an exploration of the organisation's resilience and security strategy as well as its risk appetite. As Payments Canada progresses to its future state, which includes modernising its core payment systems, underlying rules and standards, risk management for the industry as a whole will remain at the forefront of its collective mind. The expectation is that outsourcing will remain a fundamental element of its operating model in future, a strategy that will ensure the organisation can focus on its core business competencies and eliminate the need to develop and support in-house expertise in commodity areas.

  14. Computing Operating Characteristics Of Bearing/Shaft Systems

    NASA Technical Reports Server (NTRS)

    Moore, James D.

    1996-01-01

    SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.

  15. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  16. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].

    PubMed

    Ren, Nan-qi; Tang, Jing; Gong, Man-li

    2006-06-01

    A kind of granular activated carbon, whose granular size is no more than 2mm and specific gravity is 1.54g/cm3, was used as the support carrier to allow retention of activated sludge within a continuous stirred-tank reactor (CSTR) using molasses wastewater as substrate for bio-hydrogen production. Continuous operation characteristics and operational controlling strategy of the enhanced continuous bio-hydrogen production system were investigated. It was indicated that, support carriers could expand the activity scope of hydrogen production bacteria, make the system fairly stable in response to organic load impact and low pH value (pH <3.8), and maintain high biomass concentration in the reactor at low HRT. The reactor with ethanol-type fermentation achieved an optimal hydrogen production rate of 0.37L/(g x d), while the pH value ranged from 3.8 to 4.4, and the hydrogen content was approximately 40% approximately 57% of biogas. It is effective to inhibit the methanogens by reducing the pH value of the bio-hydrogen production system, consequently accelerate the start-up of the reactor.

  17. X-34 Main Propulsion System Design and Operation

    NASA Technical Reports Server (NTRS)

    Champion, R. J., Jr.; Darrow, R. J., Jr.

    1998-01-01

    The X-34 program is a joint industry/government program to develop, test, and operate a small, fully-reusable hypersonic flight vehicle, utilizing technologies and operating concepts applicable to future Reusable Launch Vehicle (RLV) systems. The vehicle will be capable of Mach 8 flight to 250,000 feet altitude and will demonstrate an all composite structure, composite RP-1 tank, the Marshall Space Flight Center (MSFC) developed Fastrac engine, and the operability of an advanced thermal protection systems. The vehicle will also be capable of carrying flight experiments. MSFC is supporting the X-34 program in three ways: Program Management, the Fastrac engine as Government Furnished Equipment (GFE), and the design of the Main Propulsion System (MPS). The MPS Product Development Team (PDT) at MSFC is responsible for supplying the MPS design, analysis, and drawings to Orbital. The MPS consists of the LOX and RP-1 Fill, Drain, Feed, Vent, & Dump systems and the Helium & Nitrogen Purge, Pressurization, and Pneumatics systems. The Reaction Control System (RCS) design was done by Orbital. Orbital is the prime contractor and has responsibility for integration, procurement, and construction of all subsystems. The paper also discusses the design, operation, management, requirements, trades studies, schedule, and lessons learning with the MPS and RCS designs.

  18. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    NASA Astrophysics Data System (ADS)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and

  19. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  20. Environmental control/life support system for Space Station

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.

    1986-01-01

    The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.

  1. Use of real-time tools to support field operations of NSF's Lower Atmosphere Observing Facilities

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Stossmeister, G.; Johnson, E.; Martin, C.; Webster, C.; Dixon, M.; Maclean, G.

    2012-12-01

    NCAR's Earth Observing Laboratory (EOL) operates Lower Atmosphere Observing Facilities (LAOF) for the scientific community, under sponsorship of the National Science Foundation. In order to obtain the highest quality dataset during field campaigns, real-time decision-making critically depends on the availability of timely data and reliable communications between field operations staff and instrument operators. EOL incorporates the latest technologies to monitor the health of instrumentation, facilitate remote operations of instrumentation and keep project participants abreast of changing conditions in the field. As the availability of bandwidth on mobile communication networks and the capabilities of their associated devices (smart phone, tablets, etc.) improved, so has the ability of researchers to respond to rapidly changing conditions and coordinate ever more detailed measurements from multiple remote fixed, portable and airborne platforms. This presentation will describe several new tools that EOL is making available to project investigators and how these tools are being used in a mobile computing environment to support enhanced data collection during field campaigns. LAOF platforms such as radars, aircraft, sondes, balloons and surface stations all rely on displays of real-time data for their operations. Data from sondes are ingested into the Global Telecommunications System (GTS) for assimilation into regional forecasting models that help guide project operations. Since many of EOL's projects occur around the globe and at the same time instrument complexity has increased, automated monitoring of instrumentation platforms and systems has become essential. Tools are being developed to allow remote instrument control of our suite of observing systems where feasible. The Computing, Data and Software (CDS) Facility of EOL develops and supports a Field Catalog used in field campaigns for nearly two decades. Today, the Field Catalog serves as a hub for the

  2. Power Management in Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.

  3. Development of an After-Sales Support Inter-Enterprise Collaboration System Using Information Technologies

    NASA Astrophysics Data System (ADS)

    Kimura, Toshiaki; Kasai, Fumio; Kamio, Yoichi; Kanda, Yuichi

    This research paper discusses a manufacturing support system which supports not only maintenance services but also consulting services for manufacturing systems consisting of multi-vendor machine tools. In order to do this system enables inter-enterprise collaboration between engineering companies and machine tool vendors. The system is called "After-Sales Support Inter-enterprise collaboration System using information Technologies" (ASSIST). This paper describes the concept behind the planned ASSIST, the development of a prototype of the system, and discusses test operation results of the system.

  4. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  5. Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.

    1991-01-01

    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.

  6. Decision support systems for robotic surgery and acute care

    NASA Astrophysics Data System (ADS)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  7. SpaceOps 1992: Proceedings of the Second International Symposium on Ground Data Systems for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Second International Symposium featured 135 oral presentations in these 12 categories: Future Missions and Operations; System-Level Architectures; Mission-Specific Systems; Mission and Science Planning and Sequencing; Mission Control; Operations Automation and Emerging Technologies; Data Acquisition; Navigation; Operations Support Services; Engineering Data Analysis of Space Vehicle and Ground Systems; Telemetry Processing, Mission Data Management, and Data Archiving; and Operations Management. Topics focused on improvements in the productivity, effectiveness, efficiency, and quality of mission operations, ground systems, and data acquisition. Also emphasized were accomplishments in management of human factors; use of information systems to improve data retrieval, reporting, and archiving; design and implementation of logistics support for mission operations; and the use of telescience and teleoperations.

  8. Nimbus/TOMS Science Data Operations Support

    NASA Technical Reports Server (NTRS)

    Childs, Jeff

    1998-01-01

    1. Participate in and provide analysis of laboratory and in-flight calibration of UV sensors used for space observations of backscattered UV radiation. 2. Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data. 3. Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products. 4. Process the TOMS data into Level 1, Level 2, and Level 3 data products. 5. Provide analysis of the science data products in support of NASA GSFC Code 916's research.

  9. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  10. An Operational Computational Terminal Area PBL Prediction System

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1998-01-01

    There are two fundamental goals of this research project which are listed here in terms of priority, i.e., a primary and secondary goal. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS), i.e., an operational computational Terminal Area PBL Prediction System (TAPPS). The second goal is to perform indepth diagnostic analyses of the meteorological conditions during the special wake vortex deployments at Memphis and Dallas during August 95 and September 97, respectively. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis and Dallas deployments will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. Concerning the primary goal, TAPPS Stage 2 was tested on the Memphis data and is about to be tested on the Dallas case studies. Furthermore benchmark tests have been undertaken to select the appropriate platform to run TAPPS in real time in support of the DFW AVOSS system. In addition, a technique to improve the initial data over the region surrounding Dallas was also tested and modified for potential operational use in TAPPS. The secondary goal involved several sensitivity simulations and comparisons to Memphis observational data sets in an effort to diagnose what specific atmospheric phenomena where occurring which may have impacted the dynamics of atmospheric wake vortices.

  11. A computer-based time study system for timber harvesting operations

    Treesearch

    Jingxin Wang; Joe McNeel; John Baumgras

    2003-01-01

    A computer-based time study system was developed for timber harvesting operations. Object-oriented techniques were used to model and design the system. The front-end of the time study system resides on the MS Windows CE and the back-end is supported by MS Access. The system consists of three major components: a handheld system, data transfer interface, and data storage...

  12. Measuring Combat Logistics Force (CLF) Adequacy in Supporting Naval Operations

    DTIC Science & Technology

    2012-03-01

    existing fuel consumption rates and the hotel services load. Because logistics planning factors for foreign carriers were not available, existing... LOGISTICS FORCE (CLF) ADEQUACY IN SUPPORTING NAVAL OPERATIONS by Philip J. Mock March 2012 Thesis Advisor: Wayne Hughes Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Measuring Combat Logistics Force (CLF) Adequacy in Supporting Naval Operations 5. FUNDING

  13. Use of technology to support information needs for continuity of operations planning in public health: a systematic review.

    PubMed

    Reeder, Blaine; Turner, Anne; Demiris, George

    2010-01-01

    Continuity of operations planning focuses on an organization's ability to deliver essential services before, during and after an emergency. Public health leaders must make decisions based on information from many sources and their information needs are often facilitated or hindered by technology. The aim of this study is to provide a systematic review of studies of technology projects that address public health continuity of operations planning information needs and to discuss patterns, themes, and challenges to inform the design of public health continuity of operations information systems. To return a comprehensive results set in an under-explored area, we searched broadly in the Medline and EBSCOHost bibliographic databases using terms from prior work in public health emergency management and continuity of operations planning in other domains. In addition, we manually searched the citation lists of publications included for review. A total of 320 publications were reviewed. Twenty studies were identified for inclusion (twelve risk assessment decision support tools, six network and communications-enabled decision support tools, one training tool and one dedicated video-conferencing tool). Levels of implementation for information systems in the included studies range from proposed frameworks to operational systems. There is a general lack of documented efforts in the scientific literature for technology projects about public health continuity of operations planning. Available information about operational information systems suggest inclusion of public health practitioners in the design process as a factor in system success.

  14. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  15. Safety management of a complex R&D ground operating system

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management has been developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  16. Real-time operating system for a multi-laser/multi-detector system

    NASA Technical Reports Server (NTRS)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  17. An operating system for future aerospace vehicle computer systems

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  18. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence E.

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  19. Space shuttle environmental and thermal control life support system computer program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A computer program for the design and operation of the space shuttle environmental and thermal control life support system is presented. The subjects discussed are: (1) basic optimization program, (2) off design performance, (3) radiator/evaporator expendable usage, (4) component weights, and (5) computer program operating procedures.

  20. Designing software for operational decision support through coloured Petri nets

    NASA Astrophysics Data System (ADS)

    Maggi, F. M.; Westergaard, M.

    2017-05-01

    Operational support provides, during the execution of a business process, replies to questions such as 'how do I end the execution of the process in the cheapest way?' and 'is my execution compliant with some expected behaviour?' These questions may be asked several times during a single execution and, to answer them, dedicated software components (the so-called operational support providers) need to be invoked. Therefore, an infrastructure is needed to handle multiple providers, maintain data between queries about the same execution and discard information when it is no longer needed. In this paper, we use coloured Petri nets (CPNs) to model and analyse software implementing such an infrastructure. This analysis is needed to clarify the requirements before implementation and to guarantee that the resulting software is correct. To this aim, we present techniques to represent and analyse state spaces with 250 million states on a normal PC. We show how the specified requirements have been implemented as a plug-in of the process mining tool ProM and how the operational support in ProM can be used in combination with an existing operational support provider.

  1. Real-time operating system for selected Intel processors

    NASA Technical Reports Server (NTRS)

    Pool, W. R.

    1980-01-01

    The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.

  2. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  3. Material Analysis and System Design for Exploration Life Support Systems 2017

    NASA Technical Reports Server (NTRS)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  4. Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1994-01-01

    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations.

  5. Operations and maintenance manual for the LDUA supervisory control and data acquisition system (LDUA System 4200) and control network (LDUA System 4400)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, G.A.

    1998-03-11

    This document defines the requirements applicable to the operation, maintenance and storage of the Supervisory Control and Data Acquisition System (SCADAS) and Control Network in support of the Light Duty Utility Arm (LDUA) operations.

  6. SPICE for ESA Planetary Missions: geometry and visualization support to studies, operations and data analysis within your reach

    NASA Astrophysics Data System (ADS)

    Costa, Marc

    2018-05-01

    JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEís study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.

  7. Maintenance and operations plan for intelligent transportation systems in Kentucky.

    DOT National Transportation Integrated Search

    2004-06-01

    This report presents a Maintenance and Operations Plan for Intelligent Transportation Systems (ITS) in Kentucky. It was developed using substantial stakeholder input and provides recommendations and specific strategies for supporting and coordinating...

  8. Nimbus/TOMS Science Data Operations Support

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Projected goals include the following: (1) Participate in and provide analysis of laboratory and in-flight calibration of LTV sensors used for space observations of backscattered LTV radiation; (2) Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data; (3) Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products; (4) Process the TOMS data into Level 1, Level 2, and Level 3 data products; (5) Provide analysis of the science data products in support of NASA GSFC Code 916's research.

  9. The Human-Robot Interaction Operating System

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  10. Controlled ecological life support system breadboard project, 1988

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  11. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  12. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Development of Reliable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Carter, Layne

    2017-01-01

    The life support systems on the International Space Station (ISS) are the culmination of an extensive effort encompassing development, design, and test to provide the highest possible confidence in their operation on ISS. Many years of development testing are initially performed to identify the optimum technology and the optimum operational approach. The success of this development program depends on the accuracy of the system interfaces. The critical interfaces include the specific operational environment, the composition of the waste stream to be processed and the quality of the product. Once the development program is complete, a detailed system schematic is built based on the specific design requirements, followed by component procurement, assembly, and acceptance testing. A successful acceptance test again depends on accurately simulating the anticipated environment on ISS. The ISS Water Recovery System (WRS) provides an excellent example of where this process worked, as well as lessons learned that can be applied to the success of future missions. More importantly, ISS has provided a test bed to identify these design issues. Mechanical design issues have included an unreliable harmonic drive train in the Urine Processor's fluids pump, and seals in the Water Processor's Catalytic Reactor with insufficient life at the operational temperature. Systems issues have included elevated calcium in crew urine (due to microgravity effect) that resulted in precipitation at the desired water recovery rate, and the presence of an organosilicon compound (dimethylsilanediol) in the condensate that is not well removed by the water treatment process. Modifications to the WRS to address these issues are either complete (and now being evaluated on ISS) or are currently in work to insure the WRS has the required reliability before embarking on a mission to Mars.

  14. Joint and National Intelligence Support to Military Operations

    DTIC Science & Technology

    2004-10-07

    missions. The goal is to maximize the impact of intelligence on military operations by increasing the efficiency of the intelligence process and the...intelligence support to military operations will be affected by non-threat-related environmental factors such as requisite changes in sources and...tailored and highly detailed intelligence analyses of a wide variety of human and information environmental factors, such as public attitudes and

  15. A decision support system for real-time hydropower scheduling in a competitive power market environment

    NASA Astrophysics Data System (ADS)

    Shawwash, Ziad Khaled Elias

    2000-10-01

    The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson

  16. Facilities and support systems for a 90-day test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Malin, R. L.

    1972-01-01

    A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.

  17. A Support Database System for Integrated System Health Management (ISHM)

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Jorge F.; Turowski, Mark; Morris, John

    2007-01-01

    The development, deployment, operation and maintenance of Integrated Systems Health Management (ISHM) applications require the storage and processing of tremendous amounts of low-level data. This data must be shared in a secure and cost-effective manner between developers, and processed within several heterogeneous architectures. Modern database technology allows this data to be organized efficiently, while ensuring the integrity and security of the data. The extensibility and interoperability of the current database technologies also allows for the creation of an associated support database system. A support database system provides additional capabilities by building applications on top of the database structure. These applications can then be used to support the various technologies in an ISHM architecture. This presentation and paper propose a detailed structure and application description for a support database system, called the Health Assessment Database System (HADS). The HADS provides a shared context for organizing and distributing data as well as a definition of the applications that provide the required data-driven support to ISHM. This approach provides another powerful tool for ISHM developers, while also enabling novel functionality. This functionality includes: automated firmware updating and deployment, algorithm development assistance and electronic datasheet generation. The architecture for the HADS has been developed as part of the ISHM toolset at Stennis Space Center for rocket engine testing. A detailed implementation has begun for the Methane Thruster Testbed Project (MTTP) in order to assist in developing health assessment and anomaly detection algorithms for ISHM. The structure of this implementation is shown in Figure 1. The database structure consists of three primary components: the system hierarchy model, the historical data archive and the firmware codebase. The system hierarchy model replicates the physical relationships between

  18. Achieving Unity of Effort: A Challenge in Domestic Support Operations.

    DTIC Science & Technology

    1998-03-09

    active duty soldiers and 13,376 National Guard soldiers from 47 states and territories in support of the Olympic and Paralympic Games . There was no...Olympic and Paralympic Games Contingency Operations," presented at the DOD Emergency Preparedness Course 97-01,1 Nov 97. Hereafter cited as Steinmetz...Preparedness Course. 63 Shalikashvili, 1-3. 64 FORSCOM 1996 Olympic and Paralympic Games Operations Plan for Emergency Contingency Support, Ft

  19. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  20. Gray-box reservoir routing to compute flow propagation in operational forecasting and decision support systems

    NASA Astrophysics Data System (ADS)

    Russano, Euan; Schwanenberg, Dirk; Alvarado Montero, Rodolfo

    2017-04-01

    Operational forecasting and decision support systems for flood mitigation and the daily management of water resources require computationally efficient flow routing models. If backwater effects do not play an important role, a hydrological routing approach is often a pragmatic choice. It offers a reasonable accuracy at low computational costs in comparison to a more detailed hydraulic model. This work presents a nonlinear reservoir routing scheme as well as its implementation for the flow propagation between the hydro reservoir Três Marias and a downstream inundation-affected city Pirapora in Brazil. We refer to the model as a gray-box approach due to the identification of the parameter k by a data-driven approach for each reservoir of the cascade, instead of using estimates based on physical characteristics. The model reproduces the discharge at the gauge Pirapora, using 15 reservoirs in the cascade. The obtained results are compared with the ones obtained from the full-hydrodynamic model SOBEK. Results show a relatively good performance for the validation period, with a RMSE of 139.48 for the gray-box model, while the full-hydrodynamic model shows a RMSE of 136.67. The simulation time for a period of several years for the full-hydrodynamic took approximately 64s, while the gray-box model only required about 0.50s. This provides a significant speedup of the computation by only a little trade-off in accuracy, pointing at the potential of the simple approach in the context of time-critical, operational applications. Key-words: flow routing, reservoir routing, gray-box model

  1. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  2. A multimission three-axis stabilized spacecraft flight dynamics ground support system

    NASA Technical Reports Server (NTRS)

    Langston, J.; Krack, K.; Reupke, W.

    1993-01-01

    The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.

  3. An engineering database management system for spacecraft operations

    NASA Technical Reports Server (NTRS)

    Cipollone, Gregorio; Mckay, Michael H.; Paris, Joseph

    1993-01-01

    Studies at ESOC have demonstrated the feasibility of a flexible and powerful Engineering Database Management System in support for spacecraft operations documentation. The objectives set out were three-fold: first an analysis of the problems encountered by the Operations team in obtaining and managing operations documents; secondly, the definition of a concept for operations documentation and the implementation of prototype to prove the feasibility of the concept; and thirdly, definition of standards and protocols required for the exchange of data between the top-level partners in a satellite project. The EDMS prototype was populated with ERS-l satellite design data and has been used by the operations team at ESOC to gather operational experience. An operational EDMS would be implemented at the satellite prime contractor's site as a common database for all technical information surrounding a project and would be accessible by the cocontractor's and ESA teams.

  4. Third International Symposium on Space Mission Operations and Ground Data Systems, part 2

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1994-01-01

    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The symposium papers focus on improvements in the efficiency, effectiveness, and quality of data acquisition, ground systems, and mission operations. New technology, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations. This volume covers expert systems, systems development tools and approaches, and systems engineering issues.

  5. ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience

    NASA Astrophysics Data System (ADS)

    Budnik, F.; Morley, T. A.; MacKenzie, R. A.

    A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.

  6. Layered virus protection for the operations and administrative messaging system

    NASA Technical Reports Server (NTRS)

    Cortez, R. H.

    2002-01-01

    NASA's Deep Space Network (DSN) is critical in supporting the wide variety of operating and plannedunmanned flight projects. For day-to-day operations it relies on email communication between the three Deep Space Communication Complexes (Canberra, Goldstone, Madrid) and NASA's Jet Propulsion Laboratory. The Operations & Administrative Messaging system, based on the Microsoft Windows NTand Exchange platform, provides the infrastructure that is required for reliable, mission-critical messaging. The reliability of this system, however, is threatened by the proliferation of email viruses that continue to spread at alarming rates. A layered approach to email security has been implemented across the DSN to protect against this threat.

  7. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; hide

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  8. Decision support for operations and maintenance (DSOM) system

    DOEpatents

    Jarrell, Donald B [Kennewick, WA; Meador, Richard J [Richland, WA; Sisk, Daniel R [Richland, WA; Hatley, Darrel D [Kennewick, WA; Brown, Daryl R [Richland, WA; Keibel, Gary R [Richland, WA; Gowri, Krishnan [Richland, WA; Reyes-Spindola, Jorge F [Richland, WA; Adams, Kevin J [San Bruno, CA; Yates, Kenneth R [Lake Oswego, OR; Eschbach, Elizabeth J [Fort Collins, CO; Stratton, Rex C [Richland, WA

    2006-03-21

    A method for minimizing the life cycle cost of processes such as heating a building. The method utilizes sensors to monitor various pieces of equipment used in the process, for example, boilers, turbines, and the like. The method then performs the steps of identifying a set optimal operating conditions for the process, identifying and measuring parameters necessary to characterize the actual operating condition of the process, validating data generated by measuring those parameters, characterizing the actual condition of the process, identifying an optimal condition corresponding to the actual condition, comparing said optimal condition with the actual condition and identifying variances between the two, and drawing from a set of pre-defined algorithms created using best engineering practices, an explanation of at least one likely source and at least one recommended remedial action for selected variances, and providing said explanation as an output to at least one user.

  9. Logistical Support of AirLand Operations: Myth or Magic?

    DTIC Science & Technology

    1992-05-04

    I4 May 1992 Master’s Thesis, 4 Aug 91-5 Jun 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS .Support of AirLand Operations: Myth or Magic 6. AUTHOR(S) HA•J...SUPPORT OF AIRLAND OPERATIONS: MYTH OR MAGIC A thesis nresented to the Faculty of the U.S. Army Command and General Staff College in oartial fulfillment of...inerati,,,: Myth or Magic . Aprroved by: .Theq is Comni tt-t- fTh~airrnan; J ),I i .5 .a rria A.n . T.T! 3:•, J!. Pnwe r. M’. P. A . " ,ý) VoD" Member

  10. Power systems for production, construction, life support and operations in space

    NASA Technical Reports Server (NTRS)

    Sovie, Ronald J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.

  11. Power systems for production, construction, life support, and operations in space

    NASA Technical Reports Server (NTRS)

    Sovie, Ronald J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.

  12. Almost conserved operators in nearly many-body localized systems

    NASA Astrophysics Data System (ADS)

    Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen

    2018-03-01

    We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.

  13. Multitasking operating systems for microprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, T.

    1981-01-01

    Microprocessors, because of their low cost, low power consumption, and small size, have caused an explosion in the number of innovative computer applications. Although there is a great deal of variation in microprocessor applications software, there is relatively little variation in the operating-system-level software from one application to the next. Nonetheless, operating system software, especially when multitasking is involved, can be very time consuming and expensive to develop. The major microprocessor manufacturers have acknowledged the need for operating systems in microprocessor applications and are now supplying real-time multitasking operating system software that is adaptable to a wide variety of usermore » systems. Use of this existing operating system software will decrease the number of redundant operating system development efforts, thus freeing programmers to work on more creative and productive problems. This paper discusses the basic terminology and concepts involved with multitasking operating systems. It is intended to provide a general understanding of the subject, so that the reader will be prepared to evaluate specific operating system software according to his or her needs. 2 references.« less

  14. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  15. Vessel structural support system

    DOEpatents

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  16. Measuring the Resilience of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  17. ATMS concept of operations and generic system requirements : task B : final interim report for design of support systems for advanced traffic management systems

    DOT National Transportation Integrated Search

    1993-10-01

    This document describes the Concept of Operations and Generic System Requirements for : the next generation of Traffic Management Centers (TMC). Four major steps comprise the : development of this Concept of Operations. The first step was to survey t...

  18. Multimodal Freight Distribution to Support Increased Port Operations

    DOT National Transportation Integrated Search

    2016-10-01

    To support improved port operations, three different aspects of multimodal freight distribution are investigated: (i) Efficient load planning for double stack trains at inland ports; (ii) Optimization of a multimodal network for environmental sustain...

  19. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  20. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  1. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  2. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  3. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  4. Using Vision System Technologies to Enable Operational Improvements for Low Visibility Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.

    2014-01-01

    Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.

  5. Nautical Education for Offshore Extractive Industries. Support Operations & Seamanship.

    ERIC Educational Resources Information Center

    Hoffmann, G. L.

    This training manual is intended for persons who will be employed on supply vessels or towboats which support ocean-based oil extraction operations. The text deals with the basic skills of marine towing procedures, boat handling, deck maintenance, cargo operations, and rope and wire handling. Additional sections treat the proper attitude of a…

  6. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  7. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  8. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  9. Space Mission Operations Ground Systems Integration Customer Service

    NASA Technical Reports Server (NTRS)

    Roth, Karl

    2014-01-01

    , and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry.

  10. Safety management of a complex R and D ground operating system

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  11. A prototype computer-aided modelling tool for life-support system models

    NASA Technical Reports Server (NTRS)

    Preisig, H. A.; Lee, Tae-Yeong; Little, Frank

    1990-01-01

    Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.

  12. Telescience testbed: operational support functions for biomedical experiments.

    PubMed

    Yamashita, M; Watanabe, S; Shoji, T; Clarke, A H; Suzuki, H; Yanagihara, D

    1992-07-01

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  13. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  14. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  15. TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, S. F.

    1994-01-01

    The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed

  16. A multiprocessor operating system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, G.M.; Campbell, R.H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows thatmore » of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.« less

  17. A Multiprocessor Operating System Simulator

    NASA Technical Reports Server (NTRS)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  18. CATIA V5 Virtual Environment Support for Constellation Ground Operations

    NASA Technical Reports Server (NTRS)

    Kelley, Andrew

    2009-01-01

    This summer internship primarily involved using CATIA V5 modeling software to design and model parts to support ground operations for the Constellation program. I learned several new CATIA features, including the Imagine and Shape workbench and the Tubing Design workbench, and presented brief workbench lessons to my co-workers. Most modeling tasks involved visualizing design options for Launch Pad 39B operations, including Mobile Launcher Platform (MLP) access and internal access to the Ares I rocket. Other ground support equipment, including a hydrazine servicing cart, a mobile fuel vapor scrubber, a hypergolic propellant tank cart, and a SCAPE (Self Contained Atmospheric Protective Ensemble) suit, was created to aid in the visualization of pad operations.

  19. Functional Fault Model Development Process to Support Design Analysis and Operational Assessment

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.

    2016-01-01

    A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.

  20. Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    NASA Technical Reports Server (NTRS)

    Rediess, Herman A.; Hewett, M. D.

    1991-01-01

    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.

  1. Ribbon-cutting officially opens Consolidated Support Operations Center at CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cutting the ribbon at a ceremony for the opening of the Consolidated Support Operations Center at ROCC, Cape Canaveral Air Station, are (left to right) William P. Hickman, program manager, Space Gateway Support; Ed Gormel, executive director, JPMO; Barbara White, supervisor, Mission Support; KSC Center Director Roy Bridges, and Lt Col Steve Vuresky, USAF.

  2. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  3. Source Water Management for Disinfection By-Product Control using New York City's Operations Support Tool and On-Line Monitoring

    NASA Astrophysics Data System (ADS)

    Weiss, W. J.; Becker, W.; Schindler, S.

    2012-12-01

    The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system

  4. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  5. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  6. Training and Tactical Operationally Responsive Space Operations

    NASA Astrophysics Data System (ADS)

    Sorensen, B.; Strunce, R., Jr.

    Current space assets managed by traditional space system control resources provide communication, navigation, intelligence, surveillance, and reconnaissance (ISR) capabilities using satellites that are designed for long life and high reliability. The next generation Operationally Responsive Space (ORS) systems are aimed at providing operational space capabilities which will provide flexibility and responsiveness to the tactical battlefield commander. These capabilities do not exist today. The ORS communication, navigation, and ISR satellites are being designed to replace or supplement existing systems in order to enhance the current space force. These systems are expected to rapidly meet near term space needs of the tactical forces. The ORS concept includes new tactical satellites specifically designed to support contingency operations such as increased communication bandwidth and ISR imagery over the theater for a limited period to support air, ground, and naval force mission. The Concept of Operations (CONOPS) that exists today specifies that in addition to operational control of the satellite, the tasking and scheduling of the ORS tactical satellite for mission data collection in support of the tactical warfighter will be accomplished within the Virtual Mission Operations Center (VMOC). This is very similar to what is currently being accomplished in a fixed Mission Operations Center on existing traditional ISR satellites. The VMOC is merely a distributed environment and the CONOPS remain virtually the same. As a result, there is a significant drawback to the current ORS CONOPS that does not account for the full potential of the ORS paradigm for supporting tactical forces. Although the CONOPS approach may be appropriate for experimental Tactical Satellites (TacSat), it ignores the issues associated with the In-Theater Commander's need to own and operate his dedicated TacSat for most effective warfighting as well as the Warfighter specific CONOPS. What is needed

  7. Support system, excavation arrangement, and process of supporting an object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Bill W.

    2017-08-01

    A support system, an excavation arrangement, and a process of supporting an object are disclosed. The support system includes a weight-bearing device and a camming mechanism positioned below the weight-bearing device. A downward force on the weight-bearing device at least partially secures the camming mechanism to opposing surfaces. The excavation arrangement includes a borehole, a support system positioned within and secured to the borehole, and an object positioned on and supported by the support system. The process includes positioning and securing the support system and positioning the object on the weight-bearing device.

  8. Innovative Operations Measures and Nutritional Support for Mass Endurance Events.

    PubMed

    Chiampas, George T; Goyal, Anita V

    2015-11-01

    Endurance and sporting events have increased in popularity and participation in recent years worldwide, and with this comes the need for medical directors to apply innovative operational strategies and nutritional support to meet such demands. Mass endurance events include sports such as cycling and running half, full and ultra-marathons with over 1000 participants. Athletes, trainers and health care providers can all agree that both participant outcomes and safety are of the utmost importance for any race or sporting event. While demand has increased, there is relatively less published guidance in this area of sports medicine. This review addresses public safety, operational systems, nutritional support and provision of medical care at endurance events. Significant medical conditions in endurance sports include heat illness, hyponatraemia and cardiac incidents. These conditions can differ from those typically encountered by clinicians or in the setting of low-endurance sports, and best practices in their management are discussed. Hydration and nutrition are critical in preventing these and other race-related morbidities, as they can impact both performance and medical outcomes on race day. Finally, the command and communication structures of an organized endurance event are vital to its safety and success, and such strategies and concepts are reviewed for implementation. The nature of endurance events increasingly relies on medical leaders to balance safety and prevention of morbidity while trying to help optimize athlete performance.

  9. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  10. Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.

  11. State fiscal implications of intelligent transportation systems/commercial vehicle operations deployment

    DOT National Transportation Integrated Search

    1998-01-01

    As states begin to consider full-scale deployment of intelligent transportation system (ITS) technologies to support commercial vehicle operations (CVO), Governors and state legislatures will need answers to the following questions: (1) What savings ...

  12. Automatic Generation of Customized, Model Based Information Systems for Operations Management.

    DTIC Science & Technology

    The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)

  13. Integrating Space Systems Operations at the Marine Expeditionary Force Level

    DTIC Science & Technology

    2015-06-01

    Electromagnetic Interference ENVI Environment for Visualizing Images EW Electronic Warfare xvi FA40 Space Operations Officer FEC Fires and Effects...Information Facility SFE Space Force Enhancement SIGINT Signals Intelligence SSA Space Situational Awareness SSE Space Support Element STK Systems...April 23, 2015. 65 • GPS Interference and Navigation Tool (GIANT) for providing GPS accuracy prediction reports • Systems Toolkit ( STK ) Analysis

  14. Biological life-support systems

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1975-01-01

    The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.

  15. Systems engineering and integration processes involved with manned mission operations

    NASA Technical Reports Server (NTRS)

    Kranz, Eugene F.; Kraft, Christopher C.

    1993-01-01

    This paper will discuss three mission operations functions that are illustrative of the key principles of operations SE&I and of the processes and products involved. The flight systems process was selected to illustrate the role of the systems product line in developing the depth and cross disciplinary skills needed for SE&I and providing the foundation for dialogue between participating elements. FDDD was selected to illustrate the need for a structured process to assure that SE&I provides complete and accurate results that consistently support program needs. The flight director's role in mission operations was selected to illustrate the complexity of the risk/gain tradeoffs involved in the development of the flight techniques and flight rules process as well as the absolute importance of the leadership role in developing the technical, operational, and political trades.

  16. Operator models for delivering municipal solid waste management services in developing countries: Part B: Decision support.

    PubMed

    Soós, Reka; Whiteman, Andrew D; Wilson, David C; Briciu, Cosmin; Nürnberger, Sofia; Oelz, Barbara; Gunsilius, Ellen; Schwehn, Ekkehard

    2017-08-01

    This is the second of two papers reporting the results of a major study considering 'operator models' for municipal solid waste management (MSWM) in emerging and developing countries. Part A documents the evidence base, while Part B presents a four-step decision support system for selecting an appropriate operator model in a particular local situation. Step 1 focuses on understanding local problems and framework conditions; Step 2 on formulating and prioritising local objectives; and Step 3 on assessing capacities and conditions, and thus identifying strengths and weaknesses, which underpin selection of the operator model. Step 4A addresses three generic questions, including public versus private operation, inter-municipal co-operation and integration of services. For steps 1-4A, checklists have been developed as decision support tools. Step 4B helps choose locally appropriate models from an evidence-based set of 42 common operator models ( coms); decision support tools here are a detailed catalogue of the coms, setting out advantages and disadvantages of each, and a decision-making flowchart. The decision-making process is iterative, repeating steps 2-4 as required. The advantages of a more formal process include avoiding pre-selection of a particular com known to and favoured by one decision maker, and also its assistance in identifying the possible weaknesses and aspects to consider in the selection and design of operator models. To make the best of whichever operator models are selected, key issues which need to be addressed include the capacity of the public authority as 'client', management in general and financial management in particular.

  17. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2014-01-01

    UAS operations will be safer if a UTM system is available to support the functions associated with Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns); Weather and severe wind integration (avoid severe weather areas based on prediction); Predict and manage congestion (mission safety);Terrain and man-made objects database and avoidance; Maintain safe separation (mission safety and assurance of other assets); Allow only authenticated operations (avoid unauthorized airspace use).

  18. Science Support Room Operations During Desert RATS 2009

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.; hide

    2010-01-01

    NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.

  19. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2015-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  20. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  1. Architectures and Evaluation for Adjustable Control Autonomy for Space-Based Life Support Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra K.

    2001-01-01

    In the past five years, a number of automation applications for control of crew life support systems have been developed and evaluated in the Adjustable Autonomy Testbed at NASA's Johnson Space Center. This paper surveys progress on an adjustable autonomous control architecture for situations where software and human operators work together to manage anomalies and other system problems. When problems occur, the level of control autonomy can be adjusted, so that operators and software agents can work together on diagnosis and recovery. In 1997 adjustable autonomy software was developed to manage gas transfer and storage in a closed life support test. Four crewmembers lived and worked in a chamber for 91 days, with both air and water recycling. CO2 was converted to O2 by gas processing systems and wheat crops. With the automation software, significantly fewer hours were spent monitoring operations. System-level validation testing of the software by interactive hybrid simulation revealed problems both in software requirements and implementation. Since that time, we have been developing multi-agent approaches for automation software and human operators, to cooperatively control systems and manage problems. Each new capability has been tested and demonstrated in realistic dynamic anomaly scenarios, using the hybrid simulation tool.

  2. Performance Support Systems: Integrating AI, Hypermedia, and CBT to Enhance User Performance.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1994-01-01

    Examines the use of a performance support system (PSS) to enhance user performance on an operational system. Highlights include background information that describes the stimulus for PSS development; discussion of the major PSS components and the technology they require; and discussion of the design of a PSS for a complex database system.…

  3. Lessons from the organisation of the UK medical services deployed in support of Operation TELIC (Iraq) and Operation HERRICK (Afghanistan)

    PubMed Central

    Bricknell, Martin C M; Nadin, M

    2017-01-01

    This paper provides the definitive record of the UK Defence Medical Services (DMS) lessons from the organisation of medical services in support of Operation (Op) TELIC (Iraq) and Op HERRICK (Afghanistan). The analysis involved a detailed review of the published academic literature, internal post-operational tour reports and post-tour interviews. The list of lessons was reviewed through three Military Judgement Panel cycles producing the single synthesis ‘the golden thread’ and eight ‘silver bullets’ as themes to institutionalise the learning to deliver the golden thread. One additional theme, mentoring indigenous healthcare systems and providers, emerged as a completely new capability requirement. The DMS has established a programme of work to implement these lessons. PMID:28062527

  4. Cultural intelligence support for military operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthormsen, Amy M.; MacKerrow, Edward P; Merritt, Terence M

    It has long been recognized that military success relies on knowledge of the enemy. In the context of standard warfare, adequate knowledge of the enemy may be gained by analyzing observable, measurable data. In the context of modern counterinsurgency operations and the global war on terror, the task of predicting the behavior of the enemy is vastly more complex and difficult. Without an understanding of the ways individuals in the host nation interpret and react to events, no amount of objective information can provide the insight required to accurately predict behavior. US military doctrine has begun to recognize the importancemore » of the many ways that local culture can affect operation success. Increasingly military decision makers use cultural information in the service of operation planning, and troops are provided with pre-deployment cultural training. However, no amount of training can cover the breadth and depth of potentially useful cultural information, and no amount of careful planning can avoid the need to adapt as situations develop. Therefore, a critical challenge is to provide useful tools to US personnel in their efforts to collect, analyze, and utilize cultural information. Essential functions for cultural support tools include the following: (1) to narrow down a broad range of available data and focus the user's attention on context-relevant information, (2) to present cultural information in an easily understood form, (3) to prompt the user to seek relevant information in the environment, (4) to synthesize information, and (5) to predict outcomes based on possible courses of operation. In this paper, we begin by reviewing the ways in which military operations can benefit from cultural intelligence. We then discuss frameworks for analyzing cultural information in the context of a military operation. We conclude with a demonstration of our current efforts to develop a tool that meets the aforementioned functional challenges.« less

  5. Process control integration requirements for advanced life support systems applicable to manned space missions

    NASA Technical Reports Server (NTRS)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  6. Operational effectiveness of a Multiple Aquila Control System (MACS)

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Flynn, J. D.; Frey, M. R.

    1983-01-01

    The operational effectiveness of a multiple aquila control system (MACS) was examined under a variety of remotely piloted vehicle (RPV) mission configurations. The set of assumptions and inputs used to form the rules under which a computerized simulation of MACS was run is given. The characteristics that are to govern MACS operations include: the battlefield environment that generates the requests for RPV missions, operating time-lines of the RPV-peculiar equipment, maintenance requirements, and vulnerability to enemy fire. The number of RPV missions and the number of operation days are discussed. Command, control, and communication data rates are estimated by determining how many messages are passed and what information is necessary in them to support ground coordination between MACS sections.

  7. 14 CFR 460.11 - Environmental control and life support systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...

  8. 14 CFR 460.11 - Environmental control and life support systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...

  9. 14 CFR 460.11 - Environmental control and life support systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...

  10. Data Flow System operations: from the NTT to the VLT

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Leibundgut, Bruno; Quinn, Peter J.; Spyromilio, Jason; Tarenghi, Massimo

    1998-07-01

    Science operations at the ESO very large telescope is scheduled to begin in April 1999. ESO is currently finalizing the VLT science operations plan. This plan describes the operations tasks and staffing needed to support both visitor and service mode operations. The Data Flow Systems (DFS) currently being developed by ESO will provide the infrastructure necessary for VLT science operations. This paper describes the current VLT science operations plan, first by discussing the tasks involved and then by describing the operations teams that have responsibility for those tasks. Prototypes of many of these operational concepts and tools have been in use at the ESO New Technology Telescope (NTT) since February 1997. This paper briefly summarizes the status of these prototypes and then discusses what operation lessons have been learned from the NTT experience and how they can be applied to the VLT.

  11. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China.

    PubMed

    Xiong, Weiyi; Lv, Jun; Li, Liming

    2010-11-17

    In recent years, problems like insufficient coordination, low efficiency, and heavy working load in national communicable disease surveillance systems in China have been pointed out by many researchers. To strengthen the national communicable disease surveillance systems becomes an immediate concern. Since the World Health Organization has recommended that a structured approach to strengthen national communicable disease surveillance must include an evaluation to existing systems which usually begins with a systematic description, we conducted the first survey for communicable disease surveillance systems in China, in order to understand the situation of core and support surveillance activities at province-level and county-level centers for disease control and prevention (CDCs). A nationwide survey was conducted by mail between May and October 2006 to investigate the implementation of core and support activities of the Notifiable Disease Reporting System (NDRS) and disease-specific surveillance systems in all of the 31 province-level and selected 14 county-level CDCs in Mainland China The comments on the performance of communicable disease surveillance systems were also collected from the directors of CDCs in this survey. The core activities of NDRS such as confirmation, reporting and analysis and some support activities such as supervision and staff training were found sufficient in both province-level and county-level surveyed CDCs, but other support activities including information feedback, equipment and financial support need to be strengthened in most of the investigated CDCs. A total of 47 communicable diseases or syndromes were under surveillance at province level, and 20 diseases or syndromes at county level. The activities among different disease-specific surveillance systems varied widely. Acute flaccid paralysis (AFP), measles and tuberculosis (TB) surveillance systems got relatively high recognition both at province level and county level. China has

  12. Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten

    2013-01-01

    Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).

  13. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  14. Drivers' safety needs, behavioural adaptations and acceptance of new driving support systems.

    PubMed

    Saad, Farida; Van Elslande, Pierre

    2012-01-01

    The aim of this paper is to discuss the contribution of two complementary approaches for designing and evaluating new driver support systems likely to improve the operation and safety of the road traffic system. The first approach is based on detailed analyses of traffic crashes so as to estimate drivers' needs for assistance and the situational constraints that safety functions should address to be efficient. The second approach is based on in depth-analyses of behavioral adaptations induced by the usage of new driver support systems in regular driving situations and on drivers' acceptance of the assistance provided by the systems.

  15. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model

  16. Steady-state dynamic behavior of an auxiliary bearing supported rotor system

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Lawrence, Charles

    1995-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.

  17. Medical Support for Aircraft Disaster Search and Recovery Operations at Sea: the RSN Experience.

    PubMed

    Teo, Kok Ann Colin; Chong, Tse Feng Gabriel; Liow, Min Han Lincoln; Tang, Kong Choong

    2016-06-01

    The maritime environment presents a unique set of challenges to search and recovery (SAR) operations. There is a paucity of information available to guide provision of medical support for SAR operations for aircraft disasters at sea. The Republic of Singapore Navy (RSN) took part in two such SAR operations in 2014 which showcased the value of a military organization in these operations. Key considerations in medical support for similar operations include the resultant casualty profile and challenges specific to the maritime environment, such as large distances of area of operations from land, variable sea states, and space limitations. Medical support planning can be approached using well-established disaster management life cycle phases of preparedness, mitigation, response, and recovery, which all are described in detail. This includes key areas of dedicated training and exercises, force protection, availability of air assets and chamber support, psychological care, and the forensic handling of human remains. Relevant lessons learned by RSN from the Air Asia QZ8501 search operation are also included in the description of these key areas. Teo KAC , Chong TFG , Liow MHL , Tang KC . Medical support for aircraft disaster search and recovery operations at sea: the RSN experience. Prehosp Disaster Med. 2016; 31(3):294-299.

  18. A Multifaceted Approach to Modernizing NASA's Advanced Multi-Mission Operations System (AMMOS) System Architecture

    NASA Technical Reports Server (NTRS)

    Estefan, Jeff A.; Giovannoni, Brian J.

    2014-01-01

    The Advanced Multi-Mission Operations Systems (AMMOS) is NASA's premier space mission operations product line offering for use in deep-space robotic and astrophysics missions. The general approach to AMMOS modernization over the course of its 29-year history exemplifies a continual, evolutionary approach with periods of sponsor investment peaks and valleys in between. Today, the Multimission Ground Systems and Services (MGSS) office-the program office that manages the AMMOS for NASA-actively pursues modernization initiatives and continues to evolve the AMMOS by incorporating enhanced capabilities and newer technologies into its end-user tool and service offerings. Despite the myriad of modernization investments that have been made over the evolutionary course of the AMMOS, pain points remain. These pain points, based on interviews with numerous flight project mission operations personnel, can be classified principally into two major categories: 1) information-related issues, and 2) process-related issues. By information-related issues, we mean pain points associated with the management and flow of MOS data across the various system interfaces. By process-related issues, we mean pain points associated with the MOS activities performed by mission operators (i.e., humans) and supporting software infrastructure used in support of those activities. In this paper, three foundational concepts-Timeline, Closed Loop Control, and Separation of Concerns-collectively form the basis for expressing a set of core architectural tenets that provides a multifaceted approach to AMMOS system architecture modernization intended to address the information- and process-related issues. Each of these architectural tenets will be further explored in this paper. Ultimately, we envision the application of these core tenets resulting in a unified vision of a future-state architecture for the AMMOS-one that is intended to result in a highly adaptable, highly efficient, and highly cost

  19. Operational Evaluation of VEGGIE Food Production System in the Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    The 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. A systematic evaluation of rooting media and nutrient delivery systems were evaluated for three lettuce cultivars that have shown promise as candidates for a surface based food production system. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple operators with a minimum of training, and supported excellent lettuce growth for the duration of the test. A Hazard Analysis and Critical Control Point (HACCP) evaluation was performed using ProSan(tm) as sanitation agent prior to consumption was approved, and the crew was allowed to consume the lettuce grown using the VEGGIE light cap and gravity based nutrient delivery system at the completion of the 14-day DRAT field test. The DRAT field test validated the crew operations; Growth of all lettuce cultivars was excellent. The operational DRAT field testing in the HDU identified light quality issues related to morphology and pigment development that will need to be addressed through additional testing. Feedback from the crew, ground support personnel, and human factors leads was uniformly positive on the psychological value of having the crop production system in the excursion module. A number of areas have been identified for future work, to minimize the "footprint" of the Food Production system through creative use of unused wall and floor space in the unit.

  20. Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2005-01-01

    This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

  1. International Space Station Environmental Control and Life Support System Status: 2006 - 2007

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.

    2007-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  2. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  3. International Space Station Environmental Control and Life Support System Status: 2005 - 2006

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.

    2006-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  4. Alternate Design of ITER Cryostat Skirt Support System

    NASA Astrophysics Data System (ADS)

    Pandey, Manish Kumar; Jha, Saroj Kumar; Gupta, Girish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar

    2017-04-01

    The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfil the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2 [1]. By FEA ‘Plastic Collapse’ and ‘Local Failure’ modes has been assessed. 5° sector of skirt clamp has been modelled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modelled and symmetry boundary condition at ± 2.5° applied. ‘Elastic Plastic Analysis’ has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing.

  5. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  6. Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0

    NASA Technical Reports Server (NTRS)

    Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.

    2001-01-01

    A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.

  7. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  8. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  9. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  10. RASSOR - Regolith Advanced Surface Systems Operations Robot

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (<100 kg) robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  11. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  12. Catalogue Support Systems Study. Final Report for British Columbia Library Development Commission.

    ERIC Educational Resources Information Center

    MacDonald, R. W.; And Others

    To determine the need for additional bibliographic resources in the libraries of British Columbia, Canada, an evaluation was undertaken which included visits to libraries and existing operational catalog support systems, and meetings with advisory committees. Recommendations included: (1) implementation of a province-wide, on-line catalog system;…

  13. Operating System Abstraction Layer (OSAL)

    NASA Technical Reports Server (NTRS)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  14. Development of prototype decision support systems for real-time freeway traffic routing. Volume I.

    DOT National Transportation Integrated Search

    1998-01-01

    For a traffic management system (TMS) to improve traffic flow, TMS operators must develop effective routing strategies based on the data collected by the system. The purpose of this research was to build prototype decision support systems (DSS) for t...

  15. Network Operations Support Plan for the Spot 2 mission (revision 1)

    NASA Technical Reports Server (NTRS)

    Werbitzky, Victor

    1989-01-01

    The purpose of this Network Operations Support Plan (NOSP) is to indicate operational procedures and ground equipment configurations for the SPOT 2 mission. The provisions in this document take precedence over procedures or configurations in other documents.

  16. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  17. Greenhouse as pert of a life support system for a martian crew

    NASA Astrophysics Data System (ADS)

    Sychev, V. N.; Levinskikh, M. A.; Grigorie, A. I.

    One of the most important problems in space exploration is the biomedical support of humans in a hostile environment that cannot sustain their life and development. An integral part of biomedical support is an adequate life support systems (LSS). In the visible future a manned flight to Mars can become a reality. When designing a LSS for a Martian Expedition, we assume that over the next 15-20 years we will be able to support the Martian crew using systems and hardware that have been in operation on the International Space Station (ISS). Their extended use on MIR and ISS has demonstrated their high reliability and provided detailed information about their operation in space. Today it is recognized that integration of a biological subsystem (at least, a greenhouse) in a LSS will enrich the Martian spacecraft environment and mitigate potential adverse effects of a long-term exposure to a man-made (abiogenic) environment. Our estimates show that an adequate amount of wet biomass of lettuce cultures can be produced in a greenhouse with a planting area of 10 m2. This means that a greenhouse of a sufficient size can be housed in 5 standard Space Shuttle racks. A greenhouse made of modules can be installed as a single unit in one area or as several subunits in different areas of the Martian vehicle. According to our calculations, a greenhouse of this capacity can provide a 6-member crew with adequate amounts of vitamins and minerals, as well as regenerate about 5% of oxygen, 3.6% of water and over 1% of food components. Incorporation of a greenhouse will make it necessary to redesign current LSSs by changing material flows and upgrading their components. Prior to this, we have to investigate operational characteristics of greenhouses on space vehicles, design systems capable of supporting continuous and prolonged operation of greenhouses, and select plants that can provide crews with required vitamins and minerals.

  18. A Technology Analysis to Support Acquisition of UAVs for Gulf Coalition Forces Operations

    DTIC Science & Technology

    2017-06-01

    their selection of the most suitable and cost-effective unmanned aerial vehicles to support detection operations. This study uses Map Aware Non ...being detected by Gulf Coalition Forces and improved time to detect them, support the use of UAVs in detection missions. Computer experimentations and...aerial vehicles to support detection operations. We use Map Aware Non - Uniform Automata, an agent-based simulation software platform, for the

  19. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Ziese, James M.; Farhangi, Shahram

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.

  20. IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.

  1. Systems Operations Studies for Automated Guideway Transit Systems : Quantitative Analysis of Alternative AGT Operational Control Strategies

    DOT National Transportation Integrated Search

    1981-10-01

    The objectives of the Systems Operation Studies (SOS) for automated guideway transit (AGT) systems are to develop models for the analysis of system operations, to evaluate performance and cost, and to establish guidelines for the design and operation...

  2. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  3. Usability of Operational Performance Support Tools - Findings from Sea Test II

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Litaker, Harry; McGuire, Kerry

    2014-01-01

    Sea Test II, aka NASA Extreme Environment Mission Operations 17(NEEMO 17) took place in the Florida Aquarius undersea habitat. This confined underwater environment provides a excellent analog for space habitation providing similarities to space habitation such as hostile environment, difficult logistics, autonomous operations, and remote communications. This study collected subjective feedback on the usability of two performance support tools during the Sea Test II mission, Sept 10-14, 2013; Google Glass and iPAD. The two main objectives: - Assess the overall functionality and usability of each performance support tool in a mission analog environment. - Assess the advantages and disadvantages of each tool when performing operational procedures and Just-In-Time-Training (JITT).

  4. 9 CFR 205.201 - System operator.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...

  5. 9 CFR 205.201 - System operator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...

  6. 9 CFR 205.201 - System operator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...

  7. 9 CFR 205.201 - System operator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...

  8. Measurement of SIFT operating system overhead

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Butler, R. W.

    1985-01-01

    The overhead of the software implemented fault tolerance (SIFT) operating system was measured. Several versions of the operating system evolved. Each version represents different strategies employed to improve the measured performance. Three of these versions are analyzed. The internal data structures of the operating systems are discussed. The overhead of the SIFT operating system was found to be of two types: vote overhead and executive task overhead. Both types of overhead were found to be significant in all versions of the system. Improvements substantially reduced this overhead; even with these improvements, the operating system consumed well over 50% of the available processing time.

  9. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  10. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  11. Ultrashort-Pulse Laser System: Theory of Operation and Operating Procedures

    DTIC Science & Technology

    1992-07-01

    Nov 89 - Jul 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Ultrashort-Pulse Laser System : Theory of Operation and C - F33615-88-C-0631 Operating...i ’IR~A&, D2;" T.&B [E] al uicod [] j 0 Avhi lp.bilty C: oded’ Avail i Qiv ULTRASHORT-PULSE LASER SYSTEM : THEORY OF OPERATION AND OPERATING PROCEDURES

  12. [Structure of Relationships Formed by Occupational Health Nurses for Co-operating with Managers to Support Workers with Mental Health Concerns].

    PubMed

    Hatanaka, Junko; Takasaki, Masako; Hatanaka, Michiyo

    2018-05-31

    burden the manager. Such support promoted the "creation of systems for clear roles" of managers in supporting the subordinate with mental health concerns. Relationships that occupational health nurses form with their managers were the structure which formed emotional human relationships from the front or back necessity of co-operation causes and developing confidence in relationships with the foundation of emotional human relationships.

  13. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a

  14. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  15. Method and Apparatus Providing Deception and/or Altered Operation in an Information System Operating System

    DOEpatents

    Cohen, Fred; Rogers, Deanna T.; Neagoe, Vicentiu

    2008-10-14

    A method and/or system and/or apparatus providing deception and/or execution alteration in an information system. In specific embodiments, deceptions and/or protections are provided by intercepting and/or modifying operation of one or more system calls of an operating system.

  16. Operational Forecasting and Warning systems for Coastal hazards in Korea

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon

    2017-04-01

    Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.

  17. Proven and Robust Ground Support Systems - GSFC Success and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Donohue, John; Lui, Ben; Greer, Greg; Green, Tom

    2008-01-01

    Over the past fifteen years, Goddard Space Flight Center has developed several successful science missions in-house: the Wilkinson Microwave Anisotropy Probe (WMAP), the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), the Earth Observing 1 (EO-1) [1], and the Space Technology 5 (ST-5)[2] missions, several Small Explorers, and several balloon missions. Currently in development are the Solar Dynamics Observatory (SDO) [3] and the Lunar Reconnaissance Orbiter (LRO)[4]. What is not well known is that these missions have been supported during spacecraft and/or instrument integration and test, flight software development, and mission operations by two in house satellite Telemetry and Command (T & C) Systems, the Integrated Test and Operations System (ITOS) and the Advanced Spacecraft Integration and System Test (ASIST). The advantages of an in-house satellite Telemetry and Command system are primarily in the flexibility of management and maintenance - the developers are considered a part of the mission team, get involved early in the development process of the spacecraft and mission operations-control center, and provide on-site, on-call support that goes beyond Help Desk and simple software fixes. On the other hand, care must be taken to ensure that the system remains generic enough for cost effective re-use from one mission to the next. The software is designed such that many features are user-configurable. Where user-configurable options were impractical, features were designed so as to be easy for the development team to modify. Adding support for a new ground message header, for example, is a one-day effort because of the software framework on which that code rests. This paper will discuss the many features of the Goddard satellite Telemetry and Command systems that have contributed to the success of the missions listed above. These features include flexible user interfaces, distributed parallel commanding and telemetry decommutation, a procedure

  18. Managing the equipment service life in rendering engineering support to NPP operation

    NASA Astrophysics Data System (ADS)

    Ryasnyy, S. I.

    2015-05-01

    Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.

  19. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated

  20. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology

    NASA Technical Reports Server (NTRS)

    Vilja, John O.

    1990-01-01

    The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.