Science.gov

Sample records for operations applicability matrix

  1. BASIC Matrix Operations.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…

  2. Learned fusion operators based on matrix completion

    NASA Astrophysics Data System (ADS)

    Risko, Kelly K. D.; Hester, Charles F.

    2011-05-01

    The efficient and timely management of imagery captured in the battlefield requires methods capable of searching the voluminous databases and extracting highly symbolic concepts. When processing images, a semantic and definition gap exists between machine representations and the user's language. Based on matrix completion techniques, we present a fusion operator that fuses imagery and expert knowledge provided by user inputs during post analysis. Specifically, an information matrix is formed from imagery and a class map as labeled by an expert. From this matrix an image operator is derived for the extraction/prediction of information from future imagery. We will present results using this technique on single mode data.

  3. Matrix representation of the time operator

    SciTech Connect

    Bender, Carl M.; Gianfreda, Mariagiovanna

    2012-06-15

    In quantum mechanics the time operator {Theta} satisfies the commutation relation [{Theta}, H]=i, and thus it may be thought of as being formally canonically conjugate to the Hamiltonian H. The time operator associated with a given Hamiltonian H is not unique because one can replace {Theta} by {Theta}+{Theta}{sub hom}, where {Theta}{sub hom} satisfies the homogeneous condition [{Theta}{sub hom}, H]= 0. To study this nonuniqueness the matrix elements of {Theta} for the harmonic-oscillator Hamiltonian are calculated in the eigenstate basis. This calculation requires the summation of divergent series, and the summation is accomplished by using zeta-summation techniques. It is shown that by including appropriate homogeneous contributions, the matrix elements of {Theta} simplify dramatically. However, it is still not clear whether there is an optimally simple representation of the time operator.

  4. Automatic Generation of Partitioned Matrix Expressions for Matrix Operations

    NASA Astrophysics Data System (ADS)

    Fabregat-Traver, Diego; Bientinesi, Paolo

    2010-09-01

    We target the automatic generation of formally correct algorithms and routines for linear algebra operations. Given the broad variety of architectures and configurations with which scientists deal, there does not exist one algorithmic variant that is suitable for all scenarios. Therefore, we aim to generate a family of algorithmic variants to attain high-performance for a broad set of scenarios. One of the authors has previously demonstrated that automatic derivation of a family of algorithms is possible when the Partitioned Matrix Expression (PME) of the target operation is available. The PME is a recursive definition that states the relations between submatrices in the input and the output operands. In this paper we describe all the steps involved in the automatic derivation of PMEs, thus making progress towards a fully automated system.

  5. Matrix Models from Operators and Topological Strings

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos; Zakany, Szabolcs

    2016-05-01

    We propose a new family of matrix models whose 1/N expansion captures the all-genus topological string on toric Calabi-Yau threefolds. These matrix models are constructed from the trace class operators appearing in the quantization of the corresponding mirror curves. The fact that they provide a non-perturbative realization of the (standard) topological string follows from a recent conjecture connecting the spectral properties of these operators, to the enumerative invariants of the underlying Calabi-Yau threefolds. We study in detail the resulting matrix models for some simple geometries, like local P^2 and local F_2, and we verify that their weak 't Hooft coupling expansion reproduces the topological string free energies near the conifold singularity. These matrix models are formally similar to those appearing in the Fermi-gas formulation of Chern-Simons-matter theories, and their 1/N expansion receives non-perturbative corrections determined by the Nekrasov-Shatashvili limit of the refined topological string.

  6. Applications of matrix inversion tomosynthesis

    NASA Astrophysics Data System (ADS)

    Warp, Richard J.; Godfrey, Devon J.; Dobbins, James T., III

    2000-04-01

    The improved image quality and characteristics of new flat- panel x-ray detectors have renewed interest in advanced algorithms such as tomosynthesis. Digital tomosynthesis is a method of acquiring and reconstructing a three-dimensional data set with limited-angle tube movement. Historically, conventional tomosynthesis reconstruction has suffered contamination of the planes of interest by blurred out-of- plane structures. This paper focuses on a Matrix Inversion Tomosynthesis (MITS) algorithm to remove unwanted blur from adjacent planes. The algorithm uses a set of coupled equations to solve for the blurring function in each reconstructed plane. This paper demonstrates the use of the MITS algorithm in three imaging applications: small animal microscopy, chest radiography, and orthopedics. The results of the MITS reconstruction process demonstrate an improved reduction of blur from out-of-plane structures when compared to conventional tomosynthesis. We conclude that the MITS algorithm holds potential in a variety of applications to improve three-dimensional image reconstruction.

  7. Development of Matrix Operation Type Protection Relay

    NASA Astrophysics Data System (ADS)

    Zuo, Xiaofei; Kuribayashi, Hidetsura; Tsuji, Kouichi; Hiyama, Takashi

    This paper presents a new digital type protection relay based on matrix operations. The basic principle of the matrix operation type protection scheme has been already discussed and investigated. However, further studies have been required especially to confirm the real time capability of the proposed scheme, in addition to evaluate the accuracy of fault detection and the identification of fault location. The off-line pre-calculation has been proposed for solving the time-consuming problem. Furthermore, the interpolation technique based non-iterative solution has been developed, which replaces the traditionally iterative Newton-Raphson's method for saving required calculation time. Combining both of the off-line pre-calculation and the interpolation method enables to ensure the activation time of the proposed protection relay within two cycles after a fault occurrence. Moreover, a high accuracy of fault detection can be achieved. In order to demonstrate the reliability of the proposed scheme, numerical simulations have been performed through using the actual data measured on real power systems with different voltage levels. The compared results indicate the highly precise estimation of the fault locations compared with the inspected fault locations on transmission lines. The required computation time is also estimated with considering types of numerical calculations included in the proposed algorithm. The estimated computation time is short enough for the real time implementation of the proposed scheme.

  8. Spin-adapted matrix product states and operators

    NASA Astrophysics Data System (ADS)

    Keller, Sebastian; Reiher, Markus

    2016-04-01

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner-Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  9. Metal Matrix Composites for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    McDonald, Kathleen R.; Wooten, John R.

    2000-01-01

    This document is from a presentation about the applications of Metal Matrix Composites (MMC) in rocket engines. Both NASA and the Air Force have goals which would reduce the costs and the weight of launching spacecraft. Charts show the engine weight distribution for both reuseable and expendable engine components. The presentation reviews the operating requirements for several components of the rocket engines. The next slide reviews the potential benefits of MMCs in general and in use as materials for Advanced Pressure Casting. The next slide reviews the drawbacks of MMCs. The reusable turbopump housing is selected to review for potential MMC application. The presentation reviews solutions for reusable turbopump materials, pointing out some of the issues. It also reviews the development of some of the materials.

  10. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.

  11. Matrix Representation of Symmetry Operators in Elementary Crystallography

    ERIC Educational Resources Information Center

    Cody, R. D.

    1972-01-01

    Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…

  12. Airspace Operations Demo Functional Requirements Matrix

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Flight IPT assessed the reasonableness of demonstrating each of the Access 5 Step 1 functional requirements. The functional requirements listed in this matrix are from the September 2005 release of the Access 5 Functional Requirements Document. The demonstration mission considered was a notional Western US mission (WUS). The conclusion of the assessment is that 90% of the Access 5 Step 1 functional requirements can be demonstrated using the notional Western US mission.

  13. Matrix preconditioning: a robust operation for optical linear algebra processors.

    PubMed

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system. PMID:20489953

  14. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662

  15. Trace formula for the matrix Sturm-Liouville operator

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Fu

    2016-03-01

    A regularized trace formula of first order for the matrix Sturm-Liouville operator -d^2/dx^2+Q with a d× d self-adjoint matrix-valued potential Q in L^2((0,π );dx)^d is derived, which extends the well-known scalar case d=1.

  16. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  17. The Matrix Exponential Approach To Elementary Operations

    NASA Astrophysics Data System (ADS)

    Delosme, Jean-Marc

    1986-04-01

    In 1971, J.S. Walther generalized and unified J.E. Volder's coordinate rotation (CORDIC) algorithms. Using Walther's algorithms a few commonly used functions such as divide, multiply-and-accumulate, arctan, plane rotation, arctanh, hyperbolic rotation can be implemented on the same simple hardware (shifters and adders, elementary controller) and computed in approximately the same time. Can other useful functions be computed on the same hardware by further generalizing these algorithms? Our positive answer lies in a deeper understanding of Walther's unification: the key to the CORDIC algorithms is that all of them effect the multiplication of a vector by the exponential of a 2 X 2 matrix. The importance of this observation is readily demonstrated as it easily yields the convergence conditions for the CORDIC algorithms and an efficient way of extending the domain of convergence for the hyperbolic functions. A correspondence may be established between elementary functions such as square-root, √(x2+y) , inverse square-root or cubic root and exponentials of simple matrices. Whenever such a correspondence is found, a CORDIC-like algorithm for computing the function can be synthesized in a very straightforward manner. The algorithms thus derived have a simple structure and exhibit uniform convergence inside an adjustable, precisely defined, domain.

  18. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  19. Study of the essential spectrum of a matrix operator

    NASA Astrophysics Data System (ADS)

    Rasulov, T. Kh.

    2010-07-01

    We consider a matrix operator H corresponding to a system with a nonconserved finite number of particles on a lattice. We describe the structure of the essential spectrum of the operator H and prove that the essential spectrum is a union of at most four intervals.

  20. Legendre Wavelet Operational Matrix of fractional Derivative through wavelet-polynomial transformation and its Applications in Solving Fractional Order Brusselator system

    NASA Astrophysics Data System (ADS)

    Chang, Phang; Isah, Abdulnasir

    2016-02-01

    In this paper we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. The operational matrices of fractional derivative and collocation method turn the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.

  1. Matrix elements of many-body operators and density correlations

    SciTech Connect

    Brouder, Christian

    2005-09-15

    The matrix element of a general many-body operator between two Slater determinants is calculated explicitly. For this, a split-and-pair method is introduced that provides a convenient expression of Wick's theorem and simplifies many-body calculations. The same method is used to determine the generating function of the matrix elements of many-body operators. The split-and-pair method allows also for the diagonalization of the density correlation operators :n(x{sub 1}){center_dot}{center_dot}{center_dot}n(x{sub k}):, where n(x)={psi}{sup {dagger}}(x){psi}(x) is the density operator. The relation between the split-and-pair method and quantum group theory is clarified.

  2. Ceramic - Matrix Composites for Extreme Applications

    NASA Astrophysics Data System (ADS)

    Ortona, A.; Gaia, D.; Maiola, G.; Capelari, T.; Mannarino, L.; Pin, F.; Ghisolfi, E.

    2008-06-01

    Hi-tech systems whose components operate in working conditions characterised by a chemically aggressive environment and elevated temperatures (above 1000°C) are ever more numerous. If metallic materials are not suitably protected and cooled under these conditions, they operate at the limit of their capacity and therefore the integrity of the component can not be guaranteed. Their cooling may furthermore constitute considerable complications in terms of their design. Ceramic materials are a category of materials that bears such extreme working conditions well. However, these materials are actually scarcely used due to their fragility. This limit is overcome by Ceramic Matrix Composites materials (CMCs). All the technologies introduced in this study are developed at FN S.P.A.

  3. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  4. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  5. Key Issues for Aerospace Applications of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Levine, S. R.

    1998-01-01

    Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.

  6. Applications of Polymer Matrix Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  7. R-matrix parameters in reactor applications

    SciTech Connect

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL.

  8. Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Latushkin, Y.

    A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by Here is the set of ergodic f-invariant measures, and for is the measure-theoretic entropy of f, is the largest Lyapunov exponent of the cocycle over f generated by , and is the smallest Lyapunov exponent of the differential of f.

  9. Multiplier operator algebras and applications.

    PubMed

    Blecher, David P; Zarikian, Vrej

    2004-01-20

    The one-sided multipliers of an operator space X are a key to "latent operator algebraic structure" in X. We begin with a survey of these multipliers, together with several of the applications that they have had to operator algebras. We then describe several new results on one-sided multipliers, and new applications, mostly to one-sided M-ideals. PMID:14711990

  10. Digraph matrix analysis applications to systems interactions

    SciTech Connect

    Alesso, H.P.; Altenbach, T.; Lappa, D.; Kimura, C.; Sacks, I.J.; Ashmore, B.C.; Fromme, D.; Smith, C.F.; Williams, W.

    1984-01-01

    Complex events such as Three Mile Island-2, Brown's Ferry-3 and Crystal River-3 have demonstrated that previously unidentified system interdependencies can be important to safety. A major aspect of these events was dependent faults (common cause/mode failures). The term systems interactions has been introduced by the Nuclear Regulatory Commission (NRC) to identify the concepts of spatial and functional coupling of systems which can lead to system interdependencies. Spatial coupling refers to dependencies resulting from a shared environmental condition; functional coupling refers to both dependencies resulting from components shared between safety and/or support systems, and to dependencies involving human actions. The NRC is currently developing guidelines to search for and evaluate adverse systems interactions at light water reactors. One approach utilizes graph theoretical methods and is called digraph matrix analysis (DMA). This methodology has been specifically tuned to the systems interaction problem. The objective of this paper is to present results from two DMA applications and to contrast them with the results from more traditional fault tree approaches.

  11. Dense and Sparse Matrix Operations on the Cell Processor

    SciTech Connect

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine

    2005-05-01

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.

  12. Matrix operator theory of radiative transfer. I - Rayleigh scattering.

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.; Catchings, F. E.

    1973-01-01

    An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.

  13. An advanced algorithm for construction of Integral Transport Matrix Method operators using accumulation of single cell coupling factors

    SciTech Connect

    Powell, B. P.; Azmy, Y. Y.

    2013-07-01

    The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)

  14. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    SciTech Connect

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  15. Fluctuation studies in the infinite interval matrix representations of operator products and their decompositions

    SciTech Connect

    Baykara, N. A.; Guervit, Ercan; Demiralp, Metin

    2012-12-10

    In this work a study on finite dimensional matrix approximations to products of quantum mechanical operators is conducted. It is emphasized that the matrix representation of the product of two operators is equal to the product of the matrix representation of each of the operators when all the fluctuation terms are ignored. The calculation of the elements of the matrices corresponding to the matrix representation of various operators, based on three terms recursive relation is defined. Finally it is shown that the approximation quality depends on the choice of higher values of n, namely the dimension of Hilbert space.

  16. Haar Wavelet Operational Matrix Method for the Numerical Solution of Fractional Order Differential Equations

    NASA Astrophysics Data System (ADS)

    Shah, Firdous A.; Abbas, R.

    2015-12-01

    In this paper, we propose a new operational matrix method of fractional order integration based on Haar wavelets to solve fractional order differential equations numerically. The properties of Haar wavelets are first presented. The properties of Haar wavelets are used to reduce the system of fractional order differential equations to a systemof algebraic equationswhich can be solved numerically byNewton's method.Moreover, the proposed method is derived without using the block pulse functions considered in open literature and does not require the inverse of the Haar matrices. Numerical examples are included to demonstrate the validity and applicability of the present method.

  17. Light-ray operators and their application in QCD

    SciTech Connect

    Geyer, B.; Robaschik, D.; Mueller, D.

    1994-05-01

    The nonperturbative parton distribution and wave functions are directly related to matrix elements of light-ray (nonlocal) operators. These operators are generalizations of the standard local operators known from the operator product expansions. The renormalization group equation for these operators leads to evolution equations for more general distribution amplitudes which include the Altarelli-Parisi and the Brodsky-Lepage equations as special cases. It is possible to derive the Altarelli-Parisi kernel as a limiting case of the extended Brodsky-Lepage kernel. As a new application of the operator product expansion, the virtual Compton scattering near forward direction is considered.

  18. Active matrix OLED for rugged HMD and viewfinder applications

    NASA Astrophysics Data System (ADS)

    Low, Kia; Jones, Susan K.; Prache, Olivier; Fellowes, David A.

    2004-09-01

    We present characterization of a full-color 852x3x600-pixel, active matrix organic light emitting diode (AMOLED) color microdisplay (eMagin Corporation's SVGA+ display) for environmentally demanding applications. The results show that the AMOLED microdisplay can provide cold-start turn-on and operate at extreme temperature conditions, far in excess of non-emissive displays. Correction factors for gamma response of the AMOLED microdisplay as a function of temperature have been determined to permit consistent luminance and contrast from -40°C to over +80°C. Gamma adjustments are made by a simple temperature compensation adjustment of the reference voltages of the AMOLED. The typical room temperature full-on luminance half-life of the SVGA+ full color display organic light emitting diode (OLED) display at over 3,000 hr at a starting luminance at approx. 100 cd/m2, translates to more than 15,000 hr of continuous full-motion video usage, based on a 25% duty cycle at a typical 50-60 cd/m2 commercial luminance level, or over 60,000 hr half-life in monochrome white usage, or over 100,000 hr luminance half-life in monochrome yellow usage at similar operating conditions. Half life at typical night vision luminance levels would be much longer.

  19. Matrix Transfer Function Design for Flexible Structures: An Application

    NASA Technical Reports Server (NTRS)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  20. Design of RF MEMS based switch matrix for space applications

    NASA Astrophysics Data System (ADS)

    Di Nardo, S.; Farinelli, P.; Kim, T.; Marcelli, R.; Margesin, B.; Paola, E.; Pochesci, D.; Vietzorreck, L.; Vitulli, F.

    2013-07-01

    RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below -12 dB IL (Insertion Loss) up to C band and -15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than -50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.

  1. Matrix operator approach to the quantum evolution operator and the geometric phase

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo; Kim, Jewan; Soh, Kwang Sup

    2013-11-01

    The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix-operator approach formulated in the product integral (PI) provides not only a method to find the wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo cumulant expansion. A coupled quantum system of a light particle of a harmonic oscillator is worked out, and as a by-product, a new kind of gauge potential (Berry's connection) is found even for nondegenerate cases (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed, and a generalized Dykhne formula, depending on the contour integrals of the homotopy class of complex degenerate points, is rephrased in the PI formulation.

  2. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  3. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1986-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  4. VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.

    2012-01-01

    VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.

  5. Emerging Applications of Ceramic and Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena

    2012-07-01

    Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.

  6. A matrix safety frame approach to robot safety for space applications. Thesis

    NASA Technical Reports Server (NTRS)

    Montgomery, T. D.; Lauderbaugh, L. Ken

    1988-01-01

    The planned use of autonomous robots in space applications has generated many new safety problems. This thesis assesses safety of autonomous robot systems through the structure of a proposed three-dimensional matrix safety frame. By identifying the common points of accidents and fatalities involving terrestrial robots, reviewing terrestrial robot safety standards, and modifying and extending these results to space applications, hazards are identified and their associated risks assessed. Three components of the safeguarding dimension of the matrix safety frame, safeguarding through design and operation for intrinsic safety, and incorporation of add-on safety systems are explained through examples for both terrestrial and space robots. A space robot hazard identification checklist, a qualitative tool for robot systems designers, is developed using the structure imparted by the matrix safety frame. The development of an expert system from the contents of the checklist is discussed.

  7. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  8. The construction of operational matrix of fractional derivatives using B-spline functions

    NASA Astrophysics Data System (ADS)

    Lakestani, Mehrdad; Dehghan, Mehdi; Irandoust-pakchin, Safar

    2012-03-01

    Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. Here we construct the operational matrix of fractional derivative of order α in the Caputo sense using the linear B-spline functions. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus we can solve directly the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the new technique presented in the current paper.

  9. Unity Power Factor Operation Control Method For Single-phase to Three-phase Matrix Converter

    NASA Astrophysics Data System (ADS)

    Haga, Hitoshi; Takahashi, Isao; Ohishi, Kiyoshi

    This paper proposes a new control method of matrix converter to obtain the unity power factor operation. Source side of the matrix converter is single-phase voltage, and the load side is three-phase ac motor. The number of switching device is six, and the converter does not require a reactor or an electrolytic capacitor. Generally, it is difficult for matrix converter to control both its input current waveform and the output voltage waveform, because the switching devices are connected to both source side and load side. In this paper, applying an algebraic transfer matrix, the control method of single-phase to three-phase matrix converter applies the indirect modulation model. The indirect modulation model treats a matrix converter as a two-stage transformation converter. The rectifier of proposed model consists only diode and small L-C filter. Hence, the switching frequency is lower than the conventional model one. The inverter of the proposed model regulates both the input current waveform and the motor speed. The inverter control scheme for IPM motor is based on direct torque control (DTC). The additional current controller improves its input current waveform. Hence, an optimum switching pattern of the matrix converter realizes quick torque response and unity power factor operation. This paper describes that the proposed method achieves the power factor 97.6% by experimental tests. The experimental results confirm the feasibility of the proposed method for matrix converter.

  10. Matrix fatigue cracking in {alpha}{sub 2} titanium matrix composites for hypersonic applications

    SciTech Connect

    Gabb, T.P.; Gayda, J.

    1996-12-31

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional {alpha}{sub 2} titanium matrix composite (TMC) in possible hypersonic applications. A [0]{sub 8} SCS-6/Ti-24Al-11Nb (atomic %) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  11. Thermosetting polymer-matrix composites for structural repair applications

    NASA Astrophysics Data System (ADS)

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  12. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    SciTech Connect

    William Kirby Goertzen

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  13. Matrix-variate factor analysis and its applications.

    PubMed

    Xie, Xianchao; Yan, Shuicheng; Kwok, James T; Huang, Thomas S

    2008-10-01

    Factor analysis (FA) seeks to reveal the relationship between an observed vector variable and a latent variable of reduced dimension. It has been widely used in many applications involving high-dimensional data, such as image representation and face recognition. An intrinsic limitation of FA lies in its potentially poor performance when the data dimension is high, a problem known as curse of dimensionality. Motivated by the fact that images are inherently matrices, we develop, in this brief, an FA model for matrix-variate variables and present an efficient parameter estimation algorithm. Experiments on both toy and real-world image data demonstrate that the proposed matrix-variant FA model is more efficient and accurate than the classical FA approach, especially when the observed variable is high-dimensional and the samples available are limited. PMID:18842486

  14. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  15. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  16. Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall

    2003-01-01

    Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.

  17. Theorems on symmetries and flux conservation in radiative transfer using the matrix operator theory.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.

    1973-01-01

    The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.

  18. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  19. The Golden-Thompson inequality: Historical aspects and random matrix applications

    SciTech Connect

    Forrester, Peter J. Thompson, Colin J.

    2014-02-15

    The Golden-Thompson inequality, Tr (e{sup A+B}) ⩽ Tr (e{sup A}e{sup B}) for A, B Hermitian matrices, appeared in independent works by Golden and Thompson published in 1965. Both of these were motivated by considerations in statistical mechanics. In recent years the Golden-Thompson inequality has found applications to random matrix theory. In this article, we detail some historical aspects relating to Thompson's work, giving in particular a hitherto unpublished proof due to Dyson, and correspondence with Pólya. We show too how the 2 × 2 case relates to hyperbolic geometry, and how the original inequality holds true with the trace operation replaced by any unitarily invariant norm. In relation to the random matrix applications, we review its use in the derivation of concentration type lemmas for sums of random matrices due to Ahlswede-Winter, and Oliveira, generalizing various classical results.

  20. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  1. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-01

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam. PMID:11328133

  2. Dry borax applicator operator's manual.

    SciTech Connect

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  3. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    PubMed

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  4. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression. PMID:22042156

  5. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    PubMed Central

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  6. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    PubMed

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications. PMID:26580169

  7. Application of the device of slices for automation of matrix calculations

    NASA Astrophysics Data System (ADS)

    Romanovsky, E. A.

    2014-12-01

    The basic concepts of the device of slices for the processing of multidimensional numerical arrays are represented. The data on the developed matrix component supporting the concept of simple and generalized slices are given. The application efficiency of the slicing device and matrix components in industrial automation at the stages of matrix computation automation is shown.

  8. Power system modeling and sparse matrix operations using object-oriented programming

    SciTech Connect

    Hakavik, B.; Holen, A.T. . Div. of Electrical Power Engineering)

    1994-05-01

    This paper reports on power system modeling and sparse matrix operations using object-oriented programming (OOP). It has been claimed that OOP leads to more flexible, modular and reusable code, and that programs can be written more general. The main focus of the paper is OOP design principles and practical implementations for power systems. Specific examples included demonstration of a power system model design, particularly focusing on OOP mechanisms and object-oriented style of programming. Also demonstrated, using OOP, are tailor-made sparse matrix storage schemes and operations. Numerical tests indicate that the proposed design is efficient compared to standard numerical library routines, and that the particular OOP features that are used to obtain flexibility and other benefits do not significantly increase computation time.

  9. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression.

    PubMed

    Wu, Peiwen; Wang, Yanxia; Davis, Mark E; Zuckerman, Jonathan E; Chaudhari, Sarika; Begg, Malcolm; Ma, Rong

    2015-11-01

    Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes. PMID:25788524

  10. Fission matrix capability for MCNP, Part II - Applications

    SciTech Connect

    Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R.

    2013-07-01

    This paper describes the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. Numerous examples are presented. A companion paper (Part I - Theory) describes the theoretical basis for the fission matrix method. (authors)

  11. Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna

    NASA Astrophysics Data System (ADS)

    Vrancken, M.; Lerche, E.; Blackman, T.; Dumortier, P.; Durodié, F.; Evrard, M.; Goulding, R. H.; Graham, M.; Huygen, S.; Jacquet, P.; Kaye, A.; Mayoral, M.-L.; Nightingale, M. P. S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.

    2009-11-01

    The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.

  12. Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna

    SciTech Connect

    Vrancken, M.; Lerche, E.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.

    2009-11-26

    The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.

  13. Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Nagao, Taro

    2011-10-01

    We introduce a random two-matrix model interpolating between a chiral Hermitian (2 n + ν) × (2 n + ν) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large- n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in [32, 33]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with ν = 0 , 1 we derive all spectral correlations functions in our model for finite- n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.

  14. Structural and functional polymer-matrix composites for electromagnetic applications

    NASA Astrophysics Data System (ADS)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES) bulk composites. At 13 vol.%, it gives 90 dB of shielding at 1.0 GHz, compared to 46 dB for nickel powder (20-40 mum) and the prior value of 87 dB reported by Shui and Chung for nickel filament (0.4 mum diameter). The minimum filler content for high shielding is 7-13 vol.% for both nickel powders, compared to 3-7 vol.% for nickel filament. Due to the skin effect, a small filler unit size helps the shielding, which is dominated by reflection. Carbon filament (0.1 mum, >100 mum long, >1000 in aspect ratio) is effective for enhancing the shielding effectiveness of a coating made from a water-based colloid that contains graphite particle (0.7-0.8 mum, 22 wt.%) and a starch-type binder. The filament addition increases the shielding from 11 to 20 dB at 1.0 GHz. This increase in shielding is associated with increase in reflectivity and decrease in electrical resistivity. Graphite flake (5 mum) at the same volume proportion is even more effective; its addition increases the shielding from 11 to 28 dB. The combined use of the graphite flake and a low proportion of stainless steel fiber (11 mum diameter, 2 mm long, 180 in aspect ratio) is yet more effective; it increases the shielding from 11 to 34 dB. Alumina particle (5 mum size, 15 vol.%) is effective for increasing the impedance of a coating made from the graphite colloid by 290%, though the shielding effectiveness is reduced from 18 to 11 dB at 1.0 GHz. The high impedance is attractive for MRIcompatible pacemaker leads. The interface between filler and matrix also affects the shielding. Silane treatment of the surface of graphite flake (5 mum) used in the graphite colloid decreases the viscosity (e.g., from 1750 to 1460 CP), but it also decreases the shielding effectiveness (e.g., from 20 to 16 dB at 1 GHz). Ozone treatment gives a similar effect. The decrease of the shielding effectiveness is attributed to the increase in resistivity due to the surface treatment. Measured and calculated values of the reflection loss are comparable, with the measured value lower than the corresponding calculated value, when the resistivity is sufficiently low (e.g., resistivity below 10 O.cm in case of PES-matrix composites) and a strongly magnetic filler such as mumetal is absent. The agreement is better when the skin depth approaches the specimen thickness. The agreement is worse for the latex paint-based composites than the PES-matrix composites, probably due to superior electrical connectivity in the latter.

  15. Fuzzy geometry via the spinor bundle, with applications to holographic space-time and matrix theory

    SciTech Connect

    Banks, Tom; Kehayias, John

    2011-10-15

    We present a new framework for defining fuzzy approximations to geometry in terms of a cutoff on the spectrum of the Dirac operator, and a generalization of it that we call the Dirac-flux operator. This framework does not require a symplectic form on the manifold, and is completely rotation invariant on an arbitrary n-sphere. The framework is motivated by the formalism of holographic space-time, whose fundamental variables are sections of the spinor bundle over a compact Euclidean manifold. The strong holographic principle requires the space of these sections to be finite dimensional. We discuss applications of fuzzy spinor geometry to holographic space-time and to matrix theory.

  16. Assessment of Geophysical Techniques Application during CTBTO On-Site inspections using the Evaluation Matrix concept

    NASA Astrophysics Data System (ADS)

    Gaya-Piqué, Luis R.; Stefanova, Stefka; Hawkins, Ward L.; Sweeney, Jerry J.; Melamud, Mordechai; Prah, Matjaz

    2010-05-01

    Application of geophysical methods to collect evidence of possible conduct of an underground nuclear explosion is an essential element of the on-site inspection (OSI) verification component of the Comprehensive Nuclear Test Ban Treaty (CTBT). As with any geophysical survey, effective use of resources during an OSI is essential. The evaluation matrix approach can be applied to both assess in a comprehensive manner the suitability of OSI techniques with respect to an ensemble of different conditions based on a specific OSI scenario (Technology Evaluation Matrix, TEM) and to estimate the technical readiness status of a specific technology (Technical Readiness Status Matrix, TRSM). Applied to the work of the OSI Division of the Provisional Secretariat of the Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO), the TRSM will support policy planning and operational projects that need to be thoroughly analyzed, providing a flexible mechanism that allows for fast and rationale decision making for resource allocation; on the other hand, the TEM will improve the functionality of an OSI by providing the inspection team a reference tool for a particular OSI scenario (e.g., yield and depth of the triggering event, geology of the inspection area, possible emplacement conditions). This assessment is important because of the limited time and number of team members provided to the inspection team for the conduct of an inspection. In this work we discuss the application of the TEM concept to the set of geophysical techniques that can be applied during an OSI for two basic underground nuclear explosion (UNE) scenarios: explosions conducted in a vertical emplacement (i.e. borehole) and explosions conducted in a horizontal emplacement (i.e. tunnel). After introducing the natural and manmade signatures usually associated with an UNE and the geophysical techniques allowed by the Treaty (with imposed constraints), examples of evaluation matrices are given for each scenario. The first matrix presented evaluates the technologies according to their relevance during an OSI using the different UNE observables as defined in the scenario. A second matrix estimates the limitations and confidence of each technique for the detection of UNE signatures. The third TEM considers the operational aspects of each technique, such as resources needed (in terms of personnel and time), simplicity of deployment, logistical factors, ruggedness, etc. Finally, the impact of this TEM concept on the search logic of an on-site inspection is discussed.

  17. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    NASA Astrophysics Data System (ADS)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  18. Hanford Site air operating permit application

    SciTech Connect

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  19. Haar wavelet operational matrix method for solving constrained nonlinear quadratic optimal control problem

    NASA Astrophysics Data System (ADS)

    Swaidan, Waleeda; Hussin, Amran

    2015-10-01

    Most direct methods solve finite time horizon optimal control problems with nonlinear programming solver. In this paper, we propose a numerical method for solving nonlinear optimal control problem with state and control inequality constraints. This method used quasilinearization technique and Haar wavelet operational matrix to convert the nonlinear optimal control problem into a quadratic programming problem. The linear inequality constraints for trajectories variables are converted to quadratic programming constraint by using Haar wavelet collocation method. The proposed method has been applied to solve Optimal Control of Multi-Item Inventory Model. The accuracy of the states, controls and cost can be improved by increasing the Haar wavelet resolution.

  20. Three-dimensional radiative transfer using a Fourier-transform matrix-operator method

    NASA Technical Reports Server (NTRS)

    Martonchik, J. V.; Diner, D. J.

    1985-01-01

    The three-dimensional equation of transfer for a scattering medium with planar geometry is solved by using a spatial Fourier transform and extending matrix-operator techniques developed previously for the one-dimensional equation. Doubling and adding algorithms were derived by means of an interaction principle for computing the Fourier-transformed radiation field. The resulting expressions fully describe the radiative transfer process in a scattering medium, inhomogeneous in the x-, y- and z-directions, illuminated from above by an arbitrarily general intensity field and bounded from below by a surface with completely general reflection properties.

  1. Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems

    NASA Astrophysics Data System (ADS)

    Cui, Jian; Cirac, J. Ignacio; Bauls, Mari Carmen

    2015-06-01

    We present a new variational method based on the matrix product operator (MPO) ansatz, for finding the steady state of dissipative quantum chains governed by master equations of the Lindblad form. Instead of requiring an accurate representation of the system evolution until the stationary state is attained, the algorithm directly targets the final state, thus, allowing for a faster convergence when the steady state is a MPO with small bond dimension. Our numerical simulations for several dissipative spin models over a wide range of parameters illustrate the performance of the method and show that, indeed, the stationary state is often well described by a MPO of very moderate dimensions.

  2. Semiclassical propagator to evaluate off-diagonal matrix elements of the evolution operator between quantum states.

    PubMed

    Vergini, Eduardo G

    2014-02-01

    We present a powerful semiclassical expression to evaluate off-diagonal matrix elements of the evolution operator between quantum states constructed in the neighborhood of unstable short periodic orbits, which is valid up to the Heisenberg time. The expression is much easier to evaluate than the Van Vleck propagator and consists of a sum over the set of heteroclinic orbits, where each term of the series is computed by canonical invariants. Here we introduce relevant canonical invariants of heteroclinic orbits and with them at hand, the semiclassical expression is derived. Finally, our formula is successfully verified in the hyperbola billiard. PMID:25353408

  3. Renormalization of transition matrix elements of particle number operators due to strong electron correlation

    NASA Astrophysics Data System (ADS)

    Fukushima, Noboru

    2011-02-01

    Renormalization of non-magnetic and magnetic impurities due to electron double-occupancy prohibition is derived analytically by an improved Gutzwiller approximation. Non-magnetic impurities are effectively weakened by the same renormalization factor as that for the hopping amplitude, whereas magnetic impurities are strengthened by the square root of the spin-exchange renormalization factor, in contrast to results by the conventional Gutzwiller approximation. We demonstrate it by showing that transition matrix elements of number operators between assumed excited states and between an assumed ground state and excited states are renormalized differently than diagonal matrix elements. Deviation from such simple renormalization with a factor is also discussed. In addition, as a related calculation, we correct an error in treatment of the renormalization of charge interaction in the literature. Namely, terms from the second order of the transition matrix elements are strongly suppressed. Since all these results do not depend on the signs of impurity potential or the charge interaction parameter, they are valid both in attractive and repulsive cases.

  4. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays. PMID:26035697

  5. GiMMiK-Generating bespoke matrix multiplication kernels for accelerators: Application to high-order Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Wozniak, Bartosz D.; Witherden, Freddie D.; Russell, Francis P.; Vincent, Peter E.; Kelly, Paul H. J.

    2016-05-01

    Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas of science and engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS on GPUs) are the most popular choices for an implementation of the General Matrix Multiply (GEMM) in software. In this paper we present GiMMiK-a generator of bespoke matrix multiplication kernels for the CUDA and OpenCL platforms. GiMMiK exploits a prior knowledge of the operator matrix to generate highly performant code. The performance of GiMMiK's kernels is particularly apparent in a block-by-panel type of matrix multiplication, where the block matrix is typically small (e.g. dimensions of 96 × 64). Such operations are characteristic to our motivating application in PyFR-an implementation of Flux Reconstruction schemes for high-order fluid flow simulations on mixed unstructured meshes. GiMMiK fully unrolls the matrix-vector product and embeds matrix entries directly in the code to benefit from the use of the constant cache and compiler optimisations. Further, it reduces the number of floating-point operations by removing multiplications by zeros. Together with the ability of our kernels to avoid the poorly optimised cleanup code, executed by library GEMM, we are able to outperform cuBLAS on two NVIDIA GPUs: GTX 780 Ti and Tesla K40c. We observe speedups of our kernels over cuBLAS GEMM of up to 9.98 and 63.30 times for a 294×1029 99% sparse PyFR matrix in double precision on the Tesla K40c and GTX 780 Ti correspondingly. In single precision, observed speedups reach 12.20 and 13.07 times for a 4×8 50% sparse PyFR matrix on the two aforementioned cards. Using GiMMiK as the matrix multiplication kernel provider allows us to achieve a speedup of up to 1.70 (2.19) for a simulation of an unsteady flow over a cylinder executed with PyFR in double (single) precision on the Tesla K40c. All results were generated with GiMMiK version 1.0.

  6. Development of Ceramic Matrix Composites For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Heimann, Paula

    2004-01-01

    The microstructure and mechanical properties of carbon fiber reinforced silicon carbide (C/SiC) composites that incorporated molecular-level oxidation inhibitors designed to increase the material s high temperature durability were characterized. The viability of a fiber-level inhibitor incorporated as part of a layered interface system as well as a molecularly-integrated matrix-level oxidation inhibitor that is co-deposited with the SiC matrix during Chemical Vapor Infiltration (CVI) was determined. It was expected that the inhibitor would act as a glass former that will getter the oxygen and form a crack sealant to reduce further ingress of oxygen into the composite. Three composites were examined. Composite A was a baseline C(sub f)/SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, and a CVI-derived SiC matrix. Composite B was a C(sub f)/SiC(sub m) composite incorporating a approx 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a CVI-derived SiC matrix. Composite C was a C(sub f) /SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a BxC-SiC oxidation-inhibited matrix produced by CVI co-deposition. All composites were reinforced with 10 plies of T-300 balanced plain weave carbon fabric with 3K tows at 12.5 ends per inch.

  7. Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator

    SciTech Connect

    Menéndez, Javier

    2013-12-30

    We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0νββ) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or Šimkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0νββ decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0νββ decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

  8. Graphite Fiber/Copper Matrix Composites for Space Power Heat Pipe Fin Applications

    NASA Technical Reports Server (NTRS)

    McDanels, David L.; Baker, Karl W.; Ellis, David L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.

  9. Evaluating wilderness recreational opportunities: application of an impact matrix

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Parsons, David J.

    1992-01-01

    An inventory of the severity and spatial distribution of wilderness campsite impacts in Sequoia and Kings Canyon National Parks identified a total of 273 distinct nodes of campsites or “management areas.” A campsite impact matrix was developed to evaluate management areas based on total impacts (correlated to the total area of campsite development) and the density, or concentration, of impacts relative to each area's potentially campable area. The matrix is used to quantify potential recreational opportunities for wilderness visitors in a spectrum from areas offering low impact-dispersed camping to those areas offering high impact-concentrated camping. Wilderness managers can use this type of information to evaluate use distribution patterns, identify areas to increase or decrease use, and to identify areas needing site-specific regulations (e.g., one-night camping limits) to preserve wilderness resources and guarantee outstanding opportunities for solitude.

  10. Introduction to metal matrix composites in aerospace applications

    SciTech Connect

    Palazotto, A.N.; Ruh, R.; Watt, G.

    1989-01-01

    Metal-matrix composites (MMCs) commonly employ Ni-superalloy, Ti-, Al-, Mg-alloy, and steel matrices, in conjunction with reinforcing refractory metal wires or metal-oxide, SiC, boron, and carbon or graphite fibers. Techniques for the consolidation of these constituents into composites range from slip casting and P/M to diffusion bonding, plasma-spray bonding, electroforming, liquid-metal infiltration, and hot-roll bonding. Attention is given to illustrative cases of secondary fabrication methods for finished MMC structural part-shaping, joining, and machining, in the cases of boron fiber-reinforced Al and Ti alloys, and of graphite-reinforced composites employing various matrix metals. 23 references.

  11. Biomimetically enhanced demineralized bone matrix for bone regenerative applications

    PubMed Central

    Ravindran, Sriram; Huang, Chun-Chieh; Gajendrareddy, Praveen; Narayanan, Raghuvaran

    2015-01-01

    Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice. PMID:26557093

  12. Curcumin: a multipurpose matrix for MALDI mass spectrometry imaging applications.

    PubMed

    Francese, S; Bradshaw, R; Flinders, B; Mitchell, C; Bleay, S; Cicero, L; Clench, M R

    2013-05-21

    Curcumin, 1,7-bis-(4-hydroxy-3-methoxy-phenyl)-hepta-1,6-diene-3,5-dione, is a polyphenolic compound naturally present in the Curcuma longa plant, also known as tumeric. Used primarily as a coloring agent and additive in food, curcumin has also long been used for its therapeutic properties in a number of medical scenarios. Here, we report on an entirely novel use of curcumin; its extended structure of conjugated double bonds suggested the potential of this compound to be a good matrix assisted laser desorption ionization mass spectrometry (MALDI MS) matrix candidate. In the quest for novel and more efficient MALDI MS matrices, curcumin is revealed to be a versatile and multipurpose matrix. It has been applied successfully for the analysis of pharmaceuticals and drugs, for imaging lipids in skin and lung tissues, and for the analysis of a number of compound classes in fingermarks. In each case, the use of curcumin is shown to promote analyte ionization very efficiently as well as provide excellent mass spectral image quality. PMID:23621442

  13. PREPARATION AND APPLICATION OF HIGH PERFORMANCE SILICONE RUBBER MIXED MATRIX MEMBRANES FOR ETHANOL-WATER PERVAPORATION

    EPA Science Inventory

    Polydimethyl siloxane (PDMS) and zeolite incorporated mixed matrix materials are gaining importance in a variety of applications including membrane separation. PDMS based membranes are used in pervaporation (PV), a membrane technology, for the selective removal of organics such ...

  14. Parameter identification of fractional order linear system based on Haar wavelet operational matrix.

    PubMed

    Li, Yuanlu; Meng, Xiao; Zheng, Bochao; Ding, Yaqing

    2015-11-01

    Fractional order systems can be more adequate for the description of dynamical systems than integer order models, however, how to obtain fractional order models are still actively exploring. In this paper, an identification method for fractional order linear system was proposed. This is a method based on input-output data in time domain. The input and output signals are represented by Haar wavelet, and then fractional order systems described by fractional order differential equations are transformed into fractional order integral equations. Taking use of the Haar wavelet operational matrix of the fractional order integration, the fractional order linear system can easily be converted into a system of algebraic equation. Finally, the parameters of the fractional order system are determined by minimizing the errors between the output of the real system and that of the identified system. Numerical simulations, involving integral and fractional order systems, confirm the efficiency of the above methodology. PMID:26345708

  15. Matrix operator theory of radiative transfer. II - Scattering from maritime haze.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1973-01-01

    Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single-scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular, the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.

  16. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    SciTech Connect

    Michael A. Pope; Hans D. Gougar; John M. Ryskamp

    2013-09-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a particular batch scheme). The volume of test space in IPTs is larger in MATRIX than in ATR with comparable magnitude of neutron flux. In addition to the IPTs, the Cylindrical MATRIX concept features test spaces at the centers of fuel assemblies where very high fast flux can be achieved. This magnitude of fast flux is similar to that achieved in the ATR A-positions, however, the available volume having these conditions is greater in the MATRIX design than in the ATR. From the analyses performed in this work, it appears that the Cylindrical MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this statement must be qualified by acknowledging that this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design matures. Also, some of the requirements were not strictly met, but are believed to be achievable once features to be added later are designed.

  17. Ceramic matrix composites for rocket engine turbine applications

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.

    1992-01-01

    A program to establish the potential for introducing fiber reinforced ceramic matrix composites (FRCMC) in future rocket engine turbopumps was instituted in 1987. A brief summary of the overall program (both contract and in-house research) is presented. Tests at NASA Lewis include thermal upshocks in a hydrogen/oxygen test rig capable of generating heating rates up to 2500 C/sec. Post thermal upshock exposure evaluation includes the measurement of residual strength and failure analysis. Test results for monolithic ceramics and several FRCMC are presented. Hydrogen compatibility was assessed by isothermal exposure of monolithic ceramics in high temperature gaseous hydrogen plus water vapor.

  18. Organic matrix composite protective coatings for space applications

    SciTech Connect

    Dursch, H.W.; George, P.

    1995-02-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF`s leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  19. Organic matrix composite protective coatings for space applications

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; George, Pete

    1995-01-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF's leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  20. New processable modified polyimide resins for adhesive and matrix applications

    NASA Technical Reports Server (NTRS)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  1. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  2. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  3. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  4. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  5. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  6. The synthesis, compressive properties, and applications of metal matrix syntactic foams

    NASA Astrophysics Data System (ADS)

    Rohatgi, Pradeep K.; Gupta, Nikhil; Schultz, Benjamin F.; Luong, Dung D.

    2011-02-01

    Metal matrix syntactic foams are composites that incorporate hollow particles in a matrix, where enclosing porosity inside the thin shell of the particle leads to low density without large decreases in mechanical properties. Studies on Al, Mg, Pb, and Zn alloy matrix syntactic foams are available in the published literature. A large stress plateau region appears in the compressive stress-strain graphs of metal matrix syntactic foams. The height and length of stress plateau can be tailored by means of particle wall thickness, volume fraction, and size, and the total compressive energy absorption can be controlled. Metal matrix syntactic foams seem promising in various energy absorbing applications including automobile parts since their energy absorption capability per unit weight is better than other foams and lightweight materials.

  7. Application of ceramic fibers to the manufacture of reinforced metal-matrix composites

    SciTech Connect

    Wielage, B.; Rahm, J.; Steinhaeuser, S.

    1995-12-31

    The application of the thermal spraying process is a new way to produce carbon fiber or Tyranno fiber reinforced aluminum matrix composites. Spreaded fiber rovings are enveloped in the matrix material with wire flame spraying. The advantage of the thermal spraying process is based in the low times for contacting between the fibers and the liquid matrix material. Chemical reactions on the interface fiber/matrix, which are caused by the decreasing of the fiber tensile strength, can be excluded. The thermal sprayed prepregs can be compressed to MMC by hot pressing process. This longfiber reinforced composites are used to increase f.e. casted components of motors. The aim of this research is the estimation of possibilities to applicate the wire flame spray process for prepreg manufacturing.

  8. Reduced density matrix hybrid approach: Application to electronic energy transfer

    SciTech Connect

    Berkelbach, Timothy C.; Reichman, David R.; Markland, Thomas E.

    2012-02-28

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  9. Mining the extracellular matrix for tissue engineering applications.

    PubMed

    Pradhan, Swati; Farach-Carson, Mary C

    2010-11-01

    Tissue engineering is a rapidly evolving interdisciplinary field that aims to regenerate new tissue to replace damaged tissues or organs. The extracellular matrix (ECM) of animal tissues is a complex mixture of macromolecules that play an essential instructional role in the development of tissues and organs. Therefore, tissue engineering approaches rely on the need to present the correct cues to cells, to guide them to maintain tissue-specific functions. Recent research efforts have allowed us to mine various sequences and motifs, which play key roles in these guidance functions, from the ECM. Small conserved peptide sequences mined from ECM molecules can mimic some of the biological functions of their large parent molecules. In addition, these peptide sequences can be linked to various biomaterial scaffolds that can provide the cells with mechanical support to ensure appropriate cell growth and aid the formation of the correct tissue structure. The tissue engineering field will continue to benefit from the advent of these mined ECM sequences which have two major advantages over recombinant ECM molecules: material consistency and scalability. PMID:21082894

  10. Improved MALDI-TOF Microbial Mass Spectrometry Imaging by Application of a Dispersed Solid Matrix

    NASA Astrophysics Data System (ADS)

    Vergeiner, Stefan; Schafferer, Lukas; Haas, Hubertus; Müller, Thomas

    2014-08-01

    The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.

  11. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-05-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  12. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.

  13. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  14. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  15. Space Operations Learning Center Facebook Application

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the player to go out of his/her own establishment to explore what is in the neighborhood. Spaceville will take advantage of Facebook s successful architecture to inspire a new audience of scientists and engineers for the future.

  16. Ceramic matrix composite applications in advanced liquid fuel rocket engine turbomachinery

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.

    1992-01-01

    Fiber-reinforced ceramic matrix composites have been identified with properties suitable for near term applications. Conceptual design studies indicate the feasibility of applying C/SiC, and subelements were manufactured that verify selected fabrication features and key material properties. Tests and inspection of these subelements confirmed their capabilities.

  17. Imaging MALDI mass spectrometry of sphingolipids using an oscillating capillary nebulizer matrix application system.

    PubMed

    Chen, Yanfeng; Liu, Ying; Allegood, Jeremy; Wang, Elaine; Cachón-González, Begoña; Cox, Timothy M; Merrill, Alfred H; Sullards, M Cameron

    2010-01-01

    Matrix deposition is a critical step in tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). It greatly affects the quality of MALDI imaging, especially for the analytes (such as lipids) that may easily dissolve in the solvent used for the matrix application. This chapter describes the use of an oscillating capillary nebulizer (OCN) to spray small droplets of matrix aerosol onto the sample surface for improved matrix homogeneity, reduced crystal size, and controlled solvent effects. This protocol allows visualization of many different lipid species and, of particular interest, sphingolipids in tissue slices of Tay-Sachs/Sandhoff disease by imaging MALDI-MS. The structures of these lipids were identified by analysis of tissue extracts using electrospray ionization in conjunction with tandem mass spectrometry (MS/MS and MS(3)). These results illustrate the usefulness of tissue imaging MALDI-MS with matrix deposition by OCN for the molecular analysis in normal physiology and pathology. In addition, the observation of numerous lipid subclasses with distinct localizations in the brain slices demonstrates that imaging MALDI-MS could be effectively used for "lipidomic" studies. PMID:20680588

  18. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    PubMed Central

    Deljavan, Reza; Sadeghi-Bazargani, Homayoun; Fouladi, Nasrin; Arshi, Shahnam; Mohammadi, Reza

    2012-01-01

    Background Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix) through qualitative research methods to better understand people’s perceptions about burn injuries. Methods This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase. Results The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education), pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators). This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans. Conclusion Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries that may possibly be useful for prevention or future quantitative research. PMID:22866013

  19. PCOS - An operating system for modular applications

    NASA Technical Reports Server (NTRS)

    Tharp, V. P.

    1986-01-01

    This paper is an introduction to the PCOS operating system for the MC68000 family processors. Topics covered are: development history; development support; rational for development of PCOS and salient characteristics; architecture; and a brief comparison of PCOS to UNIX.

  20. Dexterous Operations on ISS and Future Applications

    NASA Technical Reports Server (NTRS)

    Keenan, P. Andrew; Read, David A.

    2011-01-01

    The Mobile Servicing System (MSS) is a complex robotics system used extensively in the assembly, inspection and maintenance of the International Space Station (ISS). Its external components are comprised of the Space Station Remote Manipulator System (SSRMS), the Mobile Base System (MBS), and the Special Purpose Dexterous Manipulator (SPDM or "Dextre"). Dexterous robotic maintenance operations on the ISS are now enabled with the launch and deployment of "Dextre" in March 2008 and the recently completed commissioning to support nominal operations. These operations include allowing for maintenance of the MSS capability to be executed uniquely via robotic means. Examples are detailed inspection and the removal and replacement of On-orbit Replaceable Units (ORUs) located outside the pressurized volume of the ISS, alleviating astronauts from performing numerous risky and time-consuming extra-vehicular activities (EVAs). In light of the proposed extension of the ISS to 2020 and beyond, "Dextre" can also be seen as a resource for the support and conduct of external ISS experiments. "Dextre" can be utilized to move experiments around ISS, as test bed for more elaborate experiments outside the original design intent, and as a unique platform for external experiments. This paper summarizes the status of "Dextre", its planned use, and future potential for dexterous operations on the ISS. Lessons learned from the planning and execution of SPDM commissioning are first introduced, and significant differences between "Dextre" and SSRMS operations are discussed. The use of ground control as the predominant method for operating "Dextre" is highlighted, along with the benefits and challenges that this poses. Finally, the latest plans for dexterous operations on ISS are summarized including visiting vehicle unloading, nominal maintenance, and operations of a more experimental flavor.

  1. Distortion invariant correlation filters application for quality inspection of master-matrix for security holograms

    NASA Astrophysics Data System (ADS)

    Zlokazov, Evgeny; Shaulskiy, Dmitriy; Starikov, Rostislav; Odinokov, Sergey; Zherdev, Alexander; Koluchkin, Vasiliy; Shvetsov, Ivan; Smirnov, Andrey

    2013-03-01

    Security holograms (SH) are perspective for document and product authenticity protection due to difficulties of such a protection mark falsification. Mass production of SH uses widespread technology of hot foil or lavsan paper stamping. The quality of holograms significantly depends on perfection of nickel master-matrix that is used in stamping equipment. We represent the method of automatic quality inspection of nickel master-matrix based on digital processing of its surface relief microphotographs. Proposed processing algorithm is based on combination of image spatial frequency analysis and image matching using distortion invariant correlation filters. The results of our method application for real SH master-matrices inspection are shown in this paper.

  2. ABCD matrix of the human lens gradient-index profile: applicability of the calculation methods.

    PubMed

    Díaz, José Antonio

    2008-01-10

    The applicability of different approximate methods proposed to determine the paraxial properties of the gradient-index (GRIN) distribution resembling that of the human lens, by means of the system ABCD matrix, is tested. Thus, the parabolic-ray-path approximation has been extended to provide the ABCD matrix of a slab lens comprised of a rotationally GRIN medium. The results show that this method has good numerical stability, and it is also the easiest one in determining the Gaussian constants of the human lens GRIN profile. PMID:18188201

  3. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  4. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  5. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    NASA Astrophysics Data System (ADS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-02-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4C and SiC) layers forming B 2O 3-based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported.

  6. A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.

    1990-01-01

    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.

  7. Integrated Launch Operations Applications Remote Display Developer

    NASA Technical Reports Server (NTRS)

    Flemming, Cedric M., II

    2014-01-01

    This internship provides the opportunity to support the creation and use of Firing Room Displays and Firing Room Applications that use an abstraction layer called the Application Control Language (ACL). Required training included video watching, reading assignments, face-to-face instruction and job shadowing other Firing Room software developers as they completed their daily duties. During the training period various computer and access rights needed for creating the applications were obtained. The specific ground subsystems supported are the Cryogenics Subsystems, Liquid Hydrogen (LH2) and Liquid Oxygen (LO2). The cryogenics team is given the task of finding the best way to handle these very volatile liquids that are used to fuel the Space Launch System (SLS) and the Orion flight vehicles safely.

  8. The 'SAR Matrix' method and its extensions for applications in medicinal chemistry and chemogenomics.

    PubMed

    Gupta-Ostermann, Disha; Bajorath, Jürgen

    2014-01-01

    We describe the 'Structure-Activity Relationship (SAR) Matrix' (SARM) methodology that is based upon a special two-step application of the matched molecular pair (MMP) formalism. The SARM method has originally been designed for the extraction, organization, and visualization of compound series and associated SAR information from compound data sets. It has been further developed and adapted for other applications including compound design, activity prediction, library extension, and the navigation of multi-target activity spaces. The SARM approach and its extensions are presented here in context to introduce different types of applications and provide an example for the evolution of a computational methodology in pharmaceutical research. PMID:25383183

  9. 76 FR 19818 - Entergy Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility Operating License The U.S. Nuclear Regulatory Commission (NRC, the Commission) has granted the request of Entergy Operations, Inc. (the licensee), to...

  10. Azo-derivatives thin films grown by matrix-assisted pulsed laser evaporation for non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Matei, A.; Ionita, I.; Ion, V.; Marascu, V.; Dinescu, M.; Vasiliu, C.; Emandi, A.

    2014-05-01

    Azo-dye compounds, in bulk or as thin films, are extensively studied due to their particular optical properties. These properties include non-linear interaction, e.g. two-photon absorption, optical limiting and all-optical poling, with potential applications in optoelectronics and sensors development. Herein, we report on the deposition of pyrazolone derivatives, namely 1-phenyl-3-methyl-4-(1?-azo-2?-sodium carboxylate)-pyrazole-5-one thin films, for applications in second harmonic generation. Matrix-assisted pulsed laser evaporation was employed for layers growth, using a Nd:YAG device operating at 266 nm (4?). The structure and surface morphology of the deposited films were examined by Fourier transform infrared spectroscopy, atomic force microscopy, and scanning electron microscopy. Spectroscopic-ellipsometry was employed to investigate thin film optical properties. Significant second harmonic generation capabilities of the compound were pointed out by using a femtosecond Ti:sapphire laser.

  11. Transmission matrix of a scattering medium and its applications in biophotonics.

    PubMed

    Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik

    2015-05-18

    A conventional lens has well-defined transfer function with which we can form an image of a target object. On the contrary, scattering media such as biological tissues, multimode optical fibers and layers of disordered nanoparticles have highly complex transfer function, which makes them impractical for the general imaging purpose. In recent studies, we presented a method of experimentally recording the transmission matrix of such media, which is a measure of the transfer function. In this review paper, we introduce two major applications of the transmission matrix: enhancing light energy delivery and imaging through scattering media. For the former, we identified the eigenchannels of the transmission matrix with large eigenvalues and then coupled light to those channels in order to enhance light energy delivery through the media. For the latter, we solved matrix inversion problem to reconstruct an object image from the distorted image by the scattering media. We showed the enlargement of the numerical aperture of imaging systems with the use of scattering media and demonstrated endoscopic imaging through a single multimode optical fiber working in both reflectance and fluorescence modes. Our approach will pave the way of using scattering media as unique optical elements for various biophotonics applications. PMID:26074520

  12. Application of adjoint operators to neural learning

    NASA Technical Reports Server (NTRS)

    Barhen, J.; Toomarian, N.; Gulati, S.

    1990-01-01

    A technique for the efficient analytical computation of such parameters of the neural architecture as synaptic weights and neural gain is presented as a single solution of a set of adjoint equations. The learning model discussed concentrates on the adiabatic approximation only. A problem of interest is represented by a system of N coupled equations, and then adjoint operators are introduced. A neural network is formalized as an adaptive dynamical system whose temporal evolution is governed by a set of coupled nonlinear differential equations. An approach based on the minimization of a constrained neuromorphic energylike function is applied, and the complete learning dynamics are obtained as a result of the calculations.

  13. The S-ordered Operator Expansions of One-mode and Two-mode Fresnel Operators and their Applications

    NASA Astrophysics Data System (ADS)

    Du, Jian-ming; Ren, Gang; Yu, Hai-jun; Zhang, Wen-hai

    2016-03-01

    By using the technique of integration within the s-ordered product of operators (IWSOP), we first deduce the s-ordered expansion of the one-mode and two-mode Fresnel operators. Employing the s-ordered operator expansion formula, the matrix elements of one-mode and two-mode Fresnel operator in the number state representation are also obtained, respectively.

  14. Recursive mass matrix factorization and inversion: An operator approach to open- and closed-chain multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.

    1988-01-01

    This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.

  15. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  16. Object-oriented electrodynamic S-matrix code with modern applications

    NASA Astrophysics Data System (ADS)

    Yuffa, Alex J.; Scales, John A.

    2012-05-01

    The S-matrix algorithm for the propagation of an electromagnetic wave through planar stratified media has been implemented in a modern object-oriented programing language. This implementation is suitable for the study of such applications as the Anderson localization of light and super-resolution (perfect lensing). For our open-source code to be as useful as possible to the scientific community, we paid particular attention to the pathological cases that arise in the limit of vanishing absorption.

  17. A 4x4 planar Butler matrix for multiport amplifier applications

    NASA Astrophysics Data System (ADS)

    Accatino, L.; Angelucci, A.; Piovano, B.

    1991-10-01

    A planar waveguide structure implementing a 4 by 4 Butler matrix for high power multiport amplifier applications was designed and developed based on electromagnetic models of components. Two prototypes were built and tested in back to back configuration with no postmanufacturing adjustments. Measured results agree very closely with computer analyses and show an isolation in excess of 28 dB over a 16 percent bandwidth at Ku band.

  18. Representations for the Generalized Drazin Inverse of the Sum in a Banach Algebra and Its Application for Some Operator Matrices

    PubMed Central

    Liu, Xiaoji; Qin, Xiaolan

    2015-01-01

    We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix. PMID:25729767

  19. Representations for the generalized Drazin inverse of the sum in a Banach algebra and its application for some operator matrices.

    PubMed

    Liu, Xiaoji; Qin, Xiaolan

    2015-01-01

    We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix. PMID:25729767

  20. The application of CRM to military operations

    NASA Technical Reports Server (NTRS)

    Cavanagh, Dale E.; Williams, Kenneth R.

    1987-01-01

    The detailed content of the CRM training component of the C-5 Aircrew Training System (ATS) was left to the discretion of the contractor. As a part of determining what the content should be, United Airlines Services Corporation has made an effort to understand how the needs of MAC crews compare with those of civilian airline crews. There are distinct similarities between the crew roles in the cockpits of civilian airliners and military air transports. Many of the attitudes and behaviors exhibited by civil and military crew members are comparable, hence much of the training in the field referred to as Cockpit Resource Management (CRM) is equally appropriate to civil or military aircrews. At the same time, there are significant differences which require assessment to determine if modifications to what might be termed generic CRM are necessary. The investigation enabled the definition and specification of CRM training which is believed to address the needs of the C-5 operational community. The study has concentrated largely on military airlift, but the training objectives and course content of the CRM training are readily adaptable to a wider range of military cockpits than are found in strategic airlift. For instance, CRM training focusing on communication, leadership, situational awareness, and crew coordination is just as appropriate, with some modification, to the pilots manning a flight to Tactical Airlift Command A-7's as it is to the pilots, flight engineers, and loadmasters crewing a C-5.

  1. Applications of graphic correlation in operational activities

    SciTech Connect

    Denne, R.A. )

    1996-01-01

    When log and seismic correlations are ambiguous or too coarse, graphic correlation is effective in increasing the accuracy of correlations during operational activities. The initial cross-plot of horizons (biostratigraphic and log) from the drill well and a nearby well can be used to estimate depths of horizons not initially recognized or misidentified. The final plot can be used to locate and determine the amount of missing section caused by faults or unconformities. In one example, a plot of 27 biostratigraphic and log picks indicates that two unconformities and a fault in the drill well removed sands found in the control well. If a horizon's depth needs to be accurately predicted (abnormal pressure, casing or coring point), graphic correlation is useful. An example is an attempt to core an interval during its initial penetration, which a control well indicates is overlain by the Calcidiscus macintyrei extinction. At a drilling stoppage the plot is extrapolated, indicating that the C. macintyrei extinction should be found 800 feet below TD. Drilling can then continue at aq normal rate before decreasing near the target's top, saving drill time. The plot can also be used to illustrate whether an objective has been penetrated. In an example, initial log correlations indicate that a well has reached its target, just above the Discoaster quinqueramus extinction. However, no D. quinqueramus specimens are found. Graphic correlation indicates a linear relative sedimentation rate between the drill well and control well, and projects the D. quinqueramus extinction below the TD, persuading management to continue drilling.

  2. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  3. Applications of graphic correlation in operational activities

    SciTech Connect

    Denne, R.A.

    1996-12-31

    When log and seismic correlations are ambiguous or too coarse, graphic correlation is effective in increasing the accuracy of correlations during operational activities. The initial cross-plot of horizons (biostratigraphic and log) from the drill well and a nearby well can be used to estimate depths of horizons not initially recognized or misidentified. The final plot can be used to locate and determine the amount of missing section caused by faults or unconformities. In one example, a plot of 27 biostratigraphic and log picks indicates that two unconformities and a fault in the drill well removed sands found in the control well. If a horizon`s depth needs to be accurately predicted (abnormal pressure, casing or coring point), graphic correlation is useful. An example is an attempt to core an interval during its initial penetration, which a control well indicates is overlain by the Calcidiscus macintyrei extinction. At a drilling stoppage the plot is extrapolated, indicating that the C. macintyrei extinction should be found 800 feet below TD. Drilling can then continue at aq normal rate before decreasing near the target`s top, saving drill time. The plot can also be used to illustrate whether an objective has been penetrated. In an example, initial log correlations indicate that a well has reached its target, just above the Discoaster quinqueramus extinction. However, no D. quinqueramus specimens are found. Graphic correlation indicates a linear relative sedimentation rate between the drill well and control well, and projects the D. quinqueramus extinction below the TD, persuading management to continue drilling.

  4. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; Jordan, Kevin

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  5. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external disturbances such as wind gusts and turbulence. This thesis develops the ARC-LMI attitude and position controllers for an X-configuration quadrotor helicopter. The inner-loop of the autopilot controls the attitude and altitude of the quadrotor, and the outer-loop controls its position in the earth-fixed coordinate frame. Furthermore, by intelligently generating a smooth trajectory from the given reference coordinates (waypoints), the transient performance is improved. The simulation results indicate that the ARC-LMI controller design is useful for a variety of quadrotor applications, including precise trajectory tracking, autonomous waypoint navigation in the presence of disturbances, and package delivery without loss of performance.

  6. Hypermedia and intelligent tutoring applications in a mission operations environment

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Baker, Clifford

    1990-01-01

    Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).

  7. From Weyl Expansion of Operator to Ordering of Operator and its New Applications

    NASA Astrophysics Data System (ADS)

    Jia, Fang; Zhang, Hao-Liang; Hu, Li-Yun; Fan, Hong-Yi

    2014-09-01

    By using the IWOP technique, Weyl expansion of operator is derived. Based on this, three new ordering formulas of operators are presented, which have been applied to calculate Q-P and P-Q ordering of some operators. As other applications of Weyl expansion, the formula of photon counting is also easily obtained, which are related to Wigner and Q-function. In particular, noticing the Weyl ordering of displacement operator is itself, Weyl ordering invariance under similarity transformations is conveniently proved, instead of using of Wigner operator.

  8. From Weyl Expansion of Operator to Ordering of Operator and its New Applications

    NASA Astrophysics Data System (ADS)

    Jia, Fang; Zhang, Hao-Liang; Hu, Li-Yun; Fan, Hong-Yi

    2015-04-01

    By using the IWOP technique, Weyl expansion of operator is derived. Based on this, three new ordering formulas of operators are presented, which have been applied to calculate Q-P and P-Q ordering of some operators. As other applications of Weyl expansion, the formula of photon counting is also easily obtained, which are related to Wigner and Q-function. In particular, noticing the Weyl ordering of displacement operator is itself, Weyl ordering invariance under similarity transformations is conveniently proved, instead of using of Wigner operator.

  9. IBM Applications and Techniques of Operations Research. A Selected Bibliography.

    ERIC Educational Resources Information Center

    International Business Machines Corp., White Plains, NY. Data Processing Div.

    This bibliography on the tools and applications of operations research, management science, industrial engineering, and systems engineering lists many entries which appeared between 1961 and 1966 in 186 periodicals and trade journals. Twenty-six texts in operations research are also listed along with an indication as to which of 37 techniques or…

  10. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Office operations and application processing. 273.2 Section 273.2 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM CERTIFICATION OF ELIGIBLE HOUSEHOLDS § 273.2 Office operations...

  11. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    SciTech Connect

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  12. Protein crystallization with microseed matrix screening: application to human germline antibody Fabs

    SciTech Connect

    Obmolova, Galina Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L.

    2014-07-23

    The power of microseed matrix screening is demonstrated in the crystallization of a panel of antibody Fab fragments. The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization.

  13. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL... applicant, must provide in the permit application— (1) A statement indicating whether you and your operator... structure. (3) The date the person began functioning in that position. (e) We need not make a finding...

  14. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...

  15. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...

  16. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.

  17. Operation and Applications of the Boron Cathodic Arc Ion Source

    SciTech Connect

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-11-03

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  18. Application of a generalized matrix averaging method for the calculation of the effective properties of thin multiferroic layers

    SciTech Connect

    Starkov, A. S.; Starkov, I. A.

    2014-11-15

    It is proposed to use a generalized matrix averaging (GMA) method for calculating the parameters of an effective medium with physical properties equivalent to those of a set of thin multiferroic layers. This approach obviates the need to solve a complex system of magnetoelectroelasticity equations. The required effective characteristics of a system of multiferroic layers are obtained using only operations with matrices, which significantly simplifies calculations and allows multilayer systems to be described. The proposed approach is applicable to thin-layer systems, in which the total thickness is much less than the system length, radius of curvature, and wavelengths of waves that can propagate in the system (long-wave approximation). Using the GMA method, it is also possible to obtain the effective characteristics of a periodic structure with each period comprising a number of thin multiferroic layers.

  19. Novel mixed matrix membranes for sulfur removal and for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Ligang; Wang, Andong; Zhang, Longhui; Dong, Meimei; Zhang, Yuzhong

    2012-12-01

    Sulfur removal is significant for fuels used as hydrogen source for fuel cell applications and to avoid sulfur poisoning of therein used catalysts. Novel mixed matrix membranes (MMMs) with well-defined transport channels are proposed for sulfur removal. MMMs are fabricated using polyimide (PI) as matrix material and Y zeolites as adsorptive functional materials. The influence of architecture conditions on the morphology transition from finger-like to sponge-like structure and the “short circuit” effect are investigated. The adsorption and regeneration behavior of MMMs is discussed, combining the detailed analysis of FT-IR, morphology, XPS, XRD and thermal properties of MMMs, the process-structure-function relationship is obtained. The results show that the functional zeolites are incorporated into three-dimensional network and the adsorption capacity of MMMs comes to 8.6 and 9.5 mg S g-1 for thiophene and dibenzothiophene species, respectively. And the regeneration behavior suggests that the spent membranes can recover about 88% and 96% of the desulfurization capacity by solvent washing and thermal treating regeneration, respectively. The related discussions provide some general suggestions in promoting the novel application of MMMs on the separation of organic-organic mixtures, and a potential alternative for the production of sulfur-free hydrogen source for fuel cell applications.

  20. Fabrication and properties of CNTs reinforced polymeric matrix nanocomposites for sports applications

    NASA Astrophysics Data System (ADS)

    Rasheed, A.; Khalid, F. A.

    2014-06-01

    The polymeric matrix composites have found extensive applications in sports because of high strength to weight ratio, ease of processing, and longer life. This work was carried out to study the properties of different sections of composite field hockey sticks and the influence of carbon nanotubes on their properties. The samples were fabricated by compression molding process. The increase in mechanical properties by the incorporation of carbon nanotubes is correlated with the process parameters to consider enhancement in the overall performance of the stick sections.

  1. Applications of platelet-rich fibrin matrix in facial plastic surgery.

    PubMed

    Sclafani, Anthony P

    2009-11-01

    Platelet concentrates enjoyed some clinical popularity in facial plastic surgery several years ago. However, interest waned due to expense, amount of blood required, equipment, space, and staff needed, and lack of clinically significant benefit. A novel, simple method of preparing an autologous platelet derivative (Selphyl; Aesthetic Factors, Princeton, NJ) allows rapid and inexpensive generation of a platelet-rich fibrin matrix (PRFM) that can be used to enhance healing after facial procedures as well as to rejuvenate the face without tissue manipulation. PRFM provides autologous, natural, but concentrated platelet growth factor release and stimulation of surrounding tissue. This article describes its use for cosmetic facial applications. PMID:19924600

  2. Variational density matrix method for warm, condensed matter: Application to dense hydrogen

    SciTech Connect

    Militzer, Burkhard; Pollock, E. L.

    2000-04-01

    A variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many-body density matrix is written as a determinant of one-body density matrices, which are approximated by Gaussians with the mean, width, and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated, and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state, and shock Hugoniot) are presented. (c) 2000 The American Physical Society.

  3. A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications.

    PubMed

    Tyagi, Manoj; Gowri, Venkataraman S; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Offmann, Bernard

    2006-10-01

    Analysis of protein structures based on backbone structural patterns known as structural alphabets have been shown to be very useful. Among them, a set of 16 pentapeptide structural motifs known as protein blocks (PBs) has been identified and upon which backbone model of most protein structures can be built. PBs allows simplification of 3D space onto 1D space in the form of sequence of PBs. Here, for the first time, substitution probabilities of PBs in a large number of aligned homologous protein structures have been studied and are expressed as a simplified 16 x 16 substitution matrix. The matrix was validated by benchmarking how well it can align sequences of PBs rather like amino acid alignment to identify structurally equivalent regions in closely or distantly related proteins using dynamic programming approach. The alignment results obtained are very comparable to well established structure comparison methods like DALI and STAMP. Other interesting applications of the matrix have been investigated. We first show that, in variable regions between two superimposed homologous proteins, one can distinguish between local conformational differences and rigid-body displacement of a conserved motif by comparing the PBs and their substitution scores. Second, we demonstrate, with the example of aspartic proteinases, that PBs can be efficiently used to detect the lobe/domain flexibility in the multidomain proteins. Lastly, using protein kinase as an example, we identify regions of conformational variations and rigid body movements in the enzyme as it is changed to the active state from an inactive state. PMID:16894618

  4. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  5. InkTag: Secure Applications on an Untrusted Operating System

    PubMed Central

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  6. Evaluation of the Trajectory Operations Applications Software Task (TOAST)

    NASA Technical Reports Server (NTRS)

    Perkins, Sharon; Martin, Andrea; Bavinger, Bill

    1990-01-01

    The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.

  7. Saliva as an analytical matrix: state of the art and application for biomonitoring.

    PubMed

    Caporossi, Lidia; Santoro, Alessia; Papaleo, Bruno

    2010-09-01

    Analytical tests to measure chemicals in saliva can be employed for numerous analytes, endogenous compounds or xenobiotics. The objective was to determine which chemicals can be analysed with this matrix, which analytical methods are applicable, and what application is possible for biomonitoring. We reviewed the literature using three databases, MEDLINE, PubMed and Scopus, collecting articles on different kinds of analysis in saliva. Studies were principally about molecules of clinical interest, xenobiotics, especially drugs of abuse, and chemicals used at workplaces; some substances show no relevant correlation with exposure data while others seems to be of particular interest for systematic use for biomonitoring. Currently, saliva is used far less than other biological fluids but its use for biomonitoring of exposure to chemicals might open up new areas for research and would certainly simplify the collection of biological samples. PMID:20450335

  8. Development and application of NDE methods for monolithic and continuous fiber ceramic matrix composites.

    SciTech Connect

    Ellingson, W. A.

    1999-05-21

    Monolithic structural ceramics and continuous fiber ceramic matrix composites (CMCs) are being developed for application in many thermally and chemically aggressive environments where structural reliability is paramount. We have recently developed advanced nondestructive evaluation (NDE) methods that can detect distributed ''defects'' such as density gradients and machining-induced damage in monolithic materials, as well as delamination, porosity, and throughwall cracks, in CMC materials. These advanced NDE methods utilize (a) high-resolution, high-sensitivity thermal imaging; (b) high-resolution X-ray imaging; (c) laser-based elastic optical scattering; (d) acoustic resonance; (e) air-coupled ultrasonic methods; and (f) high-sensitivity fluorescent penetrant technology. This paper discusses the development and application of these NDE methods relative to ceramic processing and ceramic components used in large-scale industrial gas turbines and hot gas filters for gas stream particulate cleanup.

  9. Application of matrix-assisted laser desorption/ionization mass spectrometric imaging for photolithographic structuring.

    PubMed

    Crecelius, Anna C; Steinacker, Ralf; Meier, Alexander; Alexandrov, Theodore; Vitz, Jürgen; Schubert, Ulrich S

    2012-08-21

    The aim of this contribution is the application of matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) in the area of photolithographic structuring. As proof of concept, this method was used to image an UV exposed negative photoresist layer, which is generally used to manufacture printed circuit boards (PCB) for electronic components. The negative photoresist layer consisting of the main component novolac, benzophenone as the active component, and the solvent tetrahydrofuran was mixed with the matrix dithranol and the salt additive LiTFA and spin-coated onto an ITO-conductive glass slide. To imprint an image on the created surface, a transparency with a printed wiring diagram was placed on top of it and irradiated by UV light for 15 min. The inspection of the efficient imprinting of the microstructure onto the photoresist layer was performed by MALDI-MSI. This unique application represents a further step toward the surface analysis of polymer films by this emerging life science imaging technique. PMID:22877236

  10. Response of microscale cell/matrix constructs to successive force application in a 3D environment

    NASA Astrophysics Data System (ADS)

    Liu, Alan; Chen, Christopher; Reich, Daniel

    2014-03-01

    Mechanical dilation of arteries by pulsatile blood flow is directly opposed by coordinated contraction of a band of smooth muscle tissue that envelops the vessels. This mechanical adaptation of smooth muscle cells to external loading is a critical feature of normal blood vessel function. While most previous studies on biomechanical systems have focused on single cells or large excised tissue, we utilize a device to apply forces to engineered smooth muscle microtissues. This device consists of arrayed pairs of elastomeric micro-cantilevers capable of magnetic actuation. Tissues are formed through self-assembly following the introduction of cell-infused collagen gel to the array. With this system, we are able to dynamically stretch and relax these sub-millimeter sized tissues. The timing and magnitude of the force application can be precisely controlled and thus can be used to mimic a wide range of physiological behavior. In particular, we will discuss results that show that the interval between successive force applications mediates the both the subsequent mechanical and active dynamics of the cell/matrix composite system. Understanding this process will lead to better understanding of the interplay between cell and extracellular matrix responses to mechanical stimulus at a novel length scale.

  11. Remote Sensing of Water Quality: Bridging Operational and Applications Communities

    NASA Astrophysics Data System (ADS)

    Lee, Christine M.; Orne, Tiffani; Schaeffer, Blake

    2014-09-01

    One of the highest priorities of the NASA Applied Sciences Program (ASP) is to benefit society by supporting the development of tools, services, and applications that leverage Earth observations (EO) and satellite assets, and their transfer to operations. Toward this goal, the Water Resources Application Area of ASP has been exploring how satellite remote sensing could contribute to water quality monitoring decisions and practices and organized a workshop at the biennial National Water Quality Monitoring Conference 2014 in Cincinnati, Ohio.

  12. TOPICAL REVIEW: The Bloch wave operator: generalizations and applications: Part I. The time-independent case

    NASA Astrophysics Data System (ADS)

    Killingbeck, John P.; Jolicard, Georges

    2003-05-01

    This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Lwdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection of test matrices taken from the previous literature on wave operator methods. The main emphasis throughout is on the use of numerical methods which use iterative or perturbation algorithms, with simple Pad approximant methods being found sufficient to deal with most of the cases of divergence which are encountered. The use of damping factors and relaxation parameters is found to be effective in stabilizing calculations which use the energy-dependent effective Hamiltonian of Lwdin. In general the computations suggest that the numerical applications of the nonlinear equation for the reduced wave operator are best carried out with the equation split into a pair of equations in which the Bloch effective Hamiltonian appears as a separate entity. The presentation of the theoretical and computational details throughout is accompanied by references to and discussion of many works which have used wave operator methods in physics, chemistry and engineering. Some of the techniques described in this part 1 will be further extended and applied in part 2 of the review, which deals with the changes which are required to extend wave operator theory to the case of a time-dependent Hamiltonian such as that which describes the interaction of a laser pulse with an atom or molecule.

  13. Fire protection system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  14. The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Chung, C. Y.

    2004-08-01

    Spherical (S) and tesseral (T) tensor operators (TOs) have been extensively used in, for example, EMR and optical spectroscopy of transition ions. To enable a systematic review of the published tables of the operators and their matrix elements (MEs) we have generated the relevant tables by computer, using Mathematica programs. Our review reveals several misprints/errors in the major sources of TTOs—the conventional Stevens operators (CSOs—components q\\ge 0 ) and the extended ones (ESOs—all q) for rank k = 2,4, and 6—as well as of some STOs with k\\le 8 . The implications of using incorrect operators and/or MEs for the reliability of EMR-related programs and interpretation of experimental data are discussed. Studies of high-spin complexes like Mn12 (S = 10) and Fe19 (S = 33/2) require operator and ME listings up to k = 2S, which are not presently available. Using the algorithms developed recently by Ryabov, the generalized ESOs and their MEs for arbitrary rank k and spin S are generated by computer, using Mathematica. The extended tables enable simulation of the energy levels for arbitrary spin systems and symmetry cases. Tables are provided for the ESOs not available in the literature, with odd k = 3,5, and 7 for completeness; however, for the newly generalized ESOs with the most useful even rank k = 8,10, and 12 only, in view of the large listings sizes. General source codes for the generation of the ESO listings and their ME tables are available from the authors.

  15. Web Application Software for Ground Operations Planning Database (GOPDb) Management

    NASA Technical Reports Server (NTRS)

    Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey

    2013-01-01

    A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.

  16. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  17. Monotonicity properties of the superposition operator and their applications

    NASA Astrophysics Data System (ADS)

    Banas, Józef; Sadarangani, Kishin

    2008-04-01

    We establish some properties of the superposition operator which are associated with monotonicity. Those properties are expressed in terms of the notion of degree of decrease or degree of increase. An application of the obtained results to the study of solvability of a quadratic Volterra integral equation is also derived.

  18. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Software applications and operating systems. 1194.21 Section 1194.21 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS...

  19. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Software applications and operating systems. 1194.21 Section 1194.21 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS...

  20. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Software applications and operating systems. 1194.21 Section 1194.21 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS...

  1. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Office operations and application processing. 273.2 Section 273.2 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM CERTIFICATION OF ELIGIBLE HOUSEHOLDS General Rules § 273.2...

  2. Interactive intelligent remote operations: application to space robotics

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.

    1999-11-01

    A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.

  3. Operational Application of Envisat ASAR in Tropical Production Forest

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.; Trisasongko, B.

    2003-04-01

    A joint research between European Space Agency (ESA) and Bogor Agricultural University (IPB), Indonesia, has been approved under Envisat AO (AO-ID 869). The research is intended to study the operational application of Advanced Synthetic-Aperture Radar (ASAR) for production forest management in Indonesia. Two test sites in forest plantation area of PT Riau Andalan Pulp and Paper (Riaupulp) in Riau Province, Central Sumatera, Indonesia, have been selected recently for the implementation of this joint research. This paper briefs the recent progress of this two-year research (2002-2004) activity. The main objective is to explore the potential of ASAR image analysis application, including POLINSAR, for better and more efficient operational management of tropical plantation forest and its environment. Several interesting operational applications have been identified for the test sites. First application is vegetative cover classification of Acacias, mixed hardwoods, shrubs, oil palms and bare lands. The second is biomass-related application, which study Envisat data on biomass monitoring related to forest plantation. The third is environmental study particularly for site degradation, including issues on monitoring of water bodies and burn site.

  4. Properties of Graphite Fiber Reinforced Copper Matrix Composites for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1992-01-01

    The thermal and mechanical properties of pitch-based graphite fiber reinforced copper matrix (Gr/Cu) composites usable for space applications such as radiator fins were investigated. Thermal conductivity was measured as a function of fiber volume fraction and architecture. Results showed for unidirectional P-100 Gr/Cu composites, the longitudinal thermal conductivity was nearly independent of fiber volume fraction. Transverse thermal conductivities (perpendicular to the fibers) were strongly affected by the fiber volume fraction with higher volume fractions resulting in lower thermal conductivities. The effect of architecture on thermal conductivity followed the cosine squared law for simple architectures. Insufficient data are available currently to model more complex architectures, but adding fibers in the direction of the heat flow increases the thermal conductivity as low conductivity plies are supplemented by high conductivity plies. Thermal expansion tests were conducted on the Gr fibers and Gr/Cu composites. The results show a considerable thermal expansion mismatch between the fibers and the Cu matrix. The longitudinal thermal expansion showed a strong dependence on the architecture of the Gr/Cu composites. The composites also show a thermal expansion hysteresis. The hysteresis was eliminated by an engineered interface. Mechanical testing concentrated on the dynamic modulus and strength of the composites. The dynamic modulus of the Gr/Cu composites was 305 GPa up to 400 C, a value equivalent to Be. The strengths of the composites were less than expected, but this is attributed to the poor bond across the interface between the Gr fibers and Cu matrix. Testing of composites with an engineered interface is expected to yield strengths nearer the values predicted by the rule of mixtures.

  5. Small-energy analysis for the selfadjoint matrix Schrödinger operator on the half line. II

    SciTech Connect

    Aktosun, Tuncay; Klaus, Martin; Weder, Ricardo

    2014-03-15

    The matrix Schrödinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a second moment, it is shown that the corresponding scattering matrix is differentiable at zero energy. An explicit formula is provided for the derivative of the scattering matrix at zero energy. The previously established results when the potential has only the first moment are improved when the second moment exists, by presenting the small-energy asymptotics for the related Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.

  6. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  7. Matrix Green's functions and their application in analyzing scattering by density and sound velocity inhomogeneities

    NASA Astrophysics Data System (ADS)

    Dmitriev, K. V.

    2015-11-01

    Matrix Green's functions are introduced for a linearized system of hydrodynamic equations. The relations between the retarded and advanced Green's functions and Green's functions of the direct and conjugate operators of the system of hydrodynamic equations are determined. An expression for the reciprocity principle and a relation like the Marchenko equation are derived. The proposed mathematical apparatus is used to analyze scattering by a quasi-point refraction-density inhomogeneity of a medium. The phase and amplitude limitations are obtained for the scattering coefficients of such an inhomogeneity. The existence of the largest possible amplitude of the scattered field should be taken into account in designing metamaterials consisting of individual elements whose sizes are small compared to the wavelength, including those with resonance properties.

  8. Application of the Thomson-CSF TH 7884 CCD matrix sensor for the imaging spectrometer ROSIS

    NASA Astrophysics Data System (ADS)

    Buschner, Robert; Viehmann, Dirk

    1989-03-01

    The airborne imaging spectrometer ROSIS has been designed for environmental investigations. The spectral resolution is 5 nm within a spectral range from 400 to 900 nm. The ground pixel size is 2.2 m x 2.2 m at a flight altitude of 4 km. To meet the design and radiometric requirements, the Thomson TH 7884 CCD matrix sensor was selected. Operating the TH 7884 in the frame transfer mode, the image size is 500 x 256 picture elements. To gain the required spectral information, only 85 lines of this image are needed. To achieve the 2.2 m ground pixel size, resolution in flight direction (pushbroom system) about 85 frames/second have to be read out.

  9. A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics

    NASA Astrophysics Data System (ADS)

    Yao, Jianyao; Liu, G. R.

    2014-10-01

    A GSM-CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM-CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.

  10. An application of intertwining operators in functional analysis

    NASA Astrophysics Data System (ADS)

    Shtepin, V. V.; Shtepina, T. V.

    2009-12-01

    We consider classes of integral operators on the spaces of square-integrable functions on the sphere and of locally integrable functions on Lobachevsky space. The kernels of these operators depend only on the distance between points in the spherical and hyperbolic geometry, respectively. These operators are intertwining for the quasi-regular representation of the corresponding Lie group, and this enables us to evaluate their spectra and diagonalize the operators themselves. As applications, we take the Minkowski problem and the Funk-Hecke theorem for Euclidean space \\mathbb R^n. A generalization is obtained of the Funk-Hecke theorem in the case of hyperbolic space \\mathbb R^{n-1,1} with indefinite inner product.

  11. BEACON: An application of nodal methods for operational support

    SciTech Connect

    Boyd, W.A.; Nguyen, T.Q. )

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  12. Improvements in sparse matrix/vector technique applications for on-line load flow calculation

    SciTech Connect

    Ristanovic, P.; Bjelogrlic, M.; Babic, B.S.

    1989-02-01

    Sparsity technique is applied to a wide range of problems in power systems analysis. In this paper the authors propose several analytical and computational improvements in sparsity applications. The new partial matrix refactorization method and ordering algorithm are presented. The proposed method is very efficient when applied to various kinds of programs, such as: on-line load flow, optimal power flow and steady-state security analysis. The proposed methodology is applied in a fast decoupled load flow program which include the treatment of tap violations on under-load tap changing (ULTC) transformers and reactive power generation on PV buses. Effects of proposed improvements are well tested and documented on the three networks: 118 bus IEEE test network and two utility networks with 209 and 519 buses, respectively. Keywords: sparsity technique, load flow analysis, security analysis.

  13. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  14. Protein crystallization with microseed matrix screening: application to human germline antibody Fabs

    PubMed Central

    Obmolova, Galina; Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L.

    2014-01-01

    The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization. PMID:25084393

  15. High performance polymers and polymer matrix composites for spacecraft structural applications

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Connell, J. W.

    1992-01-01

    A program implemented by NASA Langley Research Center to develop and evaluate new polymers and polymer matrix composites for spacecraft structural applications is examined. Various polymeric films, moldings, and adhesives are evaluated for resistance to atomic oxygen and high energy electron and UV radiation. Thin films from the poly(arylene ether)s containing phenylphosphine oxide groups and the siloxane-epoxies exhibited minor weight loss compared to Kapton polyimide after exposure. Large doses (greater than 10 exp 9 rads) of electron radiation, simulating 30 yr of exposure in GEO, are found to alter the chemical structure of epoxies by both chain scission and cross-linking. The thermal cycling representative of both LEO and GEO environments can cause microcracking in composites which can in turn affect the dimensional stability and produce mechanical property reductions. The processing and fabrication issues associated with precision composite spacecraft components are also addressed.

  16. Comparison of operator exposure for five different greenhouse spraying applications.

    PubMed

    Nuyttens, D; Windey, S; Sonck, B

    2004-08-01

    The European Crop Protection Association (ECPA) and the Agricultural Research Center (CLO-DVL) joined forces in a project to stimulate the safe use of pesticides in southern European countries. CLO-DVL optimized a method using mineral chelates as tracers on collectors. This quantitative method to evaluate spray deposits was used to compare operator exposure from several greenhouse spraying techniques. Operator exposure measurements were of a comparative nature. Five application methods were investigated: a standard spray gun with an operator walking forwards, a spray lance with an operator walking forwards and backwards, a trolley, and a vehicle, both with vertical spray booms. The exposure was measured with patches at 15 places on operators' coveralls and gloves, using mineral chelates as tracer elements. The difference in exposure of the patches between the different techniques was very high. Walking backwards reduced exposure by a factor of 7. The exposures with the trolley and the vehicle, two innovative spraying techniques, were respectively 25 and 100 times lower compared to exposure with the standard spray gun. Operator exposure while walking forward with the spray lance was about two times higher than with the spray gun. Besides very large differences in exposure among the five techniques, there were also large differences in exposure among various parts of the body. All of this is important in consideration of operator safety and for the parts of the body that need to be protected most. PMID:15461135

  17. The Application of Metal Matrix Composite Materials in Propulsion System Valves

    NASA Technical Reports Server (NTRS)

    Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris

    2003-01-01

    Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.

  18. Schwinger-Dyson operators as invariant vector fields on a matrix model analog of the group of loops

    SciTech Connect

    Krishnaswami, Govind S.

    2008-06-15

    For a class of large-N multimatrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate with correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons, and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.

  19. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  20. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  1. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  2. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  3. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  4. Cryogenic system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  5. Linearization of a scalar matrix operator method radiative transfer model with respect to aerosol and surface properties

    NASA Astrophysics Data System (ADS)

    Sanghavi, Suniti V.; Martonchik, John V.; Davis, Anthony B.; Diner, David J.

    2013-02-01

    In this paper, we review the radiative transfer formalism of the matrix operator method, and present the analytic form for its differentiation with respect to aerosol optical thickness, microphysical parameters and surface parameters. This “linearization” is an exact method that allows for an accurate and speedy computation of the Jacobian matrix, which is key to most optimization-based retrieval methods. We define an aerosol in terms of its optical thickness, complex refractive index and lognormal size distribution. We consider a bimodal aerosol distribution, consisting of a fine and coarse mode, such that the two modes also differ in their respective complex refractive indices. Three types of surfaces have been considered, viz. a purely Lambertian surface, a modified Rahman-Pinty-Verstraete bidirectional reflecting surface, and a Fresnel-reflecting ocean surface. We verify our results by comparing our linearized Jacobians of normalized intensities calculated at four different wavelengths in the visible (VIS) and near-infrared (NIR) and viewing angles ranging from -75° through 0° to 75° with those computed by the method of finite differences. We demonstrate the guaranteed accuracy of the linearized approach by contrasting it with the finite difference method which can only be used as a rough estimate due to its sensitivity to step size, especially for derivatives with respect to aerosol microphysical parameters. We also report that the computational speed-up due to linearization improves with the number of parameters involved, parity being achieved with the finite difference method for just one parameter. Finally, we discuss the features of the illustrated Jacobians as a function of viewing angle and wavelengths.

  6. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  7. An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2008-01-01

    Most model fit analyses in cognitive diagnosis assume that a Q matrix is correct after it has been constructed, without verifying its appropriateness. Consequently, any model misfit attributable to the Q matrix cannot be addressed and remedied. To address this concern, this paper proposes an empirically based method of validating a Q matrix used…

  8. An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2008-01-01

    Most model fit analyses in cognitive diagnosis assume that a Q matrix is correct after it has been constructed, without verifying its appropriateness. Consequently, any model misfit attributable to the Q matrix cannot be addressed and remedied. To address this concern, this paper proposes an empirically based method of validating a Q matrix used

  9. Generalized complement operators and applications in some semirings

    SciTech Connect

    Bijev, G.

    2013-12-18

    Generalized complement operators on the semiring of all Boolean matrices as semilattice homomorphisms are considered. Some applications in solving equations on the set Bn of all binary relations are developed. In particular the structure of B3 is investigated by computer methods. Specific properties of the subsemigroup generated by all irregular relations in B3 are found. Stochastic experiments on the monoid Bn were made. The frequency of irregular elements as well as those of solvable equations depending on n is examined.

  10. Ventilation Systems Operating Experience Review for Fusion Applications

    SciTech Connect

    Cadwallader, Lee Charles

    1999-12-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  11. vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties

    NASA Astrophysics Data System (ADS)

    Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie

    2014-01-01

    In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes vector remains practically constant for all azimuthal planes, while that associated with intensity-only measurements falls as we approach the plane perpendicular to the principal plane. The [I,Q,U] vector is equivalent to the full Stokes vector in the principal plane, but its information content drops towards the perpendicular plane, albeit less sharply than I-only measurements.

  12. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  13. Matrix fatigue cracking mechanisms of alpha(2) TMC for hypersonic applications

    SciTech Connect

    Gabb, T.P.; Gayda, J.

    1994-02-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha[sub 2] TMC in possible hypersonic applications. A (0)[sub 8] SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  14. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  15. SMES application for frequency control during islanded microgrid operation

    NASA Astrophysics Data System (ADS)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  16. A conservative discontinuous Galerkin scheme with O(N2) operations in computing Boltzmann collision weight matrix

    NASA Astrophysics Data System (ADS)

    Gamba, Irene M.; Zhang, Chenglong

    2014-12-01

    In the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form in linear algebra setting. We employ the property of "shifting symmetry" in the weight matrix to reduce the computing complexity from theoretical O(N3) down to O(N2) , with N the total number of freedom for d-dimensional velocity space. In addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole computing process is well parallelized using hybrid OpenMP and MPI. The current work only considers integrable angular cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.

  17. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications

    PubMed Central

    Chang, Chia Wei; Petrie, Tye; Clark, Alycia; Lin, Xin; Sondergaard, Claus S.; Griffiths, Leigh G.

    2016-01-01

    In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications. PMID:27070546

  18. MIRIADS: miniature infrared imaging applications development system description and operation

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.

    2001-10-01

    A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.

  19. The application of a job exposure matrix in the natural gas industry.

    PubMed

    Maher, Nora

    2003-01-01

    A questionnaire was designed, implemented, and analyzed, using a job exposure matrix format, to profile jobs in the Pipeline Division of a natural gas company with respect to possible hazardous exposures. The categories of chemical, physical, ergonomic, biological, and psychological hazards were surveyed. The first stage was to formulate and confirm a list of hazardous agents extant within the Pipeline Operations. This was done by making on-site observations and interviewing safety supervisors and workers, as well as by exploring the literature on the natural gas industry. The second stage of the project entailed the collection of data about whether a particular hazardous agent was present at a location, and if so, which workers were exposure to it, and at what intensity and frequency they were exposed. This assessment was made by groups identified as expert assessors, senior workers who were familiar with the processes and range of job titles at their locations. These experienced workers rated all job titles for workers at that site. The final stage of the project was to critically examine and validate the data collected. Three analyses were performed. The first was a comparison of the assessments with known outcomes of the medical surveillance testing that was completed in 1995. Secondly, the agreement between the assessments done by the expert assessor group, and a rating done by the jobholder, was examined. Finally, consideration was given to the sureness expressed by each of the rating groups about the analysis they had provided. PMID:14674800

  20. Applications of matrix derivatives to optimization problems in statistical pattern recognition

    NASA Technical Reports Server (NTRS)

    Morrell, J. S.

    1975-01-01

    A necessary condition for a real valued Frechet differentiable function of a vector variable have an extremum at a vector x sub 0 is that the Frechet derivative vanishes at x sub 0. A relationship between Frechet differentials and matrix derivatives was established that obtains a necessary condition on the matrix derivative at an extrema. These results are applied to various scalar functions of matrix variables which occur in statistical pattern recognition.

  1. Application of fiber bridging models to fatigue crack growth in unidirectional titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1992-01-01

    Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.

  2. Two dimension double PCA for extracting features and application based on between-class scatter matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Li, Dongsheng

    2011-10-01

    Conventional PCA usually uses total scatter matrix as a generation matrix, and two dimension image matrices must be transformed into vectors. In this paper, the between-class matrix generated by original image and its eigenvectors were used to feature extracting. First we compressed the image in horizon direction using 2DPCA, then we compressed the feature matrix in vertical direction. Thus, the dimension of features is lesser and the speed of classification is faster. At the same time the category information is fully used and the recognition rate are improved.

  3. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  4. MORSMATEL: a rapid and efficient code to calculate vibration-rotational matrix elements for r-dependent operators of two Morse oscillators

    NASA Astrophysics Data System (ADS)

    Lopez-Piñeiro, A.; Sanchez, M. L.; Moreno, B.

    1992-06-01

    The computer program MORSMATEL has been developed to calculate vibrational-rotational matrix elements of several r-dependent operators of two Morse oscillators. This code is based on a set of recurrence relations which are valid for any value of the power and of the quantum numbers v and J of each oscillator.

  5. Comonotonicity and Choquet integrals of Hermitian operators and their applications

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2016-04-01

    In a quantum system with d-dimensional Hilbert space, the Q-function of a Hermitian positive semidefinite operator θ, is defined in terms of the d 2 coherent states in this system. The Choquet integral {{ C }}Q(θ ) of the Q-function of θ, is introduced using a ranking of the values of the Q-function, and Möbius transforms which remove the overlaps between coherent states. It is a figure of merit of the quantum properties of Hermitian operators, and it provides upper and lower bounds to various physical quantities in terms of the Q-function. Comonotonicity is an important concept in the formalism, which is used to formalize the vague concept of physically similar operators. Comonotonic operators are shown to be bounded, with respect to an order based on Choquet integrals. Applications of the formalism to the study of the ground state of a physical system, are discussed. Bounds for partition functions, are also derived.

  6. Vacuum system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  7. Test Waveform Applications for JPL STRS Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  8. Application of human error analysis to aviation and space operations

    SciTech Connect

    Nelson, W.R.

    1998-03-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) the authors have been working to apply methods of human error analysis to the design of complex systems. They have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. They are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. The primary vehicle the authors have used to develop and apply these methods has been a series of projects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. They are currently adapting their methods and tools of human error analysis to the domain of air traffic management (ATM) systems. Under the NASA-sponsored Advanced Air Traffic Technologies (AATT) program they are working to address issues of human reliability in the design of ATM systems to support the development of a free flight environment for commercial air traffic in the US. They are also currently testing the application of their human error analysis approach for space flight operations. They have developed a simplified model of the critical habitability functions for the space station Mir, and have used this model to assess the affects of system failures and human errors that have occurred in the wake of the collision incident last year. They are developing an approach so that lessons learned from Mir operations can be systematically applied to design and operation of long-term space missions such as the International Space Station (ISS) and the manned Mars mission.

  9. Development and Evaluation of Novel Metal Reinforced Ceramic Matrix Composites for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Mohammadi, Teymoor

    For high temperature applications two novel ceramic-matrix composite (CMC) materials are manufactured, by embedding molybdenum (Mo) and Hastelloy X (HX) wire meshes in 7YSZ ceramic. The mechanical properties and oxidizing behaviour at 1050°C were investigated. The designs, fabrication, assessment of the mechanical strength, cyclic and isothermal oxidation of the CMCs are described in this thesis. After manufacturing meshes, NiCrA1Y bond coats and 7YSZ were applied via plasma spraying. Bonding strength in some CMC samples are improved by vacuum heat treating, then as-sprayed and heat treated CMCs are subjected to three-point bend and impact tests. Mo and HX wire mesh incorporation in 7YSZ increase the strength and the elongation to failure. In particular, Mo wire increases yield load of 7YSZ by at least 3 times and HX wire increases yield by 9 times. Mo/7YSZ CMC degrades and oxidizes after 330 hours at 1050°C tests, but HX/7YSZ shows higher oxidation resistance. The metallographic analysis shows NiCrA1Y bond coat cracks and delaminates from the wires during isothermal tests. Cyclic test, creating larger thermal stresses, worsens the damage. To increase the oxidation and mechanical properties of these composites, a more effective ceramic coating method is recommended. Overall, the advantages of HX/7YSZ composite suggest further testing and investigation.

  10. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering.

    PubMed

    Zhang, Weixiang; Zhu, Yun; Li, Jia; Guo, Quanyi; Peng, Jiang; Liu, Shichen; Yang, Jianhua; Wang, Yu

    2016-06-01

    The extracellular matrix (ECM) is a dynamic and intricate microenvironment with excellent biophysical, biomechanical, and biochemical properties, which can directly or indirectly regulate cell proliferation, adhesion, migration, and differentiation, as well as plays key roles in homeostasis and regeneration of tissues and organs. The ECM has attracted a great deal of attention with the rapid development of tissue engineering in the field of regenerative medicine. Tissue-derived ECM scaffolds (also referred to as decellularized tissues and whole organs) are considered a promising therapy for the repair of musculoskeletal defects, including those that are widely used in orthopedics, although there are a few shortcomings. Similar to tissue-derived ECM scaffolds, cell-derived ECM scaffolds also have highly advantageous biophysical and biochemical properties, in particular their ability to be produced in vitro from a number of different cell types. Furthermore, cell-derived ECM scaffolds more closely resemble native ECM microenvironments. The products of cell-derived ECM have a wide range of biomedical applications; these include reagents for cell culture substrates and biomaterials for scaffolds, hybrid scaffolds, and living cell sheet coculture systems. Although cell-derived ECM has only just begun to be investigated, it has great potential as a novel approach for cell-based tissue repair in orthopedic tissue engineering. This review summarizes and analyzes the various types of cell-derived ECM products applied in cartilage, bone, and nerve tissue engineering in vitro or in vivo and discusses future directions for investigation of cell-derived ECM. PMID:26671674

  11. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    PubMed

    Youngstrom, Daniel W; Barrett, Jennifer G; Jose, Rod R; Kaplan, David L

    2013-01-01

    Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC) culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS), trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS) are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture. PMID:23724028

  12. An application of the Design Structure Matrix to Integrated Concurrent Engineering

    NASA Astrophysics Data System (ADS)

    Avnet, Mark S.; Weigel, Annalisa L.

    2010-03-01

    This paper demonstrates an application of the Design Structure Matrix (DSM) to Integrated Concurrent Engineering (ICE), an approach to conceptual space systems design intended to increase the pace of work by bringing together all relevant personnel in the same room to conduct focused, collaborative one-week design studies. Although the DSM methodology explicitly incorporates the concurrent aspects of engineering design, it has not been applied formally to an integrated, rapid design environment such as ICE. In this paper, a DSM consisting of 172 design parameters and 682 dependencies is constructed to represent the typical process employed at the Mission Design Laboratory (MDL), an ICE facility at NASA Goddard Space Flight Center (GSFC). Analysis of the DSM reveals an optimal sequencing among five phases of the ICE design process, the interdependent disciplines in the design team, and a set of starting assumptions that can be made at the outset of the work to facilitate a more structured approach to the highly complex and iterative process of space systems design.

  13. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  14. Leak before break application in French PWR plants under operation

    SciTech Connect

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  15. Magnetic thrust bearing operation and industrial pump application

    SciTech Connect

    Allaire, P.E.; Maslen, E.H.; Lewis, D.W.; Flack, R.D.

    1997-01-01

    Magnetic bearings represent a new bearing technology, which has some advantages over conventional fluid film and rolling element bearings for some applications. The paper describes the basic concepts of magnetic thrust bearing operation involving the magnetic actuator, electronic controls, power amplifier, and sensor. The magnetic actuator is a magnetic circuit, which generates attractive forces. These support the rotating shaft. While it is often thought that magnetic bearings are highly nonlinear devices, this paper demonstrates that they are linear in both the perturbation flux and current when used in a double acting configuration. Electronic feedback controls are used to stabilize the bearing. Example design parameters are presented for an application to an industrial canned motor pump.

  16. Ground Operations Aerospace Language (GOAL). Volume 5: Application Studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Ground Operations Aerospace Language (GOAL) was designed to be used by test oriented personnel to write procedures which would be executed in a test environment. A series of discussions between NASA LV-CAP personnel and IBM resulted in some peripheral tasks which would aid in evaluating the applicability of the language in this environment, and provide enhancement for future applications. The results of these tasks are contained within this volume. The GOAL vocabulary provides a high degree of readability and retainability. To achieve these benefits, however, the procedure writer utilizes words and phrases of considerable length. Brief form study was undertaken to determine a means of relieving this burden. The study resulted in a version of GOAL which enables the writer to develop a dialect suitable to his needs and satisfy the syntax equations. The output of the compiler would continue to provide readability by printing out the standard GOAL language. This task is described.

  17. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    NASA Astrophysics Data System (ADS)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program, including test data, etc.: 120226886 Distribution format: tar.gz Programming language: Java, Fortran95. Computer: Any Windows or Linux systems capable of hosting a java runtime environment, java3D and fortran95 compiler; Developed on 2.40 GHz Intel Core i3. Operating system: Any Windows or Linux systems capable of hosting a java runtime environment, java3D and fortran95 compiler. RAM: Ranging from a few Mbytes to several Gbytes, depending on the input parameters. Classification: 1.3. External routines: jfreechart-1.0.14 [1] (free plotting library for java), j3d-jre-1.5.2 [2] (3D visualization). Nature of problem: Optical properties of cosmic dust aggregates. Solution method: Java application based on Mackowski and Mischenko's Superposition T-Matrix code. Restrictions: The program is designed for single processor systems. Additional comments: The distribution file for this program is over 120 Mbytes and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Ranging from few minutes to several hours, depending on the input parameters. References: [1] http://www.jfree.org/index.html [2] https://java3d.java.net/

  18. Particulate Titanium Matrix Composites Tested--Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Ellis, J. Rodney; Arnold. Steven M.

    2004-01-01

    Uniformly distributed particle-strengthened titanium matrix composites (TMCs) can be manufactured at lower cost than many types of continuous-fiber composites. The innovative manufacturing technology combines cold and hot isostatic pressing procedures to produce near-final-shape components. Material stiffness is increased up to 26-percent greater than that of components made with conventional titanium materials at no significant increase in the weight. The improved mechanical performance and low-cost manufacturing capability motivated an independent review to assess the improved properties of ceramic titanium carbide (TiC) particulate-reinforced titanium at elevated temperature. Researchers at the NASA Glenn Research Center creatively designed and executed deformation and durability tests to reveal operating regimes where these materials could lower the cost and weight of space propulsion systems. The program compares the elevated-temperature performance of titanium alloy Ti-6Al-4V matrix material to an alloy containing 10 wt% of TiC particles. Initial experiments showed that at these relatively low particle concentrations the material stiffness of the TMC was improved 20 percent over that of the plain Ti-6Al-4V alloy when tested at 427 C. The proportional limit and ultimate strength of the composite in tension are 21- and 14-percent greater than those of the plain alloy. Compression tests showed that the proportional limit is about 30 percent greater for TMC than for the plain alloy. The enhanced deformation resistance of the TMC was also evident in a series of tensile and compressive stress relaxation tests that were made. Specimens were subjected to tensile or compressive strain amplitudes of 0.75 percent for 24 hr followed by a return to zero strain imposed for 24 hr. The stress relaxation data were normalized with respect to the maximum stress for each case and plotted as a function of time in the following graph. Tensile stresses relaxed 19 percent for the TMC and 25 percent for the plain Ti-6Al-4V alloy. Compressive stresses relaxed 25 percent for the TMC and 39 percent for the plain Ti-6Al-4V alloy. The superior deformation resistance of the TMC extends to a creep rate that is 28-percent slower for the TMC when it is loaded to stress levels that are 26-percent higher than for the plain Ti-6Al-4V alloy.

  19. Novel Vibration Damping of Ceramic Matrix Composite Turbine Blades Developed for RLV Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2000-01-01

    The Reusable Launch Vehicle (RLV) represents the next generation of space transportation for the U.S. space program. The goal for this vehicle is to lower launch costs by an order of magnitude from $10,000/lb to $1,000/lb. Such a large cost reduction will require a highly efficient operation, which naturally will require highly efficient engines. The RS-2200 Linear Aerospike Engine is being considered as the main powerplant for the RLV. Strong, lightweight, temperature-resistant ceramic matrix composite (CMC) materials such as C/SiC are critical to the development of the RS-2200. Preliminary engine designs subject turbopump components to extremely high frequency dynamic excitation, and ceramic matrix composite materials are typically lightly damped, making them vulnerable to high-cycle fatigue. The combination of low damping and high-frequency excitation creates the need for enhanced damping. Thus, the goal of this project has been to develop well-damped C/SiC turbine components for use in the RLV. Foster-Miller and Boeing Rocketdyne have been using an innovative, low-cost process to develop light, strong, highly damped turbopump components for the RS-2200 under NASA s Small Business Innovation Research (SBIR) program. The NASA Glenn Research Center at Lewis Field is managing this work. The process combines three-dimensionally braided fiber reinforcement with a pre-ceramic polymer. The three-dimensional reinforcement significantly improves the structure over conventional two-dimensional laminates, including high through-the-thickness strength and stiffness. Phase I of the project successfully applied the Foster-Miller pre-ceramic polymer infiltration and pyrolysis (PIP) process to the manufacture of dynamic specimens representative of engine components. An important aspect of the program has been the development of the manufacturing process. Results show that the three-dimensionally braided carbon-fiber reinforcement provides good processability and good mechanical stiffness and strength in comparison to materials produced with competing processes as shown in the graphs.

  20. Application of the Finite-Element Z-Matrix Method to e-H2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The present study adapts the Z-matrix formulation using a mixed basis of finite elements and Gaussians. This is a energy-independent basis which allows flexible boundary conditions and is amenable to efficient algorithms for evaluating the necessary matrix elements with molecular targets.

  1. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  2. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  3. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  4. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  5. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  6. Comparison of two matrix data structures for advanced CSM testbed applications

    NASA Technical Reports Server (NTRS)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  7. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination. PMID:26274302

  8. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  9. Medical Applications of White LEDs for Surgical Operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.

  10. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter.

    PubMed

    Yi, Sun; Nelson, Patrick W; Ulsoy, A Galip

    2007-04-01

    In a turning process modeled using delay differential equations (DDEs), we investigate the stability of the regenerative machine tool chatter problem. An approach using the matrix Lambert W function for the analytical solution to systems of delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert W function, known to be useful for solving scalar first-order DDEs, has recently been extended to a matrix Lambert W function approach to solve systems of DDEs. The essential advantages of the matrix Lambert W approach are not only the similarity to the concept of the state transition matrix in lin ear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay, which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert W function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy and certain other advantages, when compared to traditional graphical, computational and approximate methods. PMID:17658931

  11. HIPing conditions for processing of metal matrix composites using continuum theory for sintering. 2: Application to fiber reinforced titanium alloys

    SciTech Connect

    Olevsky, E.; Dudek, H.J.; Kaysser, W.A.

    1996-02-01

    Processing of metal matrix composites (MMC) by hot isostatic pressing (HIPing) of fibers coated with a titanium alloy is discussed using the continuum theory for sintering. For the viscosity of titanium at HIPing conditions an exponential equation based on experimental data chosen from literature is used. The computations are performed for different fiber diameters, fiber volume fractions, initial porosity, initial dimensions of large imperfections and HIPing conditions. The parameters determined are: the final radius of imperfections, the final porosity, the time for a complete consolidation and additional time compensating a lower HIPing temperature. The influence of pressure and temperature rate on the consolidation behavior is discussed. For composites with the {gamma}-TiAl-alloys as matrix the accumulated tangential deformation is determined and the application of a second matrix coating on the fibers as a consolidation aid is discussed.

  12. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications.

    PubMed

    Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo

    2016-04-01

    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards. PMID:26982015

  13. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  14. A scalable, parallel matrix-free Stokes solver for geodynamic applications

    NASA Astrophysics Data System (ADS)

    May, D.

    2013-12-01

    Here I describe a numerical method suitable for studying non-linear, large deformation processes in crustal and lithopspheric dynamics. The method utilizes a hybrid spatial discretisation which consists of mixed finite elements for the Stokes flow problem, coupled to a Lagrangian marker based discretisation to represent the material properties (viscosity and density). This approach is akin to the classical Marker-And-Cell (MAC) scheme of Harlow and the subsequently developed Material Point Method (MPM) of Sulsky and co-workers. The geometric flexibility and ease of modelling large deformation processes afforded by such mesh-particle methods has been exploited by the lithospheric dynamics community over the last 20 years. The strength of the Stokes preconditioner fundamentally controls the scientific throughput achievable and represents the largest bottleneck in the development of our understanding of geodynamic processes. The possibility to develop a 'cheap' and efficient preconditioning methodology which is suitable for the mixed Q2-P1 element is explored here. I describe a flexible strategy, which aims to address the Stokes preconditioning issue using an upper block triangular preconditioner, together with a geometric multi-grid preconditioner for the viscous block. The key to the approach is to utilize algorithms and data-structures that exploit current multi-core hardware and avoid the need for excessive global reductions. In order to develop a scalable method, special consideration is given to; the definition of the coarse grid operator, the smoother and the coarse grid solver. The performance characteristics of this hybrid matrix-free / partially assembled multi-level preconditioning strategy is examined. The robustness of the preconditioner with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability is demonstrated.

  15. Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-11-01

    The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems.

  16. Network latency and operator performance in teleradiology applications.

    PubMed

    Stahl, J N; Tellis, W; Huang, H K

    2000-08-01

    Teleradiology applications often use an interactive conferencing mode with remote control mouse pointers. When a telephone is used for voice communication, latencies of the data network can create a temporal discrepancy between the position of the mouse pointer and the verbal communication. To assess the effects of this dissociation, we examined the performance of 5 test persons carrying out simple teleradiology tasks under varying simulated network conditions. When the network latency exceeded 400 milliseconds, the performance of the test persons dropped, and an increasing number of errors were made. This effect was the same for constant latencies, which can occur on the network path, and for variable delays caused by the Nagle algorithm, an internal buffering scheme used by the TCP/IP protocol. Because the Nagle algorithm used in typical TCP/IP implementations causes a latency of about 300 milliseconds even before a data packet is sent, any additional latency in the network of 100 milliseconds or more will result in a decreased operator performance in teleradiology applications. These conditions frequently occur on the public Internet or on overseas connections. For optimal performance, the authors recommend bypassing the Nagle algorithm in teleradiology applications. PMID:15359750

  17. GIS applications for military operations in coastal zones

    NASA Astrophysics Data System (ADS)

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations.

  18. Analytic Continuation of Operators Applications:. from Number Theory and Group Theory to Quantum Field and String Theories

    NASA Astrophysics Data System (ADS)

    Woon, S. C.

    We are used to thinking of an operator acting once, twice, and so on. However, an operator can be analytically continued to the operator raised to a complex power. Applications include (s,r) diagrams and an extension of Fractional Calculus where commutativity of fractional derivatives is preserved, generating integrals and non-standard derivations of theorems in Number Theory, non-integer power series and breaking of Leibniz and Chain rules, pseudo-groups and symmetry deforming models in particle physics and cosmology, non-local effect in analytically continued matrix representations and its connection with noncommutative geometry, particle-physics-like scatterings of zeros of analytically continued Bernoulli polynomials, and analytic continuation of operators in QM, QFT and Strings.

  19. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  20. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  1. Matrix effects for reflectivity spectra of dispersed nanophase (superparamagnetic) hematite with application to Martian spectral data

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Lauer, Howard V., Jr.

    1990-01-01

    The effect of the matrix on the reflectivity spectra of nanophase (superparamagnetic) hematite (np-Hm) dispersed within the matrix was investigated in four series of powder samples containing np-Hm dispersed within discrete powder particles (of two size ranges) of silica gel and activated alumina. The spectral data show that matrix effects are large. Samples with the same Fe2O3 content can have np-Hm absorption edges characterized by very different positions and curvature and slope indices, while samples with equivalent absorption edges can have very different Fe2O3 concentrations. Thus, quantitative relationships between the positions of ferric absorption edges and Fe2O3 concentrations are unreliable without knowledge of matrix properties of the system. It is shown that it was possible to match the Fe2O3 concentration, magnetic properties, and spectral data for Martian surface material with a laboratory mixture whose only ferric-bearing phase was hematite.

  2. Innovation sequence application to aircraft sensor fault detection: comparison of checking covariance matrix algorithms

    PubMed

    Caliskan; Hajiyev

    2000-01-01

    In this paper, the algorithms verifying the covariance matrix of the Kalman filter innovation sequence are compared with respect to detected minimum fault rate and detection time. Four algorithms are dealt with; the algorithm verifying the trace of the covariance matrix of the innovation sequence, the algorithm verifying the sum of all elements of the inverse covariance matrix of the innovation sequence, the optimal algorithm verifying the ratio of two quadratic forms of which matrices are theoretic and selected covariance matrices of Kalman filter innovation sequence, and the algorithm verifying the generalized variance of the covariance matrix of the innovation sequence. The algorithms are implemented for longitudinal dynamics of an aircraft to detect sensor faults, and some suggestions are given on the use of the algorithms in flight control systems. PMID:10826285

  3. Balancing Chemical Reactions With Matrix Methods and Computer Assistance. Applications of Linear Algebra to Chemistry. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 339.

    ERIC Educational Resources Information Center

    Grimaldi, Ralph P.

    This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…

  4. Developing scandium and zirconium containing aluminum boron carbide metal matrix composites for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lai, Jing

    The study presented in this thesis focuses on developing castable, precipitation-strengthened Al--B4C metal matrix composites (MMCs) for high temperature applications. In the first part, B4C plates were immersed in liquid aluminum alloyed with Sc, Zr and Ti to investigate the interfacial reactions between B4C and liquid aluminum The influences of Sc, Zr and Ti on the interfacial microstructure in terms of individual and combined additions were examined. Results reveal that all three elements reacted with B4C and formed interfacial layers that acted as a diffusion barrier to limit the decomposition of B4C in liquid aluminum. The interfacial reactions and the reaction products in each system were identified. With the combined addition of Sc, Zr and Ti, most of the Ti was found to enrich at the interface, which not only offered appropriate protection of the B4C but also reduced the consumption of Sc and Zr at the interface. In the second part, Sc and Zr were introduced into Al-15vol.% B 4C composites presaturated by Ti, and eight experimental composites with different Sc and Zr levels were prepared via a conventional casting technique. It was found that Sc was involved in the interfacial reactions with B 4C that partially consume Sc. The Sc addition yielded considerable precipitation strengthening in the as-cast and peak aged conditions. To achieve an equivalent strengthening effect of Sc in binary Al-Sc alloys, approximately double the amount of Sc is required in Al-B4C composites. On the contrary, no major Zr reaction products were found at the interfaces and the major part of Zr remained in the matrix for the precipitation strengthening. The combination of Sc and Zr enhanced sthe precipitation strengthening. Two kinds of nanoscale precipitates, Al3Sc and Al3(Sc, Zr), were found in the as-cast microstructure and contributed to the increase in the matrix hardness. In the third part, all the experimental composites were isothermally aged at 300, 350, 400 and 450°C after a homogenization/solution treatment. Results demonstrate that the addition of Sc generated a considerable precipitation hardening of the matrix of the composites for all aging temperatures applied. The precipitation hardening effect increased when increasing the Sc content and decreased with increase in aging temperature. The combination of alloying Sc and Zr in Al-B4C composites produced a remarkable synergistic effect. The addition of Zr provided not only a strength increase at peak aging but also an improvement of thermal stability. The composites with a high Zr:Sc ratio (≥1) showed excellent thermal stability of the strength up to 400°C. The overaging in these materials was delayed by ˜100°C compared with the Zr-free composites at the same Sc level. The precipitate volume fraction, the average radius and the size distribution of nanoscale Al3Sc and Al3(Sc,Zr) precipitates during the aging process were measured. The Al3(Sc,Zr) precipitates generally showed a much better coarsening resistance than the Al3Sc precipitates. In the fourth part, two experimental composites with 0.4wt.% Sc and 0.4wt.% Sc plus 0.24wt.% Zr 0were selected to examine the mechanical properties during long-term exposure (2000h) at elevated temperatures from 250 to 350°C. For long-term thermal stability, the mechanical properties of the Sc and Zr containing composite were stable up to 300°C, while the composite containing only Sc exhibited a good softening resistance up to 250°C. At higher temperatures the strengths of both composites decreased with prolonged annealing time. The reduction of the composites' mechanical properties during long-time annealing at higher temperatures was dominated by the precipitate coarsening. Finally, two experimental composites with 0.58wt.% Sc and 0.58wt.% Sc plus 0.24wt.% Zr, were respectively hot-rolled to a 2 mm thick sheet with a total reduction of 93%. Results indicate that the Sc- and Zr-containing composites possessed a good hot rolling processability. (Abstract shortened by UMI.)

  5. Personal computer applications in DIII-D neutral beam operation

    SciTech Connect

    Glad, A.S.

    1986-08-01

    An IBM PC AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for on-line shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host minicomputers, support multitasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e., LOTUS 123, PC PLOT, etc.), host communications software (i.e., PCLink, KERMIT, etc.), and applications developed software utilizing f-smcapso-smcapsr-smcapst-smcapsr-smcapsa-smcapsn-smcaps and b-smcapsa-smcapss-smcapsIc-smcaps. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for on-line control and analysis.

  6. Application of online modeling to the operation of SLC

    SciTech Connect

    Woodley, M.D.; Sanchez-Chopitea, L.; Shoaee, H.

    1987-02-01

    Online computer models of first order beam optics have been developed for the commissioning, control and operation of the entire SLC including Damping Rings, Linac, Positron Return Line and Collider Arcs. A generalized online environment utilizing these models provides the capability for interactive selection of a desired optics configuration and for the study of its properties. Automated procedures have been developed which calculate and load beamline component set-points and which can scale magnet strengths to achieve desired beam properties for any Linac energy profile. Graphic displays facilitate comparison of design, desired and actual optical characteristics of the beamlines. Measured beam properties, such as beam emittance and dispersion, can be incorporated interactively into the models and used for beamline matching and optimization of injection and extraction efficiencies and beam transmission. The online optics modeling facility also serves as the foundation for many model-driven applications such as autosteering, calculation of beam launch parameters, emittance measurement and dispersion correction.

  7. An operational global ocean forecast system and its applications

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.

    2012-12-01

    A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.

  8. NOAA Operational Model Archive Distribution System (NOMADS): High Availability Applications for Reliable Real Time Access to Operational Model Data

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.; Wang, J.

    2009-12-01

    To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including metadata. Data sets served in this way with a high availability server offer vast possibilities for the creation of new products for value added retailers and the scientific community. We demonstrate how users can use NOMADS services to select the values of Ensemble model runs over the ith Ensemble component, (forecast) time, vertical levels, global horizontal location, and by variable, virtually a 6-Dimensional data cube of access across the internet. The example application called the “Ensemble Probability Tool” make probability predictions of user defined weather events that can be used in remote areas for weather vulnerable circumstances. An application to access data for a verification pilot study is shown in detail in a companion paper (U06) collaboration with the World Bank and is an example of high value, usability and relevance of NCEP products and service capability over a wide spectrum of user and partner needs.

  9. Experience of Pseudospark Switch Operation in Pulse Power Applications

    NASA Astrophysics Data System (ADS)

    Voitenko, N. V.; Yudin, A. S.; Kuznetsova, N. S.; Bochkov, V. D.

    2015-11-01

    The paper demonstrates the results of TDIl-200k/25SN-P pseudospark switch (PSS) developed by Russian company "Pulsed Technologies Ltd" application. PSS was used in pulsed power unit intended for electric-discharge fracture of rocks and concrete blocks and splitting off from monolith. The pulsed power unit has a pulse current generator with the capacity of 560 μF, stored energy of up to 63 kJ, operating voltage of up to15 kV, current pulse amplitude of up to 200 kA and pulse duration more than 200 μsec. The study also shows the current waveforms determined in the short-circuit experiment of the pulse current generator and in the experiments of the electric-discharge fragmentation of concrete at the charging voltage of 13 kV. PSS was operated in ringing single-pulse mode with the exceedance of more than two maximum permissible parameters: current pulse amplitude, current pulse duration and maximum pulse energy. Internal electrode erosion of PSS is shown and possible reasons of asymmetric current feed are discussed.

  10. Application of diagnostics to determine motor-operated valve operational readiness

    SciTech Connect

    Eissenberg, D.M.

    1986-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.

  11. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    SciTech Connect

    Heydari, M.H.; Hooshmandasl, M.R.; Maalek Ghaini, F.M.; Cattani, C.

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.

  12. Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2014-11-01

    Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.

  13. Photoionization of Endohedral Atoms Using R-matrix Methods: Application to Xe@C60

    NASA Astrophysics Data System (ADS)

    Gorczyca, Thomas; Hasoglu, Muhammet; Manson, Steven; Ballance, Connor

    2013-05-01

    It is demonstrated that the effect of a static cage potential on the photoionization of endohedrally-enclosed atoms can be incorporated into standard R-matrix calculations using one of two independent methods. For photoionization processes occurring entirely within the fullerene, the outer-region solutions can be modified by the additional cage potential to yield phase-shifted Coulomb functions that are matched to the inner-region R-matrix. Alternatively, if the cage potential is contained within the R-matrix ``box,'' it can be directly incorporated into the formalism via simple one-electron integral contributions to the Hamiltonian, yielding a modified R-matrix itself. Both methods are applied to the photoionization of Xe@C60 in the vicinity of the giant 4 d --> ɛf resonance, and are found to be in excellent agreement with each other. Furthermore, good agreement with recent experimental results is obtained, validating the present approach and demonstrating that the full power of the many-electron, multi-channel, open-shell capabilities of the R-matrix method can be brought to bear on the photoionization of confined-atom systems in general.

  14. Interdisciplinary matrix in economics: two applications to the transition from socialism to capitalism.

    PubMed

    Jakimowicz, Aleksander

    2009-10-01

    The 7-fold interdisciplinary matrix is introduced. This integrated methodological point of view is original, although it is based on ideas of others in various ways. The name for this new approach draws on the Kuhnian notion of a disciplinary matrix. There are four components of the Kuhnian matrix on which the existence of scientific communities hinges: symbolic generalizations, models, values, and exemplars. In this context the term "paradigm" should refer to exemplars. The interdisciplinary matrix is composed of seven elements: cybernetics, catastrophe theory, fractal geometry, deterministic chaos, artificial intelligence, theory of complexity, and humanistic values. Scientific developments have recently brought substantial changes in the structure of scientific communities. Transferability of ideas and thoughts contributed to the creation of scientific communities, which unite representatives of various professions. When researching into certain phenomena we no longer need to develop theories for them from scratch, as we can draw on the achievements in other disciplines. Two examples of the employment of the interdisciplinary matrix in macroeconomics are elaborated here: the investment cycle model in socialist economy, and the model of economic transformation based on chaotic hysteresis. PMID:19781137

  15. GIS applications for military operations in coastal zones

    USGS Publications Warehouse

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.

    2009-01-01

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations. ?? 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  16. Operational Applications from the Suomi Npp and Jpss Satellites

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Furgerson, J.; Sjoberg, W.; Weng, F.; Csiszar, I. A.; Kilcoyne, H.; Gleason, J. F.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. Data collection - JPSS satellites continue the POES data collection instruments that relay in situ data and observations from remote transmitters. These instruments relay data from remote, unmanned stations including wind, temperature and salinity readings from ocean buoys, which allow for the monitoring of the ocean. These instruments are also used to track wildlife. Search and rescue - JPSS will continue the search and rescue instruments on POES that relay distress signals from aviators, mariners or land-based users in distress. This system assists in the rescue of hundreds on an annual basis. At the AGU conference, we will discuss in detail the operational applications of JPSS data and early demonstrations provided by SUOMI NPP. Examples will include improvements in weather forecasting, monitoring of coastal water quality (e.g. harmful algal blooms), marine resources, forest fires, volcanic eruptions and smoke/dust plumes, and monitoring of droughts, snow and ice cover. The quality of JPSS data for climate monitoring will also be discussed.

  17. Cross-linked κ-carrageenan polymer/zinc nanoporous composite matrix for expanded bed application: Fabrication and hydrodynamic characterization.

    PubMed

    Mohsenkhani, Sadaf; Jahanshahi, Mohsen; Rahimpour, Ahmad

    2015-08-21

    Expanded bed adsorption (EBA) is a reliable separation technique for the purification of bioproducts from complex feedstocks. The specifically designed adsorbent is necessary to form a stable expanded bed. In the present work, a novel custom-designed composite matrix has been prepared through the method of water-in-oil emulsification. In order to develop an adsorbent with desirable qualities and reduce the costs, κ-carrageenan and zinc powder were used as the polymeric skeleton and the densifier, respectively. The prepared composite matrix was named as KC-Zn. Optical microscope (OM) and scanning electron microscope (SEM) were applied to characterize the morphology and structure of prepared composite matrix. These analyses approved good spherical shape and porous structure with nano-scale pores in the range of about 60-180nm. The results from the particle size analyzer (PSA) revealed that all the KC-Zn beads followed logarithmic normal size distribution with the range of 50-350μm and average diameter of 160-230μm, respectively. Main physical properties of KC-Zn matrices were measured as a function of zinc powder ratio to κ-carrageenan slurry, which showed an appropriate wet density in the range of 1.39-2.27g/ml, water content of 72.67-36.41% and porosity of 98.07-80.24%, respectively. The effects of matrix density and liquid phase viscosity on hydrodynamic behavior of prepared matrix have been investigated by residence time distribution (RTD) experiments in an expanded bed. The results indicated that in a constant liquid velocity as the matrix density was increased, the expansion factor of bed decreased and the axial mixing coefficient increased. Moreover, an enhancement in the fluid viscosity led to an increase in the bed expansion and a decrease in the stability of expanded bed. Therefore using a matrix with higher density seems necessary to face viscous feedstocks. All the results demonstrated that proper physical properties and hydrodynamic characteristics of KC-Zn matrix confirm good potential for possible use in high flow rate expanded bed operations. PMID:26187763

  18. Obtaining the Hessian from the force covariance matrix: Application to crystalline explosives PETN and RDX.

    PubMed

    Pereverzev, Andrey; Sewell, Thomas D

    2015-04-01

    We show that for solids the effective Hessian matrix, averaged over the canonical ensemble, can be calculated from the force covariance matrix. This effective Hessian reduces to the standard Hessian as the temperature approaches zero, while at finite temperatures it implicitly includes anharmonic corrections. As a case study, we calculate the effective Hessians and the corresponding normal mode eigenvectors and frequencies for the crystalline organic explosives pentaerythritol tetranitrate and ?-1,3,5-trinitro-1,3,5-triazacyclohexane. The resulting normal mode frequencies are compared to those obtained by diagonalizing the standard Hessian matrix of second derivatives in Cartesian displacements about the potential energy minimum. Effects of temperature and statistical noise on the effective Hessians and normal mode frequencies are discussed. PMID:25854231

  19. The matrix coalescent and an application to human single-nucleotide polymorphisms.

    PubMed Central

    Wooding, Stephen; Rogers, Alan

    2002-01-01

    The "matrix coalescent" is a reformulation of the familiar coalescent process of population genetics. It ignores the topology of the gene tree and treats the coalescent as a Markov process describing the decay in the number of ancestors of a sample of genes as one proceeds backward in time. The matrix formulation of this process is convenient when the population changes in size, because such changes affect only the eigenvalues of the transition matrix, not the eigenvectors. The model is used here to calculate the expectation of the site frequency spectrum under various assumptions about population history. To illustrate how this method can be used with data, we then use it in conjunction with a set of SNPs to test hypotheses about the history of human population size. PMID:12196407

  20. Operational forecast products and applications based on WRF/Chem

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days when the influence of the aerosols can have a strong impact on the AOT. WRF/Chem forecasts of the atmospheric optical properties are used to add information on the incoming radiation during these days. The evaluation of the model with satellite data for different episodes with clear-sky conditions is presented.

  1. T-Matrix Method and its Applications to Electromagnetic Scattering by Particles: A Current Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Travis, Larry D.; Mackowski, Daniel W.

    2010-01-01

    This note serves as a short introduction to the reprint of our article "T-matrix computations of light scattering by nonspherical particles: a review" (JQSRT 1996; 55:535:75). We first discuss the motivation for writing that article and explain its historical context. This is followed by a short overview of more recent developments.

  2. Automotive applications polymer matrix composites. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of polymer matrix composites in automotive body parts, structural frame members, and engine components. Design, manufacturing, and performance considerations are examined. The future of engineered plastics and their role in new products are reviewed. (Contains 250 citations and includes a subject term index and title list.)

  3. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  4. A Delphi-matrix approach to SEA and its application within the tourism sector in Taiwan

    SciTech Connect

    Kuo, N.-W. . E-mail: ibis@ntcn.edu.tw; Hsiao, T.-Y.; Yu, Y.-H.

    2005-04-15

    Strategic Environmental Assessment (SEA) is a procedural tool and within the framework of SEA, several different types of analytical methods can be used in the assessment. However, the impact matrix used currently in Taiwan has some disadvantages. Hence, a Delphi-matrix approach to SEA is proposed here to improve the performance of Taiwan's SEA. This new approach is based on the impact matrix combination with indicators of sustainability, and then the Delphi method is employed to collect experts' opinions. In addition, the assessment of National Floriculture Park Plan and Taiwan Flora 2008 Program is taken as an example to examine this new method. Although international exhibition is one of the important tourism (economic) activities, SEA is seldom about tourism sector. Finally, the Delphi-matrix approach to SEA for tourism development plan is established containing eight assessment topics and 26 corresponding categories. In summary, three major types of impacts: resources' usages, pollution emissions, and local cultures change are found. Resources' usages, such as water, electricity, and natural gas demand, are calculated on a per capita basis. Various forms of pollution resulting from this plan, such as air, water, soil, waste, and noise, are also identified.

  5. APPLICATION OF MATRIX ISOLATION INFRARED SPECTROSCOPY TO ANALYSIS FOR POLYNUCLEAR AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Gas chromatography combined with matrix isolation infrared spectroscopy (GC/MI-IR) enables identification and quantification of components of complex mixtures by infrared spectroscopy at levels of a few nanograms. These levels are several orders of magnitude lower than those achi...

  6. Automotive applications polymer matrix composites. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the use of polymer matrix composites in automotive body parts, structural frame members, and engine components. Design, manufacturing, and performance considerations are examined. The future of engineered plastics and their role in new products are reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Integrating Matrix Method for Determining the Natural Vibrations of a Rotating, Unsymmetrical Beam with Application to Twisted Propeller Blades

    NASA Technical Reports Server (NTRS)

    Hunter, William F.

    1967-01-01

    A numerical method is Presented for determining the natural vibration frequencies, and the corresponding mode shapes, of a rotating cantilever beam which has a nonuniform, unsymmetrical cross section. Two coupled fourth-order differential equations of motion with variable coefficients are derived which govern the motion of such a beam having deformations in two directions. Through the development and utilization of the integrating matrix, the solution of the differential equations is obtained in the form of an eigenvalue problem. The solutions to the eigenvalue problem are determined by an iteration method based upon a special orthogonality relationship which is derived. Numerical examples, including an application to a twisted propeller blade, are presented with the results of the integrating matrix solutions being compared to exact solutions and experimental data.

  8. Application of the transfer matrix method to reflection gratings in positive and negative index materials

    NASA Astrophysics Data System (ADS)

    Aylo, R.; Li, H.; Nehmetallah, G.; Banerjee, P. P.

    2012-10-01

    The transfer matrix method (TMM) has been used to analyze plane wave and beam propagation through linear photonic bandgap structures. Here, we apply TMM to determine the exact spatial behavior of TE and TM waves in periodic refractive index structures of arbitrary thickness. First, we extend the TMM approach to analyze plane wave propagation through Kerr type nonlinear media. Secondly, we analyze second harmonic fields in a 1D nonlinear photonic crystal for arbitrary angle of incidence of the fundamental plane wave. This allows us to construct the overall transfer matrix of nonlinear waves for the whole nonlinear optical structure from all the individual layer transfer matrices. We extend this method to analyze the effect of second order nonlinearity to beam propagation by applying TMM to the angular spectral components of the beam(s).

  9. Superelement methods applications to micromechanics of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.

    1988-01-01

    Adaptation of the superelement finite-element method for micromechanics of continuous fiber high temperature metal matrix composites (HT-MMC) is described. The method is used to predict the thermomechanical behavior of P100-graphite/copper composites using MSC/NASTRAN and it is also used to validate those predicted by using an in-house computer program designed to perform micromechanics for HT-MMC. Typical results presented in the paper include unidirectional composite thermal properties, mechanical properties, and microstresses.

  10. An improved Newton iteration for the generalized inverse of a matrix, with applications

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schreiber, Robert

    1990-01-01

    The purpose here is to clarify and illustrate the potential for the use of variants of Newton's method of solving problems of practical interest on highly personal computers. The authors show how to accelerate the method substantially and how to modify it successfully to cope with ill-conditioned matrices. The authors conclude that Newton's method can be of value for some interesting computations, especially in parallel and other computing environments in which matrix products are especially easy to work with.

  11. The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities

    NASA Astrophysics Data System (ADS)

    Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.

    2015-10-01

    The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.

  12. Tape cast second generation orthorhombic-based titanium aluminide alloys for MMC applications. [Metal Matrix Composites

    SciTech Connect

    Smith, P.R.; Rosenberger, A.H. . Materials and Mfg. Directorate); Shepard, M.J. )

    1999-06-18

    Titanium metal matrix composites (TMCs) utilizing continuous SiC fiber reinforcement are considered important, if not, enabling materials for advanced Air Force propulsion systems, wherein combinations of high specific strength and elevated temperature capability are prerequisites to obtain desired increases in thrust-to-weight ratios and decreased specific fuel consumption. One such class of TMCs being assessed for use in rotating engine components are those based upon the orthorhombic titanium aluminide phase, Ti[sub 2]AlNb. These orthorhombic titanium matrix composites (O TMCs) are being examined for sustained use at temperatures up to 700 C. Previous studies have primarily focused on O TMCs made using the foil-fiber-foil fabrication process. More recently the Materials and Manufacturing Directorate of the Air Force Research Laboratory has been focusing attention on an alternative powder metallurgy approach for fabrication of O TMCs via tape casting. This latter approach has the potential to produce significant cost reduction (<$70/lb) for the matrix input material (powder). Unfortunately, little work has been done to understand the effects of powder microstructures and the tape casting process itself on the mechanical performance of O TMCs. Therefore, the first objective of this study is to examine the microstructural evolution and mechanical performance (with and without heat treatment) of three unreinforced heat orthorhombic-based titanium aluminide matrices made via tape casting. A second objective is to assess the viability of powder metallurgy processing for the fabrication of O TMCs.

  13. Improved covariance matrix estimation: interpretation and experimental analysis of different approaches for anomaly detection applications

    NASA Astrophysics Data System (ADS)

    Matteoli, Stefania; Diani, Marco; Corsini, Giovanni

    2009-09-01

    The benchmark anomaly detection algorithm for hyperspectral images is the Reed-Xiaoli (RX) Detector, which is based on the Local Multivariate Normality of background. RX algorithm, along with its many modified versions, has been widely explored, and the main concerns identified are related to local background covariance matrix estimation. Besides the well-known small-sample size problem, other limitations have been found affecting covariance matrix estimation, e.g. local background non-homogeneity and contamination from adjacent targets. These critical aspects are deeply different in nature, like the situations from which they arise, and hence they have been typically discussed within different frameworks, disregarding possible existing links while developing different approaches to solution. Nevertheless, these critical aspects may occur together in reality, and all of them have to be taken into consideration when approaching anomaly detection, since they may strongly affect detection performance. Therefore, an analysis of the possible existing connections seems crucial in order to asses if existing algorithms, maybe designed ad-hoc to solve a specific problem, can handle more complex situations. In this work, the aforementioned limitations have been investigated from an anomaly detection perspective, and the corresponding approaches to improved covariance matrix estimation have been analyzed by using real hyperspectral data.

  14. Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas

    SciTech Connect

    Pernal, Katarzyna

    2010-05-15

    We propose a method that employs functionals of the one-electron reduced density matrix (density matrix) to capture long-range effects of electron correlation. The complementary short-range regime is treated with density functionals. In an effort to find approximations for the long-range density-matrix functional, a modified power functional is applied to the homogeneous electron gas with Coulomb interactions replaced by their corresponding long-range counterparts. For the power {beta}=1/2 and the range-separation parameter {omega}=1/r{sub s}, the functional reproduces the correlation and the kinetic correlation energies with a remarkable accuracy for intermediate and large values of r{sub s}. Analysis of the Euler equation corresponding to this functional reveals correct r{sub s} expansion of the correlation energy in the limit of large r{sub s}. The first expansion coefficient is in very good agreement with that obtained from the modified Wigner-Seitz model.

  15. Ferrocene carboxaldehyde thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications

    NASA Astrophysics Data System (ADS)

    Constantinescu, Catalin; Matei, Andreea; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Luculescu, Catalin. R.; Vasiliu, Cristina; Emandi, Ana

    2014-05-01

    Thin films of ferrocene carboxaldehyde, also known as cyclopentadienyl(formylcyclopentadienyl)iron, were grown on silicon and glass substrates by matrix-assisted pulsed laser evaporation technique, using a Nd:YAG device operating at 266 nm (4ω). Spectroscopic-ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy and atomic force microscopy investigations revealed that the films are homogeneous in thickness, with dense morphology and without cracks, low surface roughness (∼11 nm), and no significant chemical damage. Second harmonic generation capabilities of the thin films were evidenced by using a femtosecond Ti:sapphire laser.

  16. 30 CFR 773.9 - Review of applicant, operator, and ownership and control information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator's organizational structure and ownership or control relationships. (b) We must conduct the review... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Review of applicant, operator, and ownership....9 Review of applicant, operator, and ownership and control information. (a) We, the...

  17. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  18. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  19. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  20. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  1. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  2. A mobile App for military operational entomology pesticide applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple field studies conducted for the Deployed War Fighter Protection (DWFP) research program have generated over 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treat...

  3. Matrix-based fertilizers reduce nutrient and bacterial leaching after manure application in a greenhouse column study.

    PubMed

    Entry, James A; Sojka, R E; Hicks, Brendan J

    2010-01-01

    We tested the efficacy of matrix-based fertilizers (MBFs) to reduce Escherichia coli and Enterococcus spp., NH(4), NO(3), dissolved reactive phosphorus (DRP), and total phosphorus (TP) in leachate and soil after dairy manure application in greenhouse column studies. The MBFs are composed of inorganic N and P in compounds that are relatively loosely bound (MBF8) to more tightly bound (MBF9) mixtures using combinations of starch, cellulose, lignin, Al(2)(SO(4))(3)18H(2)O, and/or Fe(2)(SO(4))(3)3H(2)O to create a matrix that slowly releases the nutrients. One day after the first dairy manure application, E. coli numbers were greater in leachate from control columns than in leachate from columns receiving MBFs. After three dairy manure applications, E. coli and Enterococcus spp. numbers in leachates were not consistently different between controls and columns receiving MBFs. When MBF8 was applied to the soil, the total amount of DRP, TP, NH(4), and NO(3) in leachate was lower than in the control columns. Bermudagrass receiving MBFs had greater shoot, root, and total biomass than grass growing in the control columns. Grass shoot, root, and total biomass did not differ among columns receiving MBFs. Nitrogen and phosphorus bound to the Al(2)(SO(4))(3)18H(2)O or Fe(2)(SO(4))(3)3H(2)O-lignin-cellulose matrix become gradually available to plants over the growing season. The MBF8 and MBF9 formulations do not depend on organic or inorganic coatings to reduce N and P leaching and have the potential with further testing and development to provide an effective method to reduce N and P leaching from soils treated with animal waste. PMID:20048326

  4. Imaging with tilted surfaces: an efficient matrix method for the generalized Scheimpflug condition and its application to rotationally symmetric triangulation

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    2005-06-01

    An efficient two-dimensional matrix method is presented that facilitates the design of optical systems with tilted surfaces for which the requirement or knowledge of the orientation of the image plane is necessary, i.e., for which a generalized Scheimpflug condition is needed. In more general terms, the method results in imaging properties of second-order expansion, but the method is linear. Therefore the complexity of the design process is considerably reduced. The strength of the design method is demonstrated in detail for a novel application in which a reflective optical system of several surfaces is required for rotationally symmetric triangulation.

  5. Microwave-Induced Sintering of Cu-Based Metallic Glass Matrix Composites in a Single-Mode 915-MHz Applicator

    NASA Astrophysics Data System (ADS)

    Li, Song; Xie, Guoqiang; Louzguine-Luzgin, Dmitri V.; Sato, Motoyasu; Inoue, Akihisa

    2011-06-01

    Using a single-mode 915-MHz microwave applicator equipped with a ceramic pressing unit, we processed the gas-atomized Cu50Zr45Al5 metallic glassy alloy powder blended with Sn powder of various contents in a separated magnetic (H-) field maximum. The blended powders were well heated in H-field. Bulk Cu50Zr45Al5 metallic glass matrix composites were produced with an applied pressure of 5 MPa. As a secondary phase, the Sn particle promoted the densification of the sintered samples.

  6. Metal-matrix composite processing technologies for aircraft engine applications. [Ti-6Al-2Sn-4Zr-2Mo

    SciTech Connect

    Pank, D.R.; Jackson, J.J. )

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications because of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechanical properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR and D program.

  7. Assessment of Erosion Resistance of Coated Polymer Matrix Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Sutter, James K.; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.

    2004-01-01

    The erosion behavior of tungsten carbide-cobalt (WC-Co) coated and uncoated polymer matrix composites (PMCs) was examined with solid particle impingement using air jets. Erosion tests were conducted with Arizona road dust impinging at 20 degrees, 60 degrees, and 90 degrees angles at a velocity of 229 meters per second at both 294 and 366 K. Noncontact optical profilometry was used to measure the wear volume loss. Results indicate that the WC-Co coating enhanced erosion resistance and reduced erosion wear volume loss by a factor of nearly 2. This should contribute to longer wear lives, reduced related breakdowns, decreased maintenance costs, and increased product reliability.

  8. Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications

    SciTech Connect

    L. J. Pekot; S. R. Reeves

    2002-03-31

    Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

  9. The HDTV digital audio matrix

    NASA Astrophysics Data System (ADS)

    Mason, A. J.

    Multichannel sound systems are being studied as part of the Eureka 95 and Radio-communication Bureau TG10-1 investigations into high definition television. One emerging sound system has five channels; three at the front and two at the back. This raises some compatibility issues. The listener might have only, say, two loudspeakers or the material to be broadcast may have fewer than five channels. The problem is how best to produce a set of signals to be broadcast, which is suitable for all listeners, from those that are available. To investigate this area, a device has been designed and built which has six input channels and six output channels. Each output signal is a linear combination of the input signals. The inputs and outputs are in AES/EBU digital audio format using BBC-designed AESIC chips. The matrix operation, to produce the six outputs from the six inputs, is performed by a Motorola DSP56001. The user interface and 'housekeeping' is managed by a T222 transputer. The operator of the matrix uses a VDU to enter sets of coefficients and a rotary switch to select which set to use. A set of analog controls is also available and is used to control operations other than the simple compatibility matrixing. The matrix has been very useful for simple tasks: mixing a stereo signal into mono, creating a stereo signal from a mono signal, applying a fixed gain or attenuation to a signal, exchanging the A and B channels of an AES/EBU bitstream, and so on. These are readily achieved using simple sets of coefficients. Additions to the user interface software have led to several more sophisticated applications which still consist of a matrix operation. Different multichannel panning laws have been evaluated. The analog controls adjust the panning; the audio signals are processed digitally using a matrix operation. A digital SoundField microphone decoder has also been implemented. matrix operation, the analog controls being used to adjust the characteristics of the decoded microphone. &DSP software for specific tasks not requiring operator control has also been used. Adaptive filtering and signal restoration are two examples. The transputer in this case can be left to perform the housekeeping. *The design of the HDTV digital audio matrix is such that it can be applied to a wide variety of signal processing tasks. -The combination of a dedicated DSP chip programmed in assembly language for speed of operation and a general purpose processor for user interface tasks programmed in a high level language has been found to be extremely useful.

  10. RoboCon: Operator interface for robotic applications

    SciTech Connect

    Schempf, H.; Warwick, J.; Fung, M.; Chemel, B.; Blackwell, M.

    1996-12-31

    Carnegie Mellon U. and ORNL`s Robotics and Process Systems Division are developing a state-of-the-art robot operator control station (RoboCon) with standardized hardware and software control interfaces to be adaptable to a variety of remote and robotic equipment currently funded by DOE`s Office of Science & Technology Robotics Technology Development Program. The human operation and telerobotic and supervisory control of sophisticated and remote and robotic systems is a complex, tiring, and non-intuitive activity. Since decontamination & decommissioning, selective equipment removal, mixed waste operations, and in-tank cleanup are going to be a major future activity in DOE environmental restoration and waste management cleanup agenda, it seems necessary to utilize an operator control station and interface which maximizes operator comfort and productivity.

  11. Fabrication of nanocrystallites in the SiOx matrix applicable in microelectronics

    NASA Astrophysics Data System (ADS)

    Kolodziej, Tomasz

    2013-07-01

    The development of the technology of fabricating hydrogenated amorphous silicon (a-Si:H) or silicon oxide (SiOx) matrix with nanocrystalline inclusions (nc-Si:H) is the next step in improving the properties of electronic devices, such as solar cells, thin film transistors (TFT), floating gate transistors and others. Those films exhibit increased stability, absorption and carrier mobility. This paper is focused on the technology of manufacturing such films by means of Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD), which is use to fabricate electronic devices. The technology was developed in the Semiconductor Thin Films and Solar Cells Laboratory at the Department of Electronics at the AGH University of Science and Technology. The author describes the manufacturing process based on periodical variation of the process parameters, such as hydrogen to silane ratio (Rh), gas flows, RF power and pressure in the process chamber, during the deposition process. The author also presents the results of the measurements of typical samples with High Resolution Transmission Electron Microscopy (HRTEM), which confirms the existence of the nanocrystallites in the a-Si:H/SiOx matrix.

  12. Three-Dimensional Supermacroporous Carrageenan-Gelatin Cryogel Matrix for Tissue Engineering Applications

    PubMed Central

    Sharma, Archana; Bhat, Sumrita; Vishnoi, Tanushree; Nayak, Vijayashree; Kumar, Ashok

    2013-01-01

    A tissue-engineered polymeric scaffold should provide suitable macroporous structure similar to that of extracellular matrix which can induce cellular activities and guide tissue regeneration. Cryogelation is a technique in which appropriate monomers or polymeric precursors frozen at sub-zero temperature leads to the formation of supermacroporous cryogel matrices. In this study carrageenan-gelatin (natural polymers) cryogels were synthesized by using glutaraldehyde and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride and N-hydroxysuccinimide (EDC-NHS) as crosslinking agent at optimum concentrations. Matrices showed large and interconnected pores which were in the range of 60–100 μm diameter. Unconfined compression analysis showed elasticity and physical integrity of all cryogels, as these matrices regained their original length after 90% compressing from the original size. Moreover Young's modulus was found to be in the range of 4–11 kPa for the dry cryogel sections. These cryogels also exhibited good in vitro degradation capacity at 37 °C within 4 weeks of incubation. Supermacroporous carrageenan-gelatin cryogels showed efficient cell adherence and proliferation of Cos-7 cells which was examined by SEM. PI nuclear stain was used to observe cell-matrix interaction. Cytotoxicity of the scaffolds was checked by MTT assay which showed that cryogels are biocompatible and act as a potential material for tissue engineering and regenerative medicine. PMID:23936806

  13. Piezoacoustic wave spectra using improved surface impedance matrix: application to high impedance-contrast layered plates.

    PubMed

    Zhang, Victor Y; Dubus, Bertrand; Collet, Bernard; Destrade, Michel

    2008-04-01

    Starting from the general modal solutions for a homogeneous layer of arbitrary material and crystalline symmetry, a matrix formalism is developed to establish the semianalytical expressions of the surface impedance matrices (SIM) for a single piezoelectric layer. By applying the electrical boundary conditions, the layer impedance matrix is reduced to a unified elastic form whether the material is piezoelectric or not. The characteristic equation for the dispersion curves is derived in both forms of a three-dimensional acoustic SIM and of an electrical scalar function. The same approach is extended to multilayered structures such as a piezoelectric layer sandwiched in between two metallic electrodes, a Bragg coupler, and a semi-infinite substrate as well. The effectiveness of the approach is numerically demonstrated by its ability to determine the full spectra of guided modes, even at extremely high frequencies, in layered plates comprising up to four layers and three materials. Negative slope in f-k curve for some modes, asymptotic behavior at short wavelength regime, as well as wave confinement phenomena made evident by the numerical results are analyzed and interpreted in terms of the surface acoustic waves and of the interfacial waves in connection with the bulk waves in massive materials. PMID:18397005

  14. Particulate Titanium Matrix Composites Tested-Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Lerch, Bradley A.; Arnold, Steven M.

    2003-01-01

    New manufacturing technologies can now produce uniformly distributed particle strengthened titanium matrix composites (TMCs) at lower cost than many types of continuous-fiber composites. The innovative process results in near-final-shape components having a material stiffness up to 26-percent greater than that of components made with conventional titanium materials. This benefit is achieved with no significant increase in the weight of the component. The improved mechanical performance and low-cost manufacturing capability motivated a review of particulate-reinforced metal composite technology as a way to lower the cost and weight of space-access propulsion systems. Focusing on the elevated-temperature properties of titanium alloy Ti-6Al-4V as the matrix material, researchers at the NASA Glenn Research Center conducted experiments to verify the improved performance of the alloy containing 10 wt% of ceramic titanium carbide (TiC) particles. The appropriate blend of metal and ceramic powder underwent a series of cold and hot isostatic pressing procedures to yield bar stock. A set of round dogbone specimens was manufactured from a small sample of the bars. The TMC material proved to have good machinability at this particle concentration as there was no difficulty in producing high-quality specimens.

  15. Finding Nonoverlapping Substructures of a Sparse Matrix

    SciTech Connect

    Pinar, Ali; Vassilevska, Virginia

    2005-08-11

    Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.

  16. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... RULES OF PRACTICE IN PERMIT PROCEEDINGS Grounds for Citation § 71.49a Applications for operating permits... issue a citation for the contemplated disapproval of the application. (72 Stat. 1349, 1370; 26...

  17. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... RULES OF PRACTICE IN PERMIT PROCEEDINGS Grounds for Citation § 71.49a Applications for operating permits... issue a citation for the contemplated disapproval of the application. (72 Stat. 1349, 1370; 26...

  18. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... RULES OF PRACTICE IN PERMIT PROCEEDINGS Grounds for Citation § 71.49a Applications for operating permits... issue a citation for the contemplated disapproval of the application. (72 Stat. 1349, 1370; 26...

  19. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... RULES OF PRACTICE IN PERMIT PROCEEDINGS Grounds for Citation § 71.49a Applications for operating permits... issue a citation for the contemplated disapproval of the application. (72 Stat. 1349, 1370; 26...

  20. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... RULES OF PRACTICE IN PERMIT PROCEEDINGS Grounds for Citation § 71.49a Applications for operating permits... issue a citation for the contemplated disapproval of the application. (72 Stat. 1349, 1370; 26...

  1. 14 CFR 331.25 - To what address must operators or providers send their applications?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GENERAL AVIATION OPERATORS AND SERVICE PROVIDERS IN THE WASHINGTON, DC AREA Application Procedures § 331..., DC 20590. (b) Your application must be submitted via courier or an express package service, such...

  2. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  3. The application of image enhancement techniques to remote manipulator operation

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.

    1974-01-01

    Methods of image enhancement which can be used by an operator who is not experienced with the mechanisms of enhancement to obtain satisfactory results were designed and implemented. Investigation of transformations which operate directly on the image domain resulted in a new technique of contrast enhancement. Transformations on the Fourier transform of the original image, including such techniques as homomorphic filtering, were also investigated. The methods of communication between the enhancement system and the computer operator were analyzed, and a language was developed for use in image enhancement. A working enhancement system was then created, and is included.

  4. Department of Defense operational applications of wind measurements

    NASA Technical Reports Server (NTRS)

    Ramsay, Allan C.

    1985-01-01

    A stated objective for this symposium is to identify requirements for global wind measurements. This paper will draw from recent reports which considered the impact of over 100 environmental factors known to affect military operations. A conclusion that can be drawn from those analyses is that one environmental factor, atmospheric wind, has an operational impact on each of the 48 mission areas examined. This paper will characterize the impact of wind on the various mission areas and will define and summarize both 'technical' and 'operational' requirements for wind intelligence.

  5. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Federal, State and local officials to determine if such information is factual; that if any information is... and prominent language on or near the front page of the application, notification of the household's... prominent language on or near the front page of the application, a description of the expedited...

  6. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal, State and local officials to determine if such information is factual; that if any information is... and prominent language on or near the front page of the application, notification of the household's... prominent language on or near the front page of the application, a description of the expedited...

  7. Residual energy applications program test and operations report

    SciTech Connect

    Zander, F.H.

    1980-10-01

    Objective of REAP in the recovery of waste heat at US gaseous diffusion plants by 1984. This report contains policy, objective, and guideline suggestions for utilizing the proposed Energy applied Systems Test (EAST) Facility and for managing EAST operations; preliminary design information on facility support equipment and physical plant; and estimates of initial construction costs and staffing requirements for a two-bay, three-shift operation. (DCL)

  8. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    NASA Technical Reports Server (NTRS)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  9. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  10. Si membrane based tactile sensor with active matrix circuitry for artificial skin applications

    NASA Astrophysics Data System (ADS)

    Park, Minhoon; Kim, Min-Seok; Park, Yon-Kyu; Ahn, Jong-Hyun

    2015-01-01

    The fabrication and the characteristics of an inorganic silicon-based flexible tactile sensor equipped with active-matrix circuitry compatible with a batch microfabrication process are reported. An 8 × 8 array of 260 nm-thick silicon strain gauges along with individual thin film transistor switches was built on a plastic substrate with 1 mm spacing, corresponding to a human spatial resolution at the fingertip. We demonstrated that the sensor shows excellent performances in terms of repeatability of 1.1%, hysteresis of 1.0%, scanning speed of as much as 100 kHz and resolution of 12.4 kPa while maintaining low power consumption and signal crosstalk through a series of experiments.

  11. Dirac electrons in the presence of a matrix potential barrier: application to graphene and topological insulators

    NASA Astrophysics Data System (ADS)

    Erementchouk, Mikhail; Mazumder, Pinaki; Khan, M. A.; Leuenberger, Michael N.

    2016-03-01

    Scattering of 2D Dirac electrons on a rectangular matrix potential barrier is considered using the formalism of spinor transfer matrices. It is shown, in particular, that in the absence of the mass term, the Klein tunneling is not necessarily suppressed but occurs at oblique incidence. The formalism is applied to studying waveguiding modes of the barrier, which are supported by the edge and bulk states. The condition of the existence of the uni-directionality property is found. We show that the band of edge states is always finite with massless excitations, while the spectrum of the bulk states, depending on the parameters of the barrier, may consist of the infinite or finite band with both, massive and massless, low-energy excitations. The effect of the Zeeman term is considered and the condition of the appearance of two distinct energy-dependent directions corresponding to the Klein tunneling is found.

  12. Concerning an application of the method of least squares with a variable weight matrix

    NASA Technical Reports Server (NTRS)

    Sukhanov, A. A.

    1979-01-01

    An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.

  13. Dirac electrons in the presence of a matrix potential barrier: application to graphene and topological insulators.

    PubMed

    Erementchouk, Mikhail; Mazumder, Pinaki; Khan, M A; Leuenberger, Michael N

    2016-03-23

    Scattering of 2D Dirac electrons on a rectangular matrix potential barrier is considered using the formalism of spinor transfer matrices. It is shown, in particular, that in the absence of the mass term, the Klein tunneling is not necessarily suppressed but occurs at oblique incidence. The formalism is applied to studying waveguiding modes of the barrier, which are supported by the edge and bulk states. The condition of the existence of the uni-directionality property is found. We show that the band of edge states is always finite with massless excitations, while the spectrum of the bulk states, depending on the parameters of the barrier, may consist of the infinite or finite band with both, massive and massless, low-energy excitations. The effect of the Zeeman term is considered and the condition of the appearance of two distinct energy-dependent directions corresponding to the Klein tunneling is found. PMID:26902304

  14. Direct tissue analysis by matrix-assisted laser desorption ionization mass spectrometry: application to kidney biology.

    PubMed

    Herring, Kristen D; Oppenheimer, Stacey R; Caprioli, Richard M

    2007-11-01

    Direct tissue analysis using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) provides in situ molecular analysis of a wide variety of biological molecules including xenobiotics. This technology allows measurement of these species in their native biological environment without the use of target-specific reagents such as antibodies. It can be used to profile discrete cellular regions and obtain region-specific images, providing information on the relative abundance and spatial distribution of proteins, peptides, lipids, and drugs. In this article, we report the sample preparation, MS data acquisition and analysis, and protein identification methodologies used in our laboratory for profiling/imaging MS and how this has been applied to kidney disease and toxicity. PMID:18061842

  15. Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler.

    PubMed

    Lamanna, Melisa; Morales, No J; Garca, Nancy Lis; Goyanes, Silvia

    2013-08-14

    Gamma radiation arises as an advantageous alternative to obtain starch nanoparticles given its low cost, simple methodology and scalability. Starch nanoparticles (SNP) with sizes around 20 and 30 nm were obtained applying a dose of 20 kGy from cassava (CNP-?) and waxy maize (WNP-?) starch, respectively. They showed the same thermal degradation behavior and their maximum mass loss zone was similar to those nanoparticles obtained from acid hydrolysis (WNP-h). Additionally, CNP-? and WNP-? were used as nanofillers in a cassava matrix. Increments of 102% in storage modulus were obtained with the addition of only 2.5 wt.% of WNP-?, showing that gamma radiation is a successful methodology to obtain SNP able to be used as starch reinforcement. PMID:23769521

  16. Nonbacktracking operator for the Ising model and its applications in systems with multiple states.

    PubMed

    Zhang, Pan

    2015-04-01

    The nonbacktracking operator for a graph is the adjacency matrix defined on directed edges of the graph. The operator was recently shown to perform optimally in spectral clustering in sparse synthetic graphs and have a deep connection to belief propagation algorithm. In this paper we consider nonbacktracking operator for Ising model on a general graph with a general coupling distribution and study the spectrum of this operator analytically. We show that spectral algorithms based on this operator is equivalent to belief propagation algorithm linearized at the paramagnetic fixed point and recovers replica-symmetry results on phase boundaries obtained by replica methods. This operator can be applied directly to systems with multiple states like Hopfield model. We show that spectrum of the operator can be used to determine number of patterns that stored successfully in the network, and the associated eigenvectors can be used to retrieve all the patterns simultaneously. We also give an example on how to control the Hopfield model, i.e., making network more sparse while keeping patterns stable, using the nonbacktracking operator and matrix perturbation theory. PMID:25974451

  17. The gas electron multiplier (GEM): Operating principles and applications

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2016-01-01

    Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.

  18. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  19. MIL-H-8501B: Application to shipboard terminal operations

    NASA Technical Reports Server (NTRS)

    Cappetta, A. N.; Johns, J. B.

    1993-01-01

    The philosophy and structure of the proposed U.S. Military Specification for Handling Qualities Requirements for Military Rotorcraft, MIL-H-8501B, are presented with emphasis on shipboard terminal operations. The impact of current and future naval operational requirements on the selection of appropriate combinations of basic vehicle dynamics and usable cue environments are identified. An example 'walk through' of MIL-H-8501B is conducted from task identification to determination of stability and control requirements. For selected basic vehicle dynamics, criteria as a function of input/response magnitude are presented. Additionally, rotorcraft design development implications are discussed.

  20. Towards an operational ERTS - requirements for implementing cartographic applications of an operational ERTS type satellite

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P.

    1974-01-01

    After nearly 18 months of successful operation of the first Earth Resources Technology Satellite (ERTS-1), a careful look at the future in order. Judging from the results of ERTS-1 experiments, public sales of ERTS-1 products and overall worldwide response it is believed that ERTS-1 has demonstrated an earth sensing mode that should become operational. It is recognized that several studies leading to the definition of an operational ERTS have been made. However cartographic requirements are generally more basic and demanding than those of the earth science disciplines and are therefore treated separately in this report. One assumption made is that the configuration of ERTS, particularly with respect to the multispectral scanner and data transmission rates cannot be materially altered.

  1. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  2. Decorrelating capabilities of operations with application to decoherence

    SciTech Connect

    Luo Shunlong; Fu Shuangshuang; Li Nan

    2010-11-15

    Decoherence, interpreted broadly, is essentially the leakage of system information into the environment and is often accompanied by dissipation. The basic questions arise: how to quantify decoherence induced by an operation and how to quantitatively compare decoherence induced by different operations. In this paper, based on a joint ancilla-system-environment tripartite purification for the initial system state and the operation, and by exploiting the intrinsic relations between the loss of correlations in the ancilla-system and the correlations established in the system-environment, we characterize and quantify decoherence from a decorrelating perspective. For this purpose, we first address the issue of separating and quantifying the classical and quantum parts of decorrelation. By use of the canonical isomorphism between operations and bipartite states, we propose two intrinsic decorrelation measures: One is the classical decorrelation based on the loss of classical correlations, and the other is the quantum decorrelation based on the loss of quantum correlations. With the help of quantum decorrelation, we introduce an intuitive measure of (quantum) decoherence. We further employ these informational quantities to analyze some widely used channels such as the complete decoherent channel, the depolarizing channel, the bit-flip channel, the transpose depolarizing channel, the amplitude damping channel, and the phase damping channel. Our analysis illustrates the intriguing interplay between classical and quantum decorrelations and sheds some light on the informational nature of decoherence.

  3. The application of NAVSTAR Differential GPS to civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Beser, J.; Parkinson, B. W.

    1981-01-01

    Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.

  4. Optical butterfly interconnections and applications in optical logic operations

    NASA Astrophysics Data System (ADS)

    Sun, DeGui; Wang, Na-Xin; Weng, Zhao-Heng

    1993-02-01

    In this paper, the optical butterfly interconnections have first been implemented in theory and experiment by using the special reflected interconnect gratings and liquid crystal light valve (LCLV), and two most primitive optical logic operations (AND and OR) have been completed on the basis in parallel. Hence, this work makes the fundamental for more complex digital optical computings.

  5. Selected Mathematics Applications (Level A): Operating A Store.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is one of a series of resource guides designed to provide students with an improved mathematics program. This guide emphasizes real-life situations focusing on the operation of a store. Classes are divided into grocery, meat, produce, drugs, and hardware sections at the beginning of the course. Students learn how to organize, collect,…

  6. GIBUS : An Operational Expert System For Space Applications

    NASA Astrophysics Data System (ADS)

    Marrot, Pascal; Muenier, Michel

    1989-03-01

    This paper presents the (JIB US expert system, installed in its "deferred time" version since July 1985 at the European Space Agency (ESA). This system aims at helping test centres operators in their job of managing batteries on-board satellites.

  7. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    NASA Astrophysics Data System (ADS)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  8. Bone Reconstruction following Application of Bone Matrix Gelatin to Alveolar Defects: A Randomized Clinical Trial

    PubMed Central

    Bayat, M.; Momen Heravi, F.; Mahmoudi, M.; Bahrami, N.

    2015-01-01

    Background: Conventional dentoalveolar osseous reconstruction often involves the use of graft materials with or without barrier membranes. Objective: To evaluate the efficacy of bone induction by bone matrix gelatin (BMG), delivered on an absorbable collagen sponge (ACS), compared to a placebo (ACS alone) in human alveolar socket defects. Methods: 20 alveolar sockets from 10 healthy adults were studied. In all cases, both the mandibular premolar area and the contralateral premolar area (as the control site) were involved. In each of the 10 patients, the extraction sites were filled randomly with BMG and ACS. The repair response was examined on day 90. Qualitative histological and quantitative histometric analysis, including the percentage of new-formed bone fill and density were done. Results: Assessment of the alveolar bone indicated that patients treated with BMG had significantly (p<0.05) better bone quality and quantity compared to the controls. In addition, bone density and histology revealed no differences between the newly induced and native bone. Conclusion: The data from this single-blind clinical trial demonstrated that the novel combination of BMG had a striking effect on de novo osseous formation for the bone regeneration. PMID:26576263

  9. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.

    PubMed

    Sharma, Archana; Bhat, Sumrita; Nayak, Vijayashree; Kumar, Ashok

    2015-02-01

    Three dimensional scaffolds synthesized using natural or synthetic polymers act as an artificial niche for cell adherence and proliferation. In this study, we have fabricated cryogels employing blend of poly (ethylene glycol) (PEG) and gelatin using two different crosslinkers like, glutaraldehyde and EDC-NHS by cryogelation technique. Synthesized matrices possessed interconnected porous structure in the range of 60-100 μm diameter and regained their original length after 90% compression without deformation. Visco-elastic behavior was studied by rheology and unconfined compression analysis, elastic modulus of these cryogels was observed to be >10(5)Pa which showed their elasticity and mechanical strength. TGA and DSC also showed the stability of these cryogels at different temperatures. In vitro degradation capacity was analyzed for 4 weeks at 37°C. IMR-32, C2C12 and Cos-7 cells proliferation and ECM secretion on PEG-gelatin cryogels were observed by SEM and fluorescent analysis. In vitro biocompatibility was analyzed by MTT assay for the period of 15 days. Furthermore, cell proliferation efficiency, metabolic activity and functionality of IMR-32 cells were analyzed by neurotransmitter assay and DNA quantification. The cell-matrix interaction, elasticity, mechanical strength, stability at different temperatures, biocompatible, degradable nature showed the potentiality of these cryogels towards soft tissue engineering such as neural, cardiac and skin. PMID:25492201

  10. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  11. A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling

    NASA Astrophysics Data System (ADS)

    Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.

    2013-12-01

    Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.

  12. Design, fabrication, and operation of hybrid bionanodevices for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tucker, Robert Matthew

    Cells are the fundamental building blocks of life. Despite their simplicity, cells are extremely versatile, performing a variety of functions including detection, signaling, and repair. While current biomedical devices operate at the organ level, the next generation will operate at the cellular level, combining the nanoscale machinery of cells with the mechanical robustness of synthetic materials in the form of new hybrid devices. This thesis presents advances in four topics concerning the development of nanomedical devices: fabrication, stabilization, control, and operation. First, as feature sizes decrease from the milli- and microscale towards the nanoscale, new fabrication methods must be developed. A new rapid prototyping technique using confocal microscopy was used to produce freely-programmable high-resolution protein patterns of functional motor proteins on thermo-responsive polymer surfaces. Second, hybrid device operation should be temperature-independent, but most biological components have strong responses to temperature fluctuations. To counter operational fluctuations, the temperature-dependent enzymatic activity was characterized for two types of molecular motors with the goal of developing a bionanosystem which is stabilized against temperature fluctuations. Third, replacing electromechanical systems consisting of pumps and batteries with proteins that directly convert chemical potential into mechanical energy increases the efficiency and decreases the size of the bionanodevice, but requires new control methods. An enzymatic network was developed in which fuel was photolytically released to activate molecular shuttles, excess fuel was sequestered using an enzyme, and spatial and temporal control of the system was achieved. Finally, chemically powered bionanodevices will require high-precision nano- and microscale actuators. A two-part hybrid actuator was designed, which consists of a molecular motor-coated synthetic macroscale forcer and a microtubule-based stator. Methods to create and characterize the stator were developed, which can be used to optimize the force generation of the device.

  13. Isotope Inversion Experiment evaluating the suitability of calibration in surrogate matrix for quantification via LC-MS/MS-Exemplary application for a steroid multi-method.

    PubMed

    Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H

    2016-05-30

    For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays quantifying endogenous analytes. We consider it a valuable and convenient tool to evaluate the correct quantification of authentic matrix samples based on a calibration curve in surrogate matrix. PMID:26974483

  14. Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets.

    PubMed

    Pearnchob, N; Siepmann, J; Bodmeier, R

    2003-09-01

    Shellac is a natural polymer, which is used as enteric coating material in pharmaceutical applications. The major objective of the present study was to investigate the potential of shellac for other purposes, namely to provide moisture-protective and taste-masking coatings as well as extended-release matrix tablets. The efficiency of shellac to achieve moisture protection and taste masking was compared with that of hydroxypropyl methylcellulose (HPMC), which is most frequently used for these purposes. Shellac-coated tablets showed lower water uptake rates than HPMC-coated systems at the same coating level. The stability of acetylsalicylic acid was higher in tablets coated with shellac compared with HPMC-coated systems, irrespective of the storage humidity. Therefore, lower shellac coating levels were required to achieve the same degree of drug protection. Shellac coatings effectively masked the unpleasant taste of acetaminophen tablets. Compared to HPMC, again lower coating levels were required to achieve similar effects. The resulting drug release in simulated gastric fluid was not significantly altered by the thin shellac coatings, which rapidly ruptured due to the swelling of the coated tablet core. In addition, shellac was found to be a suitable matrix former for extended-release tablets. The latter could be prepared by direct compression or via wet granulation using ethanolic or ammoniated aqueous shellac binder solutions. The resulting drug-release patterns could effectively be altered by varying different formulation and processing parameters. PMID:14570313

  15. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  16. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  17. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  18. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  19. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  20. Linguistic Types and the Valence of Operators in Applicative Universal Grammar.

    ERIC Educational Resources Information Center

    Sypniewski, Bernard Paul

    The relationship between linguistic types and the valence of operators on the genotype level of Applicative Universal Grammar (AUG) is examined. Assuming that the "t" and "s" types may be treated as zero-place operators, a relationship is found between the valence of an operator and its genotype, which explains the difference between types

  1. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  2. Options for organization and operation of space applications transfer centers

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Madigan, J. A.

    1976-01-01

    The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.

  3. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  4. Risk and safety analysis for Florida commercial aerial application operations

    NASA Astrophysics Data System (ADS)

    Robbins, John Michael

    The purpose of this study was to determine self-reported perceptions in the areas of agroterrorism, bioterrorism, chemical exposure and Federal Aviation Administration (FAA) oversight. The aerial application industry has been in existence since the 1920's with a gamut of issues ranging from pesticide drift to counterterrorism. The attacks of September 11th, 2001, caused a paradigm shift in the way the United States views security and, more importantly, the prevention of malicious activity. Through the proper implementation and dissemination of educational materials dealing with industry specific concerns, it is imperative that everyone has the proper level of resources and training to effectively manage terrorist threats. This research study was designed to interpret how aerial applicators view these topics of concern and how they perceive the current threat level of terrorism in the industry. Research results were consistent, indicating that a high number of aerial applicators in the state of Florida are concerned with these topics. As a result, modifications need to be made with respect to certain variables. The aerial application industry works day in and day out to provide a professional service that helps maintain the integrity of the food and commodities that we need to survive. They are a small percentage of the aviation community that we all owe a great deal for the vital and necessary services they provide.

  5. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    EPA Science Inventory

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  6. Influence of hydro-climatic conditions, soil type, and application matrix on potential vadose zone export of PPCPs

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Rao, P.; O'Connor, G.

    2013-12-01

    The land-application of biosolids and animal manure to agricultural fields has the potential to negatively impact the quality of nearby surface and subsurface water due to the presence of emerging contaminants in these residuals. We investigated the extent to which the vadose zone acts as a hydrologic and biogeochemical filter of two emerging contaminants, Triclosan (TCS) and estrone (E1) using a coupled source zone and vadose zone modeling approach. Monte Carlo simulations were run for a year following residual applications to explore the following research questions: (1) how does the application matrix (e.g., de-watered solids, liquid lagoon effluent, etc.) affect PPCP mass fluxes?; (2) how do hydro-climatic conditions and soil type affect PPCP mass fluxes?; (3) what role does the presence of macropore pathways play in PPCP export from the vadose zone; and (4) does the long-term, repeated application of residuals affect the ability of the vadose zone to act as an effective biogeochemical filter? The simulations were conducted for a sub-tropical climate with sand (e.g., Florida) and a humid climate with a silty clay loam (e.g., Midwestern United States). Simulation results suggest that the potential mobility of emerging contaminants increases linearly with increasing fraction applied to the mobile phase of the source zone (i.e., higher PPCP mass fraction in the dissolved phase during application). Following a single application, the total amount of PPCP mass exported from the source zone over the course of a year can be as high as 70% in a sub-tropical climate with sand soil. However, these types of soils do not have macropore flow pathways and the annual PPCP mass exported from the vadose zone is less than 1% of the mass applied. The higher organic carbon content in a silty clay loam reduces the amount of PPCP mass released from the source zone to less than 5% of the mass applied. In the presence of macropore pathways, the silty clay loam's vadose zone acts as a less effective biogeochemical filter than the sand's vadose zone. However, following a single application, Monte Carlo simulations suggest that the annual mass exported from the silty clay loam's vadose zone is less than 0.2% of the applied mass. Additionally, simulation results suggest that the mass exported from the vadose zone of the silty clay loam increases with time when fields receive long-term, repeated residual applications. Thus, field studies conducted with single applications likely underestimate mass fluxes exported from fields with a history of applications.

  7. Biologically motivated operator and its application to detecting intensity spots

    NASA Astrophysics Data System (ADS)

    Li, You; Lei, Zhihui

    2008-03-01

    We present a new operator, named the normalized negative Laplacian of Gaussian (NNLoG) operator to model the centre-surround mechanism of biological vision. We proved in mathematically that the NNLoG is invariant to scale. A computational scheme for selective detection of intensity spots is proposed. To detect intensity spots of specific size, the algorithm uses only one NNLoG of appropriate size. To detect intensity spots of unspecific size, the algorithm uses a set of NNLoG with equidistance sizes; the location and size of intensity spots can be determined simultaneously. This paper also investigated how to track target as a single spot, and to track rigid-body object with many spots on it. In the tracking, Kalman filter and particle filter are used as the probabilistic frameworks respectively. The robustness and effectiveness of the proposed method is demonstrated on both synthetic images and real sequences.

  8. Optimising operation of a biological wastewater treatment application.

    PubMed

    Murphy, R B; Young, B R; Kecman, V

    2009-01-01

    The objective of this work was to optimize (minimize) the compressed air required to control the rate of ammonia removal in a commercially operated wastewater bioreactor, while still maintaining operation within environmental consent limits. In order to do this, a nonlinear dynamic model based on the International Association on Water Quality (IAWQ) activated sludge model No. 3 was developed, expressing the nitrification kinetics and hydraulic dynamics of the system. From this model a steady state representation of the plant was derived, and simulated for various load characteristics experienced at the facility, and as a result an optimal load profile was developed for the compressed air distribution to the four aerobic zones. The optimal load profile will ensure that the amount of compressed air required to control the rate of ammonia removal is optimized. PMID:18762295

  9. The application of automated operations at the Institutional Processing Center

    NASA Technical Reports Server (NTRS)

    Barr, Thomas H.

    1993-01-01

    The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.

  10. The impact of LDEF results on the space application of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Le, Tuyen D.

    1993-01-01

    Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.

  11. Application of Reduced Order Transonic Aerodynamic Influence Coefficient Matrix for Design Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2009-01-01

    Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.

  12. The application of optical coherence tomography to problems in polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Dunkers, Joy P.; Phelan, Frederick R.; Sanders, Daniel P.; Everett, Matthew J.; Green, William H.; Hunston, Donald L.; Parnas, Richard S.

    The Composites Group at the National Institute of Standards and Technology has found optical coherence tomography (OCT) to be a powerful tool for non-destructive characterization of polymer matrix composites. Composites often exhibit superior properties to traditional materials such as wood and metal. However, the barrier to their widespread infiltration into consumer markets is cost. Composites can be made more cost competitive by improved composite design, process optimization, and quality control. OCT provides a means of evaluating the three aforementioned areas. OCT is a very versatile technique that can be applied to a variety of problems in polymer composites such as: microstructure determination for permeability and mechanical property prediction, void, dry spot, and defect detection, and damage evaluation. Briefly, OCT uses a low coherence source such as a superluminescent diode laser with a fiber optic based Michelson interferometer. In this configuration, the composite is the fixed arm of the interferometer. Reflections from heterogeneities within the sample are mapped as a function of thickness for any one position. Volume information is generated by translating the sample on a motorized stage. Information about the location and size of a feature within the composite is obtained. In this work, the power of OCT for imaging composite microstructure and damage is presented. An example of permeability prediction using the composite microstructure imaged from OCT is demonstrated. The effect of image processing on the value of permeability is discussed. Using the same sample, OCT imaging of composite impact damage is compared to more traditional techniques, X-ray computed tomography and confocal microscopy.

  13. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.

  14. Applications of triggered lightning to space vehicle operations

    NASA Astrophysics Data System (ADS)

    Jafferis, William; Sanicandro, Rocco; Rompalla, John; Wohlman, Richard

    1992-11-01

    Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.

  15. Application of the MACCS code to DOE production reactor operation

    SciTech Connect

    O'Kula, K.R.; East, J.M. )

    1991-01-01

    A three-level probabilistic risk assessment (PRA) of the special materials production reactor operation at the US Department of Energy's (DOE's) Savannah River site (SRS) has been completed. The goals of this analysis were to: (1) analyze existing margins of safety provided by the heavy water reactor (HWR) design challenged by postulated severe accidents; (2) compare measures of risk to the general public and on-site workers to guideline values, as well as to those posed by commercial reactor operation; and (3) develop the methodology and data base necessary to determine the equipment, human actions, and engineering systems that contribute significantly to ensuring overall plant safety. In particular, the third point provides the most tangible benefit of a PRA since the process yields a prioritized approach to increasing safety through design and operating practices. This paper describes key aspects of the consequence analysis portion of the SRS PRA: Given the radiological releases quantified through the level-2 PRA analysis, the consequences to the off-site general public and to the on-site SRS workforce are calculated. This analysis, the third level of the PRA, is conducted primarily with the MACCS 1.5 code. The level-3 PRA yields a probabilistic assessment of health and economic effects based on meteorological conditions sampled from site-specific data.

  16. 47 CFR 1.546 - Application to determine operating power by direct measurement of antenna power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application to determine operating power by direct measurement of antenna power. 1.546 Section 1.546 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Broadcast Applications and Proceedings General Filing Requirements § 1.546 Application to determine...

  17. Decolorization applicability of sol–gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum

    PubMed Central

    2013-01-01

    Background An eco-friendly treatment of industrial effluents is a major environmental concern of the modern world in the face of stringent environmental legislations. By keeping in mind the extensive industrial applications of ligninolytic enzymes, this study was performed to purify, and immobilize the manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum. The present study was also focused on investigating the capability of immobilized MnP for decolorization of dye containing textile effluents. Results A large magnitude of an indigenous MnP (882±13.3 U/mL) was obtained from white rot fungal strain G. lucidum in solid state bio-processing of wheat straw under optimized fermentation conditions (moisture, 50%; substrate, 5 g; pH, 5.5; temperature, 30°C; carbon source, 2% fructose; nitrogen source, 0.02% yeast extract; C: N ratio, 25:1; fungal spore suspension, 5 mL and fermentation time period, 4 days). After ammonium sulfate fractionation and Sephadex-G-100 gel filtration chromatography, MnP was 4.7-fold purified with specific activity of 892.9 U/mg. G. lucidum MnP was monomeric protein as evident by single band corresponding to 48 kDa on native and denaturing SDS-PAGE. The purified MnP (2 mg/mL) was immobilized using a sol–gel matrix of tetramethoxysilane (TMOS) and proplytrimethoxysilane (PTMS). The oxidation of MnSO4 for up to 10 uninterrupted cycles demonstrated the stability and reusability of the immobilized MnP. Shelf life profile revealed that enzyme may be stored for up to 60 days at 25°C without losing much of its activity. To explore the industrial applicability of MnP produced by G. lucidum, the immobilized MnP was tested against different textile effluents. After 4 h reaction time, the industrial effluents were decolorized to different extents (with a maximum of 99.2%). The maximally decolorized effluent was analyzed for formaldehyde and nitroamines and results showed that the toxicity parameters were below the permissible limits. Conclusions In conclusion, G. lucidum MnP was immobilized by sol–gel matrix entrapment with an objective to enhance its practical efficiencies. The MnP was successfully entrapped into a sol- gel matrix of TMOS and PTMS with an overall immobilization efficiency of 93.7%. The sol- gel entrapped MnP seems to have prospective capabilities which can be useful for industrial purposes, especially for bioremediation of industrial effluents. PMID:23849469

  18. Pipe line pigs have varied applications in operations. Part 2

    SciTech Connect

    Vernooy, B.

    1980-10-01

    In the early days of pipelining, it was discovered that running a swab equipped with leather disks through the line removed paraffin deposited on the pipe wall increasing the flow without increasing the power input. Blades were added to the device later to improve the efficiency of wax removal, which also decreased the number of runs and the cost of pigging. Pig developers learned from their successes as well as their failures. Part 1 of this work focused on the construction and kaliper pigs, and the second part describes the general form and function of the different operational pigs, i.e., calipers, cleaners, and spheres.

  19. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  20. Processing, compatibility and oxidation of diboride-reinforced oxide matrix composites for ultrahigh-temperature applications

    SciTech Connect

    Abada, A.

    1990-01-01

    Promising results for the development of a ceramic/ceramic composite to be used for structural applications in the ultra high temperature range (1650 to 1850 C) were obtained for alumina reinforced with titanium or zirconium diboride coated with molybdenum disilicide. Calculations of the compatibility and stability of oxide matrices with the diborides in vacuum showed positive energies of formation, indicating suitability of reinforcement of alumina under vacuum conditions. Stability and chemical compatibility of the particulate and ternary composites in their as hot pressed states and following their vacuum and air oxidation treatment were characterized.

  1. Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation.

    PubMed

    Antonuk, L E; El-Mohri, Y; Siewerdsen, J H; Yorkston, J; Huang, W; Scarpine, V E; Street, R A

    1997-01-01

    Signal properties of the first large-area, high resolution, active matrix, flat-panel imager are reported. The imager is based on an array of 1536 x 1920 pixels with a pixel-to-pixel pitch of 127 microns. Each pixel consists of a discrete amorphous silicon n-i-p photodiode coupled to an amorphous silicon thin-film transistor. The imager detects incident x rays indirectly by means of an intensifying screen placed over the array. External acquisition electronics send control signals to the array and process analog imaging signals from the pixels. Considerations for operation of the imager in both fluoroscopic and radiographic modes are detailed and empirical signal performance data are presented with an emphasis on exploring similarities and differences between the two modes. Measurements which characterize the performance of the imager were performed as a function of operational parameters in the absence or presence of illumination from a light-emitting diode or x rays. These measurements include characterization of the drift and magnitude of the pixel dark signal, the size of the pixel switching transient, the temporal behavior of pixel sampling and the implied maximum frame rate, the dependence of relative pixel efficiency and pixel response on photodiode reverse bias voltage and operational mode, the degree of linearity of pixel response, and the trapping and release of charge from metastable states in the photodiodes. In addition, X-ray sensitivity as a function of energy for a variety of phosphor screens for both fluoroscopic and radiographic operation is reported. Example images of a line-pair pattern and an anthropomorphic phantom in each mode are presented along with a radiographic image of a human hand. General and specific improvements in imager design are described and anticipated developments are discussed. This represents the first systematic investigation of the operation and properties in both radiographic and fluoroscopic modes of an imager incorporating such an array. PMID:9029541

  2. Matrix-dominated performance of thick-section fiber composites for flywheel applications

    SciTech Connect

    DeTeresa, S J; Allison, L M; Freeman, D C; Groves, S E

    2001-01-17

    An Achilles heel for the performance of thick-section, cylindrical fiber composite flywheels is the poor interlaminar properties of the material. Methods that have been used to minimize or eliminate radial tensile stresses include prestressing concentric cylinders and mass loading. There can also be significant interlaminar shear stresses at the edges of mass-loaded flywheels and in flywheels for high-power density applications where abrupt braking results in high torque levels. To specify adequate safety factors for thick-section flywheels used in these applications, the failure envelope and fatigue behavior under combined interlaminar stresses are required. Using a hollow cylindrical specimen, which was subjected to combined axial compression and torsion, results for fatigue and failure were generated for several flywheel material systems. Interlaminar compression resulted in significant enhancements to the interlaminar shear strength and results were compared to the predictions of proposed three-dimensional composite failure models. The interlaminar shear fatigue behavior of a carbodepoxy system was also studied and compression was found to greatly enhance fatigue life. The results demonstrate that radial compression stresses can yield improvements in the interlaminar shear strength and fatigue lifetimes of composite flywheel rotors.

  3. Various applications of immobilized glucose oxidase and polyphenol oxidase in a conducting polymer matrix.

    PubMed

    Cil, M; Bykbayram, A E; Kiralp, S; Toppare, L; Ya?ci, Y

    2007-06-01

    In this study, glucose oxidase and polyphenol oxidase were immobilized in conducting polymer matrices; polypyrrole and poly(N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide-co-pyrrole) via electrochemical method. Fourier transform infrared and scanning electron microscope were employed to characterize the copolymer of (N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide) with pyrrole. Kinetic parameters, maximum reaction rate and Michealis-Menten constant, were determined. Effects of temperature and pH were examined for immobilized enzymes. Also, storage and operational stabilities of enzyme electrodes were investigated. Glucose and polyphenol oxidase enzyme electrodes were used for determination of the glucose amount in orange juices and human serum and phenolic amount in red wines, respectively. PMID:17291580

  4. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture.

    PubMed

    Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja

    2014-10-01

    This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation. PMID:24967845

  5. UTOPIA-User-Friendly Tools for Operating Informatics Applications.

    PubMed

    Pettifer, S R; Sinnott, J R; Attwood, T K

    2004-01-01

    Bioinformaticians routinely analyse vast amounts of information held both in large remote databases and in flat data files hosted on local machines. The contemporary toolkit available for this purpose consists of an ad hoc collection of data manipulation tools, scripting languages and visualization systems; these must often be combined in complex and bespoke ways, the result frequently being an unwieldy artefact capable of one specific task, which cannot easily be exploited or extended by other practitioners. Owing to the sizes of current databases and the scale of the analyses necessary, routine bioinformatics tasks are often automated, but many still require the unique experience and intuition of human researchers: this requires tools that support real-time interaction with complex datasets. Many existing tools have poor user interfaces and limited real-time performance when applied to realistically large datasets; much of the user's cognitive capacity is therefore focused on controlling the tool rather than on performing the research. The UTOPIA project is addressing some of these issues by building reusable software components that can be combined to make useful applications in the field of bioinformatics. Expertise in the fields of human computer interaction, high-performance rendering, and distributed systems is being guided by bioinformaticians and end-user biologists to create a toolkit that is both architecturally sound from a computing point of view, and directly addresses end-user and application-developer requirements. PMID:18629035

  6. Multimegabit Operation Multiplexer System. [PCM telemetry unit for space applications

    NASA Technical Reports Server (NTRS)

    Giri, R. R.; Maxwell, M. S.

    1973-01-01

    The Multimegabit Operation Multiplexer System (MOMS) is a high-data-rate PCM telemetry unit capable of sampling and encoding 60 scanning radiometer and four vidicon channels at 250 kilosamples/second and 5 megasamples/second, respectively. This sampling capacity plus the seven-bit quantization requires a total throughput rate of 40 megasamples/second and 280 megabits/second. To produce these rates efficiently, the system was divided into a pair of identical 140-megabit blocks. A low-power 20-MHz analog multiplexer and analog-to-digital converter were developed together with a video sample-and-hold that features an aperture time error of less than 50 psec. Breadboard testing of these basic building blocks confirmed the design prediction that the total system would consume 27 watts of power. Two 140-megabit output parts are suitable for quadriphase modulation.

  7. MOCAGE-accident: From research to operational applications

    NASA Astrophysics Data System (ADS)

    Martet, M.; Josse, M.; Peuch, Mr.; Peuch, M.; Bonnardot, Mr.

    2009-09-01

    MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) is the multi-scale 3D Chemistry and Transport Model of Météo-France. From air quality forecasting to the study of interactions between climate and chemistry, MOCAGE is a flexible tool that is currently used for both research on atmospheric composition (over 35 publications in the international literature) and operations in Météo-France and at several collaborating institutes. In particular, MOCAGE products are used for the French operational Air Quality platform Prév'Air as well as in projects building up the GMES Atmospheric Service. Here, we present a new specific configuration "MOCAGE-accident”, currently used in pre-operations trial by Météo-France forecasters, in support of our international responsibilities as RSMC (Regional Meteorological Specialized Centre) and VAAC (Volcanic Ash Advisory Centre). Briefly, a semi-lagrangian scheme is used for advection (Williamson and Rash, 1989), while turbulent diffusion, using the Louis scheme (Louis, 1979) and convection, using the Bechtold scheme (Kain and Fritsch, 1990 and Bechtold, 2001) are parameterized. In the specific "accident” configuration, no chemical reactions are considered and a module allows to specify the temporal and geometrical characteristics of the release. Three types of pollutants can be considered : - tracers: no interactions between this tracer and the other atmospheric components are considered ; only transport, wet and dry deposition are taken into account. - radionucleides: in this case, radioactive disintegration is treated following the type of radionuclide and its lifetime. - volcanic ashes: solid materials are considered and sedimentation of the particles is also considered. Concerning the current pre-operations trial, the horizontal resolution of MOCAGE-accident is 0,5° all over the globe, with 47 levels from surface to 5 hPa. This model is thus able to represent accidental emissions on every place of the world, in troposphere and lower stratosphere. Dispersion and deposition forecasts strongly depend on the meteorological forecast fields used as an input. Within MOCAGE-accident, the choice of the NWP trajectory is left to the forecaster, who has several options for global forecasts depending upon his appreciation of the best NWP model in the area and in the period concerned with the accidental or volcanic release. An interesting additional capability of MOCAGE-accident is to calculate backwards 3D simulations, using its adjoint. This backtracking mode is used in Near-Real-Time to infer location and release period of possible nuclear explosions, in the context of a collaborative network of international centres jointly set up by the secretariats of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) and the World Meteorological Organization (WMO). An example from a recent exercise will be illustrated. Last, on-going research activities targeted at improving performance and assessing uncertainties will be shown. We will focus on the use of two types of ensemble approaches that have been tested: - using a range of different dispersion models, relying on the same meteorological forecasts or not. This is done in the context of the ENSEMBLE project. - using only MOCAGE-accident, but driven by meteorological fields from the members of Ensemble Predictions Systems.

  8. Electrically conductive, black thermal control coatings for spacecraft application. I - Silicate matrix formulation

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.; Odonnell, T. P.; Hribar, V. F.

    1986-01-01

    The formulation of the graphite silicate paints MH-11 and MH-11Z, which will serve as electrically conductive, heat-resistant thermal control coatings for the Galileo spacecraft's 400 Newton engine plume shield, 10 Newton thruster plume shields, and external shunt radiators, is described, and performance results for these paints are reported. The MH-11 is produced by combining a certain grade of graphite powder with a silicate base to produce a black, inorganic, electrically conductive, room temperature cure thermal control paint having high temperature capability. Zinc oxide is added to the MH-11 formulation to produce the blister resistant painta MH-11Z. The mechanical, chemical, thermal, optical, and radiation characteristics of the coatings are reported. The formulation, mixing, application, and surface preparation of the substrates are described, and a method of determining the electrical resistance of the coatings is demonstrated.

  9. Self-affine polytopes. Applications to functional equations and matrix theory

    SciTech Connect

    Voynov, Andrey S

    2011-10-31

    A special kind of functional equation with compression of the argument--the affine self-similarity equation--is studied. The earlier known one-dimensional self-similarity equations are generalized to the multidimensional case of functions of several variables. A criterion for the existence and uniqueness of an L{sub p}-solution is established. Description of such equations involves classification of finite-dimensional convex self-affine compact sets. In this work properties of such objects are thoroughly analysed; in particular, a counterexample to the well-known conjecture about the structure of such bodies, which was put forward in 1991, is given. Applications of the results obtained include some facts about the convergence of products of stochastic matrices; also, criteria for the convergence of some subdivision algorithms are suggested. Bibliography: 39 titles.

  10. Development of RGB Composite Imagery for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through a case study example, synoptic-scale features evident in single-channel water vapor imagery are shown in the context of the air mass product. Other products, such as the "nighttime microphysics" RGB, are useful in the detection of low clouds and fog. Nighttime microphysics products from MODIS offer some advantages over single-channel or spectral difference techniques and will be discussed in the context of a case study. Finally, other RGB products from SEVIRI are being demonstrated as precursors to GOES-R within the GOES-R Proving Ground. Examples of "natural color" and "dust" imagery will be shown with relevant applications.

  11. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  12. On-Farm Application Of Operational Integrated Satellite Services

    NASA Astrophysics Data System (ADS)

    Migdall, Silke; Bach, Heike; Hank, Tobias; Mauser, Wolfram; Burgstaller, Stefan; Tuller, Georg; Angermair, Wolfgang

    2013-12-01

    Earth Observation data are globally available and thus provide a unique data source, which is independent from local in-situ data. There have been several research projects in the agricultural area, and also different services offered directly to farmers, with mixed results. Oftentimes, the transition from research to practical application fails. This has multiple reasons, but often comes down to the farmer not knowing how to incorporate the results into his management system (both a technical and a content issue). TalkingFields, as an integrated effort that aims at providing farmers with affordable and low time- consuming, end-to-end precision farming services to increase production efficiency, has tried to bridge this gap and deliver results that can easily be incorporated into the farmer's Farm Management Information System.

  13. Processing and properties of ceramic matrix-polymer composites for dental applications

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored. Strengths and toughnesses were not severely degraded by immersion in simulated body fluids up to 30 days. The composite elastic modulus approached that of hard tissues and its wear behavior with opposing tooth was excellent. Growth of apatite over the entire composite surface was achieved in SBF. Growth of apatite in human whole saliva was achieved on the bioactive glass surface, but not on the composite surface.

  14. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    SciTech Connect

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  15. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis.

    PubMed

    Bai, Xiaolong; Niwas, Swamidoss Issac; Lin, Weisi; Ju, Bing-Feng; Kwoh, Chee Keong; Wang, Lipo; Sng, Chelvin C; Aquino, Maria C; Chew, Paul T K

    2016-04-01

    Classification of different mechanisms of angle closure glaucoma (ACG) is important for medical diagnosis. Error-correcting output code (ECOC) is an effective approach for multiclass classification. In this study, we propose a new ensemble learning method based on ECOC with application to classification of four ACG mechanisms. The dichotomizers in ECOC are first optimized individually to increase their accuracy and diversity (or interdependence) which is beneficial to the ECOC framework. Specifically, the best feature set is determined for each possible dichotomizer and a wrapper approach is applied to evaluate the classification accuracy of each dichotomizer on the training dataset using cross-validation. The separability of the ECOC codes is maximized by selecting a set of competitive dichotomizers according to a new criterion, in which a regularization term is introduced in consideration of the binary classification performance of each selected dichotomizer. The proposed method is experimentally applied for classifying four ACG mechanisms. The eye images of 152 glaucoma patients are collected by using anterior segment optical coherence tomography (AS-OCT) and then segmented, from which 84 features are extracted. The weighted average classification accuracy of the proposed method is 87.65 % based on the results of leave-one-out cross-validation (LOOCV), which is much better than that of the other existing ECOC methods. The proposed method achieves accurate classification of four ACG mechanisms which is promising to be applied in diagnosis of glaucoma. PMID:26798075

  16. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2012-01-01

    The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166

  17. Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging

    NASA Astrophysics Data System (ADS)

    Rahmim, A.; Tang, J.; Lodge, M. A.; Lashkari, S.; Ay, M. R.; Lautamäki, R.; Tsui, B. M. W.; Bengel, F. M.

    2008-11-01

    This work explores application of a novel resolution modeling technique based on analytic physical models which individually models the various resolution degrading effects in PET (positron range, photon non-collinearity, inter-crystal scattering and inter-crystal penetration) followed by their combination and incorporation within the image reconstruction task. In addition to phantom studies, the proposed technique was particularly applied to and studied in the task of clinical Rb-82 myocardial perfusion imaging, which presently suffers from poor statistics and resolution properties in the reconstructed images. Overall, the approach is able to produce considerable enhancements in image quality. The reconstructed FWHM for a Discovery RX PET/CT scanner was seen to improve from 5.1 mm to 7.7 mm across the field-of-view (FoV) to ~3.5 mm nearly uniformly across the FoV. Furthermore, extended-source phantom studies indicated clearly improved images in terms of contrast versus noise performance. Using Monte Carlo simulations of clinical Rb-82 imaging, the resolution modeling technique was seen to significantly outperform standard reconstructions qualitatively, and also quantitatively in terms of contrast versus noise (contrast between the myocardium and other organs, as well as between myocardial defects and the left ventricle).

  18. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  19. Operating limitation of reciprocating heat pipes for piston cooling applications

    SciTech Connect

    Cao, Y.; Wang, Q.; Ling, J.

    1995-12-31

    The technological background of the reciprocating heat pipe (or shaking-up heat pipe) is described. Four reciprocating heat pipes with different geometrical dimensions are tested for the determination of the minimum reciprocal frequency of the heat pipe. The experimental results show that the minimum frequency is lower for a reciprocating heat pipe with a shorter length and larger diameter. Overall, the minimum frequency is essentially insensitive to the variation of heat pipe dimensions and power inputs. This means that the reciprocating heat pipe can be used for piston cooling without encountering any major working limitations. The experimental results also show that at a higher engine cranking speed, the effective thermal conductance of the reciprocating heat pipe is more than 130 times that of a copper bar having the same size as the heat pipe. This would rank the reciprocating heat as one of the best performers in various heat pipe applications, considering the small length of the reciprocating heat pipe. Finally, a reciprocating heat pipe without air evacuation is tested, which indicates that the contribution of the liquid impingement in the heat pipe is significant, and that this heat pipe works relatively well at a lower heat input. This study is relevant for diesel engines.

  20. MATRIX AND VECTOR SERVICES

    Energy Science and Technology Software Center (ESTSC)

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  1. Role of carbonaceous materials in polymer matrix composites for friction applications

    NASA Astrophysics Data System (ADS)

    Lapping, Preston

    The purpose of this research was to study the friction performance characteristics of a Copper, Antimony, and sulfide free environmentally automotive friction material using different allotropes of graphite as a replacement. Model brake friction materials were created and tested on a full scale brake dynamometer using the Society of Automotive Engineers J2430 test and Brake Effectiveness Evaluation Procedure. The dynamometer testing revealed the graphite replacement to have higher average effectiveness values when compared to the baseline friction material currently in production. The model samples generally had higher wear rates but some were comparable to the baseline and would be acceptable in real world applications. Some of the model samples displayed stable characteristics under varying load and linear braking velocity conditions, ultimately passing the criteria required. The model samples (RD18670A/B/C/D/E/F/G) displayed average effectiveness values of 0.425, 0.435, 0.4125, 0.425, 0.475, failed test, and 0.35 respectively, which is on average a substantial gain over the baseline effectiveness value average of 0.3125. Sample RD18670F proved to be the most promising replacement for the baseline 1999 Ford Crown Victoria friction lining. This is due to a higher average effectiveness value of 0.5, during both the high speed and low speed testing, than the baseline friction lining material of 0.325. Also, RD18670F displayed comparable wear rates to the baseline test, with 0.384mm lost inboard and 0.650 lost outboard, representing a difference of only 0.074mm and 0.2mm respectively from the baseline.

  2. Large bearing operation without retainer. [high speed ball bearings for space application

    NASA Technical Reports Server (NTRS)

    Kingsbury, E.

    1978-01-01

    The design and testing of large high-speed ball bearings for space application is described. A well-defined lubrication system to provide oil to both race contacts in zero g allows stable operation without ball retainer.

  3. A Mission Management Application Suite for Airborne Science Operations

    NASA Astrophysics Data System (ADS)

    Goodman, H. M.; Meyer, P. J.; Blakeslee, R.; Regner, K.; Hall, J.; He, M.; Conover, H.; Garrett, M.; Harper, J.; Smith, T.; Grewe, A.; Real Time Mission Monitor Team

    2011-12-01

    Collection of data during airborne field campaigns is a critically important endeavor. It is imperative to observe the correct phenomena at the right time - at the right place to maximize the instrument observations. Researchers at NASA Marshall Space Flight Center have developed an application suite known as the Real Time Mission Monitor (RTMM). This suite is comprised of tools for mission design, flight planning, aircraft visualization and tracking. The mission design tool allows scientists to set mission parameters such as geographic boundaries and dates of the campaign. Based on these criteria, the tool intelligently selects potential data sets from a data resources catalog from which the scientist is able to choose the aircraft, instruments, and ancillary Earth science data sets to be provided for use in the remaining tool suite. The scientists can easily reconfigure and add data sets of their choosing for use during the campaign. The flight planning tool permits the scientist to assemble aircraft flight plans and to plan coincident observations with other aircraft, spacecraft or in situ observations. Satellite and ground-based remote sensing data and modeling data are used as background layers to aid the scientist in the flight planning process. Planning is crucial to successful collection of data and the ability to modify the plan and upload to aircraft navigators and pilots is essential for the agile collection of data. Most critical to successful and cost effective collection of data is the capability to visualize the Earth science data (airborne instruments, radiosondes, radar, dropsondes, etc.) and track the aircraft in real time. In some instances, aircraft instrument data is provided to ground support personnel in near-real time to visualize with the flight track. This visualization and tracking aspect of RTMM provides a decision support capability in conjunction with scientific collaboration portals to allow for scientists on the ground to communicate most effectively with scientists aboard the aircraft to achieve successful observations.

  4. Processing, Compatibility and Oxidation of Diboride - Oxide Matrix Composites for Ultrahigh-Temperature Applications.

    NASA Astrophysics Data System (ADS)

    Abada, Ahmed

    1990-01-01

    Promising results for the development of a ceramic/ceramic composite to be used for structural applications in the ultra high temperature range (1650-1850^ circC) have been obtained for alumina reinforced with titanium or zirconium diboribe coated with molybdenum disilicide. Prior to this achievement, several theoretical and experimental studies of particulate composites with (TiB_2 or ZrB_2) imbedded in (ZrO_2, Y_2 O_3 or Al_2 O_3) were conducted. Calculations of the compatibility and stability of oxide matrices with the diborides in vacuum showed positive energies of formation, indicating suitability of reinforcement of alumina under vacuum conditions. Also, since the sublimation of vapor species at ultra high temperatures is very critical to the stability of substances still existing in their condensed states, a detailed thermodynamic analysis of the metal -oxygen systems, was carried out using elemental data of the TiB_2, ZrB_2 , ZrO_2, Y_2 O_3, Al_2 O_3, MoSi_2 and their combinations (TiB_2 or ZrB_2)/(ZrO_2 , Y_2O_3 or Al_2O_3) for comparison, at 1650, 1850 and 2050^ circC. A comparison of the combination TiB _2 and ZrB_2 in MoSi_2/(Al_2O _3 or ZrO_2) at 1650^circC was also made. A stability analysis using equilibrium oxygen partial pressures for the TiB_2 and ZrB_2 decomposition at 1650, 1850 and 2050^ circC was carried out. A detailed characterization of the powders used for the oxide matrices, the diborides and the molybdenum disilicide are presented. The effects of the powder characteristics and the vacuum hot pressing parameters on the densification of the composites are discussed. Stability and chemical compatibility of the particulate and ternary composites in their as hot pressed states and following their vacuum and air oxidation treatments were characterized. Interdiffusion of elemental species across diboride/disilicide and oxide/disilicide interfaces was studies by EDS dot mapping. It is proposed that the growth of the Mo _5Si_3 is interface reaction controlled. It is proposed that diffusion of atmospheric gaseous oxygen through the porous texture left by the initial reaction of the oxide and diboride to form volatile B_2O_3 accounts for the continued erosion of the structure. (Abstract shortened with permission of author.).

  5. Application of submarine extended operating cycle programs to the enhancement of commercial nuclear power plant operation and maintenance

    SciTech Connect

    Mason, J.H.; Livingston, B.K.; Clarke, E.J.

    1988-01-01

    During the past 10 yr, the US Navy has extended submarine operating cycles - the period between major ship overhauls - from 4 to > 15 yr. Major programs to extend submarine operating cycles have been the submarine extended operating cycle (SEOC) and the engineered SEOC programs. Currently, the navy is incorporating lessons learned from these programs, as well as new concepts, into its newest Seawolf (SSN-21) ship class. Major elements of these programs are a disciplined machinery condition assessment (MCA) program consisting of intrusive and nonintrusive elements, the use of rotatable equipment pools, and the engineering of maintenance periodicities to establish operating cycles. Many of the concepts and elements of these programs can be applied to two objectives for enhanced operation and maintenance: the increased availability of means of improved equipment performance and reduced outage durations and the extension of plant life. The objectives of this paper are to review the US Navy SEOC programs, to draw parallels between the US Navy programs and commercial nuclear power plant programs, and to suggest potential opportunities for application to commercial nuclear power plants.

  6. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this

  7. 43 CFR 23.4 - Application for permission to conduct exploration operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exploration operations. 23.4 Section 23.4 Public Lands: Interior Office of the Secretary of the Interior SURFACE EXPLORATION, MINING AND RECLAMATION OF LANDS § 23.4 Application for permission to conduct exploration operations. No person shall, in any manner or by any means which will cause the surface of...

  8. 75 FR 80544 - Entergy Nuclear Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... Consideration of Issuance of Amendment published in the Federal Register on December 21, 2009 (74 FR 67932... COMMISSION Entergy Nuclear Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility... proposed amendment to Facility Operating License No. DPR-64 for the Indian Point Nuclear Generating Unit...

  9. 76 FR 13241 - Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...

  10. 76 FR 11822 - Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...

  11. 76 FR 12140 - Clinton Power Station Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Register on May 4, 2010, 75 FR 23814. However, by letter dated February 22, 2011, the licensee withdrew the... COMMISSION Clinton Power Station Notice of Withdrawal of Application for Amendment to Facility Operating... Operating License No. NPF-62 for the Clinton Power Station, Unit 1, located in DeWitt County, Illinois....

  12. 75 FR 52786 - Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... published in the Federal Register on January 26, 2010 (75 FR 4121). However, by letter dated August 10, 2010... COMMISSION Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to... granted the request of Wolf Creek Nuclear Operating Corporation (the licensee) to withdraw its...

  13. 76 FR 50766 - Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Issuance of Amendment published in the Federal Register on December 28, 2010 (75 FR 81673). However, by... COMMISSION Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to... of Wolf Creek Nuclear Operating Corporation (the licensee) to withdraw its September 22,...

  14. 13 CFR 120.835 - Application to expand an Area of Operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...

  15. 13 CFR 120.835 - Application to expand an Area of Operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...

  16. 13 CFR 120.835 - Application to expand an Area of Operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...

  17. 13 CFR 120.835 - Application to expand an Area of Operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...

  18. Application of the operator spline technique to nonlinear estimation and control of moving elastic systems

    NASA Technical Reports Server (NTRS)

    Karray, Fakhreddine; Dwyer, Thomas A. W., III

    1990-01-01

    A bilinear model of the vibrational dynamics of a deformable maneuvering body is described. Estimates of the deformation state are generated through a low dimensional operator spline interpolator of bilinear systems combined with a feedback linearized based observer. Upper bounds on error estimates are also generated through the operator spline, and potential application to shaping control purposes is highlighted.

  19. 26 CFR 1.381(b)-1 - Operating rules applicable to carryovers in certain corporate acquisitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Operating rules applicable to carryovers in certain corporate acquisitions. 1.381(b)-1 Section 1.381(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Insolvency Reorganizations 1.381(b)-1 Operating...

  20. Performance assessments of Android-powered military applications operating on tactical handheld devices

    NASA Astrophysics Data System (ADS)

    Weiss, Brian A.; Fronczek, Lisa; Morse, Emile; Kootbally, Zeid; Schlenoff, Craig

    2013-05-01

    Transformative Apps (TransApps) is a Defense Advanced Research Projects Agency (DARPA) funded program whose goal is to develop a range of militarily-relevant software applications ("apps") to enhance the operational-effectiveness of military personnel on (and off) the battlefield. TransApps is also developing a military apps marketplace to facilitate rapid development and dissemination of applications to address user needs by connecting engaged communities of endusers with development groups. The National Institute of Standards and Technology's (NIST) role in the TransApps program is to design and implement evaluation procedures to assess the performance of: 1) the various software applications, 2) software-hardware interactions, and 3) the supporting online application marketplace. Specifically, NIST is responsible for evaluating 50+ tactically-relevant applications operating on numerous Android™-powered platforms. NIST efforts include functional regression testing and quantitative performance testing. This paper discusses the evaluation methodologies employed to assess the performance of three key program elements: 1) handheld-based applications and their integration with various hardware platforms, 2) client-based applications and 3) network technologies operating on both the handheld and client systems along with their integration into the application marketplace. Handheld-based applications are assessed using a combination of utility and usability-based checklists and quantitative performance tests. Client-based applications are assessed to replicate current overseas disconnected (i.e. no network connectivity between handhelds) operations and to assess connected operations envisioned for later use. Finally, networked applications are assessed on handhelds to establish baselines of performance for when connectivity will be common usage.

  1. Potential applications of expert systems and operations research to space station logistics functions

    NASA Technical Reports Server (NTRS)

    Lippiatt, Thomas F.; Waterman, Donald

    1985-01-01

    The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.

  2. Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

    PubMed Central

    Lee, Jiann-Fong; Chen, Hsuen-Li; Lee, Geneh-Siang; Tseng, Shao-Chin; Lin, Mei-Hsiang; Liau, Wen-Bin

    2012-01-01

    This study synthesized a europium (Eu3+) complex Eu(DBM)3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material. PMID:22489178

  3. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  4. Metal matrix composite structures

    SciTech Connect

    Krivov, G.A.; Beletsky, V.M.; Gribkov, A.N.

    1993-12-31

    High strength-weight properties, stiffness and fatigue resistance characteristics together with low sensitivity to stress concentration make metal matrix composites (MMC) rather promising for their use in structures. Metal matrix composites consist of a matrix (aluminum, magnesium, titanium and their alloys are the most frequently used) and reinforcers (carbon and boron fibers, high-strength steel wire, silicon carbide whiskers, etc.). This work considers various types of MMC and their applications in structures. The methods of structure production from metal matrix CM of aluminum-boron system with the help of machining, deformation, part joining by welding and riveting are given.

  5. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  6. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  7. Maintenance, operation, and research (radiation) zones (MORZ) application model - a design and operation tool for intelligent buildings with application to the advanced neutron source

    SciTech Connect

    Shapira, H.B.; Brown, R.A.

    1995-12-31

    This paper describes a user-friendly application tool to assist in the design, operation and maintenance of large buildings/facilities charged with complex/extensive/elaborate activities. The model centers around a specially designed, easy-access data base containing essentially all the relevant information about the facility. Our first test case is the Advanced Neutron Source (ANS) research reactor to be constructed as a center for neutron research.

  8. New forms of the Cauchy operator and some of their applications

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Abdlhusein, M. A.

    2016-01-01

    In this paper, we first construct the Cauchy q-shift operator T( a, b; D xy ) and the Cauchy q-difference operator L( a, b; θ xy ). We then apply these operators in order to represent and investigate some new families of q-polynomials which are defined in this paper. We derive some q-identities such as generating functions, symmetry properties and Rogers-type formulas for these q-polynomials. We also give an application for the q-exponential operator R( bD q ).

  9. Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions

    NASA Astrophysics Data System (ADS)

    Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.

    2015-03-01

    Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without using any counter electrodes. After the emitter operation, thin metal (Cu, Ni, Co, and so on) and elemental semiconductors (Si and Ge) films are uniformly deposited on the emitting surface. Spectroscopic surface and compositional analyses indicate that there are no significant contaminations in deposited thin films. The implication is that ballistic hot electrons injected into solutions with appropriate kinetic energies induce preferential reduction of positive ions in solutions with no by-products followed by atom migration, nuclei formation, and the subsequent thin film growth. The availability of this technique for depositing thin SiGe films is also demonstrated by using a mixture solution. When patterned fine emission windows are formed on the emitter surface, metal and semiconductor wires array are directly deposited in parallel.

  10. Effects of Fiber Reinforcement Architecture on the Hygrothermal-Mechanical Performance of Polyimide Matrix Composites for Aeropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Thesken, John C.; Sutter, James K.; Chuang, Kathy; Juhas, John; Veverka, Adrienne; Inghram, Linda; Papadopoulos, Demetrios; Burke, Chris; Scheiman, Dan

    2003-01-01

    A lightweight sandwich support structure, for the combustor chamber of a new generation liquid propellant rocket engine, was designed and fabricated using a polymer matrix composite (PMC) facesheet on a Ti honeycomb core. The PMC facesheet consisted of high stiffness carbon fiber, M40JB, and high temperature Polyimides, such as PMR-II-50 and HFPE-II-52. Six different fiber architectures; four harness satin (4HS) woven fabric, uni-tape, woven-uni hybrid, stitched woven fabric, stitched uni-tape and triaxial braided structures have been investigated for optimum stiffness-thickness-weight-hygrothermal performance design criteria for the hygrothermal-mechanical propulsion service exposure conditions including rapid heating up to 200 F/sec, maximum operating temperature of 600 F, internal pressure up to 100 psi. One of the specific objectives in this study is to improve composite blistering resistance in z-direction at minimum expense of in-plane mechanical properties. An extensive property-performance database including dry-wet mechanical properties at various temperatures, thermal-physical properties, such as blistering onset condition was generated for fiber architecture down-selection and design guidelines. Various optimized process methods such as vacuum bag compression molding, solvent assistant resin transfer molding (SaRTM), resin film infusion (RFI) and autoclaving were utilized for PMC panel fabrication depending on the architecture type. In the case of stitched woven fabric architecture, the stitch pattern in terms of stitch density and yarn size was optimized based on both in-plane mechanical properties and blistering performance. Potential reduction of the in-plane properties transverse to the line of stitching was also evaluated. Efforts have been made to correlate the experimental results with theoretical micro-mechanics predictions. Changes in deformation mechanism and failure sequences in terms of fiber architecture will be discussed.

  11. The procedure execution manager and its application to Advanced Photon Source operation

    SciTech Connect

    Borland, M.

    1997-06-01

    The Procedure Execution Manager (PEM) combines a complete scripting environment for coding accelerator operation procedures with a manager application for executing and monitoring the procedures. PEM is based on Tcl/Tk, a supporting widget library, and the dp-tcl extension for distributed processing. The scripting environment provides support for distributed, parallel execution of procedures along with join and abort operations. Nesting of procedures is supported, permitting the same code to run as a top-level procedure under operator control or as a subroutine under control of another procedure. The manager application allows an operator to execute one or more procedures in automatic, semi-automatic, or manual modes. It also provides a standard way for operators to interact with procedures. A number of successful applications of PEM to accelerator operations have been made to date. These include start-up, shutdown, and other control of the positron accumulator ring (PAR), low-energy transport (LET) lines, and the booster rf systems. The PAR/LET procedures make nested use of PEM`s ability to run parallel procedures. There are also a number of procedures to guide and assist tune-up operations, to make accelerator physics measurements, and to diagnose equipment. Because of the success of the existing procedures, expanded use of PEM is planned.

  12. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  13. Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime

    2012-12-17

    A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed. PMID:23263056

  14. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  15. Rapid pentachlorophenol evaluation in solid matrixes by second derivative UV spectroscopy for application to wood and leather samples

    SciTech Connect

    Secchieri, M.; Benassi, C.A.; Pastore, S.; Semenzato, A.; Bettero, A.; Levorato, M.; Guerrato, A. )

    1991-07-01

    A method for the quail-quantitative evaluation of pentachlorophenol (PCP) in solid matrixes has been developed. The procedure is based on solid-liquid extraction of solid samples (leather or wood), followed by purification on a cyanopropyl column and determination of the preservative by second derivative UV spectroscopy considering the PCP A peak-through value (304-297 nm). The method allows rapid PCP determination in the concentration range 1-40 micrograms/mL; any matrix interference is avoided by the purification step and recoveries of the preservative were 99.12% (RSD% 0.13) for the leather matrix and 98.03 (RSD% 0.17) for the wood matrix.

  16. A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Lai, Ying-Cheng

    2011-09-01

    We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

  17. Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-d-galactosidase immobilization.

    PubMed

    Klein, Manuela P; Hackenhaar, Camila R; Lorenzoni, André S G; Rodrigues, Rafael C; Costa, Tania M H; Ninow, Jorge L; Hertz, Plinho F

    2016-02-10

    In order to develop safer processes for the food industry, we prepared a chitosan support with the naturally occurring crosslinking reagent, genipin, for enzyme. As application model, it was tested for the immobilization of β-d-galactosidase from Aspergillus oryzae. Chitosan particles were obtained by precipitation followed by adsorption of the enzyme and crosslinking with genipin. The particles were characterized by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The immobilization of the enzyme by crosslinking with genipin provided biocatalysts with satisfactory activity retention and thermal stability, comparable with the ones obtained with the traditional methodology of immobilization using glutaraldehyde. β-d-Galactosidase-chitosan-genipin particles were applied to galactooligosaccharides synthesis, evaluating the initial lactose concentration, pH and temperature, and yields of 30% were achieved. Moreover, excellent operational stability was obtained, since the immobilized enzyme maintained 100% of its initial activity after 25 batches of lactose hydrolysis. Thus, the food grade chitosan-genipin particles seem to be a good alternative for application in food process. PMID:26686119

  18. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.

  19. A general non-Abelian density matrix renormalization group algorithm with application to the C{sub 2} dimer

    SciTech Connect

    Sharma, Sandeep

    2015-01-14

    We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.

  20. 76 FR 50433 - Regulatory Guidance: Applicability of the Federal Motor Carrier Safety Regulations to Operators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Federal Motor Carrier Safety Administration 49 CFR Parts 383 and 390 Regulatory Guidance: Applicability of the Federal Motor Carrier Safety Regulations to Operators of Certain Farm Vehicles and Off-Road... vehicles (76 FR 31279). Recognizing that changes in regulatory guidance (if implemented by a State)...

  1. 76 FR 20377 - Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access to...

  2. 76 FR 48908 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  3. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  4. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  5. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  6. 77 FR 35069 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act),...

  7. Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor)

    1992-01-01

    Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions.

  8. 78 FR 3034 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access...

  9. 75 FR 30440 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  10. The Application of Operant Principles to Mentally Retarded Children. (RIEEC Research Bulletin 1).

    ERIC Educational Resources Information Center

    Yamaguchi, Kaoru

    Presented are six case studies demonstrating the application of operant conditioning principles to teaching self-care skills and modifying deviant behavior in six moderately to profoundly retarded children 5- to 15-years-old in Japan. Included in the case histories, such as that of a moderately retarded 12-year-old who was toilet trained, are…

  11. 40 CFR 63.745 - Standards: Primer and topcoat application operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Primer and topcoat application operations. 63.745 Section 63.745 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National...

  12. 40 CFR 63.745 - Standards: Primer and topcoat application operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Primer and topcoat application operations. 63.745 Section 63.745 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National...

  13. 78 FR 28248 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  14. 14 CFR 294.60 - Applications for authorization to conduct individual operations or programs not otherwise...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Authorizations and Waivers 294.60 Applications for authorization to... 4540 with the Office of International Aviation, Foreign Air Carrier Licensing Division. OST Form...

  15. 14 CFR 294.60 - Applications for authorization to conduct individual operations or programs not otherwise...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Authorizations and Waivers 294.60 Applications for authorization to... 4540 with the Office of International Aviation, Foreign Air Carrier Licensing Division. OST Form...

  16. 14 CFR 294.60 - Applications for authorization to conduct individual operations or programs not otherwise...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Authorizations and Waivers 294.60 Applications for authorization to... 4540 with the Office of International Aviation, Foreign Air Carrier Licensing Division. OST Form...

  17. 14 CFR 294.60 - Applications for authorization to conduct individual operations or programs not otherwise...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Authorizations and Waivers 294.60 Applications for authorization to... 4540 with the Office of International Aviation, Foreign Air Carrier Licensing Division. OST Form...

  18. 14 CFR 294.60 - Applications for authorization to conduct individual operations or programs not otherwise...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Authorizations and Waivers 294.60 Applications for authorization to... 4540 with the Office of International Aviation, Foreign Air Carrier Licensing Division. OST Form...

  19. 77 FR 66486 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access...

  20. 78 FR 22563 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  1. 76 FR 70768 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  2. 77 FR 16271 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  3. 76 FR 64388 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses; Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses; Involving No Significant Hazards Considerations Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  4. An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1977-01-01

    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

  5. 77 FR 25753 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act),...

  6. 77 FR 56877 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act),...

  7. 75 FR 70032 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  8. 75 FR 33839 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ..., 2010 (75 FR 30440). Notice of Consideration of Issuance of Amendments to Facility Operating Licenses... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... storage pool liner and the pool concrete structure and delete the TS sections that are applicable...

  9. 78 FR 9745 - Kewaunee Power Station; Application for Amendment to Facility Operating License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... October 16, 2012 (77 FR 63349). However, by letter dated November 27, 2012, the licensee withdrew the... COMMISSION Kewaunee Power Station; Application for Amendment to Facility Operating License AGENCY: Nuclear... provided the first time that a document is referenced. NRC's PDR: You may examine and purchase copies...

  10. 77 FR 20070 - Biweekly Notice of Applications and Amendments to Facility Operating Licenses and Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice of Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act),...

  11. 77 FR 28626 - Biweekly Notice, Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice, Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  12. 76 FR 1462 - Notice Applications and Amendments to Facility Operating Licenses Involving Proposed No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Notice Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access to...

  13. 77 FR 33243 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access...

  14. 76 FR 52699 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  15. 75 FR 20627 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  16. 77 FR 38094 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act),...

  17. 13 CFR 120.835 - Application to expand an Area of Operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Application to expand an Area of Operations. 120.835 Section 120.835 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS... program responsibilities in the proposed area. (b) Local Economic Area Expansion. A CDC seeking to...

  18. 40 CFR Table 4 to Subpart Xxxx of... - Operating Limits for Puncture Sealant Application Control Devices

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed...

  19. 75 FR 61521 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  20. An Operational Safety and Certification Assessment of a TASAR EFB Application

    NASA Technical Reports Server (NTRS)

    Koczo, Stefan; Wing, David

    2013-01-01

    This paper presents an overview of a Traffic Aware Strategic Aircrew Requests (TASAR) Electronic Flight Bag application intended to inform the pilot of trajectory improvement opportunities while en route that result in operational benefits. The results of safety analyses and a detailed review of Federal Aviation Administration (FAA) regulatory documents that establish certification and operational approval requirements are presented for TASAR. The safety analyses indicate that TASAR has a likely Failure Effects Classification of “No Effect,” and at most, is no worse than “Minor Effect.” Based on this safety assessment and the detailed review of FAA regulatory documents that determine certification and operational approval requirements, this study concludes that TASAR can be implemented in the flight deck as a Type B software application hosted on a Class 2 Portable Electronic Device (PED) Electronic Flight Bag (EFB). This implementation approach would provide a relatively low-cost path to certification and operational approval for both retrofit and forward fit implementation, while at the same time facilitating the business case for early ADS-B IN equipage. A preliminary review by FAA certification and operational approvers of the analyses presented here confirmed that the conclusions are appropriate and that TASAR will be considered a Type B application.

  1. 46 CFR 70.05-18 - Applicability to vessels operating under an exemption afforded in the Passenger Vessel Safety Act...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Applicability to vessels operating under an exemption afforded in the Passenger Vessel Safety Act of 1993 (PVSA). 70.05-18 Section 70.05-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-18 Applicability to vessels operating...

  2. Validation of a sensitive LC/MSMS method for chloronucleoside analysis in biological matrixes and its applications.

    PubMed

    Noyon, Caroline; Delporte, Cédric; Dufour, Damien; Cortese, Melissa; Rousseau, Alexandre; Poelvoorde, Philippe; Nève, Jean; Vanhamme, Luc; Zouaoui Boudjeltia, Karim; Roumeguère, Thierry; Van Antwerpen, Pierre

    2016-07-01

    Myeloperoxidase promotes several kinds of damage and is involved in the development of various diseases (as atherosclerosis and cancers). An example of these damage is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity on those acids. This study aimed to develop and validate a method to analyze oxidized and MPO-specific chlorinated nucleosides in biological matrixes (cells, tissues and plasma). Although a lot of methods to quantify oxidized or chlorinated nucleosides have already been established, none of them took into account all these derivatives together. The new method used a Triple Quadrupole mass spectrometer fitted with a Jet Stream electrospray ionization source. This approach has two advantages compared with existing LC/MSMS analyses: it includes MPO-induced modifications in a unique analysis and obtains a better sensitivity. Our optimized method reached LOQs of 1.50pg and 1.42pg respectively for oxoG and oxo(d)G, being 4 times more sensitive than previous methods, and LOQs of 1.39pg, 1.30pg and 63.4 fg respectively for 5-chlorocytidine, 5-chloro-2'-deoxycytidine and 8-chloroguanosine. Developed method is also 25 times more sensitive for chloroguanosine than the best existing method. Nevertheless, this method is not specific enough for 8-chloro-(2'-deoxy)adenosine analysis. Examples of applications demonstrate the interest of this validated method. Indeed analysis of plasma from healthy donors highlighted exclusively the presence of 5-chlorocytidine (1.0±0.2nM) whereas analysis of treated endothelial cells by HOCl showed chlorination of guanosine and cytidine in cytoplasmic pools and chlorination of (deoxy)cytidine in DNA and RNA. In conclusion, this study shows that 5-chloro-2'-deoxycytidine, 5-chlorocytidine and 8-chloroguanosine are good markers allowing us to detect the MPO activity in biological fluids. The robust, specific and sensitive developed method enables future studies on MPO implications in human diseases. PMID:27154681

  3. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  4. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  5. Convergence of expansions in Schrödinger and Dirac eigenfunctions, with an application to the R-matrix theory

    NASA Astrophysics Data System (ADS)

    Stasińska, Julia

    2012-02-01

    Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue problem lies at the heart of the R-matrix methods for both the Schrödinger and Dirac particles. A central issue that should be carefully analyzed when functional series are applied is their convergence. In the present paper, we study the properties of the eigenfunction expansions appearing in nonrelativistic and relativistic R-matrix theories. In particular, we confirm the findings of Rosenthal [J. Phys. G 13, 491 (1987)] and Szmytkowski and Hinze [J. Phys. B 29, 761 (1996); Szmytkowski and Hinze J. Phys. A 29, 6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac particles, the functional series fails to converge to a limit claimed by other authors.

  6. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  7. A Rapidly Deployable Operational Mesoscale Modeling System for Emergency-Response Applications.

    NASA Astrophysics Data System (ADS)

    Warner, Thomas T.; Bowers, James F.; Swerdlin, Scott P.; Beitler, Brian A.

    2004-05-01

    An operational mesoscale model based forecasting system has been developed for use by U.S. Army Test and Evaluation Command meteorologists in their support of test-range operations. This paper reports on the adaptation of this system to permit its rapid deployment in support of a variety of civilian and military emergency-response applications. The innovation that allows for this rapid deployment is an intuitive graphical user interface that permits a non-expert to quickly configure the model for a new application, and launch the forecast system to produce operational products without further intervention. The graphical interface is Web based and can be run on a wireless laptop or a personal digital assistant in the field. The instructions for configuring the modeling system are transmitted to a compute engine [generally a personal computer (PC) cluster], and forecast products are placed on a Web site that can be accessed by emergency responders or other forecast users. This system has been used operationally for predicting the potential transport and dispersion of hazardous material during the 2002 Winter Olympics in Salt Lake City, Utah, and during military operations in Afghanistan. It has also been used operationally to satisfy the rapidly evolving needs of wildfire managers. Continued use of the modeling system by nonexperts will allow developers to refine the graphical interface and make the model and the interface more fault tolerant with respect to the decisions of model users.(The National Center for Atmospheric Research is sponsored by the National Science Foundation

  8. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions.

    PubMed

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-28

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism. PMID:23635123

  9. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  10. 30 CFR 910.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATIONS WITHIN EACH STATE GEORGIA 910.784 Underground mining permit applicationsminimum requirements... operations shall demonstrate compliance with Chapter 391-3-1 of the Rules and Regulations of the...

  11. 30 CFR 910.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATIONS WITHIN EACH STATE GEORGIA 910.784 Underground mining permit applicationsminimum requirements... operations shall demonstrate compliance with Chapter 391-3-1 of the Rules and Regulations of the...

  12. 30 CFR 910.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATIONS WITHIN EACH STATE GEORGIA 910.784 Underground mining permit applicationsminimum requirements... operations shall demonstrate compliance with Chapter 391-3-1 of the Rules and Regulations of the...

  13. 30 CFR 910.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATIONS WITHIN EACH STATE GEORGIA 910.784 Underground mining permit applicationsminimum requirements... operations shall demonstrate compliance with Chapter 391-3-1 of the Rules and Regulations of the...

  14. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  15. A 4 × 2 switch matrix in QFN24 package for 0.5-3 GHz application

    NASA Astrophysics Data System (ADS)

    Yuzhe, Liu; Pengfei, Mu; Renjie, Gong; Jing, Wan; Yulin, Zhang; Yuepeng, Yan

    2014-12-01

    This paper presents a 4 × 2 switching matrix implemented in the Win 0.5 μm GaAs pseudomorphic high electron mobility transistor process, it covers the 0.5-3 GHz frequency range. The switch matrix is composed of 4 SPDT switch whose two output ports can simultaneously select the input port and a 4 to 8 bit digital decoder, both the radio frequency (RF) part and the digital part are integrated into one single chip. The chip is packaged in a low cost QFN24 plastic package. On chip shunt, capacitors at the input ports are taken to compensate for the bonding wire inductance effect. The designed switch matrix shows a good measured performance: the insertion loss is less than 5.5 dB, the isolation is no worse than 30 dB, the return loss of input ports and output ports is better than -10 dB, the input 1 dB compression point is better than 25.6 dBm, and the OIP3 is better than 37 dBm. The chip size of the switch matrix is only 1.45 × 1.45 mm2.

  16. Convergence Properties of an Iterative Procedure of Ipsatizing and Standardizing a Data Matrix, with Applications to Parafac/Candecomp Preprocessing.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1989-01-01

    Centering a matrix row-wise and rescaling it column-wise to a unit sum of squares requires an iterative procedure. It is shown that this procedure converges to a stable solution that need not be centered row-wise. The results bear directly on several types of preprocessing methods in Parafac/Candecomp. (Author/TJH)

  17. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application to conduct underground coal mining operations. (b) Any application for an underground mining... local Air Pollution Control Authorities and the Washington Clean Air Act, RCW 70.94. (c) Any...

  18. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application to conduct underground coal mining operations. (b) Any application for an underground mining... local Air Pollution Control Authorities and the Washington Clean Air Act, RCW 70.94. (c) Any...

  19. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application to conduct underground coal mining operations. (b) Any application for an underground mining... local Air Pollution Control Authorities and the Washington Clean Air Act, RCW 70.94. (c) Any...

  20. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application to conduct underground coal mining operations. (b) Any application for an underground mining... local Air Pollution Control Authorities and the Washington Clean Air Act, RCW 70.94. (c) Any...